WorldWideScience

Sample records for 3-dimensional conformal radiation

  1. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Beg, Muhammad S. [Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Meyer, Jeffrey [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  2. Rectal planning risk volume correlation with acute and late toxicity in 3-dimensional conformal radiation therapy for prostate cancer.

    Science.gov (United States)

    Dias, R S; Giordani, A J; Souhami, L; Segreto, R A; Segreto, H R C

    2011-12-01

    The purpose of this study was to evaluate rectum motion during 3-Dimensional conformal radiation therapy (3D-CRT) in prostate cancer patients, to derive a planning volume at risk (PRV) and to correlate the PRV dose-volume histograms (DVH) with treatment complications.This study was conducted in two phases. Initially, the PRV was defined prospectively in 50 consecutive prostate cancer patients (Group 1) who received a radical course of 3-D CRT. Then, the obtained PRV was used in the radiotherapy planning of these same 50 patients plus another 59 prostate cancer patients (Group 2) previously treated between 2004 and 2008. All these patients' data, including the rectum and PRV DVHs, were correlated to acute and late complications, according to the Common Toxicity Criteria (CTC) v4.0.The largest displacement occurred in the anterior axis. Long-term gastrointestinal (GI) complications grade ≥ 2 were seen in 9.2% of the cases. Factors that influenced acute GI reactions were: doses at 25% (p 5 0.011) and 40% (p 5 0.005) of the rectum volume and at 40% of the PRV (p 5 0.012). The dose at 25% of the rectum volume (p 5 0.033) and acute complications ≥ grade 2 (p 5 0.018) were prognostic factors for long-term complications. The PRV DVH did not correlate with late toxicity. The rectum showed a significant inter-fraction motion during 3D-CRT for prostate cancer. PRV dose correlated with acute gastrointestinal complications and may be a useful tool to predict and reduce their occurrence.

  3. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    Energy Technology Data Exchange (ETDEWEB)

    Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu [Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California (United States); Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Stinauer, Michelle; Rogers, Brion [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Madden, Jennifer R. [Department of Neuro-Oncology, The Children' s Hospital, Aurora, Colorado (United States); Wilkening, Greta N. [Department of Pediatrics, The Children' s Hospital, Aurora, Colorado (United States); Liu, Arthur K. [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States)

    2012-12-01

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

  4. Potential for improved intelligence quotient using volumetric modulated arc therapy compared with conventional 3-dimensional conformal radiation for whole-ventricular radiation in children.

    Science.gov (United States)

    Qi, X Sharon; Stinauer, Michelle; Rogers, Brion; Madden, Jennifer R; Wilkening, Greta N; Liu, Arthur K

    2012-12-01

    To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Impact of jaw position on sparing organs at risk in 3-dimensional conformal radiation therapy of pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Nava Paudel

    2016-03-01

    Full Text Available Purpose: The objective of this work is to investigate the impact of collimator jaw position on dose to organs at risk (OARs during a 3-dimensional conformal radiotherapy (3DCRT of pancreatic cancer and postulate a method to minimize OAR dose by proper positioning of the jaws.Methods: Clinically delivered 3DCRT treatment plans for 10 patients optimized with multiple static beams using multileaf collimator (MLC leaves conformed to a block margin around target, and collimator jaws aligned with outer extent of the block margin were selected. Subsequent plans were generated by displacing the collimator jaws outward in lateral, superior-inferior or both directions by 1 and 2 cm without altering the MLC position. Computed dose to OARs and target with unaltered dose normalization were compared against the corresponding dose obtained from the original plans.Results: Outward displacement of the collimator jaws by 1 cm in lateral and/or superior-inferior direction resulted in a significant increase in mean dose to the studied OARs. The increase was found to be proportional to the outward displacement of the jaws. The increase in maximum dose to spinal cord was significant in a few patients while it was insignificant for all other OARs.Conclusion: Collimator jaws aligned with outer extent of a block margin minimize dose to OARs. Any gap between the block margin and the collimator jaws can lead to an inadvertent delivery of higher dose to the OARs. Hence, the use of an optimal jaw position during treatment planning becomes important to all patient plans.

  6. Two-Year and Lifetime Cost-Effectiveness of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Head-and-Neck Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Racquel E. [Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Sheets, Nathan C. [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States); Wheeler, Stephanie B. [Department of Health Policy and Management, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (United States); Nutting, Chris [Royal Marsden Hospital, London, United Kindom (United Kingdom); Hall, Emma [Clinical Trials and Statistics Unit, Division of Clinical Studies, Institute of Cancer Research, London (United Kingdom); Chera, Bhishamjit S., E-mail: bchera@med.unc.edu [Department of Radiation Oncology, University of North Carolina Hospitals, Chapel Hill, North Carolina (United States)

    2013-11-15

    Purpose: To assess the cost-effectiveness of intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of head-and neck-cancer (HNC). Methods and Materials: We used a Markov model to simulate radiation therapy-induced xerostomia and dysphagia in a hypothetical cohort of 65-year-old HNC patients. Model input parameters were derived from PARSPORT (CRUK/03/005) patient-level trial data and quality-of-life and Medicare cost data from published literature. We calculated average incremental cost-effectiveness ratios (ICERs) from the US health care perspective as cost per quality-adjusted life-year (QALY) gained and compared our ICERs with current cost-effectiveness standards whereby treatment comparators less than $50,000 per QALY gained are considered cost-effective. Results: In the first 2 years after initial treatment, IMRT is not cost-effective compared with 3D-CRT, given an average ICER of $101,100 per QALY gained. However, over 15 years (remaining lifetime on the basis of average life expectancy of a 65-year-old), IMRT is more cost-effective at $34,523 per QALY gained. Conclusion: Although HNC patients receiving IMRT will likely experience reduced xerostomia and dysphagia symptoms, the small quality-of-life benefit associated with IMRT is not cost-effective in the short term but may be cost-effective over a patient's lifetime, assuming benefits persist over time and patients are healthy and likely to live for a sustained period. Additional data quantifying the long-term benefits of IMRT, however, are needed.

  7. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Daniel, E-mail: daniel.pham@petermac.org [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria (Australia); Thompson, Ann [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kron, Tomas [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Foroudi, Farshad [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Kolsky, Michal Schneider [Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Victoria (Australia); Devereux, Thomas; Lim, Andrew [Department of Radiotherapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Siva, Shankar [Sir Peter MacCallum Department of Oncology, Melbourne University, Melbourne, Victoria (Australia); Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia)

    2014-12-01

    Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimum isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.

  8. Treatment-Related Morbidity in Prostate Cancer: A Comparison of 3-Dimensional Conformal Radiation Therapy With and Without Image Guidance Using Implanted Fiducial Markers

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jasmeet, E-mail: drsingh.j@gmail.com [Calvary Mater Newcastle, Newcastle (Australia); Greer, Peter B. [School of Physical and Mathematical Sciences, University of Newcastle, Newcastle (Australia); White, Martin A. [School of Medicine and Public Health, University of Newcastle, Newcastle (Australia); Parker, Joel; Patterson, Jackie [Calvary Mater Newcastle, Newcastle (Australia); Tang, Colin I.; Capp, Anne; Wratten, Christopher; Denham, James W. [Calvary Mater Newcastle, Newcastle (Australia); School of Medicine and Public Health, University of Newcastle, Newcastle (Australia)

    2013-03-15

    Purpose: To estimate the prevalence of rectal and urinary dysfunctional symptoms using image guided radiation therapy (IGRT) with fiducials and magnetic resonance planning for prostate cancer. Methods and Materials: During the implementation stages of IGRT between September 2008 and March 2010, 367 consecutive patients were treated with prostatic irradiation using 3-dimensional conformal radiation therapy with and without IGRT (non-IGRT). In November 2010, these men were asked to report their bowel and bladder symptoms using a postal questionnaire. The proportions of patients with moderate to severe symptoms in these groups were compared using logistic regression models adjusted for tumor and treatment characteristic variables. Results: Of the 282 respondents, the 154 selected for IGRT had higher stage tumors, received higher prescribed doses, and had larger volumes of rectum receiving high dosage than did the 128 selected for non-IGRT. The follow-up duration was 8 to 26 months. Compared with the non-IGRT group, improvement was noted in all dysfunctional rectal symptoms using IGRT. In multivariable analyses, IGRT improved rectal pain (odds ratio [OR] 0.07 [0.009-0.7], P=.02), urgency (OR 0.27 [0.11-0.63], P=<.01), diarrhea (OR 0.009 [0.02-0.35], P<.01), and change in bowel habits (OR 0.18 [0.06-0.52], P<.010). No correlation was observed between rectal symptom levels and dose-volume histogram data. Urinary dysfunctional symptoms were similar in both treatment groups. Conclusions: In comparison with men selected for non-IGRT, a significant reduction of bowel dysfunctional symptoms was confirmed in men selected for IGRT, even though they had larger volumes of rectum treated to higher doses.

  9. Comparing two strategies of dynamic intensity modulated radiation therapy (dIMRT with 3-dimensional conformal radiation therapy (3DCRT in the hypofractionated treatment of high-risk prostate cancer

    Directory of Open Access Journals (Sweden)

    Yartsev Slav

    2008-01-01

    Full Text Available Abstract Background To compare two strategies of dynamic intensity modulated radiation therapy (dIMRT with 3-dimensional conformal radiation therapy (3DCRT in the setting of hypofractionated high-risk prostate cancer treatment. Methods 3DCRT and dIMRT/Helical Tomotherapy(HT planning with 10 CT datasets was undertaken to deliver 68 Gy in 25 fractions (prostate and simultaneously delivering 45 Gy in 25 fractions (pelvic lymph node targets in a single phase. The paradigms of pelvic vessel targeting (iliac vessels with margin are used to target pelvic nodes and conformal normal tissue avoidance (treated soft tissues of the pelvis while limiting dose to identified pelvic critical structures were assessed compared to 3DCRT controls. Both dIMRT/HT and 3DCRT solutions were compared to each other using repeated measures ANOVA and post-hoc paired t-tests. Results When compared to conformal pelvic vessel targeting, conformal normal tissue avoidance delivered more homogenous PTV delivery (2/2 t-test comparisons; p dose, 1–3 Gy over 5/10 dose points; p Conclusion dIMRT/HT nodal and pelvic targeting is superior to 3DCRT in dose delivery and critical structure sparing in the setting of hypofractionation for high-risk prostate cancer. The pelvic targeting paradigm is a potential solution to deliver highly conformal pelvic radiation treatment in the setting of nodal location uncertainty in prostate cancer and other pelvic malignancies.

  10. Impact of Gemcitabine Chemotherapy and 3-Dimensional Conformal Radiation Therapy/5-Fluorouracil on Quality of Life of Patients Managed for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Short, Michala [Discipline of Medical Radiation Sciences, University of Sydney, Sydney, New South Wales (Australia); Western Australia Centre for Cancer and Palliative Care/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia (Australia); Goldstein, David [Department of Medical Oncology, Prince of Wales Hospital, Sydney, New South Wales (Australia); Halkett, Georgia [Western Australia Centre for Cancer and Palliative Care/Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia (Australia); Reece, William [Covance Asia Pacific, Sydney, New South Wales (Australia); Borg, Martin [Adelaide Radiotherapy Centre, Adelaide, South Australia (Australia); Zissiadis, Yvonne [Department of Radiation Oncology, Royal Perth Hospital, Perth, Western Australia (Australia); Kneebone, Andrew [Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, New South Wales (Australia); Spry, Nigel, E-mail: Nigel.Spry@health.wa.gov.au [Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia (Australia); Faculty of Medicine, University of Western Australia, Perth, Western Australia (Australia)

    2013-01-01

    Purpose: To report quality of life (QOL) results for patients receiving chemoradiation therapy for pancreatic cancer. Methods and Materials: Eligible patients (n=41 locally advanced, n=22 postsurgery) entered the B9E-AY-S168 study and received 1 cycle of induction gemcitabine (1000 mg/m{sup 2} weekly Multiplication-Sign 3 with 1-week break) followed by 3-dimensional conformal radiation therapy (RT) (54 Gy locally advanced and 45 Gy postsurgery) and concomitant continuous-infusion 5-fluorouracil (5FU) (200 mg/m{sup 2}/d throughout RT). After 4 weeks, patients received an additional 3 cycles of consolidation gemcitabine chemotherapy. Patients completed the European Organization for Research and Treatment of Cancer QLQ-C30 and QLQ-PAN26 questionnaires at baseline, before RT/5FU, at end of RT/5FU, before consolidation gemcitabine, and at treatment completion. Results: The patterns of change in global QOL scores differed between groups. In the locally advanced group global QOL scores were +13, +8, +3, and +1 compared with baseline before RT/5FU (P=.008), at end of RT/5FU, before consolidation gemcitabine, and at treatment completion, respectively. In the postsurgery group, global QOL scores were -3, +4, +15, and +17 compared with baseline at the same time points, with a significant improvement in global QOL before consolidation gemcitabine (P=.03). No significant declines in global QOL were reported by either cohort. Conclusions: This study demonstrates that global QOL and associated function and symptom profiles for pancreatic chemoradiation therapy differ between locally advanced and postsurgery patients, likely owing to differences in underlying disease status. For both groups, the treatment protocol was well tolerated and did not have a negative impact on patients' global QOL.

  11. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Núria, E-mail: nrodriguez@parcdesalutmar.cat [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Sanz, Xavier [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Dengra, Josefa [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Foro, Palmira [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Membrive, Ismael; Reig, Anna [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Quera, Jaume [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Fernández-Velilla, Enric; Pera, Óscar; Lio, Jackson; Lozano, Joan [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Algara, Manuel [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain)

    2013-12-01

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P<.01). Late skin toxicity was no worse than grade 2 in either group, without significant differences between the 2 groups. In the ipsilateral breast, the areas that received the highest doses (ie, the boost or quadrant) showed the greatest loss of elasticity. WBI resulted in a greater loss of elasticity in the high-dose area compared with APBI (P<.05). Physician assessment showed that >75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with

  12. Preliminary Toxicity Analysis of 3-Dimensional Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy on the High-Dose Arm of the Radiation Therapy Oncology Group 0126 Prostate Cancer Trial

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Jeff M., E-mail: jmichalski@radonc.wustl.edu [Department of Radiation Oncology Washington University Medical Center, St. Louis, Missouri (United States); Yan, Yan [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Watkins-Bruner, Deborah [Emory University School of Nursing, Atlanta, Georgia (United States); Bosch, Walter R. [Department of Radiation Oncology Washington University Medical Center, St. Louis, Missouri (United States); Winter, Kathryn [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Galvin, James M. [Department of Radiation Oncology Thomas Jefferson University Hospital, Philadelphia, Pennsylvania (United States); Bahary, Jean-Paul [Department of Radiation Oncology Centre Hospitalier de l' Université de Montréal-Notre Dame, Montreal, QC (Canada); Morton, Gerard C. [Department of Radiation Oncology Toronto-Sunnybrook Regional Cancer Centre, Toronto, ON (Canada); Parliament, Matthew B. [Department of Oncology Cross Cancer Institute, Edmonton, AB (Canada); Sandler, Howard M. [Department of Radiation Oncology Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California (United States)

    2013-12-01

    Purpose: To give a preliminary report of clinical and treatment factors associated with toxicity in men receiving high-dose radiation therapy (RT) on a phase 3 dose-escalation trial. Methods and Materials: The trial was initiated with 3-dimensional conformal RT (3D-CRT) and amended after 1 year to allow intensity modulated RT (IMRT). Patients treated with 3D-CRT received 55.8 Gy to a planning target volume that included the prostate and seminal vesicles, then 23.4 Gy to prostate only. The IMRT patients were treated to the prostate and proximal seminal vesicles to 79.2 Gy. Common Toxicity Criteria, version 2.0, and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late morbidity scores were used for acute and late effects. Results: Of 763 patients randomized to the 79.2-Gy arm of Radiation Therapy Oncology Group 0126 protocol, 748 were eligible and evaluable: 491 and 257 were treated with 3D-CRT and IMRT, respectively. For both bladder and rectum, the volumes receiving 65, 70, and 75 Gy were significantly lower with IMRT (all P<.0001). For grade (G) 2+ acute gastrointestinal/genitourinary (GI/GU) toxicity, both univariate and multivariate analyses showed a statistically significant decrease in G2+ acute collective GI/GU toxicity for IMRT. There were no significant differences with 3D-CRT or IMRT for acute or late G2+ or 3+ GU toxicities. Univariate analysis showed a statistically significant decrease in late G2+ GI toxicity for IMRT (P=.039). On multivariate analysis, IMRT showed a 26% reduction in G2+ late GI toxicity (P=.099). Acute G2+ toxicity was associated with late G3+ toxicity (P=.005). With dose–volume histogram data in the multivariate analysis, RT modality was not significant, whereas white race (P=.001) and rectal V70 ≥15% were associated with G2+ rectal toxicity (P=.034). Conclusions: Intensity modulated RT is associated with a significant reduction in acute G2+ GI/GU toxicity. There is a trend for a

  13. Late Toxicity and Patient Self-Assessment of Breast Appearance/Satisfaction on RTOG 0319: A Phase 2 Trial of 3-Dimensional Conformal Radiation Therapy-Accelerated Partial Breast Irradiation Following Lumpectomy for Stages I and II Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chafe, Susan, E-mail: susan.chafe@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute-University of Alberta, Edmonton, Alberta (Canada); Moughan, Jennifer [Department of Radiation Oncology, RTOG Statistical Center, Philadelphia, Pennsylvania (United States); McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Pass, Helen [Womens' Breast Center, Stamford Hospital, Stamford, Connecticut (United States); Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Petersen, Ivy [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); White, Julia [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States)

    2013-08-01

    Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again.

  14. 儿童髓母细胞瘤34例三维适形放射治疗的疗效分析%The follow-up of 34 children with medulloblastoma who received 3-dimensional conformal radiation therapy

    Institute of Scientific and Technical Information of China (English)

    Dongfeng He; Siheng Ha; Changsheng Wang

    2009-01-01

    Objective: In our investigation, we studied the patients with medulloblastoma who received 3-dimensional con- formal radiation therapy (3DCRT) and recorded their effects, side effects and failure reasons. Methods: From August 2001 to August 2007, 34 children with medulloblastoma were treated in our hospital. The age at diagnosis was 3-16 years old, and the mean age at diagnosis was 9.5 years old. Among all the patients, 16 cases were included in the high risk group and 18cases were included in the low risk group. All the patients were performed total resection or subtotal resection and no patientsreceived radiotherapy or chemotherapy before operation. All patients received 3DCRT within 3 weeks after resection. The dose of 30 Gy were given to the whole brain and whole spine, followed by 20-25 Gy boosted to the posterior brain fossa. The median fraction dose was 180 cGy. Every patient received the chemotherapy scheme of the Lomustine, Cisplatinum and Vincristine. Nobody received intrathecal chemotherapy. The tests of the complete blood count, blood biochemistry, hepatic and renal functions were required before every cycle of chemotherapy. Results: 5-year overall survival (OS) and 5-year disease free survival (DFS) were 71% and 62% respectively. The median follow-up time was 36.5 months. The 5-year OS of the high risk group was 71% compared to 62% of the low risk group. There were significant difference between the two groups (P = 0.01). There were 13 failure cases in all the patients. Of these 13 patients, 10 were dead and the other 3 were alive with tumor. The complete remission (CR) rate was 70.5% and the partial remission (PR) rate was 14%. Among the failure patients, there were 3 patients (8.8%) with the recurrences located in the brain of cribriform region. The 5-year OS of the patients with preoperative metastases was 12.5% (1/8), and which of the patients with residual tumor volume > 1.5 cm3 was 0% (0/5). Through the statistic analysis, it was found that both

  15. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    Science.gov (United States)

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  16. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    Science.gov (United States)

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  17. Ionizing radiation-induced adaptive response in fibroblasts under both monolayer and 3-dimensional conditions.

    Science.gov (United States)

    Zhao, Yinlong; Zhong, Rui; Sun, Liguang; Jia, Jie; Ma, Shumei; Liu, Xiaodong

    2015-01-01

    To observe the adaptive response (AR) induced by ionizing radiation in human fibroblasts under monolayer and 3-dimensional (3-D) condition. Three kinds of fibroblasts were cultured under both monolayer and 3-D condition. Immunofluorescent staining was used to detect the γ-H2AX foci and the morphological texture. Trypan blue staining was used to detect the cell death. Western blot was used to detect the expressions of γ-H2AX, p53 and CDKN1A/p21 (p21). We found that DNA damage increased in a dose-dependent and time-dependent manner after high doses of radiation. When cells were pretreated with a priming low dose of radiation followed by high dose radiation, DNA damage was attenuated under both monolayer and 3-D condition, and the adaptive response (AR) was induced. Additionally, the morphology of cells under monolayer and 3-D conditions were different, and radiation also induced AR according to morphological texture analysis. Priming low dose radiation induced AR both under monolayer and 3-D condition. Interestingly, 3-D microenvironment made cells more sensitive to radiation. The expression of p53 and p21 was changed and indicated that they might participate in the regulation of AR.

  18. Conformal pure radiation with parallel rays

    CERN Document Server

    Leistner, Thomas

    2011-01-01

    We define pure radiation metrics with parallel rays to be n-dimensional pseudo-Riemannian metrics that admit a parallel null line bundle K and whose Ricci tensor vanishes on vectors that are orthogonal to K. We give necessary conditions in terms of the Weyl, Cotton and Bach tensors for a pseudo-Riemannian metric to be conformal to a pure radiation metric with parallel rays. Then we derive conditions in terms of tractor calculus that are equivalent to the existence of a pure radiation metric with parallel rays in a conformal class. We also give an analogous result for n-dimensional pseudo-Riemannian pp-waves.

  19. Absence of toxicity with hypofractionated 3-dimensional radiation therapy for inoperable, early stage non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Vuong Te

    2006-11-01

    Full Text Available Abstract Purpose Hypofractionated radiotherapy may overcome repopulation in rapidly proliferating tumors such as lung cancer. It is more convenient for the patients and reduces health care costs. This study reports our results on patients with medically inoperable, early stage, non-small cell lung cancer (NSCLC treated with hypofractionation. Materials and methods Stage T1-2N0 NSCLC patients were treated with hypofractionation alone, 52.5 Gy/15 fractions, in 3 weeks, with 3-dimensional conformal planning. T1-2N1 patients with the hilar lymphnode close to the primary tumor were also eligible for this treatment. We did not use any approach to reduce respiratory motion, but it was monitored in all patients. Elective nodal radiotherapy was not performed. Routine follow up included assessment for acute and late toxicity and radiological tumor response. Median follow up time was 29 months for the surviving patients. Results Thirty-two patients with a median age of 76 years, T1 = 15 and T2 = 17, were treated. Median planning target volume (PTV volume was 150cc and median V16 of both lungs was 13%. The most important finding of this study is that toxicity was minimal. Two patients had grade ≤ 2 acute pneumonitis and 3 had mild (grade 1 acute esophagitis. There was no late toxicity. Actuarial 1 and 2-year overall survival rates are 78% and 56%, cancer specific survival rates (CSS are 90% and 74%, and local relapse free survival rates are 93% and 76% respectively. Conclusion 3-D planning, involved field hypofractionation at a dose of 52.5 Gy in 15 daily fractions is safe, well tolerated and easy radiation treatment for medically inoperable lung cancer patients. It shortens by half the traditional treatment. Results compare favorably with previously published studies. Further studies are needed to compare similar technique with other treatments such as surgery and stereotactic radiotherapy.

  20. Re-irradiation using 3-dimensional conformal radiation therapy for definitive treatment of 140 cases of locally recurrent nasopharyngeal carcinoma%140例局部复发鼻咽癌患者三维适形放疗的疗效分析

    Institute of Scientific and Technical Information of China (English)

    邱素芳; 林少俊; 陆军; 周衍; 潘建基

    2011-01-01

    Background and purpose: Local recurrences of nasopharyngeal carcinoma (NPC) may be salvaged by re-irradiation using conventional techniques, but with significant morbidity. Three-dimensional conformal radiation therapy (3D-CRT) may improve the therapeutic ratio by reducing doses to normal tissue. The aim of this study was to address the efficacy and toxicity profile of 3D-CRT for 140 patients with locally recurrent NPC. Methods: From May 1997 to Jun. 2009,140 patients diagnosed with locally recurrent NPC by biopsy and/or CT/MRI evidence of progressive skull base erosion and clinical symptoms were treated with 3D-CRT. Median time to recurrence was 27.5 months (ranged from 1 to 156 months) after the completion of conventional radiation to definitive dose. 50.7% of the cases had rTM classification. Minimum planned doses of 3D-CRT treatment were 59.4-60 Gy in 1.8-2 Gy per daily fraction to the gross disease with margins, with or without chemotherapy. Results: The median dose to the recurrent tumor of reirradiation was 62 Gy (ranged from 50 to 77.4 Gy). With a median follow-up of 25.5 months (ranged from 3 to 135 months), the overall survival (OS), disease-free survival (DFS), locoregional recurrence-free survival (LRRFS) rates at 3- and 5-year were 44.53% vs 31%, 42.82 vs 29.13%, 44.19% vs 30.76%, respectively. Moderate to severe late toxicities were noted in 48 patients (34.3%). Thirteen patients (9.29%) had posterior nasal space ulceration, 21 (15%) developed to cranial nerve palsies, 20 (14.3%) had trismus, and 16(11.4%) suffered deafness. Older age was an adverse prognostic factor. Conclusion: Re-irradiation with 3D-CRT provides reasonable long-term control in patients with locally recurrent NPC with acceptable profile of adverse-effects. The overall survival at 3- and 5-year were 44.53% vs 31%.%背景与目的:局部复发鼻咽癌再次放疗的方式很多,但常规放疗后良反应大,目前关于三维适形放疗(three dimensional conformal radiation therapy

  1. Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Steven H., E-mail: SHLin@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang Lu [Department of Biostatistics, University of Michigan, Ann Arbor, Michigan (United States); Myles, Bevan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thall, Peter F. [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Hofstetter, Wayne L.; Swisher, Stephen G. [Department of Thoracic Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D.; Komaki, Ritsuko; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-12-01

    Purpose: Although 3-dimensional conformal radiotherapy (3D-CRT) is the worldwide standard for the treatment of esophageal cancer, intensity modulated radiotherapy (IMRT) improves dose conformality and reduces the radiation exposure to normal tissues. We hypothesized that the dosimetric advantages of IMRT should translate to substantive benefits in clinical outcomes compared with 3D-CRT. Methods and Materials: An analysis was performed of 676 nonrandomized patients (3D-CRT, n=413; IMRT, n=263) with stage Ib-IVa (American Joint Committee on Cancer 2002) esophageal cancers treated with chemoradiotherapy at a single institution from 1998-2008. An inverse probability of treatment weighting and inclusion of propensity score (treatment probability) as a covariate were used to compare overall survival time, interval to local failure, and interval to distant metastasis, while accounting for the effects of other clinically relevant covariates. The propensity scores were estimated using logistic regression analysis. Results: A fitted multivariate inverse probability weighted-adjusted Cox model showed that the overall survival time was significantly associated with several well-known prognostic factors, along with the treatment modality (IMRT vs 3D-CRT, hazard ratio 0.72, P<.001). Compared with IMRT, 3D-CRT patients had a significantly greater risk of dying (72.6% vs 52.9%, inverse probability of treatment weighting, log-rank test, P<.0001) and of locoregional recurrence (P=.0038). No difference was seen in cancer-specific mortality (Gray's test, P=.86) or distant metastasis (P=.99) between the 2 groups. An increased cumulative incidence of cardiac death was seen in the 3D-CRT group (P=.049), but most deaths were undocumented (5-year estimate, 11.7% in 3D-CRT vs 5.4% in IMRT group, Gray's test, P=.0029). Conclusions: Overall survival, locoregional control, and noncancer-related death were significantly better after IMRT than after 3D-CRT. Although these results need

  2. The Effect of Dose-Volume Parameters and Interfraction Interval on Cosmetic Outcome and Toxicity After 3-Dimensional Conformal Accelerated Partial Breast Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Kara Lynne, E-mail: karalynne.kerr@gmail.com [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts (United States); Hepel, Jaroslaw T. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts (United States); Department of Radiation Oncology, Rhode Island Hospital, Warren Alpert School of Medicine of Brown University, Providence, Rhode Island (United States); Hiatt, Jessica R. [Department of Radiation Oncology, Rhode Island Hospital, Warren Alpert School of Medicine of Brown University, Providence, Rhode Island (United States); Dipetrillo, Thomas A. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts (United States); Department of Radiation Oncology, Rhode Island Hospital, Warren Alpert School of Medicine of Brown University, Providence, Rhode Island (United States); Price, Lori Lyn [Department of Biostatistics Research Center, Institute of Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, Massachusetts (United States); Wazer, David E. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts (United States); Department of Radiation Oncology, Rhode Island Hospital, Warren Alpert School of Medicine of Brown University, Providence, Rhode Island (United States)

    2013-03-01

    Purpose: To evaluate dose-volume parameters and the interfraction interval (IFI) as they relate to cosmetic outcome and normal tissue effects of 3-dimensional conformal radiation therapy (3D-CRT) for accelerated partial breast irradiation (APBI). Methods and Materials: Eighty patients were treated by the use of 3D-CRT to deliver APBI at our institutions from 2003-2010 in strict accordance with the specified dose-volume constraints outlined in the National Surgical Adjuvant Breast and Bowel Project B39/Radiation Therapy Oncology Group 0413 (NSABP-B39/RTOG 0413) protocol. The prescribed dose was 38.5 Gy in 10 fractions delivered twice daily. Patients underwent follow-up with assessment for recurrence, late toxicity, and overall cosmetic outcome. Tests for association between toxicity endpoints and dosimetric parameters were performed with the chi-square test. Univariate logistic regression was used to evaluate the association of interfraction interval (IFI) with these outcomes. Results: At a median follow-up time of 32 months, grade 2-4 and grade 3-4 subcutaneous fibrosis occurred in 31% and 7.5% of patients, respectively. Subcutaneous fibrosis improved in 5 patients (6%) with extended follow-up. Fat necrosis developed in 11% of women, and cosmetic outcome was fair/poor in 19%. The relative volume of breast tissue receiving 5%, 20%, 50%, 80%, and 100% (V5-V100) of the prescribed dose was associated with risk of subcutaneous fibrosis, and the volume receiving 50%, 80%, and 100% (V50-V100) was associated with fair/poor cosmesis. The mean IFI was 6.9 hours, and the minimum IFI was 6.2 hours. The mean and minimum IFI values were not significantly associated with late toxicity. Conclusions: The incidence of moderate to severe late toxicity, particularly subcutaneous fibrosis and fat necrosis and resulting fair/poor cosmesis, remains high with continued follow-up. These toxicity endpoints are associated with several dose-volume parameters. Minimum and mean IFI values were

  3. Three dimensional conformal radiation therapy may improve the therapeutic ratio of radiation therapy after pneumonectomy for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trouette, R.; Causse, N.; Elkhadri, M.; Caudry, M.; Maire, J.P.; Houlard, J.P.; Racaldini, L.; Demeaux, H.

    1995-12-01

    Three dimensional conformal radiation therapy would allow to decrease the normal tissue dose while maintaining the same target dose as standard treatment. To evaluate the feasibility of normal tissue dose reduction for ten patients with pneumonectomy for lung cancer, we determined the dose distribution to the normal tissue with 3-dimensional conformal radiation therapy (3-DCRT) and conventional treatment planning (CTP). Dose-volume histograms for target and normal tissue (lung, heart) were used for comparison of the different treatment planning. The mean percentages of lung and heart volumes which received 40 Gy with 3-DCRT were respectively 63% and 37% of the mean percentage of lung and volumes which received the same dose with CTP. These preliminary results suggest that conformal therapy may improve the therapeutic ratio by reducing risk to normal tissue.

  4. Radiation Analysis and Characteristics of Conformal Reflectarray Antennas

    Directory of Open Access Journals (Sweden)

    Payam Nayeri

    2012-01-01

    Full Text Available This paper investigates the feasibility of designing reflectarray antennas on conformal surfaces. A generalized analysis approach is presented that can be applied to compute the radiation performance of conformal reflectarray antennas. Using this approach, radiation characteristics of conformal reflectarray antennas on singly curved platforms are studied and the performances of these designs are compared with planar designs. It is demonstrated that a conformal reflectarray antenna can be a suitable choice for applications requiring high-gain antennas on curved platforms.

  5. A conformal boundary for space-times based on light-like geodesics: The 3-dimensional case

    Science.gov (United States)

    Bautista, A.; Ibort, A.; Lafuente, J.; Low, R.

    2017-02-01

    A new causal boundary, which we will term the l-boundary, inspired by the geometry of the space of light rays and invariant by conformal diffeomorphisms for space-times of any dimension m ≥3 , proposed by one of the authors [R. J. Low, The Space of Null Geodesics (and a New Causal Boundary), Lecture Notes in Physics 692 (Springer, 2006), pp. 35-50] is analyzed in detail for space-times of dimension 3. Under some natural assumptions, it is shown that the completed space-time becomes a smooth manifold with boundary and its relation with Geroch-Kronheimer-Penrose causal boundary is discussed. A number of examples illustrating the properties of this new causal boundary as well as a discussion on the obtained results will be provided.

  6. Radiative and Momentum Based Mechanical AGN Feedback in a 3-Dimensional Galaxy Evolution Code

    CERN Document Server

    Choi, Ena; Naab, Thorsten; Johansson, Peter H

    2012-01-01

    We study the growth of black holes (BHs) in galaxies using three-dimensional smoothed particle hydrodynamic (SPH) simulations with new implementations of the momentum mechanical feedback, and restriction of accreted elements to those that are gravitationally bound to the BH. We also include the feedback from the X-ray radiation emitted bythe black hole, which heats the surrounding gas in the host galaxies, and adds radial momentum to the fluid. We perform simulations of isolated galaxies and merging galaxies and test various feedback models with the new treatment of the Bondi radius criterion. We find that overall the black hole growth is similar to what has been obtained by earlier workers using the Springel, Di Matteo, & Hernquist algorithms. However, the outflowing wind velocities and mechanical energy emitted by winds are considerably higher (v_w ~ 1000-3000 km/s) compared to the standard thermal feedback model (v_w ~ 50-100 km/s). While the thermal feedback model emits only 0.1 % of BH released energ...

  7. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E.; Kachnic, Lisa A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michele; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.

  8. Dosimetric evaluation of the skin-sparing effects of 3-dimensional conformal radiotherapy and intensity-modulated radiotherapy for left breast cancer.

    Science.gov (United States)

    Jo, In Young; Kim, Shin-Wook; Son, Seok Hyun

    2017-01-10

    The purpose of this study was to evaluate the skin-sparing effects of 3-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) in patients with early left-sided breast cancer. Twenty left breast cancer patients treated with whole breast radiotherapy following breast-conserving surgery were enrolled in this study, and the 3D-CRT and IMRT plans were generated for each patient. To evaluate the dose delivered to the skin, 2 mm thickness skin (2-mm skin) and 3 mm thickness skin (3-mm skin) were contoured and a dosimetric comparison between the 2 plans was performed. The target volume coverage was better in IMRT than in 3D-CRT. The mean dose was 50.8 Gy for 3D-CRT and 51.1 Gy for IMRT. V40Gy was 99.4% for 3D-CRT and 99.9% for IMRT. In the case of skin, the mean dose was higher in 3D-CRT than in IMRT (mean dose of 2-mm skin: 32.8 Gy and 24.2 Gy; mean dose of 3-mm skin: 37.2 Gy and 27.8 Gy, for 3D-CRT and IMRT, respectively). These results indicated that the skin-sparing effect is more prominent in IMRT compared to 3D-CRT without compromising the target volume coverage.

  9. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu; Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  10. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Cui Yunfeng [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Galvin, James M. [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania (United States); Parker, William [Department of Medical Physics, McGill University Health Center, Montreal, QC (Canada); Breen, Stephen [Department of Radiation Physics, Princess Margaret Hospital, Toronto, ON (Canada); Yin Fangfang; Cai Jing [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina (United States); Papiez, Lech S. [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Li, X. Allen [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Bednarz, Greg [Department of Radiation Oncology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (United States); Chen Wenzhou [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Xiao Ying, E-mail: ying.xiao@jefferson.edu [Department of Radiation Oncology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania (United States)

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA

  11. Implementation of remote 3-dimensional image guided radiation therapy quality assurance for radiation therapy oncology group clinical trials.

    Science.gov (United States)

    Cui, Yunfeng; Galvin, James M; Parker, William; Breen, Stephen; Yin, Fang-Fang; Cai, Jing; Papiez, Lech S; Li, X Allen; Bednarz, Greg; Chen, Wenzhou; Xiao, Ying

    2013-01-01

    To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective

  12. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja; Honnef, Joeri; Vliet-Vroegindeweij, Corine van [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter, E-mail: p.remeijer@nki.nl [Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  13. Dosimetric study of volumetric arc modulation with RapidArc and intensity-modulated radiotherapy in patients with cervical cancer and comparison with 3-dimensional conformal technique for definitive radiotherapy in patients with cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Guy, Jean-Baptiste [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Falk, Alexander T. [Department of Radiation Oncology, Centre Antoine Lacassagne, Nice (France); Auberdiac, Pierre [Department of Radiation Oncology, Clinique Claude Bernard, Albi (France); Cartier, Lysian; Vallard, Alexis [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Ollier, Edouard [Department of Pharmacology-Toxicology, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest en Jarez (France); Trone, Jane-Chloé; Khodri, Moustapha [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France); Chargari, Cyrus [Department of Radiation Oncology, Hôpital d’instruction de Armées du Val-de-Grâce, Paris (France); Magné, Nicolas, E-mail: nicolas.magne@icloire.fr [Department of Radiation Oncology, Institut de Cancérologie de la Loire Lucien Neuwirth, Saint-Priest en Jarez (France)

    2016-04-01

    Introduction: For patients with cervical cancer, intensity-modulated radiation therapy (IMRT) improves target coverage and allows dose escalation while reducing the radiation dose to organs at risk (OARs). In this study, we compared dosimetric parameters among 3-dimensional conformal radiotherapy (3D-CRT), “step-and-shoot” IMRT, and volumetric intensity-modulated arc radiotherapy (VMAT) in a series of patients with cervical cancer receiving definitive radiotherapy. Computed tomography (CT) scans of 10 patients with histologically proven cervical cancer treated with definitive radiation therapy (RT) from December 2008 to March 2010 at our department were selected for this study. The gross tumor volume (GTV) and clinical target volume (CTV) were delineated following the guidelines of the Gyn IMRT consortium that included cervix, uterus, parametrial tissues, and the pelvic nodes including presacral. The median age was 57 years (range: 30 to 85 years). All 10 patients had squamous cell carcinoma with Federation of Gynecology and Obstetrics (FIGO) stage IB-IIIB. All patients were treated by VMAT. OAR doses were significantly reduced for plans with intensity-modulated technique compared with 3D-CRT except for the dose to the vagina. Between the 2 intensity-modulated techniques, significant difference was observed for the mean dose to the small intestine, to the benefit of VMAT (p < 0.001). There was no improvement in terms of OARs sparing for VMAT although there was a tendency for a slightly decreased average dose to the rectum: − 0.65 Gy but not significant (p = 0.07). The intensity modulation techniques have many advantages in terms of quality indexes, and particularly OAR sparing, compared with 3D-CRT. Following the ongoing technologic developments in modern radiotherapy, it is essential to evaluate the intensity-modulated techniques on prospective studies of a larger scale.

  14. Engineering antenna radiation patterns via quasi-conformal mappings.

    Science.gov (United States)

    García-Meca, Carlos; Martínez, Alejandro; Leonhardt, Ulf

    2011-11-21

    We use a combination of conformal and quasi-conformal mappings to engineer isotropic electromagnetic devices that modify the omnidirectional radiation pattern of a point source. For TE waves, the designed devices are also non-magnetic. The flexibility offered by the proposed method is much higher than that achieved with conformal mappings. As a result, it is shown that complex radiation patterns can be achieved, which can combine high directivity in a desired number of arbitrary directions and isotropic radiation in other specified angular ranges. In addition, this technique enables us to control the power radiated in each direction to a certain extent. The obtained results are valid for any part of the spectrum. The potential of this method is illustrated with some examples. Finally, we study the frequency dependence of the considered devices and propose a practical dielectric implementation.

  15. Volumetric intensity-modulated arc therapy vs. 3-dimensional conformal radiotherapy for primary chemoradiotherapy of anal carcinoma. Effects on treatment-related side effects and survival

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Hanne Elisabeth; Droege, Leif Hendrik; Hennies, Steffen; Herrmann, Markus Karl; Wolff, Hendrik Andreas [University Medical Center Goettingen, Dept. of Radiotherapy and Radiooncology, Goettingen (Germany); Gaedcke, Jochen [University Medical Center Goettingen, Dept. of General Surgery, Goettingen (Germany)

    2015-11-15

    Primary chemoradiotherapy (CRT) is the standard treatment for locally advanced anal carcinoma. This study compared volumetric intensity-modulated arc therapy (VMAT) to 3-dimensional conformal radiotherapy (3DCRT) in terms of treatment-related side effects and survival. From 1992-2014, 103 consecutive patients with anal carcinoma UICC stage I-III were treated. Concomitant CRT consisted of whole pelvic irradiation, including the iliac and inguinal lymph nodes, with 50.4 Gy (1.8 Gy per fractions) by VMAT (n = 17) or 3DCRT (n = 86) as well as two cycles of 5-fluorouracil and mitomycin C. Acute organ and hematological toxicity were assessed according to the Common Terminology Criteria (CTC) for Adverse Events version 3.0. Side effects ≥ grade 3 were scored as high-grade toxicity. High-grade acute organ toxicity CTC ≥ 3 (P < 0.05), especially proctitis (P = 0.03), was significantly reduced in VMAT patients. The 2-year locoregional control (LRC) and disease-free survival (DFS) were both 100 % for VMAT patients compared with 80 and 73 % for 3DCRT patients. VMAT was shown to be a feasible technique, achieving significantly lower rates of acute organ toxicity and promising results for LRC and DFS. Future investigations will aim at assessing the advantages of VMAT with respect to late toxicity and survival after a prolonged follow-up time. (orig.) [German] Die primaere Radiochemotherapie (RCT) gilt als Standardtherapie fuer lokal fortgeschrittene Analkarzinome. In dieser Studie wurde die volumetrisch modulierte Rotationstherapie (''volumetric intensity-modulated arc therapy'', VMAT) mit der klassischen dreidimensionalen konformalen Radiotherapie (3DCRT) hinsichtlich therapieassoziierter Nebenwirkungen und Ueberleben verglichen. Von 1992-2014 wurden 103 aufeinanderfolgende Patienten mit einem Analkarzinom im UICC-Stadium I-III behandelt. Die kombinierte RCT bestand aus der Bestrahlung des gesamten Beckens inklusive der iliakalen und der inguinalen

  16. Radiative breaking of conformal symmetry in the Standard Model

    Science.gov (United States)

    Arbuzov, A. B.; Nazmitdinov, R. G.; Pavlov, A. E.; Pervushin, V. N.; Zakharov, A. F.

    2016-02-01

    Radiative mechanism of conformal symmetry breaking in a comformal-invariant version of the Standard Model is considered. The Coleman-Weinberg mechanism of dimensional transmutation in this system gives rise to finite vacuum expectation values and, consequently, masses of scalar and spinor fields. A natural bootstrap between the energy scales of the top quark and Higgs boson is suggested.

  17. Integration using invariant operators Conformally flat radiation metrics

    CERN Document Server

    Edgar, S B

    1999-01-01

    A new method is presented for obtaining the general conformally flat radiation metric by using the differential operators of Machado Ramos and Vickers (a generalisation of the GHP operators) which are invariant under null rotations and spin and boosts. The solution is found by constructing involutive tables of these derivatives applied to the quantities which arise in the Karlhede classification of metrics.

