WorldWideScience

Sample records for 3-dimensional hydrogel system

  1. Hydrogel Based 3-Dimensional (3D System for Toxicity and High-Throughput (HTP Analysis for Cultured Murine Ovarian Follicles.

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    Full Text Available Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN, preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR. The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased

  2. Hydrogel based occlusion systems

    OpenAIRE

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a target occlusion location. The hydrogel is configured to permanently occlude the target occlusion location in the swollen state. The hydrogel may be an electro-activated hydrogel (EAH) which could be ...

  3. Hydrogel based occlusion systems

    NARCIS (Netherlands)

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a tar

  4. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications

    Energy Technology Data Exchange (ETDEWEB)

    Sadat-Shojai, Mehdi, E-mail: msadatshojai@gmail.com [Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of); Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, Mohammad-Taghi [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Jamshidi, Ahmad [Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of)

    2015-04-01

    The ability to encapsulate cells in three-dimensional (3D) protein-based hydrogels is potentially of benefit for tissue engineering and regenerative medicine. However, as a result of their poor mechanical strength, protein-based hydrogels have traditionally been considered for soft tissue engineering only. Hence, in this study we tried to render these hydrogels suitable for hard tissue regeneration, simply by incorporation of bioactive nano-hydroxyapatite (HAp) into a photocrosslinkable gelatin hydrogel. Different cell types were also encapsulated in three dimensions in the resulting composites to prepare cell-laden constructs. According to the results, HAp significantly improves the stiffness of gelatin hydrogels, while it maintains their structural integrity and swelling ratio. It was also found that while the bare hydrogel (control) was completely inert in terms of bioactivity, a homogeneous 3D mineralization occurs throughout the nanocomposites after incubation in simulated body fluid. Moreover, encapsulated cells readily elongated, proliferated, and formed a 3D interconnected network with neighboring cells in the nanocomposite, showing the suitability of the nano-HAp/protein hydrogels for cellular growth in 3D. Therefore, the hydrogel nanocomposites developed in this study may be promising candidates for preparing cell-laden tissue-like structures with enhanced stiffness and increased osteoconductivity to induce bone formation in vivo. - Highlights: • We tried to render protein-based hydrogels suitable for hard tissue regeneration. • We developed a three-component system comprising hydrogel, nano-HAp, and cells. • Nano-HAp significantly improved the mechanical strength of hydrogel. • Encapsulated cells readily elongated and proliferated in 3D cell-laden nanocomposite. • 3D deposition of bone crystals occurred in the hydrogel nanocomposites.

  5. Classification of solvable 3-dimensional Lie triple systems

    OpenAIRE

    Bouetou, Thomas Bouetou

    2003-01-01

    We give the classification of solvable and splitting Lie triple system and it turn that, up to isomorphism there exist 7 non isomorphic canonical Lie triple systems and 6 non isomorphic splitting canonical Lie triple systems and find the solvable Lie algebras associated.

  6. Auto-measuring System of 3- Dimensional Human Body

    Institute of Scientific and Technical Information of China (English)

    李勇; 尚保平; 付小莉; 尚会超

    2001-01-01

    To realize the automation of fashion industry measuring,designing and manufacturing, the auto-measurement of 3D size of human body is of great importance. The auto measurement system of 3D human body based on Charge Coupled Devices (CCD) and infrared sensors is presented in this paper. The system can measure the bare size of human body that excludes the effect of clothing quickly and accurately.

  7. Regenerative material for aneurysm embolization A 3-dimensional culture system of fibroblasts and calcium alginate gel

    Institute of Scientific and Technical Information of China (English)

    Jingdong Zhang; Kan Xu; Jinlu Yu; Jun Wang; Qi Luo

    2011-01-01

    Calcium alginate gel (CAG) has been shown to successfully model aneurysm embolization within a short period of time. However, gradually degrading CAG potentially results in aneurysm recanalization.In the present study, a regenerative embolic material was designed by seeding rat fibroblasts in a CAG. The study investigated the feasibility of constructing a 3-dimensional culture system. The fibroblasts grew well and firmly attached to the CAG. CAG was conducive for fibroblast growth, and resulted in a 3-dimensional culture system. Results show that CAG can be used theoretically as a vascular, regenerative, embolic material.

  8. Study of new chaotic flows on a family of 3-dimensional systems with quadratic nonlinearities

    International Nuclear Information System (INIS)

    Based on a wider systematic search on a family of 3-dimensional systems with quadratic nonlinearities, three new simple chaotic systems were found. One of them has the unusual feature of having a stable equilibrium point, and it is the simplest one of other chaotic flows with this property. The others have some interesting special properties

  9. DYNAMICAL CONSISTENCE IN 3-DIMENSIONAL TYPE-K COMPETITIVE LOTKA-VOLTERRA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A 3-dimensional type-K competitive Lotka-Volterra system is considered in this paper. Two discretization schemes are applied to the system with an positive interior fixed point, and two corresponding discrete systems are obtained. By analyzing the local dynamics of the corresponding discrete system near the interior fixed point, it is showed that this system is not dynamically consistent with the continuous counterpart system.

  10. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    Science.gov (United States)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  11. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s2 to maintain continuous computer operation. Against S2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s2. By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  12. Development of a 3-Dimensional Dosimetry System for Leksell Gamma Knife-Perfexion

    OpenAIRE

    Yoon, KyoungJun; Kwak, Jungwon; Lee, DoHeui; Cho, Byungchul; Lee, Sangwook; Ahn, SeungDo

    2015-01-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife-Perfexion TM (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S;Tb phosphor sheets for dosimetric measure...

  13. Polymer hydrogels as optimized delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  14. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described.

  15. Influence of hydrogels initial state on their ?lectrochemical and volume-gravimetric properties ?n intergel system polyacrylic acid hydrogel ?nd poly-4-vinylpyridine hydrogel

    OpenAIRE

    Jumadilov, T.; Abilov, Zh.; Kondaurov, R.; Himersen, H.; Yeskalieva, G.; Akylbekova, M.; Akimov, A.

    2015-01-01

    Electrochemical properties of intergel system polyacrylic acid (gPAA) and poly-4-vinylpyridine hydrogels (gP4VP) and conformational properties of initial hydrogels were studied depending on hydrogels initial state. Maximum activation area is: for dry hydrogels ? gPAA:gP4VP ratios 5:1 and 1:5, for swollen ? ratios 5:1, 2:4 and 1:5. ?????????? ?????????????? ??????????? ???????????? ??????? ????????? ????????????? ??????? (????) ? ???? ????-4-????????????? (??4??) ?? ????????????? ???????...

  16. 3 - Dimensional Body Measurement Technology

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xu-dong; LI Yan-mei

    2002-01-01

    3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.

  17. Development of a 3-Dimensional Dosimetry System for Leksell Gamma Knife-Perfexion

    CERN Document Server

    Yoon, KyoungJun; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-01-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife-Perfexion TM (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S;Tb phosphor sheets for dosimetric measurements. Also, to compensate the lack of backscatter, we located a 1 cm thick PMMA plate downstream of the active layer. The PMMA plate was transparent for scintillation lights to reach the CCD with 1200x1200 pixels by a 5.2 um pitch. Using this system, three hundred images by a 0.2 mm slice gap were acquired under each of three collimator setups, i.e. 4 mm, 8 mm, and 16 mm, respectively. The 2D projected images taken by CCD camera were compared with the dose distributions measured by EBT3 films in the same conditions. All ...

  18. Micropatterned 3-Dimensional Hydrogel System to Study Human Endothelial-Mesenchymal Stem Cell Interactions

    OpenAIRE

    Trkov, Sasa; Eng, George; Di Liddo, Rosa; Parnigotto, Pier Paolo; Vunjak-Novakovic, Gordana

    2010-01-01

    The creation of vascularized engineered tissues of clinically relevant size is a major challenge of tissue engineering. While it is known that endothelial and mural vascular cells are integral to the formation of stable blood vessels, the specific cell type and optimal conditions for engineered vascular networks are poorly understood. To this end, we investigated the vasculogenic potential of human mesenchymal stem cell (MSC) populations derived from three different sources: (i) bone marrow a...

  19. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  20. A 60GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna

    Science.gov (United States)

    Suematsu, Noriharu; Yoshida, Satoshi; Tanifuji, Shoichi; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo

    A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63GHz, maximum actual gain of 6.0dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.

  1. Development of a 3-dimensional dosimetry system for Leksell Gamma Knife Perfexion

    Science.gov (United States)

    Yoon, KyoungJun; Kwak, JungWon; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-07-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife Perfexion (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S:Tb phosphor sheets for dosimetric measurements. Also, to compensate for the lack of backscatter, we located a 1-cm-thick poly methyl methacrylate (PMMA) plate downstream of the active layer. The PMMA plate was transparent to scintillation light to reach the CCD with 1200 × 1200 pixels and a 5.2 µm pitch. With this system, 300 images with a 0.2-mm slice gap were acquired under each of three collimator setups, i.e. 4-mm, 8-mm, and 16-mm, respectively. The 2D projected images taken by the CCD camera were compared with the dose distributions measured by the EBT3 films under the same conditions. All 2D distributions were normalized to the maximum values derived by fitting peaks for each collimator setup. The differences in the full widths at half maximum (FWHM) of 2D profiles between CCD images and film doses were measured to be less than 0.3-mm. The scanning task for all peak regions took less than three minutes with the new instrument. So it can be utilized as a QA tool for the Gamma knife radiosurgery system instead of film dosimetry, the use of which requires much more time and many more resources.

  2. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S [Asan Medical Center, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  3. Bioresponsive systems based on polygalacturonate containing hydrogels.

    Science.gov (United States)

    Schneider, Konstantin P; Rollett, Alexandra; Wehrschuetz-Sigl, Eva; Hasmann, Andrea; Zankel, Armin; Muehlebach, Andreas; Kaufmann, Franz; Guebitz, Georg M

    2011-04-01

    Polysaccharide acid (PSA) based devices (consisting of alginic acid and polygalacturonic acid) were investigated for the detection of contaminating microorganisms. PSA-CaCl(2) hydrogel systems were compared to systems involving covalent cross-linking of PSA with glycidylmethacrylate (PSA-GMA) which was confirmed with Fourier Transformed Infrared (FTIR) analysis. Incubation of PSA-CaCl(2) and PSA-GMA beads loaded with Alizarin as a model ingredient with trigger enzymes (polygalacturonases or pectate lyases) or bacteria lead to a smoothening of the surface and exposure of Alizarin according to Environmental Scanning Electron Microscopy (ESEM) analysis. Enzyme triggered release of Alizarin was demonstrated for a commercial enzyme preparation from Aspergillus niger and with purified polygalacturonase and pectate lyase from S. rolfsii and B. pumilus, respectively. In contrast to the PSA-CaCl(2) beads, cross-linking (PSA-GMA beads) restricted the release of Alizarin in absence of enzymes. There was a linear relation between release of Alizarin (5-348 μM) and enzyme activity in a range of 0-300 U ml(-1) dosed. In addition to enzymes, both PSA-CaCl(2) and PSA-GMA beads were incubated with Bacillus subtilis and Yersinia entercolitica as model contaminating microorganism. After 72 h, a release between 10 μM and 57 μM Alizarin was detected. For protection of the hydrogels, an enzymatically modified PET membrane was covalently attached onto the surface. This lead to a slower release and improve long term storage stability based on less than 1% release of dye after 21 days. Additionally, this allowed simple detection by visual inspection of the device due to a colour change of the white membrane to orange upon enzyme triggered release of the dye. PMID:22112943

  4. One-pot synthesis of 3-dimensional reduced graphene oxide-based hydrogel as support for microbe immobilization and BOD biosensor preparation.

    Science.gov (United States)

    Liu, Ling; Zhai, Junfeng; Zhu, Chengzhou; Gao, Ying; Wang, Yue; Han, Yanchao; Dong, Shaojun

    2015-01-15

    We report a hydrothermal method to prepare reduced graphene oxide (rGO)-based hydrogel (Gel(rGONR)), using neutral red (NR) to mediate the assembly of rGO sheets and tune the pore size of Gel(rGONR). A series of techniques including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and BET were employed to characterize the physico-chemical properties of Gel(rGONR). A large pore size of up to 20 µm and interconnected porous structure of Gel(rGONR) were obtained. Gel(rGONR) was used as a support for immobilizing microbe (denoted as Gel(rGONR-M)), which showed ~3.3 times more load mass of microbe than commonly used supports (i.e., activated carbon and carbon fiber felt) and 2.5 times higher biodegradation efficiency (BE) than carbon fiber felt. Further use of Gel(rGONR-M) as a biocatalyst for establishing a BOD biosensor exhibits a linear range of 2-64 mg O L(-1) and a detection limit 0.4 mg O L(-1) for glucose-glutamic acid (GGA). Moreover, our proposed BOD detection strategy shows a long-term viability over one year and stability up to 2 months with a relative standard deviation of 2.1%. Our results demonstrated the great potential of employing Gel(rGONR) as a microbe-immobilization support for biosensor development.

  5. Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system.

    Science.gov (United States)

    Nakaguchi, Yuji; Ono, Takeshi; Onitsuka, Ryota; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai

    2016-01-01

    COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dose reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital. PMID:27179708

  6. Application of hydrogel system for neutron attenuation

    CERN Document Server

    Gupta, S C; Gupta, B P

    2000-01-01

    Hydrogel sheets based on poly(vinyl alcohol) (PVA) and poly(vinyl acetate) (PVAc) have been prepared by the technique of acetalization of PVA using formaldehyde and grafting of acrylic acid onto PVAc by gamma irradiation. PVA hydrogel (PVAB) sheets have been prepared in geometrically stable shapes by compression moulding process and characterised for their thermal properties, geometrical stability on water absorption, and neutron shielding efficiency. The effective protection from fast neutrons can be increased by a factor of 18% by swelling the PVAB sheets to 210% in water. The water intake and subsequent retention of water by the sheet can be tailored as per shielding requirements.

  7. STUDY ON ASPIRIN-MAA HYDROGEL MIP SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The controlled release system of MIP-Asp hydrogel was prepared by using self-assembly molecular imprinted technique (MIP). 1H NMR was used to detect the changes of active hydrogen atoms. Moreover, the effect of crosslinking degree of hydrogel on the release of medicine was investigated and the temperature/pH sensitivity was also considered. The results demonstrated that: the MIPs-Asp was a procedure involving the participation of active hydrogen; the lower crosslinking degree corresponded to the higher medicine release ratio; high temperature is better for the release; weak acidity is better for the release of Asp.

  8. STUDY ON ASPIRIN-MAA HYDROGEL MIP SYSTEM

    Institute of Scientific and Technical Information of China (English)

    LIU Xiaohang; CHENG Guoxiang; LI Guohua

    2008-01-01

    The controUed release system of MIP-Asp hydrogel was prepared by using self-assembly molecular imprinted technique (MIP).1H NMR was used to detect the changes of active hydrogen atoms.Moreover, the effect of crosslinkin8 degree of hydrogel on the release of medicine was investigated and the temperature/pH sensitivity was also considered.The results demonstrated that: the MIPs-Asp was a procedure involving the participation of active hydrogen; the lower crosslinking degree corresponded to the higher medicine release ratio; high temperature is better for the release; weak acidity is better for the release of Asp.

  9. The existence of periodic orbits and invariant tori for some 3-dimensional quadratic systems.

    Science.gov (United States)

    Jiang, Yanan; Han, Maoan; Xiao, Dongmei

    2014-01-01

    We use the normal form theory, averaging method, and integral manifold theorem to study the existence of limit cycles in Lotka-Volterra systems and the existence of invariant tori in quadratic systems in ℝ(3). PMID:24982980

  10. The development of human factors experimental evaluation technology - 3-dimensional measurement system for motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Soo; Pan, Young Hwan; Lee, Ahn Jae; Lee, Kyung Tae; Lim, Chi Hwan; Chang, Pil Sik; Lee, Seok Woo; Han, Sung Wook; Park, Chul Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-07-01

    Measurement of human motion is important in the application of ergonomics. We developed a system which can measure body movement, especially= hand movement using advanced direct video measurement technology. This system has as dynamic accuracy with 1% error and the sampling rate to 6 - 10 Hz, and can analyse the trajectory and speed of the marker. The use of passive marker obviates the need for a marker telemetry system and minimize motion disruption. 18 refs., 4 tabs., 6 figs. (author)

  11. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.

    Science.gov (United States)

    Lee, Fan; Chung, Joo Eun; Kurisawa, Motoichi

    2009-03-19

    Previously, we reported the independent tuning of mechanical strength (crosslinking density) and gelation rate of an injectable hydrogel system composed of hyaluronic acid-tyramine (HA-Tyr) conjugates. The hydrogels were formed through the oxidative coupling of tyramines which was catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). Herein, we studied the encapsulation and release of model proteins using the HA-Tyr hydrogel. It was shown that the rapid gelation achieved by an optimal concentration of HRP could effectively encapsulate the proteins within the hydrogel network and thus prevented the undesired leakage of proteins into the surrounding tissues after injection. Hydrogels with different mechanical strengths were formed by changing the concentration of H(2)O(2) while maintaining the rapid gelation rate. The mechanical strength of the hydrogel controlled the release rate of proteins: stiff hydrogels released proteins slower compared to weak hydrogels. In phosphate buffer saline, alpha-amylase (negatively charged) was released sustainably from the hydrogel. Conversely, the release of lysozyme (positively charged) discontinued after the fourth hour due to electrostatic interactions with HA. In the presence of hyaluronidase, lysozymes were released continuously and completely from the hydrogel due to degradation of the hydrogel network. The activities of the released proteins were mostly retained which suggested that the HA-Tyr hydrogel is a suitable injectable and biodegradable system for the delivery of therapeutic proteins. PMID:19121348

  12. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode

    Science.gov (United States)

    Kang, Seongsu; Kim, Kwon-Ho; Kim, Yeu-Chun

    2015-11-01

    Electroporation is one of the most widely used transfection methods because of its high efficiency and convenience among the various transfection methods. Previous micro-electroporation systems have some drawbacks such as limitations in height and design, time-consuming and an expensive fabrication process due to technical constraints. This study fabricates a three dimensional microelectrode using the 3D printing technique. The interdigitated microstructure consisting of poly lactic acid was injected by a 3D printer and coated with silver and aluminum with a series of dip-coatings. With the same strength of electric field (V cm-1), a higher efficiency for molecular delivery and a higher cellular viability are achieved with the microelectrode than with a standard cuvette. In addition, this study investigates chemicophysical changes such as Joule heating and dissolved metal during electroporation and showed the micro-electroporation system had less chemicophysical changes. It was concluded that the proposed micro-electroporation system will contribute to genetic engineering as a promising delivery tool, and this combination of 3D printing and electroporation has many potential applications for diverse designs or systems.

  13. Numerical simulation of 3-dimensional Rayleigh-Benard system by particle method

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-05-01

    As one of representative non-equilibrium thermal fluid system, there is a fluid system maintained at lower and higher temperatures at upper and lower faces, respectively, and Rayleigh-Benard (RB) system. On temperature difference between both faces smaller than a critical value, flow into the system is not developed to realize a thermal conductive state, while on that larger than a critical value, macroscopic convection vortex forms to realize a conventional thermal conductive state. A transition process from thermal conduction to convection is well-known for RB unstability and also the convection state is done for RB convection. In this paper, a transition process from thermal conduction to convection was simulated systematically by changing temperature difference at both faces using DSMC method known for one of statistical methods, to investigate the critical Rayleigh number in response to temperature difference at beginning point of the convection, variations and correlative function at proximity of the critical Rayleigh number, pattern formation of the convection and so forth. (G.K.)

  14. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode.

    Science.gov (United States)

    Kang, Seongsu; Kim, Kwon-Ho; Kim, Yeu-Chun

    2015-11-02

    Electroporation is one of the most widely used transfection methods because of its high efficiency and convenience among the various transfection methods. Previous micro-electroporation systems have some drawbacks such as limitations in height and design, time-consuming and an expensive fabrication process due to technical constraints. This study fabricates a three dimensional microelectrode using the 3D printing technique. The interdigitated microstructure consisting of poly lactic acid was injected by a 3D printer and coated with silver and aluminum with a series of dip-coatings. With the same strength of electric field (V cm(-1)), a higher efficiency for molecular delivery and a higher cellular viability are achieved with the microelectrode than with a standard cuvette. In addition, this study investigates chemicophysical changes such as Joule heating and dissolved metal during electroporation and showed the micro-electroporation system had less chemicophysical changes. It was concluded that the proposed micro-electroporation system will contribute to genetic engineering as a promising delivery tool, and this combination of 3D printing and electroporation has many potential applications for diverse designs or systems.

  15. A novel electroporation system for efficient molecular delivery into Chlamydomonas reinhardtii with a 3-dimensional microelectrode

    OpenAIRE

    Seongsu Kang; Kwon-Ho Kim; Yeu-Chun Kim

    2015-01-01

    Electroporation is one of the most widely used transfection methods because of its high efficiency and convenience among the various transfection methods. Previous micro-electroporation systems have some drawbacks such as limitations in height and design, time-consuming and an expensive fabrication process due to technical constraints. This study fabricates a three dimensional microelectrode using the 3D printing technique. The interdigitated microstructure consisting of poly lactic acid was ...

  16. Bulk density estimation using a 3-dimensional image acquisition and analysis system

    Directory of Open Access Journals (Sweden)

    Heyduk Adam

    2016-01-01

    Full Text Available The paper presents a concept of dynamic bulk density estimation of a particulate matter stream using a 3-d image analysis system and a conveyor belt scale. A method of image acquisition should be adjusted to the type of scale. The paper presents some laboratory results of static bulk density measurements using the MS Kinect time-of-flight camera and OpenCV/Matlab software. Measurements were made for several different size classes.

  17. Error analysis of a direct current electromagnetic tracking system in digitizing 3-dimensional surface geometries.

    Science.gov (United States)

    Milne, A D; Lee, J M

    1999-01-01

    The direct current electromagnetic tracking device has seen increasing use in biomechanics studies of joint kinematics and anatomical surface geometry. In these applications, a stylus is attached to a sensor to measure the spatial location of three-dimensional landmarks. Stylus calibration is performed by rotating the stylus about a fixed point in space and using regression analysis to determine the tip offset vector. Measurement errors can be induced via several pathways, including; intrinsic system errors in sensor position or angle and tip offset calibration errors. A detailed study was performed to determine the errors introduced in digitizing small surfaces with different stylus lengths (35, 55, and 65 mm) and approach angles (30 and 45 degrees) using a plastic calibration board and hemispherical models. Two-point discrimination errors increased to an average of 1.93 mm for a 254 mm step size. Rotation about a single point produced mean errors of 0.44 to 1.18 mm. Statistically significant differences in error were observed with increasing approach angles (p < 0.001). Errors of less than 6% were observed in determining the curvature of a 19 mm hemisphere. This study demonstrates that the "Flock of Birds" can be used as a digitizing tool with accuracy better than 0.76% over 254 mm step sizes. PMID:11143353

  18. Evaluation of Temperature and Stress Distribution on 2 Different Post Systems Using 3-Dimensional Finite Element Analysis

    Science.gov (United States)

    Değer, Yalçın; Adigüzel, Özkan; Özer, Senem Yiğit; Kaya, Sadullah; Polat, Zelal Seyfioğlu; Bozyel, Bejna

    2015-01-01

    Background The mouth is exposed to thermal irritation from hot and cold food and drinks. Thermal changes in the oral cavity produce expansions and contractions in tooth structures and restorative materials. The aim of this study was to investigate the effect of temperature and stress distribution on 2 different post systems using the 3-dimensional (3D) finite element method. Material/Methods The 3D finite element model shows a labio-lingual cross-sectional view of the endodontically treated upper right central incisor and supporting periodontal ligament with bone structures. Stainless steel and glass fiber post systems with different physical and thermal properties were modelled in the tooth restored with composite core and ceramic crown. We placed 100 N static vertical occlusal loading onto the center of the incisal surface of the tooth. Thermal loads of 0°C and 65°C were applied on the model for 5 s. Temperature and thermal stresses were determined on the labio-lingual section of the model at 6 different points. Results The distribution of stress, including thermal stress values, was calculated using 3D finite element analysis. The stainless steel post system produced more temperature and thermal stresses on the restorative materials, tooth structures, and posts than did the glass fiber reinforced composite posts. Conclusions Thermal changes generated stresses in the restorative materials, tooth, and supporting structures. PMID:26615495

  19. Sustained Delivery of Chondroitinase ABC from Hydrogel System

    Directory of Open Access Journals (Sweden)

    Filippo Rossi

    2012-03-01

    Full Text Available In the injured spinal cord, chondroitin sulfate proteoglycans (CSPGs are the principal responsible of axon growth inhibition and they contribute to regenerative failure, promoting glial scar formation. Chondroitinase ABC (chABC is known for being able to digest proteoglycans, thus degrading glial scar and favoring axonal regrowth. However, its classic administration is invasive, infection-prone and clinically problematic. An agarose-carbomer (AC1 hydrogel, already used in SCI repair strategies, was here investigated as a delivery system capable of an effective chABC administration: the material ability to include chABC within its pores and the possibility to be injected into the target tissue were firstly proved. Subsequently, release kinetic and the maintenance of enzymatic activity were positively assessed: AC1 hydrogel was thus confirmed to be a feasible tool for chABC delivery and a promising device for spinal cord injury topic repair strategies.

  20. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja; Honnef, Joeri; Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter, E-mail: p.remeijer@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  1. Dynamic modeling of the hydrogel molecular filter in a metamaterial biosensing system for glucose concentration estimation.

    Science.gov (United States)

    Teutsch, T; Mesch, M; Giessen, H; Tarin, C

    2014-01-01

    We present a novel concept for ophthalmic glucose sensing using a biosensing system that consists of plasmonic dipole metamaterial covered by a layer of functionalized hydrogel. The metamaterial together with the hydrogel can be integrated into a contact lens. This optical sensor changes its properties such as reflectivity upon the ambient glucose concentration, which allows in situ measurements in the eye. The functionalization of the sensor with hydrogel allows for a glucose-specific detection, providing both selectivity and sensitivity. As a result of the presented work we derive a dynamic model of the hydrogel that can be used for further simulation studies. PMID:25570394

  2. Sericin/Dextran Injectable Hydrogel as an Optically Trackable Drug Delivery System for Malignant Melanoma Treatment.

    Science.gov (United States)

    Liu, Jia; Qi, Chao; Tao, Kaixiong; Zhang, Jinxiang; Zhang, Jian; Xu, Luming; Jiang, Xulin; Zhang, Yunti; Huang, Lei; Li, Qilin; Xie, Hongjian; Gao, Jinbo; Shuai, Xiaoming; Wang, Guobin; Wang, Zheng; Wang, Lin

    2016-03-01

    Severe side effects of cancer chemotherapy prompt developing better drug delivery systems. Injectable hydrogels are an effective site-target system. For most of injectable hydrogels, once delivered in vivo, some properties including drug release and degradation, which are critical to chemotherapeutic effects and safety, are challenging to monitor. Developing a drug delivery system for effective cancer therapy with in vivo real-time noninvasive trackability is highly desired. Although fluorescence dyes are used for imaging hydrogels, the cytotoxicity limits their applications. By using sericin, a natural photoluminescent protein from silk, we successfully synthesized a hydrazone cross-linked sericin/dextran injectable hydrogel. This hydrogel is biodegradable and biocompatible. It achieves efficient drug loading and controlled release of both macromolecular and small molecular drugs. Notably, sericin's photoluminescence from this hydrogel is directly and stably correlated with its degradation, enabling long-term in vivo imaging and real-time monitoring of the remaining drug. The hydrogel loaded with Doxorubicin significantly suppresses tumor growth. Together, the work demonstrates the efficacy of this drug delivery system, and the in vivo effectiveness of this sericin-based optical monitoring strategy, providing a potential approach for improving hydrogel design toward optimal efficiency and safety of chemotherapies, which may be widely applicable to other drug delivery systems. PMID:26900631

  3. STUDY OF OPTICAL PROPERTIES OF ACRYLIC HYDROGEL USED IN POLLUTANTS DISPLAY SYSTEMS

    OpenAIRE

    ITIN ALEKSEY L.; LUKIN SERGEY B.; USPENSKAYA MAYA V.; SOLOVIEV VALERY S.

    2012-01-01

    Results of investigations of optical properties of acrylic hydrogel used as a sensitive element in optoelectronic systems of pollutants display are presented. Spectral features and functions of the hydrogel refractive index variation under exposure to different pollutants are measured at various concentrations of polyvalent metals at room temperature.

  4. Development of sustained antimicrobial-release systems using poly(2-hydroxyethyl methacrylate)/trimethylolpropane trimethacrylate hydrogels.

    Science.gov (United States)

    Kitagawa, Haruaki; Takeda, Kahoru; Kitagawa, Ranna; Izutani, Naomi; Miki, Saeki; Hirose, Nanako; Hayashi, Mikako; Imazato, Satoshi

    2014-10-01

    Reconstructive materials with sustained antimicrobial effects could be useful for preventing infectious diseases in an environment containing indigenous bacteria or fungi such as the oral cavity. With the objective of applying a non-biodegradable hydrogel to resin-based materials as a reservoir for water-soluble antimicrobials, novel hydrogels consisting of 2-hydroxyethyl methacrylate (HEMA) and trimethylolpropane trimethacrylate (TMPT) were fabricated. Cetylpyridinium chloride (CPC) was loaded into five hydrogels comprising different ratios of HEMA/TMPT, and their ability to release as well as to be recharged with CPC was examined in vitro. A polyHEMA/TMPT hydrogel comprising 50% HEMA/50% TMPT could be effectively loaded and recharged with CPC by immersion into a CPC solution, demonstrating the longest release of CPC, above the concentration required to inhibit bacteria and fungi. The binding of CPC to the hydrogels was mainly through hydrophobic interaction. Loading of CPC into a hydrogel by mixing CPC powder with the HEMA/TMPT monomer before polymerization resulted in marked extension of the initial CPC-release period. The CPC-pre-mixed hydrogel was confirmed to exhibit antibacterial activity by agar diffusion tests. It is possible to achieve a sustained release system for antimicrobials by pre-mix loading and recharging CPC into a 50% HEMA/50% TMPT hydrogel.

  5. Hydrogel microspheres from biodegradable polymers as drug delivery systems

    Science.gov (United States)

    A series of hydrogel microspheres were prepared from pectin, a hydrophilic biopolymer, and zein, a hydrophobic biopolymer, at varying weight ratios. The hydrogel formulation was conducted in the presence of calcium or other divalent metal ions at room temperature under mild conditions. Studies of ...

  6. Oxygen transmissibility of piggyback systems with conventional soft and silicone hydrogel contact lenses

    OpenAIRE

    López-Alemany, António; González-Méijome, José Manuel; Almeida, José B.; Parafita, Manuel A.; Refojo, Miguel F.

    2006-01-01

    To investigate the apparent oxygen transmissibility of various piggyback systems using conventional and silicone hydrogel soft contact lenses of different water content and permeability, rigid poly(methyl methacrylate), and rigid gas-permeable lenses of medium, high, and ultrahigh oxygen permeability. The aim of the study was to establish which material (rigid or hydrogel) is more representative of the resulting oxygen performance of piggyback systems. METHODS: The apparent oxygen transmissib...

  7. Smart hydrogel-functionalized textile system with moisture management property for skin application

    International Nuclear Information System (INIS)

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ϵ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world. (paper)

  8. Smart hydrogel-functionalized textile system with moisture management property for skin application

    Science.gov (United States)

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  9. Halloysite Nanotube Composited Thermo-responsive Hydrogel System for Controlled-release

    Institute of Scientific and Technical Information of China (English)

    林茜; 巨晓洁; 谢锐; 江明月; 魏竭; 褚良银

    2013-01-01

    Halloysite nanotube-composited thermo-responsive hydrogel system has been successfully developed for controlled drug release by copolymerization of N-isopropylacrylamide (NIPAM) with silane-modified halloysite nanotubes (HNT) through thermally initiated free-radical polymerization. With methylene blue as a model drug, thermo-responsive drug release results demonstrate that the drug release from the nanotubes in the composited hy-drogel can be well controlled by manipulating the environmental temperature. When the hydrogel network is swol-len at temperature below the lower critical solution temperature (LCST), drug releases steadily from lumens of the embedded nanotubes, whereas the drug release stops when hydrogel shrinks at temperature above the LCST. The release of model drug from the HNT-composited hydrogel matches well with its thermo-responsive volume phase transition, and shows characteristics of well controlled release. The design strategy and release results of the pro-posed novel HNT-composited thermo-responsive hydrogel system provide valuable guidance for designing respon-sive nanocomposites for controlled-release of active agents.

  10. Stimuli-sensitive hydrogels: A novel ophthalmic drug delivery system

    Directory of Open Access Journals (Sweden)

    Singh Vinod

    2010-01-01

    Full Text Available Background: Stimuli-sensitive hydrogels are three-dimensional, hydrophilic, polymeric networks capable of imbibing large amounts of water or biological fluids on stimulation, such as pH, temperature and ionic change. Aim: To develop hydrogels that are sensitive to stimuli, i.e. pH, in the cul-de-sac of the eye for providing a prolonged effect and increased bioavailability with reduction in frequency of administration. Materials and Methods: Hydrogels were formulated by using timolol maleate as the model drug, polyacrylic acid as the gelling agents, hydroxyl ethyl cellulose as the viscolizer and sodium chloride as the isotonic agent. Stirring of ingredients in pH 4 phosphate buffer at high speed was carried out. The dynamic dialysis technique was used for drug release studies. In vivo study for reduction in intraocular pressure was carried out by using albino rabbits. Statistical Analysis: Drug release studies data were used for statistical analysis in first-order plots, Higuchi plots and Peppas exponential plots. Student t-test was performed for in vivo study. Results: Viscosity of the hydrogel increases from 3.84 cps to 9.54 cps due to change in pH 4 to pH 7.4. The slope value of the Peppas equation was found to be 0.3081, 0.3743 and 0.2964. Up to 80% of drug was released in an 8 h drug release study. Sterile hydrogels with no ocular irritation were obtained. Conclusions: Hydrogels show increase in viscosity due to change in pH. Hydrogels were therapeutically effacious, stable, non-irritant and showed Fickian diffusion. In vivo results clearly show a prolonged reduction in intraocular pressure, which was helpful for reduction in the frequency of administration.

  11. Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems.

    Science.gov (United States)

    Yadollahi, Mehdi; Farhoudian, Sana; Barkhordari, Soroush; Gholamali, Iman; Farhadnejad, Hassan; Motasadizadeh, Hamidreza

    2016-01-01

    ZnO nanoparticles were synthesized in situ during the formation of physically cross-linked chitosan hydrogel beads using sodium tripolyphosphate as the cross-linker. The aim of the study was to investigate whether these nanocomposite beads have the potential to be used in drug delivery applications. The formation of ZnO nanoparticles (ZnONPs) in the hydrogels was confirmed by X-ray diffraction and scanning electron microscopy studies. SEM micrographs revealed the formation of ZnONPs with size range of 10-25 nm within the hydrogel matrix. Furthermore, the swelling and drug release properties of the beads were studied. The prepared nanocomposite hydrogels showed a pH sensitive swelling behavior. The ZnO nanocomposite hydrogels have rather higher swelling ratio in different aqueous solutions in comparison with neat hydrogel. In vitro drug release test was carried out to prove the effectiveness of this novel type of nanocomposite beads as a controlled drug delivery system. A prolonged and more controlled drug releases were observed for ZnONPs containing chitosan beads, which increased by the increase in ZnONPs content.

  12. A Study on the System and Method for Drawing 3-Dimensional Cable Object with the cable tracking Navigation

    Energy Technology Data Exchange (ETDEWEB)

    Bhang, Keugjin; Jung, Sunchul [Central Research Institute, Daejeon (Korea, Republic of); Hong, Junhee [Chungnam Univ., Daejeon (Korea, Republic of)

    2013-05-15

    3D cable tracking system with navigation makes it possible to easily search the objects which users want to retrieve and to measure the visual, spatial and structural distance by connecting the existing cable management system with 3D cable tracking system with navigation. With this consideration, we hope to create a more advanced cable management system in the future. I would like to describes the management system and method of the cable installed in the nuclear power plant, and how to build the database of the system. More specifically, it will be operated to the maintenance and management function, and the life management system of the cable, describing the creation method of three-dimensional cable object formed by the information of trace route through navigation and how to build the system database automatically.

  13. Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate

    Directory of Open Access Journals (Sweden)

    N Vishal Gupta

    2010-09-01

    Full Text Available "n  "nBackground and the purpose of the study: Many drugs which have narrow therapeutic window and are absorbed mainly in stomach have been developed as gastroretentive delivery system. Rosiglitazone maleate, an anti-diabetic, is highly unstable at basic pH and is extensively absorbed from the stomach. Hence there is a need to develop a gastroretentive system. In this study a superporous hydrogel was developed as a gastroretentive drug delivery system. "nMethods: Chitosan/poly(vinyl alcohol interpenetrating polymer network type superporous hydrogels were prepared using a gas foaming method employing glyoxal as the crosslinking agent for Rosiglitazone maleate. Sodium bicarbonate was applied as a foaming agent to introduce the porous structure. Swelling behaviors of superporous hydrogel in acidic solution were studied to investigate their applications for gastric retention device. The optimum preparation condition of superporous hydrogels was obtained from the gelation kinetics. FT-IR, scanning electron microscopy, porosity and swelling ratio studies were used to characterize these polymers. In vitro drug release studies were also carried out. "nResults: The introduction of a small amount of Poly(Vinyl Alcohol enhanced the mechanical strength but slightly reduced the swelling ratio. The prepared superporous hydrogels were highly sensitive to pH of swelling media, and showed reversible swelling and de-swelling behaviors maintaining their mechanical stability. The degradation kinetics in simulated gastric fluid showed that it had biodegradability. Swelling was dependent on the amount of chitosan and crosslinker. The drug release from superporous hydrogels was sustained for 6 hrs. Major Conclusion: The studies showed that chitosan-based superporous hydrogels could be used as a gastroretentive drug delivery system for rosiglitazone maleate in view of their swelling and prolonged drug release characteristics in acidic pH.

  14. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    International Nuclear Information System (INIS)

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  15. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications.

    Science.gov (United States)

    Giri, Tapan Kumar; Thakur, Deepa; Alexander, Amit; Ajazuddin; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-11-01

    Alginate is a non-toxic, biocompatible and biodegradable natural polymer with a number of peculiar physicochemical properties for which it has wide applications in drug delivery and cell delivery systems. Hydrogel formation can be obtained by interactions of anionic alginates with multivalent inorganic cations by simple ionotropic gelation method. Hydrophilic polymeric network of three dimensional cross linked structures of hydrogels absorb substantial amount of water or biological fluids. Among the numerous biomaterials used for hydrogel formation alginate has been and will continue to be one of the most important biomaterial. Therefore, in view of the vast literature support, we focus in this review on alginate - based hydrogel as drug delivery and cell delivery carriers for biomedical applications. Various properties of alginates, their hydrogels and also various techniques used for preparing alginate hydrogels have been reviewed. PMID:22998675

  16. Low regularity and local well-posedness for the 1+3 dimensional Dirac-Klein-Gordon system

    Directory of Open Access Journals (Sweden)

    Achenef Tesfahun

    2007-11-01

    Full Text Available We prove that the Cauchy problem for the Dirac-Klein-Gordon system of equations in 1+3 dimensions is locally well-posed in a range of Sobolev spaces for the Dirac spinor and the meson field. The result contains and extends the earlier known results for the same problem. Our proof relies on the null structure in the system, and bilinear spacetime estimates of Klainerman-Machedon type.

  17. An introduction to the 3-dimensional virtual library sites-navigation system at Capital Normal University Library

    Institute of Scientific and Technical Information of China (English)

    Shuo; WANG; Xiaoli; HU

    2011-01-01

    Capital Normal University Library(CNU Library)initiated the first practical application of a 3D virtual library sites-navigation system(an electronic kiosk version)among Chinese academic and research libraries in 2010.It was primarily based on the technologies of 3DsMax and Virtools.This paper concentrates on the discussion of the methods in creating the 3D model and in realizing the interaction among the data usage of the system.As a result,several important service functions of the system have been developed successfully so far for convenient public access.They include the functions of virtual-book searching,path navigation online,real-time message exchanges,and multi-media sharing,etc.

  18. Real-time 3-dimensional virtual reality navigation system with open MRI for breast-conserving surgery

    International Nuclear Information System (INIS)

    We report here the early experiences using a real-time three-dimensional (3D) virtual reality navigation system with open magnetic resonance imaging (MRI) for breast-conserving surgery (BCS). Two patients with a non-palpable MRI-detected breast tumor underwent BCS under the guidance of the navigation system. An initial MRI for the breast tumor using skin-affixed markers was performed immediately prior to excision. A percutaneous intramammary dye marker was applied to delineate an excision line, and the computer software '3D Slicer' generated a real-time 3D virtual reality model of the tumor and the puncture needle in the breast. Under guidance by the navigation system, marking procedures were performed without any difficulties. Fiducial registration errors were 3.00 mm for patient no.1, and 4.07 mm for patient no.2. The real-time 3D virtual reality navigation system with open MRI is feasible for safe and accurate excision of non-palpable MRI-detected breast tumors. (author)

  19. Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries

    Directory of Open Access Journals (Sweden)

    Oscar A. Carballo-Molina

    2015-02-01

    Full Text Available Damage caused to neural tissue by disease or injury frequently produces a discontinuity in the nervous system. Such damage generates diverse alterations that are commonly permanent, due to the limited regeneration capacity of the adult nervous system, particularly the Central Nervous System (CNS. The cellular reaction to noxious stimulus leads to several events such as the formation of glial and fibrous scars, which inhibit axonal regeneration in both the CNS and the Peripheral Nervous System (PNS. Although in the PNS there is some degree of nerve regeneration, it is common that the growing axons reinnervate incorrect areas, causing mismatches. Providing a permissive substrate for axonal regeneration in combination with delivery systems for the release of molecules, which enhances axonal growth, could increase regeneration and the recovery of functions in the CNS or the PNS. Currently, there are no effective vehicles to supply growth factors or cells to the damaged/diseased nervous system. Hydrogels are polymers that are biodegradable, biocompatible and have the capacity to deliver a large range of molecules in situ. The inclusion of cultured neural cells into hydrogels forming three-dimensional structures allows the formation of synapses and neuronal survival. There is also evidence showing that hydrogels constitute an amenable substrate for axonal growth of endogenous or grafted cells, overcoming the presence of axonal regeneration inhibitory molecules, in both the central and peripheral nervous systems. Recent experiments suggest that hydrogels can carry and deliver several proteins relevant for improving neuronal survival and axonal growth. Although the use of hydrogels is appealing, its effectiveness is still a matter of discussion, and more results are needed to achieve consistent recovery using different parameters. This review also discusses areas of opportunity where hydrogels can be applied, in order to promote axonal regeneration of

  20. Efficacy of nonhormonal vaginal contraceptives from a hydrogel delivery system.

    Science.gov (United States)

    Saxena, B B; Singh, M; Gospin, R M; Chu, C C; Ledger, W J

    2004-09-01

    This investigation describes the synthesis of a biodegradable hydrogel composed of a core surrounded by four concentric sheaths containing dextran, copolymers of polylactide and epsilon-caprolactone. The hydrogel was impregnated with iron (II) d-gluconate dihydrate, which causes complete spermiostasis due to lipid peroxidation, ascorbic acid to increase the viscosity of the cervical mucus and mixtures of polyamino and polycarboxylic acids to sustain vaginal pH close to 4.5. The combined effects of the agents in the daily eluates of the hydrogel were efficacious up to 16 days, within 30 s, as shown by sperm penetration tests. For in vivo studies, rabbits were chosen as the experimental model because they are easy to handle and the female is always in estrus. The anterior vagina of estrous female rabbits was instilled with the hydrogel, and then inseminated with the semen from a fertile male. Postinsemination flush from the female rabbits showed that all of the sperm were dead. These observations demonstrate the potential for the development of a biocompatible, nonhormonal, intravaginal contraceptive device. PMID:15325890

  1. Contrast enhanced micro-computed tomography resolves the 3-dimensional morphology of the cardiac conduction system in mammalian hearts.

    Directory of Open Access Journals (Sweden)

    Robert S Stephenson

    Full Text Available The general anatomy of the cardiac conduction system (CCS has been known for 100 years, but its complex and irregular three-dimensional (3D geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I(2KI, we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart.

  2. Radiation synthesis of stimuli-responsive hydrogels and the application to intelligent drug delivery systems

    International Nuclear Information System (INIS)

    Radiation-prepared synthetic and natural polyelectrolyte and polyampholite hydrogels were applied to the intelligent drug delivery systems (DDS). The intelligent membranes and chips were prepared by nano-porous fabrication with Eximalaser and ion-beam irradiations and the coating of stimuli-responsive hydrogels. This coating was efficiently carried out by curing processing with conveyer system. Computer programming control of intelligent drug releases was studied for the design of DDS chips to carry out the multiple drug delivery in response to multiple environmental changes. (author)

  3. Polymer hydrogel functionalized with biodegradable nanoparticles as composite system for controlled drug delivery

    International Nuclear Information System (INIS)

    The possibility to direct pharmacological treatments targeting specific cell lines using polymer nanoparticles is one of the main novelties and perspectives in nanomedicine. However, sometimes, the ability to maintain NPs localized at the site of the injection that work as a drug reservoir can represent a good and complementary option. In this direction we built a composite material made of polymeric hydrogel functionalized with polymer NPs. ϵ-caprolactone and polyethylene glycol have been copolymerized in a two-step synthesis of PEGylated NPs, while hydrogel was synthesized through polycondensation between NPs, agarose and branched polyacrylic acid. NP functionalization was verified with Fourier transform infrared spectroscopy (FTIR), high resolution magic angle spinning-nuclear magnetic resonance (HRMAS-NMR) spectroscopy and release kinetics from a hydrogel matrix and compared with NPs only physically entrapped into a hydrogel matrix. The characteristics of the resulting composite hydrogel-NPs system were studied both in terms of rheological properties and in its ability to sustain the release of To-Pro3, used as a drug mimetic compound to represent a promising drug delivery device. (paper)

  4. Micro- and Nanoscale Hydrogel Systems for Drug Delivery and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ipsita A. Banerjee

    2009-05-01

    Full Text Available The pursuit for targeted drug delivery systems has led to the development of highly improved biomaterials with enhanced biocompatibility and biodegradability properties. Micro- and nanoscale components of hydrogels prepared from both natural and artificial components have been gaining significant importance due to their potential uses in cell based therapies, tissue engineering, liquid micro-lenses, cancer therapy, and drug delivery. In this review some of the recent methodologies used in the preparation of a number of synthetic hydrogels such as poly(N-isopropylacrylamide (pNIPAm, poly(ethylene glycol (PEG, poly(ethylene oxide (PEO, polyvinyl alcohol methylacrylate co-polymers (PVA-MA and polylactic acid (PLA, as well as some of the natural hydrogels and their applications have been discussed in detail.

  5. PRAGMATIC HYDROGELS

    Directory of Open Access Journals (Sweden)

    Patil S.A.

    2011-03-01

    Full Text Available Man has always been plagued with many ailments and diseases. The field of pharmaceutical science has today become more invaluable in helping to keep us healthy and prevent disease. The availability of large molecular weight protein and peptide-based drugs due to the recent advances has given us a new ways to treat a number of diseases. I wish to present new and promising techniques for the production of drug and protein delivery formulations that have been developed that is Hydrogel. These are presently under investigation as a delivery system for bioactive molecules as having similar physical properties as that of living tissue, which is due to their high water content, soft and rubbery consistency and low interfacial tension with water and biological fluids. Hydrogels are three-dimensional, hydrophilic, polymeric networks capable of imbibing large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers, and are insoluble due to the presence of chemical crosslink (tie-points, junctions or physical crosslink, such as entanglements or crystallite. The latter provide the network structure and physical integrity. These hydrogels exhibit a thermodynamic compatibility with water which allows them to swell in aqueous media. The nature of the degradation product can be tailored by a rational and proper selection of building blocks. The soft and rubbery nature of hydrogels minimizes irritation to surrounding tissues. In general, hydrogels possess good biocompatibility and biodegradability.

  6. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingchun [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Ke; Ye, Zhaoyang [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Zhang, Yan, E-mail: zhang_yan@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China); Tan, Wensong [State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai, 200237 China (China); Lang, Meidong, E-mail: mdlang@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering (China)

    2012-12-01

    Common hydrogel, composed of synthetic polymers or natural polysaccharides could not support the adhesion of anchorage-dependent cells due to the lack of cell affinitive interface and high cell constraint. The use of porous polyester microspheres as cell-carriers and introduction of cell-loaded microspheres into the hydrogel system might overcome the problem. However, the preparation of the open porous microsphere especially using polycaprolactone (PCL) has been rarely reported. Here, the open porous PCL microspheres were fabricated via the combined emulsion/solvent evaporation and particle leaching method. The microspheres exhibited porous surface and inter-connective pore structure. Additionally, the pore structure could be easily controlled by adjusting the processing parameters. The surface pore size could be altered from 20 {mu}m to 80 {mu}m and the internal porosities were varied from 30% to 70%. The obtained microspheres were evaluated to delivery mesenchymal stem cells (MSCs) and showed the improved cell adhesion and growth when compared with the non-porous microspheres. Then, the MSCs loaded microspheres were introduced into agarose hydrogel. MSCs remained alive and sustained proliferation in microsphere/agarose composite in 5-day incubation while a decrement of MSCs viabilities was found in agarose hydrogel without microspheres. The results indicated that the microsphere/hydrogel composite had a great potential in cell therapy and injectable system for tissue regeneration. Highlights: Black-Right-Pointing-Pointer The open porous polycaprolactone microspheres were fabricated using paraffin as a porogen. Black-Right-Pointing-Pointer The microspheres exhibited porous surface and inter-connective pore structure. Black-Right-Pointing-Pointer The surface and internal pore size and porosity of microsphere could be controlled. Black-Right-Pointing-Pointer The porous microspheres exhibited an improved cell adhesion and proliferation. Black

  7. Preparation of open porous polycaprolactone microspheres and their applications as effective cell carriers in hydrogel system

    International Nuclear Information System (INIS)

    Common hydrogel, composed of synthetic polymers or natural polysaccharides could not support the adhesion of anchorage-dependent cells due to the lack of cell affinitive interface and high cell constraint. The use of porous polyester microspheres as cell-carriers and introduction of cell-loaded microspheres into the hydrogel system might overcome the problem. However, the preparation of the open porous microsphere especially using polycaprolactone (PCL) has been rarely reported. Here, the open porous PCL microspheres were fabricated via the combined emulsion/solvent evaporation and particle leaching method. The microspheres exhibited porous surface and inter-connective pore structure. Additionally, the pore structure could be easily controlled by adjusting the processing parameters. The surface pore size could be altered from 20 μm to 80 μm and the internal porosities were varied from 30% to 70%. The obtained microspheres were evaluated to delivery mesenchymal stem cells (MSCs) and showed the improved cell adhesion and growth when compared with the non-porous microspheres. Then, the MSCs loaded microspheres were introduced into agarose hydrogel. MSCs remained alive and sustained proliferation in microsphere/agarose composite in 5-day incubation while a decrement of MSCs viabilities was found in agarose hydrogel without microspheres. The results indicated that the microsphere/hydrogel composite had a great potential in cell therapy and injectable system for tissue regeneration. Highlights: ► The open porous polycaprolactone microspheres were fabricated using paraffin as a porogen. ► The microspheres exhibited porous surface and inter-connective pore structure. ► The surface and internal pore size and porosity of microsphere could be controlled. ► The porous microspheres exhibited an improved cell adhesion and proliferation. ► Mesenchymal stem cells survived and proliferated in microsphere/hydrogel composite.

  8. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Science.gov (United States)

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  9. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Science.gov (United States)

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.

  10. 3-dimensional polymer gel dosimetry

    International Nuclear Information System (INIS)

    Recently developed techniques in conformal radiotherapy demand special properties of radiation dosimeters. Polymer gel dosimeter evaluated by nuclear magnetic resonance (NMR) is promising tool which can be used for measuring rather complicated 3-dimensional dose distributions with required precision of ± 5 %. This system is based on radiation-induced polymerisation and cross-linking of acrylic monomers which are uniformly dispersed in aqueous gel. The formation of cross-linked polymers in the irradiated regions of the gel increases the NMR relaxation rates of neighbouring water protons. BANG-2 type polymer gel was prepared. The composition of gel dosimeter was as follows: 3 % N,N'-methylene-bisacrylamide, 3 % acrylic acid, 1 % sodium hydroxide, 5 % gelatine, and 88 % water, where all percentages are by weight. The dosimeters in glass vessels were homogeneously irradiated by 60Co gamma photons in a Gammacell 220 unit and by 4 MV, 6 MV and 18 MV X ray photons on Varian Clinac 600C and 2100 C linear accelerators by doses in the range of 0-50 Gy. Evaluation of dosimeters was performed on Siemens EXPERT 1 T and Siemens VISION 1,5 T scanners. Multi-echo CPMG sequence with 16 echoes was used for the evaluation of T2-relaxation times in irradiated gel dosimeters. The dependence of 1/T2 response of dosimeters was studied on following factors: absorbed dose, energy of applied radiation, temperature during NMR evaluation, time since irradiation to NMR evaluation and strength of the magnetic field. An exponential dependence of 1/T2 response on absorbed dose in the range of 0-50 Gy was observed, in the range 0-10 Gy the data could be fitted by a linear function. There was observed no dependence of 1/T2 response on: energy (for three different photon energies used in this study), strength of magnetic field of NMR scanner, time from irradiation of the dosimeters to NMR evaluation. Increase of gel dosimeter 1/T2 response with the decrease of the temperature during NMR evaluation

  11. Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate

    OpenAIRE

    N. Vishal Gupta; Shivakumar, H. G.

    2010-01-01

    Background and the purpose of the study Many drugs which have narrow therapeutic window and are absorbed mainly in stomach have been developed as gastroretentive delivery system. Rosiglitazone maleate, an anti-diabetic, is highly unstable at basic pH and is extensively absorbed from the stomach. Hence there is a need to develop a gastroretentive system. In this study a superporous hydrogel was developed as a gastroretentive drug delivery system. Methods Chitosan/poly(vinyl alcohol) interpenet...

  12. Preparation and characterization of superporous hydrogels as gastroretentive drug delivery system for rosiglitazone maleate

    OpenAIRE

    N. Vishal Gupta; Shivakumar, H. G.

    2010-01-01

    "n  "nBackground and the purpose of the study: Many drugs which have narrow therapeutic window and are absorbed mainly in stomach have been developed as gastroretentive delivery system. Rosiglitazone maleate, an anti-diabetic, is highly unstable at basic pH and is extensively absorbed from the stomach. Hence there is a need to develop a gastroretentive system. In this study a superporous hydrogel was developed as a gastroretentive drug delivery system. "nMethods: Chito...

  13. Development of regulatory technology on a coupled 3-dimensional core neutronics and system thermal-hydraulics/analysis of steam line breaks for Kori Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok; Lee, J. I.; Yang, C. Y.; Jeong, H. Y.; Jang, C. S.; Jung, J. W.; Na, W. J

    2001-02-15

    From different mechanical properties in highly irradiated state of high-burnup fuels, it was finalized that the regulatory fuel failure criteria for reactivity-induced accident and loss-of-coolant accident should be re-evaluated. Since it is supposed in the near future that these criteria will be set far below the current ones, one of the ways to examine the issues of the high-burnup fuels is to apply best-estimate methodology for licensing design. However, there are still many problems in the application of the methodology for licensing. This study finds out the general regulatory issues and problems in the application of the multi-dimensional approach of the core, by using RELAP5/PARCS, which is a coupled 3-dimensional core neutronics and system thermal-hydraulics code. The RELAP5/PARCS input deck was developed for a core configuration of cycle 19 with EOC of Kori unit 1. The most important process for a PARCS input deck was the way to generate macroscopic cross sections. CASMO-3 code was used for their generation. The process that macroscopic cross sections of a PARCS input are produced from a CASMO-3 output was computerized. The RELAP5/PARCS input deck developed was updated and improved by comparing the results of RELAP5 stand-alone calculation for steam line break accidents. Various sensitivity studies were carried out for break areas, safety injection setpoints, fuel classifications, and etc. It is important to understand the uncertainty of the fuel storage energy calculated from best-estimate methods. The uncertainty is clarified through the sensitivity studies. The systematic procedure to produce RELAP5/PARCS input deck would be help performing the sensitivity analysis.

  14. A Hydrogel-Based Epirubicin Delivery System for Intravesical Chemotherapy

    Directory of Open Access Journals (Sweden)

    Ching-Wen Liu

    2016-06-01

    Full Text Available This study aimed to examine the efficacy of epirubicin-loaded gelatin hydrogel (EPI-H in the treatment of superficial urothelium carcinoma. Hydrogel was prepared by Schiff base-crosslinking of gelatin with glutaraldehyde. EPI-H exhibited high entrapment efficiency (59.87% ± 0.51%. EPI-H also increased epirubicin accumulation in AY-27 cells when compared with the effect of aqueous solutions of epirubicin (EPI-AQ; respective epirubicin-positive cell counts were 69.0% ± 7.6% and 38.3% ± 5.8%. EPI-H also exhibited greater cytotoxicity against AY-27 cells than that of EPI-AQ; IC50 values were 13.1 ± 1.1 and 7.5 ± 0.3 μg/mL, respectively. Cystometrograms showed that EPI-H reduced peak micturition, threshold pressures, and micturition duration, and that it increased bladder compliance more so than EPI-AQ. EPI-H enhanced epirubicin penetration into basal cells of urothelium in vivo, whereas EPI-AQ did so only to the umbrella cells. EPI-H inhibited tumor growth upon intravesical instillation to tumor-bearing bladder of F344 rats, inducing higher levels of caspase-3 expression than that observed with EPI-AQ treatment; the number of caspase-3 positive cells in treated urothelium carcinoma was 13.9% ± 4.0% (EPI-AQ and 34.1% ± 1.0%, (EPI-H. EPI-H has value as an improved means to administer epirubicin in intravesical instillation treatments for bladder cancer.

  15. Rail-guided Multi-robot System for 3D Cellular Hydrogel Assembly with Coordinated Nanomanipulation

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-08-01

    Full Text Available The 3D assembly of micro-/nano-building blocks with multi-nanomanipulator coordinated manipulation is one of the central elements of nanomanipulation. A novel rail-guided nanomanipulation system was proposed for the assembly of a cellular vascular-like hydrogel microchannel. The system was equipped with three nanomanipulators and was restricted on the rail in order to realize the arbitrary change of the end-effectors during the assembly. It was set up with hybrid motors to achieve both a large operating space and a 30 nm positional resolution. The 2D components such as the assembly units were fabricated through the encapsulation of cells in the hydrogel. The coordinated manipulation strategies among the multi-nanomanipulators were designed with vision feedback and were demonstrated through the bottom-up assembly of the vascular-like microtube. As a result, the multi-layered microchannel was assembled through the cooperation of the nanomanipulation system.

  16. Development of 3-D Hydrogel Culture Systems With On-Demand Cell Separation

    OpenAIRE

    Hamilton, Sharon K.; Bloodworth, Nathaniel C.; Massad, Christopher S.; Hammoudi, Taymour M.; Suri, Shalu; Yang, Peter J.; Lu, Hang; Temenoff, Johnna S

    2013-01-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3-D co-culture methods lack the ability to effectively separate 2 cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3-D hydrogel co-culture system...

  17. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications

    Directory of Open Access Journals (Sweden)

    Tapan Kumar Giri

    2012-10-01

    Full Text Available Chitosan, a natural cationic polysaccharide, is prepared industrially by the hydrolysis of the aminoacetyl groups of chitin, a naturally available marine polymer. Chitosan is a non-toxic, biocompatible and biodegradable polymer and has attracted considerable interest in a wide range of biomedical and pharmaceutical applications including drug delivery, cosmetics, and tissue engineering. The primary hydroxyl and amine groups located on the backbone of chitosan are responsible for the reactivity of the polymer and also act as sites for chemical modification. However, chitosan has certain limitations for use in controlled drug delivery and tissue engineering. These limitations can be overcome by chemical modification. Thus, modified chitosan hydrogels have gained importance in current research on drug delivery and tissue engineering systems. This paper reviews the general properties of chitosan, various methods of modification, and applications of modified chitosan hydrogels.

  18. A composite hydrogel system containing glucose-responsive nanocarriers for oral delivery of insulin.

    Science.gov (United States)

    Li, Lei; Jiang, Guohua; Yu, Weijiang; Liu, Depeng; Chen, Hua; Liu, Yongkun; Huang, Qin; Tong, Zaizai; Yao, Juming; Kong, Xiangdong

    2016-12-01

    Development of an oral delivery strategy for insulin therapeutics has drawn much attention in recent years. In this study, a glucose-responsive nanocarriers for loading of insulin has been prepared firstly. The resultant nanocarriers exhibited relative low cytotoxicity against Caco-2 cells and excellent stability against protein solution. The insulin release behaviors were evaluated triggered by pH and glucose in vitro. In order to enhance the oral bioavailability of insulin, the insulin-loaded glucose-responsive nanocarriers were further encapsulated into a three-dimensional (3D) hyaluronic acid (HA) hydrogel environment for overcoming multiple barriers and providing multi-protection for insulin during the transport process. The hypoglycemic effect for oral delivery of insulin was studied in vivo. After oral administration to the diabetic rats, the released insulin from hydrogel systems containing insulin-loaded glucose-responsive nanocarriers exhibited an effective hypoglycemic effect for longer time compared with insulin-loaded nanocarriers. PMID:27612686

  19. In vitro and in vivo evaluation of a hydrogel reservoir as a continuous drug delivery system for inner ear treatment.

    Directory of Open Access Journals (Sweden)

    Mareike Hütten

    Full Text Available Fibrous tissue growth and loss of residual hearing after cochlear implantation can be reduced by application of the glucocorticoid dexamethasone-21-phosphate-disodium-salt (DEX. To date, sustained delivery of this agent to the cochlea using a number of pharmaceutical technologies has not been entirely successful. In this study we examine a novel way of continuous local drug application into the inner ear using a refillable hydrogel functionalized silicone reservoir. A PEG-based hydrogel made of reactive NCO-sP(EO-stat-PO prepolymers was evaluated as a drug conveying and delivery system in vitro and in vivo. Encapsulating the free form hydrogel into a silicone tube with a small opening for the drug diffusion resulted in delayed drug release but unaffected diffusion of DEX through the gel compared to the free form hydrogel. Additionally, controlled DEX release over several weeks could be demonstrated using the hydrogel filled reservoir. Using a guinea-pig cochlear trauma model the reservoir delivery of DEX significantly protected residual hearing and reduced fibrosis. As well as being used as a device in its own right or in combination with cochlear implants, the hydrogel-filled reservoir represents a new drug delivery system that feasibly could be replenished with therapeutic agents to provide sustained treatment of the inner ear.

  20. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.

    Science.gov (United States)

    Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B

    2015-12-10

    Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers. PMID:26428151

  1. Development of crosslinked methylcellulose hydrogels for soft tissue augmentation using an ammonium persulfate-ascorbic acid redox system.

    Science.gov (United States)

    Gold, Gittel T; Varma, Devika M; Taub, Peter J; Nicoll, Steven B

    2015-12-10

    Hydrogels composed of methylcellulose are candidate materials for soft tissue reconstruction. Although photocrosslinked methylcellulose hydrogels have shown promise for such applications, gels crosslinked using reduction-oxidation (redox) initiators may be more clinically viable. In this study, methylcellulose modified with functional methacrylate groups was polymerized using an ammonium persulfate (APS)-ascorbic acid (AA) redox initiation system to produce injectable hydrogels with tunable properties. By varying macromer concentration from 2% to 4% (w/v), the equilibrium moduli of the hydrogels ranged from 1.47 ± 0.33 to 5.31 ± 0.71 kPa, on par with human adipose tissue. Gelation time was found to conform to the ISO standard for injectable materials. Cellulase treatment resulted in complete degradation of the hydrogels within 24h, providing a reversible corrective feature. Co-culture with human dermal fibroblasts confirmed the cytocompatibility of the gels based on DNA measurements and Live/Dead imaging. Taken together, this evidence indicates that APS-AA redox-polymerized methylcellulose hydrogels possess properties beneficial for use as soft tissue fillers.

  2. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  3. Self-assembling peptide nanofiber hydrogels for central nervous system regeneration

    Science.gov (United States)

    Liu, Xi; Pi, Bin; Wang, Hui; Wang, Xiu-Mei

    2015-03-01

    Central nervous system (CNS) presents a complex regeneration problem due to the inability of central neurons to regenerate correct axonal and dendritic connections. However, recent advances in developmental neurobiology, cell signaling, cell-matrix interaction, and biomaterials technologies have forced a reconsideration of CNS regeneration potentials from the viewpoint of tissue engineering and regenerative medicine. The applications of a novel tissue regeneration-inducing biomaterial and stem cells are thought to be critical for the mission. The use of peptide nanofiber hydrogels in cell therapy and tissue engineering offers promising perspectives for CNS regeneration. Self-assembling peptide undergo a rapid transformation from liquid to gel upon addition of counterions or pH adjustment, directly integrating with the host tissue. The peptide nanofiber hydrogels have mechanical properties that closely match the native central nervous extracellular matrix, which could enhance axonal growth. Such materials can provide an optimal three dimensional microenvironment for encapsulated cells. These materials can also be tailored with bioactive motifs to modulate the wound environment and enhance regeneration. This review intends to detail the recent status of self-assembling peptide nanofiber hydrogels for CNS regeneration.

  4. Preparation and characterization of amidated pectin based hydrogels for drug delivery system.

    Science.gov (United States)

    Mishra, R K; Datt, M; Pal, K; Banthia, A K

    2008-06-01

    In the current studies attempts were made to prepare hydrogels by chemical modification of pectin with ethanolamine (EA) in different proportions. Chemically modified pectin products were crosslinked with glutaraldehyde reagent for preparing hydrogels. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), organic elemental analysis, X-ray diffraction studies (XRD), swelling studies, biocompatibility and hemocompatibility studies. Mechanical properties of the prepared hydrogels were evaluated by tensile test. The hydrogels were loaded with salicylic acid (used as a model drug) and drug release studies were done in a modified Franz's diffusion cell. FTIR spectroscopy indicated the presence of primary and secondary amide absorption bands. XRD studies indicated increase in crystallinity in the hydrogels as compared to unmodified pectin. The degree of amidation (DA) and molar and mass reaction yields (YM and YN) was calculated based on the results of organic elemental analysis. The hydrogels showed good water holding properties and were found to be compatible with B-16 melanoma cells & human blood.

  5. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    Science.gov (United States)

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  6. Ultrahigh Resolution 3-Dimensional Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  7. Going beyond 2D: following membrane diffusion and topography in the IgE-Fc[epsilon]RI system using 3-dimensional tracking microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Nathan P [Los Alamos National Laboratory; Lessard, Guillaume A [Los Alamos National Laboratory; Phipps, Marry E [Los Alamos National Laboratory; Goodwin, Peter M [Los Alamos National Laboratory; Werner, James H [Los Alamos National Laboratory; Lidke, Diane S [UNM; Wilson, Bridget S [UNM

    2008-01-01

    The ability to follow and observe single molecules as they function in live cells would represent a major milestone for molecular-cellular biology. Here we present a tracking microscope that is able to track quantum dots in 3 dimensions and simultaneously record time-resolved emission statistics from a single dot. This innovative microscopy approach is based on four spatial filters and closed loop feedback to constantly keep a single quantum dot in the focal spot. Using this microscope, we demonstrate the ability to follow quantum dot-labeled IgE antibodies bound to Fc{epsilon}Rl membrane receptors in live RBL-2H3 cells. The results are consistent with prior studies of 2 dimensional membrane diffusion (Andrews et al., Nat. Cell Biol., 10, 955, 2008). In addition, the microscope captures motion in the axial (Z) direction, which permits tracking of diffusing receptors relative the 'hills and valley' of the dynamically changing membrane landscape. Our novel approach is uniquely capable of following single-molecule dynamics on live cells with 3 dimensional spatial resolution.

  8. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent

    Science.gov (United States)

    Li, Xiaoling; Ye, Xianlong; Qi, Jianying; Fan, Rangrang; Gao, Xiang; Wu, Yunzhou; Zhou, Liangxue; Tong, Aiping; Guo, Gang

    2016-01-01

    Wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair; however, precise control over its application is necessary to reduce the side effects and achieve desired therapeutic benefits. Moreover, the extensive oxidative stress during the wound healing process generally inhibits repair of the injured tissues. Topical applications of antioxidants like curcumin (Cur) could protect tissues from oxidative damage and significantly improve tissue remodeling. To achieve much accelerated wound healing effects, we designed a novel dual drug co-loaded in situ gel-forming nanoparticle/hydrogel system (EGF-Cur-NP/H) which acted not only as a supportive matrix for the regenerative tissue, but also as a sustained drug depot for EGF and Cur. In the established excisional full-thickness wound model, EGF-Cur-NP/H treatment significantly enhanced wound closure through increasing granulation tissue formation, collagen deposition, and angiogenesis, relative to normal saline, nanoparticle/hydrogel (NP/H), Cur-NP/H, and EGF-NP/H treated groups. In conclusion, this study provides a biocompatible in situ gel-forming system for efficient topical application of EGF and Cur in the landscape of tissue repair. PMID:27574428

  9. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent.

    Science.gov (United States)

    Li, Xiaoling; Ye, Xianlong; Qi, Jianying; Fan, Rangrang; Gao, Xiang; Wu, Yunzhou; Zhou, Liangxue; Tong, Aiping; Guo, Gang

    2016-01-01

    Wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair; however, precise control over its application is necessary to reduce the side effects and achieve desired therapeutic benefits. Moreover, the extensive oxidative stress during the wound healing process generally inhibits repair of the injured tissues. Topical applications of antioxidants like curcumin (Cur) could protect tissues from oxidative damage and significantly improve tissue remodeling. To achieve much accelerated wound healing effects, we designed a novel dual drug co-loaded in situ gel-forming nanoparticle/hydrogel system (EGF-Cur-NP/H) which acted not only as a supportive matrix for the regenerative tissue, but also as a sustained drug depot for EGF and Cur. In the established excisional full-thickness wound model, EGF-Cur-NP/H treatment significantly enhanced wound closure through increasing granulation tissue formation, collagen deposition, and angiogenesis, relative to normal saline, nanoparticle/hydrogel (NP/H), Cur-NP/H, and EGF-NP/H treated groups. In conclusion, this study provides a biocompatible in situ gel-forming system for efficient topical application of EGF and Cur in the landscape of tissue repair. PMID:27574428

  10. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System.

    Science.gov (United States)

    Lu, Qiqi; Pandya, Mirali; Rufaihah, Abdul Jalil; Rosa, Vinicius; Tong, Huei Jinn; Seliktar, Dror; Toh, Wei Seong

    2015-01-01

    Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-linking degree of PF hydrogels could be controlled by varying the amounts of PEG-diacrylate (PEG-DA) cross-linker. PF hydrogels are generally cytocompatible with the encapsulated dental pulp stem cells (DPSCs), yielding >85% cell viability in all hydrogels. It was found that the cell morphology of encapsulated DPSCs, odontogenic gene expression, and mineralization were strongly modulated by the hydrogel cross-linking degree and matrix stiffness. Notably, DPSCs cultured within the highest cross-linked hydrogel remained mostly rounded in aggregates and demonstrated the greatest enhancement in odontogenic gene expression. Consistently, the highest degree of mineralization was observed in the highest cross-linked hydrogel. Collectively, our results indicate that PF hydrogels can be used as a scaffold for DPSCs and offers the possibility of influencing DPSCs in ways that may be beneficial for applications in regenerative endodontics. PMID:26124841

  11. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System

    Directory of Open Access Journals (Sweden)

    Qiqi Lu

    2015-01-01

    Full Text Available Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-linking degree of PF hydrogels could be controlled by varying the amounts of PEG-diacrylate (PEG-DA cross-linker. PF hydrogels are generally cytocompatible with the encapsulated dental pulp stem cells (DPSCs, yielding >85% cell viability in all hydrogels. It was found that the cell morphology of encapsulated DPSCs, odontogenic gene expression, and mineralization were strongly modulated by the hydrogel cross-linking degree and matrix stiffness. Notably, DPSCs cultured within the highest cross-linked hydrogel remained mostly rounded in aggregates and demonstrated the greatest enhancement in odontogenic gene expression. Consistently, the highest degree of mineralization was observed in the highest cross-linked hydrogel. Collectively, our results indicate that PF hydrogels can be used as a scaffold for DPSCs and offers the possibility of influencing DPSCs in ways that may be beneficial for applications in regenerative endodontics.

  12. 3-dimensional Griess algebras and Miyamoto involutions

    OpenAIRE

    lam, Ching Hung; Yamauchi, Hiroshi

    2016-01-01

    We consider a series of VOAs generated by 3-dimensional Griess algebras. We will show that these VOAs can be characterized by their 3-dimensional Griess algebras and their structures are uniquely determined. As an application, we will determine the groups generated by the Miyamoto involutions associated to Virasoro vectors of our VOAs.

  13. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.

    Science.gov (United States)

    Kim, Jaeyun; Bencherif, Sidi A; Li, Weiwei Aileen; Mooney, David J

    2014-09-01

    Three-dimensional macroporous scaffolds have extensively been studied for cell-based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell-friendly inverse opal-like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell-adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co-culture two distinct cell populations in different spatial positions. This cell-friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments.

  14. Development and study of hydrogel-based microvalves for lab-on-a-chip systems

    OpenAIRE

    Li, Ang

    2012-01-01

    Stimuli-responsive hydrogels such as poly(N-isopropylacrylamdie) (PNIPAAm) are excellent materials for microvalves due to their biocompatibility and high energy conversion efficiency. Hydrogel-based microvalves are simple to fabricate and operate compared to other actuation schemes. While many other hydrogel-based valves have been developed by other researchers, the valves presented here differ in the use of polymers as the basis for all microvalve components for increased flexibility. Thi...

  15. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System

    OpenAIRE

    Qiqi Lu; Mirali Pandya; Abdul Jalil Rufaihah; Vinicius Rosa; Huei Jinn Tong; Dror Seliktar; Wei Seong Toh

    2015-01-01

    Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-li...

  16. Emerging hydrogel designs for controlled protein delivery.

    Science.gov (United States)

    Bae, Ki Hyun; Kurisawa, Motoichi

    2016-08-19

    Hydrogels have evolved into indispensable biomaterials in the fields of drug delivery and regenerative medicine. This minireview aims to highlight the recent advances in the hydrogel design for controlled release of bioactive proteins. The latest developments of enzyme-responsive and externally regulated drug delivery systems are summarized. The design strategies and applications of phase-separated hydrogel systems are also described. We expect that these emerging approaches will enable expanded use of hydrogels in biomedicine and healthcare. PMID:27374633

  17. Liposomes-in-Hydrogel Delivery System with Mupirocin: In Vitro Antibiofilm Studies and In Vivo Evaluation in Mice Burn Model

    OpenAIRE

    Julia Hurler; Sørensen, Karen K.; Adyary Fallarero; Pia Vuorela; Nataša Škalko-Basnet

    2013-01-01

    Previously, we have proposed mupirocin-in-liposomes-in-hydrogel delivery system as advanced delivery system with the potential in treatment of burns. In the current studies, we evaluated the system for its cytotoxicity, ability to prevent biofilm formation, act on the mature biofilms, and finally determined its potential as wound treatment in in vivo mice burn model. The system was found to be nontoxic against HaCaT cells, that is, keratinocytes. It was safe for use and exhibited antibiofilm ...

  18. Cyclodextrin Inclusion Polymers Forming Hydrogels

    Science.gov (United States)

    Li, Jun

    This chapter reviews the advances in the developments of supramolecular hydrogels based on the polypseudorotaxanes and polyrotaxanes formed by inclusion complexes of cyclodextrins threading onto polymer chains. Both physical and chemical supramolecular hydrogels of many different types are discussed with respect to their preparation, structure, property, and gelation mechanism. A large number of physical supramolecular hydrogels were formed induced by self-assembly of densely packed cyclodextrin rings threaded on polymer or copolymer chains acting as physical crosslinking points. The thermo-reversible and thixotropic properties of these physical supramolecular hydrogels have inspired their applications as injectable drug delivery systems. Chemical supramolecular hydrogels synthesized from polypseudorotaxanes and polyrotaxanes were based on the chemical crosslinking of either the cyclodextrin molecules or the included polymer chains. The chemical supramolecular hydrogels were often made biodegradable through incorporation of hydrolyzable threading polymers, end caps, or crosslinkers, for their potential applications as biomaterials.

  19. Reductively Responsive Hydrogel Nanoparticles with Uniform Size, Shape, and Tunable Composition for Systemic siRNA Delivery in Vivo.

    Science.gov (United States)

    Ma, Da; Tian, Shaomin; Baryza, Jeremy; Luft, J Christopher; DeSimone, Joseph M

    2015-10-01

    To achieve the great potential of siRNA based gene therapy, safe and efficient systemic delivery in vivo is essential. Here we report reductively responsive hydrogel nanoparticles with highly uniform size and shape for systemic siRNA delivery in vivo. "Blank" hydrogel nanoparticles with high aspect ratio were prepared using continuous particle fabrication based on PRINT (particle replication in nonwetting templates). Subsequently, siRNA was conjugated to "blank" nanoparticles via a disulfide linker with a high loading ratio of up to 18 wt %, followed by surface modification to enhance transfection. This fabrication process could be easily scaled up to prepare large quantity of hydrogel nanoparticles. By controlling hydrogel composition, surface modification, and siRNA loading ratio, siRNA conjugated nanoparticles were highly tunable to achieve high transfection efficiency in vitro. FVII-siRNA conjugated nanoparticles were further stabilized with surface coating for in vivo siRNA delivery to liver hepatocytes, and successful gene silencing was demonstrated at both mRNA and protein levels.

  20. Three-dimensional hydrogel cell culture systems for modeling neural tissue

    Science.gov (United States)

    Frampton, John

    Two-dimensional (2-D) neural cell culture systems have served as physiological models for understanding the cellular and molecular events that underlie responses to physical and chemical stimuli, control sensory and motor function, and lead to the development of neurological diseases. However, the development of three-dimensional (3-D) cell culture systems will be essential for the advancement of experimental research in a variety of fields including tissue engineering, chemical transport and delivery, cell growth, and cell-cell communication. In 3-D cell culture, cells are provided with an environment similar to tissue, in which they are surrounded on all sides by other cells, structural molecules and adhesion ligands. Cells grown in 3-D culture systems display morphologies and functions more similar to those observed in vivo, and can be cultured in such a way as to recapitulate the structural organization and biological properties of tissue. This thesis describes a hydrogel-based culture system, capable of supporting the growth and function of several neural cell types in 3-D. Alginate hydrogels were characterized in terms of their biomechanical and biochemical properties and were functionalized by covalent attachment of whole proteins and peptide epitopes. Methods were developed for rapid cross-linking of alginate hydrogels, thus permitting the incorporation of cells into 3-D scaffolds without adversely affecting cell viability or function. A variety of neural cell types were tested including astrocytes, microglia, and neurons. Cells remained viable and functional for longer than two weeks in culture and displayed process outgrowth in 3-D. Cell constructs were created that varied in cell density, type and organization, providing experimental flexibility for studying cell interactions and behavior. In one set of experiments, 3-D glial-endothelial cell co-cultures were used to model blood-brain barrier (BBB) structure and function. This co-culture system was

  1. Preparation of pH-sensitive poly(ethylene oxide) hydrogels grafted by γ-ray irradiation and their applications for drug delivery system

    International Nuclear Information System (INIS)

    Hydrogels are three-dimensional networks of hydrophilic polymers held together by crosslinks of covalent bonds or ionic bonds and secondary forces in the form of hydrogen bonds or hydrophobic interactions. Environmentally sensitive hydrogels have an enormous potential for various applications. Either pH-sensitive and/or temperature- sensitive hydrogels can be used for a site-specific controlled drug delivery. Especially, pH-sensitive hydrogels have been most frequently used to develop controlled release formulations for oral administration. All the pH-sensitive hydrogels contain pendent acidic, for example carboxylic and sulfonic acids, or basic, for example ammonium salts, groups that either accept or release protons in response to changes in environmental pH[3-5]. These ionic hydrogels are the swollen polymer networks which show sudden or gradual changes in their dynamic and equilibrium swelling behavior as a result of changing the external pH. In these gels, ionization occurs when the pH of the environment is above the pKa of the ionizable group . As the degree of ionization increases (pH increase in the system), the number of fixed charges increases, resulting in increased electrostatic repulsions between the chains. Irradiation, especially if combined with simultaneous sterilization of the product, is a very convenient tool for the synthesis of hydrogels. Radiation processing has many advantages over other conventional methods. For initiation processes, radiation differs from chemical initiation. In radiation processing, no catalysts or additives are needed to initiate the reaction. The advantages of the radiation methods are that they are relatively simple, and moreover, the degree of crosslinking, which strongly determines the extent of swelling in hydrogels, can be controlled easily by varying the absorbed dose. Therefore, these methods are found to be very useful in preparing hydrogels for medical applications, where even a small contamination is

  2. Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system.

    Science.gov (United States)

    Mishra, Rakesh K; Datt, Mahesh; Banthia, Ajit K

    2008-01-01

    The purpose of the present study was to develop and design pectin and polyvinyl pyrrolidone (PVP) blended hydrogel membranes (PEVP), with different pectin: PVP ratios (1:0.2, 1:0.4, 1:0.6, 1:0.8 and 1:1 w/w), which were prepared by using a conventional solution casting technique. An attempt has been made to characterize the hydrogel membranes by various instrumental techniques like, FTIR (Fourier transform infrared) spectroscopy, X-ray diffraction (XRD), Differential scanning calorimetry (DSC), tensile strength test and scanning electron microscopy (SEM). The release patterns of the drug (salicylic acid) from the hydrogel membrane were done in three different release mediums (pH 1.4, pH 7.4 and distilled water) and samples were analyzed spectrophotometrically at 294 nm wavelength on a UV Vis spectrophotometer. MTT assay was done to ensure cytocompatibility of the pectin/PVP hydrogel membranes using B16 melanoma cells. FTIR spectroscopy indicated the presence of secondary amide (I) absorption bands. The XRD study shows decrease in crystallinity of the hydrogel membranes with increase in PVP ratio. DSC study shows an increase in T(g) of pectin after blending with PVP. It was found that tensile strength increases with increasing PVP ratios in the hydrogel membranes. The prepared hydrogel membranes were found to be biocompatible with B16 melanoma cells.

  3. A drug delivery hydrogel system based on activin B for Parkinson's disease.

    Science.gov (United States)

    Li, Juan; Darabi, Mohammadali; Gu, Jingjing; Shi, Junbin; Xue, Jinhua; Huang, Lu; Liu, Yutong; Zhang, Lei; Liu, N; Zhong, Wen; Zhang, Lin; Xing, Malcolm; Zhang, Lu

    2016-09-01

    Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Activins are members of the superfamily of transforming growth factors and have many potential neuroprotective effects. Herein, at the first place, we verified activin B's neuroprotective role in a PD model, and revealed that activin B's fast release has limited function in the PD therapy. To this end, we developed a multi-functional crosslinker based thermosensitive injectable hydrogels to deliver activin B, and stereotactically injected the activin B-loaded hydrogel into the striatum of a mouse model of PD. The histological evaluation showed that activin B can be detected even 5 weeks post-surgery in PD mice implanted with activin B-loaded hydrogels, and activin B-loaded hydrogels can significantly increase the density of tyrosine hydroxylase positive (TH(+)) nerve fibers and reduce inflammatory responses. The behavioral evaluation demonstrated that activin B-loaded hydrogels significantly improved the performance of the mice in the PD model. Meanwhile, we found that hydrogels can slightly induce the activation of microglia cells and astrocytes, while cannot induce apoptosis in the striatum. Overall, our data demonstrated that the developed activin B-loaded hydrogels provide sustained release of activin B for over 5 weeks and contribute to substantial cellular protection and behavioral improvement, suggesting their potential as a therapeutic strategy for PD. PMID:27322960

  4. A calculation of Eliashberg equations for superconducting phase under the ultra-high magnetic field of strong coupling cases in 2 and 3 dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Goto, H. [Dept. of Mathematics and Physical Science, Graduate School of Science and Technology, Chiba Univ. (Japan); Natsume, Y. [Chiba Univ. (Japan). Dept. of Physics

    1995-04-01

    The estimation of Tc for the superconducting phase under the ultra-high magnetic feild is discussed on the basis of numerical calculation by the use of the expression of Eliashberg equations for strong coupling theory. The essenthial effect of the retardation of the interaction by phonons on making the gap is pointed out in comparison between 2 and 3 dimensinal systems. (orig.)

  5. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice.

    Science.gov (United States)

    Soranno, Danielle E; Rodell, Christopher B; Altmann, Christopher; Duplantis, Jane; Andres-Hernando, Ana; Burdick, Jason A; Faubel, Sarah

    2016-08-01

    Injectable hydrogels can be used to deliver drugs in situ over a sustained period of time. We hypothesized that sustained delivery of interleukin-10 (IL-10) following acute kidney injury (AKI) would mitigate the local and systemic proinflammatory cascade induced by AKI and reduce subsequent fibrosis. Wild-type C57BL/6 mice underwent ischemia-reperfusion AKI with avertin anesthesia. Three days later, mice were treated with either hyaluronic acid injectable hydrogel with or without IL-10, or IL-10 suspended in saline, injected under the capsule of the left kidney, or hydrogel with IL-10 injected subcutaneously. Untreated AKI served as controls. Serial in vivo optical imaging tracked the location and degradation of the hydrogel over time. Kidney function was assessed serially. Animals were killed 28 days following AKI and the following were evaluated: serum IL-6, lung inflammation, urine neutrophil gelatinase-associated lipocalin, and renal histology for fibroblast activity, collagen type III deposition and fibrosis via Picrosirius Red staining and second harmonic imaging. Our model shows persistent systemic inflammation, and renal inflammation and fibrosis 28 days following AKI. The hydrogels are biocompatible and reduced serum IL-6 and renal collagen type III 28 days following AKI even when delivered without IL-10. Treatment with IL-10 reduced renal and systemic inflammation, regardless of whether the IL-10 was delivered in a sustained manner via the injectable hydrogel under the left kidney capsule, as a bolus injection via saline under the left kidney capsule, or via the injectable hydrogel subcutaneously. Injectable hydrogels are suitable for local drug delivery following renal injury, are biocompatible, and help mitigate local and systemic inflammation. PMID:26962109

  6. The synthesis of hydrogels with controlled distribution of polymer brushes in hydrogel network

    Energy Technology Data Exchange (ETDEWEB)

    Sun, YuWei; Zhou, Chao; Zhang, AoKai; Xu, LiQun; Yao, Fang [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China); Cen, Lian, E-mail: cenlian@hotmail.com [National Tissue Engineering Center of China, No.68, East Jiang Chuan Road, Shanghai, 200241 (China); School of Chemical Engineering, East China University of Science and Technology, No.130, Mei Long Road, Shanghai, 200237 (China); Fu, Guo-Dong, E-mail: fu7352@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province, 211189 (China)

    2014-11-30

    Highlights: • Many biological tissues are 3-dimensionally asymmetric in structure and properties, it would be desirable if hydrogels could bear such structural similarity with specialized surface and bulk properties. Moreover, gradual but continuous variation in spatial structural and property is also a common phenomenon in biological tissues, such as interfaces between bone and tendon, or between bone and cartilage. Hence, the development of a method to introduce well-defined functional polymer brushes on PEG hydrogels, especially with precisely controlled spatial structure in 3-dimensions, would impart the hydrogels with special functionalities and wider applications. Poly(ethylene glycol) (PEG) hydrogels with 3-dimensionally controlled well-defined poly(N-isopropylacrylamide) (poly(NIPAAm)) brushes were prepared by combined copper(I)-catalyzed azide-alkyne cycloaddition (“Click Chemistry”) and atom transfer radical polymerization (ATRP). The resulting hydrogels were presented as representatives with their detailed synthesis routes and characterization. H{sub PEG}-S-poly(NIPAAm) is a hydrogel with poly(NIPAAm) brushes mainly grafted on surface, whereas H{sub PEG}-G-poly(NIPAAm) has a gradiently decreased poly(NIPAAm) brushes in their chain length from surface to inside. On the other hand, poly(NIPAAm) brushes in H{sub PEG}-U-poly(NIPAAm) are uniformly dispersed throughout the whole hydrogel network. Successful preparation of H{sub PEG}-S-poly(NIPAAm), H{sub PEG}-G-poly(NIPAAm) and H{sub PEG}-U-poly(NIPAAm) were ascertained by X-ray photoelectron spectroscopy (XPS) and water contact angle measurement. Hence, the flexibility and controllability of the synthetic strategy in varying the distribution of polymer brushes and hydrogel surface properties was demonstrated. Hydrogels with tunable and well-defined 3-dimensional poly(NIPAAm) polymer brushes could be tailor-designed to find potential applications in smart devices or skin dressing, such as for diabetics

  7. Rapid self-healing hydrogels

    Science.gov (United States)

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  8. NIR and MR imaging supported hydrogel based delivery system for anti-TNF alpha probiotic therapy of IBD

    Science.gov (United States)

    Janjic, Jelena M.; Berlec, Ales; Bagia, Christina; Liu, Lu S.; Jeric, Irenej; Gach, Michael; Janjic, Bratislav M.; Strukelj, Borut

    2016-03-01

    Current treatment of inflammatory bowel disease (IBD) is largely symptomatic and consists of anti-inflammatory agents, immune-suppressives or antibiotics, whereby local luminal action is preferred to minimize systemic side-effects. Recently, anti-TNFα therapy has shown considerable success and is now being routinely used. Here we present a novel approach of using perfluorocarbon (PFC) nanoemulsion containing hydrogels (nanoemulgels) as imaging supported delivery systems for anti-TNF alpha probiotic delivery in IBD. To further facilitate image-guided therapy a food-grade lactic acid bacterium Lactococcus lactis capable of TNFα-binding was engineered to incorporate infrared fluorescent protein (IRFP). This modified bacteria was then incorporated into novel PFC nanoemulgels. The nanoemulgels presented here are designed to deliver locally anti-TNFα probiotic in the lower colon and rectum and provide dual imaging signature of gel delivery (MRI) across the rectum and lower colon and bacteria release (NIR). NIR imaging data in vitro demonstrates high IRFP expressing and TNFα-binding bacteria loading in the hydrogel and complete release in 3 hours. Stability tests indicate that gels remain stable for at least 14 days showing no significant change in droplet size, zeta potential and pH. Flow cytometry analyses demonstrate the NIRF expressing bacteria L. lactis binds TNFα in vitro upon release from the gels. Magnetic resonance and near-infrared imaging in vitro demonstrates homogeneity of hydrogels and the imaging capacity of the overall formulation.

  9. Homological aperiodic tilings of 3-dimensional geometries

    CERN Document Server

    Nowak, Piotr W

    2012-01-01

    We construct the first aperiodic tiles for two amenable 3-dimensional Lie groups: Sol and the Heisenberg group. Our construction relies on the use of higher-dimensional uniformly finite homology. In particular, we settle completely the existence of aperiodic tiles for all of the non-compact geometries of 3-manifolds appearing in the geometrization conjecture.

  10. Slow-Release Drug Deliver System with Polylactic Acid Hydrogels in Prevention of Tracheal Wall Fibroplasia

    Directory of Open Access Journals (Sweden)

    Jinrang Li

    2012-02-01

    Conclusions: Both MMC/PLA and DSP/PLA hydrogels can inhibit fibroplasia of the tracheal wall and it can be coated in a Poly L-lactide-co and ndash;glycolide (PLGA scaffold for treating laryngeal-tracheal stenosis in future. [Arch Clin Exp Surg 2012; 1(1.000: 1-7

  11. Physicochemical properties of pH-sensitive hydrogels based on hydroxyethyl cellulose-hyaluronic acid and for applications as transdermal delivery systems for skin lesions.

    Science.gov (United States)

    Kwon, Soon Sik; Kong, Bong Ju; Park, Soo Nam

    2015-05-01

    We investigated the physicochemical properties of pH-sensitive hydroxyethyl cellulose (HEC)/hyaluronic acid (HA) complex hydrogels containing isoliquiritigenin (ILTG), and discussed potential applications as transdermal delivery systems for the treatment of skin lesions caused by pH imbalance. HA has skin compatibility and pH functional groups and HEC serves as scaffold to build hydrogels with varied HCE:HA mass ratio. Hydrogels were synthesized via chemical cross-linking, and three-dimensional network structures were characterized via scanning electron microscopy (SEM). The swelling properties and polymer ratios of the hydrogels were investigated at pH values in the range 1-13. HECHA13 (i.e., an HEC:HA mass ratio of 1:3) was found to have optimal rheological and adhesive properties, and was used to investigate the drug release efficiency as a function of pH; the efficiency was greater than 70% at pH 7. Antimicrobial activity assays against Propionibacterium acnes were conducted to take advantage of the pH-sensitive properties of HECHA13. At pH 7, we found that HECHA13, which contained ILTG, inhibited the growth of P. acnes. Furthermore, HECHA13 was found to exhibit excellent permeability into the skin, which penetrated mostly via the hair follicle. These results indicate that this pH-sensitive hydrogel is effective as a transdermal delivery system for antimicrobial therapeutics, with potential applications in the treatment of acne.

  12. Hydroelectric structures studies using 3-dimensional methods

    Energy Technology Data Exchange (ETDEWEB)

    Harrell, T.R.; Jones, G.V.; Toner, C.K. (Southern Electric International, Birmingham, AL (USA))

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  13. A New Approach to 3-Dimensional Fields

    OpenAIRE

    agashe, sadanand

    2016-01-01

    A new approach, using the operator "x d/dx + y d/dy + z d/dz", is introduced for studying 3-dimensional scalar and vector fields. The approach uses a property of the operator which is similar to that of the Laplacian operator, but the operator does not seem to have been used before. Also, the operator requires only once-differentiability of the fields. Using it, a number of new formulas are derived and new proofs given for many classical results such as the Helmholtz theorem, the Poisson form...

  14. 3-dimensional defect TQFTs and their tricategories

    CERN Document Server

    Carqueville, Nils; Schaumann, Gregor

    2016-01-01

    We initiate a systematic study of 3-dimensional `defect' topological quantum field theories, that we introduce as symmetric monoidal functors on stratified and decorated bordisms. For every such functor we construct a tricategory with duals, which is the natural categorification of a pivotal bicategory. This captures the algebraic essence of defect TQFTs, and it gives precise meaning to the fusion of line and surface defects as well as their duality operations. As examples, we discuss how Reshetikhin-Turaev and Turaev-Viro theories embed into our framework, and how they can be extended to defect TQFTs.

  15. A study of chitosan hydrogel with embedded mesoporous silica nanoparticles loaded by ibuprofen as a dual stimuli-responsive drug release system for surface coating of titanium implants.

    Science.gov (United States)

    Zhao, Pengkun; Liu, Hongyu; Deng, Hongbing; Xiao, Ling; Qin, Caiqin; Du, Yumin; Shi, Xiaowen

    2014-11-01

    In this study, the complex pH and electro responsive system made of chitosan hydrogel with embedded mesoporous silica nanoparticles (MSNs) was evaluated as a tunable drug release system. As a model drug, ibuprofen (IB) was used; its adsorption in MSNs was evidenced by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TG). In order to prepare the complex drug release system, the loaded particles IB-MSNs were dispersed in chitosan solution and then the complex IB-MSNs/chitosan film of 2mm thickness was deposited as a hydrogel on the titanium electrode. The codeposition of components was performed under a negative biasing of the titanium electrode at -0.75 mA/cm2 current density during 30 min. The IB release from the IB-MSNs/chitosan hydrogel film was studied as dependent on pH of the release media and electrical conditions applied to the titanium plate. When incubating the complex hydrogel film in buffers with different pH, the IB release followed a near zero-order profile, though its kinetics varied. Compared to the spontaneous IB release from the hydrogel in 0.9% NaCl solution (at 0 V), the application of negative biases to the coated titanium plate had profound effluences on the release behavior. The release was retarded when -1.0 V was applied, but a faster kinetics was observed at -5.0 V. These results imply that a rapid, mild and facile electrical process for covering titanium implants by complex IB-MSNs/chitosan hydrogel films can be used for controlled drug delivery applications. PMID:25456989

  16. 3-dimensional bioprinting for tissue engineering applications.

    Science.gov (United States)

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds. PMID:27114828

  17. A dilogarithmic 3-dimensional Ising tetrahedron

    CERN Document Server

    Broadhurst, D J

    1999-01-01

    In 3 dimensions, the Ising model is in the same universality class as unknown analytical nature. In contrast, all single-scale 4-dimensional tetrahedra were reduced, in hep-th/9803091, to special values of exponentially convergent polylogarithms. Combining dispersion relations with the integer-relation finder PSLQ, we find that $C^{Tet}/2^{5/2} = Cl_2(4\\alpha) - Cl_2(2\\alpha)$, with $Cl_2(\\theta):=\\sum_{n>0}\\sin(n\\theta)/n^2$ and 1,000-digit precision and readily yields 50,000 digits of $C^{Tet}$, after transformation to an exponentially convergent sum, akin to those studied in math.CA/9803067. It appears that this 3-dimensional result entails a polylogarithmic ladder beginning with the classical formula for $\\pi/\\sqrt2$, in the manner that 4-dimensional results build on that for $\\pi/\\sqrt3$.

  18. A Dendritic Thioester Hydrogel Based on Thiol-Thioester Exchange as a Dissolvable Sealant System for Wound Closure

    OpenAIRE

    Ghobril, Cynthia; Charoen, Kristie; Rodriguez, Edward K.; Nazarian, Ara; Grinstaff, Mark W.

    2013-01-01

    A dissolvable dendritic thioester hydrogel based on thiol-thioester exchange for wound closure is reported. The hydrogel sealant adheres strongly to tissues, closes an ex vivo vein puncture, and withstands high pressures placed on a wound. The hydrogel sealant can be completely washed off upon exposure to thiolates based on thiol-thioester exchange and allow gradual wound re-exposure during definitive surgical care.

  19. Soy-Based Hydrogels for Biomedical Applications

    Science.gov (United States)

    Soy based hydrogels were prepared by ring-opening polymerization of epoxidized soybean oil, flowing hydrolysis of formed polymer. The hydrogels were evaluated loading and release water-soluble anticancer drug doxorubin (Dox). The results suggested that this new system may offer great potential to ...

  20. Negative cooperative effect of cytotoxicity of a di-component initiating system for a novel injectable tissue engineering hydrogel

    Institute of Scientific and Technical Information of China (English)

    DUAN Shifeng; ZHU Wen; YU Lin; DING Jiandong

    2005-01-01

    Chemically cross-linked hydrogels constitute a novel injectable tissue engineering material. At present, one of the key problems is to find an appropriate initiator. This study evaluated the cytotoxicity in vitro of a water-soluble redox initiating system consisting of ammonium persulfate (APS) and N, N, N′, N′-tetramethylethylenediamine (TEM- ED). Gelation time of PEG diacrylate macromer in phosphate buffer saline solution was first adjusted to guarantee that the examined initiator concentrations are sufficiently high to trigger polymerization of macromers. NIH/3T3 fibroblasts were employed to examine cytotoxicity via MTT measurements and optical microscopic observations. It has been found that the combined APS/TEMED system exhibits negative cooperative effect, for the underlying cytotoxicity is even lower than that of APS or TEMED at certain concentrations.

  1. Materials applications of an advanced 3-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo, A. [Oxford Univ. (United Kingdom). Dept. of Materials; Gibuoin, D. [Oxford Univ. (United Kingdom). Dept. of Materials; Kim, S. [Oxford Univ. (United Kingdom). Dept. of Materials; Sijbrandij, S.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Venker, F.M. [Oxford Univ. (United Kingdom). Dept. of Materials]|[Rijksuniversiteit Groningen (Netherlands). Dept. of Applied Physics; Warren, P.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Wilde, J. [Oxford Univ. (United Kingdom). Dept. of Materials; Smith, G.D.W. [Oxford Univ. (United Kingdom). Dept. of Materials

    1996-09-01

    An advanced 3-dimensional atom probe system has been constructed, based on an optical position-sensitive atom probe (OPoSAP) detector with energy compensation using a reflectron lens. The multi-hit detection capability of the OPoSAP leads to significant improvements in the efficiency of the instrument over the earlier serial position-sensing system. Further gains in efficiency are obtained by using a biassed grid in front of the detector to collect secondary electrons generated when ions strike the interchannel area. The improvement in detection efficiency gives enhanced performance in the studies of ordered materials and the determination of site occupation. Energy compensation leads to a much improved mass resolution (m/{Delta}m=500 full width at half maximum) making it possible to map out the 3-dimensional spatial distributions of all the elements in complex engineering alloys, even when elements lie close together in the mass spectrum. For example, in the analysis of a maraging steel, this allows separation between the {sup 61}Ni{sup 2+} and {sup 92}Mo{sup 3+} peaks, which are only 1/6 of a mass unit apart. (orig.).

  2. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system.

    Science.gov (United States)

    Sutar, Prashant B; Mishra, Rakesh K; Pal, Kunal; Banthia, Ajit K

    2008-06-01

    In the present study an attempt was made to graft polyacrylamide on pectin. The grafted polymer was characterized by FTIR spectroscopy, differential scanning calorimetry and X-ray diffraction. Rheological property of pectin solution was compared with the product solution. The grafted polymer was cross-linked with varying amount of glutaraldehyde. The swelling properties of the cross-linked product were also studied. The salicylic acid, an antipyretic drug, was incorporated in the cross-linked gel as a model drug and the drug release studies were done in a modified Franz's diffusion cell. The effect of cross-linking density on the release property of salicylic acid was studied through the cross-linked product. The product showed better film forming property and gelling property than pectin. The comparative rheological properties of pectin and grafted copolymer indicated change in the property of the product. FTIR studies indicated incorporation of amide group. Differential scanning calorimetry and XRD suggested formation of a new polymer. Swelling study indicated pH dependent swelling of the cross-linked hydrogel. Salicylic acid release indicated pH dependent release from the hydrogel.

  3. Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations%Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations

    Institute of Scientific and Technical Information of China (English)

    陈国钦; 任春华; 王玲; 徐兵; 杨志谋

    2012-01-01

    Enzyme-responsive hydrogels have great potential in applications of controlled drug release, tissue engineering, etc. In this study, we reported on a supramolecular hydrogel that showed responses to two enzymes, phosphatase which was used to form the hydrogels and esterase which could trigger gelsol phase transitions. The gelation process and visco-elasticity property of the resulting gel, morphology of the nanostructures in hydrogel, and peptide conformation in the self-assembled nanostructure were characterized by theology, transmission electron microscope (TEM), and circular dichroism (CD), respectively. Potential application of the enzyme-responsive hydrogel in drug release was also demonstrated in this study. Though only one potential application of drug release was proved in this study, the responsive hydrogel system in this study might have potentials for the applications in fields of cell culture, controlled-drug release, etc.

  4. PRAGMATIC HYDROGELS

    OpenAIRE

    Patil S.A.; Rane B.R.; Bakliwal S.R.; Pawar S.P.

    2011-01-01

    Man has always been plagued with many ailments and diseases. The field of pharmaceutical science has today become more invaluable in helping to keep us healthy and prevent disease. The availability of large molecular weight protein and peptide-based drugs due to the recent advances has given us a new ways to treat a number of diseases. I wish to present new and promising techniques for the production of drug and protein delivery formulations that have been developed that is Hydrogel. These ar...