  18. Radiation dosimetry of a conformal heat-brachytherapy applicator.

    Science.gov (United States)

    Taschereau, Richard; Stauffer, Paul R; Hsu, I-Chow; Schlorff, Jaime L; Milligan, Andrew J; Pouliot, Jean

    2004-08-01

    The purpose of this paper is to report the radiation dosimetric characteristics of a new combination applicator for delivering heat and radiation simultaneously to large area superficial disease conformal printed circuit board microwave antenna array (for heat generation), and a body-conforming 5-10 mm thick temperature-controlled water bolus. The rationale for applying both modalities simultaneously includes the potential for significantly higher response rate due to enhanced synergism of modalities, and lower peak toxicity due to temporal extension of heat and radiation induced toxicities. Treatment plans and radiation dosimetry are calculated with IPSA (an optimization tool developed at UCSF) for 15 x 15 cm(2) and 35 x 24 cm(2) applicators, lesion thicknesses of 5 to 15 mm, flat and curved surfaces, and catheter separation of 5 and 10 mm. The effect on skin dose of bolus thickness and presence of thin copper antenna structures between radiation source and tissue are also evaluated. Results demonstrate the ability of the applicator to provide conformal radiation dose coverage for up to 15 mm deep target volumes under the applicator. For clinically acceptable plans, tumor coverage is > 98%, homogeneity index > 0.95 and the percentage of normal tissue irradiated is antenna array is of the order 0.25% and secondary electron emissions are absorbed completely within 5 mm of water bolus and plastic layers. Both phenomena can then be neglected in dose calculations allowing commercial software to be used for treatment planning. This novel applicator should prove useful for the treatment of diffuse chestwall disease located over contoured anatomy that may be difficult to treat with single field external beam therapy. By delivering heat and radiation simultaneously, increased synergism is expected with a TER in the range of 2-5. Lowering radiation dose by an equivalent factor may produce lower radiation toxicity with similar efficacy, while preserving the option of

  19. Synchrotron radiation in strongly coupled conformal field theories

    CERN Document Server

    Athanasiou, Christiana; Liu, Hong; Nickel, Dominik; Rajagopal, Krishna

    2010-01-01

    Using gauge/gravity duality, we compute the energy density and angular distribution of the power radiated by a quark undergoing circular motion in strongly coupled ${\\cal N}=4$ supersymmetric Yang-Mills (SYM) theory. We compare the strong coupling results to those at weak coupling, finding them to be very similar. In both regimes, the angular distribution of the radiated power is in fact similar to that of synchrotron radiation produced by an electron in circular motion in classical electrodynamics: the quark emits radiation in a narrow beam along its velocity vector with a characteristic opening angle $\\alpha \\sim 1/\\gamma$. To an observer far away from the quark, the emitted radiation appears as a short periodic burst, just like the light from a lighthouse does to a ship at sea. Our strong coupling results are valid for any strongly coupled conformal field theory with a dual classical gravity description.

  20. Image Guided Hypofractionated 3-Dimensional Radiation Therapy in Patients With Inoperable Advanced Stage Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Osti, Mattia Falchetto [Institute of Radiation Oncology, La Sapienza University, Sant' Andrea Hospital, Rome (Italy); Agolli, Linda, E-mail: lindaagolli@yahoo.it [Institute of Radiation Oncology, La Sapienza University, Sant' Andrea Hospital, Rome (Italy); Valeriani, Maurizio; Falco, Teresa; Bracci, Stefano; De Sanctis, Vitaliana; Enrici, Riccardo Maurizi [Institute of Radiation Oncology, La Sapienza University, Sant' Andrea Hospital, Rome (Italy)

    2013-03-01

    Purpose: Hypofractionated radiation therapy (HypoRT) can potentially improve local control with a higher biological effect and shorter overall treatment time. Response, local control, toxicity rates, and survival rates were evaluated in patients affected by inoperable advanced stage non-small cell lung cancer (NSCLC) who received HypoRT. Methods and Materials: Thirty patients with advanced NSCLC were enrolled; 27% had stage IIIA, 50% had stage IIIB, and 23% had stage IV disease. All patients underwent HypoRT with a prescribed total dose of 60 Gy in 20 fractions of 3 Gy each. Radiation treatment was delivered using an image guided radiation therapy technique to verify correct position. Toxicities were graded according to Radiation Therapy Oncology Group morbidity score. Survival rates were estimated using the Kaplan-Meier method. Results: The median follow-up was 13 months (range, 4-56 months). All patients completed radiation therapy and received the total dose of 60 Gy to the primary tumor and positive lymph nodes. The overall response rate after radiation therapy was 83% (3 patients with complete response and 22 patients with partial response). The 2-year overall survival and progression-free survival rates were 38.1% and 36%, respectively. Locoregional recurrence/persistence occurred in 11 (37%) patients. Distant metastasis occurred in 17 (57%) patients. Acute toxicities occurred consisting of grade 1 to 2 hematological toxicity in 5 patients (17%) and grade 3 in 1 patient; grade 1 to 2 esophagitis in 12 patients (40%) and grade 3 in 1 patient; and grade 1 to 2 pneumonitis in 6 patients (20%) and grade 3 in 2 patients (7%). Thirty-three percent of patients developed grade 1 to 2 late toxicities. Only 3 patients developed grade 3 late adverse effects: esophagitis in 1 patient and pneumonitis in 2 patients. Conclusions: Hypofractionated curative radiation therapy is a feasible and well-tolerated treatment for patients with locally advanced NSCLC. Randomized

  1. Conformation change of enzyme molecules in laser radiation field

    Science.gov (United States)

    Leshenyuk, N. S.; Prigun, M. V.; Apanasevitsh, E. E.; Kruglik, G. S.

    2007-06-01

    As a result of an analysis of macromolecules properties in the coherent optical radiation field and with allowance for the experimentally obtained unique data on the interaction of lazer radiation with biomolecules (dependence of the interaction efficiency on the coherence length, presence of the effect in the spectra region far from the absorption band), a mechanism of wave interaction is developed. Using this mathematical model, the calculations of a change in the macromolecules oscillatory energy in the coherent radiation field are performed. It is shown that the increase of macromolecules oscillatory energy depends strongly on the coherence length of radiation. On exposure to noncoherent radiation, the biomolecules oscillatory energy practically does not change, whereas on exposure to laser radiation (coherence length ~3 cm), energy of oscillations of atoms increases by an order of 2÷4, which results in a change in the conformation of biomolecules and activity of enzymes. Recently a lot of data are received concerning the change of lysosomal enzymes activity in blood plasma under action of laser radiation.

  2. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    Science.gov (United States)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  3. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    Science.gov (United States)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  4. Radiatively induced breaking of conformal symmetry in a superpotential

    Science.gov (United States)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  5. Radiatively Induced Breaking of Conformal Symmetry in a Superpotential

    CERN Document Server

    Arbuzov, A B

    2015-01-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  6. Radiatively induced breaking of conformal symmetry in a superpotential

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, A.B. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Department of Higher Mathematics, Dubna State University, 141982 Dubna (Russian Federation); Cirilo-Lombardo, D.J., E-mail: diego777jcl@gmail.com [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); National Institute of Plasma Physics (INFIP-CONICET), Department of Physics, FCEyN, Universidad de Buenos Aires, Buenos Aires 1428 (Argentina)

    2016-07-10

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman–Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  7. Classically conformal radiative neutrino model with gauged B - L symmetry

    Science.gov (United States)

    Okada, Hiroshi; Orikasa, Yuta

    2016-09-01

    We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B - L symmetry in the standard model that is essential in order to work the Coleman-Weinberg mechanism well that induces the B - L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman-Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ → eγ), the current bound on the Z‧ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  8. Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy?

    Science.gov (United States)

    Giraud, Philippe; De Rycke, Yann; Lavole, Armelle; Milleron, Bernard; Cosset, Jean-Marc; Rosenzweig, Kenneth E

    2006-01-01

    Conformal irradiation (3D-CRT) of non-small-cell lung carcinoma (NSCLC) is largely based on precise definition of the nodal clinical target volume (CTVn). A reduction of the number of nodal stations to be irradiated would facilitate tumor dose escalation. The aim of this study was to design a mathematical tool based on documented data to predict the risk of metastatic involvement for each nodal station. We reviewed the large surgical series published in the literature to identify the main pretreatment parameters that modify the risk of nodal invasion. The probability of involvement for the 17 nodal stations described by the American Thoracic Society (ATS) was computed from all these publications. Starting with the primary site of the tumor as the main characteristic, we built a probabilistic tree for each nodal station representing the risk distribution as a function of each tumor feature. Statistical analysis used the inversion of probability trees method described by Weinstein and Feinberg. Validation of the software based on 134 patients from two different populations was performed by receiver operator characteristic (ROC) curves and multivariate logistic regression. Analysis of all of the various parameters of pretreatment staging relative to each level of the ATS map results in 20,000 different combinations. The first parameters included in the tree, depending on tumor site, were histologic classification, metastatic stage, nodal stage weighted as a function of the sensitivity and specificity of the diagnostic examination used (positron emission tomography scan, computed tomography scan), and tumor stage. Software is proposed to compute a predicted probability of involvement of each nodal station for any given clinical presentation. Double cross validation confirmed the methodology. A 10% cutoff point was calculated from ROC and logistic model giving the best prediction of mediastinal lymph node involvement. To more accurately define the CTVn in NSCLC three

  9. Dosimetric comparison of 3-dimensional conformal and field-in-field radiotherapy techniques for the adjuvant treatment of early stage endometrial cancer.

    Science.gov (United States)

    Yavas, Guler; Yavas, Cagdas; Acar, Hilal; Buyukyoruk, Ahmet; Cobanoglu, Gokcen; Kerimoglu, Ozlem Secilmis; Yavas, Ozlem; Celik, Cetin

    2013-11-01

    The purpose of this study is to compare field-in-field radiotherapy (FIF) with conformal radiotherapy (CRT) in terms of dosimetric benefits for early stage endometrial cancer patients. Ten consecutive early stage endometrial cancer patients who underwent adjuvant external beam radiotherapy were included in the study. For each patient, two different treatment plans were created. FIF and CRT plans were compared for doses in the planning target volume (PTV), the organ at risk (OAR) volumes including rectum, bladder, bowel, bilateral femurs and bone marrow, the dose homogeneity index, and the monitor unit counts required for the treatment. The FIF technique significantly reduced the maximum dose of the PTV, rectum, bladder, bowel, left femur, right femur and bone marrow (p values were: 30 and >45 Gy were compared, the results were in favor of the FIF technique. The volumes of rectum, bladder, bowel, left femur, right femur and bone marrow receiving more than the prescription dose of 45 Gy were significantly reduced with FIF technique (p values were 0.016, 0.039, 0.01, 0.04, 0.037 and 0.01 respectively). The dose homogeneity index (DHI) was significantly improved with FIF technique (p radiotherapy for early stage endometrial cancer patients. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Luxemburgo Hospital, Mario Penna Institute, Belo Horizonte, MG (Brazil)

    2015-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  11. Phantom dosimetry at 15 MV conformal radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larissa; Campos, Tarcisio P.R., E-mail: larissathompson@hotmail.com, E-mail: tprcampos@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Minas Gerais, MG (Brazil). Dept. de Engenharia Nuclear; Dias, Humberto G., E-mail: fisicamedica.hl@mariopenna.org.br [Instituto Mario Penna, Minas Gerais, MG (Brazil). Hospital Luxemburgo

    2013-07-01

    The main goal of this work was to evaluate the spatial dose distribution into a tumor simulator inside a head phantom exposed to a 15MV 3D conformal radiation therapy in order to validate internal doses. A head and neck phantom developed by the Ionizing Radiation Research Group (NRI) was used on the experiments. Therapy Radiation planning (TPS) was performed based on those CT images, satisfying a 200 cGy prescribed dose split in three irradiation fields. The TPS assumed 97% of prescribed dose cover the prescribed treatment volume (PTV). Radiochromic films in a solid water phantom provided dose response as a function of optical density. Spatial dosimetric distribution was generated by radiochromic film samples inserted into tumor simulator and brain. The spatial dose profiles held 70 to 120% of the prescribed dose. In spite of the stratified profile, as opposed to the smooth dose profile from TPS, the tumor internal doses were within a 5% deviation from 214.4 cGy evaluated by TPS. 83.2% of the points with a gamma value of less than 1 (3%/3mm) for TPS and experimental values, respectively. At the tumor, a few dark spots in the film caused the appearance of outlier points in 13-15% of dose deviation percentage. As final conclusion, such dosimeter choice and the physical anthropomorphic and anthropometric phantom provided an efficient method for validating radiotherapy protocols. (author)

  12. Lie symmetries for a conformally flat radiating star

    CERN Document Server

    Abebe, G; Maharaj, S D

    2014-01-01

    We consider a relativistic radiating spherical star in conformally flat spacetimes. In particular we study the junction condition relating the radial pressure to the heat flux at the boundary of the star which is a nonlinear partial differential equation. The Lie symmetry generators that leave the equation invariant are identified and we generate an optimal system. Each element of the optimal system is used to reduce the partial differential equation to an ordinary differential equation which is further analysed. We identify new categories of exact solutions to the boundary conditions. Two classes of solutions are of interest. The first class depends on a self similar variable. The second class is separable in the spacetime variables.

  13. 3-Dimensional Magnetic Resonance Spectroscopic Imaging at 3 Tesla for Early Response Assessment of Glioblastoma Patients During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Muruganandham, Manickam; Clerkin, Patrick P. [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Smith, Brian J. [Department of Biostatistics, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Anderson, Carryn M.; Morris, Ann [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Capizzano, Aristides A.; Magnotta, Vincent [Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); McGuire, Sarah M.; Smith, Mark C.; Bayouth, John E. [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Buatti, John M., E-mail: john-buatti@uiowa.edu [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States)

    2014-09-01

    Purpose: To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials: Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results: After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Conclusion: Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of

  14. Recent Therapeutic Effect of Late Course 3 Dimensional Conformal Therapy Concomitant with Chemotherapy on Stage Ⅲ Non-small-cell Lung Cancer%后程适形放射治疗联合化学疗法治疗Ⅲ期非小细胞肺癌近期疗效观察

    Institute of Scientific and Technical Information of China (English)

    赵彩霞; 任勇军; 文世民; 李光明; 潘荣强

    2011-01-01

    目的 探讨后程适形放射治疗(3 dimensional cornformal radiation therapy,3D-CRT)同步化学疗法治疗Ⅲ期非小细胞肺癌(non-small-cell lung cancer,NS4CLC)的近期疗效.方法 搜集2005年1月-2008年6月NSCLC患者共115例,其中53例行单纯后程3D-CRT(单放组),62例行后程3D-CRT联合同步化学疗法(联合组),所有患者均经病理证实为Ⅲ期NSCLC.两组放射治疗方案均采用常规分割治疗加后程3D-CRT,DT 62~72Gy.联合组化学疗法采用TP(紫杉醇+顺铂)方案.结果 单放组和联合组近期疗效(完全缓解+部分缓解)分别为75.47%、91.94%,差异有统计学意义(P<0.05).单放组和联合组的治疗不良反应主要有白细胞、血小板减少,放射性食管炎,放射性气管炎,恶心、呕吐等胃肠道反应.骨髓抑制和消化道反应,联合组稍高于单放组.经对症治疗后,所有患者均可耐受.结论 后程3D-CRT联合TP方案化学疗法较单纯后程适形放射治疗明显提高Ⅲ期NSCLC近期疗效.患者耐受性尚可.%Objective To observe the recent therapeutic effect of late course 3 dimensional conformal therapy concomitant with chemotherapy on locally advanced stage Ⅲ non-small-cell lung cancer (NSCLC). Methods From January 2005 to June 2008, 115 patients with stage Ⅲ NSCLC were confirmed by pathology, in whom 53 only underwent late course conformal therapy (radiotherapy group), and another 62 underwent late course conformal therapy concomitant with chemotherapy (combined group). The radiotherapy schema of the two groups was routine division plus late course conformal therapy (with DT 62-72 Gy). The chemotherapy schema in the combined group was performed with TP (paclitaxel and DDP). Results The recent curative effect (complete remission plus partial remission) in radiotherapy group and combined group was 75. 47% and 91. 94%, respectively (P<0. 05). The frequent adverse reactions in the two groups included leucocytopenia, thrombocytopenia

  15. Conformal proton radiation therapy for pediatric low-grade astrocytomas

    Energy Technology Data Exchange (ETDEWEB)

    Hug, E.B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pediatrics and Dept. of Pathology; Darthmouth-Hitchcock Medical Center, Lebanon, New Hampshire (United States). Section of Radiation Oncology; Muenter, M.W.; Archambeau, J.O.; DeVries, A.; Loredo, L.N.; Grove, R.I.; Slater, J.D. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Radiation Medicine; Liwnicz, B. [Loma Linda Univ. Medical Center, Loma Linda, CA (United States). Dept. of Pathology

    2002-01-01

    Background: To evaluate the safety and efficacy of proton radiation therapy (PRT) for intracranial low-grade astrocytomas, the authors analyzed the first 27 pediatric patients treated at Loma Linda University Medical Center (LLUMC). Patients and Method: Between September 1991 and August 1997, 27 patients (13 female, 14 male) underwent fractionated proton radiation therapy for progressive or recurrent low-grade astrocytoma. Age at time of treatment ranged from 2 to 18 years (mean: 8.7 years). Tumors were located centrally (diencephatic) in 15 patients, in the cerebral and cerebellar hemispheres in seven patients, and in the brainstem in five patients. 25/27 patients (92%) were treated for progressive, unresectable, or residual disease following subtotal resection. Tissue diagnosis was available in 23/27 patients (85%). Four patients with optic pathway tumors were treated without histologic confirmation. Target doses between 50.4 and 63.0 CGE (cobalt gray equivalent, mean: 55.2 CGE) were prescribed at 1.8 CGE per fraction, five treatments per week. Results: At a mean follow-up period of 3.3 years (0.6-6.8 years), 6/27 patients experienced local failure (all located within the irradiated field), and 4/27 patients had died. By anatomic site these data translated into rates of local control and survival of 87% (13/15 patients) and 93% (14/15 patients) for central tumors, 71% (5/7 patients) and 86% (6/7 patients) for hemispheric tumors, and 60% (3/5 patients) and 60% (3/5 patients) for tumors located in the brainstem. Proton radiation therapy was generally well tolerated. All children with local control maintained their performance status. One child with associated neurofibromatosis, Type 1, developed Moyamoya disease. All six patients with optic pathway tumors and useful vision maintained or improved their visual status. Conclusions: This report on pediatric low-grade astrocytomas confirms proton radiation therapy as a safe and efficacious 3-D conformal treatment

  16. Dependence of Coronary 3-Dimensional Dose Maps on Coronary Topologies and Beam Set in Breast Radiation Therapy: A Study Based on CT Angiographies

    Energy Technology Data Exchange (ETDEWEB)

    Moignier, Alexandra, E-mail: alexandra.moignier@gmail.com [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SDI/LEDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay-aux-Roses (France); Broggio, David [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SDI/LEDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay-aux-Roses (France); Derreumaux, Sylvie [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SER/UEM, Unité d' Expertise en radioprotection Médicale, Fontenay-aux-Roses (France); El Baf, Fida [Institut de Radioprotection et de Sûreté Nucléaire, PRP-HOM/SDI/LEDI, Laboratoire d' Evaluation de la Dose Interne, Fontenay-aux-Roses (France); Mandin, Anne-Marie [Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Service de Radiothérapie Oncologique, Paris (France); Girinsky, Théodore [Institut Gustave Roussy, Service de Radiothérapie Oncologique, Villejuif (France); Paul, Jean-François [Centre Chirurgical Marie-Lannelongue, Service de Radiologie, Le Plessis-Robinson (France); and others

    2014-05-01

    Purpose: In left-side breast radiation therapy (RT), doses to the left main (LM) and left anterior descending (LAD) coronary arteries are usually assessed after delineation by prior anatomic knowledge on the treatment planning computed tomography (CT) scan. In this study, dose sensitivity due to interindividual coronary topology variation was assessed, and hot spots were located. Methods and Materials: Twenty-two detailed heart models, created from heart computed tomography angiographies, were fitted into a single representative female thorax. Two breast RT protocols were then simulated into a treatment planning system: the first protocol comprised tangential and tumoral bed beams (TGs{sub T}B) at 50 + 16 Gy, the second protocol added internal mammary chain beams at 50 Gy to TGs{sub T}B (TGs{sub T}B{sub I}MC). For the heart, the LAD, and the LM, several dose indicators were calculated: dose-volume histograms, mean dose (D{sub mean}), minimal dose received by the most irradiated 2% of the volume (D{sub 2%}), and 3-dimensional (3D) dose maps. Variations of these indicators with anatomies were studied. Results: For the LM, the intermodel dispersion of D{sub mean} and D{sub 2%} was 10% and 11%, respectively, with TGs{sub T}B and 40% and 80%, respectively, with TGs{sub T}B{sub I}MC. For the LAD, these dispersions were 19% (D{sub mean}) and 49% (D{sub 2%}) with TGs{sub T}B and 35% (D{sub mean}) and 76% (D{sub 2%}) with TGs{sub T}B{sub I}MC. The 3D dose maps revealed that the internal mammary chain beams induced hot spots between 20 and 30 Gy on the LM and the proximal LAD for some coronary topologies. Without IMC beams, hot spots between 5 and 26 Gy are located on the middle and distal LAD. Conclusions: Coronary dose distributions with hot spot location and dose level can change significantly depending on coronary topology, as highlighted by 3D coronary dose maps. In clinical practice, coronary imaging may be required for a relevant coronary dose assessment

  17. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    Science.gov (United States)

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  18. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    Energy Technology Data Exchange (ETDEWEB)

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham [Andrew Love Cancer Centre, Geelong Hospital, Geelong, Victoria (Australia)

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  19. 3 - Dimensional Body Measurement Technology

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xu-dong; LI Yan-mei

    2002-01-01

    3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.

  20. A comparative dosimetric study of 3-dimensional conformal radical radiotherapy for bladder cancer patients versus conventional 2-dimensional radical radiotherapy in NCI-Cairo, Egypt%埃及开罗国家癌症研究所膀胱癌患者的三维适形根治性放疗与传统的二维根治性放疗的比较剂量学研究

    Institute of Scientific and Technical Information of China (English)

    Mohamed Mahmoud; Hesham A. El-Hossiny; Nashaat A. Diab; Marwa A. El Razek

    2012-01-01

    Objective: This study was to compare this multiple-field conformal technique to the 2-dimensional (2D) conventional technique with respect to target volume coverage and dose to normal tissues. Methods: We conducted a single institutional prospective comparative dosimetric analysis of 15 patients who received radical radiation therapy for bladder cancer presented to Radiotherapy Department in National Cancer Institute, Cairo (Egypt), in period between November 2011 to July 2012 using 3-dimensional (3D) conformal radiotherapy technique for each patient, a second 2D conventional radiotherapy treatment plan was done, the two techniques were then compared using dose volume histogram (DVH) analysis. Results: Comparing different DVHs, it was found that the planning target volume (PTV) was adequately covered in both (3D & 2D) plans while it was demonstrated that this multiple field conformal technique produced superior distribution compared to 2D technique, with considerable sparing of rectum and to lesser extent for the head of both femora. Conclusion: From the present study, it is recommended to use 3D planning for cases of bladder cancer especially in elderly patients as it produces good coverage of the target volume as well as good sparing of the surrounding critical organs.

  1. 3-dimensional imaging at nanometer resolutions

    Science.gov (United States)

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  2. Hypofractionation does not increase radiation pneumonitis risk with modern conformal radiation delivery techniques

    Energy Technology Data Exchange (ETDEWEB)

    Vogelius, Ivan S.; Westerly, David C.; Cannon, George M.; Bentzen, Soeren M. (Dept. of Human Oncology, Univ. of Wisconsin School of Medicine and Public Health, Madison, WI (United States)), E-mail: bentzen@humonc.wisc.edu

    2010-10-15

    Purpose. To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models. Material and methods. Eighteen non-small cell lung cancer patients previously treated with helical tomotherapy were selected. For each patient a 3D-conformal plan (3D-CRT) plan was produced in addition to the delivered plan. The standard fractionation schedule was set to 60 Gy in 30 fractions. Iso-efficacy comparisons with hypofractionation were performed by changing the fractionation and the physical prescription dose while keeping the equivalent tumor dose in 2 Gy fractions constant. The risk of developing RP after radiotherapy was estimated using the Mean Equivalent Lung Dose in 2-Gy fractions (MELD2) NTCP model with alpha/beta=4 Gy for the residual lung. Overall treatment time was kept constant. Results. The mean risk of clinical RP after standard fractionation was 7.6% for Tomotherapy (range: 2.8-15.9%) and 9.2% for 3D-CRT (range 3.2-20.2%). Changing to 20 fractions, the Tomotherapy plans became slightly less toxic if the tumor alpha/beta ratio, (alpha/beta)T, was 7 Gy (mean RP risk 7.5%, range 2.8-16%) while the 3D-CRT plans became marginally more toxic (mean RP risk 9.8%, range 3.2-21%). If (alpha/beta)T was 13 Gy, the mean estimated risk of RP is 7.9% for Tomotherapy (range: 2.8-17%) and 10% for 3D-CRT (range 3.2-22%). Conclusion. Modern highly conformal dose distributions are radiobiologically more forgiving with respect to hypofractionation, even for a normal tissue endpoint where alpha/beta is lower than for the tumor in question.

  3. Feasibility and acute toxicity of 3-dimensional conformal external-beam accelerated partial-breast irradiation for early-stage breast cancer after breast-conserving surgery in Chinese female patients

    Institute of Scientific and Technical Information of China (English)

    LI Feng-yan; HE Zhen-yu; XUE Ming; CHEN Li-xin; WU San-gang; GUAN Xun-xing

    2011-01-01

    Background A growing number of studies worldwide have advocated the replacement of whole-breast irradiation with accelerated partial breast irradiation using three-dimensional conformal external-beam radiation (APBI-3DCRr) for early-stage breast cancer. But APBI can be only used in selected population of patients with early-staged breast cancer. It is not replacing the whole breast radiotherapy. This study aimed to examine the feasibility and acute normal tissue toxicity of the APBI-3DCRT technique in Chinese female patients who generally have smaller breasts compared to their Western counterparts.Methods From May 2006 to December 2009, a total of 48 Chinese female patients (with early-stage breast cancer who met the inclusion criteria) received APBI-3DCRT after breast-conserving surgery at Sun Yat-sen University Cancer Center. The total dosage from APBI-3DCRT was 34 Gy, delivered in 3.4 Gy per fractions, twice per day at intervals of at least six hours. The radiation dose, volume of the target area and volume of irradiated normal tissues were calculated.Acute toxicity was evaluated according to the Common Toxicity Criteria (CTC) 3.0.Results Among the 48 patients, the planning target volume for evaluation (PTVE) was (90.42±9.26) cm3, the ipsilateral breast volume (IBV) was (421.74±28.53) cm3, and the ratio between the two was (20.74±5.86)%. Evaluation of the dosimetric characteristics of the PTVE revealed excellent dosimetric results in 14 patients and acceptable results in 34 patients. The dose delivered to the PTVE ranged from 93% to 110% of the prescribed dose. The average ratio of the volume of PTVE receiving 95% of the prescription dose (V95) was (99.26±0.37)%. The habituation index (HI) and the conformity index (CI) were 1.08±0.01 and 0.72±0.02, respectively, suggesting good homogeneity and conformity of the dose delivered to the target field. The radiation dose to normal tissues and organs was within the dose limitation.Subjects experienced mild acute

  4. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards

    Energy Technology Data Exchange (ETDEWEB)

    Manley, Stephen, E-mail: stephen.manley@ncahs.health.nsw.gov.au; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P [North Coast Cancer Institute, Lismore, New South Wales (Australia)

    2015-06-15

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.

  5. Vacuum Radiation and Symmetry Breaking in Conformally Invariant Quantum Field Theory

    CERN Document Server

    Aldaya, V; Cerveró, J M

    1999-01-01

    The underlying reasons for the difficulty of unitarily implementing the whole conformal group $SO(4,2)$ in a massless Quantum Field Theory (QFT) are investigated in this paper. Firstly, we demonstrate that the singular action of the subgroup of special conformal transformations (SCT), on the standard Minkowski space $M$, cannot be primarily associated with the vacuum radiation problems, the reason being more profound and related to the dynamical breakdown of part of the conformal symmetry (the SCT subgroup, to be more precise) when representations of null mass are selected inside the representations of the whole conformal group. Then we show how the vacuum of the massless QFT radiates under the action of SCT (usually interpreted as transitions to a uniformly accelerated frame) and we calculate exactly the spectrum of the outgoing particles, which proves to be a generalization of the Planckian one, this recovered as a given limit.

  6. A conformal approach for the analysis of the non-linear stability of radiation cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom); Department of Mathematics, University of Leicester, University Road, LE1 8RH (United Kingdom); Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2013-01-15

    The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.

  7. Blackbody radiation, conformal symmetry, and the mismatch between classical mechanics and electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Timothy H [Department of Physics, City College of the City University of New York, New York, NY 10031 (United States)

    2005-02-25

    The blackbody radiation problem within classical physics is reviewed. It is again suggested that conformal symmetry is the crucial unrecognized aspect, and that only scattering by classical electromagnetic systems will provide equilibrium at the Planck spectrum. It is pointed out that the several calculations of radiation scattering using nonlinear mechanical systems do not preserve the Boltzmann distribution under adiabatic change of a parameter, and this fact seems at variance with our expectations in connection with derivations of Wien's displacement theorem. By contrast, the striking properties of charged particle motion in a Coulomb potential or in a uniform magnetic field suggest the possibility that these systems will fit with classical thermal radiation. It may be possible to give a full scattering calculation in the case of cyclotron motion in order to provide the needed test of the connection between conformal symmetry and classical thermal radiation.

  8. On conformally flat and type N pure radiation metrics

    CERN Document Server

    Podolsky, Jiri

    2009-01-01

    We study pure radiation spacetimes of algebraic types O and N with a possible cosmological constant. In particular, we present explicit transformations which put these metrics, that were recently re-derived by Edgar, Vickers and Machado Ramos, into a general Ozsvath-Robinson-Rozga form. By putting all such metrics into the unified coordinate system we confirm that their derivation based on the GIF formalism is correct. We identify only few trivial differences.

  9. Performances study of UWB monopole antennas using half-elliptic radiator conformed on elliptical surface

    Science.gov (United States)

    Djidel, S.; Bouamar, M.; Khedrouche, D.

    2016-04-01

    This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.

  10. A dosimetric comparison of 3D conformal vs intensity modulated vs volumetric arc radiation therapy for muscle invasive bladder cancer

    Directory of Open Access Journals (Sweden)

    Foroudi Farshad

    2012-07-01

    Full Text Available Abstract Background To compare 3 Dimensional Conformal radiotherapy (3D-CRT with Intensity Modulated Radiotherapy (IMRT with Volumetric-Modulated Arc Therapy (VMAT for bladder cancer. Methods Radiotherapy plans for 15 patients with T2-T4N0M0 bladder cancer were prospectively developed for 3-DCRT, IMRT and VMAT using Varian Eclipse planning system. The same radiation therapist carried out all planning and the same clinical dosimetric constraints were used. 10 of the patients with well localised tumours had a simultaneous infield boost (SIB of the primary tumour planned for both IMRT and VMAT. Tumour control probabilities and normal tissue complication probabilities were calculated. Results Mean planning time for 3D-CRT, IMRT and VMAT was 30.0, 49.3, and 141.0 minutes respectively. The mean PTV conformity (CI index for 3D-CRT was 1.32, for IMRT 1.05, and for VMAT 1.05. The PTV Homogeneity (HI index was 0.080 for 3D-CRT, 0.073 for IMRT and 0.086 for VMAT. Tumour control and normal tissue complication probabilities were similar for 3D-CRT, IMRT and VMAT. The mean monitor units were 267 (range 250–293 for 3D-CRT; 824 (range 641–1083 for IMRT; and 403 (range 333–489 for VMAT (P  Conclusions VMAT is associated with similar dosimetric advantages as IMRT over 3D-CRT for muscle invasive bladder cancer. VMAT is associated with faster delivery times and less number of mean monitor units than IMRT. SIB is feasible in selected patients with localized tumours.

  11. Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays

    Science.gov (United States)

    Nelson, Gregory James

    Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and

  12. Hypofractionation does not increase radiation pneumonitis risk with modern conformal radiation delivery techniques

    DEFF Research Database (Denmark)

    Vogelius, Ivan R; Westerly, David C; Cannon, George M

    2010-01-01

    To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models.......To study the interaction between radiation dose distribution and hypofractionated radiotherapy with respect to the risk of radiation pneumonitis (RP) estimated from normal tissue complication probability (NTCP) models....

  13. A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sol Min; Song, Seong Chan; Hyun, Sung Eun; Park, Heung Deuk; Lee, Jaegi; Kim, Young Suk; Kim, Gwi Eon [Dept. of Radiation Oncology, Jeju National University Hospital, Jeju (Korea, Republic of)

    2016-06-15

    A dosimetric evaluation of volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy for the lower extremity soft tissue sarcoma For the lower extremity soft tissue sarcoma, volumetric modulated arc therapy, intensity modulated radiation therapy, and three-dimensional conformal radiation therapy were evaluated to compare these three treatment planning technique. The mean doses to the planning target volume and the femur were calculated to evaluate target coverage and the risk of bone fracture during radiation therapy. Volumetric modulated arc therapy can reduce the dose to the femur without compromising target coverage and reduce the treatment time compared with intensity modulated radiation therapy.

  14. Preliminary analysis of a clinical trial for threedimensional conformal radiation therapy after conservative surgery

    Institute of Scientific and Technical Information of China (English)

    Hui Yao; Jinlan Gong; Li Li; Yun Wang; Xiaofeng Wu; Kezhu Hou

    2012-01-01

    Objective: The aim of this study was to evaluate the efficacy, complications and cosmetic results of three-dimensional conformal radiation therapy for early breast cancer after conservative surgery. Methods: Among 80 patients, 44 were treated by modified radical mastectomy followed by adjuvant radiotherapy (modified radical mastectomy, MMT), 36 were treated with breast conservative surgery with adjuvant irradiation [breast-conservation therapy (BCT)]. Tangential fields were used to deliver 6 MV X-ray beams to a total dose of 50 Gy. Another 16 Gy was added to the tumor bed with 6-9 MeV electron beams for BCT. Results: In MMT group, the local control, metastasis-free and death were 41, 41 and 1 respectively; in BCT group, the local control, metastasis-free and death were 35, 35 and 0. The difference of the above two indicators between the two groups showeed no statistical insignificance (P > 0. 05). In MMT group, 32 patients suffer radiation dermatitis above 2-level, 12 patients suffer radiation pneumonia, and 10 patients suffer edema of illness-side upper extremity; in BCT group, the above indicators were only 6, 2 and 1 respectively. Three months, six months and one year after radiation therapy, 90%, 92% and 95% patients were assessed as excellence in fine cosmetic state in BCT group. Conclusion: The effects of threedimensional conformal radiation therapy after conservative surgery are the same as that of modified radical mastectomy, while the former has better cosmetic results and lower radiation therapy induced complications.

  15. 三维适形放射治疗联合替莫唑胺治疗脑胶质瘤的疗效及安全性%Efficacy and safety of 3-dimensional conformal radiotherapy combined with temozolomide for glioma

    Institute of Scientific and Technical Information of China (English)

    王龙云; 涂青松; 周卫兵; 周蓉蓉

    2011-01-01

    Objective To study the efficacy and safety of 3 -dimensional conformal radiotherapy combined with temozolomide (TMZ) for gliomas. Methods A total of 78 patients with pathologically confirmed glioma ( from September 2005 to March 2007) were postoperatively divided into 3 groups: a chemotherapy group ( n = 24 ) , a radiotherapy group ( n = 25 ) , and a comprehensive therapy group(n =29). The patients received temozolomide alone,3-dimensional conformal radiotherapy alone,3-dimensional conformal radiotherapy combined with temozolomide in the chemotherapy group, the radiotherapy group and the comprehensive therapy group respectively. The survival rate, progression-free survival, overall survival time and adverse reactions were observed. Results The 3-year survival rate in the comprehensive therapy group was significantly higher than that in the other two groups. The 3-year survival rates were 20. 83% , 20. 00% , and 41. 38% in the chemotherapy group, the radiotherapy group and the comprehensive therapy group respectively. The progression-free survival time was 17. 68,17. 94, and 23. 29 months and the average overall survival time was 20. 28 , 21. 54, and 25. 75 months in the chemotherapy group, the radiotherapy group and the comprehensive therapy group, respectively. The adverse reactions were mild and tolerable. Conclusion Three-dimensional conformal radiotherapy combined with temozolomide is more effective for gliomas than the simple 3-dimensional conformal radiotherapy and the temozolomide chemotherapy alone.%目的:探讨三维适形放射治疗联合替莫唑胺( temozolomide,TMZ)在脑胶质瘤治疗中的疗效和安全性.方法:2005年9月至2007年3月收治的78例脑胶质瘤术后患者分为3组,其中24例仅接受TMZ治疗(化学治疗组),25例仅接受三维适形放射治疗(放射治疗组),29例接受TMZ化学治疗联合三维适形放射治疗(综合治疗组).观察各组生存率、无进展生存时间、总生存时间和不良

  16. Radiatively induced symmetry breaking and the conformally coupled magnetic monopole in AdS space

    CERN Document Server

    Edery, Ariel

    2013-01-01

    We implement quantum corrections for a magnetic monopole in a classically conformally invariant theory containing gravity. This yields the trace (conformal) anomaly and introduces a length scale in a natural fashion via the process of renormalization. We evaluate the one-loop effective potential and extract the vacuum expectation value (VEV) from it; spontaneous symmetry breaking is radiatively induced. The VEV is set at the renormalization scale $M$ and we exchange the dimensionless scalar coupling constant for the dimensionful VEV via dimensional transmutation. The asymptotic (background) spacetime is anti-de Sitter (AdS) and its Ricci scalar is determined entirely by the VEV. We obtain analytical asymptotic solutions to the coupled set of equations governing gravitational, gauge and scalar fields that yield the magnetic monopole in an AdS spacetime.

  17. Early radiative properties of the developments of time-symmetric conformally flat initial data

    Energy Technology Data Exchange (ETDEWEB)

    Kroon, Juan Antonio Valiente [Max Planck Institut fuer Gravitationsphysik, Albert Einstein Institut, Am Muehlenberg 1, 14476 Golm (Germany)

    2003-03-07

    Using a representation of spatial infinity based on the properties of conformal geodesics, the first terms of an expansion for the Bondi mass for the development of time-symmetric, conformally flat initial data are calculated. As is to be expected, the Bondi mass agrees with the ADM at the sets where null infinity 'touches' spatial infinity. The second term in the expansion is proportional to the sum of the squared norms of the Newman-Penrose constants of the spacetime. On the basis of this result it is argued that these constants may provide a measure of the incoming radiation contained in the spacetime. This is illustrated by means of the Misner and Brill-Lindquist datasets. (letter to the editor)

  18. Repulsive gravity induced by a conformally coupled scalar field implies a bouncing radiation-dominated universe

    Science.gov (United States)

    Antunes, V.; Novello, M.

    2017-04-01

    In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.

  19. 3-Dimensional Response of Composites

    Science.gov (United States)

    1989-01-01

    AFWAL-TR-88-4242 3-DIMENSIONAL RESPONSE OF COMPOSITES S.R. Soni S. Chandrashekara G.P. Tandon U. Santhosh Ten-Lu Hsiao CADTECH SYSTEMS RESEARCH INC...Composites 12. PERSONAL AUTHOR(S) S. R. Soni, S. Chandrashekara, G. P. Tandon, U. Santhosh , T. Isiao 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPRT...Chandrashekara, G.P. Tandon; Mr. U. Santhosh and Mr. Ten-Lu Hsiao. Accesion For NTIS CRAWI DTIC TAB 13 Unaonou,)ced 0 JustfCdtf)In ...._ By .... Di~t ibut;01 I

  20. A 5-year investigation of children's adaptive functioning following conformal radiation therapy for localized ependymoma.

    Science.gov (United States)

    Netson, Kelli L; Conklin, Heather M; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E

    2012-09-01

    Conformal and intensity modulated radiation therapies have the potential to preserve cognitive outcomes in children with ependymoma; however, functional behavior remains uninvestigated. This longitudinal investigation prospectively examined intelligence quotient (IQ) and adaptive functioning during the first 5 years after irradiation in children diagnosed with ependymoma. The study cohort consisted of 123 children with intracranial ependymoma. Mean age at irradiation was 4.60 years (95% confidence interval [CI], 3.85-5.35). Serial neurocognitive evaluations, including an age-appropriate IQ measure and the Vineland Adaptive Behavior Scales (VABS), were completed before irradiation, 6 months after treatment, and annually for 5 years. A total of 579 neurocognitive evaluations were included in these analyses. Baseline IQ and VABS were below normative means (PVABS across the follow-up period, except for the VABS Communication Index, which declined significantly (P=.015). Annual change in IQ (-.04 points) did not correlate with annual change in VABS (-.90 to +.44 points). Clinical factors associated with poorer baseline performance (P<.05) included preirradiation chemotherapy, cerebrospinal fluid shunt placement, number and extent of surgical resections, and younger age at treatment. No clinical factors significantly affected the rate of change in scores. Conformal and intensity modulated radiation therapies provided relative sparing of functional outcomes including IQ and adaptive behaviors, even in very young children. Communication skills remained vulnerable and should be the target of preventive and rehabilitative interventions. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Radiation and scattering from cylindrically conformal printed antennas. Ph.D. Thesis Final Report

    Science.gov (United States)

    Kempel, Leo C.; Volakis, John L.

    1994-01-01

    Microstrip patch antennas offer considerable advantages in terms of weight, aerodynamic drag, cost, flexibility, and observables over more conventional protruding antennas. These flat patch antennas were first proposed over thirty years ago by Deschamps in the United States and Gutton and Baisinot in France. Such antennas have been analyzed and developed for planar as well as curved platforms. However, the methods used in these designs employ gross approximations, suffer from extreme computational burden, or require expensive physical experiments. The goal of this thesis is to develop accurate and efficient numerical modeling techniques which represent actual antenna structures mounted on curved surfaces with a high degree of fidelity. In this thesis, the finite element method is extended to cavity-backed conformal antenna arrays embedded in a circular, metallic, infinite cylinder. Both the boundary integral and absorbing boundary mesh closure conditions will be used for terminating the mesh. These two approaches will be contrasted and used to study the scattering and radiation behavior of several useful antenna configurations. An important feature of this study will be to examine the effect of curvature and cavity size on the scattering and radiation properties of wraparound conformal antenna arrays.

  2. Revised standards for protection against radiation; minor amendments--NRC. Final rule: minor corrective and conforming amendments.

    Science.gov (United States)

    1992-12-01

    This final rule makes a number of minor corrective and conforming amendments to the NRC's revised standards for protection against radiation. The final rule is necessary to correct recently discovered errors in the text of the revised standards, to conform portions of regulatory text to the Commission's decision to defer mandatory implementation of the revised standards until 1994, and to reflect the recent OMB approval of the use of NRC Forms 4 and 5.

  3. Comparative outcomes for three-dimensional conformal versus intensity-modulated radiation therapy for esophageal cancer.

    Science.gov (United States)

    Freilich, J; Hoffe, S E; Almhanna, K; Dinwoodie, W; Yue, B; Fulp, W; Meredith, K L; Shridhar, R

    2015-01-01

    Emerging data suggests a benefit for using intensity modulated radiation therapy (IMRT) for the management of esophageal cancer. We retrospectively reviewed patients treated at our institution who received definitive or preoperative chemoradiation with either IMRT or 3D conformal radiation therapy (3DCRT) between October 2000 and January 2012. Kaplan Meier analysis and the Cox proportional hazard model were used to evaluate survival outcomes. We evaluated a total of 232 patients (138 IMRT, 94 3DCRT) who received a median dose of 50.4 Gy (range, 44-64.8) to gross disease. Median follow up for all patients, IMRT patients alone, and 3DCRT patients alone was 18.5 (range, 2.5-124.2), 16.5 (range, 3-59), and 25.9 months (range, 2.5-124.2), respectively. We observed no significant difference based on radiation technique (3DCRT vs. IMRT) with respect to median overall survival (OS) (median 29 vs. 32 months; P = 0.74) or median relapse free survival (median 20 vs. 25 months; P = 0.66). On multivariable analysis (MVA), surgical resection resulted in improved OS (HR 0.444; P 20% weight loss (OR 0.51; P = 0.050). Our data suggest that while IMRT-based chemoradiation for esophageal cancer does not impact survival there was significantly less toxicity. In the IMRT group there was significant decrease in weight loss and grade ≥3 toxicity compared to 3DCRT.

  4. Classically conformal radiative neutrino model with gauged B−L symmetry

    Directory of Open Access Journals (Sweden)

    Hiroshi Okada

    2016-09-01

    Full Text Available We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B−L symmetry in the standard model that is essential in order to work the Coleman–Weinberg mechanism well that induces the B−L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman–Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ→eγ, the current bound on the Z′ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  5. Invariant classification and the generalised invariant formalism: conformally flat pure radiation metrics, with zero cosmological constant

    CERN Document Server

    Bradley, Michael; Ramos, M P Machado

    2008-01-01

    Metrics obtained by integrating within the generalised invariant formalism are structured around their intrinsic coordinates, and this considerably simplifies their invariant classification and symmetry analysis. We illustrate this by presenting a simple and transparent complete invariant classification of the conformally flat pure radiation metrics (except plane waves) in such intrinsic coordinates; in particular we confirm that the three apparently non-redundant functions of one variable are genuinely non-redundant, and easily identify the subclasses which admit a Killing and/or a homothetic Killing vector. Most of our results agree with the earlier classification carried out by Skea in the different Koutras-McIntosh coordinates, which required much more involved calculations; but there are some subtle differences. Therefore, we also rework the classification in the Koutras-McIntosh coordinates, and by paying attention to some of the subtleties involving arbitrary functions, we are able to obtain complete a...

  6. Evaluation of flexible and rigid (class solution) radiation therapy conformal prostate planning protocols.

    Science.gov (United States)

    Coburn, Natalie; Beldham-Collins, Rachael; Westling, Jelene; Trovato, Jenny; Gebski, Val

    2012-01-01

    Protocols commonly implemented in radiotherapy work areas may be classified as being either rigid (class solution) or flexible. Because formal evaluation of these protocol types has not occurred within the literature, we evaluated the efficiency of a rigid compared with flexible prostate planning protocol by assessing a series of completed 3D conformal prostate plans. Twenty prostate cancer patients with an average age of 70 years (range, 52-77) and sizes comprising 8 small, 10 medium, and 2 large were planned on the Phillips Pinnacle treatment planning system 6 times by radiation therapists with 5 years of experience using a rigid and flexible protocol. Plans were critiqued using critical organ doses, confirmation numbers, and conformity index. Plans were then classified as being acceptable or not. Plans produced with the flexible protocol were 53% less likely to require modification (OR 0.47, 95% CI: 0.26, 0.84, p = 0.01). Planners with >5 years of experience were 78% more likely to produce plans requiring modification (OR 1.78, 95% CI: 1.12, 2.83, P = 0.02). Plans according to the flexible protocol took longer (112 min) compared with the time taken using a rigid protocol (68 min) (p < 0.001). The results suggest that further studies are needed; however, we propose that all radiation therapy planners should start with the same limitations, and if an acceptable plan is not reached, then flexibility should be given to improve the plan to meet the desired results. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  7. Disease Control After Reduced Volume Conformal and Intensity Modulated Radiation Therapy for Childhood Craniopharyngioma

    Energy Technology Data Exchange (ETDEWEB)

    Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Kun, Larry E.; Hua, Chia-Ho [St Jude Children' s Research Hospital, Radiological Sciences, Memphis, Tennessee (United States); Wu, Shengjie; Xiong, Xiaoping [St Jude Children' s Research Hospital, Biostatistics, Memphis, Tennessee (United States); Sanford, Robert A.; Boop, Frederick A. [Semmes Murphey Neurologic and Spine Institute, Neurosurgery, Memphis, Tennessee (United States)

    2013-03-15

    Purpose: To estimate the rate of disease control after conformal radiation therapy using reduced clinical target volume (CTV) margins and to determine factors that predict for tumor progression. Methods and Materials: Eighty-eight children (median age, 8.5 years; range, 3.2-17.6 years) received conformal or intensity modulated radiation therapy between 1998 and 2009. The study group included those prospectively treated from 1998 to 2003, using a 10-mm CTV, defined as the margin surrounding the solid and cystic tumor targeted to receive the prescription dose of 54 Gy. The CTV margin was subsequently reduced after 2003, yielding 2 groups of patients: those treated with a CTV margin greater than 5 mm (n=26) and those treated with a CTV margin less than or equal to 5 mm (n=62). Disease progression was estimated on the basis of additional variables including sex, race, extent of resection, tumor interventions, target volume margins, and frequency of weekly surveillance magnetic resonance (MR) imaging during radiation therapy. Median follow-up was 5 years. Results: There was no difference between progression-free survival rates based on CTV margins (>5 mm vs ≤5 mm) at 5 years (88.1% ± 6.3% vs 96.2% ± 4.4% [P=.6386]). There were no differences based on planning target volume (PTV) margins (or combined CTV plus PTV margins). The PTV was systematically reduced from 5 to 3 mm during the time period of the study. Factors predictive of superior progression-free survival included Caucasian race (P=.0175), no requirement for cerebrospinal fluid shunting (P=.0066), and number of surveillance imaging studies during treatment (P=.0216). Patients whose treatment protocol included a higher number of weekly surveillance MR imaging evaluations had a lower rate of tumor progression. Conclusions: These results suggest that targeted volume reductions for radiation therapy using smaller margins are feasible and safe but require careful monitoring. We are currently investigating

  8. Spine stereotactic body radiation therapy plans: Achieving dose coverage, conformity, and dose falloff

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Linda X., E-mail: lhong0812@gmail.com [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Shankar, Viswanathan [Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (United States); Shen, Jin [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Kuo, Hsiang-Chi [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Mynampati, Dinesh [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Yaparpalvi, Ravindra [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States); Goddard, Lee [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Basavatia, Amar; Fox, Jana; Garg, Madhur; Kalnicki, Shalom; Tomé, Wolfgang A. [Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY (United States); Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY (United States)

    2015-10-01

    We report our experience of establishing planning objectives to achieve dose coverage, conformity, and dose falloff for spine stereotactic body radiation therapy (SBRT) plans. Patients with spine lesions were treated using SBRT in our institution since September 2009. Since September 2011, we established the following planning objectives for our SBRT spine plans in addition to the cord dose constraints: (1) dose coverage—prescription dose (PD) to cover at least 95% planning target volume (PTV) and 90% PD to cover at least 99% PTV; (2) conformity index (CI)—ratio of prescription isodose volume (PIV) to the PTV < 1.2; (3) dose falloff—ratio of 50% PIV to the PTV (R{sub 50%}); (4) and maximum dose in percentage of PD at 2 cm from PTV in any direction (D{sub 2cm}) to follow Radiation Therapy Oncology Group (RTOG) 0915. We have retrospectively reviewed 66 separate spine lesions treated between September 2009 and December 2012 (31 treated before September 2011 [group 1] and 35 treated after [group 2]). The χ{sup 2} test was used to examine the difference in parameters between groups. The PTV V{sub 100%} {sub PD} ≥ 95% objective was met in 29.0% of group 1 vs 91.4% of group 2 (p < 0.01) plans. The PTV V{sub 90%} {sub PD} ≥ 99% objective was met in 38.7% of group 1 vs 88.6% of group 2 (p < 0.01) plans. Overall, 4 plans in group 1 had CI > 1.2 vs none in group 2 (p = 0.04). For D{sub 2cm}, 48.3% plans yielded a minor violation of the objectives and 16.1% a major violation for group 1, whereas 17.1% exhibited a minor violation and 2.9% a major violation for group 2 (p < 0.01). Spine SBRT plans can be improved on dose coverage, conformity, and dose falloff employing a combination of RTOG spine and lung SBRT protocol planning objectives.

  9. Emotional and Behavioral Functioning After Conformal Radiation Therapy for Pediatric Ependymoma

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Victoria W.; Conklin, Heather M. [Department of Psychology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Boop, Frederick A. [Department of Surgery, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Department of Neurosurgery, Semmes-Murphey Neurologic and Spine Institute, Memphis, Tennessee (United States); Wu, Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2014-03-15

    Purpose: The standard of care for pediatric patients with ependymoma involves postoperative radiation therapy. Prior research suggests that conformal radiation therapy (CRT) is associated with relative sparing of cognitive and academic functioning, but little is known about the effect of CRT on emotional and behavioral functioning. Methods and Materials: A total of 113 patients with pediatric ependymoma underwent CRT using photons as part of their enrollment on an institutional trial. Patients completed annual evaluations of neurocognitive functioning during the first 5 years after CRT. Emotional and behavioral functioning was assessed via the Child Behavior Checklist. Results: Before CRT, emotional and behavioral functioning were commensurate with those of the normative population and within normal limits. After 5 years, means remained within normal limits but were significantly below the normative mean. Linear mixed models revealed a significant increase in attention problems over time. These problems were associated with age at diagnosis/CRT, tumor location, and extent of resection. A higher-than-expected incidence of school problems was present at all assessment points after baseline. Conclusions: The use of photon CRT for ependymoma is associated with relatively stable emotional and behavioral functioning during the first 5 years after treatment. The exception is an increase in attention problems. Results suggest that intervening earlier in the survivorship period—during the first year posttreatment—may be beneficial.

  10. Integral Dose and Radiation-Induced Secondary Malignancies: Comparison between Stereotactic Body Radiation Therapy and Three-Dimensional Conformal Radiotherapy

    Science.gov (United States)

    D’Arienzo, Marco; Masciullo, Stefano G.; de Sanctis, Vitaliana; Osti, Mattia F.; Chiacchiararelli, Laura; Enrici, Riccardo M.

    2012-01-01

    The aim of the present paper is to compare the integral dose received by non-tumor tissue (NTID) in stereotactic body radiation therapy (SBRT) with modified LINAC with that received by three-dimensional conformal radiotherapy (3D-CRT), estimating possible correlations between NTID and radiation-induced secondary malignancy risk. Eight patients with intrathoracic lesions were treated with SBRT, 23 Gy × 1 fraction. All patients were then replanned for 3D-CRT, maintaining the same target coverage and applying a dose scheme of 2 Gy × 32 fractions. The dose equivalence between the different treatment modalities was achieved assuming α/β = 10Gy for tumor tissue and imposing the same biological effective dose (BED) on the target (BED = 76Gy10). Total NTIDs for both techniques was calculated considering α/β = 3Gy for healthy tissue. Excess absolute cancer risk (EAR) was calculated for various organs using a mechanistic model that includes fractionation effects. A paired two-tailed Student t-test was performed to determine statistically significant differences between the data (p ≤ 0.05). Our study indicates that despite the fact that for all patients integral dose is higher for SBRT treatments than 3D-CRT (p = 0.002), secondary cancer risk associated to SBRT patients is significantly smaller than that calculated for 3D-CRT (p = 0.001). This suggests that integral dose is not a good estimator for quantifying cancer induction. Indeed, for the model and parameters used, hypofractionated radiotherapy has the potential for secondary cancer reduction. The development of reliable secondary cancer risk models seems to be a key issue in fractionated radiotherapy. Further assessments of integral doses received with 3D-CRT and other special techniques are also strongly encouraged. PMID:23202843

  11. Characterisation of Conformational and Ligand Binding Properties of Membrane Proteins Using Synchrotron Radiation Circular Dichroism (SRCD).

    Science.gov (United States)

    Hussain, Rohanah; Siligardi, Giuliano

    Membrane proteins are notoriously difficult to crystallise for use in X-ray crystallographic structural determination, or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour in solution. The advantage of synchrotron radiation circular dichroism (SRCD) measured with synchrotron beamlines compared to the CD from benchtop instruments is the extended spectral far-UV region that increases the accuracy of secondary structure estimations, in particular under high ionic strength conditions. Membrane proteins are often available in small quantities, and for this SRCD measured at the Diamond B23 beamline has successfully facilitated molecular recognition studies. This was done by probing the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells (1-5 cm) of small volume capacity (70 μl-350 μl). In this chapter we describe the use of SRCD to qualitatively and quantitatively screen ligand binding interactions (exemplified by Sbma, Ace1 and FsrC proteins); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by FsrC); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by inositol transporters) as well as the stability of membrane proteins (exemplified by GalP, Ace1). The importance of the in solution characterisation of the conformational behaviour and ligand binding properties of proteins in both far- andnear-UV regions and the use of high-throughput CD (HT-CD) using 96- and 384-well multiplates to study the folding effects in various protein crystallisation buffers are also discussed.

  12. Target volume delineation and field setup. A practical guide for conformal and intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nancy Y. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States). Radiation Oncology; Lu, Jiade J. (eds.) [National Univ. Health System, Singapore (Singapore). Dept. of Radiation Oncology; National Univ. of Singapore (Singapore). Dept. of Medicine

    2013-03-01

    Practical handbook on selection and delineation of tumor volumes and fields for conformal radiation therapy, including IMRT. Helpful format facilitating use on a step-by-step basis in daily practice. Designed to ensure accurate coverage of commonly encountered tumors along their routes of spread. This handbook is designed to enable radiation oncologists to appropriately and confidently delineate tumor volumes/fields for conformal radiation therapy, including intensity-modulated radiation therapy (IMRT), in patients with commonly encountered cancers. The orientation of this handbook is entirely practical, in that the focus is on the illustration of clinical target volume (CTV) delineation for each major malignancy. Each chapter provides guidelines and concise knowledge on CTV selection for a particular disease, explains how the anatomy of lymphatic drainage shapes the selection of the target volume, and presents detailed illustrations of volumes, slice by slice, on planning CT images. While the emphasis is on target volume delineation for three-dimensional conformal therapy and IMRT, information is also provided on conventional radiation therapy field setup and planning for certain malignancies for which IMRT is not currently suitable.

  13. A comparative analysis of 3D conformal deep inspiratory–breath hold and free-breathing intensity-modulated radiation therapy for left-sided breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Reardon, Kelli A.; Read, Paul W.; Morris, Monica M. [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Reardon, Michael A. [Department of Radiology, University of Virginia, Charlottesville, VA (United States); Geesey, Constance [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States); Wijesooriya, Krishni, E-mail: kw5wx@hscmail.mcc.virginia.edu [Department of Radiation Oncology, University of Virginia, Charlottesville, VA (United States)

    2013-07-01

    Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.

  14. Ultrahigh Resolution 3-Dimensional Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  15. Comparison of acute and subacute genitourinary and gastrointestinal adverse events of radiotherapy for prostate cancer using intensity-modulated radiation therapy, three-dimensional conformal radiation therapy, permanent implant brachytherapy and high-dose-rate brachytherapy

    NARCIS (Netherlands)

    Morimoto, Masahiro; Yoshioka, Yasuo; Konishi, Koji; Isohashi, Fumiaki; Takahashi, Yutaka; Ogata, Toshiyuki; Koizumi, Masahiko; Teshima, Teruki; Bijl, Henk P; van der Schaaf, Arjen; Langendijk, Johannes A; Ogawa, Kazuhiko

    2014-01-01

    AIMS AND BACKGROUND: To examine acute and subacute urinary and rectal toxicity in patients with localized prostate cancer monotherapeutically treated with the following four radiotherapeutic techniques: intensity-modulated radiation therapy, three-dimensional conformal radiation therapy,

  16. Learning and Memory Following Conformal Radiation Therapy for Pediatric Craniopharyngioma and Low-Grade Glioma

    Energy Technology Data Exchange (ETDEWEB)

    Di Pinto, Marcos [Department of Pediatric Psychology, Children' s Hospital of Orange County, Orange, California (United States); Conklin, Heather M. [Department of Psychology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Li, Chenghong [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-01

    Purpose: The primary objective of this study was to examine whether children with low-grade glioma (LGG) or craniopharyngioma had impaired learning and memory after conformal radiation therapy (CRT). A secondary objective was to determine whether children who received chemotherapy before CRT, a treatment often used to delay radiation therapy in younger children with LGG, received any protective benefit with respect to learning. Methods and Materials: Learning and memory in 57 children with LGG and 44 children with craniopharyngioma were assessed with the California Verbal Learning Test-Children's Version and the Visual-Auditory Learning tests. Learning measures were administered before CRT, 6 months later, and then yearly for a total of 5 years. Results: No decline in learning scores after CRT was observed when patients were grouped by diagnosis. For children with LGG, chemotherapy before CRT did not provide a protective effect on learning. Multiple regression analyses, which accounted for age and tumor volume and location, found that children treated with chemotherapy before CRT were at greater risk of decline on learning measures than those treated with CRT alone. Variables predictive of learning and memory decline included hydrocephalus, shunt insertion, younger age at time of treatment, female gender, and pre-CRT chemotherapy. Conclusions: This study did not reveal any impairment or decline in learning after CRT in overall aggregate learning scores. However, several important variables were found to have a significant effect on neurocognitive outcome. Specifically, chemotherapy before CRT was predictive of worse outcome on verbal learning in LGG patients. In addition, hydrocephalus and shunt insertion in craniopharyngioma were found to be predictive of worse neurocognitive outcome, suggesting a more aggressive natural history for those patients.

  17. THREE-DIMENSIONAL CONFORMAL RADIATION THERAPY FOR LOCALLY RECURRENT NASOPHARYNGEAL CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Xiao-kang

    2001-01-01

    nasopharyngeal carcinomas [J]. Laryngoscope 1999; 109:805.[12]Zheng XK, Chen LH, Xu ZX, et al. The advantages of stereotactic conformal radiotherapy for locally recurrent nasopharyngeal carcinoma [J]. Chin J Cancer 1999; 18:596.[13]International Commission on Radiation Units and Measurements. Prescribing Recording and Reporting Photons Beam Therapy [R]. ICRU Report No. 50, 1992;[14]Gong QY, Zheng GL, Zhu HY. MRI differentiation of recurrent nasopharyngeal carcinoma from postradiation fibrosis [J]. Comput Med Imaging Graph 1991; 15:422.[15]Zhang XK, Chen LH, Xu YL, et al. Quality assure of thermoplastic immobilization for 3-\\d CTR [J]. Chin J Cancer 2001; 20:553.

  18. A study of the radiobiological modeling of the conformal radiation therapy in cancer treatment

    Science.gov (United States)

    Pyakuryal, Anil Prasad

    Cancer is one of the leading causes of mortalities in the world. The precise diagnosis of the disease helps the patients to select the appropriate modality of the treatments such as surgery, chemotherapy and radiation therapy. The physics of X-radiation and the advanced imaging technologies such as positron emission tomography (PET) and computed tomography (CT) plays an important role in the efficient diagnosis and therapeutic treatments in cancer. However, the accuracy of the measurements of the metabolic target volumes (MTVs) in the PET/CT dual-imaging modality is always limited. Similarly the external beam radiation therapy (XRT) such as 3D conformal radiotherapy (3DCRT) and intensity modulated radiation therapy (IMRT) is the most common modality in the radiotherapy treatment. These treatments are simulated and evaluated using the XRT plans and the standard methodologies in the commercial planning system. However, the normal organs are always susceptible to the radiation toxicity in these treatments due to lack of knowledge of the appropriate radiobiological models to estimate the clinical outcomes. We explored several methodologies to estimate MTVs by reviewing various techniques of the target volume delineation using the static phantoms in the PET scans. The review suggests that the more precise and practical method of delineating PET MTV should be an intermediate volume between the volume coverage for the standardized uptake value (SUV; 2.5) of glucose and the 50% (40%) threshold of the maximum SUV for the smaller (larger) volume delineations in the radiotherapy applications. Similarly various types of optimal XRT plans were designed using the CT and PET/CT scans for the treatment of various types of cancer patients. The qualities of these plans were assessed using the universal plan-indices. The dose-volume criteria were also examined in the targets and organs by analyzing the conventional dose-volume histograms (DVHs). The biological models such as tumor

  19. Conformal orbit sparing radiation therapy: a treatment option for advanced skin cancer of the parotid and ear region

    OpenAIRE

    Foley, Heath; Hopley, Shane; Brown, Elizabeth; Bernard, Anne; Foote, Matthew

    2016-01-01

    Abstract Introduction New surgical methods have enabled resection of previously in‐operable tumours in the region of the parotid gland and ear. This has translated to deeper target volumes being treated with adjuvant radiotherapy. Due to the limitations of existing conformal techniques, alternative planning approaches are required to cover the target volume with appropriate sparing of adjacent critical structures. Although intensity modulated radiation therapy (IMRT) may be able to achieve th...

  20. Adaptive functioning of childhood brain tumor survivors following conformal radiation therapy.

    Science.gov (United States)

    Ashford, Jason M; Netson, Kelli L; Clark, Kellie N; Merchant, Thomas E; Santana, Victor M; Wu, Shengjie; Conklin, Heather M

    2014-05-01

    Adaptive functioning is not often examined in childhood brain tumor (BT) survivors, with the few existing investigations relying on examiner interviews. Parent questionnaires may provide similar information with decreased burden. The purpose of this study was: (1) to examine adaptive behaviors in BT survivors relative to healthy peer and cancer survivor groups, and (2) to explore the validity of a parent questionnaire in relation to an examiner administered interview. Participants (age 13.11 ± 2.98 years) were BT survivors treated with conformal radiation therapy (n = 50), healthy siblings of BT survivors (n = 39) and solid tumor (ST) survivors who did not receive CNS-directed therapy (n = 40). Parents completed the Adaptive Behavior Assessment System–2nd Edition (ABAS-II). For a subset of the BT cohort (n = 32), examiners interviewed the parents using the Vineland Adaptive Behavior Scales (VABS) within 12 months. Groups differed significantly on each of the ABAS-II indices and the general adaptive composite, with the BT group scoring lower than the sibling and ST groups across indices. Executive functioning, but not IQ, was associated with adaptive skills; no clear pattern of clinical and demographic predictors was established. VABS scores were correlated with ABAS-II scores on nearly all indices. BT survivors showed significantly lower adaptive functioning when compared to healthy and cancer controls. The ABAS-II proved sensitive to these behavioral limitations and was consistent with scores on the VABS. The use of a parent questionnaire to assess adaptive functioning enhances survivorship investigations by increasing flexibility of assessment and decreasing examiner burden.

  1. Topological Entropy and Renormalization group flow in 3-dimensional spherical spaces

    CERN Document Server

    Asorey, M; Cavero-Peláez, I; D'Ascanio, D; Santangelo, E M

    2015-01-01

    We analyze the renormalization group flow of the temperature independent term of the entropy in the high temperature limit \\beta/a S^IR_top between the topological entropies of the conformal field theories connected by such flow. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotone behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem.

  2. Doses to Carotid Arteries After Modern Radiation Therapy for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Maraldo, M.V.; Brodin, Nils Patrik; Aznar, Marianne Camille

    2013-01-01

    Hodgkin lymphoma (HL) survivors are at an increased risk of stroke because of carotid artery irradiation. However, for early-stage HL involved node radiation therapy (INRT) reduces the volume of normal tissue exposed to high doses. Here, we evaluate 3-dimensional conformal radiation therapy (3D...

  3. Assessment and Comparison of Homogeneity and Conformity Indexes in Step-and-Shoot and Compensator-Based Intensity Modulated Radiation Therapy (IMRT) and Three-Dimensional Conformal Radiation Therapy (3D CRT) in Prostate Cancer.

    Science.gov (United States)

    Salimi, Marzieh; Abi, Kaveh Shirani Tak; Nedaie, Hassan Ali; Hassani, Hossein; Gharaati, Hussain; Samei, Mahmood; Shahi, Rezgar; Zarei, Hamed

    2017-01-01

    Intensity modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D CRT) are two treatment modalities in prostate cancer, which provide acceptable dose distribution in tumor region with sparing the surrounding normal tissues. IMRT is based on inverse planning optimization; in which, intensity of beams is modified by using multileaf collimators and also compensators with optimum shapes in step and shoot (SAS) and compensator-based method, respectively. In the recent study, some important parameters were compared in two IMRT and 3D CRT methods. Prescribed dose was 80 Gy for both IMRT procedures and 70 Gy for 3D CRT. Treatment plans of 15 prostate cancer candidates were compared to target the minimum dose, maximum dose, V 76 Gy (for IMRT plans) V 66.5 Gy (for 3D CRT), mean dose, conformity index (CI), and homogeneity index (HI). Dose conformity in compensators-based IMRT was better than SAS and 3D CRT. The same outcome was also achieved for homogeneity index. The target coverage was achieved 95% of prescribed dose to 95% of planning target volume (PTV) in 3D CRT and 95% of prescribed dose to 98% of PTV in IMRT methods. IMRT increases maximum dose of tumor region, improves CI and HI of target volume, and also reduces dose of organs at risks.

  4. Shaping and resizing of multifed slot radiators used in conformal microwave antenna arrays for hyperthermia treatment of large superficial diseases.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Juang, Titania; De Luca, Valeria; Rangarao, Sneha; Neumann, Daniel; Martins, Carlos Daniel; Craciunescu, Oana; Stauffer, Paul R

    2009-01-01

    It has been recently shown that chestwall recurrence of breast cancer and many other superficial diseases can be successfully treated with the combination of radiation, chemotherapy and hyperthermia. Conformal microwave antenna array for hyperthermia treatment of large area superficial diseases can significantly increase patient comfort while at the same time facilitate treatment of larger and more irregularly shaped disease. A large number of small efficient antennas is preferable for improved control of heating, as the disease can be more accurately contoured and the lower power requirement correlates with system reliability, linearity and reduced cost. Thus, starting from the initially proposed square slot antennas, we investigated new designs for multi-fed slot antennas of several shapes that maximize slot perimeter while reducing radiating area, thus increasing antenna efficiency. Simulations were performed with commercial electromagnetic simulation software packages (Ansoft HFSS) to demonstrate that the antenna size reduction method is effective for several dual concentric conductor (DCC) aperture shapes and operating frequencies. The theoretical simulations allowed the development of a set of design rules for multi-fed DCC slot antennas that facilitate conformal heat treatments of irregular size and shape disease with large multi-element arrays. Independently on the shape, it is shown that the perimeter of 10cm at 915 MHz delivers optimal radiation pattern and efficiency. While the maximum radiation is obtained for a circular pattern the rectangular shape is the one that feels more efficiently the array space.

  5. Three-dimensional conformal intensity-modulated radiation therapy of left femur foci does not damage the sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Wanlong Xu; Xibin Zhao; Qing Wang; Jungang Sun; Jiangbo Xu; Wenzheng Zhou; Hao Wang; Shigui Yan; Hong Yuan

    2014-01-01

    During radiotherapy to kill femoral hydatid tapeworms, the sciatic nerve surrounding the focus can be easily damaged by the treatment. Thus, it is very important to evaluate the effects of ra-diotherapy on the surrounding nervous tissue. In the present study, we used three-dimensional, conformal, intensity-modulated radiation therapy to treat bilateral femoral hydatid disease in Meriones meridiani. The focus of the hydatid disease on the left femur was subjected to radio-therapy (40 Gy) for 14 days, and the right femur received sham irradiation. Hematoxylin-eosin staining, electron microscopy, and terminal deoxynucleotidyl transferase-dUTP nick end labeling assays on the left femurs showed that the left sciatic nerve cell structure was normal, with no ob-vious apoptosis after radiation. Trypan blue staining demonstrated that the overall protoscolex structure in bone parasitized withEchinococcus granulosus disappeared in the left femur of the animals after treatment. The mortality of the protoscolex was higher in the left side than in the right side. The succinate dehydrogenase activity in the protoscolex in bone parasitized withEchi-nococcus granulosus was lower in the left femur than in the right femur. These results suggest that three-dimensional conformal intensity-modulated radiation therapy achieves good therapeutic effects on the secondary bone in hydatid disease inMeriones meridiani without damaging the morphology or function of the sciatic nerve.

  6. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Panettieri, Vanessa [William Buckland Radiotherapy Centre, Alfred Hospital, Commercial Road, Melbourne (Australia); Panakis, Niki; Bates, Nicholas [Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom); Lester, Jason F. [Velindre Cancer Centre, Velindre Road, Whitchurch, Cardiff (United Kingdom); Jain, Pooja [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Landau, David B. [Department of Radiotherapy, Guy' s and St. Thomas' NHS Foundation Trust, London (United Kingdom); Nahum, Alan E.; Mayles, W. Philip M. [Clatterbridge Cancer Centre, Clatterbridge Road, Wirral (United Kingdom); Fenwick, John D. [Department of Oncology, Gray Institute of Radiation Oncology and Biology, University of Oxford, Oxford (United Kingdom); Oxford Cancer Centre, Oxford University Hospitals, Oxford (United Kingdom)

    2014-04-01

    Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

  7. 3-Dimensional Topographic Models for the Classroom

    Science.gov (United States)

    Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.

    2003-01-01

    We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.

  8. Primary 3-dimensional culture of mouse hepatocytes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Complex 3-dimensional structures with good functions have been obtained under the primary mixcoculture of mouse hepatocytes with mouse liver fibroblasts without serum. Albumin secretion is kept above 10 μg/106 cells and urea synthesis reaches 25 μg/106 on the 7th day of culture. Avoiding serum affection, liver fibroblasts' effects on hepatocytes' viability, functions and 3-dimensional structure forming in primary serum-free culture have been studied. Important effects of the mesenchyma, especially the direct adherence of fibroblasts to hepatocytes, are shown.

  9. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2000-08-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, ``conformal infinity'' is related with almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved out of physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation and how it lends itself very naturally to solve radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  10. Conformal Infinity

    Science.gov (United States)

    Frauendiener, Jörg

    2004-12-01

    The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, "conformal infinity" is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  11. Conformal Infinity

    Directory of Open Access Journals (Sweden)

    Frauendiener Jörg

    2004-01-01

    Full Text Available The notion of conformal infinity has a long history within the research in Einstein's theory of gravity. Today, 'conformal infinity' is related to almost all other branches of research in general relativity, from quantisation procedures to abstract mathematical issues to numerical applications. This review article attempts to show how this concept gradually and inevitably evolved from physical issues, namely the need to understand gravitational radiation and isolated systems within the theory of gravitation, and how it lends itself very naturally to the solution of radiation problems in numerical relativity. The fundamental concept of null-infinity is introduced. Friedrich's regular conformal field equations are presented and various initial value problems for them are discussed. Finally, it is shown that the conformal field equations provide a very powerful method within numerical relativity to study global problems such as gravitational wave propagation and detection.

  12. 3-Dimensional Right Ventricular Volume Assessment

    NARCIS (Netherlands)

    Jainandunsing, Jayant S.; Matyal, Robina; Shahul, Sajid S.; Wang, Angela; Woltersom, Bozena; Mahmood, Feroze

    Purpose: The purpose of this review was to evaluate new computer software available for 3-dimensional right ventricular (RV) volume estimation. Description: Based on 2-dimensional echocardiography, various algorithms have been used for RV volume estimation. These are complex, time-consuming

  13. On 3-Dimensional Stability of Reshaping Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Frigaard, Peter

    1989-01-01

    The paper deals with the 3-dimensional stability of the type of rubble mound breakwaters where reshaping of the mound due to wave action is foreseen in the design. Such breakwaters are commonly named sacrificial types and berm types. The latter is due to the relatively large volume of armour stones...

  14. Properties of 3-dimensional line location models

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l\\_p norm is discussed, along with the special cases of Euclidean...

  15. Properties of 3-dimensional line location models

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l\\_p norm is discussed, along with the special cases of Euclidean...

  16. A 5-Year Investigation of Children's Adaptive Functioning Following Conformal Radiation Therapy for Localized Ependymoma

    Energy Technology Data Exchange (ETDEWEB)

    Netson, Kelli L.; Conklin, Heather M. [Department of Psychology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie; Xiong Xiaoping [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Merchant, Thomas E., E-mail: thomas.merchant@stjude.org [Division of Radiation Oncology, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-09-01

    Purpose: Conformal and intensity modulated radiation therapies have the potential to preserve cognitive outcomes in children with ependymoma; however, functional behavior remains uninvestigated. This longitudinal investigation prospectively examined intelligence quotient (IQ) and adaptive functioning during the first 5 years after irradiation in children diagnosed with ependymoma. Methods and Materials: The study cohort consisted of 123 children with intracranial ependymoma. Mean age at irradiation was 4.60 years (95% confidence interval [CI], 3.85-5.35). Serial neurocognitive evaluations, including an age-appropriate IQ measure and the Vineland Adaptive Behavior Scales (VABS), were completed before irradiation, 6 months after treatment, and annually for 5 years. A total of 579 neurocognitive evaluations were included in these analyses. Results: Baseline IQ and VABS were below normative means (P<.05), although within the average range. Linear mixed models revealed stable IQ and VABS across the follow-up period, except for the VABS Communication Index, which declined significantly (P=.015). Annual change in IQ (-.04 points) did not correlate with annual change in VABS (-.90 to +.44 points). Clinical factors associated with poorer baseline performance (P<.05) included preirradiation chemotherapy, cerebrospinal fluid shunt placement, number and extent of surgical resections, and younger age at treatment. No clinical factors significantly affected the rate of change in scores. Conclusions: Conformal and intensity modulated radiation therapies provided relative sparing of functional outcomes including IQ and adaptive behaviors, even in very young children. Communication skills remained vulnerable and should be the target of preventive and rehabilitative interventions.

  17. A 5-Year Investigation of Children’s Adaptive Functioning Following Conformal Radiation Therapy for Localized Ependymoma

    Science.gov (United States)

    Netson, Kelli L.; Conklin, Heather M.; Wu, Shengjie; Xiong, Xiaoping; Merchant, Thomas E.

    2012-01-01

    Purpose Conformal and intensity modulated radiation therapies have the potential to preserve cognitive outcomes in children with ependymoma; however, functional behavior remains uninvestigated. This longitudinal investigation prospectively examined intelligence quotient (IQ) and adaptive functioning during the first 5 years after irradiation in children diagnosed with ependymoma. Methods and Materials The study cohort consisted of 123 children with intracranial ependymoma. Mean age at irradiation was 4.60 years (95% confidence interval [CI], 3.85–5.35). Serial neurocognitive evaluations, including an age-appropriate IQ measure and the Vineland Adaptive Behavior Scales (VABS), were completed before irradiation, 6 months after treatment, and annually for 5 years. A total of 579 neurocognitive evaluations were included in these analyses. Results Baseline IQ and VABS were below normative means (PVABS across the follow-up period, except for the VABS Communication Index, which declined significantly (P=.015). Annual change in IQ (−.04 points) did not correlate with annual change in VABS (−.90 to +.44 points). Clinical factors associated with poorer baseline performance (P<.05) included preirradiation chemotherapy, cerebrospinal fluid shunt placement, number and extent of surgical resections, and younger age at treatment. No clinical factors significantly affected the rate of change in scores. Conclusions Conformal and intensity modulated radiation therapies provided relative sparing of functional outcomes including IQ and adaptive behaviors, even in very young children. Communication skills remained vulnerable and should be the target of preventive and rehabilitative interventions. PMID:22541967

  18. NIR Laser Radiation Induced Conformational Changes and Tunneling Lifetimes of High-Energy Conformers of Amino Acids in Low-Temperature Matrices

    Science.gov (United States)

    Bazso, Gabor; Najbauer, Eszter E.; Magyarfalvi, Gabor; Tarczay, Gyorgy

    2013-06-01

    We review our recent results on combined matrix isolation FT-IR and NIR laser irradiation studies on glycine alanine, and cysteine. The OH and the NH stretching overtones of the low-energy conformers of these amino acids deposited in Ar, Kr, Xe, and N_{2} matrices were irradiated. At the expense of the irradiated conformer, other conformers were enriched and new, high-energy, formerly unobserved conformers were formed in the matrices. This enabled the separation and unambiguous assignment of the vibrational transitions of the different conformers. The main conversion paths and their efficiencies are described qualitatively showing that there are significant differences in different matrices. It was shown that the high-energy conformer decays in the matrix by H-atom tunneling. The lifetimes of the high-energy conformers in different matrices were measured. Based on our results we conclude that some theoretically predicted low-energy conformers of amino acids are likely even absent in low-energy matrices due to fast H-atom tunneling. G. Bazso, G. Magyarfalvi, G. Tarczay J. Mol. Struct. 1025 (Light-Induced Processes in Cryogenic Matrices Special Issue) 33-42 (2012). G. Bazso, G. Magyarfalvi, G. Tarczay J. Phys. Chem. A 116 (43) 10539-10547 (2012). G. Bazso, E. E. Najbauer, G. Magyarfalvi, G. Tarczay J. Phys. Chem. A in press, DOI: 10.1021/jp400196b. E. E. Najbauer, G. Bazso, G. Magyarfalvi, G. Tarczay in preparation.

  19. The Rapid Response Radiation Survey (R3S) Mission Using the HISat Conformal Satellite Architecture

    Science.gov (United States)

    Miller, Nathanael

    2015-01-01

    The Rapid Response Radiation Survey (R3S) experiment, designed as a quick turnaround mission to make radiation measurements in LEO, will fly as a hosted payload in partnership with NovaWurks using their Hyper-integrated Satlet (HiSat) architecture. The need for the mission arises as the Nowcast of Atmospheric Ionization Radiation for Aviation Safety (NAIRAS) model moves from a research effort into an operational radiation assessment tool. The data collected by R3S, in addition to the complementary data from a NASA Langley Research Center (LaRC) atmospheric balloon mission entitled Radiation Dosimetry Experiment (RaDX), will validate exposure prediction capabilities of NAIRAS. This paper discusses the development of the R3S experiment as made possible by use of the HiSat architecture. The system design and operational modes of the experiment are described, as well as the experiment interfaces to the HiSat satellite via the user defined adapter (UDA) provided by NovaWurks. This paper outlines the steps taken by the project to execute the R3S mission in the 4 months of design, build, and test. Finally, description of the engineering process is provided, including the use of facilitated rapid/concurrent engineering sessions, the associated documentation, and the review process employed.

  20. Preliminary study of the 270 Bloom Fricke xylenol gel phantom performance for 3D conformal radiotherapy using multiple radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, Christianne C.; Campos, Leticia L., E-mail: ccavinato@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (DIRF/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Gerencia de Metrologia das Radiacoes; Souza, Benedito H.; Carrete Junior, Henrique; Daros, Kellen A.C.; Medeiros, Regina B. [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Dept. de Diagnostico por Imagens; Giordani, Adelmo J. [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil). Servico de Radioterapia

    2011-07-01

    The complex cancer treatment techniques require rigorous quality control (QC). The Fricke xylenol gel (FXG) dosimeter has been studied to be applied as a three-dimensional (3D) dosimeter since it is possible to produce 3D FXG phantoms of various shapes and sizes. In this preliminary study, the performance of the FXG spherical phantom developed at IPEN, prepared using 270 Bloom gelatin from porcine skin made in Brazil, was evaluated using magnetic resonance imaging technique, aiming to use this phantom to 3D conformal radiotherapy (3DCRT) with multiple radiation fields and clinical photon beams. The obtained results indicate that for all magnetic resonance images of the FXG phantom irradiated with 6 MV clinical photon beam can be observed clearly the target volume and, in the case of coronal image, can also be observed the radiation beam projection and the overlap of different radiation fields used. The Fricke xylenol gel phantom presented satisfactory results for 3DCRT and clinical photon beams in this preliminary study. These results encourage the additional tests using complex treatment techniques and indicate the viability of applying the phantom studied to routine quality control measurements and in 3DCRT and intensity modulated radiotherapy treatment planning. (author)

  1. Comparative study of four advanced 3d-conformal radiation therapy treatment planning techniques for head and neck cancer.

    Science.gov (United States)

    Herrassi, Mohamed Yassine; Bentayeb, Farida; Malisan, Maria Rosa

    2013-04-01

    For the head-and-neck cancer bilateral irradiation, intensity-modulated radiation therapy (IMRT) is the most reported technique as it enables both target dose coverage and organ-at-risk (OAR) sparing. However, during the last 20 years, three-dimensional conformal radiotherapy (3DCRT) techniques have been introduced, which are tailored to improve the classic shrinking field technique, as regards both planning target volume (PTV) dose conformality and sparing of OAR's, such as parotid glands and spinal cord. In this study, we tested experimentally in a sample of 13 patients, four of these advanced 3DCRT techniques, all using photon beams only and a unique isocentre, namely Bellinzona, Forward-Planned Multisegments (FPMS), ConPas, and field-in-field (FIF) techniques. Statistical analysis of the main dosimetric parameters of PTV and OAR's DVH's as well as of homogeneity and conformity indexes was carried out in order to compare the performance of each technique. The results show that the PTV dose coverage is adequate for all the techniques, with the FPMS techniques providing the highest value for D95%; on the other hand, the best sparing of parotid glands is achieved using the FIF and ConPas techniques, with a mean dose of 26 Gy to parotid glands for a PTV prescription dose of 54 Gy. After taking into account both PTV coverage and parotid sparing, the best global performance was achieved by the FIF technique with results comparable to that of IMRT plans. This technique can be proposed as a valid alternative when IMRT equipment is not available or patient is not suitable for IMRT treatment.

  2. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    Directory of Open Access Journals (Sweden)

    Maria P. Lambros

    2015-01-01

    Full Text Available Qingre Liyan decoction (QYD, a Traditional Chinese medicine, and N-acetyl cysteine (NAC have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1, protective genes (EGFR and PPARD, and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs. NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors.

  3. Radiation therapy for localized prostate cancer. For high-dose rate conformal brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Keigo; Jo, Yoshimasa; Morioka, Masaaki; Tanaka, Hiroyoshi; Hiratsuka, Junichi; Imajo, Yoshinari [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    1999-05-01

    Sixteen patients with localized prostate cancer were referred to our clinic for radiation therapy in combination with HDR brachytherapy using Ir-192 pellets between October 1997 and August 1998. The patients were given external beam radiation of 45 Gy to the whole pelvis in combination with an interstitial HDR brachytherapy implant of 3 fractions each delivering 5.5 Gy during two days. Using an implanting device especially designed for HDR, 10-18 applicator needles (17 gauge) were implanted into the prostate using transrectal ultrasound (TRUS) with perineal template guidance under spinal anesthesia. Pathological evaluation was performed at 6 months after treatment. This technique of external beam radiation combined with HDR brachytherapy was well tolerated. Serum prostatic antigen (PSA) levels became normalized in 87.5% of the patients (14 out of 16) within 1-14 months (median 2 months) after the irradiation. No significant intraoperative or perioperative complications occurred, however one patient (6.25%) experienced Grade 3 hematuria. Most of the early complications were otherwise Grade 1 or 2. From prospectively planned prostatic rebiopsies performed at 6 months, we can observe the radiation effects in the pathological findings such as fibrosis, basal cell hyperplasia, bizarre cells and intraductal calcifications. (K.H.)