  5. Synthesis and Characterization of Self-oscillating P(AA-co-AM)/PEG Semi-IPN Hydrogels Based on a pH Oscillator in Closed System

    Institute of Scientific and Technical Information of China (English)

    Li-ping Wang; Jie Ren; Meng-qi Yao; Xiao-ci Yang; Wu Yang; Yan Li

    2014-01-01

    Various semi-interpenetrating polymer network (semi-IPN) hydrogels composed of pore-forming agent polyethylene glycol (PEG),acrylic acid (AA) and acrylamide (AM) were prepared by using free radical polymerization with a two-step method.The chemical structures of the synthesized hydrogels were characterized by FTIR spectroscopy and the morphologies were studied by scanning electron microscopy (SEM) method.The swelling properties,such as the pH-responsive behavior,salt sensitivity,oscillatory swelling/de-swelling behaviors in different solutions with various pH values and self-oscillating behaviors in bath pH oscillator were investigated in detail.The results revealed that the prepared hydrogels exhibited high pH sensitivity and excellent salt sensitivity when the pH values of the medium changes from 3.0 and 7.0 and well reversible properties by undergoing a number of swelling/de-swelling recycles.In particular,the hydrogels exhibited self-oscillation behavior in a closed system containing BrO3--SO32-Fe(CN)64-H+.This study may create a new possibility as biomaterial for new self-walking actuators and other devices.

  6. Cardiothoracic Applications of 3-dimensional Printing.

    Science.gov (United States)

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.

  7. Cardiothoracic Applications of 3-dimensional Printing.

    Science.gov (United States)

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  8. Automated feature extraction for 3-dimensional point clouds

    Science.gov (United States)

    Magruder, Lori A.; Leigh, Holly W.; Soderlund, Alexander; Clymer, Bradley; Baer, Jessica; Neuenschwander, Amy L.

    2016-05-01

    Light detection and ranging (LIDAR) technology offers the capability to rapidly capture high-resolution, 3-dimensional surface data with centimeter-level accuracy for a large variety of applications. Due to the foliage-penetrating properties of LIDAR systems, these geospatial data sets can detect ground surfaces beneath trees, enabling the production of highfidelity bare earth elevation models. Precise characterization of the ground surface allows for identification of terrain and non-terrain points within the point cloud, and facilitates further discernment between natural and man-made objects based solely on structural aspects and relative neighboring parameterizations. A framework is presented here for automated extraction of natural and man-made features that does not rely on coincident ortho-imagery or point RGB attributes. The TEXAS (Terrain EXtraction And Segmentation) algorithm is used first to generate a bare earth surface from a lidar survey, which is then used to classify points as terrain or non-terrain. Further classifications are assigned at the point level by leveraging local spatial information. Similarly classed points are then clustered together into regions to identify individual features. Descriptions of the spatial attributes of each region are generated, resulting in the identification of individual tree locations, forest extents, building footprints, and 3-dimensional building shapes, among others. Results of the fully-automated feature extraction algorithm are then compared to ground truth to assess completeness and accuracy of the methodology.

  9. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  10. Liposomes-in-Hydrogel Delivery System with Mupirocin: In Vitro Antibiofilm Studies and In Vivo Evaluation in Mice Burn Model

    Directory of Open Access Journals (Sweden)

    Julia Hurler

    2013-01-01

    Full Text Available Previously, we have proposed mupirocin-in-liposomes-in-hydrogel delivery system as advanced delivery system with the potential in treatment of burns. In the current studies, we evaluated the system for its cytotoxicity, ability to prevent biofilm formation, act on the mature biofilms, and finally determined its potential as wound treatment in in vivo mice burn model. The system was found to be nontoxic against HaCaT cells, that is, keratinocytes. It was safe for use and exhibited antibiofilm activity against S. aureus biofilms, although the activity was more significant against planktonic bacteria and prior to biofilm formation than against mature biofilms as shown in the resazurin and the crystal violet assays. An in vivo mice burn model was used to evaluate the biological potential of the system and the healing of burns observed over 28 days. The in vivo data suggest that the delivery system enhances wound healing and is equally potent as the marketed product of mupirocin. Histological examination showed no difference in the quality of the healed scar tissue, whereas the healing time for the new delivery system was shorter as compared to the marketed product. Further animal studies and development of more sophisticated in vivo model are needed for complete evaluation.

  11. Liposomes-in-hydrogel delivery system with mupirocin: in vitro antibiofilm studies and in vivo evaluation in mice burn model.

    Science.gov (United States)

    Hurler, Julia; Sørensen, Karen K; Fallarero, Adyary; Vuorela, Pia; Škalko-Basnet, Nataša

    2013-01-01

    Previously, we have proposed mupirocin-in-liposomes-in-hydrogel delivery system as advanced delivery system with the potential in treatment of burns. In the current studies, we evaluated the system for its cytotoxicity, ability to prevent biofilm formation, act on the mature biofilms, and finally determined its potential as wound treatment in in vivo mice burn model. The system was found to be nontoxic against HaCaT cells, that is, keratinocytes. It was safe for use and exhibited antibiofilm activity against S. aureus biofilms, although the activity was more significant against planktonic bacteria and prior to biofilm formation than against mature biofilms as shown in the resazurin and the crystal violet assays. An in vivo mice burn model was used to evaluate the biological potential of the system and the healing of burns observed over 28 days. The in vivo data suggest that the delivery system enhances wound healing and is equally potent as the marketed product of mupirocin. Histological examination showed no difference in the quality of the healed scar tissue, whereas the healing time for the new delivery system was shorter as compared to the marketed product. Further animal studies and development of more sophisticated in vivo model are needed for complete evaluation. PMID:24369533

  12. Polyvinyl alcohol hydrogels for iontohporesis

    Science.gov (United States)

    Bera, Prasanta; Alam, Asif Ali; Arora, Neha; Tibarewala, Dewaki Nandan; Basak, Piyali

    2013-06-01

    Transdermal therapeutic systems propound controlled release of active ingredients through the skin into the systemic circulation in a predictive manner. Drugs administered through these systems escape first-pass metabolism and maintain a steady state scenario similar to a continuous intravenous infusion for up to several days. The iontophoresis deal with the systemic delivery of the bioactive agents (drug) by applying an electric current. It is basically an injection without the needle. The iontophoretic system requires a gel-based matrix to accommodate the bioactive agent. Hydrogels have been used by many investigators in controlled-release drug delivery systems because of their good tissue compatibility and easy manipulation of swelling level and, thereby, solute permeability. In this work we have prepared polyvinyl alcohol (PVA) hydrogel. We have cross linked polyvinyl alcohol chemically with Glutaraldehyde with different wt%. FTIR study reveals the chemical changes during cross linking. Swelling in water, is done to have an idea about drug loading and drug release from the membrane. After drug loading to the hydrogels, we have studied the drug release property of the hydrogels using salicylic acid as a model drug.

  13. Skin Whitening and Anti-aging Effect of Fine Hydro-gel Cream Formulation with Botanical Oil Complex Using PIT Emulsifying System

    OpenAIRE

    Hyun-Dae Cho1

    2014-01-01

    This study was to get unique formulation of multi-functional activity for preparing hydro-gel cream using PIT emulsifying system. In order to develop the good safety, adsorption and multi-functions, we made a new formulation using phase inversion temperature (PIT) containing 4 botanical oils such as camellia japonica seed oil, macadamia integrifolia seed oil, limnanthes alba (meadowfoam) seed oil, argania spinosa kernel oil, 0.04wt% of adenosine and 2wt% of niacinamide. The fi...

  14. 3D modeling of human cancer: A PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus.

    Science.gov (United States)

    Del Bufalo, Francesca; Manzo, Teresa; Hoyos, Valentina; Yagyu, Shigeki; Caruana, Ignazio; Jacot, Jeffrey; Benavides, Omar; Rosen, Daniel; Brenner, Malcolm K

    2016-04-01

    Interactions between malignant and stromal cells and the 3D spatial architecture of the tumor both substantially modify tumor behavior, including the responses to small molecule drugs and biological therapies. Conventional 2D culture systems cannot replicate this complexity. To overcome these limitations and more accurately model solid tumors, we developed a highly versatile 3D PEG-fibrin hydrogel model of human lung adenocarcinoma. Our model relevantly recapitulates the effect of oncolytic adenovirus; tumor responses in this setting nearly reproduce those observed in vivo. We have also validated the use of this model for complex, long-term, 3D cultures of cancer cells and their stroma (fibroblasts and endothelial cells). Both tumor proliferation and invasiveness were enhanced in the presence of stromal components. These results validate our 3D hydrogel model as a relevant platform to study cancer biology and tumor responses to biological treatments. PMID:26826297

  15. A novel gene delivery composite system based on biodegradable folate-poly (ester amine) polymer and thermosensitive hydrogel for sustained gene release

    Science.gov (United States)

    Yang, Yi; Zhao, Hang; Jia, Yanpeng; Guo, Qingfa; Qu, Ying; Su, Jing; Lu, Xiaoling; Zhao, Yongxiang; Qian, Zhiyong

    2016-02-01

    Local anti-oncogene delivery providing high local concentration of gene, increasing antitumor effect and decreasing systemic side effects is currently attracting interest in cancer therapy. In this paper, a novel local sustained anti-oncogene delivery system, PECE thermoresponsive hydrogel containing folate-poly (ester amine) (FA-PEA) polymer/DNA (tumor suppressor) complexes, is demonstrated. First, a tumor-targeted biodegradable folate-poly (ester amine) (FA-PEA) polymer based on low-molecular-weight polyethyleneimine (PEI) was synthesized and characterized, and the application for targeted gene delivery was investigated. The polymer had slight cytotoxicity and high transfection efficiency in vitro compared with PEI 25k, which indicated that FA-PEA was a potential vector for targeted gene delivery. Meanwhile, we successfully prepared a thermoresponsive PECE hydrogel composite containing FA-PEA/DNA complexes which could contain the genes and slowly release the genes into cells. We concluded the folate-poly (ester amine) (FA-PEA) polymer would be useful for targeted gene delivery, and the novel gene delivery composite based on biodegradable folate-poly (ester amine) polymer and thermosensitive PECE hydrogel showed potential for sustained gene release.

  16. Fiscal 2000 achievement report on the research and development of medical and welfare apparatus/technology High-speed and 3-dimensional X-ray CT system using cone beam X-ray (Energy use rationalization); 2000 nendo iryo fukushi kiki gijutsu kenkyu kaihatsu seika hokokusho. Kosoku cone beam sanjigen X sen CT (energy shiyo gorika)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-05-01

    In the study of a 3-dimensional data reconstruction system, the fabrication of an interface to serve between the data transmission section and the image reconstruction unit was complete, and evaluation was started of its performance and capability. In the effort to develop a 3-dimensional image processing system, specifications were deliberated for image reading systems and DICOM (digital imaging and communications in medicine) converters for clinical research, and articles to be ordered were selected. For dealing with a multi-platform system and enabling image-aided dignoses by plural users, a browser plug-in type web-based GUI (graphical user interface) was employed as the user interface and in the image server. The system construction was complete, and performance evaluation was started. In developing the total system, designing and manufacturing were started of the data transmission section, the bed and its rotary mount, and the high-voltage generation unit for the X-ray tube and X-rays. Preparation was started of a system control software program. (NEDO)

  17. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels.

    Science.gov (United States)

    George, Subin M; Moon, Hyejin

    2015-03-01

    Electro wetting-on-dielectric (EWOD) digital microfluidics (DMF) can be used to develop improved chemical screening platforms using 3-dimensional (3D) cell culture. Alginate hydrogels are one common method by which a 3D cell culture environment is created. This paper presents a study of alginate gelation on EWOD DMF and investigates designs to obtain uniform alginate hydrogels that can be repeatedly addressed by any desired liquids. A design which allows for gels to be retained in place during liquid delivery and removal without using any physical barriers or hydrophilic patterning of substrates is presented. A proof of concept screening platform is demonstrated by examining the effects of different concentrations of a test chemical on 3D cells in alginate hydrogels. In addition, the temporal effects of the various chemical concentrations on different hydrogel posts are demonstrated, thereby establishing the benefits of an EWOD DMF 3D cell culture and chemical screening platform using alginate hydrogels. PMID:25945142

  18. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  19. Improving Perceptual Skills with 3-Dimensional Animations.

    Science.gov (United States)

    Johns, Janet Faye; Brander, Julianne Marie

    1998-01-01

    Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)

  20. 3DIVS: 3-Dimensional Immersive Virtual Sculpting

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I; Uva, A E

    2001-10-03

    Virtual Environments (VEs) have the potential to revolutionize traditional product design by enabling the transition from conventional CAD to fully digital product development. The presented prototype system targets closing the ''digital gap'' as introduced by the need for physical models such as clay models or mockups in the traditional product design and evaluation cycle. We describe a design environment that provides an intuitive human-machine interface for the creation and manipulation of three-dimensional (3D) models in a semi-immersive design space, focusing on ease of use and increased productivity for both designer and CAD engineers.

  1. Polymer Micelles Laden Hydrogel Contact Lenses for Ophthalmic Drug Delivery.

    Science.gov (United States)

    Hu, Xiaohong; Tan, Huaping; Chen, Pin; Wang, Xin; Pang, Juan

    2016-06-01

    Hydrogel contact lens is an attractive drug carrier for the delivery of ophthalmic drugs. But limited drug loading capacity and burst release restricted its application in this field. Polymer micelle laden hydrogel contact lenses were designed for ophthalmic drug delivery in the work. β-CD/PAA/PEG ternary system was chosen to form polymer micelle. The micelle size could be adjusted by β-CD content and PAA/PEG concentration. The zeta potential of micelle was irrelevant to β-CD content, but influenced by PAA/PEG concentration. The absorbed drug concentration in micelle solution depended on both β-CD content and PAA/PEG concentration. Polymer micelle laden hydrogels were obtained by radical polymerization in situ. The transparency of polymer micelle laden hydrogel declined with PAA/PEG concentration increasing. The equilibrium water content and water loss showed that polymer micelle laden hydrogel with higher PAA/PEG concentration was in a higher swollen state. The dynamic viscoelastic properties howed that all polymer micelle laden hydrogels had some characteristics of crosslinked elastomers. The surface structure of freeze dried composite hydrogels was different from freeze dried pure hydrogel. The drug loading and releasing behaviors were detected to evaluate the drug loading and releasing capacity of hydrogels using orfloxacin and puerarin as model drugs. The results indicated the polymer micelle in hydrogel could hold or help to hold some ophthalmic drugs, and slow down orfloxacin release speed or keep puerarin stably stay for a time in hydrogels. In the end, it was found that the transparency of composite hydrogel became better after the hydrogel had been immersed in PBS for several weeks.

  2. Radiation synthesis of hydrogels for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Martellini, Flavia; Higa, Olga Z. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Yoshida, Masaru [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment. Dept. of Material Development; Katakai, Ryoichi [Gunma Univ., Kiryu (Japan). Faculty of Engineering. Dept. of Chemistry; Carenza, Mario [Istituto di Fotochimica Radiazioni d`Alta Energia, Legnaro, Padova (Italy)

    1997-12-01

    Thermally reversible hydrogels were synthesized by radiation-induced copolymerization of acryloyl-Lpropine methyl ester with hydrophilic or hydrophobic monomers. The preparation of this copolymers has the purpose to obtain materials for biomedicalk application as drug delivery systems. Acetaminophen, an analgesic and antipyretic drug, was entrapped into some thermoresponsive hydrogels. It was found that the release profiles of drug can be controlled by copolymer porosity, hydrophilicity and changing the environmental temperature. (author). 4 refs., 3 figs.

  3. Elastic, Conductive, Polymeric Hydrogels and Sponges

    OpenAIRE

    Yun Lu; Weina He; Tai Cao; Haitao Guo; Yongyi Zhang; Qingwen Li; Ziqiang Shao; Yulin Cui; Xuetong Zhang

    2014-01-01

    As a result of inherent rigidity of the conjugated macromolecular chains resulted from the delocalized π-electron system along the polymer backbone, it has been a huge challenge to make conducting polymer hydrogels elastic by far. Herein elastic and conductive polypyrrole hydrogels with only conducting polymer as the continuous phase have been simply synthesized in the indispensable conditions of 1) mixed solvent, 2) deficient oxidant, and 3) monthly secondary growth. The elastic mechanism an...

  4. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  5. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  6. Projection printing of 3-dimensional tissue scaffolds.

    Science.gov (United States)

    Lu, Yi; Chen, Shaochen

    2012-01-01

    Our ability to create precise, predesigned, spatially patterned biochemical and physical microenvironments inside polymer scaffolds could provide a powerful tool in studying progenitor cell behavior and differentiation under biomimetic, three-dimensional (3D) culture conditions. The development of freeform fabrication technology has become a promising tool for the manufacturing of biological scaffolds for tissue regeneration and stem cell engineering. Freeform fabrication is a very promising technology due to the efficient and simple process for creating bona fide 3D microstructures, such as closed channels and cavities. It is also capable of encapsulating biomolecules and even living cells. This chapter describes direct projection printing of 3D tissue engineering scaffolds by using a digital micromirror-array device (DMD) in a layer-by-layer process. This simple and fast microstereolithography system consists of an ultraviolet (UV) light source, a digital micromirror masking device, imaging optics, and controlling devices. Images of UV light are projected onto the photocurable resin by creating the "dynamic photomask" design with graphic software. Multilayered scaffolds are microfabricated through a photopolymerization process. PMID:22692617

  7. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  8. ADDITIVE-INDUCED ENHANCEMENT OF OPTICAL CLARITY OF POLYACRYLAMIDE HYDROGEL

    Institute of Scientific and Technical Information of China (English)

    Jeffery Franklin; Zhi Yuan Wang

    2003-01-01

    The aqueous polymerization of acrylamide and crosslinking with N,N-methylenebisacrylamide afforded hydrogels displaying high levels of light scattering (poor optical clarity). Enhancement of the optical clarity within a polyacrylamide (PAm) hydrogel was accomplished through the implementation of"refractive index matching", Water-soluble additives were utilised to better match the refractive index inhomogeneities throughout a given hydrogel. This resulted in lower light scattering within the system and hence improved clarity. Amino acids, sugars, polymers, and other water-soluble additives such as glycerol were investigated by this methodology. Most additives investigated displayed potential for effectively reducing the light scattering within a PAm hydrogel as a function of increased additive concentration. On increasing the refractive index of the water medium, the overall refractive index of a PAm hydrogel was also observed to increase. This provided a quantitative means of determining the effectiveness of a given additive for improving the optical clarity within a hydrogel.

  9. PVA/atapulgite hydrogels

    International Nuclear Information System (INIS)

    PVA hydrogels can be used as wound-healing as a consequence of their biocompatibility, flexibility, etc. In order to improve mechanical resistance of wound-healing, polymeric hydrogels reinforced with clay have been studied. Among national clays, attapulgite stands out. Once it is a natural material, acid treatment can be required in order to remove impurities. In the present work, PVA hydrogels reinforced with attapulgite were produced and they were characterized by swelling behavior, XRD, DSC and traction test. Among all properties studied, hydrogels reinforced with activated attapulgite showed better mechanical resistance and Young module than the other samples. (author)

  10. Responsive Hydrogels for Label-Free Signal Transduction within Biosensors

    Directory of Open Access Journals (Sweden)

    Kamila Gawel

    2010-04-01

    Full Text Available Hydrogels have found wide application in biosensors due to their versatile nature. This family of materials is applied in biosensing either to increase the loading capacity compared to two-dimensional surfaces, or to support biospecific hydrogel swelling occurring subsequent to specific recognition of an analyte. This review focuses on various principles underpinning the design of biospecific hydrogels acting through various molecular mechanisms in transducing the recognition event of label-free analytes. Towards this end, we describe several promising hydrogel systems that when combined with the appropriate readout platform and quantitative approach could lead to future real-life applications.

  11. Rapid response of thermo-sensitive hydrogels with porous structures

    Science.gov (United States)

    Maeda, Shingo; Kato, Terukazu; Kogure, Hikaru; Hosoya, Naoki

    2015-04-01

    Poly(N-isopropylacrylamide)(PNIPAAm) hydrogel is thermo-sensitive, and undergoes a volume phase transition from a swollen state to a shrunken state. Typically, after immersing poly(N-isopropylacrylamide) hydrogels into hot water above the critical temperature, they undergo a two-step shrinking process, which leads to very slow dynamics. However, potential applications, including soft actuators, drug delivery systems, and cell cultures, demand a quick response. Herein, we synthesize chemically crosslinked PNIPAAm porous hydrogels made of nanofiber mats. Our hydrogels rapidly shrink without the two-step shrinking. The response of this porous gel is over 100 times faster than that of the typical gel.

  12. 3 dimensional volume MR imaging of intratemporal facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Kang, Heoung Keun; Kim, Hyun Ju; Kim, Jae Kyu; Jung, Hyun Ung; Moon, Woong Jae [Chonnam University Medical School, Kwangju (Korea, Republic of)

    1994-10-15

    To evaluate the usefulness of 3 dimensional volume MR imaging technique for demonstrating the facial nerves and to describe MR findings in facial palsy patients and evaluate the significance of facial nerve enhancement. We reviewed the MR images of facial nerves obtained with 3 dimensional volume imaging technique before and after intravenous administration of Gadopentetate dimeglumine in 13 cases who had facial paralysis and 33 cases who had no facial palsy. And we analyzed the detectability of ananatomical segments of intratemporal facial nerves and facial nerve enhancement. When the 3 dimensional volume MR images of 46 nerves were analyzed subjectively, the nerve courses of 43(93%) of 46 nerves were effectively demonstrated on 3 dimensional volume MR images. Internal acoustic canal portions and geniculate ganglion of facial nerve were well visualized on axial images and tympanic and mastoid segments were well depicted on oblique sagittal images. 10 of 13 patients(77%) were visibly enhanced along at least one segment of the facial nerve with swelling or thickening, and nerves of 8 of normal 33 cases(24%) were enhanced without thickening or swelling. MR findings of facial nerve parelysis is asymmetrical thickening of facial nerve with contrast enhancement. The 3 dimensional volume MR imaging technique should be a useful study for the evaluation of intratemporal facial nerve disease.

  13. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment

    Science.gov (United States)

    Wang, Wenyi; Wat, Elaine; Hui, Patrick C. L.; Chan, Ben; Ng, Frency S. F.; Kan, Chi-Wai; Wang, Xiaowen; Hu, Huawen; Wong, Eric C. W.; Lau, Clara B. S.; Leung, Ping-Chung

    2016-04-01

    The treatment of atopic dermatitis (AD) has long been viewed as a problematic issue by the medical profession. Although a wide variety of complementary therapies have been introduced, they fail to combine the skin moisturizing and drug supply for AD patients. This study reports the development of a thermo-sensitive Poloxamer 407/Carboxymethyl cellulose sodium (P407/CMCs) composite hydrogel formulation with twin functions of moisture and drug supply for AD treatment. It was found that the presence of CMCs can appreciably improve the physical properties of P407 hydrogel, which makes it more suitable for tailored drug loading. The fabricated P407/CMCs composite hydrogel was also characterized in terms of surface morphology by field emission scanning electron microscopy (FE-SEM), rheological properties by a rheometer, release profile in vitro by dialysis method and cytotoxicity test. More importantly, the findings from transdermal drug delivery behavior revealed that P407/CMCs showed desirable percutaneous performance. Additionally, analysis of cytotoxicity test suggested that P407/CMCs composite hydrogel is a high-security therapy for clinical trials and thus exhibits a promising way to treat AD with skin moisturizing and medication.

  14. One-step synthesis of interpenetrating network hydrogels: Environment sensitivities and drug delivery properties

    OpenAIRE

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Ashraf, Muhammmad Aqeel; Zhao, Yansheng

    2015-01-01

    A novel interpenetrating network hydrogel for drug controlled release, composed of modified poly(aspartic acid) (KPAsp) and carboxymethyl chitosan (CMCTS), was prepared in aqueous system. The surface morphology and composition of hydrogels were characterized by SEM and FTIR. The swelling properties of KPAsp, KPAsp/CMCTS semi-IPN and KPAsp/CMCTS IPN hydrogels were investigated and the swelling dynamics of the hydrogels was analyzed based on the Fickian equation. The pH, temperature and salt se...

  15. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    OpenAIRE

    Park, Won Ho

    2016-01-01

    Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel i...

  16. l-Arginine grafted alginate hydrogel beads: A novel pH-sensitive system for specific protein delivery

    Directory of Open Access Journals (Sweden)

    Mohamed S. Mohy Eldin

    2015-05-01

    Full Text Available Novel pH-sensitive hydrogels based on l-arginine grafted alginate (Arg-g-Alg hydrogel beads were synthesized and utilized as a new carrier for protein delivery (BSA in specific pH media. l-arginine was grafted onto the polysaccharide backbone of virgin alginate via amine functions. Evidences of grafting of alginate were extracted from FT-IR and thermal analysis, while the morphological structure of Arg-g-Alg hydrogel beads was investigated by SEM photographs. Factors affecting on the grafting process e.g. l-arginine concentration, reaction time, reaction temperature, reaction pH, and crosslinking conditions, have been studied. Whereas, grafting efficiency of each factor was evaluated. Grafting of alginate has improved both thermal and morphological properties of Arg-g-Alg hydrogel beads. The swelling behavior of Arg-g-Alg beads was determined as a function of pH and compared with virgin calcium alginate beads. The cumulative in vitro release profiles of BSA loaded beads were studied at different pHs for simulating the physiological environments of the gastrointestinal tract. The amount of BSA released from neat alginate beads at pH 2 was almost 15% after 5 h, while the Arg-g-Alg beads at the same conditions were clearly higher than 45%, then it increased to 90% at pH 7.2. Accordingly, grafting of alginate has improved its release profile behavior particularly in acidic media. The preliminary results clearly suggested that the Arg-g-Alg hydrogel may be a potential candidate for polymeric carrier for oral delivery of protein or drugs.

  17. Mechanical Behavior of Tough Hydrogels for Structural Applications

    Science.gov (United States)

    Illeperuma, Widusha Ruwangi Kaushalya

    Hydrogels are widely used in many commercial products including Jell-O, contact lenses, and superabsorbent diapers. In recent decades, hydrogels have been under intense development for biomedical applications, such as scaffolds in tissue engineering, carriers for drug delivery, and valves in microfluidic systems. But the scope is severely limited as conventional hydrogels are weak and brittle and are not very stretchable. This thesis investigates the approaches that enhance the mechanical properties of hydrogels and their structural applications. We discov¬ered a class of exceptionally stretchable and tough hydrogels made from poly-mers that form networks via ionic and covalent crosslinks. Although such a hydrogel contains ~90% water, it can be stretched beyond 20 times its initial length, and has a fracture energy of ~9000 J/m2. The combination of large stretchability, remarkable toughness, and recoverability of stiffness and toughness, along with easy synthesis makes this material much superior over existing hydrogels. Extreme stretchability and blunted crack tips of these hydrogels question the validity of traditional fracture testing methods. We re-examine a widely used pure shear test method to measure the fracture energy. With the experimental and simulation results, we conclude that the pure shear test method can be used to measure fracture energy of extremely stretchable materials. Even though polyacrylamide-alginate hydrogels have an extremely high toughness, it has a relatively low stiffness and strength. We improved the stiffness and strength by embedding fibers. Most hydrogels are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. But tough hydrogel composites do not fail by the fibers cutting the hydrogel; instead, it undergoes large deforming by fibers sliding through the matrix. Hydrogels were not considered as materials for structural applications. But with enhanced mechanical properties, they have opened up

  18. Ultrasound stimulated release of mimosa medicine from cellulose hydrogel matrix.

    Science.gov (United States)

    Jiang, Huixin; Tovar-Carrillo, Karla; Kobayashi, Takaomi

    2016-09-01

    Ultrasound (US) drug release system using cellulose based hydrogel films was developed as triggered to mimosa. Here, the mimosa, a fascinating drug to cure injured skin, was employed as the loading drug in cellulose hydrogel films prepared with phase inversion method. The mimosa hydrogels were fabricated from dimethylacetamide (DMAc)/LiCl solution in the presence of mimosa, when the solution was exposed to ethanol vapor. The US triggered release of the mimosa from the hydrogel matrix was carried out under following conditions of US powers (0-30W) and frequencies (23, 43 and 96kHz) for different mimosa hydrogel matrix from 0.5wt% to 2wt% cellulose solution. To release the drug by US trigger from the matrix, the better medicine release was observed in the matrix prepared from the 0.5wt% cellulose solution when the 43kHz US was exposed to the aqueous solution with the hydrogel matrix. The release efficiency increased with the increase of the US power from 5 to 30W at 43kHz. Viscoelasticity of the hydrogel matrix showed that the hydrogel became somewhat rigid after the US exposure. FT-IR analysis of the mimosa hydrogel matrixes showed that during the US exposure, hydrogen bonds in the structure of mimosa-water and mimosa-cellulose were broken. This suggested that the enhancement of the mimosa release was caused by the US exposure. PMID:27150786

  19. Force-compensated hydrogel-based pH sensor

    Science.gov (United States)

    Deng, Kangfa; Gerlach, Gerald; Guenther, Margarita

    2015-04-01

    This paper presents the design, simulation, assembly and testing of a force-compensated hydrogel-based pH sensor. In the conventional deflection method, a piezoresistive pressure sensor is used as a chemical-mechanical-electronic transducer to measure the volume change of a pH-sensitive hydrogel. In this compensation method, the pH-sensitive hydrogel keeps its volume constant during the whole measuring process, independent of applied pH value. In order to maintain a balanced state, an additional thermal actuator is integrated into the close-loop sensor system with higher precision and faster dynamic response. Poly (N-isopropylacrylamide) (PNIPAAm) with 5 mol% monomer 3-acrylamido propionic acid (AAmPA) is used as the temperature-sensitive hydrogel, while poly (vinyl alcohol) with poly (acrylic acid) (PAA) serves as the pH-sensitive hydrogel. A thermal simulation is introduced to assess the temperature distribution of the whole microsystem, especially the temperature influence on both hydrogels. Following tests are detailed to verify the working functions of a sensor based on pH-sensitive hydrogel and an actuator based on temperature-sensitive hydrogel. A miniaturized prototype is assembled and investigated in deionized water: the response time amounts to about 25 min, just half of that one of a sensor based on the conventional deflection method. The results confirm the applicability of t he compensation method to the hydrogel-based sensors.

  20. Rapid Synthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide-Based Hydrogels for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Manisha Pandey

    2013-01-01

    Full Text Available This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by using N,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority of the hydrogels prepared using solubilized BC and that they should be explored further for oral drug delivery.

  1. Hydrogels Constructed from Engineered Proteins.

    Science.gov (United States)

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  2. Hydrogels Constructed from Engineered Proteins.

    Science.gov (United States)

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. PMID:26707834

  3. Experiments with hydrogel pearls

    OpenAIRE

    Pavlin, Jerneja

    2015-01-01

    Hydrogels are very attractive materials since they can absorb large quantities of water. They also have very interesting optical properties which can be easily shown. The experiments with hydrogel pearls related to the absorption of water, density, optical properties and influence of pH are presented in the contribution.

  4. 5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice

    Directory of Open Access Journals (Sweden)

    Shi Huashan

    2010-08-01

    Full Text Available Abstract Background Colorectal peritoneal carcinomatosis (CRPC is a common form of systemic metastasis of intra-abdominal cancers. Intraperitoneal chemotherapy is a preferable option for colorectal cancer. Here we reported that a new system, 5-FU-loaded hydrogel system, can improve the therapeutic effects of intraperitoneal chemotherapy. Methods A biodegradable PEG-PCL-PEG (PECE triblock copolymer was successfully synthesized. The biodegradable and temperature sensitive hydrogel was developed to load 5-FU. Methylene blue-loaded hydrogel were also developed for visible observation of the drug release. The effects and toxicity of the 5-FU-hydrogel system were evaluated in a murine CRPC model. Results The hydrogel system is an injectable flowing solution at ambient temperature and forms a non-flowing gel depot at physiological temperature. 5-FU-hydrogel was subsequently injected into abdominal cavity in mice with CT26 cancer cells peritoneal dissemination. The results showed that the hydrogel delivery system prolonged the release of methylene blue; the 5-FU-hydrogel significantly inhibited the peritoneal dissemination and growth of CT26 cells. Furthermore, intraperitoneal administration of the 5-FU-hydrogel was well tolerated and showed less hematologic toxicity. Conclusions Our data indicate that the 5-FU-hydrogel system can be considered as a new strategy for peritoneal carcinomatosis, and the hydrogel may provide a potential delivery system to load different chemotherapeutic drugs for peritoneal carcinomatosis of cancers.

  5. Fiber-reinforced tough hydrogels

    OpenAIRE

    Illeperuma, Widusha Ruwangi Kaushalya; Sun, Jeong-Yun; Suo, Zhigang; Vlassak, Joost J.

    2014-01-01

    Using strong fibers to reinforce a hydrogel is highly desirable but difficult. Such a composite would combine the attributes of a solid that provides strength and a liquid that transports matter. Most hydrogels, however, are brittle, allowing the fibers to cut through the hydrogel when the composite is loaded. Here we circumvent this problem by using a recently developed tough hydrogel. We fabricate a composite using an alginate-polyacrylamide hydrogel reinforced with a random network of stai...

  6. Reinforcement of hydrogels using three-dimensionally printed microfibres

    NARCIS (Netherlands)

    Visser, Jetze; Melchels, Ferry P. W.; Jeon, June E.; van Bussel, Erik M.; Kimpton, Laura S.; Byrne, Helen M.; Dhert, Wouter J. A.; Dalton, Paul D.; Hutmacher, Dietmar W.; Malda, J

    2015-01-01

    Despite intensive research, hydrogels currently available for tissue repair in the musculoskeletal system are unable to meet the mechanical, as well as the biological, requirements for successful outcomes. Here we reinforce soft hydrogels with highly organized, high-porosity microfibre networks that

  7. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    Science.gov (United States)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  8. Interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups

    NARCIS (Netherlands)

    L.N.J. Fabels; P.G. Nijkamp

    2014-01-01

    Introduction The use of digital orthodontic setups has grown quickly. The purpose of this study was to test the interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups in OrthoCAD (Align Technology, San Jose, Calif). Methods Six clinicians made digital orthodontic s

  9. 2 and 3-dimensional Hamiltonians with Shape Invariance Symmetry

    OpenAIRE

    Jafarizadeh, M. A.; Panahi-Talemi, H.; Faizi, E.

    2000-01-01

    Via a special dimensional reduction, that is, Fourier transforming over one of the coordinates of Casimir operator of su(2) Lie algebra and 4-oscillator Hamiltonian, we have obtained 2 and 3 dimensional Hamiltonian with shape invariance symmetry. Using this symmetry we have obtained their eigenspectrum. In the mean time we show equivalence of shape invariance symmetry and Lie algebraic symmetry of these Hamiltonians.

  10. A facile construction strategy of stable lipid nanoparticles for drug delivery using a hydrogel-thickened microemulsion system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Huabing; Xiao Ling; Du Danrong; Mou Dongsheng; Xu Huibi; Yang Xiangliang, E-mail: yangxl@mail.hust.edu.cn [College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-01-08

    We report a novel facile method for preparing stable nanoparticles with inner spherical solid spheres and an outer hydrogel matrix using a hot O/W hydrogel-thickened microemulsion with spontaneous stability. The nanoparticles with average diameters of about 30.0 nm and 100.0 nm were constructed by cooling the hot hydrogel-thickened microemulsion at different temperatures, respectively. We explained the application of these nanoparticles by actualizing the cutaneous delivery of drug-loaded nanoparticles. The in vitro skin permeation studies showed that the nanoparticles could significantly reduce the penetration of model drugs through skin and resulted in their dermal uptakes in skin. The sol-gel process of TEOS was furthermore used in the template of HTM to regulate the particle size of nanoparticles. The coating of silica on the surface of nanoparticles could regulate the penetration of drug into skin from dermal delivery to transdermal delivery. This strategy provides a facile method to produce nanoparticles with long-term stability and ease of manufacture, which might have a promising application in drug delivery.

  11. A mathematical model for electrical impedance spectroscopy of zwitterionic hydrogels.

    Science.gov (United States)

    Feicht, Sarah E; Khair, Aditya S

    2016-08-17

    We report a mathematical model for ion transport and electrical impedance in zwitterionic hydrogels, which possess acidic and basic functional groups that carry a net charge at a pH not equal to the isoelectric point. Such hydrogels can act as an electro-mechanical interface between a relatively hard biosensor and soft tissue in the body. For this application, the electrical impedance of the hydrogel must be characterized to ensure that ion transport to the biosensor is not significantly hindered. The electrical impedance is the ratio of the applied voltage to the measured current. We consider a simple model system, wherein an oscillating voltage is applied across a hydrogel immersed in electrolyte and sandwiched between parallel, blocking electrodes. We employ the Poisson-Nernst-Planck (PNP) equations coupled with acid-base dissociation reactions for the charge on the hydrogel backbone to model the ionic transport across the hydrogel. The electrical impedance is calculated from the numerical solution to the PNP equations and subsequently analyzed via an equivalent circuit model to extract the hydrogel capacitance, resistance, and the capacitance of electrical double layers at the electrode-hydrogel interface. For example, we predict that an increase in pH from the isoelectric point, pH = 6.4 for a model PCBMA hydrogel, to pH = 8 reduces the resistance of the hydrogel by ∼40% and increases the double layer capacitance by ∼250% at an electrolyte concentration of 0.1 mM. The significant impact of charged hydrogel functional groups to the impedance is damped at higher electrolyte concentration. PMID:27464763

  12. 基于Kinect的移动机器人大视角3维V-SLAM%A Large Viewing Angle 3-Dimensional V-SLAM Algorithm with a Kinect-based Mobile Robot System

    Institute of Scientific and Technical Information of China (English)

    辛菁; 苟蛟龙; 马晓敏; 黄凯; 刘丁; 张友民

    2014-01-01

    To solve the performance degradation problem of the mobile robot 3D V-SLAM (visual simultaneous local-ization and mapping) in the presence of large viewing angle, an affine invariant features matching algorithm AORB (affine oriented FAST and rotated BRIEF) is proposed, and a mobile robot large viewing angle 3D V-SLAM system using Kinect camera is further developed. Firstly, AORB algorithm is adopted to implement the fast and efficient matching between ad-jacent frames captured by the Kinect RGB camera in the presence of large changes of viewing angle, and the corresponding relationship between adjacent frames is created. Secondly, 2D image points are converted into 3D color cloud data through using the calibrated intrinsic and extrinsic parameters of Kinect, and pixel depth values after alignment correction. Thirdly, the relative pose between adjacent frames is computed by using the least-squares algorithm after removing outliers using RANSAC (RANdom Sample Consensus). Finally, the 3D model is obtained by optimizing the resulting pose using g2o (gen-eral graph optimization). Mobile robot large viewing angle 3D V-SLAM is realized ultimately. Both the off-line (based on well-known and available benchmark data sets) and the online (with a developed mobile robot system) experimental testing show that the proposed matching algorithm and the developed 3D V-SLAM system can accurately update the local model, successfully reconstruct the environment model, and effectively estimate the motion trajectory of the mobile robot in the presence of large viewing angle.%针对大视角情况下,移动机器人3维视觉同步定位与地图构建(visual simultaneous localization and mapping,V-SLAM)性能下降的问题,提出了一种仿射不变特征匹配算法AORB(affine oriented FAST and rotated BRIEF)并在此基础上构建了基于Kinect的移动机器人大视角3D V-SLAM系统.首先对Kinect相机采集到的彩色RGB数据采用AORB算法实现具有大

  13. 3-Dimensional reconstruction of fluorescent structures in tardigrades

    Directory of Open Access Journals (Sweden)

    Franz BRÜMMER

    2007-09-01

    Full Text Available Tardigrades are microscopic animals, thus brightfield microscopy is a well established method for tardigrade observation. Modern techniques in functional genetics like fluorescence in situ hybridisation or fluorescently labelled expression markers demand high resolution fluorescence microscopy. Nevertheless tardigrades are still considered to be difficult objects for fluorescence techniques as they are covered by an opaque and diffracting cuticle. We show a modern technique of structured light illumination that enables us to acquire thin optical sections and consequently to reconstruct 3-dimensional structures in tardigrades with a high spatial resolution in all 3 dimensions. This technique is evaluated on taxonomically valuable internal as well as external structures of eutardigrades: the bucco-pharyngeal apparatus and the claws. The 3-dimensional reconstructions allow the measurement of distances in all 3 dimensions.

  14. Catalytic carbon deposition on 3-dimensional carbon fibre supports

    OpenAIRE

    Thornton, Matthew James

    2005-01-01

    Catalytic carbon deposition reactions, using methane, ethane or synthetic natural gas (1.8 vol. % propane, 6.7 vol. % ethane and balance methane) as the carbon-containing gas feedstock with or without the addition of hydrogen, have been investigated over nickel, cobalt and iron catalysts supported on 3-dimensional carbon fibre supports, using both a horizontal tube furnace and an isothermal, isobaric induction furnace. The transition metal catalysts were prepared by impregnating 3-dimens...

  15. GLOBAL STABILITY IN TIME-DELAYED 3-DIMENSIONAL RICHARDS MODEL

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We obtain the global attractivity and global asymptotical stability of positive equilibria to a 3-dimensional Richards model with delays. Our results do not depend on the size-asymmetry parameter which measures the degree of the curvature of size-growth among individuals over the entire growth curve, and the shape parameter which affects the shape of model curve. Lastly, we gave a numerical simulation to verify the feasibility of our main results.

  16. Decay vertex reconstruction and 3-dimensional lifetime determination at BESⅢ

    Institute of Scientific and Technical Information of China (English)

    XU Min; HE Kang-Lin; ZHANG Zi-Ping; WANG Yi-Fang; BIAN Jian-Ming; CAO Guo-Fu; CAO Xue-Xiang; CHEN Shen-Jian; DENG Zi-Yan; FU Cheng-Dong; GAO Yuan-Ning; HAN Lei; NAN Shao-Qing; HE Miao; HU Ji-Feng; HU Xiao-Wei; HUANG Bin; HUANG Xing-Tao; JIA Lu-Kui; JI Xiao-Sin; LI Hai-Bo; LI Wei-Dong; LIANG Yu-Wie; LIU Chun-Xiu; LIU Huai-Min; LIU Ying; LIU Yong; LUO Tao; L(U) Qi-Wen; MA Qiu-Mei; MA Xiang; MAO Ya-Jun; MAO Ze-Pu; MO Xiao-Hu; NING Fei-Peng; PING Rong-Gang; QIU Jin-Fa; SONG Wen-Bo; SUN Sheng-Sen; SUN Xiao-Dong; SUN Yong-Zhao; TIAN Hao-Lai; WANG Ji-Ke; WANG Liang-Liang; WEN Shuo-Pin; WU Ling-Hui; WU Zhi; XIE Yu-Guang; YAN Jie; YAN Liang; YAO Jian; YUAN Chang-Zheng; YUAN Ye; ZHANG Chang-Chun; ZHANG Jian-Yong; ZHANG Lei; ZHANG Xue-Yao; ZHANG Yao; ZHENG Yang-Heng; ZHU Yong-Sheng; ZOU Jia-Heng

    2009-01-01

    This paper focuses mainly on the vertex reconstruction of resonance particles with a relatively long lifetime such as KSO, A, as well as on lifetime measurements using a 3-dimensional fit. The kinematic constraints between the production and decay vertices and the decay vertex fitting algorithm based on the least squares method are both presented. Reconstruction efficiencies including experimental resolutions are discussed. The results and systematic errors are calculated based on a Monte Carlo simulation.

  17. Anti-de Sitter 3-dimensional Gravity with Torsion

    OpenAIRE

    Blagojevic, M; Vasilic, M.

    2004-01-01

    Using the canonical formalism, we study the asymptotic symmetries of the topological 3-dimensional gravity with torsion. In the anti-de Sitter sector, the symmetries are realized by two independent Virasoro algebras with classical central charges. In the simple case of the teleparallel vacuum geometry, the central charges are equal to each other and have the same value as in general relativity, while in the general Riemann-Cartan geometry, they become different.

  18. Hydrogel Actuation by Electric Field Driven Effects

    Science.gov (United States)

    Morales, Daniel Humphrey

    Hydrogels are networks of crosslinked, hydrophilic polymers capable of absorbing and releasing large amounts of water while maintaining their structural integrity. Polyelectrolyte hydrogels are a subset of hydrogels that contain ionizable moieties, which render the network sensitive to the pH and the ionic strength of the media and provide mobile counterions, which impart conductivity. These networks are part of a class of "smart" material systems that can sense and adjust their shape in response to the external environment. Hence, the ability to program and modulate hydrogel shape change has great potential for novel biomaterial and soft robotics applications. We utilized electric field driven effects to manipulate the interaction of ions within polyelectrolyte hydrogels in order to induce controlled deformation and patterning. Additionally, electric fields can be used to promote the interactions of separate gel networks, as modular components, and particle assemblies within gel networks to develop new types of soft composite systems. First, we present and analyze a walking gel actuator comprised of cationic and anionic gel legs attached by electric field-promoted polyion complexation. We characterize the electro-osmotic response of the hydrogels as a function of charge density and external salt concentration. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices in aqueous solutions. An 'ionoprinting' technique is presented with the capability to topographically structure and actuate hydrated gels in two and three dimensions by locally patterning ions induced by electric fields. The bound charges change the local mechanical properties of the gel to induce relief patterns and evoke localized stress, causing rapid folding in air. The ionically patterned hydrogels exhibit programmable temporal and spatial shape transitions which can be tuned by the duration and/or strength of

  19. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    Science.gov (United States)

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy. PMID:26886821

  20. Development of sago starch hydrogel for wound dressing

    International Nuclear Information System (INIS)

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  1. Development of sago starch hydrogel for wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Kamaruddin Hashim; Khairul Zaman HJ. Mohd Dahlan; Kamarudin Bahari [Malaysian Institute for Nuclear Technology Research (MINT), Bangi (Malaysia); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Sago starch is utilized in Malaysia mainly for food production. The purpose of the research is to diversify the use of sago starch for medical application particularly in development of hydrogel burn wound dressing. The sago starch is blending with mixture of PVP and PVA to improve the degree of crosslink, mechanical properties, swelling ability and tackiness of the blend hydrogel (sago/PVA and sago PVP). Additives have been introduced into the system such as, polypropylene glycol or carboxymethyl cellulose to improved further the swelling ability and tackiness properties of the blend hydrogel as well as other properties. Effect of irradiation dose on the blend hydrogel has also been studied to optimize the effective dose for blend hydrogel and simultaneously for sterilization purpose. (author)

  2. Hybrid Supramolecular and Colloidal Hydrogels that Bridge Multiple Length Scales**

    Science.gov (United States)

    Janeček, Emma-Rose; McKee, Jason R; Tan, Cindy S Y; Nykänen, Antti; Kettunen, Marjo; Laine, Janne; Ikkala, Olli; Scherman, Oren A

    2015-01-01

    Hybrid nanocomposites were constructed based on colloidal nanofibrillar hydrogels with interpenetrating supramolecular hydrogels, displaying enhanced rheological yield strain and a synergistic improvement in storage modulus. The supramolecular hydrogel consists of naphthyl-functionalized hydroxyethyl cellulose and a cationic polystyrene derivative decorated with methylviologen moieties, physically cross-linked with cucurbit[8]uril macrocyclic hosts. Fast exchange kinetics within the supramolecular system are enabled by reversible cross-linking through the binding of the naphthyl and viologen guests. The colloidal hydrogel consists of nanofibrillated cellulose that combines a mechanically strong nanofiber skeleton with a lateral fibrillar diameter of a few nanometers. The two networks interact through hydroxyethyl cellulose adsorption to the nanofibrillated cellulose surfaces. This work shows methods to bridge the length scales of molecular and colloidal hybrid hydrogels, resulting in synergy between reinforcement and dynamics. PMID:25772264

  3. Thermoresponsive hydrogels in biomedical applications: A seven-year update.

    Science.gov (United States)

    Klouda, Leda

    2015-11-01

    Thermally responsive hydrogels modulate their gelation behavior upon temperature change. Aqueous solutions solidify into hydrogels when a critical temperature is reached. In biomedical applications, the change from ambient temperature to physiological temperature can be employed. Their potential as in situ forming biomaterials has rendered these hydrogels very attractive. Advances in drug delivery, tissue engineering and cell sheet engineering have been made in recent years with the use of thermoresponsive hydrogels. The scope of this article is to review the literature on thermosensitive hydrogels published over the past seven years. The article concentrates on natural polymers as well as synthetic polymers, including systems based on N-isopropylacrylamide (NIPAAm), poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO), poly(ethylene glycol) (PEG)-biodegradable polyester copolymers, poly(organophosphazenes) and 2-(dimethylamino) ethyl methacrylate (DMAEMA).

  4. Engineered Polymeric Hydrogels for 3D Tissue Models

    Directory of Open Access Journals (Sweden)

    Sujin Park

    2016-01-01

    Full Text Available Polymeric biomaterials are widely used in a wide range of biomedical applications due to their unique properties, such as biocompatibility, multi-tunability and easy fabrication. Specifically, polymeric hydrogel materials are extensively utilized as therapeutic implants and therapeutic vehicles for tissue regeneration and drug delivery systems. Recently, hydrogels have been developed as artificial cellular microenvironments because of the structural and physiological similarity to native extracellular matrices. With recent advances in hydrogel materials, many researchers are creating three-dimensional tissue models using engineered hydrogels and various cell sources, which is a promising platform for tissue regeneration, drug discovery, alternatives to animal models and the study of basic cell biology. In this review, we discuss how polymeric hydrogels are used to create engineered tissue constructs. Specifically, we focus on emerging technologies to generate advanced tissue models that precisely recapitulate complex native tissues in vivo.

  5. Classification, processing and application of hydrogels: A review.

    Science.gov (United States)

    Ullah, Faheem; Othman, Muhammad Bisyrul Hafi; Javed, Fatima; Ahmad, Zulkifli; Md Akil, Hazizan

    2015-12-01

    This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing. Super porous hydrogels (SPHs) and superabsorbent polymers (SAPs) represent an innovative category of recent generation highlighted as an ideal mould system for the study of solution-dependent phenomena. Hydrogels, also termed as smart and/or hungry networks, are currently subject of considerable scientific research due to their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields. Smart hydrogels display a significant physiochemical change in response to small changes in the surroundings. However, such changes are reversible; therefore, the hydrogels are capable of returning to its initial state after a reaction as soon as the trigger is removed.

  6. Application of optical coherence tomography (OCT) as a 3-dimensional imaging technique for roll-to-roll coated polymer solar cells

    DEFF Research Database (Denmark)

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel;

    2012-01-01

    The 3-dimensional imaging of complete polymer solar cells prepared by roll-to-roll coating was carried out using high-resolution 1322 nm optical coherence tomography (OCT) system. We found it possible to image the 3-dimensional structure of the entire solar cell that comprises UV-barrier, barrier...