  4. The Rapid Response Radiation Survey (R3S) Mission Using the HiSat Conformal Satellite Architecture

    Science.gov (United States)

    Miller, Nathanael A.; Norman, Ryan B.; Soto, Hector L.; Stewart, Victor A.; Jones, Mark L.; Kowalski, Matthew C.; Ben Shabat, Adam; Gough, Kerry M.; Stavely, Rebecca L.; Shim, Alex C.; hide

    2015-01-01

    The Rapid Response Radiation Survey (R3S) experiment, designed as a quick turnaround mission to make radiation measurements in Low Earth Orbit (LEO), will fly as a hosted payload in partnership with NovaWurks using their Hyper-integrated Satlet (HISat) architecture. The need for the mission arises as the Nowcast of Atmospheric Ionization Radiation for Aviation Safety (NAIRAS) model moves from a research effort into an operational radiation assessment tool. Currently, airline professionals are the second largest demographic of radiation workers and to date their radiation exposure is undocumented in the USA. The NAIRAS model seeks to fill this information gap. The data collected by R3S, in addition to the complementary data from a NASA Langley Research Center (LaRC) atmospheric balloon mission entitled Radiation Dosimetry Experiment (RaD-X), will validate exposure prediction capabilities of NAIRAS. The R3S mission collects total dose and radiation spectrum measurements using a Teledyne µDosimeter and a Liulin-6SA2 LED spectrometer. These two radiation sensors provide a cross correlated radiometric measurement in combination with the Honeywell HMR2300 Smart Digital Magnetometer. The magnetometer assesses the Earth's magnetic field in the LEO environment and allows radiation dose to be mapped as a function of the Earth's magnetic shielding. R3S is also unique in that the radiation sensors will be exposed on the outer surface of the spacecraft, possibly making this the first measurements of the LEO radiation environment with bare sensors. Viability of R3S as an extremely fast turnaround mission is due, in part, to the nature of the robust, well-defined interfaces of the conformal satellite HiSat Architecture. The HiSat architecture, which was developed with the support of the Defense Advanced Research Projects Agency's (DARPA's) Phoenix Program, enabled the R3S system to advance from the first concept to delivery of preliminary design review (PDR) level documents in

  5. Feasibility of using the micro CT imaging system as the conformal radiation therapy facility for small animals

    Science.gov (United States)

    Tu, Shu-Ju; Hsieh, Hui-Ling; Chao, Tsi-Chian; Lee, Chung-Chi

    2009-02-01

    In recent years, there has been an increasing number of integration for using the micro CT scanners, either home-built bench-top or commercially made, as the small animal radiation therapy irradiator in several research groups. In this paper, we study the x-ray beam physics such as the percentage depth dose distribution and their dose conformity characteristics using Monte Carlo simulation method for a series of photon energy levels often found in the current commercial micro CT imaging systems. Micro CT scanners have been one of the key imaging modalities in the current state-of-the-art molecular imaging techniques and their applications in various biomedical research areas have been increasing tremendously in recent years due to the ultra-high image quality. Tumor growth development and the corresponding therapeutic response in the small animal model study can be evaluated by a micro CT imaging system. In the most current advanced commercially available micro CT units, the nominal spatial resolution is typically at the scale of 10.0 μm or less. In current research trend, there have been an increasing number of investigations for the applications of x-ray units to organ-specific and whole-body radiation in dedicated small animal model study. In particular, scientists have identified that the integrated micro CT imagers can be commissioned as the dual-purpose unit for the high spatial resolution image acquisition and radiation delivery. As we all realized that small animal models are important and critical in several studies of experimental (or pre-clinical) radiation therapy research. In this paper, a Monte Carlo code (Penelope) was used to calculate the percentage depth dose distributions at different photon energy levels. Also the corresponding iso-dose contour curves were computed and plotted from the circular CT scanning geometry to study the desired dose conformity property. We note that the selected photon energy range that is included in this work is often

  6. Effect of Gamma Radiation on Sodium Channels in Different Conformations in Neuroblastoma Cells

    Science.gov (United States)

    1986-01-01

    rads). selectively sulphonic acid : Tris. 2-amino-2-hydroxymethylprepane-l.3- reduce sodium currents in isolated frog sciatic dial. nerves under...similar ful in demonstrating structural and functional spectrum of radiosensitivity. A large body of bio- properties of biological membrane macromole...channel function 12-41. One might expect that quences than does disruption of nucleic acids , ionizing radiation, comprising a higher energy spectrum than

  7. Involved-Site Image-Guided Intensity Modulated Versus 3D Conformal Radiation Therapy in Early Stage Supradiaphragmatic Hodgkin Lymphoma

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, Andrea Riccardo, E-mail: andreariccardo.filippi@unito.it [Department of Oncology, University of Torino, Torino (Italy); Ciammella, Patrizia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Piva, Cristina; Ragona, Riccardo [Department of Oncology, University of Torino, Torino (Italy); Botto, Barbara [Hematology, Città della Salute e della Scienza, Torino (Italy); Gavarotti, Paolo [Hematology, University of Torino and Città della Salute e della Scienza, Torino (Italy); Merli, Francesco [Hematology Unit, ASMN Hospital IRCCS, Reggio Emilia (Italy); Vitolo, Umberto [Hematology, Città della Salute e della Scienza, Torino (Italy); Iotti, Cinzia [Radiation Therapy Unit, Department of Oncology and Advanced Technology, ASMN Hospital IRCCS, Reggio Emilia (Italy); Ricardi, Umberto [Department of Oncology, University of Torino, Torino (Italy)

    2014-06-01

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows for margin reduction and highly conformal dose distribution, with consistent advantages in sparing of normal tissues. The purpose of this retrospective study was to compare involved-site IG-IMRT with involved-site 3D conformal RT (3D-CRT) in the treatment of early stage Hodgkin lymphoma (HL) involving the mediastinum, with efficacy and toxicity as primary clinical endpoints. Methods and Materials: We analyzed 90 stage IIA HL patients treated with either involved-site 3D-CRT or IG-IMRT between 2005 and 2012 in 2 different institutions. Inclusion criteria were favorable or unfavorable disease (according to European Organization for Research and Treatment of Cancer criteria), complete response after 3 to 4 cycles of an adriamycin- bleomycin-vinblastine-dacarbazine (ABVD) regimen plus 30 Gy as total radiation dose. Exclusion criteria were chemotherapy other than ABVD, partial response after ABVD, total radiation dose other than 30 Gy. Clinical endpoints were relapse-free survival (RFS) and acute toxicity. Results: Forty-nine patients were treated with 3D-CRT (54.4%) and 41 with IG-IMRT (45.6%). Median follow-up time was 54.2 months for 3D-CRT and 24.1 months for IG-IMRT. No differences in RFS were observed between the 2 groups, with 1 relapse each. Three-year RFS was 98.7% for 3D-CRT and 100% for IG-IMRT. Grade 2 toxicity events, mainly mucositis, were recorded in 32.7% of 3D-CRT patients (16 of 49) and in 9.8% of IG-IMRT patients (4 of 41). IG-IMRT was significantly associated with a lower incidence of grade 2 acute toxicity (P=.043). Conclusions: RFS rates at 3 years were extremely high in both groups, albeit the median follow-up time is different. Acute tolerance profiles were better for IG-IMRT than for 3D-CRT. Our preliminary results support the clinical safety and efficacy of advanced RT planning and delivery techniques in patients affected with early stage HL, achieving complete

  8. Radiation induced chromatin conformation changes analysed by fluorescent localization microscopy, statistical physics, and graph theory.

    Science.gov (United States)

    Zhang, Yang; Máté, Gabriell; Müller, Patrick; Hillebrandt, Sabina; Krufczik, Matthias; Bach, Margund; Kaufmann, Rainer; Hausmann, Michael; Heermann, Dieter W

    2015-01-01

    It has been well established that the architecture of chromatin in cell nuclei is not random but functionally correlated. Chromatin damage caused by ionizing radiation raises complex repair machineries. This is accompanied by local chromatin rearrangements and structural changes which may for instance improve the accessibility of damaged sites for repair protein complexes. Using stably transfected HeLa cells expressing either green fluorescent protein (GFP) labelled histone H2B or yellow fluorescent protein (YFP) labelled histone H2A, we investigated the positioning of individual histone proteins in cell nuclei by means of high resolution localization microscopy (Spectral Position Determination Microscopy = SPDM). The cells were exposed to ionizing radiation of different doses and aliquots were fixed after different repair times for SPDM imaging. In addition to the repair dependent histone protein pattern, the positioning of antibodies specific for heterochromatin and euchromatin was separately recorded by SPDM. The present paper aims to provide a quantitative description of structural changes of chromatin after irradiation and during repair. It introduces a novel approach to analyse SPDM images by means of statistical physics and graph theory. The method is based on the calculation of the radial distribution functions as well as edge length distributions for graphs defined by a triangulation of the marker positions. The obtained results show that through the cell nucleus the different chromatin re-arrangements as detected by the fluorescent nucleosomal pattern average themselves. In contrast heterochromatic regions alone indicate a relaxation after radiation exposure and re-condensation during repair whereas euchromatin seemed to be unaffected or behave contrarily. SPDM in combination with the analysis techniques applied allows the systematic elucidation of chromatin re-arrangements after irradiation and during repair, if selected sub-regions of nuclei are

  9. Erectile dysfunction after prostate three-dimensional conformal radiation therapy. Correlation with the dose to the penile bulb

    Energy Technology Data Exchange (ETDEWEB)

    Magli, A.; Ceschia, T.; Titone, F.; Parisi, G.; Fongione, S. [University Hospital Udine (Italy). Dept. of Radiation Oncology; Giangreco, M. [Udine Univ. (Italy). Hygiene and Epidemiology Inst.; Crespi, M.; Negri, A. [University Hospital Udine (Italy). Dept. of Medical Physics; De Giorgi, G. [University Hospital Udine (Italy). Dept. of Urology

    2012-11-15

    Purpose: Erectile dysfunction is associated with all the common treatment options for prostate cancer. The aim of this research was to evaluate the relationship between erectile function and radiation dose to the penile bulb (PB) and other proximal penile structures in men receiving conformal radiotherapy (CRT) without hormonal therapy (HT) for prostate cancer, whose sexual function was known before treatment. Patients and methods: The study included 19 patients treated with 3D-CRT for localized prostate cancer at our department, who were self-reported to be potent before treatment, had not received HT, and had complete follow-up data available. Our evaluation was based on the International Index of Erectile Function (IIEF-5). Dose-volume histograms (DVHs) were used to evaluate the dose to the PB. Statistical analysis was performed with an unconditional logistic regression model. Results: All patients reported change in potency after radiation. Eight patients (42%) remained potent but showed a decrease of 1 or 2 levels of potency, as defined by the IIEF-5 questionnaire (reduced potency group), while 11 patients (58%) reported a change of higher levels and revealed a severe erectile dysfunction after 2 years (impotence group). Multivariate analysis of morphological and dosimetric variables yielded significance for the mean dose (p = 0.05 with an odds ratio of 1.14 and 95% CI 1-1.30). Patients receiving a mean dose of less than 50 Gy to the PB appear to have a much greater likelihood of maintaining potency. Conclusion: Our data suggest a possible existence of a dose-volume correlation between the dose applied to the PB and radiation-induced impotence. (orig.)

  10. Dose computation in conformal radiation therapy including geometric uncertainties: Methods and clinical implications

    Science.gov (United States)

    Rosu, Mihaela

    The aim of any radiotherapy is to tailor the tumoricidal radiation dose to the target volume and to deliver as little radiation dose as possible to all other normal tissues. However, the motion and deformation induced in human tissue by ventilatory motion is a major issue, as standard practice usually uses only one computed tomography (CT) scan (and hence one instance of the patient's anatomy) for treatment planning. The interfraction movement that occurs due to physiological processes over time scales shorter than the delivery of one treatment fraction leads to differences between the planned and delivered dose distributions. Due to the influence of these differences on tumors and normal tissues, the tumor control probabilities and normal tissue complication probabilities are likely to be impacted upon in the face of organ motion. In this thesis we apply several methods to compute dose distributions that include the effects of the treatment geometric uncertainties by using the time-varying anatomical information as an alternative to the conventional Planning Target Volume (PTV) approach. The proposed methods depend on the model used to describe the patient's anatomy. The dose and fluence convolution approaches for rigid organ motion are discussed first, with application to liver tumors and the rigid component of the lung tumor movements. For non-rigid behavior a dose reconstruction method that allows the accumulation of the dose to the deforming anatomy is introduced, and applied for lung tumor treatments. Furthermore, we apply the cumulative dose approach to investigate how much information regarding the deforming patient anatomy is needed at the time of treatment planning for tumors located in thorax. The results are evaluated from a clinical perspective. All dose calculations are performed using a Monte Carlo based algorithm to ensure more realistic and more accurate handling of tissue heterogeneities---of particular importance in lung cancer treatment planning.

  11. Effect of ionizing radiation on the human brain: white matter and gray matter T1 in pediatric brain tumor patients treated with conformal radiation therapy.

    Science.gov (United States)

    Steen, R G; Koury B S, M; Granja, C I; Xiong, X; Wu, S; Glass, J O; Mulhern, R K; Kun, L E; Merchant, T E

    2001-01-01

    To test a hypothesis that fractionated radiation therapy (RT) to less than 60 Gy is associated with a dose-related change in the spin-lattice relaxation time (T1) of normal brain tissue, and that such changes are detectable by quantitative MRI (qMRI). Each of 21 patients received a qMRI examination before treatment, and at several time points during and after RT. A map of brain T1 was calculated and segmented into white matter and gray matter at each time point. The RT isodose contours were then superimposed upon the T1 map, and changes in brain tissue T1 were analyzed as a function of radiation dose and time following treatment. We used a mixed-model analysis to analyze the longitudinal trend in brain T1 from the start of RT to 1 year later. Predictive factors evaluated included patient age and clinical variables, such as RT dose, time since treatment, and the use of an imaging contrast agent. In white matter (WM), a dose level of greater than 20 Gy was associated with a dose-dependent decrease in T1 over time, which became significant about 3 months following treatment. In gray matter (GM), there was no significant change in T1 over time, as a function of RT doses effect on brain T1. Results suggest that T1 mapping may be sensitive to radiation-related changes in human brain tissue T1. WM T1 appears to be unaffected by RT at doses less than approximately 20 Gy; GM T1 does not change at doses less than 60 Gy. However, tumor appears to have an effect upon adjacent GM, even before treatment. Conformal RT may offer a substantial benefit to the patient, by minimizing the volume of normal brain exposed to greater than 20 Gy.

  12. An investigation on the radiation sensitivity of DNA conformations to {sup 60}Co gamma rays by using Geant4 toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Semsarha, F. [Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tehran (Iran, Islamic Republic of); Goliaei, B., E-mail: goliaei@ibb.ut.ac.ir [Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box 13145-1384, Tehran (Iran, Islamic Republic of); Raisali, G.; Khalafi, H. [Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran (Iran, Islamic Republic of); Mirzakhanian, L. [Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Quebec (Canada)

    2014-03-15

    To investigate the impact of conformational properties of genetic material of living cells on radiation-induced DNA damage, single strand breaks (SSB), double strand breaks (DSB) and some microdosimetric quantities of A, B and Z-DNA conformations caused by {sup 60}Co gamma rays, have been calculated. Based on a previous B-DNA geometrical model, models of A and Z forms have been developed. Simple 34 base pairs segments of each model repeated in high number and secondary electron spectrum of {sup 60}Co gamma rays have been simulated in a volume of a typical animal cell nucleus. All simulations in this study have been performed by using the Geant4 (GEometry ANd Tracking 4)-DNA extension of the Geant4 toolkit. The results showed that, B-DNA has the lowest yield of simple strand breaks with 2.23 × 10{sup −10} Gy{sup −1} Da{sup −1} and 1.0 × 10{sup −11} Gy{sup −1} Da{sup −1} for the SSB and DSB damage yield, respectively. The A-DNA has the highest SSB yield with 3.59 × 10{sup −10} Gy{sup −1} Da{sup −1} and the Z-DNA has the highest DSB yields with 1.8 × 10{sup −11} Gy{sup −1} Da{sup −1}. It has been concluded that there is a direct correlation between the hit probability, mean specific imparted energy and SSB yield in each model of DNA. Moreover, there is a direct correlation between the DSB yield and both the mean lineal energy and topological characteristics of each model.

  13. A dilogarithmic 3-dimensional Ising tetrahedron

    CERN Document Server

    Broadhurst, D J

    1999-01-01

    In 3 dimensions, the Ising model is in the same universality class as unknown analytical nature. In contrast, all single-scale 4-dimensional tetrahedra were reduced, in hep-th/9803091, to special values of exponentially convergent polylogarithms. Combining dispersion relations with the integer-relation finder PSLQ, we find that $C^{Tet}/2^{5/2} = Cl_2(4\\alpha) - Cl_2(2\\alpha)$, with $Cl_2(\\theta):=\\sum_{n>0}\\sin(n\\theta)/n^2$ and 1,000-digit precision and readily yields 50,000 digits of $C^{Tet}$, after transformation to an exponentially convergent sum, akin to those studied in math.CA/9803067. It appears that this 3-dimensional result entails a polylogarithmic ladder beginning with the classical formula for $\\pi/\\sqrt2$, in the manner that 4-dimensional results build on that for $\\pi/\\sqrt3$.

  14. Conformal radiation therapy with hadron beams and the programs of the TERA Foundation.

    Science.gov (United States)

    Amaldi, U

    1998-01-01

    Proposed fifty years ago, tumor therapy with charged hadron beams has been under rapid development since 1993-94. Indeed hadrontherapy was born in 1938, when neutron beams have been used in cancer therapy, but it has become an accepted therapeutical modality only in the last five years. Fast neutrons are still in use, even if their limitations are now apparent. Charged hadron beams are more favorable, since the largest specific energy deposition occurs at the end of their range in matter. The most used hadrons are at present protons and carbon ions. Both allow a dose deposition which conforms to the tumor target. Radiobiology experiments and the results of the first clinical trials indicate that carbon ions have, on top of this macroscopic property, a different way of interacting with cells at the microscopic level. There are thus solid hopes to use carbon beams of about 4500 MeV to control tumors which are radioresistant both to X-rays and protons. After discussing these macroscopic and microscopic properties of hadrontherapy, the twelve dedicated hadrontherapy centres, which will be treating patients from 2001-2002, are shortly described. Five of them are in the USA and seven in Japan, while no hospital based centre for deep protontherapy is fully financed in Europe. The second part of this review is devoted to the Italian hadrontherapy programme, based on the development of the network RITA, the construction in Rome by the "Istituto Superiore di Sanità" of a novel proton accelerator based on a 3 GHz linac, the design of a linac to boost the energy of protons extracted from a 50-70 MeV cyclotron and the construction in Mirasole, near Milano, of a center for protons and ions known as "CNAO". This center will have a synchrotron, which is under design at CERN in the framework of a collaboration of TERA with AUSTRON and GSI which is called PIMMS (Proton Ion Medical Machine Study) and is headed by Dr. Phyl Bryant.

  15. Intensity modulated radiation therapy versus three-dimensional conformal radiation therapy for the treatment of high grade glioma: a dosimetric comparison.

    Science.gov (United States)

    MacDonald, Shannon M; Ahmad, Salahuddin; Kachris, Stefanos; Vogds, Betty J; DeRouen, Melissa; Gittleman, Alicia E; DeWyngaert, Keith; Vlachaki, Maria T

    2007-04-19

    The present study compared the dosimetry of intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D-CRT) techniques in patients treated for high-grade glioma. A total of 20 patients underwent computed tomography treatment planning in conjunction with magnetic resonance imaging fusion. Prescription dose and normal-tissue constraints were identical for the 3D-CRT and IMRT plans. The prescribed dose was 59.4 Gy delivered at 1.8 Gy per fraction using 4-10 MV photons. Normal-tissue dose constraints were 50-54 Gy for the optic chiasm and nerves, and 55-60 Gy for the brainstem. The IMRT plan yielded superior target coverage as compared with the 3D-CRT plan. Specifically, minimum and mean planning target volume cone down doses were 54.52 Gy and 61.74 Gy for IMRT and 50.56 Gy and 60.06 Gy for 3D-CRT (p < or = 0.01). The IMRT plan reduced the percent volume of brainstem receiving a dose greater than 45 Gy by 31% (p = 0.004) and the percent volume of brain receiving a dose greater than 18 Gy, 24 Gy, and 45 Gy by 10% (p = 0.059), 14% (p = 0.015), and 40% (p < or = 0.0001) respectively. With IMRT, the percent volume of optic chiasm receiving more than 45 Gy was also reduced by 30.40% (p = 0.047). As compared with 3D-CRT, IMRT significantly increased the tumor control probability (p < or = 0.005) and lowered the normal-tissue complication probability for brain and brainstem (p < 0.033). Intensity-modulated radiation therapy improved target coverage and reduced radiation dose to the brain, brainstem, and optic chiasm. With the availability of new cancer imaging tools and more effective systemic agents, IMRT may be used to intensify tumor doses while minimizing toxicity, therefore potentially improving outcomes in patients with high-grade glioma.

  16. Comparison of 3D conformal radiotherapy vs. intensity modulated radiation therapy (IMRT) of a stomach cancer treatment;Comparacion dosimetrica de radioterapia conformal 3D versus radioterapia de intensidad modulada (IMRT) de un tratamiento de cancer de estomago

    Energy Technology Data Exchange (ETDEWEB)

    Bernui de V, Maria Giselle; Cardenas, Augusto; Vargas, Carlos [Hospital Nacional Carlos Alberto Seguin Escobedo (ESSALUD), Arequipa (Peru). Servicio de Radioterapia

    2009-07-01

    The purpose of this work was to compare the dosimetry in 3D Conformal Radiotherapy with Intensity Modulated Radiation Therapy (IMRT) in a treatment of stomach cancer. For this comparison we selected a patient who underwent subtotal gastrectomy and D2 dissection for a T3N3 adenocarcinoma Mx ECIIIB receiving treatment under the scheme Quimio INT 0116 - in adjuvant radiotherapy. In the treatment plan was contouring the Clinical Target Volume (CTV) and the Planning Target Volume (PTV) was generated from the expansion of 1cm of the CTV, the risky organs contouring were: the liver, kidneys and spinal cord, according to the consensus definition of volumes in gastric cancer. The 3D Conformal Radiotherapy planning is carried out using 6 half beams following the Leong Trevol technique; for the IMRT plan was used 8 fields, the delivery technique is step-and-shoot. In both cases the fields were coplanar, isocentric and the energy used was 18 MV. Intensity Modulated Radiation Therapy (IMRT), in this case has proved to be a good treatment alternative to the technique of 3D Conformal Radiotherapy; the dose distributions with IMRT have better coverage of PTV and positions of the hot spots, as well as the kidneys volume that received higher doses to 2000 cGy is lower, but the decrease in dose to the kidneys is at the expense of increased dose in other organs like the liver. (author)

  17. Performance Analysis of 3-Dimensional Turbo Codes

    CERN Document Server

    Rosnes, Eirik

    2011-01-01

    In this work, we consider the minimum distance properties and convergence thresholds of 3-dimensional turbo codes (3D-TCs), recently introduced by Berrou et al.. Here, we consider binary 3D-TCs while the original work of Berrou et al. considered double-binary codes. In the first part of the paper, the minimum distance properties are analyzed from an ensemble perspective, both in the finite-length regime and in the asymptotic case of large block lengths. In particular, we analyze the asymptotic weight distribution of 3D-TCs and show numerically that their typical minimum distance dmin may, depending on the specific parameters, asymptotically grow linearly with the block length, i.e., the 3D-TC ensemble is asymptotically good for some parameters. In the second part of the paper, we derive some useful upper bounds on the dmin when using quadratic permutation polynomial (QPP) interleavers with a quadratic inverse. Furthermore, we give examples of interleaver lengths where an upper bound appears to be tight. The b...

  18. Topological entropy and renormalization group flow in 3-dimensional spherical spaces

    Energy Technology Data Exchange (ETDEWEB)

    Asorey, M. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); Beneventano, C.G. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina); Cavero-Peláez, I. [Departamento de Física Teórica, Universidad de Zaragoza,E-50009 Zaragoza (Spain); CUD,E-50090, Zaragoza (Spain); D’Ascanio, D.; Santangelo, E.M. [Departamento de Física, Universidad Nacional de La Plata,Instituto de Física de La Plata, CONICET-Universidad Nacional de La Plata,C.C. 67, 1900 La Plata (Argentina)

    2015-01-15

    We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a≪1 of a massive field theory in 3-dimensional spherical spaces, M{sub 3}, with constant curvature 6/a{sup 2}. For masses lower than ((2π)/β), this term can be identified with the free energy of the same theory on M{sub 3} considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S{sub hol}, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S{sub hol} decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S{sub top}{sup UV}>S{sub top}{sup IR}. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F-theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.

  19. Topological entropy and renormalization group flow in 3-dimensional spherical spaces

    Science.gov (United States)

    Asorey, M.; Beneventano, C. G.; Cavero-Peláez, I.; D'Ascanio, D.; Santangelo, E. M.

    2015-01-01

    We analyze the renormalization group (RG) flow of the temperature independent term of the entropy in the high temperature limit β/a ≪ 1 of a massive field theory in 3-dimensional spherical spaces, M 3, with constant curvature 6 /a 2. For masses lower than , this term can be identified with the free energy of the same theory on M 3 considered as a 3-dimensional Euclidean space-time. The non-extensive part of this free energy, S hol, is generated by the holonomy of the spatial metric connection. We show that for homogeneous spherical spaces the holonomy entropy S hol decreases monotonically when the RG scale flows to the infrared. At the conformal fixed points the values of the holonomy entropy do coincide with the genuine topological entropies recently introduced. The monotonic behavior of the RG flow leads to an inequality between the topological entropies of the conformal field theories connected by such flow, i.e. S {top/ UV } > S {top/ IR }. From a 3-dimensional viewpoint the same term arises in the 3-dimensional Euclidean effective action and has the same monotonic behavior under the RG group flow. We conjecture that such monotonic behavior is generic, which would give rise to a 3-dimensional generalization of the c-theorem, along the lines of the 2-dimensional c-theorem and the 4-dimensional a-theorem. The conjecture is related to recent formulations of the F -theorem. In particular, the holonomy entropy on lens spaces is directly related to the topological Rényi entanglement entropy on disks of 2-dimensional flat spaces.

  20. Cardiothoracic Applications of 3-dimensional Printing.

    Science.gov (United States)

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality.

  1. Incorporating 3-dimensional models in online articles

    Science.gov (United States)

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  2. Single-arm phase II study of conformal radiation therapy and temozolomide plus fractionated stereotactic conformal boost in high-grade gliomas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, Mario; Manfrida, Stefania; Mangiola, Annunziato; Fiorentino, Alba; D' Agostino, Giuseppe Roberto; Frascino, Vincenzo; Dinapoli, Nicola; Mantini, Giovanna; Albanese, Alessio; De Bonis, Pasquale; Chiesa, Silvia; Valentini, Vincenzo; Anile, Carmelo; Cellini, Numa [Dept. of Radiotherapy, Catholic Univ. of the Sacred Heart, Rome (Italy); Apicella, Giuseppina [Dept. of Radiotherapy, Catholic Univ. of the Sacred Heart, Rome (Italy); Dept. of Radiotherapy, Univ. Hospital Maggiore della Carita, Novara (Italy); Azario, Luigi [Dept. of Physics, Catholic Univ. of the Sacred Heart, Rome (Italy)

    2010-10-15

    Purpose: To assess survival, local control and toxicity using fractionated stereotactic conformal radiotherapy (FSCRT) boost and temozolomide in high-grade gliomas (HGGs). Patients and Methods: Patients affected by HGG, with a CTV{sub 1} (clinical target volume, representing tumor bed {+-} residual tumor + a margin of 5 mm) {<=} 8 cm were enrolled into this phase II study. Radiotherapy (RT, total dose 6,940 cGy) was administered using a combination of two different techniques: three-dimensional conformal radiotherapy (3D-CRT, to achieve a dose of 5,040 or 5,940 cGy) and FSCRT boost (19 or 10 Gy) tailored by CTV{sub 1} diameter ({<=} 6 cm and > 6 cm, respectively). Temozolomide (75 mg/m{sup 2}) was administered during the first 2 or 4 weeks of RT, After the end of RT, temozolomide (150-200 mg/m{sup 2}) was administered for at least six cycles. The sample size of 41 patients was assessed by the single proportion-powered analysis. Results: 41 patients (36 with glioblastoma multiforme [GBM] and five with anaplastic astrocytoma [AA]) were enrolled; RTOG neurological toxicities G1-2 and G3 were 12% and 3%, respectively. Two cases of radionecrosis were observed. At a median follow-up of 44 months (range 6-56 months), global and GBM median overall survival (05) were 30 and 28 months. The 2-year survival rate was significantly better compared to the standard treatment (63% vs. 26.5%; p < 0.00001). Median progression-free survival (PFS) was 11 months, in GBM patients 10 months. Conclusion: FSCRT boost plus temozolomide is well tolerated and seems to increase survival compared to the standard treatment in patients with HGG. (orig.)

  3. 宫颈癌术后三维适形放疗和共面等分设野调强放疗计划的对比分析%Dosimetric study of postoperative 3-dimensional conformal radiotherapy and coplanar decile intensity-modulated radiotherapy for cervical cancer

    Institute of Scientific and Technical Information of China (English)

    蒋军; 张利文; 廖珊; 黄荣

    2012-01-01

    目的 探讨宫颈癌术后三维适形放射治疗(3D-CRT)和共面等分设野调强放射治疗(IMRT)计划靶区及其周围危及器官受照剂量的差异.方法 随机选择10例宫颈癌术后患者,进行CT扫描、靶区和危及器官的勾画,处方剂量50 Gy.分别进行3D-CRT和共面等分设野IMRT计划设计,计算靶区剂量均匀度指数(HI)、适形度指数(CI)、最大受照剂量、最小受照剂量、平均受照剂量和危及器官照射体积等并对结果进行比较分析.结果 5F-IMRT、7F-IMRT和9F-IMRT在靶区适形度方面明显优于3D-CRT;在危及器官(膀胱V30 、V40 、V50,小肠V50和直肠V30、V40、V50)保护方面,5F-IMRT、7F-IMRT和9F-IMRT明显优于3D-CRT,P<0.05.而各IMRT计划之间差异无统计学意义,P>0.05.结论 宫颈癌术后辅助放疗共面等分IMRT计划无论在靶区适形度还是正常组织保护方面均优于3D-CRT,同时也证实7野或9野IMRT未必较5野获益更多.5野与7、9野的IMRT相比、在治疗时间及费用方面有独特的优势,值得在临床上推广.%Objective To compare the difference of the dose distribution in clinical target volume and organ at risk (OAR) between coplanar decile field intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy (3D-CRT) for postoperative radiotherapy of cervical cancer. Methods Ten postoperative patients with cervical cancer were selected randomly to undergo CT scan and planning target volume (PTV) and OAR contouring. 3D-CRT and coplanar decile IMRT planning was performed for each patient with a prescribed dose of 50 Gy. The homogeneity index (HI), conformity index (CI), maximum dose, minimum dose, mean dose of PTV, and irradiated volume of OARs were calculated and the results were compared. Results 5-field IMRT, 7-field IMRT and 9-field IMRT plans had a significant better conformity index (CI) of PTV compared with 3D-CRT (P0.05). Conclusion Coplanar decile IMRT plans is superior

  4. Investigation of conformal and intensity-modulated radiation therapy techniques to determine the absorbed fetal dose in pregnant patients with breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan; Bilge, Hatice

    2016-07-01

    The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealed that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.

  5. The clinical potential of high energy, intensity and energy modulated electron beams optimized by simulated annealing for conformal radiation therapy

    Science.gov (United States)

    Salter, Bill Jean, Jr.

    Purpose. The advent of new, so called IVth Generation, external beam radiation therapy treatment machines (e.g. Scanditronix' MM50 Racetrack Microtron) has raised the question of how the capabilities of these new machines might be exploited to produce extremely conformal dose distributions. Such machines possess the ability to produce electron energies as high as 50 MeV and, due to their scanned beam delivery of electron treatments, to modulate intensity and even energy, within a broad field. Materials and methods. Two patients with 'challenging' tumor geometries were selected from the patient archives of the Cancer Therapy and Research Center (CTRC), in San Antonio Texas. The treatment scheme that was tested allowed for twelve, energy and intensity modulated beams, equi-spaced about the patient-only intensity was modulated for the photon treatment. The elementary beams, incident from any of the twelve allowed directions, were assumed parallel, and the elementary electron beams were modeled by elementary beam data. The optimal arrangement of elementary beam energies and/or intensities was optimized by Szu-Hartley Fast Simulated Annealing Optimization. Optimized treatment plans were determined for each patient using both the high energy, intensity and energy modulated electron (HIEME) modality, and the 6 MV photon modality. The 'quality' of rival plans were scored using three different, popular objective functions which included Root Mean Square (RMS), Maximize Dose Subject to Dose and Volume Limitations (MDVL - Morrill et. al.), and Probability of Uncomplicated Tumor Control (PUTC) methods. The scores of the two optimized treatments (i.e. HIEME and intensity modulated photons) were compared to the score of the conventional plan with which the patient was actually treated. Results. The first patient evaluated presented a deeply located target volume, partially surrounding the spinal cord. A healthy right kidney was immediately adjacent to the tumor volume, separated

  6. The usefulness of 3-dimensional endoscope systems in endoscopic surgery.

    Science.gov (United States)

    Egi, Hiroyuki; Hattori, Minoru; Suzuki, Takahisa; Sawada, Hiroyuki; Kurita, Yuichi; Ohdan, Hideki

    2016-10-01

    The image quality and performance of 3-dimensional video image systems has improved along with improvements in technology. However, objective evaluation on the usefulness of 3-dimensional video image systems is insufficient. Therefore, we decided to investigate the usefulness of 3-dimensional video image systems using the objective endoscopic surgery technology evaluating apparatus that we have developed, the Hiroshima University Endoscopic Surgical Assessment Device (HUESAD). The participants were 28 student volunteers enrolled in Hiroshima University (17 men and 11 women, age: median 22.5, range 20-25), with no one having experienced endoscopic surgery training. Testing was carried out by dividing the subjects into two groups to initially carry out HUESAD with 2-dimensional video imaging (N = 14) and with 3-dimensional video imaging (N = 14). Questionnaires were carried out along with the investigation regarding both 2-dimensional and 3-dimensional video imaging. The task was carried out for approximately 15 min regarding both 2-dimensional and 3-dimensional video imaging. Lastly, the Mental Rotation Test, which is a standard space perception ability test, was used to evaluate the space perception ability. No difference was observed in the nauseous and uncomfortable feeling of practitioners between the two groups. Regarding smoothness, no difference was observed between 2-dimensional and 3-dimensional video imaging (p = 0.8665). Deviation (space perception ability) and approaching time (accuracy) were significantly lower with 3-dimensional video imaging compared to 2-dimensional video imaging. Moreover, the approaching time (accuracy) significantly improved in 3-dimensional video imaging compared to 2-dimensional video imaging in the group with low space perception ability (p = 0.0085). Objective evaluation using HUESAD and subjective evaluation by questionnaire revealed that endoscopic surgery techniques significantly improved in 3-dimensional video

  7. A dosimetric comparison between 3D-Conformal radiation therapy and intensity modulated radiation therapy plans in the treatment of posterior fossa boost in children with high risk medulloblastom

    Institute of Scientific and Technical Information of China (English)

    Saad El Din I; Abd El AAl H; Makaar W; Mashhour K; El Beih D; Hashem W

    2013-01-01

    Objective:The work is a comparative study between two modalities of radiation therapy, the aim of which is to compare 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) in treating posterior fossa boost in children with high risk medul oblastoma;dosimetrical y evaluating and comparing both techniques as regard target coverage and doses to organs at risk (OAR). Methods:Twenty patients with high risk medul oblastoma were treated by 3D-CRT technique. A dosimetric comparison was done by performing two plans for the posterior fossa boost, 3D-CRT and IMRT plans, for the same patient using Eclipse planning system (version 8.6). Results:IMRT had a better conformity index compared to 3D-CRT plans (P value of 0.000). As for the dose homogeneity it was also better in the IMRT plans, yet it hasn’t reached the statistical significant value. Also, doses received by the cochleae, brainstem and spinal cord were significantly less in the IMRT plans than those of 3D-CRT (P value<0.05). Conclusion:IMRT technique was clearly able to improve conformity and homogeneity index, spare the cochleae, reduce dose to the brainstem and spinal cord in comparison to 3D-CRT technique.

  8. Optimization of 3-dimensional imaging of the breast region with 3-dimensional laser scanners.

    Science.gov (United States)

    Kovacs, Laszlo; Yassouridis, Alexander; Zimmermann, Alexander; Brockmann, Gernot; Wöhnl, Antonia; Blaschke, Matthias; Eder, Maximilian; Schwenzer-Zimmerer, Katja; Rosenberg, Robert; Papadopulos, Nikolaos A; Biemer, Edgar

    2006-03-01

    The anatomic conditions of the female breast require imaging the breast region 3-dimensionally in a normal standing position for quality assurance and for surgery planning or surgery simulation. The goal of this work was to optimize the imaging technology for the mammary region with a 3-dimensional (3D) laser scanner, to evaluate the precision and accuracy of the method, and to allow optimum data reproducibility. Avoiding the influence of biotic factors, such as mobility, we tested the most favorable imaging technology on dummy models for scanner-related factors such as the scanner position in comparison with the torso and the number of scanners and single shots. The influence of different factors of the breast region, such as different breast shapes or premarking of anatomic landmarks, was also first investigated on dummies. The findings from the dummy models were then compared with investigations on test persons, and the accuracy of measurements on the virtual models was compared with a coincidence analysis of the manually measured values. The best precision and accuracy of breast region measurements were achieved when landmarks were marked before taking the shots and when shots at 30 degrees left and 30 degrees right, relative to the sagittal line, were taken with 2 connected scanners mounted with a +10-degree upward angle. However, the precision of the measurements on test persons was significantly lower than those measured on dummies. Our findings show that the correct settings for 3D imaging of the breast region with a laser scanner can achieve an acceptable degree of accuracy and reproducibility.

  9. Pulmonary Toxicity in Stage III Non-Small Cell Lung Cancer Patients Treated With High-Dose (74 Gy) 3-Dimensional Conformal Thoracic Radiotherapy and Concurrent Chemotherapy Following Induction Chemotherapy: A Secondary Analysis of Cancer and Leukemia Group B (CALGB) Trial 30105

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Joseph K., E-mail: joseph.salama@duke.edu [Duke University Medical Center, Durham, NC (United States); Stinchcombe, Thomas E. [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Gu Lin; Wang Xiaofei [CALGB Statistical Center, Duke University Medical Center, Durham, NC (United States); Morano, Karen [Quality Assurance Review Center, Lincoln, RI (United States); Bogart, Jeffrey A. [State University of New York Upstate Medical University, Syracuse, NY (United States); Crawford, Jeffrey C. [Duke University Medical Center, Durham, NC (United States); Socinski, Mark A. [University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Blackstock, A. William [Wake Forest University School of Medicine, Winston-Salem, NC (United States); Vokes, Everett E. [University of Chicago, Chicago, IL (United States)

    2011-11-15

    Purpose: Cancer and Leukemia Group B (CALGB) 30105 tested two different concurrent chemoradiotherapy platforms with high-dose (74 Gy) three-dimensional conformal radiotherapy (3D-CRT) after two cycles of induction chemotherapy for Stage IIIA/IIIB non-small cell lung cancer (NSCLC) patients to determine if either could achieve a primary endpoint of >18-month median survival. Final results of 30105 demonstrated that induction carboplatin and gemcitabine and concurrent gemcitabine 3D-CRT was not feasible because of treatment-related toxicity. However, induction and concurrent carboplatin/paclitaxel with 74 Gy 3D-CRT had a median survival of 24 months, and is the basis for the experimental arm in CALGB 30610/RTOG 0617/N0628. We conducted a secondary analysis of all patients to determine predictors of treatment-related pulmonary toxicity. Methods and Materials: Patient, tumor, and treatment-related variables were analyzed to determine their relation with treatment-related pulmonary toxicity. Results: Older age, higher N stage, larger planning target volume (PTV)1, smaller total lung volume/PTV1 ratio, larger V20, and larger mean lung dose were associated with increasing pulmonary toxicity on univariate analysis. Multivariate analysis confirmed that V20 and nodal stage as well as treatment with concurrent gemcitabine were associated with treatment-related toxicity. A high-risk group comprising patients with N3 disease and V20 >38% was associated with 80% of Grades 3-5 pulmonary toxicity cases. Conclusions: Elevated V20 and N3 disease status are important predictors of treatment related pulmonary toxicity in patients treated with high-dose 3D-CRT and concurrent chemotherapy. Further studies may use these metrics in considering patients for these treatments.

  10. Estimation of the mediastinal involvement probability in non-small cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy?; Estimation de la propabilite d'envahissement tumoral mediastinal: une definition statistique du volume-cible anatomoclinique pour la radiotherapie conformationnelle des cancers bronchiques non a petites cellules?

    Energy Technology Data Exchange (ETDEWEB)

    Giraud, P.; Dubray, B.; Helfre, S.; Dauphinot, C.; Rosenwald, J.C.; Cosset, J.M. [Institut Curie, Dept. d' Oncologie-Radiotherapie, 75 - Paris (France); Rycke, Y. de [Institut Curie, Dept. de Biostatistiques, 75 - Paris (France); Minet, P. [Centre Hospitalier Universitaire, Service de Radiotherapie, Liege (Belgium); Danhier, S. [Hopital Europeen Georges-Pompidou, Service de Radiotherapie, 75 - Paris (France)

    2001-12-01

    Purpose. - Conformal irradiation of non-small cell lung carcinoma (NSCLC) is largely based on a precise definition of the nodal clinical target volume (CTVn). The reduction of the number of nodal stations to be irradiated would render tumor dose escalation more achievable. The aim of this work was to design an mathematical tool based on documented data, that would predict the risk of metastatic involvement for each nodal station. Methods and material. - From the large surgical series published in the literature we looked at the main pre-treatment parameters that modify the risk of nodal invasion. The probability of involvement for the 17 nodal stations described by the American Thoracic Society (ATS) was computed from all these publications and then weighted according to the French epidemiological data. Starting from the primitive location of the tumour as the main characteristic, we built a probabilistic tree for each nodal station representing the risk distribution as a function of each tumor feature. From the statistical point of view, we used the inversion of probability trees method described by Weinstein and Feinberg. Results. -Taking into account all the different parameters of I the pre-treatment staging relative to each level of the ATS map brings up to 20,000 different combinations. The first chosen parameters in the tree were, depending on the tumour location, the histological classification, the metastatic stage, the nodal stage weighted in function of the sensitivity and specificity of the diagnostic examination used (PET scan, CAT scan) and the tumoral stage. A software is proposed to compute a predicted probability of involvement of each nodal station for any given clinical presentation.Conclusion. -To better define the CTVn in NSCLC 3DRT, we propose a software that evaluates the mediastinal nodal involvement risk from easily accessible individual pretreatment parameters. (authors)

  11. Prevention of normal tissue complications in radiation therapy of head and neck cancer : the role of 3D conformal radiation therapy (3DCRT)

    NARCIS (Netherlands)

    O.B. Wijers (Oda)

    2002-01-01

    textabstractIn The Netherlands. head and neck cancer (3.9%) ranks the eighth most frequemly diagnoscd malignant tumor. Radiation therapy (IIT) plays an important role in the treatmem of patients with head and neck cancer, as they constitute approximately 6% of those treated in a routine radiation th

  12. Conformal Radiotherapy for Squamous Cell Carcinoma of Gallbladder: A Case Report

    Directory of Open Access Journals (Sweden)

    Jia-zhou Hou

    2010-01-01

    Case report. We describe a 58-year-old male with a 5-week history of hypodynamia. He was found to have squamous cell carcinoma of the gallbladder with liver invasion and lymph node metastases. He underwent treatment with 3-dimensional conformal radiation therapy (CRT. A follow-up computer tomography (CT scan showed complete tumor remission 2 months after the completion of CRT. The patient survived for 14 months after the end of treatment and died of multiple liver metastases. Conclusion. The efficacy of radiotherapy in this case is encouraging and suggests a potential role for such therapy in similar cases. The benefit in terms of survival warrants further study.

  13. 3 dimensional volume MR imaging of intratemporal facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Jin; Kang, Heoung Keun; Kim, Hyun Ju; Kim, Jae Kyu; Jung, Hyun Ung; Moon, Woong Jae [Chonnam University Medical School, Kwangju (Korea, Republic of)

    1994-10-15

    To evaluate the usefulness of 3 dimensional volume MR imaging technique for demonstrating the facial nerves and to describe MR findings in facial palsy patients and evaluate the significance of facial nerve enhancement. We reviewed the MR images of facial nerves obtained with 3 dimensional volume imaging technique before and after intravenous administration of Gadopentetate dimeglumine in 13 cases who had facial paralysis and 33 cases who had no facial palsy. And we analyzed the detectability of ananatomical segments of intratemporal facial nerves and facial nerve enhancement. When the 3 dimensional volume MR images of 46 nerves were analyzed subjectively, the nerve courses of 43(93%) of 46 nerves were effectively demonstrated on 3 dimensional volume MR images. Internal acoustic canal portions and geniculate ganglion of facial nerve were well visualized on axial images and tympanic and mastoid segments were well depicted on oblique sagittal images. 10 of 13 patients(77%) were visibly enhanced along at least one segment of the facial nerve with swelling or thickening, and nerves of 8 of normal 33 cases(24%) were enhanced without thickening or swelling. MR findings of facial nerve parelysis is asymmetrical thickening of facial nerve with contrast enhancement. The 3 dimensional volume MR imaging technique should be a useful study for the evaluation of intratemporal facial nerve disease.