  7. New antifouling silica hydrogel.

    Science.gov (United States)

    Beltrán-Osuna, Ángela A; Cao, Bin; Cheng, Gang; Jana, Sadhan C; Espe, Matthew P; Lama, Bimala

    2012-06-26

    In this work, a new antifouling silica hydrogel was developed for potential biomedical applications. A zwitterionic polymer, poly(carboxybetaine methacrylate) (pCBMA), was produced via atom-transfer radical polymerization and was appended to the hydrogel network in a two-step acid-base-catalyzed sol-gel process. The pCBMA silica aerogels were obtained by drying the hydrogels under supercritical conditions using CO(2). To understand the effect of pCBMA on the gel structure, pCBMA silica aerogels with different pCBMA contents were characterized using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) spectroscopy, and the surface area from Brauner-Emmet-Teller (BET) measurements. The antifouling property of pCBMA silica hydrogel to resist protein (fibrinogen) adsorption was measured using enzyme-linked immunosorbent assay (ELISA). SEM images revealed that the particle size and porosity of the silica network decreased at low pCBMA content and increased at above 33 wt % of the polymer. The presence of pCBMA increased the surface area of the material by 91% at a polymer content of 25 wt %. NMR results confirmed that pCBMA was incorporated completely into the silica structure at a polymer content below 20 wt %. A protein adsorption test revealed a reduction in fibrinogen adsorption by 83% at 25 wt % pCBMA content in the hydrogel compared to the fibrinogen adsorption in the unmodified silica hydrogel. PMID:22607091

  8. Synthesis and Characterization of Super absorbent Hydrogels Based on Natural Polymers Using Ionizing Radiations

    International Nuclear Information System (INIS)

    Radiation processing technology is a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, novel super absorbent hydrogels was prepared with biodegradable and eco-friendly properties by graft copolymerization of chitosan and different synthetic monomers (AAc, DEAEMA, HEMA, HPMA and HEA) using gamma irradiation to examine the potential use of these hydrogels in the controlled drug release systems. The different chitosan hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy and thermal analysis techniques. The effects of the preparation conditions on the gelation process of the synthesized copolymer were investigated. The influence of variables such as feed concentration, irradiation dose, composition ratio, ph and temperature on the swelling of the prepared hydrogels was also examined. The water absorbency of these hydrogels in various ph and salt solutions was studied. The swelling kinetics of the prepared hydrogels and in vitro release dynamics of model drug (Chlortetracycline hydrochloride) from these hydrogels has been studied for the evaluation of swelling mechanism and drug release mechanism from the hydrogels. The adsorption and in vitro release profiles of Chlortetracycline HCl from the prepared gels were also estimated in different ph buffers. The amount of drug released from CS/ (AAc-DEAEMA) hydrogels was higher than that released from other modified CS/AAc hydrogels. This preliminary investigation of chitosan based hydrogels showed that they may be exploited to expand the utilization of these systems in drug delivery applications

  9. Catalysis of Supramolecular Hydrogelation.

    Science.gov (United States)

    Trausel, Fanny; Versluis, Frank; Maity, Chandan; Poolman, Jos M; Lovrak, Matija; van Esch, Jan H; Eelkema, Rienk

    2016-07-19

    One often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in living systems (cells, organisms) is much more extensive, ranging from the formation and breakdown of small molecules and biopolymers to controlling signal transduction cascades and feedback processes, motility, and mechanical action. Such phenomena are only recently starting to receive attention in synthetic materials and chemical systems. "Smart" soft materials could find many important applications ranging from personalized therapeutics to soft robotics to name but a few. Until recently, approaches to control the properties of such materials were largely dominated by thermodynamics, for instance, looking at phase behavior and interaction strength. However, kinetics plays a large role in determining the behavior of such soft materials, for instance, in the formation of kinetically trapped (metastable) states or the dynamics of component exchange. As catalysts can change the rate of a chemical reaction, catalysis could be used to control the formation, dynamics, and fate of supramolecular structures when the molecules making up these structures contain chemical bonds whose formation or exchange are susceptible to catalysis. In this Account, we describe our efforts to use synthetic catalysts to control the properties of supramolecular hydrogels. Building on the concept of synthesizing the assembling molecule in the self-assembly medium from nonassembling precursors, we will introduce the use of catalysis to change the kinetics of assembler formation and thereby the properties of the resulting material. In particular, we will focus on the synthesis of supramolecular hydrogels where the use of a catalyst provides access to gel materials with vastly different appearance and mechanical

  10. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  11. Template-synthesized opal hydrogels

    Institute of Scientific and Technical Information of China (English)

    LI Jun; JI Lijun; RONG Jianhua; YANG Zhenzhong

    2003-01-01

    Opal hydrogels could be synthesized with polymer inverse opal template. A pH responsive opal N-iso- propylacrylamide/acrylic acid copolymerized hydrogel was prepared as an example. The ordered structure and response to pH were investigated. Through the sol-gel process of tetrabutyl titanate, opal titania was obtained with the opal hydrogel template.

  12. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications.

    Science.gov (United States)

    Kai, Dan; Prabhakaran, Molamma P; Stahl, Benjamin; Eblenkamp, Markus; Wintermantel, Erich; Ramakrishna, Seeram

    2012-03-01

    Hydrogel-based biomaterial systems have great potential for tissue reconstruction by serving as temporary scaffolds and cell delivery vehicles for tissue engineering (TE). Hydrogels have poor mechanical properties and their rapid degradation limits the development and application of hydrogels in TE. In this study, nanofiber reinforced composite hydrogels were fabricated by incorporating electrospun poly(ε-caprolactone) (PCL)/gelatin 'blend' or 'coaxial' nanofibers into gelatin hydrogels. The morphological, mechanical, swelling and biodegradation properties of the nanocomposite hydrogels were evaluated and the results indicated that the moduli and compressive strengths of the nanofiber reinforced hydrogels were remarkably higher than those of pure gelatin hydrogels. By increasing the amount of incorporated nanofibers into the hydrogel, the Young's modulus of the composite hydrogels increased from 3.29 ± 1.02 kPa to 20.30 ± 1.79 kPa, while the strain at break decreased from 66.0 ± 1.1% to 52.0 ± 3.0%. Compared to composite hydrogels with coaxial nanofibers, those with blend nanofibers showed higher compressive strength and strain at break, but with lower modulus and energy dissipation properties. Biocompatibility evaluations of the nanofiber reinforced hydrogels were carried out using bone marrow mesenchymal stem cells (BM-MSCs) by cell proliferation assay and immunostaining analysis. The nanocomposite hydrogel with 25 mg ml(-1) PCL/gelatin 'blend' nanofibers (PGB25) was found to enhance cell proliferation, indicating that the 'nanocomposite hydrogels' might provide the necessary mechanical support and could be promising cell delivery systems for tissue regeneration.

  13. Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates

    CERN Document Server

    Huang, Chao-Guang

    2016-01-01

    The Hamiltonian analysis for a 3-dimensional $SO(1,1)\\times T_+$-connection dynamics is conducted in a Bondi-like coordinate system.A null coframe with 5 independent variables and 9 connection coefficients are treated as basic configuration variables.All constraints and their consistency conditions, as well as the equations of motion,for the system are presented.There is no physical degree of freedom in the system as expected.The Ba\\~nados-Teitelboim-Zanelli spacetime as an example is used to check the analysis.

  14. Radio-synthesized polyacrylamide hydrogels for proteins release

    International Nuclear Information System (INIS)

    The use of hydrogels for biomedical purposes has been extensively investigated. Pharmaceutical proteins correspond to highly active substances which may be applied for distinct purposes. This work concerns the development of radio-synthesized hydrogel for protein release, using papain and bovine serum albumin as model proteins. The polymer was solubilized (1% w/v) in water and lyophilized. The proteins were incorporated into the lyophilized polymer and the hydrogels were produced by simultaneous crosslinking and sterilization using γ-radiation under frozen conditions. The produced systems were characterized in terms of swelling degree, gel fraction, crosslinking density and evaluated according to protein release, bioactivity and cytotoxicity. The hydrogels developed presented different properties as a function of polymer concentration and the optimized results were found for the samples containing 4–5% (w/v) polyacrylamide. Protein release was controlled by the electrostatic affinity of acrylic moieties and proteins. This selection was based on the release of the proteins during the experiment period (up to 50 h), maintenance of enzyme activity and the nanostructure developed. The system was suitable for protein loading and release and according to the cytotoxic assay it was also adequate for biomedical purposes, however this method was not able to generate a matrix with controlled pore sizes. Highlights: • Method for synthesis of polyacrylamide (copolymer) hydrogels using γ-irradiation. • Polyacrylamide hydrogels suitable for protein loading and release. • Controlled release of proteins and bioactivity maintenance. • Noncytotoxic profile observed for these protein containing hydrogels

  15. Application of Hydrogel in Reconstruction Surgery: Hydrogel/Fat Graft Complex Filler for Volume Reconstruction in Critical Sized Muscle Defects.

    Science.gov (United States)

    Lui, Y F; Ip, W Y

    2016-01-01

    Autogenic fat graft usually suffers from degeneration and volume shrinkage in volume reconstruction applications. How to maintain graft viability and graft volume is an essential consideration in reconstruction therapies. In this presented investigation, a new fat graft transplantation method was developed aiming to improve long term graft viability and volume reconstruction effect by incorporation of hydrogel. The harvested fat graft is dissociated into small fragments and incorporated into a collagen based hydrogel to form a hydrogel/fat graft complex for volume reconstruction purpose. In vitro results indicate that the collagen based hydrogel can significantly improve the survivability of cells inside isolated graft. In a 6-month investigation on artificial created defect model, this hydrogel/fat graft complex filler has demonstrated the ability of promoting fat pad formation inside the targeted defect area. The newly generated fat pad can cover the whole defect and restore its original dimension in 6-month time point. Compared to simple fat transplantation, this hydrogel/fat graft complex system provides much improvement on long term volume restoration effect against degeneration and volume shrinkage. One notable effect is that there is continuous proliferation of adipose tissue throughout the 6-month period. In summary, the hydrogel/fat graft system presented in this investigation demonstrated a better and more significant effect on volume reconstruction in large sized volume defect than simple fat transplantation. PMID:27446947

  16. The influence of biological motifs and dynamic mechanical stimulation in hydrogel scaffold systems on the phenotype of chondrocytes.

    Science.gov (United States)

    Appelman, Taly P; Mizrahi, Joseph; Elisseeff, Jennifer H; Seliktar, Dror

    2011-02-01

    Primary bovine chondrocytes and PEG-based hydrogels were used to investigate the effects of scaffold composition and architecture on the cellular response to large dynamic compressive strain stimulation. Proteins and proteoglycans were conjugated to functionalized poly(ethylene glycol) (PEG) and immobilized in PEG hydrogels to create bio-synthetic scaffolds. Second passage articular chondrocytes were encapsulated into four different scaffold compositions: PEG-Proteoglycan (PP), PEG-Fibrinogen (PF), PEG-Albumin (PA), and PEG only and subjected to 15% dynamic compressive strain at 1-Hz frequency. Cellular response was evaluated in terms of cell number, glycosaminoglycans (GAGs), collagen type II and collagen type I accumulation in the constructs following 24h and 28 days of stimulated and static culture. Stimulation of the constructs resulted in an increase in the cell number in all scaffolds, with no statistical difference measured among them. Dynamic stimulation of PP, PF, PA and PEG constructs resulted in a respective increase in the GAGs by 33%, 53.4%, 240.5%, and 284.5%, compared to their static controls. The permissive PEG and PA scaffolds showed a significantly larger relative increase in the GAGs in comparison to the other scaffolds tested. Collagen type II content in the PF, PA and PEG constructs increased by 78%, 1266% and 896% respectively, compared to their static controls. Permissive constructs showed a significantly larger relative increase and final absolute values of GAGs and type II collagen, compared to the PF constructs. Immunostaining for collagen type I, an indicator for chondrocyte de-differentiation, indicated that stimulation inhibited its production. Correlation maps between scaffold properties highlighted the major differences between permissive and instructive scaffolds. These results support the hypothesis that both compressive strain and scaffold bioactivity have an important effect on the chondrocyte metabolic response to mechanical

  17. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    OpenAIRE

    Zhengzhi Yang; Haiyan Miao; Zhiwei Ding; Somsak Swaddiwudhipong; Yan Zhang; Zishun Liu

    2012-01-01

    The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI) of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hy...

  18. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren;

    2008-01-01

    . The immunostimulatory capacity of these vaccine delivery systems was assessed in-vitro and in-vivo. Particle sizing measurements and SEM images showed that optimised OVA-loaded CNP had a size of approximately 200 nm, a polydispersity index ...In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised...

  19. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease

    OpenAIRE

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D.; Zhou, Allen; Hamilton, Matthew J.; Cao, Bonnie; Korzenik, Joshua R.; Glickman, Jonathan N.; Vemula, Praveen K.; Glimcher, Laurie H.; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M.

    2015-01-01

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amph...

  20. Disulfide bond reduction-triggered molecular hydrogels of folic acid-Taxol conjugates.

    Science.gov (United States)

    Yang, Chengbiao; Li, Dongxia; Fengzhao, Qianqi; Wang, Lianyong; Wang, Ling; Yang, Zhimou

    2013-09-25

    Molecular hydrogels of therapeutic agents are a novel kind of self-delivery system that can sustain release of drugs or pro-drugs. We have previously developed a molecular hydrogelator of folic acid (FA)-Taxol conjugate triggered by phosphatase. In this paper, we report a novel molecular hydrogelator system of FA-Taxol conjugates with improved synthetic strategy. The hydrogels are formed by the reduction of disulfide bond by glutathione (GSH). These hydrogels could sustain release of Taxol through ester bond hydrolysis. Compared with intravenous (i.v.) injection of clinically used Taxol® with four times the dosage, our hydrogel could inhibit tumor growth more efficiently by a single dose of intra-tumor (i.t.) administration. These observations suggested the big potential of this novel gelation system of Taxol for cancer therapy.

  1. Adhesion in hydrogel contacts

    Science.gov (United States)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  2. Nanoparticle diffusometry in hydrogels

    OpenAIRE

    Kort, de, YAW Yvonne

    2016-01-01

    In order to understand food product functionality such as elastic and flow behavior and mass transport properties, one first has to understand the multi-length-scale structure of the material. The aim of this work is to explore novel methodologies to study and characterize multi-length-scale structures of food hydrogels under static and dynamic conditions. The focus lies on hydrogels comprising polysaccharides, because they show a rich variation in elastic and flow behavior. The largest part of ...

  3. 三维标测系统指导下希氏束旁室性期前收缩的射频消融及心电图分析%Catheter ablation of para-Hisian ventricular premature guided by 3-dimensional mapping system and ECG analysis

    Institute of Scientific and Technical Information of China (English)

    王洪; 洪浪; 周元凤; 赖珩莉; 陈再华; 欧阳长生; 邱赟

    2012-01-01

    目的:探讨三维标测系统指导下经导管射频消融起源于希氏束旁室性期前收缩(室早)的疗效及安全性.方法:对7例起源于希氏束旁频发室早的患者在三维标测系统指导下行射频消融治疗,其中5例采用Carto标测系统,2例采用Ensite Array系统.采用Carto标测系统者经股静脉送入消融大头至右室,在室早发作时采点建模,建立右室解剖结构及电激动顺序三维图像;采用Ensite Array标测系统者经股静脉送人Array球囊电极至右室流出道,利用消融大头采点,建立右室三维图,并对室早激动起源及出口进行实时标测.在右室三维解剖图上标示出希氏束位置,观察最早激动点与希氏束的距离,对心律失常的最早激动部位消融.冷盐水大头消融功率为25 W,温度为43℃,0.9%氯化钠溶液流量消融时17~20 ml/min,放电间隙2 ml/min.结果:7例患者室早体表心电图呈左束支传导阻滞图形,Ⅰ、Ⅱ、aVL、aVF导联为直立的R波,Ⅲ导联为R、rs、rS、rsR,均为RⅡ>RaVF>RaⅢ,V1导联为QS型.7例患者均在希氏束旁标测到最早激动点,位于希氏束上方(11.29士2.98)mm处,在最早激动点及附近消融成功,室早消失,与术前同样条件静脉滴注异丙肾上腺素不能诱发室早.2例患者术中出现右束支传导阻滞,1例经术中推注地塞米松10 mg后转复正常,另1例术后4d心电图转复正常.随访12~28个月,无复发.结论:三维标测系统指导下经导管射频消融起源于希氏束旁室早安全有效.%Objective:To investigate the safety and efficacy of catheter ablation for para-Hisian ventricular premature (VP) guided by 3-dimensional mapping system ( Carto/Ensite Array). Method: Seven patients suffered from para-Hisian region VP were treated with radiofrequency catheter ablationg guided by 3rdimensional mapping system, in which 5 guided by Carto and 2 by Ensite Array. With the Carto Array, the large—tip electrode catheter was

  4. Hexad Preons and Emergent Gravity in 3-dimensional Complex Spacetime

    CERN Document Server

    Wang, Shun-Zhi

    2010-01-01

    We suggest that at high energy each space dimension has their own time dimension, forming a 3-dimensional complex spacetime. Based on this hypothesis, we propose that the primordial universe is made of six fundamental fermions and their complex conjugate states. These fermions are called Hexad Preons which carry hypercolor degree of freedom transforming under $U(3,3)$ gauge group. The Hermitian metric emerges upon the breakdown of the gauge group from $U(3,3)$ to its maximal compact subgroup $U(3)\\otimes U(3)$. Leptons, quarks, as well as other matter states may be formed from the subsequent condensate of Hexad Preons. Strong and electroweak forces are manifestations of the hypercolor interaction in the corresponding cases. Our framework sheds light on many problems in cosmology and particle physics.

  5. Protalign: a 3-dimensional protein alignment assessment tool.

    Science.gov (United States)

    Meads, D; Hansen, M D; Pang, A

    1999-01-01

    Protein fold recognition (sometimes called threading) is the prediction of a protein's 3-dimensional shape based on its similarity to a protein of known structure. Fold predictions are low resolution; that is, no effort is made to rotate the protein's component amino acid side chains into their correct spatial orientations. The goal is simply to recognize the protein family member that most closely resembles the target sequence of unknown structure and to create a sensible alignment of the target to the known structure (i.e., a structure-sequence alignment). To facilitate this type of structure prediction, we have designed a low resolution molecular graphics tool. ProtAlign introduces the ability to interact with and edit alignments directly in the 3-dimensional structure as well as in the usual 2-dimensional layout. It also contains several functions and features to help the user assess areas within the alignment. ProtAlign implements an open pipe architecture to allow other programs to access its molecular graphics capabilities. In addition, it is capable of "driving" other programs. Because amino acid side chain orientation is not relevant in fold recognition, we represent amino acid residues as abstract shapes or glyphs much like Lego (tm) blocks and we borrow techniques from comparative flow visualization using streamlines to provide clean depictions of the entire protein model. By creating a low resolution representation of protein structure, we are able to at least double the amount of information on the screen. At the same time, we create a view that is not as busy as the corresponding representations using traditional high resolution visualization methods which show detailed atomic structure. This eliminates distracting and possibly misleading visual clutter resulting from the mapping of protein alignment information onto a high resolution display of the known structure. This molecular graphics program is implemented in Open GL to facilitate porting to

  6. Designing Cell-Compatible Hydrogels for Biomedical Applications

    Science.gov (United States)

    Seliktar, Dror

    2012-06-01

    Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. They can be engineered to resemble the extracellular environment of the body’s tissues in ways that enable their use in medical implants, biosensors, and drug-delivery devices. Cell-compatible hydrogels are designed by using a strategy of coordinated control over physical properties and bioactivity to influence specific interactions with cellular systems, including spatial and temporal patterns of biochemical and biomechanical cues known to modulate cell behavior. Important new discoveries in stem cell research, cancer biology, and cellular morphogenesis have been realized with model hydrogel systems premised on these designs. Basic and clinical applications for hydrogels in cell therapy, tissue engineering, and biomedical research continue to drive design improvements using performance-based materials engineering paradigms.

  7. Development of water packing mitigation scheme for MARS 3- dimensional thermal-hydraulic module

    International Nuclear Information System (INIS)

    Water packing mitigation scheme was developed to enhance the numerical stability and calculational efficiency of MARS 3-dimensional thermal-hydraulic module. The water packing phenomena is unphysical pressure spike which occurs in a two-phase system thermal-hydraulic code using Eulerian finite difference method. Great velocities developed from large pressure spike slow down the calculation efficiency due to the stability limit. Also, large pressure spike and subsequent low pressure can make errors in thermodynamic state table search. The developed water packing mitigation scheme was implemented in MARS3D module. It is shown from the results of some benchmark problema that numerical stability and calculational efficiency were improved

  8. Formulation and Evaluation of Topical Hydrogel Patch Containing Amide Type Local Anaesthetic Agent

    OpenAIRE

    Jayrajsinh Sarvaiya; Chintan Tank; Kosanam Divakar; Jay Upadhyay; G.K.Kapse

    2012-01-01

    Hydrogel based drug delivery systems provides significant effect in designing sustained release topical dosage forms. Topical patch containing drug in hydrogel type polymer matrix provides not only targeted drug flux through the skin but also provides cooling effect on application site. Topical hydrogel patch containing lidocaine was prepared by using sodium poly acrylate as bioadhesive polymer. Effect of brij 30 and transcutol was also evaluated on topical flux of lidocaine base from hydroge...

  9. Multi-functions of hydrogel with bilayer-based lamellar structure

    OpenAIRE

    Haque, Md. Anamul; Gong, Jian Ping

    2013-01-01

    A novel hybrid hydrogel has been developed by combining bilayer-based lamellar structure of a self-assembled polymer surfactant and polymer network of conventional hydrogel system. A wide range of lamellar structure from micro-domain up to macro-domain (cm-scale) has been successfully generated in the hydrogel. Flat, infinitely large, and perfectly aligned lamellar macro-domain was formed by applying mechanical shear to the gel forming precursor solution containing monomer, cross-linker, and ...

  10. Biomedical applications of hydrogels: a review of patents and commercial products

    OpenAIRE

    Caló, Enrica; Khutoryanskiy, Vitaliy V.

    2015-01-01

    Hydrogels have become very popular due to their unique properties such as high water content, softness, flexibility and biocompatibility. Natural and synthetic hydrophilic polymers can be physically or chemically cross-linked in order to produce hydrogels. Their resemblance to living tissue opens up many opportunities for applications in biomedical areas. Currently, hydrogels are used for manufacturing contact lenses, hygiene products, tissue engineering scaffolds, drug delivery systems and w...

  11. Astrocytes alignment and reactivity on collagen hydrogels patterned with ECM proteins

    OpenAIRE

    Hsiao, Tony W.; Tresco, Patrick A.; Hlady, Vladimir

    2014-01-01

    To modulate the surface properties of collagen and subsequent cell-surface interactions, a method was developed to transfer protein patterns from glass coverslips to collagen type I hydrogel surfaces. Two proteins and one proteoglycan found in central nervous system extracellular matrix as well as fibrinogen were patterned in stripes onto collagen hydrogel and astrocytes were cultured on these surfaces. The addition of the stripe protein patterns to hydrogels created astrocyte layers in which...

  12. 25th Anniversary Article: Rational Design and Applications of Hydrogels in Regenerative Medicine

    OpenAIRE

    Annabi, Nasim; Tamayol, Ali; Uquillas, Jorge Alfredo; Akbari, Mohsen; Bertassoni, Luiz E.; Cha, Chaenyung; Camci-Unal, Gulden; Dokmeci, Mehmet R.; Peppas, Nicholas A.; Khademhosseini, Ali

    2013-01-01

    Hydrogels are hydrophilic polymer-based materials with high water content and physical characteristics that resemble the native extracellular matrix. Because of their remarkable properties, hydrogel systems are used for a wide range of biomedical applications, such as three-dimensional (3D) matrices for tissue engineering, drug-delivery vehicles, composite biomaterials, and as injectable fillers in minimally invasive surgeries. In addition, the rational design of hydrogels with controlled phy...

  13. Local delivery of rhenium-188 colloid into hepatic tumor sites in rats using thermo-sensitive chitosan hydrogel: effects of gelling time of chitosan as delivery system

    International Nuclear Information System (INIS)

    A previously developed internal radiation therapy mode adopting a thermo-sensitive, chitosan-based hydrogel intended for local delivery of 188Re-Tin colloid drug was extended to test for its applicability to the treatment of hepatoma in rats. The effects of two formulations of hydrogel with different gel times and two methods of delivering the hydrogel containing 188Re-Tin colloid into tumors on the accumulated dose and duration of radioactivity within tumor were first studied by in vitro release, planar scintigraphy, and bio-distribution evaluations. Results from this initial study suggest that a treatment mode using the intratumoral delivery method and a 4 min gel time hydrogel to deliver the 188Re-Tin colloid into the tumor is more effective for treating hepatoma in rats. The treatment mode was then further verified through efficacy evaluations based on hepatic tumor growth in hepatoma-bearing rats. In conclusion, the application of chitosan/β-glycero-phosphate (C/GP) hydrogel for the local delivery of 188Re-Tin colloid to treat hepatoma in rats is feasible. The effective and efficient treatment mode consists of the intratumoral injection of 188Re-Tin colloid premixed with 4 min gel time C/GP hydrogel. (author)

  14. Sustained-release hydrogels of topotecan for retinoblastoma.

    Science.gov (United States)

    Taich, Paula; Moretton, Marcela A; Del Sole, María Jose; Winter, Ursula; Bernabeu, Ezequiel; Croxatto, Juan O; Oppezzo, Javier; Williams, Gustavo; Chantada, Guillermo L; Chiappetta, Diego A; Schaiquevich, Paula

    2016-10-01

    Treatment of retinoblastoma, the most common primary ocular malignancy in children, has greatly improved over the last decade. Still, new devices for chemotherapy are needed to achieve better tumor control. The aim of this project was to develop an ocular drug delivery system for topotecan (TPT) loaded in biocompatible hydrogels of poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) block copolymers (PCL-PEG-PCL) for sustained TPT release in the vitreous humor. Hydrogels were prepared from TPT and synthesized PCL-PEG-PCL copolymers. Rheological properties and in vitro and in vivo TPT release were studied. Hydrogel cytotoxicity was evaluated in retinoblastoma cells as a surrogate for efficacy and TPT vitreous pharmacokinetics and systemic as well as ocular toxicity were evaluated in rabbits. The pseudoplastic behavior of the hydrogels makes them suitable for intraocular administration. In vitro release profiles showed a sustained release of TPT from PCL-PEG-PCL up to 7days and drug loading did not affect the release pattern. Blank hydrogels did not affect retinoblastoma cell viability but 0.4% (w/w) TPT-loaded hydrogel was highly cytotoxic for at least 7days. After intravitreal injection, TPT vitreous concentrations were sustained above the pharmacologically active concentration. One month after injection, animals with blank or TPT-loaded hydrogels showed no systemic toxicity or retinal impairment on fundus examination, electroretinographic, and histopathological assessments. These novel TPT-hydrogels can deliver sustained concentrations of active drug into the vitreous with excellent biocompatibility in vivo and pronounced cytotoxic activity in retinoblastoma cells and may become an additional strategy for intraocular retinoblastoma treatment. PMID:27429296

  15. Viscoelastic Properties and Morphology of Mumio-based Medicated Hydrogels

    Science.gov (United States)

    Zandraa, Oyunchimeg; Jelínková, Lenka; Roy, Niladri; Sáha, Tomáš; Kitano, Takeshi; Saha, Nabanita

    2011-07-01

    Novel medicated hydrogels were prepared (by moist heat treatment) with PVA, agar, mumio, mare's milk (MM), seabuckthorn oil (SB oil) and salicylic acid (SA) for wound dressing/healing application. Scanning electron micrographs (SEM) show highly porous structure of these hydrogels. The swelling behaviour of the hydrogels in physiological solution displays remarkable liquid absorption property. The knowledge obtained from rheological investigations of these-systems may be highly useful for the characterization of the newly developed topical formulations. In the present study, an oscillation frequency sweep test was used for the evaluation of storage modulus (G'), loss modulus (G″), and complex viscosity (η*) of five different formulations, over an angular frequency range from 0.1 to 100 rad.s-1. The influence of healing agents and swelling effect on the rheological properties of mumio-based medicated hydrogels was investigated to judge its application on uneven surface of body.

  16. BIOCOMPATIBILITY EVALUATION OF XANTHAN/CHONDROITIN SULFATE HYDROGELS

    Directory of Open Access Journals (Sweden)

    Ana-Maria Oprea

    2012-03-01

    Full Text Available The in vitro and in vivo biocompatibility of xanthan/chondroitin sulfate hydrogels (X/CS in differentmixing ratios was investigated. The in vitro biocompatibility evaluation was performed by a chemiluminescent assayusing microorganisms such as Saccharomyces pombe. The cellular growth of S. pombe in presence of thexanthan/chondroitin sulfate hydrogels containing up to 20 % chondroitin sulfate was examinated comparatively withxanthan hydrogel.The in vivo evaluation was performed by toxicity test and subcutaneously implantation in rats. It has been establisheda lethal dose (LD50 bigger than 3200 mg/kg for all studied hydrogels, therefore they are nontoxic materials.The in vivo 30 days testing performed by subcutaneous implantation showed that the X/CS matrices were easilyabsorbed without side-effects, demonstrating their biocompatibility and effectiveness as potential drug delivery systems.

  17. Formulation and Evaluation of Topical Hydrogel Patch Containing Amide Type Local Anaesthetic Agent

    Directory of Open Access Journals (Sweden)

    Jayrajsinh Sarvaiya

    2012-09-01

    Full Text Available Hydrogel based drug delivery systems provides significant effect in designing sustained release topical dosage forms. Topical patch containing drug in hydrogel type polymer matrix provides not only targeted drug flux through the skin but also provides cooling effect on application site. Topical hydrogel patch containing lidocaine was prepared by using sodium poly acrylate as bioadhesive polymer. Effect of brij 30 and transcutol was also evaluated on topical flux of lidocaine base from hydrogel patch. Transcutol (10% w/w provides sufficient drug release in contrast to brij 30(4%w/w in prepared hydrogel patches. Maintenance of uniformity of weight is one of the critical task in preparation of hydrogel patch as polymers used are highly water absorbent. Excess amount of penetration enhancers leads to alter adhesive property of bioadhesive patch so formulation was optimized with Sodium polyacrylate (7%w/w as the desired concentration for necessary bioadhesiveness and zinc oxide as cross linking agent.

  18. Cytocompatible, Photoreversible, and Self-Healing Hydrogels for Regulating Bone Marrow Stromal Cell Differentiation.

    Science.gov (United States)

    Yu, Lianlian; Xu, Kaige; Ge, Liangpeng; Wan, Wenbing; Darabi, Ali; Xing, Malcolm; Zhong, Wen

    2016-09-01

    Photo-crosslinking and self-healing have received considerable attention for the design of intelligent materials. A novel photostimulated, self-healing, and cytocompatible hydrogel system is reported. A coumarin methacrylate crosslinker is synthesized to modify the polyacrylamide-based hydrogels. With the [2+2] cyclo-addition of coumarin moieties, the hydrogels exhibit excellent self-healing capacity when they are exposed to light with wavelengths at 280 and 365 nm, respectively. To enhance cell compatibility, a poly (amidoamine) crosslinker is also synthesized. Variations in light exposure times and irradiation wavelengths are found to alter the self-healing property of the hydrogels. The hydrogels are shown to induce a regular cellular pattern. The hydrogels are used to regulate bone marrow stromal cells differentiation. The relative mRNA expressions are recorded to monitor the osteogenic differentiation of the cells. PMID:27280860

  19. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  20. Formation and microstructural analysis of 3-dimensional titanium oxide structures via large surface electron beam irradiation

    International Nuclear Information System (INIS)

    Recently, in photo electronic devices industry, titanium oxide which was known to have good optical and electrical characteristic's been studied in the microstructural aspect to increase the conversion efficiency, such as making variable architecture, coating the titanium oxide nano-tube with the quantum dots which have higher band gap materials than this, etc. However, the process of making 3-dimensional titanium oxide structure with general deposition system such as hydrothermal growth, CVO, PVD and ALD had more variables and longer time consumption to make nano structures than electron beam irradiation case. Herein, we proceed with making new titanium oxide nano-screen-testing electron beam irradiation. The metal alkoxide composed of the 1 mol of titanium iso-propoxide and the 1 mol of acetylation reacted with water in propylene glycol methyl ether acetate and isopropyl alcohol solvent. After this process which made the bonding among Ti, O and other organics, the polymer solution was deposited on various types of substrate, such as anodized aluminum oxide mail. Kist. ac., Ag nano dots on SiO2 thin film, Au nano dots on SiO2 thin film, etc. The electron beam irradiation was progressed with the vertical accelerator facility of EB tech which was the company in Dijon, Korea The shape, microstructure and chemical composition of the irradiated polymers were characterized using TEM, XRD, Sem and EDS. The three types of Ti-Ox 3-dimensional structure were made; nano dot cluster, spike-like structure and dendrite structure. Each type of these structures was composed of different mircrostructures. Especially, the formation the 3-dimensional structures via electron beam irradiation was not only effected by the electron beam irradiation conditions but also effected by solution concentrate, conductivity and surface energy of substrate

  1. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    Science.gov (United States)

    Song, Ji Eun; Cho, Eun Chul

    2016-01-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes). PMID:27703195

  2. 微球/温敏凝胶复合植入给药系统的释药特征及模型%Characterizing the drug release from the hydrogel drug delivery system incorporated with biodegradable microspheres

    Institute of Scientific and Technical Information of China (English)

    蒋国强; 林莹; 孙佳丽; 丁富新

    2012-01-01

    The injectable gelling drug delivery system incorporated with biodegradable microspheres has great potential in implanted drug delivery for long-term controlled drug release. We investigated drug release in vitro in a model system which was composed by naltrexone-loaded PLGA microspheres and thermosensitive hydrogel consisted of methylcellulose, polyethylene glycol, sodium citrate and sodium alginate. In the microspheres-hydrogel composite system, drug release was dominated by drug diffusion in microspheres. The hydrogel affected the porosity, erosion and degradation of the microspheres, which resulted in the smaller drug diffusion coefficient, lower erosion rate and prolonged period to reach the maximal erosion rate. Therefore, it reduced and stabilized the drug release rate. These impacts of hydrogel were presented in the drug release model based on drug release from biodegradable polymeric micmspheres, and the developed model was well consistent with the experiment. The microspheres-hydrogel composite system realized the over 60-day steady release of naltrexone by opfLrnizing the molecular weight and hyhydrophilicity of PLGA.%将载药微球分散在温敏凝胶中构成的复合埋植给药系统,可实现长期稳定给药。以载有纳曲酮的乳酸-乙醇酸共聚物(PLGA)微球与甲基纤维素温敏凝胶构成的释药系统为例,研究了药物在该系统中的释放动力学特征和模型。结果表明复合系统中的释药主要受药物在微球中的释放控制;水凝胶改变了微球的存在环境,增加了水的扩散阻力,使药物扩散系数减小,微球溶蚀速率降低,达到最大溶蚀速率的时间推迟,从而使释药速率降低并更加平稳。将上述影响引入微球释药模型,建立了微球-凝胶系统释药模型,模拟结果和实验数据吻合较好。通过调整微球材料的相对分子量和亲疏水性,实现了纳曲酮超过60 d的恒速释放。

  3. Magnetically aligned supramolecular hydrogels.

    Science.gov (United States)

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-12-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2 , it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  4. Cell Attachment to Hydrogel-Electrospun Fiber Mat Composite Materials

    Directory of Open Access Journals (Sweden)

    Jessica O. Winter

    2012-07-01

    Full Text Available Hydrogels, electrospun fiber mats (EFMs, and their composites have been extensively studied for tissue engineering because of their physical and chemical similarity to native biological systems. However, while chemically similar, hydrogels and electrospun fiber mats display very different topographical features. Here, we examine the influence of surface topography and composition of hydrogels, EFMs, and hydrogel-EFM composites on cell behavior. Materials studied were composed of synthetic poly(ethylene glycol (PEG and poly(ethylene glycol-poly(ε-caprolactone (PEGPCL hydrogels and electrospun poly(caprolactone (PCL and core/shell PCL/PEGPCL constituent materials. The number of adherent cells and cell circularity were most strongly influenced by the fibrous nature of materials (e.g., topography, whereas cell spreading was more strongly influenced by material composition (e.g., chemistry. These results suggest that cell attachment and proliferation to hydrogel-EFM composites can be tuned by varying these properties to provide important insights for the future design of such composite materials.

  5. Research on the printability of hydrogels in 3D bioprinting

    Science.gov (United States)

    He, Yong; Yang, Feifei; Zhao, Haiming; Gao, Qing; Xia, Bing; Fu, Jianzhong

    2016-07-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.

  6. Research on the printability of hydrogels in 3D bioprinting

    Science.gov (United States)

    He, Yong; Yang, FeiFei; Zhao, HaiMing; Gao, Qing; Xia, Bing; Fu, JianZhong

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells. PMID:27436509

  7. Design and development of hydrogel nanoparticles for mercaptopurine

    Directory of Open Access Journals (Sweden)

    V Senthil

    2010-01-01

    Full Text Available Hydrogel nanoparticles have gained attention in recent years as they demonstrate the features and characters of hydrogels and nanoparticles at the same time. In the present study chitosan and carrageenan have been used, as hydrogel nanoparticles of mercaptopurine are developed using natural, biodegradable, and biocompatible polymers like chitosan and carrageenan. As these polymers are hydrophilic in nature, the particles will have a long life span in systemic circulation. Hydrogel nanoparticles with mercaptopurine is form an antileukemia drug by the counter polymer gelation method. Fourier-Transform Infrared (FT-IR studies have shown a compatibility of polymers with the drug. The diameter of hydrogel nanoparticles was about 370 - 800 nm with a positive zeta potential of 26 - 30 mV. The hydrogel nanoparticles were almost spherical in shape, as revealed by scanning electron microscopy (SEM. Drug loading varied from 9 to 17%. Mercaptopurine released from the nanoparticles at the end of the twenty-fourth hour was about 69.48 - 76.52% at pH 7.4. The drug release from the formulation was following zero order kinetics, which was evident from the release kinetic studies and the mechanism of drug release was anomalous diffusion, which indicated that the drug release was controlled by more than one process.

  8. Research on the printability of hydrogels in 3D bioprinting.

    Science.gov (United States)

    He, Yong; Yang, FeiFei; Zhao, HaiMing; Gao, Qing; Xia, Bing; Fu, JianZhong

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells. PMID:27436509

  9. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.

    Science.gov (United States)

    Shih, Han; Fraser, Andrew K; Lin, Chien-Chi

    2013-03-13

    Interfacial visible light-mediated thiol-ene photoclick reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a noncleavage type photoinitiator eosin-Y on visible-light-mediated thiol-ene photopolymerization was first characterized using in situ photorheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using ultraviolet-visible light (UV-vis) spectrometry. It was determined that eosin-Y was able to reinitiate the thiol-ene photoclick reaction, even after light exposure. Because of its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from preformed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible-light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration. PMID:23384151

  10. The 3-dimensional construction of the Rae craton, central Canada

    Science.gov (United States)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  11. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  12. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    Science.gov (United States)

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-01

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction.

  13. Unobservable Problem of Target Tracking with Bearing-only Measurements in 3-dimensional Space

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-gang; SHENG An-dong

    2008-01-01

    The bearings-only tracking (BOT) system is said to be observability if and only if the target motion parameters can be uniquely determined by noise-free bearing measurements. By utilizing the method of orthogonal vectors and characteristic of linear matrix equation, the problem of observability for BOT in noise-free bearings measurements from single observer is discussed based on the target and observer traveling in the 3-dimensional space. A proposition that BOT for target and observer traveling in the 3-dimensional space with constant acceleration remains unsolvable is presented and proved. By proving the proposition, it is also shown that some motion parameter ratios of target can be estimated under certain condition satisfied by measurements and time samples. The proposition is extended to arbitrary rank of manoeuvre for the observer and the target, which BOT remains unobservable property while the rank of target manoeuvre is higher than that of the observer manoeuvre. The theoretical analysis of this paper provides the guidelines for how the observer trajectory should be formulated to avoid unobservable state for BOT in practice application.

  14. Thermal-Responsive Behavior of a Cell Compatible Chitosan/Pectin Hydrogel.

    Science.gov (United States)

    Birch, Nathan P; Barney, Lauren E; Pandres, Elena; Peyton, Shelly R; Schiffman, Jessica D

    2015-06-01

    Biopolymer hydrogels are important materials for wound healing and cell culture applications. While current synthetic polymer hydrogels have excellent biocompatibility and are nontoxic, they typically function as a passive matrix that does not supply any additional bioactivity. Chitosan (CS) and pectin (Pec) are natural polymers with active properties that are desirable for wound healing. Unfortunately, the synthesis of CS/Pec materials have previously been limited by harsh acidic synthesis conditions, which further restricted their use in biomedical applications. In this study, a zero-acid hydrogel has been synthesized from a mixture of chitosan and pectin at biologically compatible conditions. For the first time, we demonstrated that salt could be used to suppress long-range electrostatic interactions to generate a thermoreversible biopolymer hydrogel that has temperature-sensitive gelation. Both the hydrogel and the solution phases are highly elastic, with a power law index of close to -1. When dried hydrogels were placed into phosphate buffered saline solution, they rapidly rehydrated and swelled to incorporate 2.7× their weight. As a proof of concept, we removed the salt from our CS/Pec hydrogels, thus, creating thick and easy to cast polyelectrolyte complex hydrogels, which proved to be compatible with human marrow-derived stem cells. We suggest that our development of an acid-free CS/Pec hydrogel system that has excellent exudate uptake, holds potential for wound healing bandages.

  15. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    Directory of Open Access Journals (Sweden)

    Kim MH

    2016-06-01

    Full Text Available Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. Keywords: silk fibroin, hydrogels, biodegradation rate, gamma irradiation, cross-linking

  16. Double network bacterial cellulose hydrogel to build a biology-device interface

    Science.gov (United States)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  17. Stretchable Hydrogel Electronics and Devices.

    Science.gov (United States)

    Lin, Shaoting; Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Koo, Hyunwoo; Yu, Cunjiang; Zhao, Xuanhe

    2016-06-01

    Stretchable hydrogel electronics and devices are designed by integrating stretchable conductors, functional chips, drug-delivery channels, and reservoirs into stretchable, robust, and biocompatible hydrogel matrices. Novel applications include a smart wound dressing capable of sensing the temperatures of various locations on the skin, delivering different drugs to these locations, and subsequently maintaining sustained release of drugs.

  18. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  19. MESO—STRUCTURED POLYMERIC HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhongYang; Jian-huaRong; DanLi

    2003-01-01

    Meso-structured(opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods:post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers.A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color,which is important in designing tunable photonic crystals.Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed.The catalytic effect of acid groups in the templates was emphasized for a preferential formation of TiO2 in the region containing acid groups,which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.

  20. MESO-STRUCTURED POLYMERIC HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    Zhen-zhong Yang; Jian-hua Rong; Dan Li

    2003-01-01

    Meso-structured (opal and inverse opal) polymeric hydrogels of varied morphology and composition were prepared by using two methods: post-modification of the template-synthesized structured polymers and templatepolymerization of functional monomers. A polyacrylic acid based inverse opal hydrogel was chosen to demonstrate its fast pH response by changing color, which is important in designing tunable photonic crystals. Template effects of the hydrogels on controlling structure of the template-synthesized inorganic materials were discussed. The catalytic effect of acid groups inthe templates was emphasized for a preferential formation of TiO2 in the region containing acid groups, which allowed duplicating inorganic colloidal crystals from colloidal crystal hydrogels (or macroporous products from macroporous hydrogels) via one step duplication.

  1. Improvement in transdermal drug delivery performance by graphite oxide/temperature-responsive hydrogel composites with micro heater

    International Nuclear Information System (INIS)

    Transdermal drug delivery system (TDDS) was prepared with temperature-responsive hydrogel. The graphite was oxidized and incorporated into hydrogel matrix to improve the thermal response of hydrogel. The micro heater was fabricated to control the temperature precisely by adopting a joule heating method. The drug in hydrogel was delivered through a hairless mouse skin by controlling temperature. The efficiency of drug delivery was improved obviously by incorporation of graphite oxide due to the excellent thermal conductivity and the increased interfacial affinity between graphite oxide and hydrogel matrix. The fabricated micro heater was effective in controlling the temperature over lower critical solution temperature of hydrogel precisely with a small voltage less than 1 V. The cell viability test on graphite oxide composite hydrogel showed enough safety for using as a transdermal drug delivery patch. The performance of TDDS could be improved noticeably based on temperature-responsive hydrogel, thermally conductive graphite oxide, and efficient micro heater. - Graphical abstract: The high-performance transdermal drug delivery system could be prepared by combining temperature-responsive hydrogel, thermally conductive graphite oxide with improved interfacial affinity, and efficient micro heater fabricated by a joule heating method. Highlights: ► High performance of transdermal drug delivery system with an easy control of voltage. ► Improved thermal response of hydrogel by graphite oxide incorporation. ► Efficient micro heater fabricated by a joule heating method.

  2. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    Science.gov (United States)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  3. Controlled Delivery of Vancomycin via Charged Hydrogels.

    Directory of Open Access Journals (Sweden)

    Carl T Gustafson

    Full Text Available Surgical site infection (SSI remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycolfumarate/sodium methacrylate (OPF/SMA charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.

  4. Controlled Delivery of Vancomycin via Charged Hydrogels.

    Science.gov (United States)

    Gustafson, Carl T; Boakye-Agyeman, Felix; Brinkman, Cassandra L; Reid, Joel M; Patel, Robin; Bajzer, Zeljko; Dadsetan, Mahrokh; Yaszemski, Michael J

    2016-01-01

    Surgical site infection (SSI) remains a significant risk for any clean orthopedic surgical procedure. Complications resulting from an SSI often require a second surgery and lengthen patient recovery time. The efficacy of antimicrobial agents delivered to combat SSI is diminished by systemic toxicity, bacterial resistance, and patient compliance to dosing schedules. We submit that development of localized, controlled release formulations for antimicrobial compounds would improve the effectiveness of prophylactic surgical wound antibiotic treatment while decreasing systemic side effects. Our research group developed and characterized oligo(poly(ethylene glycol)fumarate)/sodium methacrylate (OPF/SMA) charged copolymers as biocompatible hydrogel matrices. Here, we report the engineering of this copolymer for use as an antibiotic delivery vehicle in surgical applications. We demonstrate that these hydrogels can be efficiently loaded with vancomycin (over 500 μg drug per mg hydrogel) and this loading mechanism is both time- and charge-dependent. Vancomycin release kinetics are shown to be dependent on copolymer negative charge. In the first 6 hours, we achieved as low as 33.7% release. In the first 24 hours, under 80% of total loaded drug was released. Further, vancomycin release from this system can be extended past four days. Finally, we show that the antimicrobial activity of released vancomycin is equivalent to stock vancomycin in inhibiting the growth of colonies of a clinically derived strain of methicillin-resistant Staphylococcus aureus. In summary, our work demonstrates that OPF/SMA hydrogels are appropriate candidates to deliver local antibiotic therapy for prophylaxis of surgical site infection.

  5. Agarose and methylcellulose hydrogel blends for nerve regeneration applications

    Science.gov (United States)

    Martin, Benton C.; Minner, Eric J.; Wiseman, Sherri L.; Klank, Rebecca L.; Gilbert, Ryan J.

    2008-06-01

    Trauma sustained to the central nervous system is a debilitating problem for thousands of people worldwide. Neuronal regeneration within the central nervous system is hindered by several factors, making a multi-faceted approach necessary. Two factors contributing to injury are the irregular geometry of injured sites and the absence of tissue to hold potential nerve guides and drug therapies. Biocompatible hydrogels, injectable at room temperature, that rapidly solidify at physiological temperatures (37 °C) are beneficial materials that could hold nerve guidance channels in place and be loaded with therapeutic agents to aid wound healing. Our studies have shown that thermoreversible methylcellulose can be combined with agarose to create hydrogel blends that accommodate these properties. Three separate novel hydrogel blends were created by mixing methylcellulose with one of the three different agaroses. Gelation time tests show that the blends solidify at a faster rate than base methylcellulose at 37 °C. Rheological data showed that the elastic modulus of the hydrogel blends rapidly increases at 37 °C. Culturing experiments reveal that the morphology of dissociated dorsal root ganglion neurons was not altered when the hydrogels were placed onto the cells. The different blends were further assessed using dissolution tests, pore size evaluations using scanning electron microscopy and measuring the force required for injection. This research demonstrates that blends of agarose and methylcellulose solidify much more quickly than plain methylcellulose, while solidifying at physiological temperatures where agarose cannot. These hydrogel blends, which solidify at physiological temperatures naturally, do not require ultraviolet light or synthetic chemical cross linkers to facilitate solidification. Thus, these hydrogel blends have potential use in delivering therapeutics and holding scaffolding in place within the nervous system.

  6. Enhanced loading efficiency and sustained release of doxorubicin from hyaluronic acid/graphene oxide composite hydrogels by a mussel-inspired catecholamine.

    Science.gov (United States)

    Byun, Eunkyoung; Lee, Haeshin

    2014-10-01

    Hydrogels have been widely investigated as depots and carriers for drug delivery. For example, hydrogels have been successfully used to encapsulate a variety of pharmaceuticals, such as peptides and proteins. Recently, carbon material/hydrogel hybrid systems have been of interest as new hydrogel systems because of the attractiveness of structural reinforcement for biomedical applications. In particular, graphene and graphene oxide (GO) have been recognized as novel biomaterials with unique physical, electrical, and thermal properties. Among the various applications of these materials, many research groups are intensively exploring the biomedical applications of graphene and GO. In this study, we propose a new role for GO in hybrid hydrogels, with the inclusion of GO in the gel network resulting in a nearly 90% enhancement in the loading of small, hydrophobic drugs (e.g., doxorubicin, Dox) compared to the hydrogel without encapsulated GO. The hydrogels were prepared from hyaluronic acid (HA), with a mussel-inspired crosslinking chemistry used to prepare the HA hydrogels. Dox was then loaded into the hydrogels. The HA/GO composite hydrogel not only enhanced the loading amount but also exhibited long-lasting anticancer activity over 10 days. We believe that these graphene oxide-containing composite hydrogels can solve one of the challenges in the application of hydrogels by improving the loading efficiency of small-molecule drugs. PMID:25942800

  7. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.

    Science.gov (United States)

    Mironi-Harpaz, Iris; Wang, Dennis Yingquan; Venkatraman, Subbu; Seliktar, Dror

    2012-05-01

    Cell-encapsulating hydrogels used in regenerative medicine are designed to undergo a rapid liquid-to-solid phase transition in the presence of cells and tissues so as to maximize crosslinking and minimize cell toxicity. Light-activated free-radical crosslinking (photopolymerization) is of particular interest in this regard because it can provide rapid reaction rates that result in uniform hydrogel properties with excellent temporal and spatial control features. Among the many initiator systems available for photopolymerization, only a few have been identified as suitable for cell-based hydrogel formation owing to their water solubility, crosslinking properties and non-toxic reaction conditions. In this study, three long-wave ultraviolet (UV) light-activtied photoinitiators (PIs) were comparatively tested in terms of cytotoxicity, crosslinking efficiency and crosslinking kinetics of cell-encapsulating hydrogels. The hydrogels were photopolymerized from poly(ethylene glycol) (PEG) diacrylate or PEG-fibrinogen precursors using Irgacure® PIs I2959, I184 and I651, as well as with a chemical initiator/accelerator (APS/TEMED). The study specifically evaluated the PI type, PI concentration and UV light intensity, and how these affected the mechanical properties of the hydrogel (i.e. maximum storage modulus), the crosslinking reaction times and the reaction's cytotoxicity to encapsulated cells. Only two initiators (I2959 and I184) were identified as being suitable for achieving both high cell viability and efficient crosslinking of the cell-encapsulating hydrogels during the photopolymerization reaction. Optimization of PI concentration or irradiation intensity was particularly important for achieving maximum mechanical properties; a sub-optimal choice of PI concentration or irradiation intensity resulted in a substantial reduction in hydrogel modulus. Cytocompatibility may be compromised by unnecessarily prolonging exposure to cytotoxic free radicals or inadvertently

  8. Organic hydrogels as potential sorbent materials for water purification

    Science.gov (United States)

    Linardatos, George; Bekiari, Vlasoula; Bokias, George

    2014-05-01

    the adsorption efficiency is the charge content of the hydrogel x, as well as the pH of the aqueous solution, since acrylic acid is a weak acid. ACKNOWLEDGMENTS. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Archimedes III. Investing in knowledge society through the European Social Fund; research project Archimedes III: "Synthesis and characterization of novel nanostructured materials and study of their use as water purification systems".