  14. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen, E-mail: stephen.avery@uphs.upenn.edu

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  15. Pelvic nodal dose escalation with prostate hypofractionation using conformal avoidance defined (H-CAD) intensity modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Theodore S.; Tome, Wolfgang A.; Jaradat, Hazim; Raisbeck, Bridget M.; Ritter, Mark A. [Univ. of Wisconsin Medical School, Madison, WI (United States). Dept. of Human Oncology

    2006-09-15

    The management of prostate cancer patients with a significant risk of pelvic lymph node involvement is controversial. Both whole pelvis radiotherapy and dose escalation to the prostate have been linked to improved outcome in such patients, but it is unclear whether conventional whole pelvis doses of only 45-50 Gy are optimal for ultimate nodal control. The purpose of this study is to examine the dosimetric and clinical feasibility of combining prostate dose escalation via hypofractionation with conformal avoidance-based IMRT (H-CAD) dose escalation to the pelvic lymph nodes. One conformal avoidance and one conventional plan were generated for each of eight patients. Conformal avoidance-based IMRT plans were generated that specifically excluded bowel, rectum, and bladder. The prostate and lower seminal vesicles (PTV 70) were planned to receive 70 Gy in 2.5 Gy/fraction while the pelvic lymph nodes (PTV 56) were to concurrently receive 56 Gy in 2 Gy/fraction. The volume of small bowel receiving >45 Gy was restricted to 300 ml or less. These conformal avoidance plans were delivered using helical tomotherapy or LINAC-based IMRT with daily imaging localization. All patients received neoadjuvant and concurrent androgen deprivation with a planned total of two years. The conventional, sequential plans created for comparison purposes for all patients consisted of a conventional 4-field pelvic box prescribed to 50.4 Gy (1.8 Gy/fraction) followed by an IMRT boost to the prostate of 25.2 Gy (1.8 Gy/fraction) yielding a final prostate dose of 75.6 Gy. For all plans, the prescription dose was to cover the target structure. Equivalent uniform dose (EUD) analyses were performed on all targets and dose-volume histograms (DVH) were displayed in terms of both physical and normalized total dose (NTD), i.e. dose in 2 Gy fraction equivalents. H-CAD IMRT plans were created for and delivered to all eight patients. Analysis of the H-CAD plans demonstrates prescription dose coverage of >95

  16. Distribution of the h-index in radiation oncology conforms to a variation of power law: implications for assessing academic productivity.

    Science.gov (United States)

    Quigley, Matthew R; Holliday, Emma B; Fuller, Clifton D; Choi, Mehee; Thomas, Charles R

    2012-06-01

    Leaders of academic institutions evaluate academic productivity when deciding to hire, promote, or award resources. This study examined the distribution of the h-index, an assessment of academic standing, among radiation oncologists. The authors collected h-indices for 826 US academic radiation oncologists from a commercial bibliographic database (SCOPUS, Elsevier B.V., NL). Then, logarithmic transformation was performed on h-indices and ranked h-indices, and results were compared to estimates of a power law distribution. The h-index frequency distribution conformed to both the log-linear variation of a power law (r (2) = .99) and the beta distribution with the same fitting exponents as previously described in a power law analysis of the productivity of neurosurgeons. Within radiation oncology, as in neurosurgery, there are exceedingly more faculty with an h-index of 1-2. The distribution fitting the same variation of a power law within two fields suggests applicability to other areas of academia.

  17. Mannheim Curves in Nonflat 3-Dimensional Space Forms

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    2015-01-01

    Full Text Available We consider the Mannheim curves in nonflat 3-dimensional space forms (Riemannian or Lorentzian and we give the concept of Mannheim curves. In addition, we investigate the properties of nonnull Mannheim curves and their partner curves. We come to the conclusion that a necessary and sufficient condition is that a linear relationship with constant coefficients will exist between the curvature and the torsion of the given original curves. In the case of null curve, we reveal that there are no null Mannheim curves in the 3-dimensional de Sitter space.

  18. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-03-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  19. Conformal Nets II: Conformal Blocks

    Science.gov (United States)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  20. Three-dimensional conformal radiation for esophageal squamous cell carcinoma with involved-field irradiation may deliver considerable doses of incidental nodal irradiation

    Directory of Open Access Journals (Sweden)

    Ji Kai

    2012-11-01

    Full Text Available Abstract Background To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC patients with a dose of 60 Gy/30f. Methods Thirty-nine patients with medically inoperable T1–4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT with involved-field radiation (IFI. The conformal clinical target volume (CTV was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Results Under a 60 Gy dosage, the median Dmean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Conclusions Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions.

  1. Conformal supermultiplets without superpartners

    CERN Document Server

    Jarvis, Peter

    2011-01-01

    We consider polynomial deformations of Lie superalgebras and their representations. For the class A(n-1,0) ~ sl(n/1), we identify families of superalgebras of quadratic and cubic type, consistent with Jacobi identities. For such deformed superalgebras we point out the possibility of zero step supermultiplets, carried on a single, irreducible representation of the even (Lie) subalgebra. For the conformal group SU(2,2) in 1+3-dimensional spacetime, such irreducible (unitary) representations correspond to standard conformal fields (j_1,j_2;d), where (j_1,j_2) is the spin and d the conformal dimension; in the massless class j_1 j_2=0, and d=j_1+j_2+1. We show that these repesentations are zero step supermultiplets for the superalgebra SU_(2)(2,2/1), the quadratic deformation of conformal supersymmetry SU(2,2/1). We propose to elevate SU_(2)(2,2/1) to a symmetry of the S-matrix. Under this scenario, low-energy standard model matter fields (leptons, quarks, Higgs scalars and gauge fields) descended from such confor...

  2. Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty.

    Science.gov (United States)

    Sembrano, Jonathan N; Yson, Sharon C; Polly, David W; Ledonio, Charles Gerald T; Nuckley, David J; Santos, Edward R G

    2015-01-01

    Balloon kyphoplasty is a common treatment for osteoporotic and pathologic compression fractures. Advantages include minimal tissue disruption, quick recovery, pain relief, and in some cases prevention of progressive sagittal deformity. The benefit of image-based navigation in kyphoplasty has not been established. The goal of this study was to determine whether there is a difference between fluoroscopy-guided balloon kyphoplasty and 3-dimensional image-based navigation in terms of needle malposition rate, cement leakage rate, and radiation exposure time. The authors compared navigated and nonnavigated needle placement in 30 balloon kyphoplasty procedures (47 levels). Intraoperative 3-dimensional image-based navigation was used for needle placement in 21 cases (36 levels); conventional 2-dimensional fluoroscopy was used in the other 9 cases (11 levels). The 2 groups were compared for rates of needle malposition and cement leakage as well as radiation exposure time. Three of 11 (27%) nonnavigated cases were complicated by a malpositioned needle, and 2 of these had to be repositioned. The navigated group had a significantly lower malposition rate (1 of 36; 3%; P=.04). The overall rate of cement leakage was also similar in both groups (P=.29). Radiation exposure time was similar in both groups (navigated, 98 s/level; nonnavigated, 125 s/level; P=.10). Navigated kyphoplasty procedures did not differ significantly from nonnavigated procedures except in terms of needle malposition rate, where navigation may have decreased the need for needle repositioning.

  3. Interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups

    NARCIS (Netherlands)

    Fabels, L.N.J.; Nijkamp, P.G.

    2014-01-01

    Introduction The use of digital orthodontic setups has grown quickly. The purpose of this study was to test the interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups in OrthoCAD (Align Technology, San Jose, Calif). Methods Six clinicians made digital orthodontic s

  4. Interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups

    NARCIS (Netherlands)

    Fabels, L.N.J.; Nijkamp, P.G.

    2014-01-01

    Introduction The use of digital orthodontic setups has grown quickly. The purpose of this study was to test the interexaminer and intraexaminer reliabilities of 3-dimensional orthodontic digital setups in OrthoCAD (Align Technology, San Jose, Calif). Methods Six clinicians made digital orthodontic

  5. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    Science.gov (United States)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  6. Conformal house

    DEFF Research Database (Denmark)

    Ryttov, Thomas Aaby; Sannino, Francesco

    2010-01-01

    fixed point. As a consistency check we recover the previously investigated bounds of the conformal windows when restricting to a single matter representation. The earlier conformal windows can be imagined to be part now of the new conformal house. We predict the nonperturbative anomalous dimensions...... at the infrared fixed points. We further investigate the effects of adding mass terms to the condensates on the conformal house chiral dynamics and construct the simplest instanton induced effective Lagrangian terms...

  7. SU-E-J-86: Functional Conformal Planning for Stereotactic Body Radiation Therapy with CT-Pulmonary Ventilation Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T; Moriya, S; Sato, M [Komazawa University, Setagaya, Tokyo (Japan); Tachibana, H [National Cancer Center Hospital East, Kashiwa, Chiba (Japan)

    2015-06-15

    Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additional constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.

  8. Predictors of urinary and rectal toxicity after external conformed radiation therapy in prostate cancer: Correlation between clinical, tumour and dosimetric parameters and radical and postoperative radiation therapy.

    Science.gov (United States)

    Martínez-Arribas, C M; González-San Segundo, C; Cuesta-Álvaro, P; Calvo-Manuel, F A

    2017-06-15

    To determine rectal and urinary toxicity after external beam radiation therapy (EBRT), assessing the results of patients who undergo radical or postoperative therapy for prostate cancer (pancreatic cancer) and their correlation with potential risk factors. A total of 333 patients were treated with EBRT. Of these, 285 underwent radical therapy and 48 underwent postoperative therapy (39 cases of rescue and 9 of adjuvant therapy). We collected clinical, tumour and dosimetric variable to correlate with toxicity parameters. We developed decision trees based on the degree of statistical significance. The rate of severe acute toxicity, both urinary and rectal, was 5.4% and 1.5%, respectively. The rate of chronic toxicity was 4.5% and 2.7%, respectively. Twenty-seven patients presented haematuria, and 9 presented haemorrhagic rectitis. Twenty-five patients (7.5%) presented permanent limiting sequela. The patients with lower urinary tract symptoms prior to the radiation therapy presented poorer tolerance, with greater acute bladder toxicity (P=0.041). In terms of acute rectal toxicity, 63% of the patients with mean rectal doses >45Gy and anticoagulant/antiplatelet therapy developed mild toxicity compared with 37% of the patients with mean rectal doses <45 Gy and without anticoagulant therapy. We were unable to establish predictors of chronic toxicity in the multivariate analysis. The long-term sequelae were greater in the patients who underwent urological operations prior to the radiation therapy and who were undergoing anticoagulant therapy. The tolerance to EBRT was good, and severe toxicity was uncommon. Baseline urinary symptoms constitute the predictor that most influenced the acute urinary toxicity. Rectal toxicity is related to the mean rectal dose and with anticoagulant/antiplatelet therapy. There were no significant differences in severe toxicity between radical versus postoperative radiation therapy. Copyright © 2017 AEU. Publicado por Elsevier España, S

  9. Analysis of Intensity-Modulated Radiation Therapy (IMRT), Proton and 3D Conformal Radiotherapy (3D-CRT) for Reducing Perioperative Cardiopulmonary Complications in Esophageal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Ted C.; Slater, Jerry M.; Nookala, Prashanth; Mifflin, Rachel; Grove, Roger; Ly, Anh M.; Patyal, Baldev; Slater, Jerry D.; Yang, Gary Y., E-mail: gyang@llu.edu [Department of Radiation Medicine, Loma Linda University Medical Center, 11234 Anderson Street, A875, Loma Linda, CA 92354 (United States)

    2014-12-05

    Background. While neoadjuvant concurrent chemoradiotherapy has improved outcomes for esophageal cancer patients, surgical complication rates remain high. The most frequent perioperative complications after trimodality therapy were cardiopulmonary in nature. The radiation modality utilized can be a strong mitigating factor of perioperative complications given the location of the esophagus and its proximity to the heart and lungs. The purpose of this study is to make a dosimetric comparison of Intensity-Modulated Radiation Therapy (IMRT), proton and 3D conformal radiotherapy (3D-CRT) with regard to reducing perioperative cardiopulmonary complications in esophageal cancer patients. Materials. Ten patients with esophageal cancer treated between 2010 and 2013 were evaluated in this study. All patients were simulated with contrast-enhanced CT imaging. Separate treatment plans using proton radiotherapy, IMRT, and 3D-CRT modalities were created for each patient. Dose-volume histograms were calculated and analyzed to compare plans between the three modalities. The organs at risk (OAR) being evaluated in this study are the heart, lungs, and spinal cord. To determine statistical significance, ANOVA and two-tailed paired t-tests were performed for all data parameters. Results. The proton plans showed decreased dose to various volumes of the heart and lungs in comparison to both the IMRT and 3D-CRT plans. There was no difference between the IMRT and 3D-CRT plans in dose delivered to the lung or heart. This finding was seen consistently across the parameters analyzed in this study. Conclusions. In patients receiving radiation therapy for esophageal cancer, proton plans are technically feasible while achieving adequate coverage with lower doses delivered to the lungs and cardiac structures. This may result in decreased cardiopulmonary toxicity and less morbidity to esophageal cancer patients.

  10. Size reduction and radiation pattern shaping of multi-fed DCC slot antennas used in conformal microwave array hyperthermia applicators.

    Science.gov (United States)

    Maccarini, Paolo F; Arunachalam, Kavitha; Martins, Carlos D; Stauffer, Paul R

    2009-02-23

    The use of conformal antenna array in the treatment of superficial diseases can significantly increase patient comfort while enhancing the local control of large treatment area with irregular shapes. Originally a regular square multi-fed slot antenna (Dual Concentric Conductor - DCC) was proposed as basic unit cell of the array. The square DCC works well when the outline of the treatment area is rectangular such as in the main chest or back area but is not suitable to outline diseases spreading along the armpit and neck area. In addition as the area of the patch increases, the overall power density decreases affecting the efficiency and thus the ability to deliver the necessary thermal dose with medium power amplifier (antennas is preferable as the disease is more accurately contoured and the lower power requirement for the amplifiers correlates with system reliability, durability, linearity and overall reduced cost. For such reason we developed a set of design rules for multi-fed slot antennas with irregular contours and we implemented a design that reduce the area while increasing the perimeter of the slot, thus increasing the antenna efficiency and the power density. The simulation performed with several commercial packages (Ansoft HFSS, Imst Empire, SemcadX and CST Microwave Studio) show that the size reducing method can be applied to several shapes and for different frequencies. The SAR measurements of several DCCs are performed using an in-house high resolution scanning system with tumor equivalent liquid phantom both at 915 MHz for superficial hyperthermia systems in US) and 433 MHz (Europe). The experimental results are compared with the expected theoretical predictions and both simulated and measured patterns of single antennas of various size and shapes are then summed in various combinations using Matlab to show possible treatment irregular contours of complex diseases. The local control is expected to significantly improve while maintaining the patient

  11. 3-Dimensional reconstruction of fluorescent structures in tardigrades

    Directory of Open Access Journals (Sweden)

    Franz BRÜMMER

    2007-09-01

    Full Text Available Tardigrades are microscopic animals, thus brightfield microscopy is a well established method for tardigrade observation. Modern techniques in functional genetics like fluorescence in situ hybridisation or fluorescently labelled expression markers demand high resolution fluorescence microscopy. Nevertheless tardigrades are still considered to be difficult objects for fluorescence techniques as they are covered by an opaque and diffracting cuticle. We show a modern technique of structured light illumination that enables us to acquire thin optical sections and consequently to reconstruct 3-dimensional structures in tardigrades with a high spatial resolution in all 3 dimensions. This technique is evaluated on taxonomically valuable internal as well as external structures of eutardigrades: the bucco-pharyngeal apparatus and the claws. The 3-dimensional reconstructions allow the measurement of distances in all 3 dimensions.

  12. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  13. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    Science.gov (United States)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  14. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    Science.gov (United States)

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  15. Circuit-Switched Gossiping in the 3-Dimensional Torus Networks

    OpenAIRE

    Delmas, Olivier; Pérennes, Stéphane

    1996-01-01

    In this paper we describe, in the case of short messages, an efficient gossiping algorithm for 3-dimensional torus networks (wrap-around or toroidal meshes) that uses synchronous circuit-switched routing. The algorithm is based on a recursive decomposition of a torus. The algorithm requires an optimal number of rounds and a quasi-optimal number of intermediate switch settings to gossip in an $7^i \\times 7^i \\times 7^i$ torus.

  16. Dosimetric comparison study between intensity modulated radiation therapy and three-dimensional conformal proton therapy for pelvic bone marrow sparing in the treatment of cervical cancer.

    Science.gov (United States)

    Song, William Y; Huh, Soon N; Liang, Yun; White, Greg; Nichols, R Charles; Watkins, W Tyler; Mundt, Arno J; Mell, Loren K

    2010-08-15

    The objective was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal proton therapy (3DCPT) in the treatment of cervical cancer. In particular, each technique's ability to spare pelvic bone marrow (PBM) was of primary interest in this study. A total of six cervical cancer patients (3 postoperative and 3 intact) were planned and analyzed. All plans had uniform 1.0 cm CTV-PTV margin and satisfied the 95% PTV with 100% isodose (prescription dose = 45 Gy) coverage. Dose-volume histograms (DVH) were analyzed for comparison. The overall PTV and PBM volumes were 1035.9 ± 192.2 cc and 1151.4 ± 198.3 cc, respectively. In terms of PTV dose conformity index (DCI) and dose homogeneity index (DHI), 3DCPT was slightly superior to IMRT with 1.00 ± 0.001, 1.01 ± 0.02, and 1.10 ± 0.02, 1.13 ± 0.01, respectively. In addition, 3DCPT demonstrated superiority in reducing lower doses (i.e., V30 or less) to PBM, small bowel and bladder. Particularly in PBM, average V10 and V20 reductions of 10.8% and 7.4% (p = 0.001 and 0.04), respectively, were observed. However, in the higher dose range, IMRT provided better sparing (> V30). For example, in small bowel and PBM, average reductions in V45 of 4.9% and 10.0% (p = 0.048 and 0.008), respectively, were observed. Due to its physical characteristics such as low entrance dose, spread-out Bragg peak and finite particle range of protons, 3DCPT illustrated superior target coverage uniformity and sparing of the lower doses in PBM and other organs. Further studies are, however, needed to fully exploit the benefits of protons for general use in cervical cancer.

  17. Pilot study of systemic and intrathecal mafosfamide followed by conformal radiation for infants with intracranial central nervous system tumors: a pediatric brain tumor consortium study (PBTC-001).

    Science.gov (United States)

    Blaney, Susan M; Kocak, Mehmet; Gajjar, Amar; Chintagumpala, Murali; Merchant, Thomas; Kieran, Mark; Pollack, Ian F; Gururangan, Sri; Geyer, Russ; Phillips, Peter; McLendon, Roger E; Packer, Roger; Goldman, Stewart; Banerjee, Anu; Heideman, Richard; Boyett, James M; Kun, Larry

    2012-09-01

    A pilot study to investigate the feasibility of the addition of intrathecal (IT) mafosfamide to a regimen of concomitant multi-agent systemic chemotherapy followed by conformal radiation therapy (RT) for children systemic multi-agent chemotherapy commenced within 35 days of surgery. Patients without CSF flow obstruction (n = 71) received IT mafosfamide (14 mg) with chemotherapy. Localized (M(0)) patients with SD or better subsequently received RT followed by 20 additional weeks of chemotherapy. Second look surgery was encouraged prior to RT if there was an incomplete surgical resection at diagnosis. 71 evaluable patients with normal CSF flow received IT Mafosfamide with systemic chemotherapy; patients with M + disease were removed from protocol therapy at 20 weeks and those with PD at the time of progression. One and 5-year progression free survival (PFS) and overall survival (OS) for the cohort of 71 evaluable patients were 52 ± 6.5 % and 33 ± 13 %, and 67 ± 6.2 % and 51 ± 11 %, respectively. The 1-year Progression Free Survival (PFS) for M0 patients with medulloblastoma (MB, n = 20), supratentorial primitive neuroectodermal tumor (PNET, n = 9), and atypical teratoid rhabdoid tumor (ATRT, n = 12) was 80 ± 7 %, 67 ± 15 % and 27 ± 13 % and 5-year PFS was 65 ± 19 %, 37 ± 29 %, and 0 ± 0 %, respectively. The addition of IT mafosfamide to systemic chemotherapy in infants with embryonal CNS tumors was feasible. The PFS for M0 patients appears comparable to or better than most prior historical comparisons and was excellent for those receiving conformal radiotherapy.

  18. A prospective dosimetric and clinical comparison of acute hematological toxicities in three-dimensional conformal radiation therapy and intensity modulated radiation therapy with concurrent chemotherapy in carcinoma cervix

    Directory of Open Access Journals (Sweden)

    H U Avinash

    2015-01-01

    Full Text Available Background and Objectives: Acute hematological toxicities are an important cause of morbidity in patients receiving concurrent chemoradiation to pelvis in carcinoma cervix. The objective of this study was to evaluate the role of intensity-modulated radiotherapy (IMRT in reducing the dose to the bone marrow as compared with three-dimensional conformal radiotherapy (3DCRT and hence its impact on reducing the acute hematological toxicities. Materials and Methods: Eleven consecutive patients treated with IMRT and 12 patients treated with 3DCRT to the whole pelvis along with concurrent chemotherapy were selected. Bone marrow was delineated. V10 Gy, V20 Gy, V95%, and Dmean of bone marrow were recorded. Weekly blood counts were recorded and graded as per Common Terminology Criteria version 4.0 for all the patients. Results: The dose to the bone marrow V20 Gy was 206.78 ± 57.10 cc (75% and 251.70 ± 40.45 cc (91% for IMRT and 3DCRT, respectively (P = 0.04 and V95% was 23.30 ± 8.34% and 46.76 ± 6.71% for IMRT and 3DCRT, respectively (P = 0.001. The grade of toxicities during each week did not show the difference in either arm. However, the total count and Neutrophil counts during the 2nd week showed statistical significance between IMRT and 3DCRT. Conclusion: IMRT significantly reduces the dose to the bone marrow as compared to 3DCRT. The reduction of the dose did not translate into a decrease in acute hematological toxicities. Concurrent platinum-based chemotherapy is the probable cause for the hematological toxicities.

  19. Clinical Outcome of Patients Treated With 3D Conformal Radiation Therapy (3D-CRT) for Prostate Cancer on RTOG 9406

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Jeff, E-mail: michalski@wustl.edu [Radiation Oncology, Washington University Medical School, St. Louis, Missouri (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Winter, Kathryn [Department of Statistics, Radiation Therapy Oncology Group, Philadelphia, Pennsylvania (United States); Roach, Mack [Radiation Oncology, University of California-San Francisco, San Francisco, California (United States); Markoe, Arnold [University of Miami, Miami, Florida (United States); Sandler, Howard M. [University of Michigan, Ann Arbor, Michigan (United States); Cedars-Sinai Medical Center, Los Angeles, California (United States); Ryu, Janice [Radiation Oncology, University of California-Davis, Davis, California (United States); Radiation Oncology Associates, Sacramento, California (United States); Parliament, Matthew [Radiation Oncology, University of Alberta, Edmonton, Alberta (Canada); Purdy, James A. [Radiation Oncology, University of California-Davis, Davis, California (United States); Image-guided Therapy Center, St. Louis, Missouri (United States); Valicenti, Richard K. [Radiation Oncology, University of California-Davis, Davis, California (United States); Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Cox, James D. [Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    Purpose: Report of clinical cancer control outcomes on Radiation Therapy Oncology Group (RTOG) 9406, a three-dimensional conformal radiation therapy (3D-CRT) dose escalation trial for localized adenocarcinoma of the prostate. Methods and Materials: RTOG 9406 is a Phase I/II multi-institutional dose escalation study of 3D-CRT for men with localized prostate cancer. Patients were registered on five sequential dose levels: 68.4 Gy, 73.8 Gy, 79.2 Gy, 74 Gy, and 78 Gy with 1.8 Gy/day (levels I-III) or 2.0 Gy/day (levels IV and V). Neoadjuvant hormone therapy (NHT) from 2 to 6 months was allowed. Protocol-specific, American Society for Therapeutic Radiation Oncology (ASTRO), and Phoenix biochemical failure definitions are reported. Results: Thirty-four institutions enrolled 1,084 patients and 1,051 patients are analyzable. Median follow-up for levels I, II, III, IV, and V was 11.7, 10.4, 11.8, 10.4, and 9.2 years, respectively. Thirty-six percent of patients received NHT. The 5-year overall survival was 90%, 87%, 88%, 89%, and 88% for dose levels I-V, respectively. The 5-year clinical disease-free survival (excluding protocol prostate-specific antigen definition) for levels I-V is 84%, 78%, 81%, 82%, and 82%, respectively. By ASTRO definition, the 5-year disease-free survivals were 57%, 59%, 52%, 64% and 75% (low risk); 46%, 52%, 54%, 56%, and 63% (intermediate risk); and 50%, 34%, 46%, 34%, and 61% (high risk) for levels I-V, respectively. By the Phoenix definition, the 5-year disease-free survivals were 68%, 73%, 67%, 84%, and 80% (low risk); 70%, 62%, 70%, 74%, and 69% (intermediate risk); and 42%, 62%, 68%, 54%, and 67% (high risk) for levels I-V, respectively. Conclusion: Dose-escalated 3D-CRT yields favorable outcomes for localized prostate cancer. This multi-institutional experience allows comparison to other experiences with modern radiation therapy.

  20. Comparison of Radiation Treatment Plans for Breast Cancer between 3D Conformal in Prone and Supine Positions in Contrast to VMAT and IMRT Supine Positions

    Science.gov (United States)

    Bejarano Buele, Ana Isabel

    The treatment regimen for breast cancer patients typically involves Whole Breast Irradiation (WBI). The coverage and extent of the radiation treatment is dictated by location of tumor mass, breast tissue distribution, involvement of lymph nodes, and other factors. The current standard treatment approach used at our institution is a 3D tangential beam geometry, which involves two fields irradiating the breast, or a four field beam arrangement covering the whole breast and involved nodes, while decreasing the dose to organs as risk (OARs) such as the lung and heart. The coverage of these targets can be difficult to achieve in patients with unfavorable thoracic geometries, especially in those cases in which the planning target volume (PTV) is extended to the chest wall. It is a well-known fact that exposure of the heart to ionizing radiation has been proved to increase the subsequent rate of ischemic heart disease. In these cases, inverse planned treatments have become a proven alternative to the 3D approach. The goal of this research project is to evaluate the factors that affect our current techniques as well as to adapt the development of inverse modulated techniques for our clinic, in which breast cancer patients are one of the largest populations treated. For this purpose, a dosimetric comparison along with the evaluation of immobilization devices was necessary. Radiation treatment plans were designed and dosimetrically compared for 5 patients in both, supine and prone positions. For 8 patients, VMAT and IMRT plans were created and evaluated in the supine position. Skin flash incorporation for inverse modulated plans required measurement of the surface dose as well as an evaluation of breast volume changes during a treatment course. It was found that prone 3D conformal plans as well as the VMAT and IMRT plans are generally superior in sparing OARs to supine plans with comparable PTV coverage. Prone setup leads to larger shifts in breast volume as well as in

  1. Microdosimetry of DNA conformations: relation between direct effect of (60)Co gamma rays and topology of DNA geometrical models in the calculation of A-, B- and Z-DNA radiation-induced damage yields.

    Science.gov (United States)

    Semsarha, Farid; Raisali, Gholamreza; Goliaei, Bahram; Khalafi, Hossein

    2016-05-01

    In order to obtain the energy deposition pattern of ionizing radiation in the nanometric scale of genetic material and to investigate the different sensitivities of the DNA conformations, direct effects of (60)Co gamma rays on the three A, B and Z conformations of DNA have been studied. For this purpose, single-strand breaks (SSB), double-strand breaks (DSB), base damage (BD), hit probabilities and three microdosimetry quantities (imparted energy, mean chord length and lineal energy) in the mentioned DNA conformations have been calculated and compared by using GEometry ANd Tracking 4 (Geant4) toolkit. The results show that A-, B- and Z-DNA conformations have the highest yields of DSB (1.2 Gy(-1) Gbp(-1)), SSB (25.2 Gy(-1) Gbp(-1)) and BD (4.81 Gy(-1) Gbp(-1)), respectively. Based on the investigation of direct effects of radiation, it can be concluded that the DSB yield is largely correlated to the topological characteristics of DNA models, although the SSB yield is not. Moreover, according to the comparative results of the present study, a reliable candidate parameter for describing the relationship between DNA damage yields and geometry of DNA models in the theoretical radiation biology research studies would be the mean chord length (4 V/S) of the models.

  2. Transportation Conformity

    Science.gov (United States)

    This section provides information on: current laws, regulations and guidance, policy and technical guidance, project-level conformity, general information, contacts and training, adequacy review of SIP submissions

  3. Acute Toxicity After Image-Guided Intensity Modulated Radiation Therapy Compared to 3D Conformal Radiation Therapy in Prostate Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Wortel, Ruud C.; Incrocci, Luca [Department of Radiation Oncology, Erasmus Medical Center Cancer Institute, Rotterdam (Netherlands); Pos, Floris J.; Lebesque, Joos V.; Witte, Marnix G.; Heide, Uulke A. van der; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands); Heemsbergen, Wilma D., E-mail: w.heemsbergen@nki.nl [Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam (Netherlands)

    2015-03-15

    Purpose: Image-guided intensity modulated radiation therapy (IG-IMRT) allows significant dose reductions to organs at risk in prostate cancer patients. However, clinical data identifying the benefits of IG-IMRT in daily practice are scarce. The purpose of this study was to compare dose distributions to organs at risk and acute gastrointestinal (GI) and genitourinary (GU) toxicity levels of patients treated to 78 Gy with either IG-IMRT or 3D-CRT. Methods and Materials: Patients treated with 3D-CRT (n=215) and IG-IMRT (n=260) receiving 78 Gy in 39 fractions within 2 randomized trials were selected. Dose surface histograms of anorectum, anal canal, and bladder were calculated. Identical toxicity questionnaires were distributed at baseline, prior to fraction 20 and 30 and at 90 days after treatment. Radiation Therapy Oncology Group (RTOG) grade ≥1, ≥2, and ≥3 endpoints were derived directly from questionnaires. Univariate and multivariate binary logistic regression analyses were applied. Results: The median volumes receiving 5 to 75 Gy were significantly lower (all P<.001) with IG-IMRT for anorectum, anal canal, and bladder. The mean dose to the anorectum was 34.4 Gy versus 47.3 Gy (P<.001), 23.6 Gy versus 44.6 Gy for the anal canal (P<.001), and 33.1 Gy versus 43.2 Gy for the bladder (P<.001). Significantly lower grade ≥2 toxicity was observed for proctitis, stool frequency ≥6/day, and urinary frequency ≥12/day. IG-IMRT resulted in significantly lower overall RTOG grade ≥2 GI toxicity (29% vs 49%, respectively, P=.002) and overall GU grade ≥2 toxicity (38% vs 48%, respectively, P=.009). Conclusions: A clinically meaningful reduction in dose to organs at risk and acute toxicity levels was observed in IG-IMRT patients, as a result of improved technique and tighter margins. Therefore reduced late toxicity levels can be expected as well; additional research is needed to quantify such reductions.

  4. Three-Year Outcomes of a Canadian Multicenter Study of Accelerated Partial Breast Irradiation Using Conformal Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Berrang, Tanya S., E-mail: tberrang@bccancer.bc.ca [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Olivotto, Ivo [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Kim, Do-Hoon [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Nichol, Alan [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Cho, B.C. John [Princess Margaret Hospital, Ontario (Canada); University of Toronto, Ontario (Canada); Mohamed, Islam G. [British Columbia Cancer Agency-Southern Interior, BC (Canada); University of British Columbia, BC (Canada); Parhar, Tarnjit [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Wright, J.R. [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Truong, Pauline [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Tyldesley, Scott [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Sussman, Jonathan [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Wai, Elaine [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Whelan, Tim [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada)

    2011-12-01

    Purpose: To report 3-year toxicity, cosmesis, and efficacy of a multicenter study of external beam, accelerated partial breast irradiation (APBI) for early-stage breast cancer. Methods and Materials: Between March 2005 and August 2006, 127 women aged {>=}40 years with ductal carcinoma in situ or node-negative invasive breast cancer {<=}3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study involving five Canadian cancer centers. Women meeting predefined dose constraints were treated with APBI using 3 to 5 photon beams, delivering 35 to 38.5 Gy in 10 fractions, twice a day, over 1 week. Patients were assessed for treatment-related toxicities, cosmesis, and efficacy before APBI and at specified time points for as long as 3 years after APBI. Results: 104 women had planning computed tomography scans showing visible seromas, met dosimetric constraints, and were treated with APBI to doses of 35 Gy (n = 9), 36 Gy (n = 33), or 38.5 Gy (n = 62). Eighty-seven patients were evaluated with minimum 3-year follow-up after APBI. Radiation dermatitis, breast edema, breast induration, and fatigue decreased from baseline levels or stabilized by the 3-year follow-up. Hypopigmentation, hyperpigmentation, breast pain, and telangiectasia slightly increased from baseline levels. Most toxicities at 3 years were Grade 1. Only 1 patient had a Grade 3 toxicity with telangiectasia in a skin fold inside the 95% isodose. Cosmesis was good to excellent in 86% (89/104) of women at baseline and 82% (70/85) at 3 years. The 3-year disease-free survival was 97%, with only one local recurrence that occurred in a different quadrant away from the treated site and two distant recurrences. Conclusions: At 3 years, toxicity and cosmesis were acceptable, and local control and disease-free survival were excellent, supporting continued accrual to randomized APBI trials.

  5. Predictors of grade {>=}2 and grade {>=}3 radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with three-dimensional conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Jun; Li, Guang; Ma, Lianghua; Han, Chong; Zhang, Shuo; Yao, Lei [Dept. of Radiation Oncology, The First Hospital of China Medical Univ., Shenyang (China)], e-mail: gl1963516@yahoo.cn; Diao, Rao [Dept. of Experimental Technology Center, China Medical Univ., Shenyang (China); Zang, Shuang [Dept. of Nursing, China Medical Univ., Shenyang (China)

    2013-08-15

    Grade {>=}3 radiation pneumonitis (RP) is generally severe and life-threatening. Predictors of grade {>=}2 are usually used for grade {>=}3 RP prediction, but it is unclear whether these predictors are appropriate. In this study, predictors of grade {>=}2 and grade {>=}3 RP were investigated separately. The increased risk of severe RP in elderly patients compared with younger patients was also evaluated. Material and methods: A total of 176 consecutive patients with locally advanced non-small cell lung cancer were followed up prospectively after three-dimensional conformal radiotherapy. RP was graded according to Common Terminology Criteria for Adverse Events version 3.0. Results: Mean lung dose (MLD), mean heart dose, ratio of planning target volume to total lung volume (PTV/Lung), and dose-volume histogram comprehensive value of both heart and lung were associated with both grade {>=}2 and grade {>=}3 RP in univariate analysis. In multivariate logistic regression analysis, age and MLD were predictors of both grade {>=}2 RP and grade {>=}3 RP; receipt of chemotherapy predicted grade {>=}3 RP only; and sex and PTV/Lung predicted grade {>=}2 RP only. Among patients who developed high-grade RP, MLD and PTV/Lung were significantly lower in patients aged {>=}70 years than in younger patients (p<0.05 for both comparisons). Conclusions: The predictors were not completely consistent between grade {>=}2 RP and grade {>=}3 RP. Elderly patients had a higher risk of severe RP than younger patients did, possibly due to lower tolerance of radiation to the lung.

  6. 3-dimensional imaging system using crystal diffraction lenses

    Science.gov (United States)

    Smither, Robert K.

    1999-01-01

    A device for imaging a plurality of sources of x-ray and gamma-ray radiation is provided. Diffracting crystals are used for focussing the radiation and directing the radiation to a detector which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for a method for imaging x-ray and gamma radiation by supplying a plurality of sources of radiation; focussing the radiation onto a detector; analyzing the focused radiation to collect data as to the type and location of the radiation; and producing an image using the data.

  7. A Comparison of Helical Intensity-Modulated Radiotherapy, Intensity-Modulated Radiotherapy, and 3D-Conformal Radiation Therapy for Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Poppe, Matthew M.; Narra, Venkat; Yue, Ning J.; Zhou Jinghao; Nelson, Carl [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States); Jabbour, Salma K., E-mail: jabbousk@umdnj.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); Department of Radiation Oncology, Cancer Institute of New Jersey, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ (United States)

    2011-01-01

    We assessed dosimetric differences in pancreatic cancer radiotherapy via helical intensity-modulated radiotherapy (HIMRT), linac-based IMRT, and 3D-conformal radiation therapy (3D-CRT) with regard to successful plan acceptance and dose to critical organs. Dosimetric analysis was performed in 16 pancreatic cases that were planned to 54 Gy; both post-pancreaticoduodenectomy (n = 8) and unresected (n = 8) cases were compared. Without volume modification, plans met constraints 75% of the time with HIMRT and IMRT and 13% with 3D-CRT. There was no statistically significantly improvement with HIMRT over conventional IMRT in reducing liver V35, stomach V45, or bowel V45. HIMRT offers improved planning target volume (PTV) dose homogeneity compared with IMRT, averaging a lower maximum dose and higher volume receiving the prescription dose (D100). HIMRT showed an increased mean dose over IMRT to bowel and liver. Both HIMRT and IMRT offer a statistically significant improvement over 3D-CRT in lowering dose to liver, stomach, and bowel. The results were similar for both unresected and resected patients. In pancreatic cancer, HIMRT offers improved dose homogeneity over conventional IMRT and several significant benefits to 3D-CRT. Factors to consider before incorporating IMRT into pancreatic cancer therapy are respiratory motion, dose inhomogeneity, and mean dose.

  8. An investigation of intensity-modulated radiation therapy versus conventional two-dimensional and 3D-conformal radiation therapy for early stage larynx cancer

    Directory of Open Access Journals (Sweden)

    Gomez Daniel

    2010-08-01

    Full Text Available Abstract Introduction Intensity modulated radiation therapy (IMRT has been incorporated at several institutions for early stage laryngeal cancer (T1/T2N0M0, but its utility is controversial. Methods In three representative patients, multiple plans were generated: 1 Conventional 2D planning, with the posterior border placed at either the anterior aspect ("tight" plan or the mid-vertebral body ("loose" plan, 2 3D planning, utilizing both 1.0 and 0.5 cm margins for the planning target volume (PTV, and 3 IMRT planning, utilizing the same margins as the 3D plans. A dosimetric comparison was performed for the target volume, spinal cord, arytenoids, and carotid arteries. The prescription dose was 6300 cGy (225 cGy fractions, and the 3D and IMRT plans were normalized to this dose. Results For PTV margins of 1.0 cm and 0.5 cm, the D95 of the 2D tight/loose plans were 3781/5437 cGy and 5372/5869 cGy, respectively (IMRT/3D plans both 6300 cGy. With a PTV margin of 1.0 cm, the mean carotid artery dose was 2483/5671/5777/4049 cGy in the 2D tight, 2D loose, 3D, and IMRT plans, respectively. When the PTV was reduced to 0.5 cm, the the mean carotid artery dose was 2483/5671/6466/2577 cGy to the above four plans, respectively. The arytenoid doses were similar between the four plans, and spinal cord doses were well below tolerance. Conclusions IMRT provides a more ideal dose distribution compared to 2D treatment and 3D planning in regards to mean carotid dose. We therefore recommend IMRT in select cases when the treating physician is confident with the GTV.

  9. Cellular Changes of Stem Cells in 3-Dimensional Culture.

    Science.gov (United States)

    Green, Matthew P; Hou, Bo

    2017-06-12

    During various operations and procedures, such as distraction osteogenesis and orthodontics, skeletal tissues use mechanotransduction. Mechanotransduction is important for maintaining bone health and converting mechanical forces into biochemical signals. We hypothesized that cells put under mechanical stress would adapt and change morphologically and respond with a decrease in cellular proliferation to accommodate the stress differences. These differences will be measured at the molecular and genetic level. We also wanted to test the practicality of an in vitro 3-dimensional gel model system. We implemented a 3-dimensional cell culture model. The sample was composed of isolated mouse mesenchymal prefibroblast bone marrow cells from the femurs and tibias of 6- to 8-week-old wild-type C57BL6 mice. The cells were seeded on fibronectin-coated hydrogels along with fibrin and nodulin growth factors. The variables tested were a no-force model (control) and a force model. The force model required two 0.1-mm suture pins put through one 0.25-cm length of cell-gel matrix. After the experiments were run to completion, the samples were fixed with 4% paraformaldehyde and embedded in paraffin. Serial sections were cut at a thickness of 5 μm along the long axis for the force construct and encompassing the entire circular area of the control construct. Descriptive and bivariate statistics were computed, and the P value was set at 5%. There was a statistically significant difference between the 2 models. The force model had longer and straighter primary cilia, less apoptosis, and an increase in cell proliferation. In addition, the shape of the cells was markedly different after the experiment. The results of the study suggest cells put under tensile stress have the ability to mechanically sense the environment to provide improved adaptation. Our work also confirms the usefulness of the in vitro 3-dimensional gel model system to mimic in vivo applications. Published by Elsevier

  10. Workers’ Conformism

    Directory of Open Access Journals (Sweden)

    Nikolay Ivantchev

    2013-10-01

    Full Text Available Conformism was studied among 46 workers with different kinds of occupations by means of two modified scales measuring conformity by Santor, Messervey, and Kusumakar (2000 – scale for perceived peer pressure and scale for conformism in antisocial situations. The hypothesis of the study that workers’ conformism is expressed in a medium degree was confirmed partly. More than a half of the workers conform in a medium degree for taking risk, and for the use of alcohol and drugs, and for sexual relationships. More than a half of the respondents conform in a small degree for anti-social activities (like a theft. The workers were more inclined to conform for risk taking (10.9%, then – for the use of alcohol, drugs and for sexual relationships (8.7%, and in the lowest degree – for anti-social activities (6.5%. The workers who were inclined for the use of alcohol and drugs tended also to conform for anti-social activities.

  11. Rapid Arc, helical tomotherapy, sliding window intensity modulated radiotherapy and three dimensional conformal radiation for localized prostate cancer: A dosimetric comparison

    Directory of Open Access Journals (Sweden)

    Rajesh A Kinhikar

    2014-01-01

    Full Text Available Objective: The objective of this study was to investigate the potential role of RapidArc (RA compared with helical tomotherapy (HT, sliding window intensity modulated radiotherapy (SW IMRT and three-dimensional conformal radiation therapy (3D CRT for localized prostate cancer. Materials and Methods: Prescription doses ranged from 60 Gy to planning target volume (PTV and 66.25 Gy for clinical target volume prostate (CTV-P over 25-30 fractions. PTV and CTV-P coverage were evaluated by conformity index (CI and homogeneity index (HI. Organ sparing comparison was done with mean doses to rectum and bladder. Results: CI 95 were 1.0 ± 0.01 (RA, 0.99 ± 0.01 (HT, 0.97 ± 0.02 (IMRT, 0.98 ± 0.02 (3D CRT for PTV and 1.0 ± 0.00 (RA, HT, SW IMRT and 3D CRT for CTV-P. HI was 0.11 ± 0.03 (RA, 0.16 ± 0.08 (HT, 0.12 ± 0.03 (IMRT, 0.06 ± 0.01 (3D CRT for PTV and 0.03 ± 0.00 (RA, 0.05 ± 0.01 (HT, 0.03 ± 0.01 (SW IMRT and 3D CRT for CTV-P. Mean dose to bladder were 23.68 ± 13.23 Gy (RA, 24.55 ± 12.51 Gy (HT, 19.82 ± 11.61 Gy (IMRT and 23.56 ± 12.81 Gy (3D CRT, whereas mean dose to rectum was 36.85 ± 12.92 Gy (RA, 33.18 ± 11.12 Gy (HT, IMRT and 38.67 ± 12.84 Gy (3D CRT. Conclusion: All studied intensity-modulated techniques yield treatment plans of significantly improved quality when compared with 3D CRT, with HT providing best organs at risk sparing and RA being the most efficient treatment option, reducing treatment time to 1.45-3.7 min and monitor unit to <400 for a 2 Gy fraction.