  9. Hydrogel wound dressing by radiation

    International Nuclear Information System (INIS)

    Water soluble polymers such as polyethyleneoxide (PEO), polyvinyl alcohol (PVA) were irradiated in solid and molten states as well as in aqueous solution in order to synthesize a hydrogel. PEO undergoes crosslinking at all phases by radiation initiation. Among these phases, the radiation in the aqueous solution requires the lowest dose for crosslinking due to the contribution of OH radical created in radiolysis of water. The hydrogel prepared by irradiation in aqueous solution was applied to a dressing for healing of wound. In order to evaluate the healing effect of the PEO hydrogel dressing, wounds formed on the back of marmots were covered by the hydrogel. The healing under the wet environment of the hydrogel dressing had three advantages, compared with that of gauze dressing, which gives a dry environment: (1) enhancement of healing rate, (2) facilitation for changing the dressing, i.e. the hydrogel can be peeled off without any damage to the regenerated skin surface, and (3) hydrogel dressing material does not remain stuck on the wound. (author)

  10. Hydrogel wound dressing by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshii, Fumio [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2002-03-01

    Water soluble polymers such as polyethyleneoxide (PEO), polyvinyl alcohol (PVA) were irradiated in solid and molten states as well as in aqueous solution in order to synthesize a hydrogel. PEO undergoes crosslinking at all phases by radiation initiation. Among these phases, the radiation in the aqueous solution requires the lowest dose for crosslinking due to the contribution of OH radical created in radiolysis of water. The hydrogel prepared by irradiation in aqueous solution was applied to a dressing for healing of wound. In order to evaluate the healing effect of the PEO hydrogel dressing, wounds formed on the back of marmots were covered by the hydrogel. The healing under the wet environment of the hydrogel dressing had three advantages, compared with that of gauze dressing, which gives a dry environment: (1) enhancement of healing rate, (2) facilitation for changing the dressing, i.e. the hydrogel can be peeled off without any damage to the regenerated skin surface, and (3) hydrogel dressing material does not remain stuck on the wound. (author)

  11. Syneresis in agar hydrogels.

    Science.gov (United States)

    Boral, Shilpi; Saxena, Anita; Bohidar, H B

    2010-03-01

    Agar hydrogels exhibit syneresis which creates internal osmotic stress on the physical network. It was observed that such a stress gives rise to characteristic pulsating modes (breathing modes). Experiments carried over a period of 60-day revealed that the network deformations grew monotonously when the solvent released by syneresis was removed periodically from gel surface. However, when the solvent was not withdrawn, the gel exhibited very slowly relaxing breathing modes. The swelling-deswelling dynamics has been discussed in the generalized framework of a dissipative damped oscillator.

  12. pHEMA hydrogels: Devices for ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Neha Tomar

    2012-01-01

    Full Text Available Drug delivery to eye has become a demanding task because of various constraints of eye i.e., physiological and anatomical, which results in improper therapeutic concentration at the site of action. Due to this problem, frequent dosing was recommended causing patient incompliance and adding to the cost of therapy. To overcome these barriers, researchers have discovered novel ocular delivery systems like hydrogels, ocuserts, colloidal carriers, etc. However, every delivery system has its own advantages and disadvantages. Hydrogels are presently utilized as delivery system for actives because of their comparable physical properties to that of living tissue. A plethora of biodegradable polymers are used for hydrogel formulations like polyanhydrides, poly (orthoesters, polyesters and poly (2-hydroxyethyl methacrylate (pHEMA, chitosan and sodium alginate out of which pHEMA hydrogels are becoming popular from a therapeutic point of view for the ocular drug delivery. The present paper broadly describes the recent advances on drug delivery using pHEMA hydrogels with exhaustive details of researches explored till date.

  13. Intelligent Layout Method of the Powerhouse for Tank & Armored Vehicles Based on 3-Dimensional Rectangular Packing Theory

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-long; MAO Ming; LU Yi-ping; BIE Jie-min

    2005-01-01

    Probes into a new and effective method in arranging the powerhouses of tank & armored vehicles. Theory and method of 3-dimensional rectangular packing are adapted to arrange effectively almost all the systems and components in the powerhouse of the vehicle, thus the study can be regarded as an attempt for the theory's engineering applications in the field of tank & armored vehicle design. It is proved that most parts of the solutions attained are reasonable, and some of the solutions are innovative.

  14. Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water

    KAUST Repository

    Tang, Samuel C N

    2010-11-01

    Many magnetic adsorbents reported in the literature, such as iron oxides, for Cr(VI) removal have been found effective only in low pH environments. Moreover, the application of polymeric hydrogels on heavy metal removal has been hindered by difficulties in separation by filtration. In this study, a magnetic cationic hydrogel was synthesized for Cr(VI) removal from contaminated water, making use of the advantages of magnetic adsorbents and polymeric hydrogels. The magnetic hydrogel was produced by imbedding 10-nm γ-Fe2O 3 nanoparticles into the polymeric matrix via radical polymerization. Characterization of the hydrogel was undertaken with Fourier transform infrared and vibrating sample magnetometer; swelling properties were tested and anionic adsorption capacity was evaluated. The magnetic hydrogel showed a superior Cr(VI) removal capacity compared to commercial products such as MIEX®. Cr(VI) removal was independent of solution pH. Results show that Cr(VI) removal kinetics was improved drastically by grinding the bulk hydrogel into powder form. At relevant concentrations, common water anions (e.g., Cl-, SO4 2-, PO4 3-) and natural organic matter did not exhibit significant inhibition of Cr(VI) adsorption onto the hydrogel. Results of vibrating sample magnetometer indicate that the magnetic hydrogel can be easily separated from treatment systems. Regeneration of the magnetic hydrogel can be easily achieved by washing the Cr(VI)-loaded hydrogel with 0.5 M NaCl solution, with a recovery rate of about 90% of Cr(VI). © Copyright 2010, Mary Ann Liebert, Inc. 2010.

  15. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N. Narayana, E-mail: nagireddynarayana@gmail.com [Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia@CRIB, Largo Barsanti e Matteucci 53, 80125 Napoli (Italy); Ravindra, S. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa); Reddy, N. Madhava [Department of Environmental Science, Gates Institute of Technology, NH-7, Gooty, Anantapuram, Andhra Pradesh (India); Rajinikanth, V. [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa); Raju, K. Mohana [Synthetic Polymer Laboratory, Department of Polymer Science & Technology, S.K. University, Anantapuram, Andhra Pradesh (India); Vallabhapurapu, Vijaya Srinivasu [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709 (South Africa)

    2015-11-15

    The present work deals with the development of temperature and magnetic responsive hydrogel networks based on poly (N-isopropylacrylamide)/acrylamido propane sulfonic acid. The hydrogel matrices are synthesized by polymerizing N-isopropylacrylamide (NIPAM) monomer in the presence of acrylamido propane sulphonicacid (AMPS) using a cross-linker (N,N-methylenebisacrylamide, MBA) and redox initiating system [ammonium persulphate (APS)/tetramethylethylenediamine (TMEDA)]. The magnetic nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating iron ions and subsequent treatment with ammonia. A series of hydrogel-magnetic nanocomposites (HGMNC) are developed by varying AMPS composition. The synthesized hydrogel magnetic nanocomposites (HGMNC) are characterized by using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), Thermal Analyses and Electron Microscopy analysis (Scanning and Transmission Electron Microscope). The metal extraction capacities of the prepared hydrogel (HG) and hydrogel magnetic nanocomposites (HGMNC) were studied at different temperatures. The results suggest that HGMNCs have higher extraction capacity compared to HG and HG loaded iron ions. This data also reveals that the extraction of metals by hydrogel magnetic nanocomposites (HGMNCs) is higher at higher temperatures than room temperature. The prepared HGMNCs are also subjected to hyperthermia (cancer therapy) studies. - Highlights: • We have developed temperature responsive hydrogel magnetic nanocomposites. • Addition of AMPS monomer to this magnetic hydrogel enhances the temperature sensitivity to 40–43 °C. • Similarly the sulfonic groups present in the AMPS units enhances the swelling ratio of magnetic hydrogels. • AMPS acts as good stabilizing agent for nanoparticles in the magnetic nanogel.

  16. A method for generating information of a 3-dimensional molecular structure of a molecule

    NARCIS (Netherlands)

    Flohil, J.A.; Wolf, M.G.; De Leeuw, S.W.

    2009-01-01

    The present invention relates to a method for generating information of a 3 -dimensional molecular structure of a molecule, said method being executable by a computer under the control of a program stored in the computer, said method comprising the steps of : (a) receiving a 3 -dimensional represent

  17. Study of polymeric hydrogels with inorganic nanoparticles of clay; Estudo de hidrogeis polimericos com nanoparticulas inorganicas de argila

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Jose A. de; Parra, Duclerc F.; Lugao, Ademar B., E-mail: mariajhho@yahoo.com.br, E-mail: dfparra@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP/CQMA), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente; Amato, Valdir S. [Universidade de Sao Paulo (HC/FMUSP), Sao Paulo, SP (Brazil). Hospital de Clinicas. Divisao de Clinica de Molestias Infecciosas e Parasitarias

    2011-07-01

    Nanoscience has been applied in research of intelligent systems for drug delivery. The use of biodegradable synthetic polymers and in diagnostics and therapy has stimulated the application of nanotechnology in polymeric systems with new structures and new materials composing among these materials are hydrogels. Hydrogel with dispersed clay is a new class of materials that combine flexible and permeability of the hydrogels with the high efficiency of the clay to adsorb different substances. We evaluated the behaviour of swelling, gel fraction and thermal stability among the hydrogels obtained by poly (vinyl alcohol) (PVAl) with clay and poly (N-2-vinyl-pyrrolidone) (PVP) with clay. While, observed that the hydrogels showed swelling clay PVAl meaningful, the clay PVP hydrogels showed swelling more consistent after four hours of testing.

  18. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    Energy Technology Data Exchange (ETDEWEB)

    Andarini, Mellissa; Lazim, Azwan [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2014-09-03

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10{sup −4} g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 – 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application in various areas, especially the use of hydrogel system as a responsive template.

  19. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    Science.gov (United States)

    Andarini, Mellissa; Lazim, Azwan

    2014-09-01

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10-4 g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 - 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application in various areas, especially the use of hydrogel system as a responsive template.

  20. Nonfouling hydrogels formed from charged monomer subunits.

    Science.gov (United States)

    Dobbins, Sean C; McGrath, Daniel E; Bernards, Matthew T

    2012-12-13

    A critical challenge in the field of biomaterials is the often undesirable, but immediate, coating of implants with nonspecifically adsorbed proteins upon contact with bodily fluids. Prior research has shown that overall neutral materials containing a homologous arrangement of mixed charges exhibit nonfouling properties. This has been widely demonstrated for zwitterionic materials and more recently for coatings containing an equimolar mixture of positively and negatively charged monomer subunits. In this investigation it is demonstrated that nonfouling hydrogels can be formed through this approach, and the physical properties of the resulting materials are thoroughly characterized. In particular, hydrogels were formed from mixtures of [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TM) and 3-sulfopropyl methacrylate potassium salt (SA) monomers with varying concentrations of a triethylene glycol dimethacrylate (TEGDMA) cross-linker. The swelling, weight percentage water, surface zeta potential, and compressional properties of the gels were characterized, and the nonfouling properties were demonstrated using enzyme-linked immunosorbant assays for both negatively charged fibrinogen and positively charged lysozyme. The results confirm that the TM:SA hydrogel systems have nonfouling properties that are equivalent to established nonfouling controls. Additionally, even though the gels were resistant to nonspecific protein adsorption, a composition analysis suggests that there is room to further improve the nonfouling performance because there is a slight enrichment of the SA monomer relative to the TM monomer. PMID:23189949

  1. Controlled Aloin Release from Crosslinked Polyacrylamide Hydrogels: Effects of Mesh Size, Electric Field Strength and a Conductive Polymer

    OpenAIRE

    Anuvat Sirivat; Amornrat Niansiri; Sumonman Niamlang; Tawansorn Buranut

    2013-01-01

    The aim of this paper is to investigate the effects of hydrogel mesh size, a conductive polymer, and electric field strength on controlled drug delivery phenomena using drug-loaded polyacrylamide hydrogels prepared at various crosslinking ratios both with and without a conductive polymer system. Poly(p-phenylene vinylene), PPV, as the model conductive polymer, was used to study its ability to control aloin released from aloin-doped poly(p-phenylene vinylene)/polyacrylamide hydrogel (aloin-dop...

  2. Direct-write graded index materials realized in protein hydrogels

    Science.gov (United States)

    Kaehr, Bryan; Scrymgeour, David A.

    2016-09-01

    The ability to create optical materials with arbitrary index distributions would prove transformative for optics design and applications. However, current fabrication techniques for graded index (GRIN) materials rely on diffusion profiles and therefore are unable to realize arbitrary distribution GRIN design. Here, we demonstrate the laser direct writing of graded index structures in protein-based hydrogels using multiphoton lithography. We show index changes spanning a range of 10-2, which is comparable with laser densified glass and polymer systems. Further, we demonstrate the conversion of these written density variation structures into SiO2, opening up the possibility of transforming GRIN hydrogels to a wide range of material systems.

  3. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-11

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction.

  4. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    Science.gov (United States)

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends.

  5. Construction of Modular Hydrogel Sheets for Micropatterned Macro-scaled 3D Cellular Architecture.

    Science.gov (United States)

    Son, Jaejung; Bae, Chae Yun; Park, Je-Kyun

    2016-01-01

    Hydrogels can be patterned at the micro-scale using microfluidic or micropatterning technologies to provide an in vivo-like three-dimensional (3D) tissue geometry. The resulting 3D hydrogel-based cellular constructs have been introduced as an alternative to animal experiments for advanced biological studies, pharmacological assays and organ transplant applications. Although hydrogel-based particles and fibers can be easily fabricated, it is difficult to manipulate them for tissue reconstruction. In this video, we describe a fabrication method for micropatterned alginate hydrogel sheets, together with their assembly to form a macro-scale 3D cell culture system with a controlled cellular microenvironment. Using a mist form of the calcium gelling agent, thin hydrogel sheets are easily generated with a thickness in the range of 100 - 200 µm, and with precise micropatterns. Cells can then be cultured with the geometric guidance of the hydrogel sheets in freestanding conditions. Furthermore, the hydrogel sheets can be readily manipulated using a micropipette with an end-cut tip, and can be assembled into multi-layered structures by stacking them using a patterned polydimethylsiloxane (PDMS) frame. These modular hydrogel sheets, which can be fabricated using a facile process, have potential applications of in vitro drug assays and biological studies, including functional studies of micro- and macrostructure and tissue reconstruction. PMID:26779839

  6. Green roofs for a drier world: effects of hydrogel amendment on substrate and plant water status.

    Science.gov (United States)

    Savi, Tadeja; Marin, Maria; Boldrin, David; Incerti, Guido; Andri, Sergio; Nardini, Andrea

    2014-08-15

    Climate features of the Mediterranean area make plant survival over green roofs challenging, thus calling for research work to improve water holding capacities of green roof systems. We assessed the effects of polymer hydrogel amendment on the water holding capacity of a green roof substrate, as well as on water status and growth of Salvia officinalis. Plants were grown in green roof experimental modules containing 8 cm or 12 cm deep substrate (control) or substrate mixed with hydrogel at two different concentrations: 0.3 or 0.6%. Hydrogel significantly increased the substrate's water content at saturation, as well as water available to vegetation. Plants grown in 8 cm deep substrate mixed with 0.6% of hydrogel showed the best performance in terms of water status and membrane integrity under drought stress, associated to the lowest above-ground biomass. Our results provide experimental evidence that polymer hydrogel amendments enhance water supply to vegetation at the establishment phase of a green roof. In particular, the water status of plants is most effectively improved when reduced substrate depths are used to limit the biomass accumulation during early growth stages. A significant loss of water holding capacity of substrate-hydrogel blends was observed after 5 months from establishment of the experimental modules. We suggest that cross-optimization of physical-chemical characteristics of hydrogels and green roof substrates is needed to improve long term effectiveness of polymer-hydrogel blends. PMID:24867709

  7. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    Science.gov (United States)

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems.

  8. PVA/STMP based hydrogels as potential substitutes of human vitreous.

    Science.gov (United States)

    Leone, Gemma; Consumi, Marco; Aggravi, Marianna; Donati, Alessandro; Lamponi, Stefania; Magnani, Agnese

    2010-08-01

    PVA based hydrogels were synthesised using, as crosslinking agent, trisodium trimetaphosphate (STMP) to obtain potential substitutes for the vitreous body of the eye. The hydrogels, obtained using different amounts of STMP, were characterised by Infrared Spectroscopy which confirmed the successful occurrence of crosslinking reaction. The mechanical spectra of the fully hydrated samples confirmed covalently crosslinked systems (i.e. G' > G''). The rheological analysis pointed out that only one of the hydrogels (PVA STMP 8:1) showed a behaviour similar to that of human vitreous. The hydrogel was also subjected to injection through a small needle, a procedure that is essential in the use of vitreous substitutes. Further analysis in terms of light transmittance, water content measurements, diffusion coefficient and cytotoxicity confirmed the applicability of such a hydrogel as vitreous substitute. PMID:20499140

  9. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications

    Science.gov (United States)

    Wang, Huaimin; Mao, Duo; Wang, Youzhi; Wang, Kai; Yi, Xiaoyong; Kong, Deling; Yang, Zhimou; Liu, Qian; Ding, Dan

    2015-11-01

    Biocompatible peptide-based supramolecular hydrogel has recently emerged as a new and promising system for biomedical applications. In this work, Rhodamine B is employed as a new capping group of self-assembling peptide, which not only provides the driving force for supramolecular nanofibrous hydrogel formation, but also endows the hydrogel with intrinsic fluroescence signal, allowing for various bioimaging applications. The fluorescent peptide nanofibrous hydrogel can be formed via disulfide bond reduction. After dilution of the hydrogel with aqueous solution, the fluorescent nanofiber suspension can be obtained. The resultant nanofibers are able to be internalized by the cancer cells and effectively track the HeLa cells for as long as 7 passages. Using a tumor-bearing mouse model, it is also demonstrated that the fluorescent supramolecular nanofibers can serve as an efficient probe for tumor imaging in a high-contrast manner.

  10. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Directory of Open Access Journals (Sweden)

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  11. Synthesis and Characterization of Poly(N-Vinyl-2-Pyrrolidone/Itaconic Acid) Hydrogel

    Institute of Scientific and Technical Information of China (English)

    郭锦棠; 李伶; 李雄勇; 刘冰

    2004-01-01

    With N-vinyl-2-pyrrolidone (NVP) and itaconic acid(IA), poly(N-vinyl-2-pyrrolidone/itaconic acid)[P(NVP/IA)] hydrogel was synthesized by free radical solution polymerization. The structure of this P(NVP/IA) was characterized by IR. Effects of concentration of itaconic acid, amount of cross-link agent, N,N′-methylene-bis-acrylamide, reaction temperature, and time on properties of swelling ratio(SR) of the hydrogel were investigated.The results show that the best swelling property of the hydrogel is obtained at 50 ℃ and 1.5 h. pH sensitivity increases as the concentration of itaconic acid in the hydrogel system increases. Swelling ratio of the hydrogel decreases as the amount of cross-link agent increases.

  12. Textile compositions with chitosan hydrogels

    OpenAIRE

    Esquena, Jordi; Vílchez, Susana; Erra Serrabasa, Pilar; Solans Marsa, Concepción; Miras Hernández, Jonathan; Fages-Santana, Eduardo; Ferrándiz-García, Marcela; Gironés-Bernabé, Sagrario; Cambra-Sánchez, Vicente

    2010-01-01

    [EN] The invention relates to a novel method for providing textile substrates with novel superficial properties sensitive to external stimuli, of interest in various applications, preferably medical and cosmetic applications. The invention involves the fonnation of a hydrogel and its subsequent application to the material that can be in the fonn of a fabric, thread, or textile fibre. The invention also relates to the method for producing the hydrogel compos...

  13. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. PMID:27127053

  14. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity.

    Science.gov (United States)

    Zhang, Zipei; Zhang, Ruojie; Chen, Long; McClements, David Julian

    2016-06-01

    Encapsulation of enzymes in hydrogel beads may improve their utilization and activity in foods. In this study, the potential of carrageenan hydrogel beads for encapsulating β-galactosidase was investigated. Hydrogel beads were fabricated by injecting an aqueous solution, containing β-galactosidase (26 U) and carrageenan (1 wt%), into a hardening solution (5% potassium chloride). Around 63% of the β-galactosidase was initially encapsulated in the hydrogel beads. Encapsulated β-galactosidase had a higher activity than that of the free enzyme over a range of pH and thermal conditions, which was attributed to the stabilization of the enzyme structure by K(+) ions within the carrageenan beads. Release of the enzyme from the beads was observed during storage in aqueous solutions, which was attributed to the relatively large pore size of the hydrogel matrix. Our results suggest that carrageenan hydrogel beads may be useful encapsulation systems, but further work is needed to inhibit enzyme leakage. PMID:26830562

  15. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    International Nuclear Information System (INIS)

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation

  16. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity.

    Science.gov (United States)

    Zhang, Zipei; Zhang, Ruojie; Chen, Long; McClements, David Julian

    2016-06-01

    Encapsulation of enzymes in hydrogel beads may improve their utilization and activity in foods. In this study, the potential of carrageenan hydrogel beads for encapsulating β-galactosidase was investigated. Hydrogel beads were fabricated by injecting an aqueous solution, containing β-galactosidase (26 U) and carrageenan (1 wt%), into a hardening solution (5% potassium chloride). Around 63% of the β-galactosidase was initially encapsulated in the hydrogel beads. Encapsulated β-galactosidase had a higher activity than that of the free enzyme over a range of pH and thermal conditions, which was attributed to the stabilization of the enzyme structure by K(+) ions within the carrageenan beads. Release of the enzyme from the beads was observed during storage in aqueous solutions, which was attributed to the relatively large pore size of the hydrogel matrix. Our results suggest that carrageenan hydrogel beads may be useful encapsulation systems, but further work is needed to inhibit enzyme leakage.

  17. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Song, YoungShin; Lee, Chang-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-15

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

  18. Energy conversion in polyelectrolyte hydrogels

    Science.gov (United States)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  19. The efficiency of contact lens care regimens on protein removal from hydrogel and silicone hydrogel lenses

    OpenAIRE

    Luensmann, Doerte; Heynen, Miriam; Liu, Lina; Sheardown, Heather; Jones, Lyndon

    2010-01-01

    Purpose To investigate the efficiency of lysozyme and albumin removal from silicone hydrogel and conventional contact lenses, using a polyhexamethylene biguanide multipurpose solution (MPS) in a soaking or rubbing/soaking application and a hydrogen peroxide system (H2O2). Methods Etafilcon A, lotrafilcon B and balafilcon A materials were incubated in protein solutions for up to 14 days. Lenses were either placed in radiolabeled protein to quantify the amount deposited or in fluorescent-conjug...

  20. In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma

    Science.gov (United States)

    2016-01-01

    The ability to activate drugs only at desired locations avoiding systemic immunosuppression and other dose limiting toxicities is highly desirable. Here we present a new approach, named local drug activation, that uses bioorthogonal chemistry to concentrate and activate systemic small molecules at a location of choice. This method is independent of endogenous cellular or environmental markers and only depends on the presence of a preimplanted biomaterial near a desired site (e.g., tumor). We demonstrate the clear therapeutic benefit with minimal side effects of this approach in mice over systemic therapy using a doxorubicin pro-drug against xenograft tumors of a type of soft tissue sarcoma (HT1080). PMID:27504494

  1. In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma

    Science.gov (United States)

    2016-01-01

    The ability to activate drugs only at desired locations avoiding systemic immunosuppression and other dose limiting toxicities is highly desirable. Here we present a new approach, named local drug activation, that uses bioorthogonal chemistry to concentrate and activate systemic small molecules at a location of choice. This method is independent of endogenous cellular or environmental markers and only depends on the presence of a preimplanted biomaterial near a desired site (e.g., tumor). We demonstrate the clear therapeutic benefit with minimal side effects of this approach in mice over systemic therapy using a doxorubicin pro-drug against xenograft tumors of a type of soft tissue sarcoma (HT1080).

  2. In Vivo Bioorthogonal Chemistry Enables Local Hydrogel and Systemic Pro-Drug To Treat Soft Tissue Sarcoma.

    Science.gov (United States)

    Mejia Oneto, Jose M; Khan, Irfan; Seebald, Leah; Royzen, Maksim

    2016-07-27

    The ability to activate drugs only at desired locations avoiding systemic immunosuppression and other dose limiting toxicities is highly desirable. Here we present a new approach, named local drug activation, that uses bioorthogonal chemistry to concentrate and activate systemic small molecules at a location of choice. This method is independent of endogenous cellular or environmental markers and only depends on the presence of a preimplanted biomaterial near a desired site (e.g., tumor). We demonstrate the clear therapeutic benefit with minimal side effects of this approach in mice over systemic therapy using a doxorubicin pro-drug against xenograft tumors of a type of soft tissue sarcoma (HT1080). PMID:27504494

  3. Topological Entropy and Renormalization group flow in 3-dimensional spherical spaces

    CERN Document Server

    Asorey, M; Cavero-Peláez, I; D'Ascanio, D; Santangelo, E M

    2015-01-01

    We analyze the renormalization group flow of the temperature independent term of the entropy in the high temperature limit \\beta/a S^IR_top between the topological entropies of the conformal field theories connected by such flow. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotone behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem.

  4. SOME PROBLEMS ON JUMP CONDITIONS OF SHOCK WAVES IN 3-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie

    2006-01-01

    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  5. Surface chemistry and size influence the release of model therapeutic nanoparticles from poly(ethylene glycol) hydrogels

    International Nuclear Information System (INIS)

    Nanoparticles have emerged as promising therapeutic and diagnostic tools, due to their unique physicochemical properties. The specific core and surface chemistries, as well as nanoparticle size, play critical roles in particle transport and interaction with biological tissue. Localized delivery of therapeutics from hydrogels is well established, but these systems generally release molecules with hydrodynamic radii less than ∼5 nm. Here, model nanoparticles with biologically relevant surface chemistries and diameters between 10 and 35 nm are analyzed for their release from well-characterized hydrogels. Functionalized gold nanoparticles or quantum dots were encapsulated in three-dimensional poly(ethylene glycol) hydrogels with varying mesh size. Nanoparticle size, surface chemistry, and hydrogel mesh size all influenced the release of particles from the hydrogel matrix. Size influenced nanoparticle release as expected, with larger particles releasing at a slower rate. However, citrate-stabilized gold nanoparticles were not released from hydrogels. Negatively charged carboxyl or positively charged amine-functionalized quantum dots were released from hydrogels at slower rates than neutrally charged PEGylated nanoparticles of similar size. Transmission electron microscopy images of gold nanoparticles embedded within hydrogel sections demonstrated uniform particle distribution and negligible aggregation, independent of surface chemistry. The nanoparticle-hydrogel interactions observed in this work will aid in the development of localized nanoparticle delivery systems.

  6. A Smart pH-Responsive Three Components Luminescent Hydrogel

    Science.gov (United States)

    Li, Yibao; Liu, Wei; Cheng, Linxiu; Huang, Ping; Peng, Yu; Wu, Yongquan; Li, Xun; Li, Xiaokang; Fan, Xiaolin

    2016-01-01

    In this study, we report a novel three-component luminescent hydrogel, which is composed of amino acid derivatives (N,N′-di valine-3,4,9,10-perylenetetracarboxylic acid, NVPD), riboflavin (RF), and melamine (MM). The three-component hydrogel is attributed to multiple hydrogen bonds and the strong π-π stacking interaction between these molecules. Based on the strong hydrogen bonding of the gelator, when the reversible process between the gel and the solution take places it changes the pH of the system from 6.1 to 10.6. In addition, green fluorescence could be the emissive of the hydrogel under 498 nm and the conversion process of the aggregation state repeated reversibly by altering the value of ambient pH. This pH-responsive luminescent gel may display potential for use in nano pH sensors. PMID:27626452

  7. A Coarse-Grained Model for Simulating Chitosan Hydrogels

    Science.gov (United States)

    Xu, Hongcheng; Matysiak, Silvina

    Hydrogels are biologically-derived materials composed of water-filled cross-linking polymer chains. It has widely been used as biodegradable material and has many applications in medical devices. The chitosan hydrogel is stimuli-responsive for undergoing pH-sensitive self-assembly process, allowing programmable tuning of the chitosan deposition through electric pulse. To explore the self-assembly mechanism of chitosan hydroge, we have developed an explicit-solvent coarse-grained chitosan model that has roots in the MARTINI force field, and the pH change is modeled by protonating chitosan chains using the Henderson-Hasselbalch equation. The mechanism of hydrogel network formation will be presented. The self-assembled polymer network qualitatively reproduce many experimental observables such as the pH-dependent strain-stress curve, bulk moduli, and structure factor. Our model is also capable of simulating other similar polyelectrolyte polymer systems.

  8. Stimulus-responsive hydrogels based on associative polymers

    DEFF Research Database (Denmark)

    Hietala, Sami; Hvilsted, Søren; Jankova Atanasova, Katja;

    2008-01-01

    enables design of novel associating polymers. Two different stimuli-responsive hydrogel systems will be discussed. Poly(N-isopropylacrylamide) (PNIPAM) has attracted attention due to its sharp and reversible transition behavior and well-defined demixing temperature in aqueous medium. This however only...... have been synthesized. l The properties of aqueous solutions and hydrogels of these stereoblock copolymers were studied with respect to the molecular characteristics, ego order ofthe blocks, block lengths and molecular weight.2 Atom transfer radical polymerization (ATRP) was used in the synthesis of 4....... The resulting hydrogels were studied with respect to the polymer concentration, temperature and ionic strength.3 REFERENCES 1. Nuopponen M.; Kalliomaki K.; Laukkanen A.; Hietala S.; Tenhu H. 1. Polym. Sci. Polym. Chern. 2008, 46, 38-46. 2. Hietala S.; Nuopponen M.; Kalliomaki K.; Tenhu H. Macromolecules...

  9. Preparation and characterization of gelatin-poly(methacrylic acid interpenetrating polymeric network hydrogels as a ph-sensitive delivery system for glipizide

    Directory of Open Access Journals (Sweden)

    Gupta N

    2007-01-01

    Full Text Available In the present study, interpenetrating polymeric network hydrogels of glipizide were prepared using gelatin and methacrylic acid. Methacrylic acid was polymerized using potassium persulfate. Methacrylic acid was crosslinked with methylene bisacrylamide and gelatin was crosslinked using glutaraldehyde. Four formulations were prepared by varying the concentrations of methacrylic acid, methylene bisacrylamide and glutaraldehyde. The amounts of gelatin and potassium persulfate were kept constant in all the formulations. The interpenetrating polymeric network hydrogels were characterized by fourier transform infrared analysis, differential scanning calorimetry and evaluated for swelling and deswelling properties, drug loading and in vitro drug release. All the formulations showed no interaction between drug and polymer as confirmed by fourier transform infrared analysis and differential scanning calorimetric studies. The interpenetrating polymeric network hydrogels swelled only in alkaline pH and swelling was minimal in acidic pH. It was found that as the concentration of cross-linking agents is increased, there is a decrease in swelling and, as the concentration of methacrylic acid is increased, there is an increase in swelling. The release data shows that, as the concentration of methacrylic acid was increased, swelling increased resulting in increased release of the drug.

  10. The 3-dimensional cored and logarithm potentials: Periodic orbits

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Maité, E-mail: maite@dm.ufrpe.br [Departamento de Matemática, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco (Brazil); Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain)

    2014-11-15

    We study analytically families of periodic orbits for the cored and logarithmic Hamiltonians with 3 degrees of freedom, which are relevant in the analysis of the galactic dynamics. First, after introducing a scale transformation in the coordinates and momenta with a parameter ε, we show that both systems give essentially the same set of equations of motion up to first order in ε. Then the conditions for finding families of periodic orbits, using the averaging theory up to first order in ε, apply equally to both systems in every energy level H = h > 0 showing the existence of at least 3 periodic orbits, for ε small enough, and also provides an analytic approximation for the initial conditions of these periodic orbits. We prove that at every positive energy level the cored and logarithmic Hamiltonians with 3 degrees of freedom have at least three periodic solutions. The technique used for proving such a result can be applied to other Hamiltonian systems.

  11. Alginate-Collagen Fibril Composite Hydrogel

    Directory of Open Access Journals (Sweden)

    Mahmoud Baniasadi

    2015-02-01

    Full Text Available We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  12. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment

    International Nuclear Information System (INIS)

    The application of satellite cell-derived myoblasts in regenerative medicine has been restricted by the rapid loss of stemness during in vitro cell expansion using traditional culture systems. However, studies published in the past decade have highlighted the influence of substrate elasticity on stem cell fate and revealed that culture on a soft hydrogel substrate can promote self-renewal and prolong the regenerative potential of muscle stem cells. Whether hydrogel substrates have similar effects after long-term robust expansion remains to be determined. Herein we prepared an elastic chitosan/beta-glycerophosphate/collagen hydrogel mimicking the soft microenvironment of muscle tissues for use as the substrate for satellite cell culture and investigated its influence on long-term cell expansion. After 20 passages in culture, satellite cell-derived myoblasts cultured on our hydrogel substrate exhibited significant improvements in proliferation capability, cell viability, colony forming frequency, and potential for myogenic differentiation compared to those cultured on a routine rigid culture surface. Immunochemical staining and western blot analysis both confirmed that myoblasts cultured on the hydrogel substrate expressed higher levels of several differentiation-related markers, including Pax7, Pax3, and SSEA-1, and a lower level of MyoD compared to myoblasts cultured on rigid culture plates (all p<0.05). After transplantation into the tibialis anterior of nude mice, myoblasts that had been cultured on the hydrogel substrate demonstrated a significantly greater engraftment efficacy than those cultured on the traditional surface. Collectively, these results indicate that the elastic hydrogel substrate supported robust expansion of murine myoblasts and enhanced their engraftment in vivo. - Highlights: • An elastic hydrogel was designed to mimic the pliable muscle tissue microenvironment. • Myoblasts retained their stemness in long-term culture on the elastic

  13. Elastic hydrogel substrate supports robust expansion of murine myoblasts and enhances their engraftment

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ke, E-mail: dk1118@yeah.net [Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072 (China); Yang, Zhong [Department of Clinical Hematology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Xu, Jian-zhong, E-mail: xjzspine@163.com [Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Liu, Wen-ying; Zeng, Qiang; Hou, Fang [Department of Pediatric Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072 (China); Lin, Sen [Department of Anatomy and Histology & Embryology, Chengdu Medical College, Chengdu 610500 (China)

    2015-09-10

    The application of satellite cell-derived myoblasts in regenerative medicine has been restricted by the rapid loss of stemness during in vitro cell expansion using traditional culture systems. However, studies published in the past decade have highlighted the influence of substrate elasticity on stem cell fate and revealed that culture on a soft hydrogel substrate can promote self-renewal and prolong the regenerative potential of muscle stem cells. Whether hydrogel substrates have similar effects after long-term robust expansion remains to be determined. Herein we prepared an elastic chitosan/beta-glycerophosphate/collagen hydrogel mimicking the soft microenvironment of muscle tissues for use as the substrate for satellite cell culture and investigated its influence on long-term cell expansion. After 20 passages in culture, satellite cell-derived myoblasts cultured on our hydrogel substrate exhibited significant improvements in proliferation capability, cell viability, colony forming frequency, and potential for myogenic differentiation compared to those cultured on a routine rigid culture surface. Immunochemical staining and western blot analysis both confirmed that myoblasts cultured on the hydrogel substrate expressed higher levels of several differentiation-related markers, including Pax7, Pax3, and SSEA-1, and a lower level of MyoD compared to myoblasts cultured on rigid culture plates (all p<0.05). After transplantation into the tibialis anterior of nude mice, myoblasts that had been cultured on the hydrogel substrate demonstrated a significantly greater engraftment efficacy than those cultured on the traditional surface. Collectively, these results indicate that the elastic hydrogel substrate supported robust expansion of murine myoblasts and enhanced their engraftment in vivo. - Highlights: • An elastic hydrogel was designed to mimic the pliable muscle tissue microenvironment. • Myoblasts retained their stemness in long-term culture on the elastic

  14. Magnetically Remanent Hydrogels with Colloidal Crosslinkers

    NARCIS (Netherlands)

    van Berkum, S.

    2014-01-01

    Hydrogels are widely used in biomedical applications such as drug delivery and tissue engineering. In this research, the feasibility of a hydrogel with embedded magnetic nanoparticles, also called a ferrogel, for biosensor applications was tested. A pH sensitive poly(acrylic acid) hydrogel was used

  15. Hydrogels with covalent and noncovalent crosslinks

    Science.gov (United States)

    Kilck, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin. The hydrogel may contain covalent and non-covalent crosslinks.

  16. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

    2015-08-12

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD. PMID:26268315

  17. An inflammation-targeting hydrogel for local drug delivery in inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Sufeng; Ermann, Joerg; Succi, Marc D; Zhou, Allen; Hamilton, Matthew J; Cao, Bonnie; Korzenik, Joshua R; Glickman, Jonathan N; Vemula, Praveen K; Glimcher, Laurie H; Traverso, Giovanni; Langer, Robert; Karp, Jeffrey M

    2015-08-12

    There is a clinical need for new, more effective treatments for chronic and debilitating inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Targeting drugs selectively to the inflamed intestine may improve therapeutic outcomes and minimize systemic toxicity. We report the development of an inflammation-targeting hydrogel (IT-hydrogel) that acts as a drug delivery system to the inflamed colon. Hydrogel microfibers were generated from ascorbyl palmitate, an amphiphile that is generally recognized as safe (GRAS) by the U.S. Food and Drug Administration. IT-hydrogel microfibers loaded with the anti-inflammatory corticosteroid dexamethasone (Dex) were stable, released drug only upon enzymatic digestion, and demonstrated preferential adhesion to inflamed epithelial surfaces in vitro and in two mouse colitis models in vivo. Dex-loaded IT-hydrogel enemas, but not free Dex enemas, administered every other day to mice with colitis resulted in a significant reduction in inflammation and were associated with lower Dex peak serum concentrations and, thus, less systemic drug exposure. Ex vivo analysis of colon tissue samples from patients with ulcerative colitis demonstrated that IT-hydrogel microfibers adhered preferentially to mucosa from inflamed lesions compared with histologically normal sites. The IT-hydrogel drug delivery platform represents a promising approach for targeted enema-based therapies in patients with colonic IBD.

  18. 3 dimensional ionospheric electron density reconstruction based on GPS measurements

    Science.gov (United States)

    Stolle, C.; Schlüter, S.; Jacobi, C.; Jakowski, N.

    When radio waves as sended by the naviagtion system GPS are passing through the ionosphere they are subject to delays in phase, travel time and polarisation which is an effect of the free electrons. The measured integrated value of Total Electron Content can be utilised for three-dimensional reconstruction of electron density patterns in the ionosphere. Here a tomographic approach is represented. Scince the distribution of data is very sparse and patchy we decided for an algebraic iterative algorithm. The ground based GPS data collected by IGS receivers can be combined by space based GPS of radio limb sounding, incoherent scatter radar and ionosondes data. Hereby, radio occultation data improve beside the amount of available data especially the vertical resolution of electron density distribution. Ionosonde peack electron densities are taken as stop criteria determination for iteration. Reconstructed ionospheric scenarios and validations of the system by independent measurements are presented.

  19. A Novel Methodology for Thermal Analysis & 3-Dimensional Memory Integration

    OpenAIRE

    Cherian, Annmol; Augustine, Ajay; Jose, Jemy; Pangracious, Vinod

    2011-01-01

    The semiconductor industry is reaching a fascinating confluence in several evolutionary trends that will likely lead to a number of revolutionary changes in the design, implementation, scaling, and the use of computer systems. However, recently Moore's law has come to a stand-still since device scaling beyond 65 nm is not practical. 2D integration has problems like memory latency, power dissipation, and large foot-print. 3D technology comes as a solution to the problems posed by 2D integratio...

  20. 5-FU-hydrogel inhibits colorectal peritoneal carcinomatosis and tumor growth in mice

    OpenAIRE

    Shi Huashan; Shi Shuai; Wu Qinjie; Yang Li; Gong Changyang; Wang Yongsheng; Qian Zhiyong; Wei Yuquan

    2010-01-01

    Abstract Background Colorectal peritoneal carcinomatosis (CRPC) is a common form of systemic metastasis of intra-abdominal cancers. Intraperitoneal chemotherapy is a preferable option for colorectal cancer. Here we reported that a new system, 5-FU-loaded hydrogel system, can improve the therapeutic effects of intraperitoneal chemotherapy. Methods A biodegradable PEG-PCL-PEG (PECE) triblock copolymer was successfully synthesized. The biodegradable and temperature sensitive hydrogel was develop...

  1. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice.

    Science.gov (United States)

    Harvey, Danielle J; Weng, Qian; Beckett, Laurel A

    2010-06-15

    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented.

  2. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91–93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability. - Highlights: • HA/CS/PAAc hydrogels were synthesized by gamma-ray irradiation. • HA/CS/PAAc hydrogels exhibited 91–93% gel fractions under 15 kGy radiation. • All of the HA/CS/PAAc hydrogels exhibited high water contents of over 90%. • The hydrogel samples showed relatively high cell viabilities of more than

  3. Initial magnetic field configurations for 3-dimensional simulations of astrophysical jets

    OpenAIRE

    Jorgensen, M.; R. Ouyed; Christensen, M.

    2001-01-01

    We solve, and provide analytical expressions, for current-free magnetic configurations in the context of initial setups of 3-dimensional simulations of astrophysical jets involving an accretion disk corona in hydrostatic balance around a central object. These configurations which thread through the accretion disk and its corona preserve the initial hydrostatic state. This work sets stage for future 3-dimensional jet simulations (including disk rotation and mass-load) where launching, accelera...

  4. TEMPERATURE AND pH RESPONSE, AND SWELLING BEHAVIOR OF POROUS ACRYLONITRILE-ACRYLIC ACID COPOLYMER HYDROGELS

    Institute of Scientific and Technical Information of China (English)

    Jian Huang; Zhi-ming Huang; Yong-zhong Bao; Zhi-xue Weng

    2006-01-01

    Macroporous acrylonitrile-acrylic acid (AN-AA) copolymer hydrogels were synthesized by free-radical solution polymerizations, using ammonium persulfate (APS)/N,N,N',N'-tetramethylethylenediamine (TEMED) redox initiator system and alcohols porogens. The morphology, temperature and pH sensitive swelling behavior, and swelling kinetics of the resulting hydrogels were investigated. It was found that alcohol type and concentration had great influences on the pore structure and porosity of hydrogels. The pore size of hydrogel increases with the moderate increase of the length of alcohol alkyl chain. However, a further increase of alkyl length would result in the formation of cauliflower-like structure and the decrease of pore size. The porosity of hydrogels increases with the increase of porogen concentration in the polymerization medium. The hydrogels with macroporous structure swell or shrink much faster in response to the change of pH in comparison with the conventional hydrogel without macroporous structure. Furthermore, the response rate is closely related to the porosity of the hydrogels, which could be easily controlled by modulating the concentration of the porogen in the medium. The circular swelling behavior of hydrogels indicated the formation of a relaxing three-dimensional network.

  5. Development and applications of 3-dimensional integration nanotechnologies.

    Science.gov (United States)

    Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu

    2014-02-01

    Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC). PMID:24749469

  6. Monolithically integrated Helmholtz coils by 3-dimensional printing

    International Nuclear Information System (INIS)

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  7. Novel Hydrogels from Renewable Resources

    Science.gov (United States)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  8. Evaluating hydrogels for agriforestry applications

    Directory of Open Access Journals (Sweden)

    Andrés Barón Cortés

    2010-07-01

    Full Text Available Hydrogels synthesised by inverse suspension polymerisation (ISP technique consisting of acrylamide and potassium acrylate interlinked with N, N’ methylene-bis-acrylamide and presenting different behaviour in terms of rooting ability and speed, elastic module and release properties were studied. Markedly clayey soil properties were mo-dified by drawing up moisture-retention curves using ceramic plate pressure waves and developing montages for evaluating modifications made to their retention, regarding prolonged and instantaneous irrigation-water dosage conditions. Acacia and radish crops were grown in nursery phase in soil conditioned with different hydrogels. Delayed specie withering was simultaneously evaluated in the first crop and difference in growth in the second one. Follow-up of in situ soil moisture content was also evaluated over a fixed period of time. A method was achieved for measuring elastic module and release properties and model was established for predicting hydrogel behaviour in soil having known basic properties in free state. The results revealed the usefulness of hydrogels in such applications: greater facility in usable water release and retention by soil, notable delay in withering in hostile conditions and greater growth of species. Guidelines were also established for defining the characteristics of hydrogel more adequately, depending on the desired application and a projection was made concerning reducing water consumption for maintaining a particular crop.

  9. Healing wounds - radiation processing technology for hydrogel dressing

    International Nuclear Information System (INIS)

    Uses of hydrogels are known and have several applications in medical field. Drug delivery devices, contact lenses, wound dressing, artificial cartilage's or membranes, vascular prosthesis, gel coated catheters etc., are some of the examples. Due to direct relevance to human health, scientists have been continuously exploring these systems. Generally, hydro (water) gels contain 30-90% of water entrapped in a three dimensional network structure of a hydrophilic polymer. The large water content makes them highly bio-compatible and therefore preferred for use as biomaterials. Some of the hydrophilic polymers used in these applications include poly (vinyl pyrrolidone), poly (ethylene oxide), poly (vinyl alcohol) and poly (acrylic acid ). Depending upon the nature of application, the size of these hydrogel can vary from nanometers (nanogels, injectable hydrogels) to centimeters to meters (wound dressing, fire blankets, drug delivery devices and implants). BARC hydrogel dressings have been so far used for treating burns, leprosy ulcers, animal bites, diabetic foot ulcers, herpes, fresh scars, bullet injuries, boils, pimples, sun burns, abrasion, surgical wounds of breast cancer, as bolus for radiation therapy in cancer etc. The use of gels have shown excellent result in diabetic ulcers which definitely provides an alternate to expensive biotech products and relief to expanding population of diabetics in India. Its application and some of the examples are shown in the paper. Other hydrogel based products which are under development in the authors laboratory are radiation processed silver nano-particle hydrogels to treat infected wounds and fire blankets for whole body coverage for protection from fire for defense personnel and fire service people

  10. Interpenetrating polymer network hydrogels based on polysaccharides for biomedical applications

    NARCIS (Netherlands)

    Pescosolido, L.

    2011-01-01

    The main theme of this thesis is the development and the characterization of interpenetrating polymer network hydrogels (IPNs) based on biodegradable and biocompatible polysaccharides, in particular alginate, hyaluronic acid and dextran. The suitability of these novel systems as pharmaceutical and b

  11. Hyperthermia-Induced Drug Delivery from Thermosensitive Liposomes Encapsulated in an Injectable Hydrogel for Local Chemotherapy

    NARCIS (Netherlands)

    López-Noriega, Adolfo; Hastings, Conn L.; Ozbakir, Burcin; O'Donnell, Kathleen E.; O'Brien, Fergal J.; Storm, Gert; Hennink, Wim E.; Duffy, Garry P.; Ruiz-Hernåndez, Eduardo

    2014-01-01

    A novel drug delivery system, enabling an in situ, thermally triggered drug release is described, consisting of an injectable thermoresponsive chitosan hydrogel containing doxorubicin-loaded thermosensitive liposomes. The design, fabrication, characterization, and an assessment of in vitro bioactivi

  12. Land surface heterogeneity in 3-dimensional atmospheric simulations. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Seth, A.

    1995-07-01

    Stand-alone, vectorized version of the Biosphere-Atmosphere Transfer Scheme (VBATS) and a regional climate model (ReGCM2) are used to study the effects of subgrid scale heterogeneity in land surface processes on large scale mean surface fluxes and on mesoscale dynamics, respectively. The thesis is about the interactions of large and small scales within the climate system. We are concerned with two climate subsystems; the land surface and the atmosphere. We shall define large scales as those which can be resolved by current atmospheric general circulation models (grid resolutions of 100-200 km can resolve wavelengths of 400-800 km and larger). Small scales, or subgrid scale processes, are those which cannot be resolved by the resolution of global scale atmospheric models, but may be resolved using models with limited area domains. Our discussion will focus on the physical interactions between land and atmosphere and, specifically, will explore the effects of surface heterogeneity. Chemical exchanges are not considered here, nor is the evolution of the biosphere.

  13. Lab-on-a-chip devices with patterned hydrogels: engineered microarrays for biomolecule fractionation, organ-on-chip and desalination

    NARCIS (Netherlands)

    Gumuscu, Burcu

    2016-01-01

    Hydrogels are considered to be in the class of smart materials that find application in diagnostic, therapeutic, and fundamental science tools for miniaturized total analysis systems. The use of patterned hydrogels in closed fluidic microchips for different research fields depends crucially on the e

  14. Morphological effect on swelling behaviour of hydrogel

    Science.gov (United States)

    Yacob, Norzita; Hashim, Kamaruddin

    2014-02-01

    Hydrogels are hydrophilic polymer networks that are capable of imbibing large amounts of water. In this work, hydrogels prepared from natural and synthetic polymers were irradiated by using electron beam irradiation. The morphology of hydrogel inter-polymeric network (IPN) was investigated using Scanning Electron Microscopy (SEM). The studies reveal correlations between pore sizes of IPN with degree of cross-linking. This relation also has an effect on swelling properties of the hydrogel. The results indicated that hydrogel with smaller pore size, as a result of much dense IPN, would decrease water uptake capacity. Combination of natural and synthetic polymers to form hydrogel affects the pore size and swelling property of the hydrogel as compared to each component of polymer.

  15. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.;

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  16. Morphological effect on swelling behaviour of hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Yacob, Norzita; Hashim, Kamaruddin [Radiation Processing Technology Division, Malaysian Nuclear Agency (NUKLEAR MALAYSIA) Bangi, 43000 Kajang (Malaysia)

    2014-02-12

    Hydrogels are hydrophilic polymer networks that are capable of imbibing large amounts of water. In this work, hydrogels prepared from natural and synthetic polymers were irradiated by using electron beam irradiation. The morphology of hydrogel inter-polymeric network (IPN) was investigated using Scanning Electron Microscopy (SEM). The studies reveal correlations between pore sizes of IPN with degree of cross-linking. This relation also has an effect on swelling properties of the hydrogel. The results indicated that hydrogel with smaller pore size, as a result of much dense IPN, would decrease water uptake capacity. Combination of natural and synthetic polymers to form hydrogel affects the pore size and swelling property of the hydrogel as compared to each component of polymer.

  17. Plasma polymerized hydrogel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamirisa, Prabhakar A. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Koskinen, Jere [Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Hess, Dennis W. [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)]. E-mail: dennis.hess@chbe.gatech.edu

    2006-12-05

    Plasma polymerization was used to produce thermoresponsive hydrogel films of N-isopropylacrylamide (NIPAAm) in a single deposition step. Solvent free processing to produce laterally confined intelligent hydrogel films offers the potential for high volume production of micro-sensors/actuators. Through variation of reactor conditions such as deposition pressure and substrate temperature, it is possible to tailor and control chemical properties of the films such as crosslink density and thus swelling. Fabrication of hydrogel thin films with adequate crosslinks is critical to ensuring adhesion to substrates and stability in aqueous environments. Chemical bonding structures in plasma polymerized NIPAAm were studied using Fourier transform infrared spectroscopy and the thermoresponsive nature of plasma polymerized NIPAAm was confirmed through contact angle goniometry. A reversible temperature dependent contact angle change was observed.

  18. Interactions of chitosan/genipin hydrogels during drug delivery: a QSPR approach

    Directory of Open Access Journals (Sweden)

    Nancy L. Delgadillo-Armendariz

    2014-01-01

    Full Text Available A hydrogel comprised of chitosan crosslinked using the low-toxicity crosslinker genipin was prepared, and the absorption of glibenclamide by the hydrogel was investigated. Optimized structures and their molecular electrostatic potentials were calculated using the AM1 method, and the results were used to evaluate the molecular interactions between the three compounds. The quantitative structure-property relationship model was also used to estimate the activity of the chemicals on the basis their molecular structures. In addition, theoretical Fourier transform infrared spectra were calculated to analyze the intermolecular interactions in the proposed system. Finally, the hydrophilicity of the hydrogel and its influence on the absorption process were also estimated.

  19. Molecular-level engineering of protein physical hydrogels for predictive sol-gel phase behavior

    OpenAIRE

    Mulyasasmita, Widya; Lee, Ji Seok; Heilshorn, Sarah C.

    2011-01-01

    Predictable tuning of bulk mechanics from the molecular level remains elusive in many physical hydrogel systems due to the reliance on non-specific and non-stoichiometric chain interactions for network formation. We describe a Mixing-Induced Two-Component Hydrogel (MITCH) system, in which network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with simple polymer physics model, we manipulate the polypeptide b...

  20. Adsorption of protein-coated lipid droplets to mixed biopolymer hydrogel surfaces: role of biopolymer diffusion.

    Science.gov (United States)

    Vargas, Maria; Weiss, Jochen; McClements, D Julian

    2007-12-18

    The adsorption of charged particles to hydrogel surfaces is important in a number of natural and industrial processes. In this study, the adsorption of cationic lipid droplets to the surfaces of anionic hydrogels was examined. An oil-in-water emulsion containing cationic beta-lactoglobulin-coated lipid droplets was prepared (d32=0.24 microm, zeta=+74 mV, pH 3.0). An anionic hydrogel containing 0.1 wt % beet pectin and 1.5 wt % agar (pH 3.0) was prepared. Emulsions containing different lipid droplet concentrations (0.3-5 wt %) were brought into contact with the hydrogel surfaces for different times (0-24 h). The adsorption of lipid droplets to the hydrogel surfaces could not be explained by a typical adsorption isotherm. We found that the electrical charge on the nonadsorbed lipid droplets became less positive or even became negative in the presence of the hydrogel and that extensive droplet aggregation occurred, which was attributed to the ability of pectin molecules to diffuse through the hydrogels and interact with the lipid droplets. These results may have important consequences for understanding certain industrial and biological processes, as well as for the design of controlled or triggered release systems.

  1. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    Science.gov (United States)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  2. HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration.

    Science.gov (United States)

    Sarker, Avik; Amirian, Jhaleh; Min, Young Ki; Lee, Byong Taek

    2015-11-01

    Bone repair in the critical size defect zone using 3D hydrogel scaffold is still a challenge in tissue engineering field. A novel type of hydrogel scaffold combining ceramic and polymer materials, therefore, was fabricated to meet this challenge. In this study, oxidized alginate-gelatin-biphasic calcium phosphate (OxAlg-Gel-BCP) and spherical hydroxyapatite (HAp) granules encapsulated OxAlg-Gel-BCP hydrogel complex were fabricated using freeze-drying method. Detailed morphological and material characterizations of OxAlg-Gel-BCP hydrogel (OGB00), 25wt% and 35wt% granules encapsulated hydrogel (OGB25 and OGB35) were carried out for micro-structure, porosity, chemical constituents, and compressive stress analysis. Cell viability, cell attachment, proliferation and differentiation behavior of rat bone marrow-derived stem cell (BMSC) on OGB00, OGB25 and OGB35 scaffolds were confirmed by MTT assay, Live-Dead assay, and confocal imaging in vitro experiments. Finally, OGB00 and OGB25 hydrogel scaffolds were implanted in the critical size defect of rabbit femoral chondyle for 4 and 8 weeks. The micro-CT analysis and histological studies conducted by H&E and Masson's trichrome demonstrated that a significantly higher (***phydrogel than in OxAlg-Gel-BCP complex alone. All results taken together, HAp granules encapsulated OxAlg-Gel-BCP system can be a promising 3D hydrogel scaffold for the healing of a critical bone defect.

  3. Radically new cellulose nanocomposite hydrogels: Temperature and pH responsive characters.

    Science.gov (United States)

    Hebeish, A; Farag, S; Sharaf, S; Shaheen, Th I

    2015-11-01

    Innovation produced for synthesis of radically new stimuli-responsive hydrogels were described. The innovation is based on inclusion of cellulose nanowhiskers (CNW)-polyacrylamide (PAAm) copolymer in poly N-isopropyl acrylamide (PNIPAm) semi interpenetrating network (IPN) hydrogel. After being prepared as per free radical polymerization of AAm onto CNW, the as prepared copolymer was incorporated in a polymerization system, which comprises NIPAm monomer, bismethylene acrylamide (BMA) crosslinker, K2S2O8 initiator and TEMED accelerator, to yield CNW-PAAm-PNIPAm nanocomposite hydrogels. The latter address pH-responsive hydrogel as well as temperature-responsive. Hydrogels exhibit the highest equilibrium swelling ratio (ESR) in acidic medium (pH 4). Meanwhile they perform good swelling behavior and hydrophilicity at a temperature of 32°C. These hydrogels carry the characteristic features of CNW-PAAm copolymer as conducted from FTIR and TGA. The hydrogels are homogenous and well-proportioned network structure with highly connected irregular pores with a large size ranging from 30 to 100nm as concluded from SEM.

  4. Automatic fabrication of 3-dimensional tissues using cell sheet manipulator technique.

    Science.gov (United States)

    Kikuchi, Tetsutaro; Shimizu, Tatsuya; Wada, Masanori; Yamato, Masayuki; Okano, Teruo

    2014-03-01

    Automated manufacturing is a key for tissue-engineered therapeutic products to become common-place and economical. Here, we developed an automatic cell sheet stacking apparatus to fabricate 3-dimensional tissue-engineered constructs exploiting our cell sheet manipulator technique, where cell sheets harvested from temperature-responsive culture dishes are stacked into a multilayered cell sheet. By optimizing the stacking conditions and cell seeding conditions, the apparatus was eventually capable of reproducibly making five-layer human skeletal muscle myoblast (HSMM) sheets with a thickness of approximately 70-80 μm within 100 min. Histological sections and confocal topographies of the five-layer HSMM sheets revealed a stratified structure with no delamination. In cell counts using trypsinization, the live cell numbers in one-, three- and five-layer HSMM sheets were equivalent to the seeded cell numbers at 1 h after the stacking processes; however, after subsequent 5-day static cultures, the live cell numbers of the five-layered HSMM sheets decreased slightly, while one- and three-layer HSMM sheets maintained their live cell numbers. This suggests that there are thickness limitations in maintaining tissues in a static culture. We concluded that by combining our cell sheet manipulator technique and industrial robot technology we can create a secure, cost-effective manufacturing system able to produce tissue-engineered products from cell sheets. PMID:24370007

  5. Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications.

    Science.gov (United States)

    Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael; Comotto, Mattia; Lesha, Emal; Serex, Ludovic; Bagherifard, Sara; Chen, Yu; Fu, Guoqing; Ameri, Shideh Kabiri; Ruan, Weitong; Miller, Eric L; Dokmeci, Mehmet R; Sonkusale, Sameer; Khademhosseini, Ali

    2016-03-01

    Epidermal pH is an indication of the skin's physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic nonhealing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous pH measurement can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, pH-responsive hydrogel fibers are presented that can be used for long-term monitoring of epidermal wound condition. pH-responsive dyes are loaded into mesoporous microparticles and incorporated into hydrogel fibers using a microfluidic spinning system. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel-based wound dressings with clinically relevant dimensions. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process.

  6. Radio-synthesized polyacrylamide hydrogels for proteins release

    Science.gov (United States)

    Ferraz, Caroline C.; Varca, Gustavo H. C.; Lopes, Patricia S.; Mathor, Monica B.; Lugão, Ademar B.

    2014-01-01

    The use of hydrogels for biomedical purposes has been extensively investigated. Pharmaceutical proteins correspond to highly active substances which may be applied for distinct purposes. This work concerns the development of radio-synthesized hydrogel for protein release, using papain and bovine serum albumin as model proteins. The polymer was solubilized (1% w/v) in water and lyophilized. The proteins were incorporated into the lyophilized polymer and the hydrogels were produced by simultaneous crosslinking and sterilization using γ-radiation under frozen conditions. The produced systems were characterized in terms of swelling degree, gel fraction, crosslinking density and evaluated according to protein release, bioactivity and cytotoxicity. The hydrogels developed presented different properties as a function of polymer concentration and the optimized results were found for the samples containing 4-5% (w/v) polyacrylamide. Protein release was controlled by the electrostatic affinity of acrylic moieties and proteins. This selection was based on the release of the proteins during the experiment period (up to 50 h), maintenance of enzyme activity and the nanostructure developed. The system was suitable for protein loading and release and according to the cytotoxic assay it was also adequate for biomedical purposes, however this method was not able to generate a matrix with controlled pore sizes.

  7. Flexible pH-Sensing Hydrogel Fibers for Epidermal Applications.

    Science.gov (United States)

    Tamayol, Ali; Akbari, Mohsen; Zilberman, Yael; Comotto, Mattia; Lesha, Emal; Serex, Ludovic; Bagherifard, Sara; Chen, Yu; Fu, Guoqing; Ameri, Shideh Kabiri; Ruan, Weitong; Miller, Eric L; Dokmeci, Mehmet R; Sonkusale, Sameer; Khademhosseini, Ali

    2016-03-01

    Epidermal pH is an indication of the skin's physiological condition. For example, pH of wound can be correlated to angiogenesis, protease activity, bacterial infection, etc. Chronic nonhealing wounds are known to have an elevated alkaline environment, while healing process occurs more readily in an acidic environment. Thus, dermal patches capable of continuous pH measurement can be used as point-of-care systems for monitoring skin disorder and the wound healing process. Here, pH-responsive hydrogel fibers are presented that can be used for long-term monitoring of epidermal wound condition. pH-responsive dyes are loaded into mesoporous microparticles and incorporated into hydrogel fibers using a microfluidic spinning system. The fabricated pH-responsive microfibers are flexible and can create conformal contact with skin. The response of pH-sensitive fibers with different compositions and thicknesses are characterized. The suggested technique is scalable and can be used to fabricate hydrogel-based wound dressings with clinically relevant dimensions. Images of the pH-sensing fibers during real-time pH measurement can be captured with a smart phone camera for convenient readout on-site. Through image processing, a quantitative pH map of the hydrogel fibers and the underlying tissue can be extracted. The developed skin dressing can act as a point-of-care device for monitoring the wound healing process. PMID:26799457

  8. Exploration of the nature of a unique natural polymer-based thermosensitive hydrogel.

    Science.gov (United States)

    Lu, Shanling; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-01-14

    The chitosan (CS)/β-glycerol phosphate (GP) system is a heat induced gelling system with a promising potential application, such as an injectable biomedical material. Unlike most thermosensitive gelling systems, the CS/GP system is only partially reversible. That is once the hydrogel is fully matured, it only softens but cannot go back to its initial liquid state when cooled down. Here, we perform both the small and large amplitude oscillatory shear (SAOS and LAOS) tests on the fully matured CS/GP hydrogel samples at a variety of temperatures within the cooling process. The purpose of such tests is to investigate the structural change of the hydrogel network and thus to understand the possible gelation mechanism of this unique thermosensitive hydrogel. From the LAOS results and the further analysis with the Chebyshev expansion method, it shows that the CS/GP hydrogel is composed of a colloidal network dominated by hydrophobic interactions at high temperature, and gradually turns into a flexible network dominated by hydrogen bonding when the temperature goes down. Therefore, we may conclude that LOAS is a powerful tool to study the nonlinear behaviour of a polymer system that is closely related to its structure, and as a practical example, we achieve a clearer vision on the gelation mechanism of the unique CS/GP thermosensitive hydrogel on the basis of considerable previous studies and assumptions in this laboratory and other research groups.

  9. Drug release into hydrogel-based subcutaneous surrogates studied by UV imaging

    DEFF Research Database (Denmark)

    Ye, Fengbin; Larsen, Susan Weng; Yaghmur, Anan;

    2012-01-01

    of the performance of drug delivery systems based on in vitro experiments. The objective of this study was to evaluate a UV imaging-based method for real-time characterization of the release and transport of piroxicam in hydrogel-based subcutaneous tissue mimics/surrogates. Piroxicam partitioning from medium chain...... triglyceride (MCT) into 0.5% (w/v) agarose or 25% (w/v) F127-based hydrogels was investigated by monitoring the concentration profiles of the drug in the gels. The effect of pH on piroxicam distribution and diffusion coefficients was studied. For both hydrogel systems, the diffusion of piroxicam in the gels...... upon the injection of aqueous or MCT solutions into an agarose-based hydrogel were investigated by UV imaging. The spatial distribution of piroxicam around the injection site in the gel matrix was monitored in real-time. The disappearance profiles of piroxicam from the injected aqueous solution were...

  10. Variations in polyethylene glycol brands and their influence on the preparation process of hydrogel microspheres

    DEFF Research Database (Denmark)

    Wöhl-Bruhn, Stefanie; Bertz, Andreas; Kuntsche, Judith;

    2013-01-01

    Hydrogel microspheres, e.g. for the use as protein carriers, can be prepared without the use of organic solvents via an emulsified aqueous two phase system (ATPS) that is based on two immiscible polymer solutions. The type and concentration of the polymers can affect the ATPS and finally the dist......Hydrogel microspheres, e.g. for the use as protein carriers, can be prepared without the use of organic solvents via an emulsified aqueous two phase system (ATPS) that is based on two immiscible polymer solutions. The type and concentration of the polymers can affect the ATPS and finally...... the distribution of incorporated drugs between the aqueous phases. For the preparation of hydrogel microspheres based on hydroxyethyl starch-hydroxyethyl methacrylate (HES-HEMA), hydroxyethyl starch-methacrylate (HES-MA), and hydroxyethyl starch-polyethylene glycol methacrylate (HES-P(EG)6MA), polyethylene glycol...... of hydrogel microspheres by an aqueous-two-phase preparation process....

  11. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.

    Science.gov (United States)

    Zhong, Tianyi; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2015-10-15

    In the present study, a composite system for the controlled and sustained release of hydrophobic/hydrophilic drugs is described. Composite hydrogels were prepared by blending silk fibroin (SF) with PLA-PEG-PLA copolymer under mild aqueous condition. Aspirin and indomethacin were incorporated into SF/Copolymer hydrogels as two model drugs with different water-solubility. The degradation of composite hydrogels during the drug release was mainly caused by the hydrolysis of copolymers. SF with stable β-sheet-rich structure was not easily degraded which maintained the mechanical integrity of composite hydrogel. The hydrophobic/hydrophilic interactions of copolymers with model drugs would significantly alter the morphological features of composite hydrogels. Various parameters such as drug load, concentration ratio, and composition of copolymer were considered in vitro drug release. Aspirin as a hydrophilic drug could be controlled release from composite hydrogel at a constant rate for 5 days. Its release was mainly driven by diffusion-based mechanism. Hydrophobic indomethacin could be encapsulated in copolymer nanoparticles distributing in the composite hydrogel. Its sustained release was mainly degradation controlled which could last up to two weeks. SF/Copolymer hydrogel has potential as a useful composite system widely applying for controlled and sustained release of various drugs.

  12. Macrojunctions ordering in polyelectrolyte hydrogels

    Science.gov (United States)

    Török, Gy; Lebedev, V. T.; Cser, L.; Buyanov, A. L.; Revelskaya, L. G.

    2000-03-01

    We studied the structure of polyelectrolyte hydrogels of sodium polyacrylate cross-linked by macromolecular allyldextran (supergels). Using high-resolution SANS we have found the specific ordering of macrojunctions (structure's period ∼130 nm) that may be reliable for the network's anomaly swelling.

  13. Heparin release from thermosensitive hydrogels

    NARCIS (Netherlands)

    Gutowska, Anna; Bae, You Han; Feijen, Jan; Kim, Sung Wan

    1992-01-01

    Thermosensitive hydrogels (TSH) were synthesized and investigated as heparin releasing polymers for the prevention of surface induced thrombosis. TSH were synthesized with N-isopropyl acrylamide (NiPAAm) copolymerized with butyl methacrylate (BMA) (hydrophobic) or acrylic acid (AAc) (hydrophilic) co

  14. Controlled delivery of antibodies from injectable hydrogels.

    Science.gov (United States)

    Fletcher, Nathan A; Babcock, Lyndsey R; Murray, Ellen A; Krebs, Melissa D

    2016-02-01

    Therapeutic antibodies are currently used for the treatment of various diseases, but large doses delivered systemically are typically required. Localized controlled delivery techniques would afford major benefits such as decreasing side effects and required doses. Injectable biopolymer systems are an attractive solution due to their minimally invasive potential for controlled release in a localized area. Here, alginate-chitosan hydrogels are demonstrated to provide controlled delivery of IgG model antibodies and also of Fab antibody fragments. Also, an alternate delivery system comprised of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with antibodies and encapsulated in alginate was shown to successfully provide another level of control over release. These biopolymer systems that offer controlled delivery for antibodies and antibody fragments will be promising for many applications in drug delivery and regenerative medicine.

  15. Potential of an injectable chitosan/starch/beta-glycerol phosphate hydrogel for sustaining normal chondrocyte function.

    Science.gov (United States)

    Ngoenkam, Jatuporn; Faikrua, Atchariya; Yasothornsrikul, Sukkid; Viyoch, Jarupa

    2010-05-31

    An injectable hydrogel for chondrocyte delivery was developed by blending chitosan and starch derived from various sources with beta-glycerol phosphate (beta-GP) in the expectation that it would retain a liquid state at room temperature and gel at raised temperatures. Rheological investigation indicated that the system consisting of chitosan derived from crab shell and corn starch at 4:1 by weight ratio (1.53%, w/v of total polymers), and 6.0% (w/v) beta-GP (C/S/GP system) exhibited the sharpest sol-gel transition at 37+/-2 degrees C. The C/S/GP hydrogel was gradually degraded by 67% within 56 days in PBS containing 0.02 mg/ml lysozyme. The presence of starch in the system increased the water absorption of the hydrogel when compared to the system without starch. SEM observation revealed to the interior structure of the C/S/GP hydrogel having interconnected pore structure (average pore size 26.4 microm) whereas the pore size of the hydrogel without starch was 19.8 microm. The hydrogel also showed an ability to maintain chondrocyte phenotype as shown by cell morphology and expression of type II collagen mRNA and protein. In vivo study revealed that the gel was formed rapidly and localized at the injection site.

  16. A Drosera-bioinspired hydrogel for catching and killing cancer cells

    OpenAIRE

    Shihui Li; Niancao Chen; Gaddes, Erin R.; Xiaolong Zhang; Cheng Dong; Yong Wang

    2015-01-01

    A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one fu...

  17. Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels

    OpenAIRE

    Duan, Bin; Hockaday, Laura A.; Kapetanovic, Edi; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Bioactive and biodegradable hydrogels that mimic the extracellular matrix and regulate valve interstitial cells (VIC) behavior are of great interest as three dimensional (3D) model systems for understanding mechanisms of valvular heart disease pathogenesis in vitro and the basis for regenerative templates for tissue engineering. However, the role of stiffness and adhesivity of hydrogels in VIC behavior remains poorly understood. This study reports synthesis of oxidized and methacrylated hyalu...

  18. Multilayer hydrogel coatings to combine hemocompatibility and antimicrobial activity.

    Science.gov (United States)

    Fischer, Marion; Vahdatzadeh, Maryam; Konradi, Rupert; Friedrichs, Jens; Maitz, Manfred F; Freudenberg, Uwe; Werner, Carsten

    2015-07-01

    While silver-loaded catheters are widely used to prevent early-onset catheter-related infections [1], long term antimicrobial protection of indwelling catheters remains to be achieved [2] and antiseptic functionalization of coatings often impairs their hemocompatibility characteristics. Therefore, this work aimed to capitalize on the antimicrobial properties of silver nanoparticles, incorporated in anticoagulant poly(ethylene glycol) (PEG)-heparin hydrogel coatings [3] on thermoplastic polyurethane materials. For prolonged antimicrobial activity, the silver-containing starPEG-heparin hydrogel layers were shielded with silver-free hydrogel layers of otherwise similar composition. The resulting multi-layered gel coatings showed long term antiseptic efficacy against Escherichia coli and Staphylococcus epidermidis strains in vitro, and similarly performed well when incubated with freshly drawn human whole blood with respect to hemolysis, platelet activation and plasmatic coagulation. The introduced hydrogel multilayer system thus offers a promising combination of hemocompatibility and long-term antiseptic capacity to meet an important clinical need.

  19. A Novel Aerosol Method for the Production of Hydrogel Particles

    Directory of Open Access Journals (Sweden)

    Diana Guzman-Villanueva

    2011-01-01

    Full Text Available A novel method of generating hydrogel particles for various applications including drug delivery purposes was developed. This method is based on the production of hydrogel particles from sprayed polymeric nano/microdroplets obtained by a nebulization process that is immediately followed by gelation in a crosslinking fluid. In this study, particle synthesis parameters such as type of nebulizer, type of crosslinker, air pressure, and polymer concentration were investigated for their impact on the mean particle size, swelling behavior, and morphology of the developed particles. Spherical alginate-based hydrogel particles with a mean particle size in the range from 842 to 886 nm were obtained. Using statistical analysis of the factorial design of experiment it was found that the main factors influencing the size and swelling values of the particles are the alginate concentration and the air pressure. Thus, it was demonstrated that the method described in the current study is promising for the generation of hydrogel particles and it constitutes a relatively simple and low-cost system.

  20. Preparation and characterisation of acrylamide/maleic acid hydrogel

    Directory of Open Access Journals (Sweden)

    Klinpituksa, P.

    2005-09-01

    Full Text Available Acrylamide/maleic acid hydrogel, a superabsorbent polymer, was prepared by free radical polymerization in aqueous solution of acrylamide (AAm and maleic acid (MA : monomer and comonomer, respectively. Potassium persulfate and N,N,N’,N’-tetramethylethylenediamine were used as an initiator system. Also, ethylene glycol dimethacrylate (EGDMA and N,N’-methylenebisacrylamide (MBA were used as crosslinkers. Different compositions of acrylamide, maleic acid and crosslinkers were employed. Water swelling, equilibrium water content and swelling power of the hydrogel formed were determined. The result showed that the swelling in water at equilibrium of hydrogels was in the range of 8,420-10,300% and 3,160- 3,560%, equilibrium water content was in the range of 0.9880-0.9902 and 0.9630-0.9727 and swelling power was in the range of 84-103 and 31-36 using 1%EGDMA and 1%MBA as crosslinkers, respectively. The diffusion of water into hydrogel followed non-Fickian character based on swelling power.

  1. Diels-Alder hydrogels with enhanced stability: First step toward controlled release of bevacizumab.

    Science.gov (United States)

    Kirchhof, Susanne; Gregoritza, Manuel; Messmann, Viktoria; Hammer, Nadine; Goepferich, Achim M; Brandl, Ferdinand P

    2015-10-01

    Eight-armed PEG was functionalized with furyl and maleimide groups (8armPEG20k-Fur and 8armPEG20k-Mal); degradable hydrogels were obtained by cross-linking via Diels-Alder chemistry. To increase the stability to degradation, the macromonomers were modified by introducing a hydrophobic 6-aminohexanoic acid spacer between PEG and the reactive end-groups (8armPEG20k-Ahx-Fur and 8armPEG20k-Ahx-Mal). In an alternative approach, the number of reactive groups per macromonomer was increased by branching the terminal ends of eight-armed PEG with lysine (Lys) and Ahx residues (8armPEG20k-Lys-Ahx-Fur2 and 8armPEG20k-Lys-Ahx-Mal2). The hydrolytic resistance of the synthesized macromonomers was determined by UV spectroscopy; the obtained hydrogels were characterized by rheology and degradation studies. The degradation time of 5% (w/v) 8armPEG20k-Ahx hydrogels (28days) was twice as long as the degradation time of 5% (w/v) 8armPEG20k hydrogels (14days); this is explained by increased hydrolytic resistance of the maleimide group. Using dendritic 8armPEG20k-Lys-Ahx macromonomers substantially increased the stability of the resulting hydrogels; degradation of 5% (w/v) 8armPEG20k-Lys-Ahx hydrogels occurred after 34 weeks. 8armPEG20k hydrogels had the largest mesh size of all tested hydrogels, while hydrogels made from dendritic 8armPEG20k-Lys-Ahx macromonomers showed the smallest value. To evaluate their potential for the controlled release of therapeutic antibodies, the hydrogels were loaded with bevacizumab. The incorporated bevacizumab was released over 10 days (8armPEG20k) and 42days (8armPEG20k-Ahx), respectively; release from 8armPEG20k-Lys-Ahx hydrogels was not completed after 105 days. In summary, we believe that 8armPEG20k-Ahx or 8armPEG20k-Lys-Ahx hydrogels could serve as controlled release system for therapeutic antibodies such as bevacizumab.

  2. Peptide hydrogelation triggered by enzymatic induced pH switch

    Science.gov (United States)

    Cheng, Wei; Li, Ying

    2016-07-01

    It remains challenging to develop methods that can precisely control the self-assembling kinetics and thermodynamics of peptide hydrogelators to achieve hydrogels with optimal properties. Here we report the hydrogelation of peptide hydrogelators by an enzymatically induced pH switch, which involves the combination of glucose oxidase and catalase with D-glucose as the substrate, in which both the gelation kinetics and thermodynamics can be controlled by the concentrations of D-glucose. This novel hydrogelation method could result in hydrogels with higher mechanical stability and lower hydrogelation concentrations. We further illustrate the application of this hydrogelation method to differentiate different D-glucose levels.

  3. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    Science.gov (United States)

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  4. Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel

    Science.gov (United States)

    Wang, Zheng; Zhang, Yeshun; Zhang, Jinxiang; Huang, Lei; Liu, Jia; Li, Yongkui; Zhang, Guozheng; Kundu, Subhas C.; Wang, Lin

    2014-11-01

    Sericin, a major component of silk, has a long history of being discarded as a waste during silk processing. The value of sericin for tissue engineering is underestimated and its potential application in regenerative medicine has just begun to be explored. Here we report the successful fabrication and characterization of a covalently-crosslinked 3D pure sericin hydrogel for delivery of cells and drugs. This hydrogel is injectable, permitting its implantation through minimally invasive approaches. Notably, this hydrogel is found to exhibit photoluminescence, enabling bioimaging and in vivo tracking. Moreover, this hydrogel system possesses excellent cell-adhesive capability, effectively promoting cell attachment, proliferation and long-term survival of various types of cells. Further, the sericin hydrogel releases bioactive reagents in a sustained manner. Additionally, this hydrogel demonstrates good elasticity, high porosity, and pH-dependent degradation dynamics, which are advantageous for this sericin hydrogel to serve as a delivery vehicle for cells and therapeutic drugs. With all these unique features, it is expected that this sericin hydrogel will have wide utility in the areas of tissue engineering and regenerative medicine.

  5. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Tan, Huaping, E-mail: hptan@njust.edu.cn [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing (China); Hu, Xiaohong [School of Material Engineering, Jinling Institute of Technology, Nanjing (China)

    2015-11-01

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion.

  6. Biodegradable hyaluronic acid hydrogels to control release of dexamethasone through aqueous Diels–Alder chemistry for adipose tissue engineering

    International Nuclear Information System (INIS)

    A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels–Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37 °C were studied. The results demonstrated that the aqueous Diels–Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. - Highlights: • A biodegradable hyaluronic acid hydrogel was crosslinked via aqueous Diels–Alder chemistry. • Dexamethasone was covalently immobilized into the hyaluronic acid hydrogel via aqueous Diels–Alder chemistry. • Dexamethasone could be released from the Diels–Alder hyaluronic acid hydrogel in a controlled fashion

  7. Graphene Oxide/Polyacrylamide/Aluminum Ion Cross-Linked Carboxymethyl Hemicellulose Nanocomposite Hydrogels with Very Tough and Elastic Properties.

    Science.gov (United States)

    Kong, Weiqing; Huang, Danyang; Xu, Guibin; Ren, Junli; Liu, Chuanfu; Zhao, Lihong; Sun, Runcang

    2016-06-01

    Development of high-strength hydrogels has recently attracted ever-increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al(3+) )-cross-linked carboxymethyl hemicellulose (Al-CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al-CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross-linking of Al(3+) . The nanocomposite hydrogels were characterized by means of FTIR, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray analysis (SEM-EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO3.5 /PAM/Al-CMH0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as-prepared GO/PAM/Al-CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug-delivery system applications. PMID:27062081

  8. Hydrogels for Engineering of Perfusable Vascular Networks.

    Science.gov (United States)

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S P; Machens, Hans-Günther; Schilling, Arndt F

    2015-07-14

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.

  9. Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation

    International Nuclear Information System (INIS)

    The present work describes the preparation of hydrogel based on cross-linked networks of poly (N-vinylpirrolidone), PVP, with polyethyleneglicol and agar with 90% water and PVP nancomposites with a synthetic nanoclay, Laponite XLG, for use as burn dressings. These systems were obtained in two ways: using gamma Co-60 and electron beam radiation. The gelation obtained dose was Dg= 1.72 kGy. The elastic modulus of hydrogel was independent of the method of irradiation. It was 0.39 MPa for the hydrogel irradiated with gamma Co-60 and 0.38 MPa for electron beam irradiation. The elastic modulus of the nanocomposite membrane was 1.25 MPa, three times higher. These results indicate that the PVP/Laponite XLG nanocomposite hydrogel membrane is the best choice for wound dressing applications due to its high water sorption capacity and its superior mechanical properties.

  10. Removal of Dyes from Aqueous Solutions Using Radiation Synthesized (2-Hydroxyethyl Methacrylate/Acrylic acid) Hydrogels

    International Nuclear Information System (INIS)

    Acrylic acid/2-hydroxyethyl methacrylate super absorbent hydrogels (AAc/ HEMA) were prepared by γ-radiation copolymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc). Characterization of AAc/HEMA hydrogel was done by FTIR, TGA, SEM and XRD. The swelling properties were studied as a function of time, ph and irradiation dose. The diffusion behavior of water into these hydrogels followed the Fickian character at all investigated irradiation doses. The adsorption of Direct Congo Red and Direct Blue dyes onto the AAc/ HEMA hydrogel was studied. Physico-chemical parameters like dye concentration, solution ph and temperature were varied to characterize the adsorption phenomenon. Experimental data were modeled by Freundlich isotherm. Thermodynamic parameters ( ΔHo, ΔGo and ΔSo ) were evaluated for the dyes adsorbent systems, which suggest that the adsorption process is a typical physical process and endothermic in nature

  11. Astrocytes alignment and reactivity on collagen hydrogels patterned with ECM proteins.

    Science.gov (United States)

    Hsiao, Tony W; Tresco, Patrick A; Hlady, Vladimir

    2015-01-01

    To modulate the surface properties of collagen and subsequent cell-surface interactions, a method was developed to transfer protein patterns from glass coverslips to collagen type I hydrogel surfaces. Two proteins and one proteoglycan found in central nervous system extracellular matrix as well as fibrinogen were patterned in stripes onto collagen hydrogel and astrocytes were cultured on these surfaces. The addition of the stripe protein patterns to hydrogels created astrocyte layers in which cells were aligned with underlying patterns and had reduced chondroitin sulfate expression compared to the cells grown on collagen alone. Protein patterns were covalently cross-linked to the collagen and stable over four days in culture with no visible cellular modifications. The present method can be adapted to transfer other types of protein patterns from glass coverslips to collagen hydrogels. PMID:25477179

  12. Kinetics analysis of volume phase transition of intelligent neutral thermo-sensitive hydrogels

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this work,utilizing the first law of thermodynamics and the Flory mean-field theory,the kinetic deformation studies concerning the volume phase transition of the neutral thermo-sensitive hydrogels were performed analytically.The hydrogel was assumed as a biphasic mixture medium in the framework of the continuum mixture theory.From the energy conservation of the thermodynamics system of the hydrogel,the governing equations for the kinetics of the nonlinear large deforma-tion were derived.The explicit analytical expressions of the effective stress tensor and the chemical potential of the fluid of the thermo-sensitive hydrogel PNIPA were also obtained from the Helmholtz free energy,which can model the steady-static volume phase transition quantitatively.

  13. Kinetics analysis of volume phase transition of intelligent neutral thermo-sensitive hydrogels

    Institute of Scientific and Technical Information of China (English)

    WANG XiaoGui; LI YiQuan

    2008-01-01

    In this work, utilizing the first law of thermodynamics and the FIory mean-field theory, the kinetic deformation studies concerning the volume phase transition of the neutral thermo-sensitive hydrogels were performed analytically. The hydrogel was assumed as a biphasic mixture medium in the framework of the continuum mixture theory. From the energy conservation of the thermodynamics system of the hydrogel, the governing equations for the kinetics of the nonlinear large deforma-tion were derived. The explicit analytical expressions of the effective stress tensor and the chemical potential of the fluid of the thermo-sensitive hydrogel PNIPA were also obtained from the Helmholtz free energy, which can model the steady-static volume phase transition quantitatively.

  14. Alginate-Collagen Fibril Composite Hydrogel

    OpenAIRE

    Mahmoud Baniasadi; Majid Minary-Jolandan

    2015-01-01

    We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of th...

  15. Thermoresponsive hydrogels in biomedical applications - a review

    OpenAIRE

    Klouda, Leda; Mikos, Antonios G.

    2007-01-01

    Environmentally responsive hydrogels have the ability to turn from solution to gel when a specific stimulus is applied. Thermoresponsive hydrogels utilize temperature change as the trigger that determines their gelling behavior without any additional external factor. These hydrogels have been interesting for biomedical uses as they can swell in situ under physiological conditions and provide the advantage of convenient administration. The scope of this paper is to review the aqueous polymer s...

  16. Laterally Sandwich-typed Hydrogel Columns with Liner Poly(N-isopropylacrylamide)Layer: Preparation, Swelling/ deswelling Kinetics and Drug Delivery Characteristics

    Institute of Scientific and Technical Information of China (English)

    LI Ying; XIAO Xincai

    2012-01-01

    A novel thermo-responsive hydrogel column,featured with both ends of linear poly(Nisopropylacrylamide) (PNIPAM) chains being grafted onto cross-linked PNIPAM chains,was reported.The laterally sandwich-typed hydrogel columns were fabricated by radical polymerization in a three-step process using a method of ice-melting synthesis.The initiating path,morphology and thermoresponsive characteristics of the prepared hydrogel columns were experimentally studied.The results show that the hydrogel column obtained by the initiator inside part has more quick swelling and deswelling rates responsing to temperature cycling than other hydrogels owing to linear PNIPAM chains to form supermacroporous structure.The proposed hydrogel structure provide a new mode of the phase transition behavior for thermo-sensitive "smart" or "intelligent" monodisperse micro-actuators,which is highly attractive for targeting drug delivery systems,chemical separations,and sensors and so on.

  17. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Barbu, Eugen; Tsibouklis, John [School of Pharmacy and Biomedical Sciences, University of Portsmouth, St Michael' s Building, White Swan Road, Portsmouth PO1 2DT (United Kingdom); Verestiuc, Liliana [Faculty of Medical Bioengineering, University of Medicine and Pharmacy ' Gr T Popa' , 9-13 Kogalniceanu Street, Iasi, 700454 (Romania); Iancu, Mihaela; Jatariu, Anca [Faculty of Chemical Engineering and Environmental Protection, Technical University' Gh Asachi' , Boulevard Mangeron, 71A, 700100, Iasi (Romania); Lungu, Adriana [Faculty of Applied Chemistry and Materials Science, Polytechnic University of Bucharest, Polizu Street 1-7, 011061, Bucharest (Romania)], E-mail: eugen@barbu@port.ac.uk

    2009-06-03

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  18. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate.

    Science.gov (United States)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation. PMID:19433871

  19. Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

    Science.gov (United States)

    Zhao, Xin; Lang, Qi; Yildirimer, Lara; Lin, Zhi Yuan; Cui, Wenguo; Annabi, Nasim; Ng, Kee Woei; Dokmeci, Mehmet R; Ghaemmaghami, Amir M; Khademhosseini, Ali

    2016-01-01

    Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insufficient and uncontrollable mechanical and degradation properties. In this study, a photocrosslinkable gelatin (i.e., gelatin methacrylamide (GelMA)) with tunable mechanical, degradation, and biological properties is used to engineer the epidermis for skin tissue engineering applications. The results reveal that the mechanical and degradation properties of the developed hydrogels can be readily modified by varying the hydrogel concentration, with elastic and compressive moduli tuned from a few kPa to a few hundred kPa, and the degradation times varied from a few days to several months. Additionally, hydrogels of all concentrations displayed excellent cell viability (>90%) with increasing cell adhesion and proliferation corresponding to increases in hydrogel concentrations. Furthermore, the hydrogels are found to support keratinocyte growth, differentiation, and stratification into a reconstructed multilayered epidermis with adequate barrier functions. The robust and tunable properties of GelMA hydrogels suggest that the keratinocyte laden hydrogels can be used as epidermal substitutes, wound dressings, or substrates to construct various in vitro skin models.

  20. Biological and mechanical implications of PEGylating proteins into hydrogel biomaterials.

    Science.gov (United States)

    Gonen-Wadmany, Maya; Goldshmid, Revital; Seliktar, Dror

    2011-09-01

    Protein PEGylation has been successfully applied in pharmaceuticals and more recently in biomaterials development for making bioactive and structurally versatile hydrogels. Despite many advantages in this regard, PEGylation of proteins is also known to alter biological activity and modify biophysical characteristics in ways that may be detrimental to cells. The aim of this study was to evaluate the relative loss of biological compatibility associated with PEGylating a fibrinogen precursor into a hydrogel scaffold, in comparison to thrombin cross-linked fibrin hydrogels. Specifically, we investigated the consequences of conjugating fibrinogen with linear polyethtylene glycol (PEG) polymer chains (10 kDa) on the ability to cultivate neonatal human foreskin fibroblasts (HFFs) in 3-D. For this purpose, thrombin cross-linked fibrin (TCL-Fib) and PEGylated fibrinogen (PEG-Fib) gels were prepared with HFFs and cultured for up to seven days. The benchmark biological compatibility test was based on a combined assessment of cellular morphology, proliferation, actin expression, and matrix metalloproteinase (MMP) expression in the 3-D culture systems. The results showed correlations between modulus and proteolytic biodegradation in both materials, but no correlation between the mechanical properties and the ability of HFFs to remodel the microenvironment. A slight reduction of actin, MMPs, and spindled morphology of the cells in the PEG-Fib hydrogels indicated that the PEGylation process altered the biological compatibility of the fibrin. Nevertheless, the overall benchmark performance of the two materials demonstrated that PEGylated fibrinogen hydrogels still retains much to the inherent biofunctionality of the fibrin precursor when used as a scaffold for 3-D cell cultivation. PMID:21669457

  1. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.

    -diagnostic calculation (ii) To simulate the climatic 3-dimensional circulation of Indian Ocean using the state of art sigma co-ordinate model. (iii) To study the sensitivity of Indian Ocean circulation to different wind fields (iv) To compare the model results...

  2. Reproducibility of a 3-dimensional gyroscope in measuring shoulder anteflexion and abduction

    NARCIS (Netherlands)

    Penning, L.I.F.; Guldemond, N.A.; De Bie, R.A.; Walenkamp, G.H.I.M.

    2012-01-01

    Background: Few studies have investigated the use of a 3-dimensional gyroscope for measuring the range of motion (ROM) in the impaired shoulder. Reproducibility of digital inclinometer and visual estimation is poor. This study aims to investigate the reproducibility of a tri axial gyroscope in measu

  3. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    Science.gov (United States)

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although…

  4. Is nonangiogenesis a novel pathway for cancer progression? A study using 3-dimensional tumour reconstructions

    OpenAIRE

    Adighibe, O; Micklem, K; Campo, L; Ferguson, M.; Harris, A; Pozos, R; Gatter, K; Pezzella, F.

    2006-01-01

    The nonangiogenic lung tumour is characterized by neoplastic cells co-opting the pre-existent vasculature and filling the alveoli space. 3-Dimensional reconstruction of the tumour reveals that this particular tumour progresses without neovascularization and there is no major destruction of the lung's architectural integrity.

  5. 3-Dimensional Cahn-Hilliard Equation with Concentration Dependent Mobility and Gradient Dependent Potential

    Institute of Scientific and Technical Information of China (English)

    Rui HUANG; Yang CAO

    2011-01-01

    In this paper we investigate the initial boundary value problem of Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential. By the energy method and the theory of Campanato spaces, we prove the existence and the uniqueness of classical solutions in 3-dimensional space.

  6. Full 3-dimensional digital workflow for multicomponent dental appliances : A proof of concept

    NARCIS (Netherlands)

    van der Meer, W. Joerd; Vissink, Arjan; Ren, Yijin

    2016-01-01

    BACKGROUND: The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. METHODS: The authors scanned a volunteer's dentition with an intraoral scanner (

  7. An application of the 3-dimensional q-deformed harmonic oscillator to the nuclear shell model

    CERN Document Server

    Raychev, P P; Lo-Iudice, N; Terziev, P A

    1998-01-01

    An analysis of the construction of a q-deformed version of the 3-dimensional harmonic oscillator, which is based on the application of q-deformed algebras, is presented. The results together with their applicability to the shell model are compared with the predictions of the modified harmonic oscillator.

  8. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice✩

    Science.gov (United States)

    Harvey, Danielle J.; Weng, Qian; Beckett, Laurel A.

    2010-01-01

    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented. PMID:20436940

  9. Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.

    Science.gov (United States)

    Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin

    2013-12-01

    Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency. PMID:24649670

  10. Albedo and heat transport in 3-dimensional model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-01-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion yr ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun problem" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-dimensional model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterisation of the ice-albedo feedback for 1-dimensional model simulations of the early Archean and thus the faint young Sun problem.

  11. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles.

    Science.gov (United States)

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin

    2013-07-01

    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  12. A Drosera-bioinspired hydrogel for catching and killing cancer cells.

    Science.gov (United States)

    Li, Shihui; Chen, Niancao; Gaddes, Erin R; Zhang, Xiaolong; Dong, Cheng; Wang, Yong

    2015-01-01

    A variety of bioinspired materials have been successfully synthesized to mimic the sophisticated structures or functions of biological systems. However, it is still challenging to develop materials with multiple functions that can be performed synergistically or sequentially. The purpose of this work was to demonstrate a novel bioinspired hydrogel that can interact with cancer cells, functionally similar to Drosera in catching and killing prey. This hydrogel had two layers with the top one functionalized with oligonucleotide aptamers and the bottom one functionalized with double-stranded DNA. The results show that the top hydrogel layer was able to catch target cells with high efficiency and specificity, and that the bottom hydrogel layer could sequester doxorubicin (Dox) for sustained drug release. Importantly, the released Dox could kill 90% of the cells after 1-h residence of the cells on the hydrogel. After the cell release, this bifunctional hydrogel could be regenerated for continuous cell catching and killing. Therefore, the data presented in this study has successfully demonstrated the potential of developing a material system with the functions of attracting, catching and killing diseased cells (e.g., circulating tumor cells) or even invading microorganisms (e.g., bacteria). PMID:26396063

  13. Synthesis and Characterization of Chitosan-Albumin Conjugates as pH-Sensitive Biodegradable Hydrogels

    Institute of Scientific and Technical Information of China (English)

    GUO Jin-shan; LI Jian-zheng; JING Xia-bin; CHEN Xue-si; HUANG Yu-bin

    2011-01-01

    A new kind of biodegradable pH-sensitive drug delivery system was developed via chitosan-albumin conjugate hydrogel. Through changing the feeding modes of reactants, two types of hydrogels(comb-type and reticular-type) were synthesized by amidation reactions between 6-O-succinoylated N-phthaloyl chitosan and albumin. The structures and morphologies of the hydrogels were characterized by SEM. And their water swelling capacity, drug loading and releasing properties at different pH values were also investigated. It was found that the comb-type of hydrogels with looser space construction had better water swelling ratio(more than 400% of its original mass) than the reticular-type of ones did(about 180% of its original mass). In vitro release experiments of Rifampicin show that the hydrogels provided the controlled release of the entrapped drug for more than 50 h. The drug release rates of both types of hydrogels under acidic condition were lower than those under neutral or basic condition. The introduction of albumin not only improved the hydrophilicity of chitosan, but also provided the possibility of the carrier system combining other biologically active materials more easily to fulfill the delivery and therapy functions.

  14. New cellulose–lignin hydrogels and their application in controlled release of polyphenols

    International Nuclear Information System (INIS)

    Novel superabsorbant cellulose–lignin hydrogels (CL) were prepared by a new two-step procedure consisting in dissolving cellulose in an alkaline solution with further mixing with lignin, followed by the chemical crosslinking with epichlorohydrin. The crosslinking occurrence was verified by Fourier Transform Infrared spectroscopy (FT-IR). The effect of the structure features of cellulose–lignin hydrogels on their dehydration heat was evaluated by Differential Scanning Calorimetry (DSC). The Scanning Electron Microscopy (SEM) images reveal some morphological aspects of the hydrogels. The degree as well as the rate of swelling in a mixture of water:ethanol = 19:1 were estimated. The possible application of these hydrogels as controlled release systems was tested. Polyphenols known as having a wide range of biological effects were selected to be incorporated in such hydrogels by an optimal procedure. The extract of grapes seeds from the Chambourcin type was used as a source of polyphenols (PF). The amount of the incorporated polyphenols was estimated by UV–VIS measurements. Characterization of the hydrogels containing polyphenols was performed by FTIR spectroscopy. Some parameters were estimated based on the registered spectra, as H-bond energy (EH), the asymmetric index (a/b) and the enthalpy of H-bond formation (ΔH). The modifications of the thermal behavior and morphology induced by the presence of the polyphenols in hydrogels were highlighted by DSC and SEM, respectively. The release of polyphenols from CL hydrogels depended on the lignin content from matrices, as assessed by spectral studies. Both loading with polyphenols and their release can be controlled by the composition of the hydrogels. The kinetic of polyphenols release was studied. - Highlights: ► A unique method to obtain cellulose–lignin hydrogels. ► The application of these hydrogels as controlled release systems was tested. ► Polyphenols from grapes seed as active ingredient.

  15. New cellulose-lignin hydrogels and their application in controlled release of polyphenols

    Energy Technology Data Exchange (ETDEWEB)

    Ciolacu, Diana, E-mail: dciolacu@icmpp.ro; Oprea, Ana Maria; Anghel, Narcis; Cazacu, Georgeta; Cazacu, Maria

    2012-04-01

    Novel superabsorbant cellulose-lignin hydrogels (CL) were prepared by a new two-step procedure consisting in dissolving cellulose in an alkaline solution with further mixing with lignin, followed by the chemical crosslinking with epichlorohydrin. The crosslinking occurrence was verified by Fourier Transform Infrared spectroscopy (FT-IR). The effect of the structure features of cellulose-lignin hydrogels on their dehydration heat was evaluated by Differential Scanning Calorimetry (DSC). The Scanning Electron Microscopy (SEM) images reveal some morphological aspects of the hydrogels. The degree as well as the rate of swelling in a mixture of water:ethanol = 19:1 were estimated. The possible application of these hydrogels as controlled release systems was tested. Polyphenols known as having a wide range of biological effects were selected to be incorporated in such hydrogels by an optimal procedure. The extract of grapes seeds from the Chambourcin type was used as a source of polyphenols (PF). The amount of the incorporated polyphenols was estimated by UV-VIS measurements. Characterization of the hydrogels containing polyphenols was performed by FTIR spectroscopy. Some parameters were estimated based on the registered spectra, as H-bond energy (E{sub H}), the asymmetric index (a/b) and the enthalpy of H-bond formation ({Delta}H). The modifications of the thermal behavior and morphology induced by the presence of the polyphenols in hydrogels were highlighted by DSC and SEM, respectively. The release of polyphenols from CL hydrogels depended on the lignin content from matrices, as assessed by spectral studies. Both loading with polyphenols and their release can be controlled by the composition of the hydrogels. The kinetic of polyphenols release was studied. - Highlights: Black-Right-Pointing-Pointer A unique method to obtain cellulose-lignin hydrogels. Black-Right-Pointing-Pointer The application of these hydrogels as controlled release systems was tested. Black

  16. Estimating 3-Dimensional Structure of Tropical Forests from Radar Interferometry / Estimativa da Estrutura 3-Dimensional das Florestas Tropicais Através de Interferometria de Radar

    Directory of Open Access Journals (Sweden)

    Robert Treuhaft

    2006-10-01

    Full Text Available This paper describes the retrieval of 3-dimensional vegetation density profiles from interferometric synthetic aperture radar (InSAR using physical models. InSAR’s sensitivity to vertical structure is generally regarded as less direct and more difficult to understand than that of lidar. But InSAR’s coverage is superior to that of lidar, suggesting InSAR is more promising as an important component of a global 3-dimensional forest monitoring technique. The goal of this paper is to introduce, simplify and demystify the use of simple physical models to understand InSAR. A general equation expressing the InSAR observation in terms of density is described heuristically, along with the approximations in its development. The information content of the equation leads to the estimation of density parameters. Preliminary results are shown from a multibaseline C-band (wavelength=0.056 m vertical-polarization interferometer, realized with AirSAR flown at multiple altitudes over primary, secondary, and selectively logged tropical forests, as well as abandoned pastures at La Selva Biological Station in Costa Rica.

  17. Properties and in vitro drug release of hyaluronic acid-hydroxyethyl cellulose hydrogels for transdermal delivery of isoliquiritigenin.

    Science.gov (United States)

    Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam

    2016-08-20

    In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. PMID:27178954

  18. Smart self-assembled hybrid hydrogel biomaterials.

    Science.gov (United States)

    Kopeček, Jindřich; Yang, Jiyuan

    2012-07-23

    Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.

  19. Bundle Formation in Biomimetic Hydrogels.

    Science.gov (United States)

    Jaspers, Maarten; Pape, A C H; Voets, Ilja K; Rowan, Alan E; Portale, Giuseppe; Kouwer, Paul H J

    2016-08-01

    Bundling of single polymer chains is a crucial process in the formation of biopolymer network gels that make up the extracellular matrix and the cytoskeleton. This bundled architecture leads to gels with distinctive properties, including a large-pore-size gel formation at very low concentrations and mechanical responsiveness through nonlinear mechanics, properties that are rarely observed in synthetic hydrogels. Using small-angle X-ray scattering (SAXS), we study the bundle formation and hydrogelation process of polyisocyanide gels, a synthetic material that uniquely mimics the structure and mechanics of biogels. We show how the structure of the material changes at the (thermally induced) gelation point and how factors such as concentration and polymer length determine the architecture, and with that, the mechanical properties. The correlation of the gel mechanics and the structural parameters obtained from SAXS experiments is essential in the design of future (synthetic) mimics of biopolymer networks.

  20. Fewer Bacteria Adhere to Softer Hydrogels.

    Science.gov (United States)

    Kolewe, Kristopher W; Peyton, Shelly R; Schiffman, Jessica D

    2015-09-01

    Clinically, biofilm-associated infections commonly form on intravascular catheters and other hydrogel surfaces. The overuse of antibiotics to treat these infections has led to the spread of antibiotic resistance and underscores the importance of developing alternative strategies that delay the onset of biofilm formation. Previously, it has been reported that during surface contact, bacteria can detect surfaces through subtle changes in the function of their motors. However, how the stiffness of a polymer hydrogel influences the initial attachment of bacteria is unknown. Systematically, we investigated poly(ethylene glycol) dimethacrylate (PEGDMA) and agar hydrogels that were 20 times thicker than the cumulative size of bacterial cell appendages, as a function of Young's moduli. Soft (44.05-308.5 kPa), intermediate (1495-2877 kPa), and stiff (5152-6489 kPa) hydrogels were synthesized. Escherichia coli and Staphylococcus aureus attachment onto the hydrogels was analyzed using confocal microscopy after 2 and 24 h incubation periods. Independent of hydrogel chemistry and incubation time, E. coli and S. aureus attachment correlated positively to increasing hydrogel stiffness. For example, after a 24 h incubation period, there were 52 and 82% fewer E. coli adhered to soft PEGDMA hydrogels than to the intermediate and stiff PEGDMA hydrogels, respectively. A 62 and 79% reduction in the area coverage by the Gram-positive microbe S. aureus occurred after 24 h incubation on the soft versus intermediate and stiff PEGDMA hydrogels. We suggest that hydrogel stiffness is an easily tunable variable that could potentially be used synergistically with traditional antimicrobial strategies to reduce early bacterial adhesion and therefore the occurrence of biofilm-associated infections.

  1. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    International Nuclear Information System (INIS)

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis

  2. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Lei; Yao, Yongchang [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Wang, Dong-an, E-mail: DAWang@ntu.edu.sg [National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457 (Singapore); Chen, Xiaofeng, E-mail: chenxf@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China)

    2014-01-01

    In our previous work, a novel microcavitary hydrogel was proven to be effective for proliferation of chondrocytes and maintenance of chondrocytic phenotype. In present work, we further investigated whether the size of microcavity would affect the growth and the function of chondrocytes. By changing the stirring rate, gelatin microspheres in different sizes including small size (80–120 μm), middle size (150–200 μm) and large size (250–300 μm) were prepared. And then porcine chondrocytes were encapsulated into alginate hydrogel with various sizes of gelatin microspheres. Cell Counting Kit-8 (CCK-8), Live/dead staining and real-time PCR were used to analyze the effect of the pore size on cell proliferation and expression of specific chondrocytic genes. According to all the data, cells cultivated in microcavitary hydrogel, especially in small size, had preferable abilities of proliferation and higher expression of cartilaginous markers including type II collagen, aggrecan and cartilage oligomeric matrix protein (COMP). Furthermore, it was shown by western blot assay that the culture of chondrocytes in microcavitary hydrogel could improve the proliferation of cells potentially by inducing the Erk1/2-MAPK pathway. Taken together, this study demonstrated that chondrocytes favored microcavitary alginate hydrogel with pore size within the range of 80–120 μm for better growth and ECM synthesis, in which Erk1/2 pathway was involved. This culture system would be promising for cartilage tissue engineering. - Highlights: • A novel model with microcavitary structure was set up to study the interaction between cells and materials. • Microcavitary alginate hydrogel could enhance the proliferation of chondrocytes and promote the expression of cartilaginous genes as compared with plain alginate hydrogel. • Cells in microcavitary alginate hydrogel with pore size within the range of 80–120 μm were capable of better growth and ECM synthesis.