  12. Materials applications of an advanced 3-dimensional atom probe

    Energy Technology Data Exchange (ETDEWEB)

    Cerezo, A. [Oxford Univ. (United Kingdom). Dept. of Materials; Gibuoin, D. [Oxford Univ. (United Kingdom). Dept. of Materials; Kim, S. [Oxford Univ. (United Kingdom). Dept. of Materials; Sijbrandij, S.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Venker, F.M. [Oxford Univ. (United Kingdom). Dept. of Materials]|[Rijksuniversiteit Groningen (Netherlands). Dept. of Applied Physics; Warren, P.J. [Oxford Univ. (United Kingdom). Dept. of Materials; Wilde, J. [Oxford Univ. (United Kingdom). Dept. of Materials; Smith, G.D.W. [Oxford Univ. (United Kingdom). Dept. of Materials

    1996-09-01

    An advanced 3-dimensional atom probe system has been constructed, based on an optical position-sensitive atom probe (OPoSAP) detector with energy compensation using a reflectron lens. The multi-hit detection capability of the OPoSAP leads to significant improvements in the efficiency of the instrument over the earlier serial position-sensing system. Further gains in efficiency are obtained by using a biassed grid in front of the detector to collect secondary electrons generated when ions strike the interchannel area. The improvement in detection efficiency gives enhanced performance in the studies of ordered materials and the determination of site occupation. Energy compensation leads to a much improved mass resolution (m/{Delta}m=500 full width at half maximum) making it possible to map out the 3-dimensional spatial distributions of all the elements in complex engineering alloys, even when elements lie close together in the mass spectrum. For example, in the analysis of a maraging steel, this allows separation between the {sup 61}Ni{sup 2+} and {sup 92}Mo{sup 3+} peaks, which are only 1/6 of a mass unit apart. (orig.).

  13. Automated feature extraction for 3-dimensional point clouds

    Science.gov (United States)

    Magruder, Lori A.; Leigh, Holly W.; Soderlund, Alexander; Clymer, Bradley; Baer, Jessica; Neuenschwander, Amy L.

    2016-05-01

    Light detection and ranging (LIDAR) technology offers the capability to rapidly capture high-resolution, 3-dimensional surface data with centimeter-level accuracy for a large variety of applications. Due to the foliage-penetrating properties of LIDAR systems, these geospatial data sets can detect ground surfaces beneath trees, enabling the production of highfidelity bare earth elevation models. Precise characterization of the ground surface allows for identification of terrain and non-terrain points within the point cloud, and facilitates further discernment between natural and man-made objects based solely on structural aspects and relative neighboring parameterizations. A framework is presented here for automated extraction of natural and man-made features that does not rely on coincident ortho-imagery or point RGB attributes. The TEXAS (Terrain EXtraction And Segmentation) algorithm is used first to generate a bare earth surface from a lidar survey, which is then used to classify points as terrain or non-terrain. Further classifications are assigned at the point level by leveraging local spatial information. Similarly classed points are then clustered together into regions to identify individual features. Descriptions of the spatial attributes of each region are generated, resulting in the identification of individual tree locations, forest extents, building footprints, and 3-dimensional building shapes, among others. Results of the fully-automated feature extraction algorithm are then compared to ground truth to assess completeness and accuracy of the methodology.

  14. The 3-dimensional architecture of the Upsilon Andromedae planetary system

    CERN Document Server

    Deitrick, Russell; McArthur, Barbara; Quinn, Thomas R; Luger, Rodrigo; Antonsen, Adrienne; Benedict, G Fritz

    2014-01-01

    The Upsilon Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the 3-dimensional configurations of planetary systems. We present, for the first time, full 3-dimensional, dynamically stable configurations for the 3 planets of the system consistent with all observational constraints. While the outer 2 planets, c and d, are inclined by about 30 degrees, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable 3-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100 Myr timescales, or about 8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict b's mass is in the range 2 - 9 $M_{Jup}$ and has an inclination angle from the...

  15. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Hehlgans, Stephanie [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Eke, Iris [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Cordes, Nils, E-mail: Nils.Cordes@OncoRay.de [OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany); Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden (Germany); Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden (Germany)

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  16. General Conformity

    Science.gov (United States)

    The General Conformity requirements ensure that the actions taken by federal agencies in nonattainment and maintenance areas do not interfere with a state’s plans to meet national standards for air quality.

  17. Hexad Preons and Emergent Gravity in 3-dimensional Complex Spacetime

    CERN Document Server

    Wang, Shun-Zhi

    2010-01-01

    We suggest that at high energy each space dimension has their own time dimension, forming a 3-dimensional complex spacetime. Based on this hypothesis, we propose that the primordial universe is made of six fundamental fermions and their complex conjugate states. These fermions are called Hexad Preons which carry hypercolor degree of freedom transforming under $U(3,3)$ gauge group. The Hermitian metric emerges upon the breakdown of the gauge group from $U(3,3)$ to its maximal compact subgroup $U(3)\\otimes U(3)$. Leptons, quarks, as well as other matter states may be formed from the subsequent condensate of Hexad Preons. Strong and electroweak forces are manifestations of the hypercolor interaction in the corresponding cases. Our framework sheds light on many problems in cosmology and particle physics.

  18. Hamiltonian Formulation of Jackiw-Pi 3-Dimensional Gauge Theories

    CERN Document Server

    Dayi, O F

    1998-01-01

    A 3-dimensional non-abelian gauge theory was proposed by Jackiw and Pi to create mass for the gauge fields. However, the set of gauge invariances of the quadratic action obtained by switching off the non-abelian interactions is larger than the original one. This inconsistency in the gauge invariances causes some problems in quantization. Jackiw and Pi proposed another action by enlarging the space of states whose gauge invariances are consistent with the quadratic part. It is shown that all of these theories yield the same number of physical degrees of freedom in the hamiltonian framework. Hence, as far as the physical states are considered there is no inconsistency. Nevertheless, perturbation expansion is still problamatic.

  19. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.

    Science.gov (United States)

    Vakharia, Vejay N; Vakharia, Nilesh N; Hill, Ciaran S

    2016-04-01

    Shorter working times, reduced operative exposure to complex procedures, and increased subspecialization have resulted in training constraints within most surgical fields. Simulation has been suggested as a possible means of acquiring new surgical skills without exposing patients to the surgeon's operative "learning curve." Here we review the potential impact of 3-dimensional printing on simulation and training within cranial neurosurgery and its implications for the future. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a comprehensive search of PubMed, OVID MEDLINE, Embase, and the Cochrane Database of Systematic Reviews was performed. In total, 31 studies relating to the use of 3-dimensional (3D) printing within neurosurgery, of which 16 were specifically related to simulation and training, were identified. The main impact of 3D printing on neurosurgical simulation training was within vascular surgery, where patient-specific replication of vascular anatomy and pathologies can aid surgeons in operative planning and clip placement for reconstruction of vascular anatomy. Models containing replicas of brain tumors have also been reconstructed and used for training purposes, with some providing realistic representations of skin, subcutaneous tissue, bone, dura, normal brain, and tumor tissue. 3D printing provides a unique means of directly replicating patient-specific pathologies. It can identify anatomic variation and provide a medium in which training models can be generated rapidly, allowing the trainee and experienced neurosurgeon to practice parts of operations preoperatively. Future studies are required to validate this technology in comparison with current simulators and show improved patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. 3-dimensional analysis of regenerative endodontic treatment outcome.

    Science.gov (United States)

    EzEldeen, Mostafa; Van Gorp, Gertrude; Van Dessel, Jeroen; Vandermeulen, Dirk; Jacobs, Reinhilde

    2015-03-01

    A growing body of evidence supports the regeneration potential of dental tissues after regenerative endodontic treatment (RET). Nevertheless, a standard method for the evaluation of RET outcome is lacking. The aim of this study was to develop a standardized quantitative method for RET outcome analysis based on cone-beam computed tomographic (CBCT) volumetric measurements. Five human teeth embedded in mandibular bone samples were scanned using both an Accuitomo 170 CBCT machine (Morita, Kyoto, Japan) and a SkyScan 1174 micro-computed tomographic (μCT) system (SkyScan, Antwerp, Belgium). For subsequent clinical application, clinical data and low-dose CBCT scans (preoperatively and follow-up) from 5 immature permanent teeth treated with RET were retrieved. In vitro and clinical 3-dimensional image data sets were imported into a dedicated software tool. Two segmentation steps were applied to extract the teeth of interest from the surrounding tissue (livewire) and to separate tooth hard tissue and root canal space (level set methods). In vitro and clinical volumetric measurements were assessed separately for differences using Wilcoxon matched pairs test. Pearson correlation analysis and Bland-Altman plots were used to evaluate the relation and agreement between the segmented CBCT and μCT volumes. The results showed no statistical differences and strong agreement between CBCT and μCT volumetric measurements. Volumetric comparison of the root hard tissue showed significant hard tissue formation. (The mean volume of newly formed hard tissue was 27.9 [±10.5] mm(3) [P < .05]). Analysis of 3-dimensional data for teeth treated with RET offers valuable insights into the treatment outcome and patterns of hard tissue formation. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. A novel conformal arc technique for postoperative whole pelvic radiotherapy for endometrial cancer.

    Science.gov (United States)

    Yang, Ruijie; Jiang, Weijuan; Wang, Junjie

    2009-12-01

    Conventional whole pelvic radiotherapy (WPRT) with 3-dimensional conformal radiotherapy (3D-CRT) exposes most of the contents of the true pelvis to the prescribed dose. Intensity-modulated radiation therapy (IMRT) provides more conformal dose distribution and better sparing of critical structures for WPRT. However, IMRT is more complicated in planning and delivery, requiring more expensive equipment and time-consuming quality assurance. We explore and evaluate a novel conformal arc radiotherapeutic technique for postoperative WPRT for endometrial cancer in this study. This technique involves 2-axis conformal arc therapy (2A-CAT) with 180-degree rotation around 2 isocenters each in 2 separate dose-shaping structures. Dosimetric comparison with 3D-CRT and IMRT for 10 endometrial cancer patients undergoing postoperative WPRT was performed to evaluate this new 2A-CAT technique. The mean conformity indices were 0.83, 0.61, and 0.88 for 2A-CAT, 3D-CRT, and IMRT, respectively. The mean homogeneity indices were 1.15, 1.08, and 1.10. The mean doses to bowel, rectum, bladder, and pelvic bone marrow were, respectively, 1.19, 3.39, 4.65, and 1.64 Gy lower with 2A-CAT than with 3D-CRT (P endometrial cancer, 2A-CAT significantly improves the dose conformity and sparing of bowel, rectum, and bladder compared with 3D-CRT. Despite dose uniformity and conformity being still inferior to those of IMRT, its simplicity and extensive availability combined with further improvement warrant it as a potential shortcut alternative to IMRT.

  2. First-trimester detection of surface abnormalities: A comparison of 2- and 3-dimensional ultrasound and 3-dimensional virtual reality ultrasound

    NARCIS (Netherlands)

    L. Baken (Leonie); M. Rousian (Melek); A.H.J. Koning (Anton); G.J. Bonsel (Gouke); A.J. Eggink (Alex); J.M.J. Cornette (Jérôme); E.M. Schoonderwaldt (Ernst); M. Husen-Ebbinge (Margreet); K. Teunissen (Katinka); P.J. van der Spek (Peter); E.A.P. Steegers (Eric); N. Exalto (Niek)

    2014-01-01

    textabstractThe aim was to determine the diagnostic performance of 3-dimensional virtual reality ultrasound (3D-VR-US) and conventional 2- and 3-dimensional ultrasound (2D/3D-US) for first-trimester detection of structural abnormalities. Forty-eight first trimester cases (gold standard available, 22

  3. Comparison of geometric uncertainties using electronic portal imaging device in focal three-dimensional conformal radiation therapy using different head supports

    Directory of Open Access Journals (Sweden)

    Budrukkar Ashwini

    2008-01-01

    Full Text Available Aims and Objectives: To study the geometric uncertainties in the treatment and evaluate the adequacy of the margins employed for planning target volume (PTV generation in the treatment of focal conformal radiotherapy (CRT for patients with brain tumors treated with different head support systems. Materials and Methods: The study population included 11 patients with brain tumors who were to be treated with CRT. Contrast-enhanced planning CT scan (5-mm spacing and reconstructed to 2 mm of brain were performed. Five patients were immobilized using neck support only (NR-only and six patients had neck support with flexion (NRF, the form of immobilization being decided by the likely beam arrangements to be employed for that particular patient. The data was transferred to the planning system (CadPlan where three-dimensional conformal radiation therapy was planned. Digitally reconstructed radiographs (DRRs were created for the orthogonal portals with the fixed field sizes of 10 x 10 taken at the isocenter. Treatment verification was done using an amorphous silicon detector portal imaging device for using orthogonal portals and the DRR was used as a reference image. An image matching software was used to match the anatomical landmarks in the DRR and the portal imaging and the displacement of the portals in x, y axis and rotation were noted in the anteroposterior (AP and lateral images. Electronic portal imaging was repeated twice weekly and an average of 8-14 images per patient was recorded. The mean deviation in all the directions was calculated for the each patient. Comparison of setup errors between the two head support systems was done. Results: A total 224 images were studied in anterior and lateral portals. The patient group with NR-only had 100 images, while the NRF group had 124 images. The mean total error in all patients, NR-only group, and NRF group was 0.33 mm, 0.24 mm, and 0.79 mm in the mediolateral (ML direction; 1.16 mm, 0.14 mm, and 2

  4. A 3-Dimensional Atlas of Human Tongue Muscles

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  5. Thermal crosstalk in 3-dimensional RRAM crossbar array.

    Science.gov (United States)

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-08-27

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation.

  6. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology.

    Science.gov (United States)

    Cohen, Adir; Laviv, Amir; Berman, Phillip; Nashef, Rizan; Abu-Tair, Jawad

    2009-11-01

    Mandibular reconstruction can be challenging for the surgeon wishing to restore its unique geometry. Reconstruction can be achieved with titanium bone plates followed by autogenous bone grafting. Incorporation of the bone graft into the mandible provides continuity and strength required for proper esthetics and function and permitting dental implant rehabilitation at a later stage. Precious time in the operating room is invested in plate contouring to reconstruct the mandible. Rapid prototyping technologies can construct physical models from computer-aided design via 3-dimensional (3D) printers. A prefabricated 3D model is achieved, which assists in accurate contouring of plates and/or planning of bone graft harvest geometry before surgery. The 2 most commonly used rapid prototyping technologies are stereolithography and 3D printing (3DP). Three-dimensional printing is advantageous to stereolithography for better accuracy, quicker printing time, and lower cost. We present 3 clinical cases based on 3DP modeling technology. Models were fabricated before the resection of mandibular ameloblastoma and were used to prepare bridging plates before the first stage of reconstruction. In 1 case, another model was fabricated and used as a template for iliac crest bone graft in the second stage of reconstruction. The 3DP technology provided a precise, fast, and cheap mandibular reconstruction, which aids in shortened operation time (and therefore decreased exposure time to general anesthesia, decreased blood loss, and shorter wound exposure time) and easier surgical procedure.

  7. 3-dimensional analysis of scaphoid fracture angle morphology.

    Science.gov (United States)

    Luria, Shai; Schwarcz, Yonatan; Wollstein, Ronit; Emelife, Patrick; Zinger, Gershon; Peleg, Eran

    2015-03-01

    Scaphoid fractures are classified according to their 2-dimensional radiographic appearance, and transverse waist fractures are considered the most common. Our hypothesis was that most scaphoid fractures are not perpendicular to the longitudinal axis of the scaphoid (ie, not transverse). Computerized 3-dimensional analyses were performed on 124 computed tomography scans of acute scaphoid fractures. Thirty of the fractures were displaced and virtually reduced. The angle between the scaphoid's first principal axis (longitudinal axis) and the fracture plane was analyzed for location and displacement. The distal radius articular surface was used to depict the volar-dorsal vector of the wrist. There were 86 fractures of the waist, 13 of the distal third, and 25 of the proximal third. The average angle between the scaphoid longitudinal axis and the fracture plane was 53° for all fractures and 56° for waist fractures, both differing significantly from a 90°, transverse fracture. The majority of fracture planes were found to have a volar distal to dorsal proximal (horizontal oblique) inclination relative to the volar-dorsal vector. Most waist fractures were horizontal oblique and not transverse. According to these findings, fixation of all fractures along the longitudinal axis of the scaphoid may not be the optimal mode of fixation for most. A different approach may be needed in accordance with the fracture plane. Diagnostic II. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. Prostate and seminal vesicle volume based consideration of prostate cancer patients for treatment with 3D-conformal or intensity-modulated radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Nandanuri M. S.; Nori, Dattatreyudu; Chang, Hyesook; Lange, Christopher S.; Ravi, Akkamma [Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States); Department of Radiation Oncology, State University of New York Downstate Medical Center, Brooklyn, New York 11203 (United States); Department of Radiation Oncology, New York Hospital Queens, Flushing, New York 11355 (United States)

    2010-07-15

    Purpose: The purpose of this article was to determine the suitability of the prostate and seminal vesicle volumes as factors to consider patients for treatment with image-guided 3D-conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT), using common dosimetry parameters as comparison tools. Methods: Dosimetry of 3D and IMRT plans for 48 patients was compared. Volumes of prostate, SV, rectum, and bladder, and prescriptions were the same for both plans. For both 3D and IMRT plans, expansion margins to prostate+SV (CTV) and prostate were 0.5 cm posterior and superior and 1 cm in other dimensions to create PTV and CDPTV, respectively. Six-field 3D plans were prepared retrospectively. For 3D plans, an additional 0.5 cm margin was added to PTV and CDPTV. Prescription for both 3D and IMRT plans was the same: 45 Gy to CTV followed by a 36 Gy boost to prostate. Dosimetry parameters common to 3D and IMRT plans were used for comparison: Mean doses to prostate, CDPTV, SV, rectum, bladder, and femurs; percent volume of rectum and bladder receiving 30 (V30), 50 (V50), and 70 Gy (V70), dose to 30% of rectum and bladder, minimum and maximum point dose to CDPTV, and prescription dose covering 95% of CDPTV (D95). Results: When the data for all patients were combined, mean dose to prostate and CDPTV was higher with 3D than IMRT plans (P<0.01). Mean D95 to CDPTV was the same for 3D and IMRT plans (P>0.2). On average, among all cases, the minimum point dose was less for 3D-CRT plans and the maximum point dose was greater for 3D-CRT than for IMRT (P<0.01). Mean dose to 30% rectum with 3D and IMRT plans was comparable (P>0.1). V30 was less (P<0.01), V50 was the same (P>0.2), and V70 was more (P<0.01) for rectum with 3D than IMRT plans. Mean dose to bladder was less with 3D than IMRT plans (P<0.01). V30 for bladder with 3D plans was less than that of IMRT plans (P<0.01). V50 and V70 for 3D plans were the same for 3D and IMRT plans (P>0.2). Mean dose to femurs

  9. Conformational Transitions

    Science.gov (United States)

    Czerminski, Ryszard; Roitberg, Adrian; Choi, Chyung; Ulitsky, Alexander; Elber, Ron

    1991-10-01

    Two computational approaches to study plausible conformations of biological molecules and the transitions between them are presented and discussed. The first approach is a new search algorithm which enhances the sampling of alternative conformers using a mean field approximation. It is argued and demonstrated that the mean field approximation has a small effect on the location of the minima. The method is a combination of the LES protocol (Locally Enhanced Sampling) and simulated annealing. The LES method was used in the past to study the diffusion pathways of ligands from buried active sites in myoglobin and leghemoglobin to the exterior of the protein. The present formulation of LES and its implementation in a Molecular Dynamics program is described. An application for side chain placement in a tetrapeptide is presented. The computational effort associated with conformational searches using LES grows only linearly with the number of degrees of freedom, whereas in the exact case the computational effort grows exponentially. Such saving is of course associated with a mean field approximation. The second branch of studies pertains to the calculation of reaction paths in large and flexible biological systems. An extensive mapping of minima and barriers for two different tetrapeptides is calculated from the known minima and barriers of alanine tetrapeptide which we calculated recently.1 The tetrapeptides are useful models for the formation of secondary structure elements since they are the shortest possible polymers of this type which can still form a complete helical turn. The tetrapeptides are isobutyryl-val(χ1=60)-ala-ala and isobutyryl-val(χ1=-60)-ala-ala. Properties of the hundreds of minima and of the hundreds intervening barriers are discussed. Estimates for thermal transition times between the many conformers (and times to explore the complete phase space) are calculated and compared. It is suggested that the most significant effect of the side chain size is

  10. Distance stereotest using a 3-dimensional monitor for adult subjects.

    Science.gov (United States)

    Kim, Jongshin; Yang, Hee Kyung; Kim, Youngmin; Lee, Byoungho; Hwang, Jeong-Min

    2011-06-01

    To evaluate the validity and test-retest reliability of a contour-based 3-dimensional (3-D) monitor distance stereotest (distance 3-D stereotest) and to measure the maximum horizontal disparity that can be fused with disparity vergence for determining the largest measurable disparity of true stereopsis. Observational case series. Sixty-four normal adult subjects (age range, 23 to 39 years) were recruited. Contour-based circles (crossed disparity, 5000 to 20 seconds of arc; Microsoft Visual Studio C(++) 6.0; Microsoft, Inc, Seattle, Washington, USA) were generated on a 3-D monitor (46-inch stereoscopic display) using polarization glasses and were presented to subjects with normal binocularity at 3 m. While the position of the stimulus changed among 4 possible locations, the subjects were instructed to press the corresponding position of the stimulus on a keypad. The results with the new distance 3-D stereotest were compared with those from the distance Randot stereotest. The results of the distance 3-D stereotest and the distance Randot stereotests were identical in 64% and within 1 disparity level in 97% of normal adults. Scores obtained with the 2 tests showed a statistically significant correlation (r = 0.324, P = .009). The half-width of the 95% limit of agreement was 0.47 log seconds of arc (1.55 octaves) using the distance 3-D stereotest--similar to or better than that obtained with conventional distance stereotests. The maximum binocular disparity that can be fused with vergence was 1828 ± 794 seconds of arc (range, 4000 to 500). The distance 3-D stereotest showed good concordance with the distance Randot stereotest and relatively good test-retest reliability, supporting the validity of the distance 3-D stereotest. The normative data set obtained from the present study can serve as a useful reference for quantitative assessment of a wide range of binocular sensory abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. A 3-Dimensional Anatomic Study of the Distal Biceps Tendon

    Science.gov (United States)

    Walton, Christine; Li, Zhi; Pennings, Amanda; Agur, Anne; Elmaraghy, Amr

    2015-01-01

    Background Complete rupture of the distal biceps tendon from its osseous attachment is most often treated with operative intervention. Knowledge of the overall tendon morphology as well as the orientation of the collagenous fibers throughout the musculotendinous junction are key to intraoperative decision making and surgical technique in both the acute and chronic setting. Unfortunately, there is little information available in the literature. Purpose To comprehensively describe the morphology of the distal biceps tendon. Study Design Descriptive laboratory study. Methods The distal biceps terminal musculature, musculotendinous junction, and tendon were digitized in 10 cadaveric specimens and data reconstructed using 3-dimensional modeling. Results The average length, width, and thickness of the external distal biceps tendon were found to be 63.0, 6.0, and 3.0 mm, respectively. A unique expansion of the tendon fibers within the distal muscle was characterized, creating a thick collagenous network along the central component between the long and short heads. Conclusion This study documents the morphologic parameters of the native distal biceps tendon. Reconstruction may be necessary, especially in chronic distal biceps tendon ruptures, if the remaining tendon morphology is significantly compromised compared with the native distal biceps tendon. Knowledge of normal anatomical distal biceps tendon parameters may also guide the selection of a substitute graft with similar morphological characteristics. Clinical Relevance A thorough description of distal biceps tendon morphology is important to guide intraoperative decision making between primary repair and reconstruction and to better select the most appropriate graft. The detailed description of the tendinous expansion into the muscle may provide insight into better graft-weaving and suture-grasping techniques to maximize proximal graft incorporation. PMID:26665092

  12. The 3-dimensional construction of the Rae craton, central Canada

    Science.gov (United States)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  13. A new preclinical 3-dimensional agarose colony formation assay.

    Science.gov (United States)

    Kajiwara, Yoshinori; Panchabhai, Sonali; Levin, Victor A

    2008-08-01

    The evaluation of new drug treatments and combination treatments for gliomas and other cancers requires a robust means to interrogate wide dose ranges and varying times of drug exposure without stain-inactivation of the cells (colonies). To this end, we developed a 3-dimensional (3D) colony formation assay that makes use of GelCount technology, a new cell colony counter for gels and soft agars. We used U251MG, SNB19, and LNZ308 glioma cell lines and MiaPaCa pancreas adenocarcinoma and SW480 colon adenocarcinoma cell lines. Colonies were grown in a two-tiered agarose that had 0.7% agarose on the bottom and 0.3% agarose on top. We then studied the effects of DFMO, carboplatin, and SAHA over a 3-log dose range and over multiple days of drug exposure. Using GelCount we approximated the area under the curve (AUC) of colony volumes as the sum of colony volumes (microm2xOD) in each plate to calculate IC50 values. Adenocarcinoma colonies were recognized by GelCount scanning at 3-4 days, while it took 6-7 days to detect glioma colonies. The growth rate of MiaPaCa and SW480 cells was rapid, with 100 colonies counted in 5-6 days; glioma cells grew more slowly, with 100 colonies counted in 9-10 days. Reliable log dose versus AUC curves were observed for all drugs studied. In conclusion, the GelCount method that we describe is more quantitative than traditional colony assays and allows precise study of drug effects with respect to both dose and time of exposure using fewer culture plates.

  14. Brain tumor surgery with 3-dimensional surface navigation.

    Science.gov (United States)

    Mert, Ayguel; Buehler, Katja; Sutherland, Garnette R; Tomanek, Boguslaw; Widhalm, Georg; Kasprian, Gregor; Knosp, Engelbert; Wolfsberger, Stefan

    2012-12-01

    Precise lesion localization is necessary for neurosurgical procedures not only during the operative approach, but also during the preoperative planning phase. To evaluate the advantages of 3-dimensional (3-D) brain surface visualization over conventional 2-dimensional (2-D) magnetic resonance images for surgical planning and intraoperative guidance in brain tumor surgery. Preoperative 3-D brain surface visualization was performed with neurosurgical planning software in 77 cases (58 gliomas, 7 cavernomas, 6 meningiomas, and 6 metastasis). Direct intraoperative navigation on the 3-D brain surface was additionally performed in the last 20 cases with a neurosurgical navigation system. For brain surface reconstruction, patient-specific anatomy was obtained from MR imaging and brain volume was extracted with skull stripping or watershed algorithms, respectively. Three-dimensional visualization was performed by direct volume rendering in both systems. To assess the value of 3-D brain surface visualization for topographic lesion localization, a multiple-choice test was developed. To assess accuracy and reliability of 3-D brain surface visualization for intraoperative orientation, we topographically correlated superficial vessels and gyral anatomy on 3-D brain models with intraoperative images. The rate of correct lesion localization with 3-D was significantly higher (P = .001, χ), while being significantly less time consuming (P < .001, χ) compared with 2-D images. Intraoperatively, visual correlation was found between the 3-D images, superficial vessels, and gyral anatomy. The proposed method of 3-D brain surface visualization is fast, clinically reliable for preoperative anatomic lesion localization and patient-specific planning, and, together with navigation, improves intraoperative orientation in brain tumor surgery and is relatively independent of brain shift.

  15. Solar energetic particle propagation in 3-dimensional heliospheric magnetic field

    Science.gov (United States)

    Zhang, M.; Qin, G.; Rassoul, H.

    2008-05-01

    We present the first model calculation of solar energetic particle propagation in realistic 3-dimensional heliopsheric magnetic field. The model includes essentially all the particle transport mechanisms: streaming along magnetic fields, convection with the solar wind, pitch-angle diffusion, focusing, perpendicular diffusion, and pitch-angle dependent adiabatic cooling. We solve the Fokker-Planck transport equation with simulation of backward stochastic processes in a fixed reference frame. Here we focus on high-energy E > ~ 10 MeV solar energetic particles that are accelerated and injected near the Sun. The source of solar energetic particles can be either solar flares or coronal mass ejections, both having limited coverage of latitude and longitude on the solar surface. We compute the particle flux and anisotropy profiles at various observation locations in interplanetary space up to 5 AU from the ecliptic to the solar poles. We found that solar energetic particles are observed no matter whether an observer is directly connected to solar source by the magnetic field. Our model calculation results can explain why we often see solar energetic particles reach an almost uniform reservoir in the inner heliosphere a few days after the onset of a solar energetic particle event and then the intensities of particles in a broad range of energies decay uniformly everywhere. This phenomenon can happen without a need of particle diffusion barrier in the outer heliosphere. We will discuss what mechanism is responsible for the formation of such a reservoir and what role the perpendicular diffusion plays in the transport of solar energetic particles.

  16. Simulation and Design of X-Band Conformal Antenna on Airborne Craft with Omni-directional Radiation%X波段全向共形机载天线的仿真与设计

    Institute of Scientific and Technical Information of China (English)

    韩振平; 钱祖平; 倪为民; 刘宗全

    2011-01-01

    针对工作于X频段的机载雷达天线的技术设计,使该天线由矩形平面天线与柱体共形,通过共面波导方式对其进行馈电.天线单元采用介电常数2.55,厚度为0.2mm的薄介质板.利用HFSS12对平面天线和共形天线进行仿真设计,对比了平面天线与共形天线的阻抗特性和辐射特性的变化.实验结果表明,共形后的天线带宽变大,增益提高,波束宽度展宽.在X波段内实现了低仰角扫描和方位面的全向扫描,实测阻抗带宽为7.0~12.5GHz,最大增益可达4dB,辐射特性稳定,满足机载天线的性能指标,可用作机载雷达天线单元.%A cylindrical conformal antenna operation at X band is designed. Firstly, a planar antenna is designed and analyzed, and then it is mounted on a cylindrical surface to form a conform antenna. It is fed by CPW and the permittivity of the substrate is 2.55 and its thickness is only 0.2mm. It is simulated and optimized by using the soft of HFSS 12. Comparing the impedance characteristic and radiation patterns between the planar antenna and the conformal antenna, the experimental results show the conformal antenna has a broader bandwidth and 3dB beam-width and higher gain than the planar antenna, and it has low elevation scanning and Omni-directional radiation patterns at the"X band. The measured impedance bandwidth of conformal antenna covers from 7.0~12.5GHz, the maximum gain is 4dB and radiation performance is stable. The antenna satisfies the capability of airborne antenna well so it can be used in the airborne radar system.

  17. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    Science.gov (United States)

    2016-01-01

    ARL-TR-7576 ● JAN 2016 US Army Research Laboratory Rail Shear and Short Beam Shear Properties of Various 3 - Dimensional ( 3 -D...2016 US Army Research Laboratory Rail Shear and Short Beam Shear Properties of Various 3 - Dimensional ( 3 -D) Woven Composites by Mark...Properties of Various 3 - Dimensional Woven Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mark Pankow

  18. Almost conformal transformation in a class of Riemannian manifolds

    CERN Document Server

    Dzhelepov, Georgi; Dokuzova, Iva

    2010-01-01

    We consider a 3-dimensional Riemannian manifold V with a metric g and an affinor structure q. The local coordinates of these tensors are circulant matrices. In V we define an almost conformal transformation. Using that definition we construct an infinite series of circulant metrics which are successively almost conformaly related. In this case we get some properties.

  19. Late radiation side effects, cosmetic outcomes and pain in breast cancer patients after breast-conserving surgery and three-dimensional conformal radiotherapy. Risk-modifying factors

    Energy Technology Data Exchange (ETDEWEB)

    Hille-Betz, Ursula; Soergel, Philipp; Kundu, Sudip; Klapdor, Ruediger; Hillemanns, Peter [Hannover Medical School, Department of Obstetrics and Gynaecology, Hannover (Germany); Vaske, Bernhard [Hannover Medical School, Institute of Medical Biometry and Informatics, Hannover (Germany); Bremer, Michael; Henkenberens, Christoph [Hannover Medical School, Department of Radiation Oncology and Special Oncology, Hannover (Germany)

    2016-01-15

    The purpose of this work was to identify parameters influencing the risk of late radiation side effects, fair or poor cosmetic outcomes (COs) and pain in breast cancer patients after breast-conserving therapy (BCT) and three-dimensional conformal radiotherapy (3D-CRT). Between 2006 and 2013, 159 patients were treated at the Hannover Medical School. Physician-rated toxicity according to the LENT-SOMA criteria, CO and pain were assessed by multivariate analysis. LENT-SOMA grade 1-4 toxicity was observed as follows: fibrosis 10.7 %, telangiectasia 1.2 %, arm oedema 8.8 % and breast oedema 5.0 %. In addition, 15.1 % of patients reported moderate or severe breast pain, and 21.4 % complained about moderate or severe pain in the arm or shoulder. In multivariate analysis, axillary clearing (AC) was significantly associated with lymphoedema of the arm [odds ratio (OR) 4.37, p = 0.011, 95 % confidence interval (CI) 1.4-13.58]. Breast oedema was also highly associated with AC (OR 10.59, p = 0.004, 95 % CI 2.1-53.36), a ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C (OR 5.34, p = 0.029, 95 % CI 1.2-24.12). A ptosis grade 2/3 or pseudoptosis and a bra size ≥ cup C were the parameters significantly associated with an unfavourable CO (OR 3.19, p = 0.019, 95 % CI 1.2-8.4). Concerning chronic breast pain, we found a trend related to the prescribed radiation dose including boost (OR 1.077, p = 0.060, 95 % CI 0.997-1.164). Chronic shoulder or arm pain was statistically significantly associated with lymphoedema of the arm (OR 3.9, p = 0.027, 95 % CI 1.17-13.5). Chronic arm and breast oedema were significantly influenced by the extent of surgery (AC). Ptotic and large breasts were significantly associated with unfavourable COs and chronic breast oedema. Late toxicities exclusive breast pain were not associated with radiotherapy parameters. (orig.) [German] Ziel dieser Arbeit war es, Parameter zu identifizieren, die Spaetschaeden nach Radiotherapie, ein unguenstiges

  20. Quantitative comparison of operative skill using 2- and 3-dimensional monitors during laparoscopic phantom tasks.

    Science.gov (United States)

    Nishi, Masayasu; Kanaji, Shingo; Otake, Yoshito; Harada, Hitoshi; Yamamoto, Masashi; Oshikiri, Taro; Nakamura, Tetsu; Suzuki, Satoshi; Suzuki, Yuki; Hiasa, Yuta; Sato, Yoshinobu; Kakeji, Yoshihiro

    2017-05-01

    The recent development of stereoscopic images using 3-dimensional monitors is expected to improve techniques for laparoscopic operation. Several studies have reported technical advantages in using 3-dimensional monitors with regard to operative accuracy and working speed, but there are few reports that analyze forceps motions by 3-dimensional optical tracking systems during standardized laparoscopic phantom tasks. We attempted to develop a 3-dimensional motion analysis system for assessing laparoscopic tasks and to clarify the efficacy of using stereoscopic images from a 3-dimensional monitor to track forceps movement during laparoscopy. Twenty surgeons performed 3 tasks (Task 1: a simple operation by the dominant hand, Task 2: a simple operation using both hands, Task 3: a complicated operation using both hands) under 2-dimensional and 3-dimensional systems. We tracked and recorded the motion of forceps tips with an optical marker captured by a 3-dimensional position tracker. We analyzed factors such as forceps path lengths, operation times, and technical errors for each task and compared the results of 2-dimensional and 3-dimensional monitors. Mean operation times and technical errors were improved significantly for all tasks performed under the 3-dimensional system compared with the 2-dimensional system; in addition, mean path lengths for the forceps tips were shorter for all tasks performed under the 3-dimensional system. We found that stereoscopic images using a 3-dimensional monitor improved operative techniques with regard to increased accuracy and shorter path lengths for forceps movement, which resulted in a shorter operation time for basic phantom laparoscopic tasks. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. 赋形波束共形天线口径综合与方向图分析%Analysis on Shaped-beam Aperture Synthesis and Radiation Patternof Conformal Antenna

    Institute of Scientific and Technical Information of China (English)

    张继浩; 王化宇; 李丽娴; 黄一; 章泉源

    2016-01-01

    In order to meet the special requirement of conformal antenna array,a novel shaped⁃beam aperture synthetic method of conformal antenna is proposed,the corresponding calculation and optimization results are provided.The Woodward and Chebyshev linear array synthetic methods are employed to obtain the planar array distribution,which is projected to the cylinder conformal array to achieve the required aperture distribution.The phase and amplitude errors are induced in the antenna elements,and the fabrication and experi⁃ment techniques are considered for error correction,which is valuable for antenna engineering design.The simulated radiation pattern indicates that the proposed method can be applied in shaped⁃beam and low sidelobe conformal aperture array.%针对工程领域对共形阵列天线波束的要求日渐特殊,给出了一种赋形波束共形天线口径的综合方法,以及相应的数值计算和优化结果。在直线阵的基础上结合Woodward综合理论和切比雪夫综合理论,并把综合结果通过投影口径综合法运用到柱面共形阵。将幅度与相位的误差引入各个天线单元通道中,同时考虑到现有加工试验手段对误差的修正,突出了本方法对天线工程设计的指导意义。仿真结果表明,用该方法可以综合常用波束形状和较低副瓣的共形天线口径。

  2. 宫颈癌根治术后三维适形放疗的临床价值%Clinical value of three-dimensional conformal radiation therapy for postoperation cervix cancer

    Institute of Scientific and Technical Information of China (English)

    Yaqin Qu; Yubao He; Xin Jiang; Zhiming Chen

    2008-01-01

    Objective:To observe the clinical value of three dimensional conformal radiation therapy (3D-CRT) followed by radical surgery and discuss the best radiation technique for cervical cancer patients after radical hysterectomy.Methods:From February 2003 to June 2006,115 stage Ⅰ-Ⅲa uterus cervix cancer patients received postoperation radiotherapy in our department after radical surgery.They were randomly divided into two groups.There were 81 patients in 3D-CRT group and 74 patients in traditional radiation group.According to FIGO,there were 45 in stage Ⅰ,77 in stage Ⅰa,31 in stage Ⅱb,2 in stage Ⅲa.Pathological examination confirmed that 148 cases had squamous carcinoma and 7 cases had adenocarcinoma.The target volume included supravaginal portion,the cervical stump,paracervical tissue,common iliac lymph nodes,internal and external iliac lymph nodes,obturator and sacral lymph nodes.For 3D-CRT group we designed four-field or two-fields rotating irradiation in the left-right and the anterior-posterior direction.For traditional radiation group we designed two-field,anterior-posterior,at opposed lateral directions.The radiation dose ranged from 48-50 Gy.Stage Ⅱb patients with a cervical stump recurrence received postoperative boost radiation by 8-10 Gy.Results:There were no significant difference in 0.5-year,1-year,1.5-year,2-year local control rate between 3D-CRT group and traditional radiation group (P>0.05).The occurrence of early and late complications was significant lower in 3D-CRT group than that in traditional radiation group (P<0.05).There was significant difference in gastrointestinal reaction and urinary system reaction between the two groups (P<0.05).In postoperation radiotherapy 3D-CRT was superior compared with traditional two-field radiation at opposed lateral direction.Conclusion:3D-CRT is superior compared with traditional radiation.Four-field rotating irradiation in 3D-CRT has advantages of dose focusing,even dose distribution and cause

  3. Diagnosis of dental abnormalities in children using 3-dimensional magnetic resonance imaging.

    Science.gov (United States)

    Tymofiyeva, Olga; Proff, Peter C; Rottner, Kurt; Düring, Markus; Jakob, Peter M; Richter, Ernst-Jürgen

    2013-07-01

    To assess the feasibility of magnetic resonance imaging (MRI) of dental abnormalities in children. The study included 16 patients (mean age, 10.8 yr) prospectively selected from 1,500 orthodontic patients. The selected patients included 3 with a mesiodens, 9 with supernumerary teeth other than a mesiodens, 1 with gemination, 1 with dilacerations, 1 with transmigration, and 1 with transposition. Three-dimensional (3D) images were acquired on a 1.5-T MRI scanner using a 3D turbo spin echo pulse sequence with a voxel size of 0.8 × 0.8 × 1 mm. The measurement time was 4 to 5 minutes. Using natural MRI contrast, the teeth, dental pulp, mandibular canal, and cortical bone could be clearly delineated. The position and shape of malformed teeth could be assessed in all 3 spatial dimensions. MRI was found to be a well-tolerated imaging modality for the diagnosis of dental abnormalities in children and for orthodontic treatment and surgical planning. Compared with conventional radiography, dental MRI provides the advantage of 3-dimensionality and complete elimination of ionizing radiation, which is particularly relevant for repeated examinations in children. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Reliability and measurement error of 3-dimensional regional lumbar motion measures

    DEFF Research Database (Denmark)

    Mieritz, Rune M; Bronfort, Gert; Kawchuk, Greg

    2012-01-01

    The purpose of this study was to systematically review the literature on reproducibility (reliability and/or measurement error) of 3-dimensional (3D) regional lumbar motion measurement systems.......The purpose of this study was to systematically review the literature on reproducibility (reliability and/or measurement error) of 3-dimensional (3D) regional lumbar motion measurement systems....

  5. Control of Grasp and Manipulation by Soft Fingers with 3-Dimensional Deformation

    Science.gov (United States)

    Nakashima, Akira; Shibata, Takeshi; Hayakawa, Yoshikazu

    In this paper, we consider control of grasp and manipulation of an object in a 3-dimensional space by a 3-fingered hand robot with soft finger tips. We firstly propose a 3-dimensional deformation model of a hemispherical soft finger tip and verify its relevance by experimental data. Second, we consider the contact kinematics and derive the dynamical equations of the fingers and the object where the 3-dimensional deformation is considered. For the system, we thirdly propose a method to regulate the object and the internal force with the information of the hand, the object and the deformation. A simulation result is presented to show the effectiveness of the control method.

  6. SOME PROBLEMS ON JUMP CONDITIONS OF SHOCK WAVES IN 3-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie

    2006-01-01

    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  7. Volumetric-modulated arc therapy (VMAT versus 3D-conformal radiation therapy in supra-diaphragmatic Hodgkin’s Lymphoma with mediastinal involvement: A dosimetric comparison

    Directory of Open Access Journals (Sweden)

    Christine Higby

    2016-09-01

    Conclusions: VMAT is a valuable technique for treatment of large mediastinal HL. VMAT spares the lung and heart compared to 3DCRT using ISRT in select HL cases. VMAT allows dose escalation for post-chemotherapy residual disease with minimal dose to OARs. VMAT low radiation dose (V5 to the normal tissues, and the increased integral dose should be considered.

  8. Conformal transformations and conformal invariance in gravitation

    CERN Document Server

    Dabrowski, Mariusz P; Blaschke, David B

    2008-01-01

    Conformal transformations are frequently used tools in order to study relations between various theories of gravity and Einstein relativity. Because of that, in this paper we discuss the rules of conformal transformations for geometric quantities in general relativity. In particular, we discuss the conformal transformations of the matter energy-momentum tensor. We thoroughly discuss the latter and show the subtlety of the conservation law (i.e., the geometrical Bianchi identity) imposed in one of the conformal frames in reference to the other. The subtlety refers to the fact that conformal transformation ``creates'' an extra matter term composed of the conformal factor which enters the conservation law. In an extreme case of the flat original spacetime the matter is ``created'' due to work done by the conformal transformation to bend the spacetime which was originally flat. We also discuss how to construct the conformally invariant gravity which, in the simplest version, is a special case of the Brans-Dicke t...

  9. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.

    In this paper, the three different approaches to the modelling of large scale 3-dimensional flow in the ocean such as the diagnostic, semi-diagnostic (adaptation) and the prognostic are discussed in detail. Three-dimensional solutions are obtained...

  10. COMPUTER SIMULATION OF 3-DIMENSIONAL DYNAMIC ASSEMBLY PROCESS OF MECHANICAL ROTATIONAL BODY

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Focusing on the study of the components of mechanical rotational body,the data structure and algorithm of component model generation are discussed.Some problems in assembly process of 3-dimensional graph of components are studied in great detail.

  11. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice.

    Science.gov (United States)

    Harvey, Danielle J; Weng, Qian; Beckett, Laurel A

    2010-06-15

    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented.

  12. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  13. Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The conformal geometry of regular hypersurfaces in the conformal space is studied.We classify all the conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in the conformal space up to conformal equivalence.

  14. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Andrew J. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Greenfield, Brad [Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Mahajan, Anita [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Paulino, Arnold C. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Okcu, M. Fatih [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Chintagumpala, Murali [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Kahalley, Lisa S. [Section of Psychology, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); McAleer, Mary F.; McGovern, Susan L. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Whitehead, William E. [Department of Neurosurgery, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2014-10-01

    Purpose: We compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity. Methods and Materials: We reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity. Results: At 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction. Conclusions: Survival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function.

  15. Preoperative 3-dimensional Magnetic Resonance Imaging of Uterine Myoma and Endometrium Before Myomectomy.

    Science.gov (United States)

    Kim, Young Jae; Kim, Kwang Gi; Lee, Sa Ra; Lee, Seung Hyun; Kang, Byung Chul

    2017-02-01

    Uterine myomas are the most common gynecologic benign tumor affecting women of childbearing age, and myomectomy is the main surgical option to preserve the uterus and fertility. During myomectomy for women with multiple myomas, it is advisable to identify and remove as many as possible to decrease the risk of future myomectomies. With deficient preoperative imaging, gynecologists are challenged to identify the location and size of myomas and the endometrium, which, in turn, can lead to uterine rupture during future pregnancies. Current conventional 2-dimensional imaging has limitations in identifying precise locations of multiple myomas and the endometrium. In our experience, we preferred to use 3-dimensional imaging to delineate the myomas, endometrium, or blood vessels, which we were able to successfully reconstruct by using the following imaging method. To achieve 3-dimensional imaging, we matched T2 turbo spin echo images to detect uterine myomas and endometria with T1 high-resolution isotropic volume excitation-post images used to detect blood vessels by using an algorithm based on the 3-dimensional region growing method. Then, we produced images of the uterine myomas, endometria, and blood vessels using a 3-dimensional surface rendering method and successfully reconstructed selective 3-dimensional imaging for uterine myomas, endometria, and adjacent blood vessels. A Web-based survey was sent to 66 gynecologists concerning imaging techniques used before myomectomy. Twenty-eight of 36 responding gynecologists answered that the 3-dimensional image produced in the current study is preferred to conventional 2-dimensional magnetic resonance imaging in identifying precise locations of uterine myomas and endometria. The proposed 3-dimensional magnetic resonance imaging method successfully reconstructed uterine myomas, endometria, and adjacent vessels. We propose that this will be a helpful adjunct to uterine myomectomy as a preoperative imaging technique in future

  16. Predictors of High-grade Esophagitis After Definitive Three-dimensional Conformal Therapy, Intensity-modulated Radiation Therapy, or Proton Beam Therapy for Non-small cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Daniel R., E-mail: dgomez@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Martel, Mary K.; Mohan, Radhe; Balter, Peter A. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lopez Guerra, Jose Luis [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Hospitales Universitarios Virgen del Rocio, Seville (Spain); Liu Hongmei; Komaki, Ritsuko; Cox, James D.; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-11-15

    Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results: Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.

  17. Sucralfate versus mesalazine versus hydrocortisone in the prevention of acute radiation proctitis during conformal radiotherapy for prostate carcinoma. A randomized study

    Energy Technology Data Exchange (ETDEWEB)

    Sanguineti, G.; Franzone, P.; Marcenaro, M.; Vitale, V. [Dept. of Radiation Oncology, National Inst. for Cancer Research, Genova (Italy); Foppiano, F. [Dept. of Physics, National Inst. for Cancer Research, Genova (Italy)

    2003-07-01

    Purpose: To assess whether the topical use of steroids or 5-aminosalicylic acid (5-ASA) is superior to sucralfate in preventing acute rectal toxicity during three-dimensional conformal radiotherapy (3DCRT) to 76 Gy. Patients and Methods: Patients undergoing 3DCRT for prostate carcinoma at our institution were offered to be randomized to sucralfate 3 g in 15 ml suspension enema (Antepsin {sup trademark}), mesalazine 4 g gel enema (Enterasyn trademark), or hydrocortisone 100 mg foam enema (Colifoam {sup trademark}). Randomization was blind to the treating physician but not to the patient. Sucralfate was chosen as control arm. Topical treatment had to be performed once daily, starting on day 1 of 3DCRT. Acute rectal toxicity was scored weekly according to RTOG criteria. Time to occurrence of grade 2+ acute rectal toxicity was taken as endpoint. Results: The trial was opened in August 1999, and after the first 24 patients had been treated, arm 2 was discontinued because of eight patients receiving mesalazine, seven actually developed acute rectal toxicity (five patients grade 3 and two patients grade 2). Until May 2001, 134 consecutive patients were randomly assigned to sucralfate (63 patients), mesalazine (eight patients) or hydrocortisone (63 patients). The cumulative incidence of acute rectal toxicity at the end of treatment by arm is 61.9 {+-} 6.1%, 87.5 {+-} 11.7%, and 52.4 {+-} 6.2% for arms 1, 2, and 3, respectively. The difference between the mesalazine group and the sucralfate group is highly significant (hazard ratio [HR] 2.5, 95% confidence interval [CI] 1.1-5.7; p = 0.03). At both uni- and multivariate analysis taking into account several patients and treatment covariates, the difference between hydrocortisone and sucralfate is not significant (HR 0.7, 95% CI 0.5-1.2; p = 0.2). Conclusion: Topical mesalazine is contraindicated during radiotherapy. Hydrocortisone enema is not superior to sucralfate in preventing acute rectal toxicity. (orig.)

  18. Non-conformable, partial and conformable transposition

    DEFF Research Database (Denmark)

    König, Thomas; Mäder, Lars Kai

    2013-01-01

    Although member states are obliged to transpose directives into domestic law in a conformable manner and receive considerable time for their transposition activities, we identify three levels of transposition outcomes for EU directives: conformable, partially conformable and non-conformable....... Compared with existing transposition models, which do not distinguish between different transposition outcomes, we examine the factors influencing each transposition process by means of a competing risk analysis. We find that preference-related factors, in particular the disagreement of a member state...... and the Commission regarding a directive’s outcome, play a much more strategic role than has to date acknowledged in the transposition literature. Whereas disagreement of a member state delays conformable transposition, it speeds up non-conformable transposition. Disagreement of the Commission only prolongs...

  19. The Effect of Flattening Filter Free on Three-dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), and Volumetric Modulated Arc Therapy (VMAT) Plans for Metastatic Brain Tumors from Non-small Cell Lung Cancer.

    Science.gov (United States)

    Shi, Li-Wan; Lai, You-Qun; Lin, Qin; Ha, Hui-Ming; Fu, Li-Rong

    2015-07-01

    Flattening filter free (FFF) may affect outcome measures of radiotherapy. The objective of this study is to compare the dosimetric parameters in three types of radiotherapy plans, three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT), with or without the flattening filter (FF), developed for the treatment of metastatic brain tumors from non-small cell lung cancer (NSCLC). From July 2013 to October 2013, 3D-CRT, IMRT, and VMAT treatment plans were designed using 6 MV and 10 MV, with and without FF, for 10 patients with brain metastasis from NSCLC. The evaluation of the treatment plans included homogeneity index (HI), conformity index (CI), monitor units (MU), mean dose (Dmean), treatment time, and the influence of FFF on volumes. There was no difference in CI or HI between FFF and FF models with 3D-CRT, IMRT, and VMAT plans. At 6 MV, a lower Dmean was seen in the FFF model of 3D-CRT and in the VMAT plan at 10 MV. In the IMRT 6 MV, IMRT 10 MV, and VMAT 10 MV plans, higher MUs were seen in the FFF models. FFF treatments are similar in quality to FF plans, generally lead to more monitor units, and are associated with shorter treatment times. FFF plans ranked by the order of superiority in terms of a time advantage are VMAT, 3D-CRT, and IMRT.

  20. The 3-Dimensional q-Deformed Harmonic Oscillator and Magic Numbers of Alkali Metal Clusters

    CERN Document Server

    Bonatsos, Dennis; Raychev, P P; Roussev, R P; Terziev, P A; Bonatsos, Dennis

    1999-01-01

    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3) > SOq(3) symmetry are compared to experimental data for alkali metal clusters, as well as to theoretical predictions of jellium models, Woods--Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. The 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of alkali metal clusters.

  1. Application of 3-Dimensional Printing Technology to Kirschner Wire Fixation of Adolescent Condyle Fracture.

    Science.gov (United States)

    Dong, Zhiwei; Li, Qihong; Bai, Shizhu; Zhang, Li

    2015-10-01

    Condyle fractures are common in children and are increasingly treated with open reduction. Three-dimensional printing has developed into an important method of assisting surgical treatment. This report describes the case of a 14-year-old patient treated for a right condyle fracture at the authors' hospital. Preoperatively, the authors designed a surgical guide using 3-dimensional printing and virtual surgery. The 3-dimensional surgical guide allowed accurate alignment of the fracture using Kirschner wire without additional dissection and tissue injury. Kirschner wire fixation augmented by 3-dimensional printing technology produced a good outcome in this adolescent condyle fracture. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Dual of 3-dimensional pure SU(2) Lattice Gauge Theory and the Ponzano-Regge Model

    CERN Document Server

    Anishetty, R; Sharatchandra, H S; Mathur, M; Anishetty, Ramesh; Cheluvaraja, Srinath; Mathur, Manu

    1993-01-01

    By carrying out character expansion and integration over all link variables, the partition function of 3-dimensional pure SU(2) lattice gauge theory is rewritten in terms of 6j symbols. The result is Ponzano-Regge model of 3-dimensional gravity with a term that explicitly breaks general coordinate invariance. Conversely, we show that dual of Ponzano-Regge model is an SU(2) lattice gauge theory where all plaquette variables are constrained to the identity matrix and therefore the model needs no further regularization. Our techniques are applicable to other models with non-abelian symmetries in any dimension and provide duality transform for the partition function.

  3. Regenerative material for aneurysm embolization A 3-dimensional culture system of fibroblasts and calcium alginate gel

    Institute of Scientific and Technical Information of China (English)

    Jingdong Zhang; Kan Xu; Jinlu Yu; Jun Wang; Qi Luo

    2011-01-01

    Calcium alginate gel (CAG) has been shown to successfully model aneurysm embolization within a short period of time. However, gradually degrading CAG potentially results in aneurysm recanalization.In the present study, a regenerative embolic material was designed by seeding rat fibroblasts in a CAG. The study investigated the feasibility of constructing a 3-dimensional culture system. The fibroblasts grew well and firmly attached to the CAG. CAG was conducive for fibroblast growth, and resulted in a 3-dimensional culture system. Results show that CAG can be used theoretically as a vascular, regenerative, embolic material.

  4. Comparison of 2-Dimensional and 3-Dimensional Metacarpal Fracture Plating Constructs Under Cyclic Loading.

    Science.gov (United States)

    Tannenbaum, Eric P; Burns, Geoffrey T; Oak, Nikhil R; Lawton, Jeffrey N

    2017-03-01

    Metacarpal fractures are commonly treated by a variety of means including casting or open reduction internal fixation when unacceptable alignment is present following attempted closed reduction. Dorsal plating with either single-row 2-dimensional or double-row 3-dimensional plates has been proposed. This study's purpose was to determine if there are any differences in fixation construct stability under cyclic loading and subsequent load to failure between the lower profile 3-dimensional and the larger 2-dimensional plates in a metacarpal fracture gap sawbone model. Thirty metacarpal cortico-cancellous synthetic bones were cut with a 1.75-mm gap between the 2 fragments simulating mid-diaphyseal fracture comminution. Half of the metacarpals were plated with 2.0-mm locking 2-dimensional plates and half with 1.5-mm locking 3-dimensional plates. The plated metacarpals were mounted into a materials testing apparatus and cyclically loaded under cantilever bending for 2,000 cycles at 70 N, then 2,000 cycles at 120 N, and finally monotonically loaded to failure. Throughout testing, fracture gap sizes were measured, failure modes were recorded, and construct strength and stiffness values were calculated. All 3-dimensional constructs survived both cyclic loading conditions. Ten (67%) 2-dimensional constructs survived both loading conditions, whereas 5 (33%) failed the 120-N loading at 1377 ± 363 cycles. When loaded to failure, the 3-dimensional constructs failed at 265 N ± 21 N, whereas the 2-dimensional constructs surviving cyclic loading failed at 190 N ± 17 N. The shorter, thinner 3-dimensional metacarpal plates demonstrated increased resistance to failure in a cyclic loading model and increased load to failure compared with the relatively longer, thicker 2-dimensional metacarpal plates. The lower-profile 3-dimensional metacarpal plate fixation demonstrated greater stability for early postoperative resistance than the thicker 2-dimensional fixation, whereas the smaller

  5. A customizable 3-dimensional digital atlas of the canary brain in multiple modalities

    DEFF Research Database (Denmark)

    Vellema, Michiel; Verschueren, Jacob; Van Meir, Vincent

    2011-01-01

    understanding of the brain anatomy is essential. Because traditional 2-dimensional brain atlases are limited in the information they can provide about the anatomy of the brain, here we present a 3-dimensional MRI-based atlas of the canary brain. Using multiple imaging protocols we were able to maximize...... the ideal orientation of the brain for stereotactic injections, electrophysiological recordings, and brain sectioning. The 3-dimensional canary brain atlas presented here is freely available and is easily adaptable to support many types of neurobiological studies, including anatomical, electrophysiological...

  6. 3-dimensional echocardiography and its role in preoperative mitral valve evaluation.

    Science.gov (United States)

    Andrawes, Michael N; Feinman, Jared W

    2013-05-01

    Echocardiography plays a key role in the preoperative evaluation of mitral valve disease. 3-dimensional echocardiography is a relatively new development that is being used more and more frequently in the evaluation of these patients. This article reviews the available literature comparing the use of this new technology to classic techniques in the assessment of mitral valve pathology. The authors also review some of the novel insights learned from 3-dimensional echocardiography and how they may be used in surgical decision making and planning.

  7. Fatigue behavior of carbon/epoxy composites reinforced with 3-Dimensional woven fabric

    Directory of Open Access Journals (Sweden)

    Mehmet Karahan

    2013-07-01

    Full Text Available This paper reports results of study of fatigue behavior of a non-crimp 3-dimensional woven carbon/epoxy composite in tension-tension fatigue. Infinite fatigue life limit corresponds to the load of 27.5 kN for fill direction. The damage under fatigue loading starts and develops from intersection of z-yarns and fill yarns. Since the z-yarns bonded the yarn layers, it is not seen the delaminastion damages. This indicate that for load carrying capacity and stiffness of 3-dimensional composites better than classic 2-dimensional textile composites.

  8. Randomized Trial Comparing Conventional-Dose With High-Dose Conformal Radiation Therapy in Early-Stage Adenocarcinoma of the Prostate: Long-Term Results From Proton Radiation Oncology Group/American College of Radiology 95-09

    Science.gov (United States)

    Zietman, Anthony L.; Bae, Kyounghwa; Slater, Jerry D.; Shipley, William U.; Efstathiou, Jason A.; Coen, John J.; Bush, David A.; Lunt, Margie; Spiegel, Daphna Y.; Skowronski, Rafi; Jabola, B. Rodney; Rossi, Carl J.

    2010-01-01

    Purpose To test the hypothesis that increasing radiation dose delivered to men with early-stage prostate cancer improves clinical outcomes. Patients and Methods Men with T1b-T2b prostate cancer and prostate-specific antigen ≤ 15 ng/mL were randomly assigned to a total dose of either 70.2 Gray equivalents (GyE; conventional) or 79.2 GyE (high). No patient received androgen suppression therapy with radiation. Local failure (LF), biochemical failure (BF), and overall survival (OS) were outcomes. Results A total of 393 men were randomly assigned, and median follow-up was 8.9 years. Men receiving high-dose radiation therapy were significantly less likely to have LF, with a hazard ratio of 0.57. The 10-year American Society for Therapeutic Radiology and Oncology BF rates were 32.4% for conventional-dose and 16.7% for high-dose radiation therapy (P < .0001). This difference held when only those with low-risk disease (n = 227; 58% of total) were examined: 28.2% for conventional and 7.1% for high dose (P < .0001). There was a strong trend in the same direction for the intermediate-risk patients (n = 144; 37% of total; 42.1% v 30.4%, P = .06). Eleven percent of patients subsequently required androgen deprivation for recurrence after conventional dose compared with 6% after high dose (P = .047). There remains no difference in OS rates between the treatment arms (78.4% v 83.4%; P = .41). Two percent of patients in both arms experienced late grade ≥ 3 genitourinary toxicity, and 1% of patients in the high-dose arm experienced late grade ≥ 3 GI toxicity. Conclusion This randomized controlled trial shows superior long-term cancer control for men with localized prostate cancer receiving high-dose versus conventional-dose radiation. This was achieved without an increase in grade ≥ 3 late urinary or rectal morbidity. PMID:20124169

  9. Interactive Decision-Support Tool for Risk-Based Radiation Therapy Plan Comparison for Hodgkin Lymphoma

    DEFF Research Database (Denmark)

    Brodin, N. Patrik; Maraldo, Maja V.; Aznar, Marianne C.

    2014-01-01

    PURPOSE: To present a novel tool that allows quantitative estimation and visualization of the risk of various relevant normal tissue endpoints to aid in treatment plan comparison and clinical decision making in radiation therapy (RT) planning for Hodgkin lymphoma (HL). METHODS AND MATERIALS...... of dose-response curves to drive the reoptimization of a volumetric modulated arc therapy treatment plan for an HL patient with head-and-neck involvement. We also use this decision-support tool to visualize and quantitatively evaluate the trade-off between a 3-dimensional conformal RT plan...... and a volumetric modulated arc therapy plan for a patient with mediastinal HL. CONCLUSION: This multiple-endpoint decision-support tool provides quantitative risk estimates to supplement the clinical judgment of the radiation oncologist when comparing different RT options....

  10. Conformal Radiotherapy: Physics, Treatment Planning and Verification. Proceedings book

    Energy Technology Data Exchange (ETDEWEB)

    De Wagter, C. [ed.

    1995-12-01

    The goal of conformal radiotherapy is to establish radiation dose distributions that conform tightly to the target volume in view of limiting radiation to normal tissues. Conformal radiotherapy significantly improves both local control and palliation and thus contributes to increase survival and to improve the quality of life. The subjects covered by the symposium include : (1) conformal radiotherapy and multi-leaf collimation; (2) three dimensional imaging; (3) treatment simulation, planning and optimization; (4) quality assurance; and (5) dosimetry. The book of proceedings contains the abstracts of the invited lectures, papers and poster presentations as well as the full papers of these contributions.

  11. Dosimetric Comparison of Volumetric Modulated Arc Therapy, Static Field Intensity Modulated Radiation Therapy, and 3D Conformal Planning for the Treatment of a Right-Sided Reconstructed Chest Wall and Regional Nodal Case

    Directory of Open Access Journals (Sweden)

    Vishruta A. Dumane

    2014-01-01

    Full Text Available We compared 3D conformal planning, static field intensity modulated radiation therapy (IMRT, and volumetric modulated arc therapy (VMAT to investigate the suitable treatment plan and delivery method for a right-sided reconstructed chest wall and nodal case. The dose prescribed for the reconstructed chest wall and regional nodes was 50.4 Gy. Plans were compared for target coverage and doses of the lungs, heart, contralateral breast, and healthy tissue. All plans achieved acceptable coverage of the target and IMNs. The best right lung sparing achieved with 3D was a V20 Gy of 31.09%. Compared to it, VMAT reduced the same by 10.85% and improved the CI and HI over 3D by 18.75% and 2%, respectively. The ipsilateral lung V5 Gy to V20 Gy decreased with VMAT over IMRT by as high as 17.1%. The contralateral lung V5 Gy was also lowered with VMAT compared to IMRT by 16.22%. The MU and treatment beams were lowered with VMAT over IMRT by 30% and 10, respectively, decreasing the treatment time by >50%. VMAT was the treatment plan and delivery method of choice for this case due to a combination of improved lung sparing and reduced treatment time without compromising target coverage.

  12. An application of the 3-dimensional q-deformed harmonic oscillator to the nuclear shell model

    CERN Document Server

    Raychev, P P; Lo-Iudice, N; Terziev, P A

    1998-01-01

    An analysis of the construction of a q-deformed version of the 3-dimensional harmonic oscillator, which is based on the application of q-deformed algebras, is presented. The results together with their applicability to the shell model are compared with the predictions of the modified harmonic oscillator.

  13. 3-Dimensional Cahn-Hilliard Equation with Concentration Dependent Mobility and Gradient Dependent Potential

    Institute of Scientific and Technical Information of China (English)

    Rui HUANG; Yang CAO

    2011-01-01

    In this paper we investigate the initial boundary value problem of Cahn-Hilliard equation with concentration dependent mobility and gradient dependent potential. By the energy method and the theory of Campanato spaces, we prove the existence and the uniqueness of classical solutions in 3-dimensional space.

  14. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    Science.gov (United States)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  15. 3-dimensional root phenotyping with a novel imaging and software platform

    Science.gov (United States)

    A novel imaging and software platform was developed for the high-throughput phenotyping of 3-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and ...

  16. Generation and Active Absorption of 2- and 3-Dimensional Linear Water Waves in Physical Models

    DEFF Research Database (Denmark)

    Christensen, Morten

    Methods for mechanical generation of 2-dimensional (2-D) and 3-dimensional (3-D) linear water waves in physical models are presented. The results of a series of laboratory 3-D wave generation tests are presented and discussed. The tests preformed involve reproduction of wave fields characterised...

  17. Cueing for freezing of gait: a need for 3-dimensional cues?

    NARCIS (Netherlands)

    Snijders, A.H.; Jeene, P.; Nijkrake, M.J.; Abdo, W.F.; Bloem, B.R.

    2012-01-01

    Visual cues can ameliorate freezing of gait, an incapacitating symptom frequently seen in patients with parkinsonism. Here, we describe a patient with severe freezing of gait, who responded well to 3-dimensional cues, but not to 2-dimensional visual cues. We discuss the potential implications of

  18. Investigation of Measurement Condition for 3-Dimensional Spectroscopy by Scanning Transmission X-ray Microscopy

    Science.gov (United States)

    Ohigashi, T.; Inagaki, Y.; Ito, A.; Shinohara, K.; Kosugi, N.

    2017-06-01

    A sample cell for performing computed tomography (CT) was developed. The 3-dimensional (3D) structure of polystyrene spheres was observed and the fluctuation of reconstructed linear absorption coefficients (LAC) was 9.3%. To improve the quality of data in 3D spectro-microscopy, required measurement condition is discussed.

  19. Full 3-dimensional digital workflow for multicomponent dental appliances A proof of concept

    NARCIS (Netherlands)

    Meer, van der Joerd; Vissink, Arjan; Ren, Yijin

    Background. The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. Methods. The authors scanned a volunteer's dentition with an intraoral scanner

  20. Design of Biphasic Polymeric 3-Dimensional Fiber Deposited Scaffolds for Cartilage Tissue Engineering Applications

    NARCIS (Netherlands)

    Moroni, L.; Hendriks, J.A.A.; Schotel, R.; Wijn, de J.R.; Blitterswijk, van C.A.

    2007-01-01

    This report describes a novel system to create rapid prototyped 3-dimensional (3D) fibrous scaffolds with a shell-core fiber architecture in which the core polymer supplies the mechanical properties and the shell polymer acts as a coating providing the desired physicochemical surface properties. Pol

  1. Numerical Integration and Synchronization for the 3-Dimensional Metriplectic Volterra System

    Directory of Open Access Journals (Sweden)

    Gheorghe Ivan

    2011-01-01

    Full Text Available The main purpose of this paper is to study the metriplectic system associated to 3-dimensional Volterra model. For this system we investigate the stability problem and numerical integration via Kahan's integrator. Finally, the synchronization problem for two coupled metriplectic Volterra systems is discussed.

  2. Reproducibility of a 3-dimensional gyroscope in measuring shoulder anteflexion and abduction

    NARCIS (Netherlands)

    Penning, L.I.F.; Guldemond, N.A.; De Bie, R.A.; Walenkamp, G.H.I.M.

    2012-01-01

    Background: Few studies have investigated the use of a 3-dimensional gyroscope for measuring the range of motion (ROM) in the impaired shoulder. Reproducibility of digital inclinometer and visual estimation is poor. This study aims to investigate the reproducibility of a tri axial gyroscope in measu

  3. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    Science.gov (United States)

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although…

  4. Full 3-dimensional digital workflow for multicomponent dental appliances A proof of concept

    NARCIS (Netherlands)

    Meer, van der Joerd; Vissink, Arjan; Ren, Yijin

    2016-01-01

    Background. The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. Methods. The authors scanned a volunteer's dentition with an intraoral scanner (

  5. On Maximal Surfaces in Certain Non-Flat 3-Dimensional Robertson-Walker Spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Alfonso, E-mail: aromero@ugr.es [Universidad de Granada, Departamento de Geometria y Topologia (Spain); Rubio, Rafael M., E-mail: rmrubio@uco.es [Universidad de Cordoba, Departamento de Matematicas, Campus de Rabanales (Spain)

    2012-09-15

    An upper bound for the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function on any maximal surface in certain non-flat 3-dimensional Robertson-Walker spacetimes is obtained. As an application, a new proof of a known Calabi-Bernstein's theorem is given.

  6. On an asymptotic distribution of dependent random variables on a 3-dimensional lattice✩

    Science.gov (United States)

    Harvey, Danielle J.; Weng, Qian; Beckett, Laurel A.

    2010-01-01

    We define conditions under which sums of dependent spatial data will be approximately normally distributed. A theorem on the asymptotic distribution of a sum of dependent random variables defined on a 3-dimensional lattice is presented. Examples are also presented. PMID:20436940

  7. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  8. Predictors of IMRT and Conformal Radiotherapy Use in Head and Neck Squamous Cell Carcinoma: A SEER-Medicare Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sher, David J., E-mail: dsher@lroc.harvard.edu [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States); Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States); Neville, Bridget A. [Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States); Chen, Aileen B. [Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women' s Hospital, Boston, MA (United States); Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States); Schrag, Deborah [Center for Outcomes and Policy Research, Dana Farber Cancer Institute, Boston, MA (United States)

    2011-11-15

    Purpose: The extent to which new techniques for the delivery of radiotherapy for head and neck squamous cell carcinoma (HNSCC) have diffused into clinical practice is unclear, including the use of 3-dimensional conformal RT (3D-RT) and intensity-modulated radiation therapy (IMRT). Methods and Materials: Using the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database, we identified 2,495 Medicare patients with Stage I-IVB HNSCC diagnosed at age 65 years or older between 2000 and 2005 and treated with either definitive (80%) or adjuvant (20%) radiotherapy. Our primary aim was to analyze the trends and predictors of IMRT use over this time, and the secondary aim was a similar description of the trends and predictors of conformal radiotherapy (CRT) use, defined as treatment with either 3D-RT or IMRT. Results: Three hundred sixty-four (15%) patients were treated with IMRT, and 1,190 patients (48%) were treated with 3D-RT. Claims for IMRT and CRT rose from 0% to 33% and 39% to 86%, respectively, between 2000 and 2005. On multivariable analysis, IMRT use was associated with SEER region (West 18%; Northeast 11%; South 12%; Midwest 13%), advanced stage (advanced, 21%; early, 9%), non-larynx site (non-larynx, 23%; larynx, 7%), higher median census tract income (highest vs. lowest quartile, 18% vs. 10%), treatment year (2003-2005, 31%; 2000-2002, 6%), use of chemotherapy (26% with; 9% without), and higher radiation oncologist treatment volume (highest vs. lowest tertile, 23% vs. 8%). With CRT as the outcome, only SEER region, treatment year, use of chemotherapy, and increasing radiation oncologist HNSCC volume were significant on multivariable analysis. Conclusions: The use of IMRT and CRT by Medicare beneficiaries with HNSCC rose significantly between 2000 and 2005 and was associated with both clinical and non-clinical factors, with treatment era and radiation oncologist HNSCC treatment volume serving as the strongest predictors of IMRT use.

  9. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  10. Estimating 3-Dimensional Structure of Tropical Forests from Radar Interferometry / Estimativa da Estrutura 3-Dimensional das Florestas Tropicais Através de Interferometria de Radar

    Directory of Open Access Journals (Sweden)

    Robert Treuhaft

    2006-10-01

    Full Text Available This paper describes the retrieval of 3-dimensional vegetation density profiles from interferometric synthetic aperture radar (InSAR using physical models. InSAR’s sensitivity to vertical structure is generally regarded as less direct and more difficult to understand than that of lidar. But InSAR’s coverage is superior to that of lidar, suggesting InSAR is more promising as an important component of a global 3-dimensional forest monitoring technique. The goal of this paper is to introduce, simplify and demystify the use of simple physical models to understand InSAR. A general equation expressing the InSAR observation in terms of density is described heuristically, along with the approximations in its development. The information content of the equation leads to the estimation of density parameters. Preliminary results are shown from a multibaseline C-band (wavelength=0.056 m vertical-polarization interferometer, realized with AirSAR flown at multiple altitudes over primary, secondary, and selectively logged tropical forests, as well as abandoned pastures at La Selva Biological Station in Costa Rica.

  11. Three-dimensional conformal radiotherapy for portal vein tumor thrombosis alone in advanced hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Hye Kim Dong Hyun; Ki, Yong Kan; Kim, Dong Won; Kim, Won Taek; Heo, Jeong; Woo, Hyun Young [Pusan National University Hospital, Pusan National University School of Medicine, Busan (Korea, Republic of); Nam, Ji Ho [Dept.of Radiation Oncology, Pusan National University Yangsan Hospital, Yangsan (Korea, Republic of)

    2014-09-15

    We sought to evaluate the clinical outcomes of 3-dimensional conformal radiation therapy (3D-CRT) for portal vein tumor thrombosis (PVTT) alone in patients with advanced hepatocellular carcinoma. We retrospectively analyzed data on 46 patients who received 3D-CRT for PVTT alone between June 2002 and December 2011. Response was evaluated following the Response Evaluation Criteria in Solid Tumors. Prognostic factors and 1-year survival rates were compared between responders and non-responders. Thirty-seven patients (80.4%) had category B Child-Pugh scores. The Eastern Cooperative Oncology Group performance status score was 2 in 20 patients. Thirty patients (65.2%) had main or bilateral PVTT. The median irradiation dose was 50 Gy (range, 35 to 60 Gy) and the daily median dose was 2 Gy (range, 2.0 to 2.5 Gy). PVTT response was classified as complete response in 3 patients (6.5%), partial response in 12 (26.1%), stable disease in 19 (41.3%), and progressive disease in 12 (26.1%). There were 2 cases of grade 3 toxicities during or 3 months after radiotherapy. Twelve patients in the responder group (15 patients) received at least 50 Gy irradiation, but about 84% of patients in the non-responder group received less than 50 Gy. The 1-year survival rate was 66.8% in responders and 27.4% in non-responders constituting a statistically significant difference (p = 0.008). Conformal radiotherapy for PVTT alone could be chosen as a palliative treatment modality in patients with unfavorable conditions (liver, patient, or tumor factors). However, more than 50 Gy of radiation may be required.

  12. Efficacy of 3-Dimensional Endorectal Ultrasound for Staging Early Extraperitoneal Rectal Neoplasms.

    Science.gov (United States)

    Pinto, Rodrigo Ambar; Corrêa Neto, Isaac José Felippe; Nahas, Sérgio Carlos; Rizkalah Nahas, Caio Sérgio; Sparapan Marques, Carlos Frederico; Ribeiro Junior, Ulysses; Kawaguti, Fábio Shiguehissa; Cecconello, Ivan

    2017-05-01

    Adequate oncologic staging of rectal neoplasia is important for treatment and prognostic evaluation of the disease. Diagnostic methods such as endorectal ultrasound can assess rectal wall invasion and lymph node involvement. The purpose of this study was to correlate findings of 3-dimensional endorectal ultrasound and pathologic diagnosis of extraperitoneal rectal tumors with regard to depth of rectal wall invasion, lymph node involvement, percentage of rectal circumference involvement, and tumor extension. Consecutive patients with extraperitoneal rectal tumors were prospectively assessed by 3-dimensional endorectal ultrasound blind to other staging methods and pathologic diagnosis. Patients who underwent endorectal ultrasound followed by surgery were included in the study. The study was conducted at a single academic institution. Sensitivity, specificity, positive and negative predictive values, area under curve, and κ coefficient between 3-dimensional endorectal ultrasound and pathologic diagnosis were determined. Intraclass correlation coefficient was calculated for tumor extension and percentage of rectal wall involvement. Forty-four patients (27 women; mean age = 63.5 years) were evaluated between September 2010 and June 2014. Most lesions were malignant (72.7%). For depth of submucosal invasion, 3-dimensional endorectal ultrasound showed sensitivity of 77.3%, specificity of 86.4%, positive predictive value of 85.0%, a negative predictive value of 79.2%, and an area under curve of 0.82. The weighted κ coefficient for depth of rectal wall invasion staging was 0.67, and there was no agreement between 3-dimensional endorectal ultrasound and pathologic diagnosis for lymph node involvement (κ = -0.164). Intraclass correlation coefficient for lesion extension and percentage of rectal circumference involvement were 0.45 and 0.66. A better correlation between 3-dimensional endorectal ultrasound and pathologic diagnosis was observed in tumors <5 cm and with <50

  13. 3-dimensional versus conventional laparoscopy for benign hysterectomy: protocol for a randomized clinical trial.

    Science.gov (United States)

    Hoffmann, Elise; Bennich, Gitte; Larsen, Christian Rifbjerg; Lindschou, Jannie; Jakobsen, Janus Christian; Lassen, Pernille Danneskiold

    2017-09-07

    Hysterectomy is one of the most common surgical procedures for women of reproductive age. Laparoscopy was introduced in the 1990es and is today one of the recommended routes of surgery. A recent observational study showed that operative time for hysterectomy was significantly lower for 3-dimensional compared to conventional laparoscopy. Complication rates were similar for the two groups. No other observational studies or randomized clinical trials have compared 3-dimensional to conventional laparoscopy in patients undergoing total hysterectomy for benign disease. The objective of the study is to determine if 3D laparoscopy gives better quality of life, less postoperative pain, less per- and postoperative complications, shorter operative time, or a shorter stay in hospital and a faster return to work or normal life, compared to conventional laparoscopy for benign hysterectomy. The design is a randomised multicentre clinical trial. Participants will be 400 women referred for laparoscopic hysterectomy for benign indications. Patients will be randomized to 3-dimensional or conventional laparoscopic hysterectomy. Operative procedures will follow the same principles and the same standard whether the surgeon's vision is 3-dimensional or conventional laparoscopy. Primary outcomes will be the impact of surgery on quality of life, assessed by the SF 36 questionnaire, and postoperative pain, assessed by a Visual Analogue scale for pain measurement. With a standard deviation of 12 points on SF 36 questionnaire, a risk of type I error of 3.3% and a risk of type II error of 10% a sample size of 190 patients in each arm of the trial is needed. Secondarily, we will investigate operative time, time to return to work, length of hospital stay, and - and postoperative complications. This trial will be the first randomized clinical trial investigating the potential clinical benefits and harms of 3-dimensional compared to conventional laparoscopy. The results may provide more evidence

  14. Hypofractionated Radiation Therapy (66 Gy in 22 Fractions at 3 Gy per Fraction) for Favorable-Risk Prostate Cancer: Long-term Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nita [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Faria, Sergio, E-mail: sergio.faria@muhc.mcgill.ca [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada); Cury, Fabio; David, Marc; Duclos, Marie; Shenouda, George; Ruo, Russell; Souhami, Luis [Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec (Canada)

    2013-07-01

    Purpose: To report long-term outcomes of low- and intermediate-risk prostate cancer patients treated with high-dose hypofractionated radiation therapy (HypoRT). Methods and Materials: Patients with low- and intermediate-risk prostate cancer were treated using 3-dimensional conformal radiation therapy to a dose of 66 Gy in 22 daily fractions of 3 Gy without hormonal therapy. A uniform 7-mm margin was created around the prostate for the planning target volume, and treatment was prescribed to the isocenter. Treatment was delivered using daily ultrasound image-guided radiation therapy. Common Terminology Criteria for Adverse Events, version 3.0, was used to prospectively score toxicity. Biochemical failure was defined as the nadir prostate-specific antigen level plus 2 ng/mL. Results: A total of 129 patients were treated between November 2002 and December 2005. With a median follow-up of 90 months, the 5- and 8-year actuarial biochemical control rates were 97% and 92%, respectively. The 5- and 8-year actuarial overall survival rates were 92% and 88%, respectively. Only 1 patient died from prostate cancer at 92 months after treatment, giving an 8-year actuarial cancer-specific survival of 98%. Radiation therapy was well tolerated, with 57% of patients not experiencing any acute gastrointestinal (GI) or genitourinary (GU) toxicity. For late toxicity, the worst grade ≥2 rate for GI and GU toxicity was 27% and 33%, respectively. There was no grade >3 toxicity. At last follow-up, the rate of grade ≥2 for both GI and GU toxicity was only 1.5%. Conclusions: Hypofractionation with 66 Gy in 22 fractions prescribed to the isocenter using 3-dimensional conformal radiation therapy produces excellent biochemical control rates, with moderate toxicity. However, this regimen cannot be extrapolated to the intensity modulated radiation therapy technique.

  15. Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels.

    Science.gov (United States)

    Nikitichev, Daniil I; Barburas, Anamaria; McPherson, Kirstie; Mari, Jean-Martial; West, Simeon J; Desjardins, Adrien E

    2016-06-01

    Ultrasound phantoms are invaluable as training tools for vascular access procedures. We developed ultrasound phantoms with wall-less vessels using 3-dimensional printed chambers. Agar was used as a soft tissue-mimicking material, and the wall-less vessels were created with rods that were retracted after the agar was set. The chambers had integrated luer connectors to allow for fluid injections with clinical syringes. Several variations on this design are presented, which include branched and stenotic vessels. The results show that 3-dimensional printing can be well suited to the construction of wall-less ultrasound phantoms, with designs that can be readily customized and shared electronically. © 2016 by the American Institute of Ultrasound in Medicine.

  16. A mathematical model of the discrete 3-disk for the 3-dimensional Universe

    CERN Document Server

    Yukawa, Tetsuyuki

    2015-01-01

    A mathematical model of the distribution function for the discrete 3-disk is proposed in order to utilize in the statistical evolution equation of the 3-dimensional Universe. The model distribution is constructed based on analyses in known exact solutions of recursion equations for the generating functions of the discrete 2-disk.The proposed distribution function is compared with numerical simulations of the dynamical triangulation with $ S^3 $, and $ D^3 $ topologies.The model distribution exhibits three types of phases characterized by geometrical nature of the disk with either 1, 2, or 3- dimensional structure.Transitions between those phases are either cross-over, 1st order, or 2nd order depending on the parameters, which reflect the type of discretization and matter fields coupled to space.

  17. Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.

    Science.gov (United States)

    Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu

    2016-09-01

    Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.

  18. Zeeman-Tomography of the Solar Photosphere -- 3-Dimensional Surface Structures Retrieved from Hinode Observations

    CERN Document Server

    Carroll, T A

    2008-01-01

    AIMS :The thermodynamic and magnetic field structure of the solar photosphere is analyzed by means of a novel 3-dimensional spectropolarimetric inversion and reconstruction technique. METHODS : On the basis of high-resolution, mixed-polarity magnetoconvection simulations, we used an artificial neural network (ANN) model to approximate the nonlinear inverse mapping between synthesized Stokes spectra and the underlying stratification of atmospheric parameters like temperature, line-of-sight (LOS) velocity and LOS magnetic field. This approach not only allows us to incorporate more reliable physics into the inversion process, it also enables the inversion on an absolute geometrical height scale, which allows the subsequent combination of individual line-of-sight stratifications to obtain a complete 3-dimensional reconstruction (tomography) of the observed area. RESULTS : The magnetoconvection simulation data, as well as the ANN inversion, have been properly processed to be applicable to spectropolarimetric obser...

  19. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2010-08-30

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  20. 3-dimensional slope stability analyses using non-associative stress-strain relationships

    Institute of Scientific and Technical Information of China (English)

    CHEN ZuYu; SUN Ping; WANG YuJie; ZHANG HongTao

    2009-01-01

    The research work presented in this paper refers to a new slope stability analysis method used for landslide risk evaluations. It is an extension of the 3-dimensional upper-bound slope stability analysis method proposed by Chen et sl. in 2001, which employs the Mohr-Coulomb's associative flow rule. It has been found that in a 3-dimensional area, a prism may not be able to move at friction angles to all its surrounding interfaces, as required by this associative rule, and convergence problems may occa-sionally arise. The new method establishes two velocity fields: (i) The plastic one that represents a non-associative and the best representative dilation behavior, and (ii) the virtual one that permits the solution for factor of safety in the work and energy balance equation. The new method can then allow any input value of dilation angle and thus solve the convergence problem. A practical application to a concrete dam foundation is illustrated.

  1. 3D-conformal radiation therapy in prostate cancer. Technical considerations after 5 years of experience and 334 patients treated at the Istituto Europeo di Oncologia of Milan, Italy.

    Science.gov (United States)

    Ghilezan, M; Ivaldi, G; Cattani, F; Greco, C; Castiglioni, S; Leonardi, M C; Tosi, G; Marsiglia, H; Orecchia, R

    2001-01-01

    To report the technique of 3D-conformal radiation therapy (3D-CRT) currently used at our Institute for the treatment of prostate cancer with a curative intent. A critical review of the technical aspects of the technique is provided. Between December 1995 and October 2000, 334 patients with biopsy-proven adenocarcinoma of the prostate were treated with 3D-CRT. All patients were treated in a prone position with 15 MV X-ray beams and a 6-field technique for all but 20 patients, who were treated with a 3-field technique. Patients were simulated with the rectum and bladder empty. To ensure reproducible positioning, custom-made polyurethane foam or thermoplastic casts were produced for each patient. Subsequently, consecutive CT scan slices were obtained. The clinical target volume and critical organs (rectum and bladder) were identified on each CT slice. The beam's eye view technique was used to spatially display these structures, and the treatment portals were manually shaped based on the images obtained. The beam apertures were initially realized by conventional Cerrobend blocks (48 patients), which were replaced in October 1997 by a computer-driven multi-leaf collimator. The total target dose prescribed at the ICRU point is 76 Gy, delivered in 38 fractions and 54 days. The seminal vesicles are excluded at 70 Gy. Dose-volume histograms were obtained for all patients. If more than 30% of the bladder and/or more than 20% of the rectum receive >95% of the prescribed total dose, the treatment plan is judged as unsatisfactory and is adjusted. The dose-volume histogram can be improved by changing the beam's arrangement and/or weights or by introducing or modifying the wedge filters. 3D-CRT in prostate cancer patients is a highly sophisticated and time-consuming method of dose delivery. Important technical issues remain to be clarified.

  2. DYNAMICAL CONSISTENCE IN 3-DIMENSIONAL TYPE-K COMPETITIVE LOTKA-VOLTERRA SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A 3-dimensional type-K competitive Lotka-Volterra system is considered in this paper. Two discretization schemes are applied to the system with an positive interior fixed point, and two corresponding discrete systems are obtained. By analyzing the local dynamics of the corresponding discrete system near the interior fixed point, it is showed that this system is not dynamically consistent with the continuous counterpart system.

  3. Experimental evaluation of 3-dimensional kinematic behavior of the cruciate ligaments

    OpenAIRE

    2007-01-01

    PURPOSE: The purpose of this study was to evaluate a low-cost and easily reproducible technique for biomechanical studies in cadavers. In this kind of study, the natural effect of loading of the joint and shear forces are not taken into account. The objective is to describe the plastic deformation of the ligaments into 3-dimensional space. METHOD: For 18 intact human cadaver knees, the cruciate ligaments were divided into 3 fiber bundles, the tibial or femoral fixation points were marked, and...

  4. On the structure of 3-dimensional 2-body problem solutions in Wheeler-Feynman electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klimenko, S. [Institute for High Energy Physics, Protvino (Russian Federation); Nikitin, I. [National Research Center for Information Technology, St. Augustin (Germany)

    2001-09-01

    The problem of the relativistic 3-dimensional motion of 2 oppositely charged equally massive particles in classical electrodynamics with half-retarded/half-advanced interactions is investigated. It is shown that at a certain critical energy value the topological structure of phase space is changed, leading to bifurcation (splitting) of solutions, appearance of extra non-Newtonian degrees of freedom and break of reflectional symmetries.