  3. Bioresorption mechanisms of chitosan physical hydrogels: A scanning electron microscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Malaise, Sébastien, E-mail: sebastien.malaise@gmail.com [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France); Rami, Lila [Université de Bordeaux, Bordeaux 33000 (France); Inserm U1026, Bioingénierie Tissulaire, Bordeaux 33000 (France); Montembault, Alexandra; Alcouffe, Pierre [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France); Burdin, Béatrice [Université de Lyon, Université Claude Bernard Lyon 1, Centre Technologique des Microstructure, 69622 Villeurbanne Cedex (France); Bordenave, Laurence [Université de Bordeaux, Bordeaux 33000 (France); Inserm U1026, Bioingénierie Tissulaire, Bordeaux 33000 (France); CHU de Bordeaux, CIC-IT Biomaterials, F-33000 Bordeaux (France); Delmond, Samantha [CHU de Bordeaux, CIC-IT Biomaterials, F-33000 Bordeaux (France); David, Laurent [Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP-UMR 5223), 15 Boulevard Latarjet, 69622 Villeurbanne Cedex (France)

    2014-09-01

    Tissue-engineered biodegradable medical devices are widely studied and systems must present suitable balance between versatility and elaboration simplicity. In this work, we aim at illustrating that such equilibrium can be found by processing chitosan physical hydrogels without external cross-linker. Chitosan concentration, degree of acetylation, solvent composition, and neutralization route were modulated in order to obtain hydrogels exhibiting different physico-chemical properties. The resulting in vivo biological response was investigated by scanning electron microscopy. “Soft” hydrogels were obtained from chitosan of high degree of acetylation (35%) and by the neutralization with gaseous ammonia of a chitosan acetate aqueous solutions presenting low polymer concentration (Cp = 1.6% w/w). “Harder” hydrogels were obtained from chitosan with lower degree of acetylation (5%) and after neutralization in sodium hydroxide bath (1 M) of hydro-alcoholic chitosan solutions (50/50 w/w water/1,2-propanediol) with a polymer concentration of 2.5% w/w. Soft and hard hydrogels exhibited bioresorption times from below 10 days to higher than 60 days, respectively. We also evidenced that cell colonization and neo-vascularization mechanisms depend on the hydrogel-aggregated structure that is controlled by elaboration conditions and possibly in relation with mechanical properties. Specific processing conditions induced micron-range capillary formation, which can be assimilated to colonization channels, also acting on the resorption scenario. - Highlights: • We elaborated physical chitosan hydrogels presenting tuneable biological properties. • Cell colonization mechanism depends on biological and mechanical hydrogel properties. • Increasing the degree of acetylation will reduce the bioresorption time. • Capillaries played a role of cell colonization pathways.

  4. Chondroitin Sulfate Glycosaminoglycan Hydrogels Create Endogenous Niches for Neural Stem Cells.

    Science.gov (United States)

    Karumbaiah, Lohitash; Enam, Syed Faaiz; Brown, Ashley C; Saxena, Tarun; Betancur, Martha I; Barker, Thomas H; Bellamkonda, Ravi V

    2015-12-16

    Neural stem cells (NSCs) possess great potential for neural tissue repair after traumatic injuries to the central nervous system (CNS). However, poor survival and self-renewal of NSCs after injury severely limits its therapeutic potential. Sulfated chondroitin sulfate glycosaminoglycans (CS-GAGs) linked to CS proteoglycans (CSPGs) in the brain extracellular matrix (ECM) have the ability to bind and potentiate trophic factor efficacy, and promote NSC self-renewal in vivo. In this study, we investigated the potential of CS-GAG hydrogels composed of monosulfated CS-4 (CS-A), CS-6 (CS-C), and disulfated CS-4,6 (CS-E) CS-GAGs as NSC carriers, and their ability to create endogenous niches by enriching specific trophic factors to support NSC self-renewal. We demonstrate that CS-GAG hydrogel scaffolds showed minimal swelling and degradation over a period of 15 days in vitro, absorbing only 6.5 ± 0.019% of their initial weight, and showing no significant loss of mass during this period. Trophic factors FGF-2, BDNF, and IL10 bound with high affinity to CS-GAGs, and were significantly (p hydrogels when compared to unsulfated hyaluronic acid (HA) hydrogels. Dissociated rat subventricular zone (SVZ) NSCs when encapsulated in CS-GAG hydrogels demonstrated ∼88.5 ± 6.1% cell viability in vitro. Finally, rat neurospheres in CS-GAG hydrogels conditioned with the mitogen FGF-2 demonstrated significantly (p hydrogels. Taken together, these findings demonstrate the ability of CS-GAG based hydrogels to regulate NSC self-renewal, and facilitate growth factor enrichment locally.

  5. Bioresorption mechanisms of chitosan physical hydrogels: A scanning electron microscopy study

    International Nuclear Information System (INIS)

    Tissue-engineered biodegradable medical devices are widely studied and systems must present suitable balance between versatility and elaboration simplicity. In this work, we aim at illustrating that such equilibrium can be found by processing chitosan physical hydrogels without external cross-linker. Chitosan concentration, degree of acetylation, solvent composition, and neutralization route were modulated in order to obtain hydrogels exhibiting different physico-chemical properties. The resulting in vivo biological response was investigated by scanning electron microscopy. “Soft” hydrogels were obtained from chitosan of high degree of acetylation (35%) and by the neutralization with gaseous ammonia of a chitosan acetate aqueous solutions presenting low polymer concentration (Cp = 1.6% w/w). “Harder” hydrogels were obtained from chitosan with lower degree of acetylation (5%) and after neutralization in sodium hydroxide bath (1 M) of hydro-alcoholic chitosan solutions (50/50 w/w water/1,2-propanediol) with a polymer concentration of 2.5% w/w. Soft and hard hydrogels exhibited bioresorption times from below 10 days to higher than 60 days, respectively. We also evidenced that cell colonization and neo-vascularization mechanisms depend on the hydrogel-aggregated structure that is controlled by elaboration conditions and possibly in relation with mechanical properties. Specific processing conditions induced micron-range capillary formation, which can be assimilated to colonization channels, also acting on the resorption scenario. - Highlights: • We elaborated physical chitosan hydrogels presenting tuneable biological properties. • Cell colonization mechanism depends on biological and mechanical hydrogel properties. • Increasing the degree of acetylation will reduce the bioresorption time. • Capillaries played a role of cell colonization pathways

  6. Synthesis and properties of P(NIPA-co-NVP)-clay hydrogel by radiation polymerization

    International Nuclear Information System (INIS)

    Polymeric hydrogels are unique materials that can absorb and retain large amounts of water. The cross-linking of polymer chain makes them insoluble, soft and elastic. They are stimuli-responsive, displaying phase transitions in response to small changes in temperature, pH, electric field and light. The temperature-sensitive hydrogels have potential applications in gel-based separation processes and in biomedicine, e.g., preparation of drug delivery systems and separation of cells. Thermo-sensitive character of poly (N-isopropylacrylamide) (NIPAm) hydrogels shrinking or swelling below or above lower critical solution temperature (LCST) has widely been investigated in recent years. However, some of their potential applications are hindered by their low mechanical strength, low swelling ratio, bad biocompatibility and low purity, owing to the use of catalysts or additives in chemosynthesis. Liang synthesized clay/PNIPAm composite hydrogel to improve its mechanical strength. In this work, hydrogels of P (NIPA-co-NVP)-Clay were synthesized by 60Co γ-ray irradiation. Different thermo-sensitive hydrogels were made under different experimental conditions such as dose, dose rate, monomer concentration, monomer ratio and content of clay. X-ray diffraction shows that the layer distance of Na-clay is changed from 1.6nm to 2.7nm because Na-clay pieces can be intercalated or exfoliated by HTMAB, and P(NIPA-co-NVP) -clay pieces is 3.4nm. The swelling property tests show that the LCST of PNIPA is 32 degree C, the LCST of P(NIPA-co-NVP) is higher than PNIPA. With the increase of NVP content, LCST is higher. As the ratio of NIPA/NVP is 95/5, hydrogel shows the best swelling property and LCST is 37 degree C. LCST of P(NIPA-co-NVP)-clay Hydrogel is not changed, but the strength and swelling properties are better. (authors)

  7. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Sang Gyu, E-mail: sg.ju@samsung.com [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Shin, Dongho; Lee, Se Byeong [Proton Therapy Center, National Cancer Center, Gyeonggi-do (Korea, Republic of)

    2014-02-01

    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  8. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing.

    Science.gov (United States)

    Namazi, Hassan; Rakhshaei, Rasul; Hamishehkar, Hamed; Kafil, Hossein Samadi

    2016-04-01

    Existing wound dressings have disadvantages such as lack of antibacterial activity, insufficient oxygen and water vapor permeability, and poor mechanical properties. Hydrogel-based wound dressings swell several times their dry volume and would be helpful to absorb wound exudates and afford a cooling sensation and a moisture environment. To overcome these hassles, a novel antibiotic-eluting nanocomposite hydrogel was designed via incorporation of mesoporous silica MCM-41 as a nano drug carrier into carboxymethylcellulose hydrogel. Tetracycline and methylene blue as antibacterial agents were loaded to the system and showed different release profiles. The prepared nanocomposite hydrogel was characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), UV-vis spectroscopy, and scanning electron microscopy (SEM). The prepared nanocomposite hydrogels exhibited an enhanced in vitro swelling, erosion, water vapor and oxygen permeability, and antimicrobial activity. This could effectively increase the time intervals needed to exchange the bandage. The obtained data strongly encourage the use of these nanocomposite hydrogels as wound dressing material. PMID:26740467

  9. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    International Nuclear Information System (INIS)

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834x10-6 and 1323x10-6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes

  10. Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine.

    Science.gov (United States)

    Nguyen, Minh Khanh; Alsberg, Eben

    2014-07-01

    Polymer hydrogels have been widely explored as therapeutic delivery matrices because of their ability to present sustained, localized and controlled release of bioactive factors. Bioactive factor delivery from injectable biopolymer hydrogels provides a versatile approach to treat a wide variety of diseases, to direct cell function and to enhance tissue regeneration. The innovative development and modification of both natural-(e.g., alginate (ALG), chitosan, hyaluronic acid (HA), gelatin, heparin (HEP), etc.) and synthetic-(e.g., polyesters, polyethyleneimine (PEI), etc.) based polymers has resulted in a variety of approaches to design drug delivery hydrogel systems from which loaded therapeutics are released. This review presents the state-of-the-art in a wide range of hydrogels that are formed though self-assembly of polymers and peptides, chemical crosslinking, ionic crosslinking and biomolecule recognition. Hydrogel design for bioactive factor delivery is the focus of the first section. The second section then thoroughly discusses release strategies of payloads from hydrogels for therapeutic medicine, such as physical incorporation, covalent tethering, affinity interactions, on demand release and/or use of hybrid polymer scaffolds, with an emphasis on the last 5 years. PMID:25242831

  11. Development and characterization of a naturally derived lung extracellular matrix hydrogel.

    Science.gov (United States)

    Pouliot, Robert A; Link, Patrick A; Mikhaiel, Nabil S; Schneck, Matthew B; Valentine, Michael S; Kamga Gninzeko, Franck J; Herbert, Joseph A; Sakagami, Masahiro; Heise, Rebecca L

    2016-08-01

    The complexity and rapid clearance mechanisms of lung tissue make it difficult to develop effective treatments for many chronic pathologies. We are investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system. The main objectives of this study include effective decellularization of porcine lung tissue, development of a hydrogel from the porcine ECM, and characterization of the material's composition, mechanical properties, and ability to support cellular growth. Our evaluation of the decellularized tissue indicated successful removal of cellular material and immunogenic remnants in the ECM. The self-assembly of the lung ECM hydrogel was rapid, reaching maximum modulus values within 3 min at 37°C. Rheological characterization showed the lung ECM hydrogel to have a concentration dependent storage modulus between 15 and 60 Pa. The purpose of this study was to evaluate our novel ECM derived hydrogel and measure its ability to support 3D culture of MSCs in vitro and in vivo delivery of MSCs. Our in vitro experiments using human mesenchymal stem cells demonstrated our novel ECM hydrogel's ability to enhance cellular attachment and viability. Our in vivo experiments demonstrated that rat MSC delivery in pre-gel solution significantly increased cell retention in the lung over 24 h in an emphysema rat model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1922-1935, 2016. PMID:27012815

  12. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel.

    Science.gov (United States)

    Yu, Dehong; Sun, Changling; Zheng, Zhaozhu; Wang, Xueling; Chen, Dongye; Wu, Hao; Wang, Xiaoqin; Shi, Fuxin

    2016-04-30

    Minimally invasive delivery and sustained release of therapeutics to the inner ear are of importance to the medical treatment of inner ear disease. In this study, the injectable silk fibroin-polyethylene glycol (Silk-PEG) hydrogel was investigated as a drug delivery carrier to deliver poorly soluble micronized dexamethasone (mDEX) to the inner ear of guinea pigs. Encapsulation of mDEX with a loading up to 5% (w/v) did not significantly change the silk gelation time, and mDEX were evenly distributed in the PEG-Silk hydrogel as visualized by SEM. The loading of mDEX in Silk-PEG hydrogel largely influenced in vitro drug release kinetics. The optimized Silk-PEG-mDEX hydrogel (2.5% w/v loading, in situ-forming,10μl) was administered directly onto the round window membrane of guinea pigs. The DEX concentration in perilymph maintained above 100ng/ml for at least 10 days for the Silk-PEG formulation while less than 12h for the control sample of free mDEX. Minimal systemic exposure was achieved with low DEX concentrations (scala taympani. The Silk-PEG hydrogel completely degraded in 21 days. Thus, the injectable PEG-Silk hydrogel is an effective and safe vehicle for inner ear delivery and sustained release of glucocorticoid. PMID:26972377

  13. Interfacial thiol-ene photo-click reactions for forming multilayer hydrogels

    Science.gov (United States)

    Shih, Han; Fraser, Andrew K.; Lin, Chien-Chi

    2014-01-01

    Interfacial visible light-mediated thiol-ene photo-click reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a non-cleavage type photoinitiator eosin-Y on visible light-mediated thiol-ene photopolymerization was first characterized using in situ photo-rheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using UV/Vis spectrometry. It was determined that eosin-Y was able to re-initiate thiol-ene photo-click reaction even after light exposure. Due to its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from pre-formed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration. PMID:23384151

  14. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels.

    Science.gov (United States)

    Yue, Kan; Trujillo-de Santiago, Grissel; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali

    2015-12-01

    Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of tissue engineering applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental cell research, cell signaling, drug and gene delivery, and bio-sensing.

  15. Localized Co-delivery of Doxorubicin, Cisplatin, and Methotrexate by Thermosensitive Hydrogels for Enhanced Osteosarcoma Treatment.

    Science.gov (United States)

    Ma, Hecheng; He, Chaoliang; Cheng, Yilong; Yang, Zhiming; Zang, Junting; Liu, Jianguo; Chen, Xuesi

    2015-12-16

    Localized cancer treatments with combination drugs have recently emerged as crucial approaches for effective inhibition of tumor growth and reoccurrence. In this study, we present a new strategy for the osteosarcoma treatment by localized co-delivery of multiple drugs, including doxorubicin (DOX), cisplatin (CDDP) and methotraxate (MTX), using thermosensitive PLGA-PEG-PLGA hydrogels. The release profiles of the drugs from the hydrogels were investigated in vitro. It was found that the multidrug coloaded hydrogels exhibited synergistic effects on cytotoxicity against osteosarcoma Saos-2 and MG-63 cells in vitro. After a single peritumoral injection of the drug-loaded hydrogels into nude mice bearing human osteosarcoma Saos-2 xenografts, the hydrogels coloaded with DOX, CDDP, and MTX displayed the highest tumor suppression efficacy in vivo for up to 16 days, as well as led to enhanced tumor apoptosis and increased regulation of the expressions of apoptosis-related genes. Moreover, the monitoring on the mice body change and the ex vivo histological analysis of the key organs indicated that the localized treatments caused less systemic toxicity and no obvious damage to the normal organs. Therefore, the approach of localized co-delivery of DOX, CDDP, and MTX by the thermosensitive hydrogels may be a promising approach for enhanced osteosarcoma treatment.

  16. Rapid Self-Integrating, Injectable Hydrogel for Tissue Complex Regeneration.

    Science.gov (United States)

    Hou, Sen; Wang, Xuefei; Park, Sean; Jin, Xiaobing; Ma, Peter X

    2015-07-15

    A novel rapid self-integrating, injectable, and bioerodible hydrogel is developed for bone-cartilage tissue complex regeneration. The hydrogels are able to self-integrate to form various structures, as can be seen after dying some hydrogel disks pink with rodamine. This hydrogel is demonstrated to engineer cartilage-bone complex.

  17. Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties.

    Science.gov (United States)

    Cao, Bin; Tang, Qiong; Li, Linlin; Humble, Jayson; Wu, Haiyan; Liu, Lingyun; Cheng, Gang

    2013-08-01

    New switchable hydrogels are developed. Under acidic conditions, hydrogels undergo self-cyclization and can catch and kill bacteria. Under neutral/basic conditions, hydrogels undergo ring-opening and can release killed bacterial cells and resist protein adsorption and bacterial attachment. Smart hydrogels also show a dramatically improved mechanical property, which is highly desired for biomedical applications.

  18. Evaluation of Photocrosslinked Lutrol Hydrogel for Tissue Printing Applications

    NARCIS (Netherlands)

    Fedorovich, Natalja E.; Swennen, Ives; Girones, Jordi; Moroni, Lorenzo; Blitterswijk, van Clemens A.; Schacht, Etienne; Alblas, Jacqueline; Dhert, Wouter J.A.

    2009-01-01

    Application of hydrogels in tissue engineering and innovative strategies such as organ printing, which is based on layered 3D deposition of cell-laden hydrogels, requires design of novel hydrogel matrices. Hydrogel demands for 3D printing include: 1) preservation of the printed shape after the depos

  19. Structure-property-function relationships in triple helical collagen hydrogels

    CERN Document Server

    Tronci, Giuseppe; Russell, Stephen J; Wood, David J

    2012-01-01

    In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (~ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content...

  20. Photopatterning of hydrogel microarryas in closed microchips

    NARCIS (Netherlands)

    Gumuscu, Burcu; Bomer, Johan G.; Berg, van den Albert; Eijkel, Jan C.T.

    2015-01-01

    To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip mainta

  1. Hydrogels with Micellar Hydrophobic (Nano)Domains

    OpenAIRE

    Pekař, Miloslav

    2015-01-01

    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  2. Hydrogels with micellar hydrophobic (nano)domains

    OpenAIRE

    Miloslav ePekař

    2015-01-01

    Hydrogels containing hydrophobic domains or nanodomains, especially of the micellar type, are reviewed. Examples of the reasons for introducing hydrophobic domains into hydrophilic gels are given; typology of these materials is introduced. Synthesis routes are exemplified and properties of a variety of such hydrogels in relation with their intended applications are described. Future research needs are identified briefly.

  3. Rheological studies of thermosensitive triblock copolymer hydrogels

    NARCIS (Netherlands)

    Vermonden, T.; Besseling, N.A.M.; Steenbergen, van M.J.; Hennink, W.E.

    2006-01-01

    Hydrogel formation by physical cross-linking is a developing area of research toward materials suitable for pharmaceutical and biomedical applications. Polymers exhibiting lower critical solution temperature (LCST) behavior in aqueous solution are used in this study to prepare hydrogels. Four triblo

  4. Radiation processing of cassava starch hydrogel

    International Nuclear Information System (INIS)

    This paper consists of two topics on cassava starch (CS). The first paper deals with radiation-induced graft polymerization of 1-vinyl-2-pyrrolidinone (VP) onto CS. The results from PVP -grafted-starch were subsequently compared with those of PVP hydrogels and PVP-blended-starch hydrogels. It was found that the PVP-grafted-starch hydrogels, with gel fraction higher than 80%, could be prepared at the dose of 20 kGy, while PVP and PVP-blended-starch hydrogels require at least 30 kGy to obtain gels with more than 80% gel fraction. And at the same dose used for irradiation, the gel strength of the PVP-grafted-starch hydrogels is significantly higher than that of the PVP and PVP-blended-starch hydrogels. Radiation crosslinking of carboxymethyl CS is the second topic. CS was chemically modified by sodium monochloroacetate (SMCA) to yield carboxymethyl starch (CMS). The aqueous solution of CMS was irradiated and underwent radiation-induced crosslinking, resulting in a crosslinked CMS (XLCMS) hydrogel. The optimum condition for obtaining hydrogels with desirable properties is irradiation at low dose, 2 kGy. At higher doses, the gel fraction tends to diminish, due to the domination of degradation over crosslinking. (author)

  5. Flexible hydrogel-based functional composite materials

    Science.gov (United States)

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  6. Design of Hydrogels for Biomedical Applications.

    Science.gov (United States)

    Kamata, Hiroyuki; Li, Xiang; Chung, Ung-Il; Sakai, Takamasa

    2015-11-18

    Hydrogels are considered key tools for the design of biomaterials, such as wound dressings, drug reservoirs, and temporary scaffolds for cells. Despite their potential, conventional hydrogels have limited applicability under wet physiological conditions because they suffer from the uncontrollable temporal change in shape: swelling takes place immediately after the installation. Swollen hydrogels easily fail under mechanical stress. The morphological change may cause not only the slippage from the installation site but also local nerve compression. The design of hydrogels that can retain their original shape and mechanical properties in an aqueous environment is, therefore, of great importance. On the one hand, the controlled degradation of used hydrogels has to be realized in some biomedical applications. This Progress Report provides a brief overview of the recent progress in the development of hydrogels for biomedical applications. Practical approaches to control the swelling properties of hydrogels are discussed. The designs of hydrogels with controlled degradation properties as well as the theoretical models to predict the degradation behavior are also introduced. Moreover, current challenges and limitation toward biomedical applications are discussed, and future directions are offered.

  7. Micellar aggregates and hydrogels from phosphonobile salts.

    Science.gov (United States)

    Babu, Ponnusamy; Chopra, D; Row, T N Guru; Maitra, Uday

    2005-10-21

    The aggregation properties of novel bile acid analogs-phosphonobile salts (PBS)-have been studied. The critical micellar concentration of 23 and 24-phosphonobile salts were measured using fluorescence and 31P NMR methods. All the ten synthesized phosphonobile salts formed gels at different pH ranges in water. The pH range at which individual PBSs could gelate water was narrow and influenced by the number and conformation of hydroxyl groups. A reversible thermochromic system has been developed (with 23-phosphonodeoxycholate at pH 3.3), which changes color upon gelation. The investigation of the first hydrogels derived from trihydroxy bile acid analogs 1 and 6 was made using fluorescence, 31P NMR, X-ray crystallography, circular dichroism and SEM. The present studies reveal that the gel network consists of a chiral, fibrous structure possessing hydrophobic interiors. PMID:16211104

  8. Facile synthesis of glucose-sensitive chitosan-poly(vinyl alcohol) hydrogel: Drug release optimization and swelling properties.

    Science.gov (United States)

    Abureesh, Mosab Ali; Oladipo, Akeem Adeyemi; Gazi, Mustafa

    2016-09-01

    The study describes the development of glucose-sensitive hydrogel and optimization of bovine serum albumin release profile from the hydrogel. To enhance the glucose sensitivity and improve the swelling behaviors of the hydrogel system, boric acid crosslinking, and freeze-thawing cycle techniques were used to prepare chitosan-poly(vinyl alcohol) hydrogel. The structure of the resultant hydrogel was confirmed by scanning electron microscopy and Fourier transform infrared spectroscopy. The experimental results revealed that the swelling of the hydrogel was influenced by the pH of the medium, and the hydrogel displayed explicit glucose-sensitivity under physiological conditions. The values of the diffusion exponent range between 0.34 and 0.44 and the diffusion of water into the gel system are assumed to be pseudo-Fickian in nature. Under optimized conditions, the cumulative Bovine serum albumin (BSA) drug releases ranged between 69.33±1.95% and 86.45±1.16% at 37°C in the presence of glucose and pH 7.4, respectively. PMID:26459171

  9. Hybrid hydrogels produced by ionizing radiation technique

    Science.gov (United States)

    Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.

    2012-09-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.

  10. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers.

    Science.gov (United States)

    Bortolin, Adriel; Aouada, Fauze A; Mattoso, Luiz H C; Ribeiro, Caue

    2013-08-01

    In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle. PMID:23822729

  11. Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers.

    Science.gov (United States)

    Bortolin, Adriel; Aouada, Fauze A; Mattoso, Luiz H C; Ribeiro, Caue

    2013-08-01

    In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle.

  12. 3-dimensional slope stability analyses using non-associative stress-strain relationships

    Institute of Scientific and Technical Information of China (English)

    CHEN ZuYu; SUN Ping; WANG YuJie; ZHANG HongTao

    2009-01-01

    The research work presented in this paper refers to a new slope stability analysis method used for landslide risk evaluations. It is an extension of the 3-dimensional upper-bound slope stability analysis method proposed by Chen et sl. in 2001, which employs the Mohr-Coulomb's associative flow rule. It has been found that in a 3-dimensional area, a prism may not be able to move at friction angles to all its surrounding interfaces, as required by this associative rule, and convergence problems may occa-sionally arise. The new method establishes two velocity fields: (i) The plastic one that represents a non-associative and the best representative dilation behavior, and (ii) the virtual one that permits the solution for factor of safety in the work and energy balance equation. The new method can then allow any input value of dilation angle and thus solve the convergence problem. A practical application to a concrete dam foundation is illustrated.

  13. Protein hydrogels with engineered biomolecular recognition

    Science.gov (United States)

    Mi, Lixin

    water soluble and swelling. The RGD cell adhesion tripeptide has been inserted into the polyelectrolyte region by site-directed mutagenesis. Two dimensional human foreskin fibroblast cultures have shown that the RGD-containing protein surface is bioactive in promoting cell attachment, cell signaling, and cytoskeleton organization. The protein and the cell recognize and interact at molecular level. Collectively, these findings indicate that this bioactive protein hydrogel system is a promising biomaterial for mammalian cell culture. This research may provide insights for the rational development of bioactive ECM for specific cell and tissue engineering applications.

  14. Cellulose/polyvinyl alcohol-based hydrogels for reconfigurable lens

    Science.gov (United States)

    Jayaramudu, T.; Ko, Hyun-U.; Gao, Xiaoyuan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan

    2016-04-01

    Electroactive hydrogels are attractive for soft robotics and reconfigurable lens applications. Here we describe the design and fabrication of cellulose-poly vinyl alcohol based hydrogels. The fabricated hydrogels were confirmed by Fourier transformer spectroscopy, swelling studies, thermal analysis, surface morphology of fabricated hydrogel was study by using scanning electron microscopy. The effect of poly vinyl alcohol concentration on the optical and electrical behavior of hydrogels was studied.

  15. BPS operators from the Wilson loop in the 3-dimensional supersymmetric Chern-Simons theory

    OpenAIRE

    Fujita, Mitsutoshi

    2009-01-01

    We consider the small deformation of the pointlike Wilson loop in the 3-dimensional N=6 superconformal Chern-Simons theory. By Taylor expansion of the pointlike Wilson loop in powers of the loop variables, we obtain the BPS operators that correspond to the excited string states of the dual IIA string theory on the pp wave background. The BPS conditions of the Wilson loop constrain both the loop variables and the forms of the operators obtained in the Taylor expansion.

  16. Perfect fluid space-times admitting a 3-dimensional conformal group acting on null orbits

    CERN Document Server

    Sintes, A M

    1997-01-01

    Space-times admitting a 3-dimensional Lie group of conformal motions $C_3$ acting on null orbits are studied. Coordinate expressions for the metric and the conformal Killing vectors (CKV) are then provided (irrespectively of the matter content) and all possible perfect fluid solutions are found, although none of them verifies the weak and dominant energy conditions over the whole space-time manifold.

  17. The Preoperative Evaluation of Infective Endocarditis via 3-Dimensional Transesophageal Echocardiography.

    Science.gov (United States)

    Yong, Matthew S; Saxena, Pankaj; Killu, Ammar M; Coffey, Sean; Burkhart, Harold M; Wan, Siu-Hin; Malouf, Joseph F

    2015-08-01

    Transesophageal echocardiography continues to have a central role in the diagnosis of infective endocarditis and its sequelae. Recent technological advances offer the option of 3-dimensional imaging in the evaluation of patients with infective endocarditis. We present an illustrative case and review the literature regarding the potential advantages and limitations of 3-dimensional transesophageal echocardiography in the diagnosis of complicated infective endocarditis. A 51-year-old man, an intravenous drug user who had undergone bioprosthetic aortic valve replacement 5 months earlier, presented with prosthetic valve endocarditis. Preoperative transesophageal echocardiography with 3D rendition revealed a large abscess involving the mitral aortic intervalvular fibrosa, together with a mycotic aneurysm that had ruptured into the left atrium, resulting in a left ventricle-to-left atrium fistula. Three-dimensional transesophageal echocardiography enabled superior preoperative anatomic delineation and surgical planning. We conclude that 3-dimensional transesophageal echocardiography can be a useful adjunct to traditional 2-dimensional transesophageal echocardiography as a tool in the diagnosis of infective endocarditis.

  18. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  19. Novel biosensing platform based on self-assembled supramolecular hydrogel.

    Science.gov (United States)

    Ma, Dong; Zhang, Li-Ming

    2013-07-01

    The supramolecular hydrogel self-assembled from α-cyclodextrin (α-CD) and an amphiphilic triblock copolymer was used for the first time as a biosensing platform by the in-situ incorporation of horseradish peroxidase and polyaniline (PANI) nanoparticles. It was found that the used triblock copolymer could disperse well PANI nanoparticles in aqueous system and then interact with α-CD in the presence of horseradish peroxidase for the formation of supramolecular hydrogel composite. The content of PANI nanoparticles was found to affect the gelation time and gel strength. The circular dichroism analyses showed that the entrapped horseradish peroxidase could retain its native conformation. By electrochemical experiments, the incorporated PANI nanoparticles were confirmed to improve the current response and enzymatic activity, and the fabricated biosensor was found to provide a fast amperometric response to hydrogen peroxide. PMID:23623078

  20. Semi-wet peptide/protein array using supramolecular hydrogel

    Science.gov (United States)

    Kiyonaka, Shigeki; Sada, Kazuki; Yoshimura, Ibuki; Shinkai, Seiji; Kato, Nobuo; Hamachi, Itaru

    2004-01-01

    The protein microarray is a crucial biomaterial for the rapid and high-throughput assay of many biological events where proteins are involved. In contrast to the DNA microarray, it has not been sufficiently established because of protein instability under the conventional dry conditions. Here we report a novel semi-wet peptide/protein microarray using a supramolecular hydrogel composed of glycosylated amino acetate. The spontaneous gel-formation and amphiphilic properties of this supramolecular hydrogel have been applied to a new type of peptide/protein gel array that is compatible with enzyme assays. Aqueous cavities created in the gel matrix are a suitable semi-wet reaction medium for enzymes, whereas the hydrophobic domains of the fibre are useful as a unique site for monitoring the reaction. This array system overcomes several drawbacks of conventional protein chips, and thus can have potential applications in pharmaceutical research and diagnosis.

  1. Mechanically robust, rapidly actuating, and biologically functionalized macroporous poly(N-isopropylacrylamide)/silk hybrid hydrogels.

    Science.gov (United States)

    Gil, Eun Seok; Park, Sang-Hyug; Tien, Lee W; Trimmer, Barry; Hudson, Samuel M; Kaplan, David L

    2010-10-01

    A route toward mechanically robust, rapidly actuating, and biologically functionalized polymeric actuators using macroporous soft materials is described. The materials were prepared by combining silk protein and a synthetic polymer (poly(N-isopropylacrylamide) (PNIAPPm)) to form interpenetrating network materials and macroporous structures by freeze-drying, with hundreds of micrometer diameter pores and exploiting the features of both polymers related to dynamic materials and structures. The chemically cross-linked PNIPAAm networks provided stimuli-responsive features, while the silk interpenetrating network formed by inducing protein β-sheet crystallinity in situ for physical cross-links provided material robustness, improved expansion force, and enzymatic degradability. The macroporous hybrid hydrogels showed enhanced thermal-responsive properties in comparison to pure PNIPAAm hydrogels, nonporous silk/PNIPAAm hybrid hydrogels, and previously reported macroporous PNIPAAm hydrogels. These new systems reach near equilibrium sizes in shrunken/swollen states in less than 1 min, with the structural features providing improved actuation rates and stable oscillatory properties due to the macroporous transport and the mechanically robust silk network. Confocal images of the hydrated hydrogels around the lower critical solution temperature (LCST) revealed macropores that could be used to track changes in the real time morphology upon thermal stimulus. The material system transformed from a macroporous to a nonporous structure upon enzymatic degradation. To extend the utility of the system, an affinity platform for a switchable or tunable system was developed by immobilizing biotin and avidin on the macropore surfaces.

  2. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds.

    Science.gov (United States)

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E Birgitte; Hauser, Charlotte A E

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  3. Synthesis and Properties of Hemostatic and Bacteria-Responsive in Situ Hydrogels for Emergency Treatment in Critical Situations.

    Science.gov (United States)

    Bu, Yazhong; Zhang, Licheng; Liu, Jianheng; Zhang, Lihai; Li, Tongtong; Shen, Hong; Wang, Xing; Yang, Fei; Tang, Peifu; Wu, Decheng

    2016-05-25

    Immediate hemorrhage control and infection prevention are pivotal for saving lives in critical situations such as battlefields, natural disasters, traffic accidents, and so on. In situ hydrogels are promising candidates, but their mechanical strength is often not strong enough for use in critical situations. In this study, we constructed three hydrogels with different amounts of Schiff-base moieties from 4-arm-PEG-NH2, 4-arm-PEG-NHS, and 4-arm-PEG-CHO in which vancomycin was incorporated as an antimicrobial agent. The hydrogels possess porous structures, excellent mechanical strength, and high swelling ratio. The cytotoxicity studies indicated that the composite hydrogel systems possess good biocompatibility. The Schiff bases incorporated improve the adhesiveness and endow the hydrogels with bacteria-sensitivity. The in vivo hemostatic and antimicrobial experiments on rabbits and pigs demonstrated that the hydrogels are able to aid in rapid hemorrhage control and infection prevention. In summary, vancomycin-loaded hydrogels may be excellent candidates as hemostatic and antibacterial materials for first aid treatment of the wounded in critical situations. PMID:27159886

  4. A novel poly(γ-glutamic acid)/silk-sericin hydrogel for wound dressing: Synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Lu [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Yang, Ning, E-mail: summer_ningzi@163.com [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Hao [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Chen, Li, E-mail: chenlis@tjpu.edu.cn [Tianjin Key Laboratory of Fiber Modification and Functional Fiber, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Tao, Lei; Wei, Yen [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Liu, Hui; Luo, Ying [Tianjin Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170 (China)

    2015-03-01

    A novel multifunctional poly(γ-glutamic acid)/silk sericin (γ-PGA/SS) hydrogel has been developed and used as wound dressing. The physical and chemical properties of the γ-PGA/SS gels were systemically investigated. Furthermore, these γ-PGA/SS gels have been found to promote the L929 fibroblast cells proliferate, and in the in vivo study, significant stimulatory effects were also observed on granulation and capillary formation on day 9 in H-2-treated wounds, indicating that this new complex hydrogel could maintain a moist healing environment, protect the wound from bacterial infection, absorb excess exudates, and promote cell proliferation to reconstruct damaged tissue. Considering the simple preparation process and excellent biological property, this γ-PGA/SS hydrogel might have a wide range of applications in biomedical and clinical areas. - Highlights: • Novel biodegradable hydrogels from γ-PGA and SS were successfully fabricated. • The preparation of hydrogel for wound dressing is simple. • The addition of SS in hydrogel improved the mechanical and biological properties. • The hydrogel has the feasibility to use in clinical application.

  5. Dynamic transformation of self-assembled structures using anisotropic magnetized hydrogel microparticles

    Science.gov (United States)

    Yoshida, Satoru; Takinoue, Masahiro; Iwase, Eiji; Onoe, Hiroaki

    2016-08-01

    This paper describes a system through which the self-assembly of anisotropic hydrogel microparticles is achieved, which also enables dynamic transformation of the assembled structures. Using a centrifuge-based microfluidic device, anisotropic hydrogel microparticles encapsulating superparamagnetic materials on one side are fabricated, which respond to a magnetic field. We successfully achieve dynamic assembly using these hydrogel microparticles and realize three different self-assembled structures (single and double pearl chain structures, and close-packed structures), which can be transformed to other structures dynamically via tuning of the precessional magnetic field. We believe that the developed system has potential application as an effective platform for a dynamic cell manipulation and cultivation system, in biomimetic autonomous microrobot organization, and that it can facilitate further understanding of the self-organization and complex systems observed in nature.

  6. Nanostructure controlled sustained delivery of human growth hormone using injectable, biodegradable, pH/temperature responsive nanobiohybrid hydrogel

    Science.gov (United States)

    Singh, Narendra K.; Nguyen, Quang Vinh; Kim, Bong Sup; Lee, Doo Sung

    2015-02-01

    The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new protein delivery system by the self-assembly and intercalation of a negatively charged hGH onto a positively charged 2D-layered double hydroxide nanoparticle (LDH). The LDH-hGH ionic complex, with an average particle size of approximately 100 nm, retards hGH diffusion. Nanobiohybrid hydrogels (PAEU/LDH-hGH) were prepared by dispersing the LDH-hGH complex into a cationic pH- and temperature-sensitive injectable PAEU copolymer hydrogel to enhance sustained hGH release by dual ionic interactions. Biodegradable copolymer hydrogels comprising poly(β-amino ester urethane) and triblock poly(ε-caprolactone-lactide)-poly(ethylene glycol)-poly-(ε-caprolactone-lactide) (PCLA-PEG-PCLA) were synthesized and characterized. hGH was self-assembled and intercalated onto layered LDH nanoparticles through an anion exchange technique. X-ray diffraction and zeta potential results showed that the LDH-hGH complex was prepared successfully and that the PAEU/LDH-hGH nanobiohybrid hydrogel had a disordered intercalated nanostructure. The biocompatibility of the nanobiohybrid hydrogel was confirmed by an in vitro cytotoxicity test. The in vivo degradation of pure PAEU and its nanobiohybrid hydrogels was investigated and it showed a controlled degradation of the PAEU/LDH nanobiohybrids compared with the pristine PAEU copolymer hydrogel. The LDH-hGH loaded injectable hydrogels suppressed the initial burst release of hGH and extended the release period for 13 days in vitro and 5 days in vivo. The developed nanohybrid hydrogel has the potential for application as a protein carrier to improve patient compliance.The clinical efficacy of a therapeutic protein, the human growth hormone (hGH), is limited by its short plasma half-life and premature degradation. To overcome this limitation, we proposed a new

  7. Hydroxyapatite nanoparticle injectable hydrogel scaffold to support osteogenic differentiation of human mesenchymal stem cells.

    Science.gov (United States)

    Thorpe, A A; Creasey, S; Sammon, C; Le Maitre, C L

    2016-01-01

    Bone loss associated with degenerative disease and trauma is a clinical problem increasing with the aging population. Thus, effective bone augmentation strategies are required; however, many have the disadvantages that they require invasive surgery and often the addition of expensive growth factors to induce osteoblast differentiation. Here, we investigated a LaponiteÒ crosslinked, pNIPAM-DMAc copolymer (L-pNIPAM-co-DMAc) hydrogel with hydroxyapatite nanoparticles (HAPna), which can be maintained as a liquid ex vivo, injected via narrow-gauge needle into affected bone, followed by in situ gelation to deliver and induce osteogenic differentiation of human mesenchymal stem cells (hMSC). L-pNIPAM-co-DMAc hydrogels were synthesised and HAPna added post polymerisation. Commercial hMSCs from one donor (Lonza) were incorporated in liquid hydrogel, the mixture solidified and cultured for up to 6 weeks. Viability of hMSCs was maintained within hydrogel constructs containing 0.5 mg/mL HAPna. SEM analysis demonstrated matrix deposition in cellular hydrogels which were absent in acellular controls. A significant increase in storage modulus (G') was observed in cellular hydrogels with 0.5 mg/mL HAPna. Semi-quantitative immunohistochemistry and histological analysis demonstrated that bone differentiation markers and collagen deposition was induced within 48 h, with increased calcium deposition with time. The thermally triggered hydrogel system, described here, was sufficient without the need of additional growth factors or osteogenic media to induce osteogenic differentiation of commercial hMSCs. Preliminary data presented here will be expanded on multiple patient samples to ensure differentiation is seen in these samples. This system could potentially reduce treatment costs and simplify the treatment strategy for orthopaedic repair and regeneration. PMID:27377664

  8. Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant

    International Nuclear Information System (INIS)

    We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional Z-ferro-magnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g2, and obeys and bound α >= const x msub(D)β-1 for small ag2, with β = 4π2/g2 and m2sub(D) = (2β/a3)esup(-βupsiloncb(0)/2) (a = lattice spacing). A continuum limit a → 0, msub(D) fixed, exists and represents a scalar free field theory of mass msub(D). The string tension αmsub(D)-2 in physical units tends to infinite in this limit. Characteristic differences in the behavior of the model for large and small coupling constant ag2 are found. Renormalization group aspects are discussed. (orig.)

  9. Optical coherence tomography (OCT) as a 3-dimensional imaging technique for non-destructive testing of roll-to-roll coated polymer solar cells

    DEFF Research Database (Denmark)

    Thrane, Lars; Jørgensen, Thomas Martini; Jørgensen, Mikkel;

    2013-01-01

    We have recently demonstrated the first application of optical coherence tomography (OCT) as a 3-dimensional (3D) imaging technique to visualize the internal structure of complete multilayered polymer solar cell modules (Thrane et al., Solar Energy Materials & Solar Cells 97, 181-185 (2012)). The 3......D imaging of complete polymer solar cells prepared by roll-to-roll coating was carried out using a high-resolution 1322nm OCT system having a 4.5 microns axial resolution and a 12 microns lateral resolution. It was possible to image the 3-dimensional structure of the entire solar cell that comprise...... UV-barrier, barrier material, adhesive, substrate and active solar cell multilayer structure. In addition, it was found that the OCT technique could be readily employed to identify coating defects in the functional layers, making it a potential technique to enable process control by real...

  10. Enzyme-catalysed assembly of DNA hydrogel

    Science.gov (United States)

    Um, Soong Ho; Lee, Jong Bum; Park, Nokyoung; Kwon, Sang Yeon; Umbach, Christopher C.; Luo, Dan

    2006-10-01

    DNA is a remarkable polymer that can be manipulated by a large number of molecular tools including enzymes. A variety of geometric objects, periodic arrays and nanoscale devices have been constructed. Previously we synthesized dendrimer-like DNA and DNA nanobarcodes from branched DNA via ligases. Here we report the construction of a hydrogel entirely from branched DNA that are three-dimensional and can be crosslinked in nature. These DNA hydrogels were biocompatible, biodegradable, inexpensive to fabricate and easily moulded into desired shapes and sizes. The distinct difference of the DNA hydrogel to other bio-inspired hydrogels (including peptide-based, alginate-based and DNA (linear)-polyacrylamide hydrogels) is that the crosslinking is realized via efficient, ligase-mediated reactions. The advantage is that the gelling processes are achieved under physiological conditions and the encapsulations are accomplished in situ-drugs including proteins and even live mammalian cells can be encapsulated in the liquid phase eliminating the drug-loading step and also avoiding denaturing conditions. Fine tuning of these hydrogels is easily accomplished by adjusting the initial concentrations and types of branched DNA monomers, thus allowing the hydrogels to be tailored for specific applications such as controlled drug delivery, tissue engineering, 3D cell culture, cell transplant therapy and other biomedical applications.

  11. Fabrication and Evaluation of Multilayer Nanofiber-Hydrogel Meshes with a Controlled Release Property

    Directory of Open Access Journals (Sweden)

    Rigumula Wu

    2015-07-01

    Full Text Available Controlled release drug delivery systems enable the sustained release of bioactive molecules, and increase bioavailability over an extended length of time. Biocompatible and biodegradable materials such as polycaprolactone (PCL nanofibers and alginate hydrogel play a significant role in designing controlled release systems. Prolonged release of bioactive molecules is observed when these polymer materials are used as matrices independently. However, there has not been a report in the literature that shows how different molecules are released at various rates over time. The goal of this study is to demonstrate a novel drug delivery system that has a property of releasing designated drugs at various rates over a defined length of time. We fabricated multilayer nanofiber-hydrogel meshes using electrospun PCL nanofiber and alginate hydrogel, and evaluated their controlled release properties. The multilayer meshes are composed of sandwiched layers of alternating PCL nanofibers and alginate hydrogel. Adenosine triphosphate (ATP, encapsulated in the designated hydrogel layers, is used as a mock drug for the release study. The exposed top layer of the meshes demonstrates a dramatically higher burst release and shorter release time compared to the deeper layers. Such properties of the different layers within the meshes can be employed to achieve the release of multiple drugs at different rates over a specified length of time.

  12. Photopatterning of Hydrogel Microarrays in Closed Microchips.

    Science.gov (United States)

    Gumuscu, Burcu; Bomer, Johan G; van den Berg, Albert; Eijkel, Jan C T

    2015-12-14

    To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip maintains a large spacing (typically 525 μm) between the photomask and hydrogel precursor, leading to diffraction of UV light at the edges of mask patterns, (2) diffusion of free radicals and monomers results in irregular polymerization near the illumination interface. In this work, we present a simple approach to enable the use of optical lithography to fabricate hydrogel arrays with a minimum feature size of 4 μm inside closed microchips. To achieve this, we combined two different techniques. First, the upper glass layer of the microchip was thinned by mechanical polishing to reduce the spacing between the photomask and hydrogel precursor, and thereby the diffraction of UV light at the edges of mask patterns. The polishing process reduces the upper layer thickness from ∼525 to ∼100 μm, and the mean surface roughness from 20 to 3 nm. Second, we developed an intermittent illumination technique consisting of short illumination periods followed by relatively longer dark periods, which decrease the diffusion of monomers. Combination of these two methods allows for fabrication of 0.4 × 10(6) sub-10 μm sized hydrogel patterns over large areas (cm(2)) with high reproducibility (∼98.5% patterning success). The patterning method is tested with two different types of photopolymerizing hydrogels: polyacrylamide and polyethylene glycol diacrylate. This method enables in situ fabrication of well-defined hydrogel patterns and presents a simple approach to fabricate 3-D hydrogel matrices for biomolecule separation, biosensing, tissue engineering, and immobilized protein microarray applications.

  13. Electrochemical Hydrogel Lithography of Calcium-Alginate Hydrogels for Cell Culture

    Directory of Open Access Journals (Sweden)

    Fumisato Ozawa

    2016-08-01

    Full Text Available Here we propose a novel electrochemical lithography methodology for fabricating calcium-alginate hydrogels having controlled shapes. We separated the chambers for Ca2+ production and gel formation with alginate with a semipermeable membrane. Ca2+ formed in the production chamber permeated through the membrane to fabricate a gel structure on the membrane in the gel formation chamber. When the calcium-alginate hydrogels were modified with collagen, HepG2 cells proliferated on the hydrogels. These results show that electrochemical hydrogel lithography is useful for cell culture.

  14. Influence of 4-vinylbenzylation on the rheological and swelling properties of photo-activated collagen hydrogels

    CERN Document Server

    Tronci, Giuseppe; Thomson, Neil H; Russell, Stephen J; Wood, David J

    2015-01-01

    Covalent functionalisation of collagen has been shown to be a promising strategy to adjust the mechanical properties of highly swollen collagen hydrogels. At the same time, secondary interactions between for example, amino acidic terminations or introduced functional groups also play an important role and are often challenging to predict and control. To explore this challenge, 4-vinylbenzyl chloride (4VBC) and methacrylic anhydride (MA) were reacted with type I collagen, and the swelling and rheological properties of resulting photo activated hydrogel systems investigated. 4VBC-based hydrogels showed significantly increased swelling ratio, in light of the lower degree of collagen functionalisation, with respect to methacrylated collagen networks, whilst rheological storage moduli were found to be comparable between the two systems. To explore the role of benzyl groups in the mechanical properties of the 4VBC-based collagen system, model chemical force microscopy (CFM) was carried out in aqueous environment wi...

  15. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid/Poly(vinyl alcohol IPN Hydrogel and Its Drug Controlled Release

    Directory of Open Access Journals (Sweden)

    Jingqiong Lu

    2015-01-01

    Full Text Available Modified poly(aspartic acid/poly(vinyl alcohol interpenetrating polymer network (KPAsp/PVA IPN hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid grafting 3-aminopropyltriethoxysilane (KH-550 and poly(vinyl alcohol (PVA as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. The thermal stability was analyzed by thermogravimetric analysis (TGA. The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN, and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid and 62.5 wt% at pH = 7.4 (simulated intestinal fluid, respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery.

  16. Synthesis and Properties of pH-, Thermo-, and Salt-Sensitive Modified Poly(aspartic acid)/Poly(vinyl alcohol) IPN Hydrogel and Its Drug Controlled Release.

    Science.gov (United States)

    Lu, Jingqiong; Li, Yinhui; Hu, Deng; Chen, Xiaoling; Liu, Yongmei; Wang, Liping; Zhao, Yansheng

    2015-01-01

    Modified poly(aspartic acid)/poly(vinyl alcohol) interpenetrating polymer network (KPAsp/PVA IPN) hydrogel for drug controlled release was synthesized by a simple one-step method in aqueous system using poly(aspartic acid) grafting 3-aminopropyltriethoxysilane (KH-550) and poly(vinyl alcohol) (PVA) as materials. The hydrogel surface morphology and composition were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermal stability was analyzed by thermogravimetric analysis (TGA). The swelling properties and pH, temperature, and salt sensitivities of KPAsp, KPAsp/PVA semi-interpenetrating polymer network (semi-IPN), and KPAsp/PVA IPN hydrogels were also investigated. All of the three hydrogels showed ampholytic pH-responsive properties, and swelling behavior was also extremely sensitive to the temperature, ionic strength, and cationic species. Finally, the drug controlled release properties of the three hydrogels were evaluated and results indicated that three hydrogels could control drug release by external surroundings stimuli. The drug controlled release properties of KPAsp/PVA IPN hydrogel are the most outstanding, and the correlative measured release profiles of salicylic acid at 37°C were 32.6 wt% at pH = 1.2 (simulated gastric fluid) and 62.5 wt% at pH = 7.4 (simulated intestinal fluid), respectively. These results indicated that KPAsp/PVA IPN hydrogels are a promising carrier system for controlled drug delivery. PMID:26351630

  17. A Supramolecular Hydrogel Inspired by Elastin

    Institute of Scientific and Technical Information of China (English)

    丁磊; 王淑芳; 武文洁; 胡月晗; 杨翠红; 谭鸣; 孔德领; 杨志谋

    2011-01-01

    Self-assembly prevails in nature and learning from nature will lead to biofunctional materials. Inspired by the protein of elastin, we reported in this study on a supramolecular hydrogel beating the elastin repeating peptide of VPGAG. The visco-elasticity property, morphology of the nanostructures, and aromatic stacking in the self-assembled nanostructure were characterized by a rheometry, transmission electron microscope (TEM), and fluorescence microscope, respectively. The biocompatibility of the gelator was also proved by an MTT assay. Though the supramolecular hydrogel failed to exhibit a high elasticity like elastin, the thixotropic hydrogel might have potentials for the applications in fields of cell culture, controlled-drug release, etc.

  18. 形状记忆型水凝胶的制备及其在药物控制释放中的应用%Preparation of Shape Memory Hydrogels and Application in Drug Controlled Release System

    Institute of Scientific and Technical Information of China (English)

    廉琪; 郑学芳; 贾丹丹; 谢新宇; 张志伟; 沈喜海; 王东军

    2012-01-01

    pH-sensitivity gelatin-pectin and chitosan-octyl-pectin hydrogels based on gelatin and pectin were synthesized by using glutaraldehyde as crosslink agent. The effects of the degree of the dosage of crosslinking, temperature and pH on the swelling behaviors of the hydrogels and swelling-deswelling properties were also studied. Results show that when the temperature is at the range of 30~60℃ , swelling rate of hydrogels increased with temperature increasing and manifested "thermal expansion-type" hydrogels. The swelling rate of hydrogels with pH-sensitivity were larger in alkaline conditions than that of in acidic conditions. Swelling-deswelling kinetics of hydrogels in different pH conditions showed that the gelatin-pectin hydrogels have "shape memory" function. The release behavior of bovine serum alumm embedded in the hydrogels was of distinctly difference with the changes of pH value of loading medium. The release of bovine serum alumin in those two kinds of hydrogels in the medium of pH= 1. 0 was much quicker than in pH=7, 8 and pH = 9. 18. These gels might be useful for pH and temperature controlled release of proteins.%以戊二醛为交联剂,制备了pH敏感性明胶-果胶水凝胶(GT-PT)和明胶-辛基果胶水凝胶(GT-OPT),研究了交联剂用量、温度、pH值对凝胶溶胀性能的影响及溶胀-消溶胀性能.结果表明,当温度在30~60℃时,凝胶的溶胀率随温度的升高而增大;且具有明显的pH敏感性,碱性条件下的溶胀率大于酸性条件下的溶胀率;不同pH值条件下,明胶-果胶水凝胶具有“形状记忆”功能.包埋在水凝胶中的牛血清蛋白在pH=1.0时的释药率大于pH=7.8和pH=9.18时的释药率.此类水凝胶有望用于蛋白质的pH值及温度控制释放.

  19. Development of hydrogel microtubes for microbe culture in open environment.

    Science.gov (United States)

    Ogawa, M; Higashi, K; Miki, N

    2015-08-01

    This paper describes a microbe culture system in an open environment using hydrogel microtubes. In recent years, oil production microbes, such as Aurantiochytrium, have been found and are studied to produce fuels of new age instead of fossil fuels. Biomass production by microbes is promising, where scale-up, collection of the products and competition against other microbes are the most important challenges. Here, we propose to use hydrogel microtubes to encapsulate, culture, and protect microbes. The tubes can be micro- and mass-fabricated. They allow oxygen and nutrition to go through while they prevent competitive microbes from intruding inside. The microbes and byproducts can be collected together with the tubes. In this paper, we demonstrate the proof-of-concepts experiments: we fabricated hydrogel micro tubes and cultured Coryne glutamicum which produce lactic acid inside the tubes. The microbes were increased inside the tubes and protected even when competitive microbes existed in the culture media. Furthermore, we demonstrated how to collect microbes inside the tubes. PMID:26737633

  20. Weak hydrogen bonding yields rigid, tough, and elastic hydrogels

    Science.gov (United States)

    Sheiko, Sergei; Hu, Xiaobo; Vatankhah-Varnosfaderani, Mohammad; Zhou, Jing; Li, Qiaoxi; Dobrynin, Andrey

    Unlike living tissues, synthetic hydrogels are inherently soft and brittle, particularly when built of hydrogen bonds. It remains challenging to design hydrogels that combine high rigidity, strength at break, extensibility, high elasticity. Through free-radical copolymerization of N , N -dimethylacrylamide and methacrylic acid, we have designed a network system based on tunable composition of covalent bonds (permanent cross-links) and hydrogen bonds (sacrificial and recoverable crosslinks) with the following rationale: 1) Maintain a high total number of cross-links to ensure high modulus; 2) Introduce a high fraction of H-bonding to ensure high energy dissipation; and 3) Incorporate a small fraction of permanent cross-links to ensure shape control. By tuning the chemical composition and microstructure we have obtained materials with superb mechanical properties. The hydrogels contain 70 wt% water (similar to living cartilage, skin, and ligaments), while display modulus of 28 MPa, strength of 2 MPa, fracture energy of 9300 J .m-2, extensibility of 800%, excellent fatigue-resistance, and great elasticity allowing for complete and fast strain recovery. The results agreed with theoretical predictions for modulus relaxation of dual networks with dynamic and permanent crosslinks. We gratefully acknowledge funding from the National Science Foundation (DMR 1122483, DMR 1407645, and DMR 1436201).

  1. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Josefsson, Gabriella; Gamstedt, E. Kristofer [The Ångström Laboratory, Department of Engineering Sciences, Division of Applied Mechanics, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Ahvenainen, Patrik [Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 University of Helsinki (Finland); Mushi, Ngesa Ezekiel [Department of Fiber and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  2. Antimicrobial activity of hybrid hydrogels based on poly(vinylpyrrolidone containing silver

    Directory of Open Access Journals (Sweden)

    Jovašević Jovana S.

    2010-01-01

    Full Text Available In this work new hybrid hydrogels were prepared by radical copolymerization of 2-hydroxyethyl methacrylate, itaconic acid, poly(vinylpyrrolidone and silver particles. FTIR spectroscopy has confirmed binding of silver particels in hydrogels. Swelling studies performed in in vitro conditions showed dependence on PVP content and temperature. It can be seen that the antimicrobial activity of the Ag/P(HEMA/IAPVP hybrid hydrogels depends on the PVP moiety and with the increase of PVP content the microbial contamination is more efficiently reduced. The best sensitivity was obtained for the polymers tested for antimicrobial activity against the yeast C. albicans, one of the most commonly encountered human pathogens, causing a wide variety of infections ranging from mucosal infections in generally healthy persons to life-threatening systemic infections in individuals with impaired immunity. A slightly less susceptible to antimicrobial effect of hydrogels was obtained for the Gram-positive bacteria S. aureus, where the reduction of cells was about 70 % after two hours of exposure, for the sample with the highest PVP content. The least susceptible to the antimicrobial activity of hydrogels examined was the Gram-negative bacteria E. coli, where the percent of cell reduction was below 20 %. Bearing in mind the influence of the time of exposure of microbes to the Ag/P(HEMA/IA/PVP hybrid hydrogels, it was observed that the reduction of the number of cells depends on time, microbial culture and type of hybrid hydrogel sample. Due to their swelling and antimicrobial properties, silver/poly(2-hydroxyethyl methacrylate/itaconic acid/poly(vinylpyrrolidone hybrid hydrogles show potential to use in the field of biomedicine, especially for treatment of skin and burns in dermocosmetics.

  3. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    Science.gov (United States)

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  4. Study on evaluation of a linear cross section model in 3-dimensional core analysis method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Goo; Yang, Chae Yong; Jang, Chang Sun; Jung, Hoon Young; Kim, Hho Jung

    2005-02-15

    The previous studies provided that the ejection rod worth and enthalpy rise have a significant error due to a linear approximation of the cross sections in the analysis of rod ejection accident using a 3-dimensional core kinetics method. This study undertakes the validations of a linear approximation model for the cross sections used in the 3-dimensional core kinetics method. The linear approximation model for the cross sections consists of several parameters related with boron concentration, fuel temperature, coolant temperature and density, etc., but this study examines for the parameter related with boron concentration. At first, a reference boron concentration set are selected, and the corresponding linear parameter are calculated by CASMO-3 code. Another two sets are selected, and their parameters are also calculated. The relative errors are calculated form the cross sections for these 3 cases. For their study, 3 types of fuel are chosen, which are representative of fresh fuel, medium burnup and high burnup. Also, 9 cross sections of 2 energy groups are evaluated. The results shows that the relative error of the cross sections for high burnup fuel are more than low burnup, and the error are large in absorption cross section and fission cross section, the maximum of which is more than 3%. It is concluded that in the analysis of accident using 3-dimensional core kinetics model the cross section model has a significant influence on their result, and the results are largely dependent on how to select parameters in a cross section model. Hence, regulatory reviewer needs to evaluate the validation of cross section model proposed by designer.

  5. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    Science.gov (United States)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2015-12-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  6. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    Science.gov (United States)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2016-10-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  7. BPS operators from the Wilson loop in the 3-dimensional supersymmetric Chern-Simons theory

    OpenAIRE

    Fujita, Mitsutoshi

    2009-01-01

    We consider the small deformation of the point-like Wilson loop in the 3-dimensional $\\mathcal{N}=6$ superconformal Chern-Simons theory. By Taylor expansion of the point-like Wilson loop in powers of the loop variables, we obtain the BPS operators that correspond to the excited string states of the dual IIA string theory on the pp wave background. The BPS conditions of the Wilson loop constrain both the loop variables and the forms of the operators obtained in the Taylor expansion.

  8. A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; SHEN Hui; DENG Youjun

    2006-01-01

    A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally (3D-cell) is proposed in this paper. We studied its performance both in solar simulator and in nature sunlight. Spiral photo-electrode of 3D-cell can receive sunlight from all directions and therefore can track the sun passively. And it is much insensitive to solar azimuth angle and shade. In addition, it increases the area to obtain scattered sunlight and reflected light. Compared with the dye-sensitized solar cells using sandwich structure, it would be more advantageous in the sealing technique.

  9. Towards a mathematical definition of Coulomb branches of $3$-dimensional $\\mathcal N=4$ gauge theories, II

    CERN Document Server

    Braverman, Alexander; Nakajima, Hiraku

    2016-01-01

    Consider the $3$-dimensional $\\mathcal N=4$ supersymmetric gauge theory associated with a compact Lie group $G_c$ and its quaternionic representation $\\mathbf M$. Physicists study its Coulomb branch, which is a noncompact hyper-K\\"ahler manifold with an $\\mathrm{SU}(2)$-action, possibly with singularities. We give a mathematical definition of the Coulomb branch as an affine algebraic variety with $\\mathbb C^\\times$-action when $\\mathbf M$ is of a form $\\mathbf N\\oplus\\mathbf N^*$, as the second step of the proposal given in arXiv:1503.03676.

  10. Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells.

    Science.gov (United States)

    Chua, Julianto; Mathews, Nripan; Jennings, James R; Yang, Guangwu; Wang, Qing; Mhaisalkar, Subodh G

    2011-11-21

    We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy.

  11. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    Science.gov (United States)

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc. PMID:27222318

  12. Quantum Computing - A new Implementation of Simon Algorithm for 3-Dimensional Registers

    Directory of Open Access Journals (Sweden)

    Adina Bărîlă

    2015-03-01

    Full Text Available Quantum computing is a new field of science aiming to use quantum phenomena in order to perform operations on data. The Simon algorithm is one of the quantum algorithms which solves a certain problem exponentially faster than any classical algorithm solving the same problem. Simulating of quantum algorithms is very important since quantum hardware is not available outside of the research labs. QCL (Quantum Computation Language is the most advanced implemented quantum computer simulator and was conceived by Bernhard Ömer. The paper presents an implementation in QCL of the Simon algorithm in the case of 3-dimensional registers.

  13. The study of 3-dimensional structures of IgG with atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    YU Yi-gang; XU Ru-xiang; JIANG Xiao-dan; KE Yi-quan

    2005-01-01

    Objective: To detect 3-dimensional images of anti-N-methyl-D-aspartate receptor Nr1 (NMDAr1) polycolonal IgG affixed on mica in physiological environment. Methods: The images and data were obtained from a contact mode and commercial Si3N4 probed tip by using atomic force microscope (AFM). Conclusions: Using AFM to investigate biomacromolecule can make us deeply understand the structure of IgG, which will instruct us to detect the membrane receptor protein as a labelling agent.

  14. Investigation of biopolymer-based hydrogels as green and heterogeneous catalysts in C-C bond formation

    OpenAIRE

    Kühbeck, Dennis

    2015-01-01

    The present dissertation evaluates the efficacy of different polysaccharides (e.g. chitosan, alginate and kappa-carrageenan) and proteins (e.g. gelatin, collagen, silk fibroin) as possible catalysts for a variety of C-C bond formation reactions. These biopolymers can be obtained in different forms (e.g. hydrogels, mesoporous materials). Among different forms hydrogels are one of the most interesting since they could act as biphasic and heterogeneous systems in chemical transformations and fa...

  15. A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair

    OpenAIRE

    Snyder, Timothy N; Madhavan, Krishna; Intrator, Miranda; Dregalla, Ryan C.; Park, Daewon

    2014-01-01

    Background Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with bone marrow-derived mesenchymal stem cells (BMSCs) was investigated as a method of regenerating these tissues for OA therapy. This chondrogenic hydrogel system can be delivered in a minimally invas...

  16. Resilient self-assembling hydrogels from block copolypeptide amphiphiles

    Science.gov (United States)

    Nowak, Andrew Paul

    The ability to produce well defined synthetic polypeptides has been greatly improved by the discovery of transition metal species that mediate the controlled polymerization of N-carboxyanhydrides (NCAs). These metal species create a living polymerization system by producing control over chain length, low polydispersities, and the ability to form complex block architectures. We have applied this system to the synthesis of block copolypeptide amphiphiles. Initial block copolymers synthesized were composed of hydrophilic, cationic poly(L-Lysine) combined with hydrophobic, alpha-helical poly(L-Leucine). These Lysine- block-Leucine copolypeptides were found to form stiff, clear hydrogels at low concentration (˜1 wt%) in low ionic strength water. Based on this unexpected result we used the flexibility of our transition metal polymerization chemistry to better understand the nature and mechanisms of gel formation in these materials. Systematic changes to the original Lysine-block-Leucine copolypeptides were made by altering overall chain size, relative block length, polyelectrolyte charge, and hydrophobic secondary structure. Rheological characterization revealed that the strength of these hydrogels was primarily dependent on degree of polymerization, relative block length, and a well ordered secondary structure in the hydrophobic segment. The Lysine-block-Leucine hydrogels were formed by direct addition of water to dry polypeptide material which swelled to homogeneously fill the entire volume of liquid with no special processing. CryoTEM showed a percolating cellular network at ˜100nm that appears to be comprised of both membranes and fibers. Larger length scales studied with Laser Scanning Confocal Microscopy revealed a spontaneously formed microporous network with large (˜10mum) water rich voids. These hydrogels also displayed interesting mechanical properties including rapid recovery of solid like behavior after being sheared to a liquid and mechanical stability

  17. The development of low-molecular weight hydrogels for applications in cancer therapy

    Science.gov (United States)

    Tian, Ran; Chen, Jin; Niu, Runfang

    2014-03-01

    To improve the anti-cancer efficacy and to counteract the side effects of chemotherapy, a variety of drug delivery systems have been invented in past decades, but few of these systems have succeeded in clinical trials due to their respective inherent shortcomings. Recently, low-molecular weight hydrogels of peptides that self-assemble via non-covalent interactions have attracted considerable attention due to their good biocompatibility, low toxicity, inherent biodegradability as well as their convenience of design. Low-molecular weight hydrogels have already shown promise in biomedical applications as diverse as 3D-cell culture, enzyme immobilization, controllable MSC differentiation, wound healing, drug delivery etc. Here we review the recent development in the use of low-molecular weight hydrogels for cancer therapy, which may be helpful in the design of soft materials for drug delivery.

  18. Responsive polyelectrolyte hydrogels and soft matter micromanipulation

    NARCIS (Netherlands)

    Glazer, P.J.

    2013-01-01

    This dissertation describes experimental studies on the mechanisms underlying the dynamic response of polyelectrolyte hydrogels when submitted to an external electric potential. In addition, we explore the possibilities of miniaturization and manipulation of responsive gels and other soft matter sys

  19. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian;

    2011-01-01

    , provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE)/hydrogel...... sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self......-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins....

  20. Influence of soluble PEG-OH incorporation in a 3D cell-laden PEG-fibrinogen (PF) hydrogel on smooth muscle cell morphology and growth.

    Science.gov (United States)

    Lee, Bae Hoon; Tin, Stella Poh Hui; Chaw, Su Yin; Cao, Ye; Xia, Yun; Steele, Terry W J; Seliktar, Dror; Bianco-Peled, Havazelet; Venkatraman, Subbu S

    2014-01-01

    We have been able to control hydrogel compliance and cell spreading in a three-dimensional (3D) cell-laden system (hydrogel) using soluble PEG-OH. This was accomplished by encapsulating smooth muscle cells (SMCs) into poly(ethylene glycol)-fibrinogen (PEG-fibrinogen or PF) with poly(ethylene glycol)-diol (PEG-OH) as a macromolecular leachant. The cell-encapsulating hydrogels were prepared with three concentrations of soluble PEG-OH having a mass of 10 kDa (1, 5 and 10% w/v). Rheology was used to measure the elastic (storage) component of the complex shear modulus of these hydrogels, while quantitative morphometrics were used to characterize SMC morphology. PF hydrogel with a higher amount of PEG-OH displayed a lower storage modulus and a higher elongated cell morphology of SMCs. Structural changes of PF hydrogels mainly owing to gelation-induced phase separation imparted by the soluble PEG-OH in 3D cell-laden hydrogels dramatically affected both the properties of the hydrogel network including the modulus as well as cell spreading. PMID:24304216

  1. Quantitative analysis of 3-dimensional rootarchitecture based on image reconstruction and itsapplication to research on phosphorus uptake in soybean

    Institute of Scientific and Technical Information of China (English)

    ZHU Tonglin; FANG Suqin; LI Zhiyuan; LIU Yutao; LIAO Hong; YAN Xiaolong

    2006-01-01

    Quantification of 3-dimensional (3-D) plant root architecture is one of the most important approaches to investigating plant root growth and its function in nutrient acquisition and utilization. However, no effective methods have been reported hitherto to quantify 3-D root architecture parameters, making it difficult to further study the 3-D characteristics of the root system and its function. In the present study, we created a rapid algorithm to reconstruct 3-D root system images based on the basic structural features of such linear objects as roots, using 2-D root images taken by digital CCD cameras at multi- viewing angles. This method is very effective in the reconstruction of plant root system images, thus enabling us to obtain the digital model of 3-D root architecture and its 3-D skeleton, based on which some major root architecture parameters can be calculated. Using this method, we were able to acquire 3-D parameters of soybean root architecture whose root diameter was more than 0.3 mm, including tap root length, total root length, average basal root angle, ratio of root width to root depth, percentage distribution of root length in different layers and root distribution in different 3-D regions of the growth medium. We also quantitatively analyzed the relationship between different root architecture parame-ters and such plant nutrition parameters as soybean biomass and phosphorus (P) uptake. Our study may provide a new tool in studying the growth and nutritional functions of plant root systems.

  2. Silicone hydrogel materials for contact lens applications

    OpenAIRE

    González-Méijome, José Manuel; González-Pérez, Javier; Fernandes, Paulo Rodrigues Botelho; Ferreira, Daniela Patrícia Lopes; Mollá, Sergio; Compañ-Moreno, V.

    2014-01-01

    Silicone hydrogel (Si-Hy) materials combine the benefi ts of silicone or siloxane derivates in terms of oxygen permeability and mechanical properties with those of hydrogels in terms of wettability and hidrophilicity. Such properties are critical when it comes to the application at the ocular surface in the form of contact lenses (CL) to correct visual dysfunctions, as bandage mechanism or as drug delivery devices. Nowadays, CL are used by over 100 million people worldwide. Silico...

  3. 3-dimensional slope stability analyses using non-associative stress-strain relationships

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The research work presented in this paper refers to a new slope stability analysis method used for landslide risk evaluations. It is an extension of the 3-dimensional upper-bound slope stability analysis method proposed by Chen et al. in 2001,which employs the Mohr-Coulomb’s associative flow rule. It has been found that in a 3-dimensional area,a prism may not be able to move at friction angles to all its surrounding interfaces,as required by this associative rule,and convergence problems may occasionally arise. The new method establishes two velocity fields:(i) The plastic one that represents a non-associative and the best representative dilation behavior,and (ii) the virtual one that permits the solution for factor of safety in the work and energy balance equation. The new method can then allow any input value of dilation angle and thus solve the convergence problem. A practical application to a concrete dam foundation is illustrated.

  4. Contactless 2-dimensional laser sensor for 3-dimensional wire position and tension measurements

    CERN Document Server

    Prall, Matthias; Joehren, R; Ortjohann, H W; Reinhardt, M; Weinheimer, Ch

    2009-01-01

    We have developed a contact-free 2-dimensional laser sensor with which the position of wires can be measured in 3 dimensions with an accuracy of better than 10 micrometer and with which the tension of the wires can be determined with an accuracy of 0.04 N. These measurements can be made from a distance of 15 cm. The sensor consists of commercially available laser pointers, lenses, color filters and photodiodes. In our application we have used this laser sensor together with an automated 3 dimensional coordinate table. For a single position measurement, the laser sensor is moved by the 3-dimensional coordinate table in a plane and determines the coordinates at which the wires intersect with this plane. The position of the plane itself (the third coordinate) is given by the third axis of the measurement table which is perpendicular to this plane. The control and readout of the table and the readout of the laser sensor were realized with LabVIEW. The precision of the position measurement in the plane was determi...

  5. MR imaging of the knee joint with 3-dimensional gradient echo

    Energy Technology Data Exchange (ETDEWEB)

    Shimagaki, Hajime; Matsubara, T.; Narisawa, Hiroko; Yamazaki, Yukio [Tsubame Rosai Hospital, Niigata (Japan)

    1996-11-01

    Authors considered and discussed whether various lesions of the knee joint can be diagnosed under the MR imaging condition with a pulse sequence of 3-dimensional fourier transformed gradient recalled acquisition in the steady state and what advantages the method has. The apparatus was 1.5T Signa (General Electric) equipped with surface coil for the knee. The consecutive 124 sagittal images of 0.8 mm thickness taken primarily for 3-dimensional reconstruction were processed to give any cross sections of coronary, horizontal, sagittal or further additional ones. Subjects were 243 knees (138 internal derangement and 105 osteoarthritis) whose lesions were confirmed by arthroscope or by arthrostomy after the MR imaging. Comparison of the MR imaging and surgical finding revealed that accuracy, specificity and sensitivity of the present MR imaging method were all >90% for diagnosis of internal derangement of anterior cruciate ligament and meniscus. For osteoarthritis, the method was thought useful for evaluation of the depth of cartilage deficit. (K.H.)

  6. Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty.

    Science.gov (United States)

    Sembrano, Jonathan N; Yson, Sharon C; Polly, David W; Ledonio, Charles Gerald T; Nuckley, David J; Santos, Edward R G

    2015-01-01

    Balloon kyphoplasty is a common treatment for osteoporotic and pathologic compression fractures. Advantages include minimal tissue disruption, quick recovery, pain relief, and in some cases prevention of progressive sagittal deformity. The benefit of image-based navigation in kyphoplasty has not been established. The goal of this study was to determine whether there is a difference between fluoroscopy-guided balloon kyphoplasty and 3-dimensional image-based navigation in terms of needle malposition rate, cement leakage rate, and radiation exposure time. The authors compared navigated and nonnavigated needle placement in 30 balloon kyphoplasty procedures (47 levels). Intraoperative 3-dimensional image-based navigation was used for needle placement in 21 cases (36 levels); conventional 2-dimensional fluoroscopy was used in the other 9 cases (11 levels). The 2 groups were compared for rates of needle malposition and cement leakage as well as radiation exposure time. Three of 11 (27%) nonnavigated cases were complicated by a malpositioned needle, and 2 of these had to be repositioned. The navigated group had a significantly lower malposition rate (1 of 36; 3%; P=.04). The overall rate of cement leakage was also similar in both groups (P=.29). Radiation exposure time was similar in both groups (navigated, 98 s/level; nonnavigated, 125 s/level; P=.10). Navigated kyphoplasty procedures did not differ significantly from nonnavigated procedures except in terms of needle malposition rate, where navigation may have decreased the need for needle repositioning.

  7. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

    Science.gov (United States)

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang

    2015-11-01

    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).

  8. Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Y T [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Tian, W M [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Yu, X [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Cui, F Z [Biomaterials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Hou, S P [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Xu, Q Y [Beijing Institute of Neuroscience, Capital University of Medical Sciences, Beijing, 100054 (China); Lee, In-Seop [Institute of Physics and Applied Physics, and Atomic-scale Surface Science Research Center, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2007-09-15

    A biocompatible hydrogel of hyaluronic acid with the neurite-promoting peptide sequence of IKVAV was synthesized. The characterization of the hydrogel shows an open porous structure and a large surface area available for cell interaction. Its ability to promote tissue repair and axonal regeneration in the lesioned rat cerebrum is also evaluated. After implantation, the polymer hydrogel repaired the tissue defect and formed a permissive interface with the host tissue. Axonal growth occurred within the microstructure of the network. Within 6 weeks the polymer implant was invaded by host-derived tissue, glial cells, blood vessels and axons. Such a hydrogel matrix showed the properties of neuron conduction. It has the potential to repair tissue defects in the central nervous system by promoting the formation of a tissue matrix and axonal growth by replacing the lost tissue.

  9. Effect of Sodium Salicylate on the Viscoelastic Properties and Stability of Polyacrylate-Based Hydrogels for Medical Applications

    Directory of Open Access Journals (Sweden)

    Zuzana Kolarova Raskova

    2016-01-01

    Full Text Available Investigation was made into the effect exerted by the presence of sodium salicylate (0–2 wt.%, in Carbomer-based hydrogel systems, on processing conditions, rheological and antimicrobial properties in tests against Gram-positive (Staphylococcus aureus and Gram-negative (Escherichia coli bacterial strains, and examples of yeast (Candida albicans and mould (Aspergillus niger. In addition, the work presents an examination of long-term stability by means of aging over one year the given hydrogels at 8°C and 25°C. The results show that 0.5 wt.% NaSal demonstrated a noticeable effect on the hydrogel neutralization process, viscosity, and antimicrobial properties against all of the tested microorganisms. The long-term stability studies revealed that hydrogels can maintain antimicrobial activity as well as viscosity to a degree that would be sufficient for practical use.

  10. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions

    Directory of Open Access Journals (Sweden)

    Qunwei Tang, Xiaoming Sun, Qinghua Li, Jihuai Wu and Jianming Lin

    2009-01-01

    Full Text Available A simple two-step aqueous polymerization method was introduced to synthesize a polyacrylate/polyethylene glycol (PAC/PEG interpenetrating network (IPN hydrogel. On the basis of the effects of the ratio of PAC to PEG, neutralization degree, heavy-metal ion concentration, and temperature on the adsorption behavior of PAC/PEG IPN hydrogel toward Ni2 +, Cr3 + and Cd2 +, the preparation conditions were optimized. In our system, the greatest amount of Ni2 +, Cr3 + and Cd2 + adsorbed were 102.34, 49.38 and 33.41 mg g- 1, respectively. The adsorption abilities of a dried PAC/PEG composite and a swollen PAC/PEG IPN hydrogel were compared. It was found that the efficiency of removing metal ions using the swollen hydrogel was greater than that using the dried composite. The adsorption mechanism and model are also discussed.

  11. Synthesis of polyacrylate/polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Tang Qunwei; Sun Xiaoming; Li Qinghua; Wu Jihuai; Lin Jianming [Key Laboratory for Functional Materials of Fujian Higher Education, Institute of Material Physical Chemistry, Huaqiao University, Quanzhou 362021 (China)], E-mail: jhwu@hqu.edu.cn

    2009-01-15

    A simple two-step aqueous polymerization method was introduced to synthesize a polyacrylate/polyethylene glycol (PAC/PEG) interpenetrating network (IPN) hydrogel. On the basis of the effects of the ratio of PAC to PEG, neutralization degree, heavy-metal ion concentration, and temperature on the adsorption behavior of PAC/PEG IPN hydrogel toward Ni{sup 2+}, Cr{sup 3+} and Cd{sup 2+}, the preparation conditions were optimized. In our system, the greatest amount of Ni{sup 2 +}, Cr{sup 3 +} and Cd{sup 2 +} adsorbed were 102.34, 49.38 and 33.41 mg g{sup - 1}, respectively. The adsorption abilities of a dried PAC/PEG composite and a swollen PAC/PEG IPN hydrogel were compared. It was found that the efficiency of removing metal ions using the swollen hydrogel was greater than that using the dried composite. The adsorption mechanism and model are also discussed.

  12. Preparation and evaluation of chitosan-poly (acrylic acid hydrogels as stomach specific delivery for amoxicillin and metronidazole

    Directory of Open Access Journals (Sweden)

    Hemant Yadav K

    2007-01-01

    Full Text Available The objective of the present work was to develop stomach specific delivery systems for amoxicillin and metronidazole using chitosan and poly(acrylic acid hydrogels. Chitosan and poly(acrylic acid hydrogels were prepared with different composition of copolymers. The hydrogels were evaluated for swelling studies, mucoadhesive studies, in vitro drug release, scanning electron microscopic and FTIR analysis. The effect of chitosan and poly (acrylic acid on swelling and in vitro drug release was carried out. The n value calculated was < 0.5 for all the formulations containing amoxicillin and metronidazole indicating Fickian diffusion mechanism. The hydrogels with chitosan and poly (acrylic acid ratio of 0.25:1 showed greater mucoadhesive property, maximum swelling and complete release of drugs, hence can be used for stomach specific delivery of drugs.

  13. Novel crosslinked alginate/hyaluronic acid hydrogels for nerve tissue engineering

    Science.gov (United States)

    Wang, Min-Dan; Zhai, Peng; Schreyer, David J.; Zheng, Ruo-Shi; Sun, Xiao-Dan; Cui, Fu-Zhai; Chen, Xiong-Biao

    2013-09-01

    Artificial tissue engineering scaffolds can potentially provide support and guidance for the regrowth of severed axons following nerve injury. In this study, a hybrid biomaterial composed of alginate and hyaluronic acid (HA) was synthesized and characterized in terms of its suitability for covalent modification, biocompatibility for living Schwann cells and feasibility to construct three dimensional (3D) scaffolds. Carbodiimide mediated amide formation for the purpose of covalent crosslinking of the HA was carried out in the presence of calciumions that ionically crosslink alginate. Amide formation was found to be dependent on the concentrations of carbodiimide and calcium chloride. The double-crosslinked composite hydrogels display biocompatibility that is comparable to simple HA hydrogels, allowing for Schwann cell survival and growth. No significant difference was found between composite hydrogels made from different ratios of alginate and HA. A 3D BioPlotter™ rapid prototyping system was used to fabricate 3D scaffolds. The result indicated that combining HA with alginate facilitated the fabrication process and that 3D scaffolds with porous inner structure can be fabricated from the composite hydrogels, but not from HA alone. This information provides a basis for continuing in vitro and in vivo tests of the suitability of alginate/HA hydrogel as a biomaterial to create living cell scaffolds to support nerve regeneration.

  14. Sodium Deoxycholate Hydrogels: Effects of Modifications on Gelation, Drug Release, and Nanotemplating.

    Science.gov (United States)

    McNeel, Kelsey E; Das, Susmita; Siraj, Noureen; Negulescu, Ioan I; Warner, Isiah M

    2015-07-01

    In the present study, sodium deoxycholate (NaDC) was used to produce gelation of tris(hydroxymethyl)amino-methane (TRIS) solutions above, below, and near the pKa of NaDC, respectively, which yielded a neutral gelator, a charged gelator, and a mixture of each. Impacts of ionic interactions on gel formation were studied in detail and showed that pH can be used to modify many hydrogel properties including sol-gel temperature, crystallinity, and mechanical strength. Several formulations yielded a unique rheological finding of two stable regions of elastic modulus. The release of a small molecule has been investigated under different hydrogel conditions and at variable shear rate, suggesting utility as a drug-delivery vehicle. It was also observed that pH modification of the hydrogels affected nanoparticle formation. Nanoparticles derived from a Group of Uniform Materials Based on Organic Salts (nanoGUMBOS), specifically cyanine-based NIR dyes, were templated within the hydrogel network for potential applications in tissue imaging. These nanoGUMBOS were found to be size-tunable, although material-dependent. Further understanding of NaDC/TRIS gelation has broadened the tunability and multidimensional applications of these tailored hydrogel systems. PMID:26039574

  15. The Effect of Cationic Polyamidoamine Dendrimers on Physicochemical Characteristics of Hydrogels with Erythromycin

    Directory of Open Access Journals (Sweden)

    Magdalena Wróblewska

    2015-08-01

    Full Text Available Polyamidoamine dendrimers (PAMAM represent a new class of hyperbranched, monodisperse, three-dimensional polymers with unique properties, which make them very promising carriers of antimicrobial agents. The present study aimed to evaluate the influence of PAMAM-NH2 dendrimers generation two (G2 or three (G3 on physicochemical characteristics and structure of hydrogels with a model antibacterial lipophilic drug—erythromycin—commonly used in topical applications. From the obtained rheograms, it can be concluded that tested hydrogels were non-Newtonian thixotropic systems with shear-thinning behaviour. The dissolution tests revealed that erythromycin was definitely faster released from formulations containing PAMAM-NH2 in concentration and generation dependent manner. However, the addition of PAMAM-NH2 to hydrogels evoked only slight improvement of their antibacterial activity. It was also shown that the structure of hydrogels changed in the presence of PAMAM-NH2 becoming less compact, diversified and more porous. Designed hydrogels with PAMAM-NH2 G2 or G3 were stable stored up to three months at 40 ± 2 °C and 75% ± 5% RH.

  16. The Effect of Cationic Polyamidoamine Dendrimers on Physicochemical Characteristics of Hydrogels with Erythromycin.

    Science.gov (United States)

    Wróblewska, Magdalena; Winnicka, Katarzyna

    2015-08-27

    Polyamidoamine dendrimers (PAMAM) represent a new class of hyperbranched, monodisperse, three-dimensional polymers with unique properties, which make them very promising carriers of antimicrobial agents. The present study aimed to evaluate the influence of PAMAM-NH₂ dendrimers generation two (G2) or three (G3) on physicochemical characteristics and structure of hydrogels with a model antibacterial lipophilic drug-erythromycin-commonly used in topical applications. From the obtained rheograms, it can be concluded that tested hydrogels were non-Newtonian thixotropic systems with shear-thinning behaviour. The dissolution tests revealed that erythromycin was definitely faster released from formulations containing PAMAM-NH₂ in concentration and generation dependent manner. However, the addition of PAMAM-NH₂ to hydrogels evoked only slight improvement of their antibacterial activity. It was also shown that the structure of hydrogels changed in the presence of PAMAM-NH₂ becoming less compact, diversified and more porous. Designed hydrogels with PAMAM-NH₂ G2 or G3 were stable stored up to three months at 40 ± 2 °C and 75% ± 5% RH.

  17. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo [Department of Mechanical Engineering, POSTECH (Korea, Republic of); Kim, Jong Young, E-mail: dwcho@postech.ac.kr [Department of Mechanical Engineering, Andong National University (Korea, Republic of)

    2011-09-15

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  18. Role of Radiation Processing in Production of Hydrogels for Medical Applications

    Directory of Open Access Journals (Sweden)

    D. Darwis

    2009-07-01

    Full Text Available Recently, hydrophilic polymer gel (hydrogel for application in medical fields has attracted much attention of researchers due to its unique properties which can resemble human living organs. Wound dressing, contact lenses and drug delivery system are among their applications in medical field. High energy radiation especially gamma ray and electron beam is often used for synthesis and modification of hydrogel. Through radiation crosslinking and or grafting process, hydrogel with specialty properties for specific application can be made. The advantage of radiation synthesized hydrogel over conventional methods is very pure products are obtained since the present of chemical initiators are not required; The preparation of sample does not require special sterile production rooms but still enables to obtain a sterile product; The irradiation process is easily controlled; Synthetis of new polymers and bulk or surface modification of commercial products can be accomplished with additional advantage of possibility of a concurrent sterilization. The future prospect of hydrogel seems to be in tissue engineering and diagnostic fields

  19. Measurement of noise and impedance of dry and wet textile electrodes, and textile electrodes with hydrogel.

    Science.gov (United States)

    Puurtinen, Merja M; Komulainen, Satu M; Kauppinen, Pasi K; Malmivuo, Jaakko A V; Hyttinen, Jari A K

    2006-01-01

    Textile sensors, when embedded into clothing, can provide new ways of monitoring physiological signals, and improve the usability and comfort of such monitoring systems in the areas of medical, occupational health and sports. However, good electrical and mechanical contact between the electrode and the skin is very important, as it often determines the quality of the signal. This paper introduces a study where the properties of dry textile electrodes, textile electrodes moistened with water, and textile electrodes covered with hydrogel were studied with five different electrode sizes. The aim was to study how the electrode size and preparation of the electrode (dry electrode/wet electrode/electrode covered with hydrogel membrane) affect the measurement noise, and the skin-electrode impedance. The measurement noise and skin-electrode impedance were determined from surface biopotential measurements. These preliminary results indicate that noise level increases as the electrode size decreases. The noise level is high in dry textile electrodes, as expected. Yet, the noise level of wet textile electrodes is quite low and similar to that of textile electrodes covered with hydrogel. Hydrogel does not seem to improve noise properties, however it may have effects on movement artifacts. Thus, it is feasible to use textile embedded sensors in physiological monitoring applications when moistening or hydrogel is applied.

  20. Hydrogel Composite Materials for Tissue Engineering Scaffolds

    Science.gov (United States)

    Shapiro, Jenna M.; Oyen, Michelle L.

    2013-04-01

    Hydrogels are appealing for biomaterials applications due to their compositional similarity with highly hydrated natural biological tissues. However, for structurally demanding tissue engineering applications, hydrogel use is limited by poor mechanical properties. Here, composite materials approaches are considered for improving hydrogel properties while attempting to more closely mimic natural biological tissue structures. A variety of composite material microstructures is explored, based on multiple hydrogel constituents, particle reinforcement, electrospun nanometer to micrometer diameter polymer fibers with single and multiple fiber networks, and combinations of these approaches to form fully three-dimensional fiber-reinforced hydrogels. Natural and synthetic polymers are examined for formation of a range of scaffolds and across a range of engineered tissue applications. Following a discussion of the design and fabrication of composite scaffolds, interactions between living biological cells and composite scaffolds are considered across the full life cycle of tissue engineering from scaffold fabrication to in vivo use. We conclude with a summary of progress in this area to date and make recommendations for continuing research and for advanced hydrogel scaffold development.

  1. SECOND-ORDER OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY 3-DIMENSIONAL NEVIER-STOKES EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.

  2. Immobilization and release study of a red alga extract in hydrogel membranes

    International Nuclear Information System (INIS)

    In pharmaceutical technology hydrogel is the most used among the polymeric matrices due to its wide application and functionality, primarily in drug delivery system. In view of the large advance innovations in cosmetic products, both through the introduction of new active agents as the matrices used for its controlled release, the objective of this study was to evaluate the release and immobilization of a natural active agent, the Arct'Alg in hydrogel membranes to obtain a release device for cosmetics. Arct'Alg is an aqueous extract which has excellent anti-oxidant, lipolytic, anti-inflammatory and cytostimulant action. Study on mechanical and physical-chemical properties and biocompatibility in vitro of hydrogel membranes of poly(vinyl-2- pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) obtained by ionizing radiation crosslinking have been performed. The physical-chemical characterization of polymeric matrices was carried out by gel fraction and swelling tests and biocompatibility by in vitro test of cytotoxicity by using the technique of neutral red incorporation. In the gel fraction test, both the PVP and PVA hydrogel showed a high crosslinking degree. The PVP hydrogel showed a greater percentage of swelling in relation to PVA and the cytotoxicity test of the hydrogels showed non-toxicity effect. The cytostimulation property of Arct'Alg was verified by the cytostimulation test with rabbit skin cells, it was showed an increase at about 50% of the cells when in contact with 0,5% of active agent. The hydrogel membranes prepared with 3% of Arct'Alg were subjected to the release test in an incubator at 37 degree C and aliquots collected during the test were quantified by high performance liquid chromatography (HPLC). The results obtained in the kinetics of release showed that the PVP hydrogel membranes released about 50% of Arct'Alg incorporated and the PVA hydrogel membranes at about 30%. In the cytostimulation test of released Arct'Alg, the PVP device showed an

  3. Biomechanical 3-Dimensional Finite Element Analysis of Obturator Protheses Retained with Zygomatic and Dental Implants in Maxillary Defects

    OpenAIRE

    Akay, Canan; Yaluğ, Suat

    2015-01-01

    Background The objective of this study was to investigate the stress distribution in the bone around zygomatic and dental implants for 3 different implant-retained obturator prostheses designs in a Aramany class IV maxillary defect using 3-dimensional finite element analysis (FEA). Material\\Methods A 3-dimensional finite element model of an Aramany class IV defect was created. Three different implant-retained obturator prostheses were modeled: model 1 with 1 zygomatic implant and 1 dental imp...

  4. Differences in sensitivity to mTHPC-mediated photodynamic therapy of neurons, glial cells and MCF7 cells in a 3-dimensional cell culture model

    OpenAIRE

    Wright, K E; MacRobert, A J; Phillips, J. B.

    2008-01-01

    The effect of photodynamic therapy (PDT) on the cells of the nervous system is an important consideration in the treatment of tumours that are located within or adjacent to the brain, spinal cord and peripheral nerves. Previous studies have reported the sparing of nerves during PDT using meta-tetrahydroxyphenylchlorin (mTHPC, Foscan®) in patients and in animal models. The aim of this study was to investigate the effects of mTHPC on key nervous system cells using a 3-dimensional cell culture s...

  5. Electrospinning of Bioactive Dex-PAA Hydrogel Fibers

    Science.gov (United States)

    Louie, Katherine Boyook

    In this work, a novel method is developed for making nano- and micro-fibrous hydrogels capable of preventing the rejection of implanted materials. This is achieved by either (1) mimicking the native cellular environment, to exert fine control over the cellular response or (2) acting as a protective barrier, to camouflage the foreign nature of a material and evade recognition by the immune system. Comprehensive characterization and in vitro studies described here provide a foundation for developing substrates for use in clinical applications. Hydrogel dextran and poly(acrylic acid) (PAA) fibers are formed via electrospinning, in sizes ranging from nanometers to microns in diameter. While "as-electrospun" fibers are continuous in length, sonication is used to fragment fibers into short fiber "bristles" and generate nano- and micro- fibrous surface coatings over a wide range of topographies. Dex-PAA fibrous surfaces are chemically modified, and then optimized and characterized for non-fouling and ECM-mimetic properties. The non-fouling nature of fibers is verified, and cell culture studies show differential responses dependent upon chemical, topographical and mechanical properties. Dex-PAA fibers are advantageously unique in that (1) a fine degree of control is possible over three significant parameters critical for modifying cellular response: topography, chemistry and mechanical properties, over a range emulating that of native cellular environments, (2) the innate nature of the material is non-fouling, providing an inert background for adding back specific bioactive functionality, and (3) the fibers can be applied as a surface coating or comprise the scaffold itself. This is the first reported work of dex-PAA hydrogel fibers formed via electrospinning and thermal cross-linking, and unique to this method, no toxic solvents or cross-linking agents are needed to create hydrogels or for surface attachment. This is also the first reported work of using sonication to

  6. Effects of radiational damping in 3-dimensional soil-structure interaction system with basemat uplift

    International Nuclear Information System (INIS)

    The purpose of this paper is to evaluate the change in structural responses due to the radiational damping which varies with the extent of basemat uplift. The necessity of using nonlinear variation of radiational damping in relation to the extent of uplift is studied. The importance of considering nonlinear variation of damping during uplift for different base-soil conditions is also discussed. (J.P.N.)

  7. Hydrogel Contact Lens for Extended Delivery of Ophthalmic Drugs

    Directory of Open Access Journals (Sweden)

    Xiaohong Hu

    2011-01-01

    Full Text Available Soft contact lenses can improve the bioavailability and prolong the residence time of drugs and, therefore, are ideal drug carriers for ophthalmic drug delivery. Hydrogels are the leading materials of soft contact lenses because of their biocompatibility and transparent characteristic. In order to increase the amount of load drug and to control their release at the expected intervals, many strategies are developed to modify the conventional contact lens as well as the novel hydrogel contact lenses that include (i polymeric hydrogels with controlled hydrophilic/hydrophobic copolymer ratio; (ii hydrogels for inclusion of drugs in a colloidal structure dispersed in the contact lenses; (iii ligand-containing hydrogels; (iv molecularly imprinted polymeric hydrogels; (v hydrogel with the surface containing multilayer structure for drugs loading and releasing. The advantages and disadvantages of these strategies in modifying or designing hydrogel contact lenses for extended ophthalmic drug delivery are analyzed in this paper.

  8. Fabrication of keratin-silica hydrogel for biomedical applications.

    Science.gov (United States)

    Kakkar, Prachi; Madhan, Balaraman

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. PMID:27207052

  9. VISCOELASTIC PROPERTIES OF A BIOLOGICAL HYDROGEL PRODUCED FROM SOYBEAN OIL

    Science.gov (United States)

    Hydrogels formed from biopolymers or natural sources have special advantages because of their biodegradable and biocompatible properties. The viscoelastic properties of a newly developed biological hydrogel made from modified vegetable oil, epoxidized soybean oil (ESO) were investigated. The mater...

  10. Fabrication of keratin-silica hydrogel for biomedical applications.

    Science.gov (United States)

    Kakkar, Prachi; Madhan, Balaraman

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications.

  11. A pH-sensitive Modified Polyacrylamide Hydrogel

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A pH-sensitive modified polyacrylamide hydrogel was prepared by two steps and the modified polyacrylamide was characterized by 1HNMR spectrum. The surface morphology and swelling behavior of the hydrogels were investigated.

  12. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.

    Science.gov (United States)

    Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc

    2016-12-01

    The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. PMID:27612727

  13. Chemical semi-IPN hydrogels for the removal of adhesives from canvas paintings

    Science.gov (United States)

    Domingues, Joana; Bonelli, Nicole; Giorgi, Rodorico; Baglioni, Piero

    2014-03-01

    Semi-interpenetrating (IPN) poly (2-hydroxyethyl methacrylate)/polyvinylpyrrolidone hydrogels were synthesized and used for the removal of adhesives from the back of canvas paintings. The high water retention capability and the specific mechanical properties of these gels allow the safe cleaning of water-sensitive artifacts using water-based detergent systems. The cleaning action is limited to the contact area and layer-by-layer removal is achieved while avoiding water spreading and absorption within water-sensitive substrates, which could lead, for example, to paint detachment. The use of these chemical gels also avoids leaving residues over the treated surface because the gel network is formed by covalent bonds that provide high mechanical strength. In this contribution, the physicochemical characterization of semi-IPN chemical hydrogels is reported. The successful application of an o/w microemulsion confined in the hydrogel for the removal of adhesives from linen canvas is also illustrated.

  14. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    Science.gov (United States)

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples. PMID:26320646

  15. New hydrogels based on maleilated collagen with potential applications in tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Potorac, Simona; Popa, Marcel [' Gheorghe Asachi' Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 71 Dimitrie Mangeron, 700050 Iasi (Romania); Maier, Vasilica [' Gheorghe Asachi' Technical University, Faculty of Textile, Leather and Industrial Management, Department of Chemical Technology of Leather and Substitutes, 71 Dimitrie Mangeron, 700050, Iasi (Romania); Lisa, Gabriela [' Gheorghe Asachi' Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 71 Dimitrie Mangeron, 700050 Iasi (Romania); Verestiuc, Liliana, E-mail: liliana.verestiuc@bioinginerie.ro [' Gr.T.Popa' University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Department of Biological Sciences, 9-13 Kogalniceanu Street, 700454, Iasi (Romania)

    2012-02-01

    New hydrogels based on maleic anhydride (MA) modified collagen were prepared with the aim of overcoming the high degradation rate displayed by collagen that is not otherwise chemically crosslinked. Semi-interpenetrated matrices were obtained by free radical polymerization of maleilated collagen (CM) and 2-hydroxyethyl methacrylate (HEMA) in the presence of ammonium persulfate (APS) and N,N,N Prime ,N Prime -tetramethylethylenediamine (TEMED) as initiating system. The resulting matrices (CMH) had a sharp decrease in degradation, when compared to pure collagen. FTIR and H{sup 1} NMR spectroscopies were used to confirm the incorporation of MA on the collagen peptide chains. The final composition of CMH was found to be strongly dependent by the concentration of maleilated collagen. The morphology of the hydrogels was studied by Scanning electron microscopy (SEM) and the macro-gel structure was confirmed. Water uptake of the synthetised hydrogels is influenced by both composition and the porosity of the matrices.

  16. New hydrogels based on maleilated collagen with potential applications in tissue engineering

    International Nuclear Information System (INIS)

    New hydrogels based on maleic anhydride (MA) modified collagen were prepared with the aim of overcoming the high degradation rate displayed by collagen that is not otherwise chemically crosslinked. Semi-interpenetrated matrices were obtained by free radical polymerization of maleilated collagen (CM) and 2-hydroxyethyl methacrylate (HEMA) in the presence of ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED) as initiating system. The resulting matrices (CMH) had a sharp decrease in degradation, when compared to pure collagen. FTIR and H1 NMR spectroscopies were used to confirm the incorporation of MA on the collagen peptide chains. The final composition of CMH was found to be strongly dependent by the concentration of maleilated collagen. The morphology of the hydrogels was studied by Scanning electron microscopy (SEM) and the macro-gel structure was confirmed. Water uptake of the synthetised hydrogels is influenced by both composition and the porosity of the matrices.

  17. Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit

    Science.gov (United States)

    Abdullah, Mohd Fadzlanor; Lazim, Azwani Mat

    2014-09-01

    Biocompatible hydrogel based on acrylic acid (AA) and pectin was synthesized using gamma irradiation technique. AA was grafted onto pectin backbone that was extracted from dragon fruit under pH 3.5 and extracts and ethanol ratios (ER) 1:0.5. The optimum hydrogel system with high swelling capacity was obtained by varying the dose of radiation and ratio of pectin:AA. FTIR-ATR spectroscopy was used to verify the interaction while thermal properties were analyzed by TGA and DSC. Swelling studies was carried out in aqueous solutions with different pH values as to determine the pH sensitivity. The results show that the hydrogel with a ratio of 2:3 (pectin:AA) and 30 kGy radiation dose has the highest swelling properties at pH of 10.

  18. Protease-sensitive atelocollagen hydrogels promote healing in a diabetic wound model

    CERN Document Server

    Tronci, Giuseppe; Holmes, Roisin A; Liang, He; Russell, Stephen J; Wood, David J

    2016-01-01

    The design of exudate-managing wound dressings is an established route to accelerated healing, although such design remains a challenge from material and manufacturing standpoints. Aiming towards the clinical translation of knowledge gained in vitro with highly swollen rat tail collagen hydrogels, this study investigated the healing capability in a diabetic mouse wound model of telopeptide-free, protease-inhibiting collagen networks. 4 vinylbenzylation and UV irradiation of type I atelocollagen (AC) led to hydrogel networks with chemical and macroscopic properties comparable to previous collagen analogues, attributable to similar lysine content and dichroic properties. After 4 days in vitro, hydrogels induced nearly 50 RFU% reduction in matrix metalloproteinase (MMP)-9 activity, whilst showing less than 20 wt.-% weight loss. After 20 days in vivo, dry networks promoted 99% closure of 10x10 mm full thickness wounds and accelerated neodermal tissue formation compared to Mepilex. This collagen system can be equi...

  19. Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics

    Science.gov (United States)

    Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels

    Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.

  20. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport

    OpenAIRE

    Chao Yang; Wei Wang; Chen Yao; Rui Xie; Xiao-Jie Ju; Zhuang Liu; Liang-Yin Chu

    2015-01-01

    In this study, soft hydrogel walkers with electro-driven motility for cargo transport have been developed via a facile mould-assisted strategy. The hydrogel walkers consisting of polyanionic poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) exhibit an arc looper-like shape with two “legs” for walking. The hydrogel walkers can reversibly bend and stretch via repeated “on/off” electro-triggers in electrolyte solution. Based on such bending/stretching behaviors, the hydrogel walkers ...