  5. SOME EXACT SOLUTIONS OF 3-DIMENSIONAL ZERO-PRESSURE GAS DYNAMICS SYSTEM

    Institute of Scientific and Technical Information of China (English)

    K.T.Joseph; Manas R. Sahoo

    2011-01-01

    The 3-dimensional zero-pressure gas dynamics system appears in the modeling for the large scale structure formation in the universe.The aim of this paper is to construct spherically symmetric solutions to the system.The radial component of the velocity and density satisfy a simpler one dimensional problem.First we construct explicit solutions of this one dimensional case with initial and boundary conditions.Then we get special radial solutions with different behaviours at the origin.

  6. Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes

    Science.gov (United States)

    Schubert, S.

    1985-01-01

    The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.

  7. 3-Dimensional analysis for class III malocclusion patients with facial asymmetry

    OpenAIRE

    2013-01-01

    Objectives The aim of this study is to investigate the correlation between 2-dimensional (2D) cephalometric measurement and 3-dimensional (3D) cone beam computed tomography (CBCT) measurement, and to evaluate the availability of 3D analysis for asymmetry patients. Materials and Methods A total of Twenty-seven patients were evaluated for facial asymmetry by photograph and cephalometric radiograph, and CBCT. The 14 measurements values were evaluated and those for 2D and 3D were compared. The pa...

  8. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament

    OpenAIRE

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-01-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle b...

  9. The Preoperative Evaluation of Infective Endocarditis via 3-Dimensional Transesophageal Echocardiography.

    Science.gov (United States)

    Yong, Matthew S; Saxena, Pankaj; Killu, Ammar M; Coffey, Sean; Burkhart, Harold M; Wan, Siu-Hin; Malouf, Joseph F

    2015-08-01

    Transesophageal echocardiography continues to have a central role in the diagnosis of infective endocarditis and its sequelae. Recent technological advances offer the option of 3-dimensional imaging in the evaluation of patients with infective endocarditis. We present an illustrative case and review the literature regarding the potential advantages and limitations of 3-dimensional transesophageal echocardiography in the diagnosis of complicated infective endocarditis. A 51-year-old man, an intravenous drug user who had undergone bioprosthetic aortic valve replacement 5 months earlier, presented with prosthetic valve endocarditis. Preoperative transesophageal echocardiography with 3D rendition revealed a large abscess involving the mitral aortic intervalvular fibrosa, together with a mycotic aneurysm that had ruptured into the left atrium, resulting in a left ventricle-to-left atrium fistula. Three-dimensional transesophageal echocardiography enabled superior preoperative anatomic delineation and surgical planning. We conclude that 3-dimensional transesophageal echocardiography can be a useful adjunct to traditional 2-dimensional transesophageal echocardiography as a tool in the diagnosis of infective endocarditis.

  10. The Neural Representation of 3-Dimensional Objects in Rodent Memory Circuits

    Science.gov (United States)

    Burke, Sara N.; Barnes, Carol A.

    2014-01-01

    Three-dimensional objects are common stimuli that rodents and other animals encounter in the natural world that contribute to the associations that are the hallmark of explicit memory. Thus, the use of 3-dimensional objects for investigating the circuits that support associative and episodic memories has a long history. In rodents, the neural representation of these types of stimuli is a polymodal process and lesion data suggest that the perirhinal cortex, an area of the medial temporal lobe that receives afferent input from all sensory modalities, is particularly important for integrating sensory information across modalities to support object recognition. Not surprisingly, recent data from in vivo electrophysiological recordings have shown that principal cells within the perirhinal cortex are activated at locations of an environment that contain 3-dimensional objects. Interestingly, it appears that neural activity patterns related to object stimuli are ubiquitous across memory circuits and have now been observed in many medial temporal lobe structures as well as in the anterior cingulate cortex. This review summarizes behavioral and neurophysiological data that examine the representation of 3-dimensional objects across brain regions that are involved in memory. PMID:25205370

  11. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion.

    Science.gov (United States)

    Weaver, Cole A; Miller, Steven F; da Fontoura, Clarissa S G; Wehby, George L; Amendt, Brad A; Holton, Nathan E; Allareddy, Veeratrishul; Southard, Thomas E; Moreno Uribe, Lina M

    2017-03-01

    Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (3-dimensional dentoalveolar phenotypes in patients with malocclusion. Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Association between 3-dimensional mandibular morphology and condylar movement in subjects with mandibular asymmetry.

    Science.gov (United States)

    Ikeda, Michiyo; Miyamoto, Jun J; Takada, Jun-Ichi; Moriyama, Keiji

    2017-02-01

    The purpose of this study was to evaluate the hypothesis that 3-dimensional mandibular morphology is correlated with condylar movement in patients with mandibular asymmetry. Subjects were classified into 2 groups (n = 25 each): mandibular asymmetry with a menton deviation greater than 4 mm and no mandibular asymmetry with a menton deviation less than 4 mm. Linear and volumetric measurements of 3-dimensional mandibular morphology were recorded using computed tomography. Mandibular functional movement was recorded by computerized axiography (CADIAX; Gamma Dental, Klosterneuburg, Austria), and condylar path length, sagittal condylar inclination, and transverse condylar inclination on protrusion were measured. We calculated side-to-side asymmetry (shifted side vs nonshifted side) in mandibular morphology and assessed condylar movement by using an asymmetry ratio (nonshifted side/shifted side). Significant differences in mandibular morphology and condylar movement were found between the 2 groups. In the group with menton deviation greater than 4 mm, significant correlations were found between the asymmetry ratio of mandibular morphology and condylar movement: ie, condylar path length and transverse condylar inclination. No significant correlations were found between any of these measurements in the group with menton deviation less than 4 mm. In support of our hypothesis, the results suggested that 3-dimensional mandibular morphologic asymmetry is associated with condylar movement in subjects with mandibular asymmetry. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  13. Reconstructing a 3-dimensional image of the results of antinuclear antibody testing by indirect immunofluorescence.

    Science.gov (United States)

    Murai, Ryosei; Yamada, Koji; Tanaka, Maki; Kuribayashi, Kageaki; Kobayashi, Daisuke; Tsuji, Naoki; Watanabe, Naoki

    2013-01-31

    Indirect immunofluorescence anti-nuclear antibody testing (IIF-ANAT) is an essential screening tool in the diagnosis of various autoimmune disorders. ANA titer quantification and interpretation of immunofluorescence patterns are determined subjectively, which is problematic. First, we determined the examination conditions under which IIF-ANAT fluorescence intensities are quantified. Next, IIF-ANAT was performed using homogeneous, discrete speckled, and mixed serum samples. Images were obtained using Bio Zero BZ-8000, and 3-dimensional images were reconstructed using the BZ analyzer software. In the 2-dimensional analysis, homogeneous ANAs hid the discrete speckled pattern, resulting in a diagnosis of homogeneous immunofluorescence. However, 3-dimensional analysis of the same sample showed discrete speckled-type ANA in the homogeneous background. This study strengthened the current IIF-ANAT method by providing a new approach to quantify the fluorescence intensity and enhance the resolution of IIF-ANAT fluorescence patterns. Reconstructed 3-dimensional imaging of IIF-ANAT can be a powerful tool for routine laboratory examination. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Transitive conformal holonomy groups

    CERN Document Server

    Alt, Jesse

    2011-01-01

    For $(M,[g])$ a conformal manifold of signature $(p,q)$ and dimension at least three, the conformal holonomy group $\\mathrm{Hol}(M,[g]) \\subset O(p+1,q+1)$ is an invariant induced by the canonical Cartan geometry of $(M,[g])$. We give a description of all possible connected conformal holonomy groups which act transitively on the M\\"obius sphere $S^{p,q}$, the homogeneous model space for conformal structures of signature $(p,q)$. The main part of this description is a list of all such groups which also act irreducibly on $\\R^{p+1,q+1}$. For the rest, we show that they must be compact and act decomposably on $\\R^{p+1,q+1}$, in particular, by known facts about conformal holonomy the conformal class $[g]$ must contain a metric which is locally isometric to a so-called special Einstein product.

  15. 3-dimensional resin casting and imaging of mouse portal vein or intrahepatic bile duct system.

    Science.gov (United States)

    Walter, Teagan J; Sparks, Erin E; Huppert, Stacey S

    2012-10-25

    In organs, the correct architecture of vascular and ductal structures is indispensable for proper physiological function, and the formation and maintenance of these structures is a highly regulated process. The analysis of these complex, 3-dimensional structures has greatly depended on either 2-dimensional examination in section or on dye injection studies. These techniques, however, are not able to provide a complete and quantifiable representation of the ductal or vascular structures they are intended to elucidate. Alternatively, the nature of 3-dimensional plastic resin casts generates a permanent snapshot of the system and is a novel and widely useful technique for visualizing and quantifying 3-dimensional structures and networks. A crucial advantage of the resin casting system is the ability to determine the intact and connected, or communicating, structure of a blood vessel or duct. The structure of vascular and ductal networks are crucial for organ function, and this technique has the potential to aid study of vascular and ductal networks in several ways. Resin casting may be used to analyze normal morphology and functional architecture of a luminal structure, identify developmental morphogenetic changes, and uncover morphological differences in tissue architecture between normal and disease states. Previous work has utilized resin casting to study, for example, architectural and functional defects within the mouse intrahepatic bile duct system that were not reflected in 2-dimensional analysis of the structure(1,2), alterations in brain vasculature of a Alzheimer's disease mouse model(3), portal vein abnormalities in portal hypertensive and cirrhotic mice(4), developmental steps in rat lymphatic maturation between immature and adult lungs(5), immediate microvascular changes in the rat liver, pancreas, and kidney in response in to chemical injury(6). Here we present a method of generating a 3-dimensional resin cast of a mouse vascular or ductal network

  16. [Dosimetric evaluation of conformal radiotherapy: conformity factor].

    Science.gov (United States)

    Oozeer, R; Chauvet, B; Garcia, R; Berger, C; Felix-Faure, C; Reboul, F

    2000-01-01

    The aim of three-dimensional conformal therapy (3DCRT) is to treat the Planning Target Volume (PTV) to the prescribed dose while reducing doses to normal tissues and critical structures, in order to increase local control and reduce toxicity. The evaluation tools used for optimizing treatment techniques are three-dimensional visualization of dose distributions, dose-volume histograms, tumor control probabilities (TCP) and normal tissue complication probabilities (NTCP). These tools, however, do not fully quantify the conformity of dose distributions to the PTV. Specific tools were introduced to measure this conformity for a given dose level. We have extended those definitions to different dose levels, using a conformity index (CI). CI is based on the relative volumes of PTV and outside the PTV receiving more than a given dose. This parameter has been evaluated by a clinical study including 82 patients treated for lung cancer and 82 patients treated for prostate cancer. The CI was low for lung dosimetric studies (0.35 at the prescribed dose 66 Gy) due to build-up around the GTV and to spinal cord sparing. For prostate dosimetric studies, the CI was higher (0.57 at the prescribed dose 70 Gy). The CI has been used to compare treatment plans for lung 3DCRT (2 vs 3 beams) and prostate 3DCRT (4 vs 7 beams). The variation of CI with dose can be used to optimize dose prescription.

  17. On conformally related -waves

    Indian Academy of Sciences (India)

    Varsha Daftardar-Gejji

    2001-05-01

    Brinkmann [1] has shown that conformally related distinct Ricci flat solutions are -waves. Brinkmann's result has been generalized to include the conformally invariant source terms. It has been shown that [4] if $g_{ik}$ and $\\overline{g}_{ik}$ ($=^{-2}g_{ik}$, : a scalar function), are distinct metrics having the same Einstein tensor, $G_{ik}=\\overline{G}_{ik}$, then both represent (generalized) $pp$-waves and $_{i}$ is a null convariantly constant vector of $g_{ik}$. Thus $pp$-waves are the only candidates which yield conformally related nontrivial solutions of $G_{ik}=T_{ik}=\\overline{G}_{ik}$, with $T_{ik}$ being conformally invariant source. In this paper the functional form of the conformal factor for the conformally related $pp$-waves/generalized $pp$-waves has been obtained. It has been shown that the most general $pp$-wave, conformally related to ${\\rm d}s^{2}=-2{\\rm d}u[{\\rm d}v-m{\\rm d}y+H{\\rm d}u]+P^{-2}[{\\rm d}y^{2}+{\\rm d}z^{2}]$, turns out to the $(au+b)^{-2}{\\rm d}s^{2}$, where , are constants. Only in the special case when $m=0$, $H=1$, and $P=P(y,z)$, the conformal factor is $(au+b)^{-2}$ or $(a(u+v)+b)^{-2}$.

  18. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C.S.; Trandum, C.; Larsen, N.

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (T-m) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C......-terminal a-helix was of major importance to the conformational stability of calreticulin....

  19. Conformal three dimensional radiotherapy treatment planning in Lund

    Energy Technology Data Exchange (ETDEWEB)

    Knoos, T.; Nilsson, P. [Lund Univ. (Sweden). Dept. of Radiation Physics; Anders, A. [Lund Univ. (Sweden). Dept. of Oncology

    1995-12-01

    The use of conformal therapy is based on 3-dimensional treatment planning as well as on methods and routines for 3-dimensional patient mapping, 3-dimensional virtual simulation and others. The management of patients at the Radiotherapy Department at the University Hospital in Lund (Sweden) is discussed. About 2100 new patients are annually treated with external radiotherapy using seven linear accelerators. Three of the accelerators have dual photon energies and electron treatment facilities. A multi-leaf collimator as well as an electronic portal imaging device are available on one machine. Two simulators and an in-house CT-scanner are used for treatment planning. From 1988 to 1992 Scandiplan (Umplan) was used. Since 1992, the treatment planning system is TMS (HELAX AB, Sweden), which is based on the pencil beam algorithm of Ahnesjo. The calculations use patient modulated accelerator specific energy fluence spectra which are compiled with pencil beams from Monte Carlo generated energy absorption kernels. Heterogeneity corrections are performed with results close to conventional algorithms. Irregular fields, either from standard or individual blocks and from multi-leaf collimators are handled by the treatment planning system. The field shape is determined conveniently using the beam`s eye view. The final field shape is exported electronically to either the block cutting machine or the multileaf collimator control computer. All patient fields are checked against the beam`s eye view during simulation using manual methods. Treatment verification is performed by portal films and in vivo dosimetry with silicon diodes or TL-dosimetry. Up to now, approximately 4400 patients have received a highly individualized 3-dimensional conformal treatment.

  20. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  1. Laparoscopic Total Extraperitoneal (TEP) Inguinal Hernia Repair Using 3-dimensional Mesh Without Mesh Fixation.

    Science.gov (United States)

    Aliyazicioglu, Tolga; Yalti, Tunc; Kabaoglu, Burcak

    2017-08-01

    Approximately one fifth of patients suffer from inguinal pain after laparoscopic total extraperitoneal (TEP) inguinal hernia repair. There is existing literature suggesting that the staples used to fix the mesh can cause postoperative inguinal pain. In this study, we describe our experience with laparoscopic TEP inguinal hernia surgery using 3-dimensional mesh without mesh fixation, in our institution. A total of 300 patients who had undergone laparoscopic TEP inguinal hernia repair with 3-dimensional mesh in VKV American Hospital, Istanbul from November 2006 to November 2015 were studied retrospectively. Using the hospital's electronic archive, we studied patients' selected parameters, which are demographic features (age, sex), body mass index, hernia locations and types, duration of operations, preoperative and postoperative complications, duration of hospital stays, cost of surgery, need for analgesics, time elapsed until returning to daily activities and work. A total of 300 patients underwent laparoscopic TEP hernia repair of 437 inguinal hernias from November 2006 to November 2015. Of the 185 patients, 140 were symptomatic. Mean duration of follow-up was 48 months (range, 6 to 104 mo). The mean duration of surgery was 55 minutes for bilateral hernia repair, and 38 minutes for unilateral hernia repair. The mean duration of hospital stay was 0.9 day. There was no conversion to open surgery. In none of the cases the mesh was fixated with either staples or fibrin glue. Six patients (2%) developed seroma that were treated conservatively. One patient had inguinal hernia recurrence. One patient had preperitoneal hematoma. One patient operated due to indirect right-sided hernia developed right-sided hydrocele. One patient had wound dehiscence at the umbilical port entry site. Chronic pain developed postoperatively in 1 patient. Ileus developed in 1 patient. Laparoscopic TEP inguinal repair with 3-dimensional mesh without mesh fixation can be performed as safe as

  2. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  3. A dosimetric comparative study between conformal and intensity modulated radiation therapy in the treatment of primary nasopharyngeal carcinomas: the Egyptian experience%三维适形放疗和调强放疗治疗原发性鼻咽癌的剂量学对比研究:来自埃及的经验报道

    Institute of Scientific and Technical Information of China (English)

    Ehsan G. El-Ghoneimy; Mohamed A. Hassan; Mahmoud F. El-Bestar; Omar M. Othman; Karim N. Mashhour

    2012-01-01

    Objective: The study is a comparative study, the aim of which is to compare 3D conformal radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) in treating nasopharyngeal carcinomas; dosimetrically evaluating and comparing both techniques as regard target coverage and doses to organs at risk (OAR). Methods: Twenty patients with nasopharyngeal carcinoma were treated by 3D-CRT technique and another 20 patients were treated by IMRT. A dosimetric comparison was done by performing two plans for the same patient using Eclipse planning system (version 8.6). Results: IMRT had a better tumor coverage and conformity index compared to 3D-CRT plans (P value of 0.001 and 0.004), respectively. As for the dose homogeneity it was also better in the IMRT plans and the reason for this was attributed to the dose inhomogeneity at the photon/electron junction in the 3D-CRT plans (P value 0.032). Also, doses received by the risk structures, particularly parotids, was significantly less in the IMRT plans than those of 3D-CRT (P value 0.001). Conclusion: IMRT technique was clearly able to increase the dose delivery to the target volume, improve conformity and homogeneity index and spare the parotid glands in comparison to 3D-CRT technique.

  4. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    Science.gov (United States)

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc.

  5. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    Science.gov (United States)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  6. Nano-yttria dispersed stainless steel composites composed by the 3 dimensional fiber deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Verhiest, K., E-mail: Katelijne.Verhiest@ArcelorMittal.com [ArcelorMittal Gent, Hot Strip Mill Department, J. Kennedylaan 51, 9042 Ghent (Belgium); Belgian Nuclear Research Centre, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Ghent University, UGent, Department of Materials Science and Engineering (DMSE), Technologiepark 903, 9052 Ghent (Belgium); Mullens, S. [Flemish Institute for Technological Research, VITO, Materials Technology, Boeretang 200, 2400 Mol (Belgium); De Wispelaere, N.; Claessens, S. [ArcelorMittal Research Industry Gent, OCAS, J. Kennedylaan 3, 9060 Zelzate (Belgium); DeBremaecker, A. [Belgian Nuclear Research Centre, SCK-CEN, Boeretang 200, 2400 Mol (Belgium); Verbeken, K. [Ghent University, UGent, Department of Materials Science and Engineering (DMSE), Technologiepark 903, 9052 Ghent (Belgium)

    2012-09-15

    In this study, oxide dispersion strengthened (ODS) 316L steel samples were manufactured by the 3 dimensional fiber deposition (3DFD) technique. The performance of 3DFD as colloidal consolidation technique to obtain porous green bodies based on yttria (Y{sub 2}O{sub 3}) nano-slurries or paste, is discussed within this experimental work. The influence of the sintering temperature and time on sample densification and grain growth was investigated in this study. Hot consolidation was performed to obtain final product quality in terms of residual porosity reduction and final dispersion homogeneity.

  7. Towards a mathematical definition of Coulomb branches of $3$-dimensional $\\mathcal N=4$ gauge theories, II

    CERN Document Server

    Braverman, Alexander; Nakajima, Hiraku

    2016-01-01

    Consider the $3$-dimensional $\\mathcal N=4$ supersymmetric gauge theory associated with a compact Lie group $G_c$ and its quaternionic representation $\\mathbf M$. Physicists study its Coulomb branch, which is a noncompact hyper-K\\"ahler manifold with an $\\mathrm{SU}(2)$-action, possibly with singularities. We give a mathematical definition of the Coulomb branch as an affine algebraic variety with $\\mathbb C^\\times$-action when $\\mathbf M$ is of a form $\\mathbf N\\oplus\\mathbf N^*$, as the second step of the proposal given in arXiv:1503.03676.

  8. Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates

    CERN Document Server

    Huang, Chao-Guang

    2016-01-01

    The Hamiltonian analysis for a 3-dimensional $SO(1,1)\\times T_+$-connection dynamics is conducted in a Bondi-like coordinate system.A null coframe with 5 independent variables and 9 connection coefficients are treated as basic configuration variables.All constraints and their consistency conditions, as well as the equations of motion,for the system are presented.There is no physical degree of freedom in the system as expected.The Ba\\~nados-Teitelboim-Zanelli spacetime as an example is used to check the analysis.

  9. Design of 3-dimensional complex airplane configurations with specified pressure distribution via optimization

    Science.gov (United States)

    Kubrynski, Krzysztof

    1991-01-01

    A subcritical panel method applied to flow analysis and aerodynamic design of complex aircraft configurations is presented. The analysis method is based on linearized, compressible, subsonic flow equations and indirect Dirichlet boundary conditions. Quadratic dipol and linear source distribution on flat panels are applied. In the case of aerodynamic design, the geometry which minimizes differences between design and actual pressure distribution is found iteratively, using numerical optimization technique. Geometry modifications are modeled by surface transpiration concept. Constraints in respect to resulting geometry can be specified. A number of complex 3-dimensional design examples are presented. The software is adopted to personal computers, and as result an unexpected low cost of computations is obtained.

  10. Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells.

    Science.gov (United States)

    Chua, Julianto; Mathews, Nripan; Jennings, James R; Yang, Guangwu; Wang, Qing; Mhaisalkar, Subodh G

    2011-11-21

    We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy.

  11. Computer modelling of the 3-dimensional structures of the cyanobacterial hepatotoxins microcystin-LR and nodularin.

    Science.gov (United States)

    Lanaras, T; Cook, C M; Eriksson, J E; Meriluoto, J A; Hotokka, M

    1991-01-01

    The 3-dimensional structures of two cyanobacterial hepatotoxins microcystin-LR, a cyclic heptapeptide and nodularin, a cyclic pentapeptide, and the novel amino acid ADDA (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic acid) were constructed, and optimized using the CHEM-X molecular mechanics program. The peptide rings were planar and of rectangular shape. Optimized ADDA formed a U-shape and a difference in the orientation of ADDA with respect to the peptide ring of the two hepatotoxins was observed.

  12. Brief communications: visualization of coronary arteries in rats by 3-dimensional real-time contrast echocardiography.

    Science.gov (United States)

    Ishikura, Fuminobu; Hirayama, Hideo; Iwata, Akiko; Toshida, Tsutomu; Masuda, Kasumi; Otani, Kentaro; Asanuma, Toshihiko; Beppu, Shintaro

    2008-05-01

    Angiogenesis is under intense investigation to advance the treatment of various ischemic diseases. Small animals, such as mice and rats, are often used for this purpose. However, evaluating the structure of coronary arteries in small animals in situ is not easy. We succeeded in visualizing the coronary artery in rats on 3-dimensional real-time contrast echocardiography using a high-frequency transducer. These methods will be applied for more convenient assessment in a new study, examining issues such as angiogenesis using rats in situ.

  13. Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-Riemannian manifolds

    OpenAIRE

    Önder, Mehmet; Ziplar, Evren

    2013-01-01

    In this study, we give definitions and characterizations of eikonal slant helices, eikonal Darboux helices and non-normed eikonal Darboux helices in 3-dimensional pseudo- Riemannian manifold M . We show that every eikonal slant helix is also an eikonal Darboux helix for timelike and spacelike curves. Furthermore, we obtain that if the non-null curve a is a non-normed eikonal Darboux helix, then a is an eikonal slant helix if and only if 2 2 e 3k +e1t = constant, where k and t are curvature an...

  14. Quantum Computing - A new Implementation of Simon Algorithm for 3-Dimensional Registers

    Directory of Open Access Journals (Sweden)

    Adina Bărîlă

    2015-03-01

    Full Text Available Quantum computing is a new field of science aiming to use quantum phenomena in order to perform operations on data. The Simon algorithm is one of the quantum algorithms which solves a certain problem exponentially faster than any classical algorithm solving the same problem. Simulating of quantum algorithms is very important since quantum hardware is not available outside of the research labs. QCL (Quantum Computation Language is the most advanced implemented quantum computer simulator and was conceived by Bernhard Ömer. The paper presents an implementation in QCL of the Simon algorithm in the case of 3-dimensional registers.

  15. A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; SHEN Hui; DENG Youjun

    2006-01-01

    A novel solar cell fabricated with spiral photo-electrode for capturing sunlight 3-dimensionally (3D-cell) is proposed in this paper. We studied its performance both in solar simulator and in nature sunlight. Spiral photo-electrode of 3D-cell can receive sunlight from all directions and therefore can track the sun passively. And it is much insensitive to solar azimuth angle and shade. In addition, it increases the area to obtain scattered sunlight and reflected light. Compared with the dye-sensitized solar cells using sandwich structure, it would be more advantageous in the sealing technique.

  16. The study of 3-dimensional structures of IgG with atomic force microscopy

    Institute of Scientific and Technical Information of China (English)

    YU Yi-gang; XU Ru-xiang; JIANG Xiao-dan; KE Yi-quan

    2005-01-01

    Objective: To detect 3-dimensional images of anti-N-methyl-D-aspartate receptor Nr1 (NMDAr1) polycolonal IgG affixed on mica in physiological environment. Methods: The images and data were obtained from a contact mode and commercial Si3N4 probed tip by using atomic force microscope (AFM). Conclusions: Using AFM to investigate biomacromolecule can make us deeply understand the structure of IgG, which will instruct us to detect the membrane receptor protein as a labelling agent.

  17. EC declaration of conformity.

    Science.gov (United States)

    Donawa, M E

    1996-05-01

    The CE-marking procedure requires that manufacturers draw up a written declaration of conformity before placing their products on the market. However, some companies do not realize that this is a requirement for all devices. Also, there is no detailed information concerning the contents and format of the EC declaration of conformity in the medical device Directives or in EC guidance documentation. This article will discuss some important aspects of the EC declaration of conformity and some of the guidance that is available on its contents and format.

  18. Radiation Therapy Planning for Early-Stage Hodgkin Lymphoma: Experience of the International Lymphoma Radiation Oncology Group

    Energy Technology Data Exchange (ETDEWEB)

    Maraldo, Maja V., E-mail: dra.maraldo@gmail.com [Departments of Clinical Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Dabaja, Bouthaina S. [Department of Radiation Oncology, MD Anderson Cancer Center, Texas (United States); Filippi, Andrea R. [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Illidge, Tim [Department of Oncology, Christie Hospital, Manchester (United Kingdom); Tsang, Richard [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Ricardi, Umberto [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Petersen, Peter M.; Schut, Deborah A. [Departments of Clinical Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Garcia, John [Department of Radiation Oncology, MD Anderson Cancer Center, Texas (United States); Headley, Jayne [Department of Oncology, Christie Hospital, Manchester (United Kingdom); Parent, Amy; Guibord, Benoit [Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario (Canada); Ragona, Riccardo [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Specht, Lena [Departments of Clinical Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark)

    2015-05-01

    Purpose: Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Methods: Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontoured clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Results: Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. Conclusions: RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs.

  19. Radiation therapy planning for early-stage Hodgkin lymphoma: experience of the International Lymphoma Radiation Oncology Group.

    Science.gov (United States)

    Maraldo, Maja V; Dabaja, Bouthaina S; Filippi, Andrea R; Illidge, Tim; Tsang, Richard; Ricardi, Umberto; Petersen, Peter M; Schut, Deborah A; Garcia, John; Headley, Jayne; Parent, Amy; Guibord, Benoit; Ragona, Riccardo; Specht, Lena

    2015-05-01

    Early-stage Hodgkin lymphoma (HL) is a rare disease, and the location of lymphoma varies considerably between patients. Here, we evaluate the variability of radiation therapy (RT) plans among 5 International Lymphoma Radiation Oncology Group (ILROG) centers with regard to beam arrangements, planning parameters, and estimated doses to the critical organs at risk (OARs). Ten patients with stage I-II classic HL with masses of different sizes and locations were selected. On the basis of the clinical information, 5 ILROG centers were asked to create RT plans to a prescribed dose of 30.6 Gy. A postchemotherapy computed tomography scan with precontoured clinical target volume (CTV) and OARs was provided for each patient. The treatment technique and planning methods were chosen according to each center's best practice in 2013. Seven patients had mediastinal disease, 2 had axillary disease, and 1 had disease in the neck only. The median age at diagnosis was 34 years (range, 21-74 years), and 5 patients were male. Of the resulting 50 treatment plans, 15 were planned with volumetric modulated arc therapy (1-4 arcs), 16 with intensity modulated RT (3-9 fields), and 19 with 3-dimensional conformal RT (2-4 fields). The variations in CTV-to-planning target volume margins (5-15 mm), maximum tolerated dose (31.4-40 Gy), and plan conformity (conformity index 0-3.6) were significant. However, estimated doses to OARs were comparable between centers for each patient. RT planning for HL is challenging because of the heterogeneity in size and location of disease and, additionally, to the variation in choice of treatment techniques and field arrangements. Adopting ILROG guidelines and implementing universal dose objectives could further standardize treatment techniques and contribute to lowering the dose to the surrounding OARs. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Crossover from 2-dimensional to 3-dimensional aggregations of clusters on square lattice substrates

    Science.gov (United States)

    Cheng, Yi; Zhu, Yu-Hong; Pan, Qi-Fa; Yang, Bo; Tao, Xiang-Ming; Ye, Gao-Xiang

    2015-11-01

    A Monte Carlo study on the crossover from 2-dimensional to 3-dimensional aggregations of clusters is presented. Based on the traditional cluster-cluster aggregation (CCA) simulation, a modified growth model is proposed. The clusters (including single particles and their aggregates) diffuse with diffusion step length l (1 ≤ l ≤ 7) and aggregate on a square lattice substrate. If the number of particles contained in a cluster is larger than a critical size sc, the particles at the edge of the cluster have a possibility to jump onto the upper layer, which results in the crossover from 2-dimensional to 3-dimensional aggregations. Our simulation results are in good agreement with the experimental findings. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374082 and 11074215), the Science Foundation of Zhejiang Province Department of Education, China (Grant No. Y201018280), the Fundamental Research Funds for Central Universities, China (Grant No. 2012QNA3010), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100101110005).

  1. Automated, non-linear registration between 3-dimensional brain map and medical head image

    Energy Technology Data Exchange (ETDEWEB)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao [National Cardiovascular Center, Suita, Osaka (Japan)

    1998-05-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  2. Simple parameter estimation for complex models — Testing evolutionary techniques on 3-dimensional biogeochemical ocean models

    Science.gov (United States)

    Mattern, Jann Paul; Edwards, Christopher A.

    2017-01-01

    Parameter estimation is an important part of numerical modeling and often required when a coupled physical-biogeochemical ocean model is first deployed. However, 3-dimensional ocean model simulations are computationally expensive and models typically contain upwards of 10 parameters suitable for estimation. Hence, manual parameter tuning can be lengthy and cumbersome. Here, we present four easy to implement and flexible parameter estimation techniques and apply them to two 3-dimensional biogeochemical models of different complexities. Based on a Monte Carlo experiment, we first develop a cost function measuring the model-observation misfit based on multiple data types. The parameter estimation techniques are then applied and yield a substantial cost reduction over ∼ 100 simulations. Based on the outcome of multiple replicate experiments, they perform on average better than random, uninformed parameter search but performance declines when more than 40 parameters are estimated together. Our results emphasize the complex cost function structure for biogeochemical parameters and highlight dependencies between different parameters as well as different cost function formulations.

  3. An electro-dynamic 3-dimensional vibration test bed for engineering testing

    Science.gov (United States)

    Saadatzi, Mohammadsadegh; Saadatzi, Mohammad Nasser; Ahmed, Riaz; Banerjee, Sourav

    2017-04-01

    Primary objective of the work is to design, fabrication and testing of a 3-dimensional Mechanical vibration test bed. Vibration testing of engineering prototype devices in mechanical and industrial laboratories is essential to understand the response of the envisioned model under physical excitation conditions. Typically, two sorts of vibration sources are available in physical environment, acoustical and mechanical. Traditionally, test bed to simulate unidirectional acoustic or mechanical vibration is used in engineering laboratories. However, a device may encounter multiple uncoupled and/or coupled loading conditions. Hence, a comprehensive test bed in essential that can simulate all possible sorts of vibration conditions. In this article, an electrodynamic vibration exciter is presented which is capable of simulating 3-dimensional uncoupled (unidirectional) and coupled excitation, in mechanical environments. The proposed model consists of three electromagnetic shakers (for mechanical excitation). A robust electrical control circuit is designed to regulate the components of the test bed through a self-developed Graphical User Interface. Finally, performance of the test bed is tested and validated using commercially available piezoelectric sensors.

  4. High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling.

    Science.gov (United States)

    Stephenson, Robert S; Atkinson, Andrew; Kottas, Petros; Perde, Filip; Jafarzadeh, Fatemeh; Bateman, Mike; Iaizzo, Paul A; Zhao, Jichao; Zhang, Henggui; Anderson, Robert H; Jarvis, Jonathan C; Dobrzynski, Halina

    2017-08-03

    Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees.

  5. Influence of different setups of the Frankfort horizontal plane on 3-dimensional cephalometric measurements.

    Science.gov (United States)

    Santos, Rodrigo Mologni Gonçalves Dos; De Martino, José Mario; Haiter Neto, Francisco; Passeri, Luis Augusto

    2017-08-01

    The Frankfort horizontal (FH) is a plane that intersects both porions and the left orbitale. However, other combinations of points have also been used to define this plane in 3-dimensional cephalometry. These variations are based on the hypothesis that they do not affect the cephalometric analysis. We investigated the validity of this hypothesis. The material included cone-beam computed tomography data sets of 82 adult subjects with Class I molar relationship. A third-party method of cone-beam computed tomography-based 3-dimensional cephalometry was performed using 7 setups of the FH plane. Six lateral cephalometric hard tissue measurements relative to the FH plane were carried out for each setup. Measurement differences were calculated for each pair of setups of the FH plane. The number of occurrences of differences greater than the limits of agreement was counted for each of the 6 measurements. Only 3 of 21 pairs of setups had no occurrences for the 6 measurements. No measurement had no occurrences for the 21 pairs of setups. Setups based on left or right porion and both orbitales had the greatest number of occurrences for the 6 measurements. This investigation showed that significant and undesirable measurement differences can be produced by varying the definition of the FH plane. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  6. Quantitative 3-Dimensional Imaging of Murine Neointimal and Atherosclerotic Lesions by Optical Projection Tomography

    Science.gov (United States)

    Kirkby, Nicholas S.; Low, Lucinda; Seckl, Jonathan R.; Walker, Brian R.; Webb, David J.; Hadoke, Patrick W. F.

    2011-01-01

    Objective Traditional methods for the analysis of vascular lesion formation are labour intensive to perform - restricting study to ‘snapshots’ within each vessel. This study was undertaken to determine the suitability of optical projection tomographic (OPT) imaging for the 3-dimensional representation and quantification of intimal lesions in mouse arteries. Methods and Results Vascular injury was induced by wire-insertion or ligation of the mouse femoral artery or administration of an atherogenic diet to apoE-deficient mice. Lesion formation was examined by OPT imaging of autofluorescent emission. Lesions could be clearly identified and distinguished from the underlying vascular wall. Planimetric measurements of lesion area correlated well with those made from histological sections subsequently produced from the same vessels (wire-injury: R2 = 0.92; ligation-injury: R2 = 0.89; atherosclerosis: R2 = 0.85), confirming both the accuracy of this methodology and its non-destructive nature. It was also possible to record volumetric measurements of lesion and lumen and these were highly reproducible between scans (coefficient of variation = 5.36%, 11.39% and 4.79% for wire- and ligation-injury and atherosclerosis, respectively). Conclusions These data demonstrate the eminent suitability of OPT for imaging of atherosclerotic and neointimal lesion formation, providing a much needed means for the routine 3-dimensional analysis of vascular morphology in studies of this type. PMID:21379578

  7. A New 3-Dimensional Dynamic Quantitative Analysis System of Facial Motion: An Establishment and Reliability Test

    Science.gov (United States)

    Feng, Guodong; Zhao, Yang; Tian, Xu; Gao, Zhiqiang

    2014-01-01

    This study aimed to establish a 3-dimensional dynamic quantitative facial motion analysis system, and then determine its accuracy and test-retest reliability. The system could automatically reconstruct the motion of the observational points. Standardized T-shaped rod and L-shaped rods were used to evaluate the static and dynamic accuracy of the system. Nineteen healthy volunteers were recruited to test the reliability of the system. The average static distance error measurement was 0.19 mm, and the average angular error was 0.29°. The measuring results decreased with the increase of distance between the cameras and objects, 80 cm of which was considered to be optimal. It took only 58 seconds to perform the full facial measurement process. The average intra-class correlation coefficient for distance measurement and angular measurement was 0.973 and 0.794 respectively. The results demonstrated that we successfully established a practical 3-dimensional dynamic quantitative analysis system that is accurate and reliable enough to meet both clinical and research needs. PMID:25390881

  8. A 3-dimensional model for inductively coupled plasma etching reactors: Coil generated plasma asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, M.J.; Collison, W.Z.; Grapperhaus, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31

    Inductively Coupled Plasma (ICP) reactors are being developed as high plasma density, low gas pressure sources for etching and deposition of semiconductor materials. In this paper, the authors describe a 3-dimensional, time dependent model for ICP reactors whose intent is to provide an infrastructure to investigate asymmetries in plasma etching and deposition tools. The model is a 3-dimensional extension of a previously described 2-dimensional simulation called the Hybrid Plasma Equipment Model (HPEM). HPEM-3D consists of an electromagnetics module (EMM), a Boltzmann-electron energy module (BEM) and a fluid-chemical kinetics simulation (FKS). The inductively coupled electromagnetic fields are produced by the EMM. Results from HPEM-3D will be discussed for reactors using etching (Cl{sub 2}, BCl{sub 3}) and non-etching (Ar, Ar/N{sub 2}) gas mixtures, and which have geometrical asymmetries such as wafer clamps and load-lock bays. The authors show how details in the design of the coil, such as the value of the termination capacitance or number of turns, lead to azimuthal variations in the inductive electric field.

  9. Femtosecond laser assisted 3-dimensional freeform fabrication of metal microstructures in fused silica (Conference Presentation)

    Science.gov (United States)

    Ebrahim, Fatmah; Charvet, Raphaël.; Dénéréaz, Cyril; Mortensen, Andreas; Bellouard, Yves

    2017-03-01

    Femtosecond laser exposure of fused silica combined with chemical etching has opened up new opportunities for three-dimensional freeform processing of micro-structures that can form complex micro-devices of silica, integrating optical, mechanical and/or fluidic functionalities. Here, we demontrate an expansion of this process with an additional fabrication step that enables the integration of three-dimensional embedded metallic structures out of useful engineering metals such as silver, gold, copper as well as some of their alloys. This additional step is an adaptation of the pressure infiltration for the insertion of high conductivity, high melting point metals and alloys into topologically complex, femtosecond laser-machined cavities in fused silica. This produces truly 3-dimensional microstructures, including microcoils and needles, within the bulk of glass substrates. Combining this added capability with the existing possibilities of femtosecond laser micromachining (i.e. direct written waveguides, microchannels, resonators, etc.) opens up a host of potential applications for the contactless fabrication of highly integrated monolithic devices that include conductive element of all kind. We present preliminary results from this new fabrication process, including prototype devices that incorporate 3D electrodes with aspect ratios of 1:100 and a feature size resolution down to 2μm. We demonstrate the generation of high electric field gradients (of the order of 1013 Vm-2) in these devices due to the 3-dimensional topology of fabricated microstructures.

  10. 3-dimensional slope stability analyses using non-associative stress-strain relationships

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The research work presented in this paper refers to a new slope stability analysis method used for landslide risk evaluations. It is an extension of the 3-dimensional upper-bound slope stability analysis method proposed by Chen et al. in 2001,which employs the Mohr-Coulomb’s associative flow rule. It has been found that in a 3-dimensional area,a prism may not be able to move at friction angles to all its surrounding interfaces,as required by this associative rule,and convergence problems may occasionally arise. The new method establishes two velocity fields:(i) The plastic one that represents a non-associative and the best representative dilation behavior,and (ii) the virtual one that permits the solution for factor of safety in the work and energy balance equation. The new method can then allow any input value of dilation angle and thus solve the convergence problem. A practical application to a concrete dam foundation is illustrated.

  11. MR imaging of the knee joint with 3-dimensional gradient echo

    Energy Technology Data Exchange (ETDEWEB)

    Shimagaki, Hajime; Matsubara, T.; Narisawa, Hiroko; Yamazaki, Yukio [Tsubame Rosai Hospital, Niigata (Japan)

    1996-11-01

    Authors considered and discussed whether various lesions of the knee joint can be diagnosed under the MR imaging condition with a pulse sequence of 3-dimensional fourier transformed gradient recalled acquisition in the steady state and what advantages the method has. The apparatus was 1.5T Signa (General Electric) equipped with surface coil for the knee. The consecutive 124 sagittal images of 0.8 mm thickness taken primarily for 3-dimensional reconstruction were processed to give any cross sections of coronary, horizontal, sagittal or further additional ones. Subjects were 243 knees (138 internal derangement and 105 osteoarthritis) whose lesions were confirmed by arthroscope or by arthrostomy after the MR imaging. Comparison of the MR imaging and surgical finding revealed that accuracy, specificity and sensitivity of the present MR imaging method were all >90% for diagnosis of internal derangement of anterior cruciate ligament and meniscus. For osteoarthritis, the method was thought useful for evaluation of the depth of cartilage deficit. (K.H.)

  12. Unobservable Problem of Target Tracking with Bearing-only Measurements in 3-dimensional Space

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-gang; SHENG An-dong

    2008-01-01

    The bearings-only tracking (BOT) system is said to be observability if and only if the target motion parameters can be uniquely determined by noise-free bearing measurements. By utilizing the method of orthogonal vectors and characteristic of linear matrix equation, the problem of observability for BOT in noise-free bearings measurements from single observer is discussed based on the target and observer traveling in the 3-dimensional space. A proposition that BOT for target and observer traveling in the 3-dimensional space with constant acceleration remains unsolvable is presented and proved. By proving the proposition, it is also shown that some motion parameter ratios of target can be estimated under certain condition satisfied by measurements and time samples. The proposition is extended to arbitrary rank of manoeuvre for the observer and the target, which BOT remains unobservable property while the rank of target manoeuvre is higher than that of the observer manoeuvre. The theoretical analysis of this paper provides the guidelines for how the observer trajectory should be formulated to avoid unobservable state for BOT in practice application.

  13. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion

    Science.gov (United States)

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.

    2017-01-01

    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Conclusions Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. PMID:28257739

  14. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

    NARCIS (Netherlands)

    Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.

    2016-01-01

    Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

  15. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

    NARCIS (Netherlands)

    Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.

    Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

  16. SECOND-ORDER OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL PROBLEMS GOVERNED BY 3-DIMENSIONAL NEVIER-STOKES EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article is concerned with second-order necessary and sufficient optimality conditions for optimal control problems governed by 3-dimensional Navier-Stokes equations. The periodic state constraint is considered.

  17. Conformal expansions and renormalons

    CERN Document Server

    Gardi, E; Gardi, Einan; Grunberg, Georges

    2001-01-01

    The large-order behaviour of QCD is dominated by renormalons. On the other hand renormalons do not occur in conformal theories, such as the one describing the infrared fixed-point of QCD at small beta_0 (the Banks--Zaks limit). Since the fixed-point has a perturbative realization, all-order perturbative relations exist between the conformal coefficients, which are renormalon-free, and the standard perturbative coefficients, which contain renormalons. Therefore, an explicit cancellation of renormalons should occur in these relations. The absence of renormalons in the conformal limit can thus be seen as a constraint on the structure of the QCD perturbative expansion. We show that the conformal constraint is non-trivial: a generic model for the large-order behaviour violates it. We also analyse a specific example, based on a renormalon-type integral over the two-loop running-coupling, where the required cancellation does occur.

  18. Animal culture: chimpanzee conformity?

    Science.gov (United States)

    van Schaik, Carel P

    2012-05-22

    Culture-like phenomena in wild animals have received much attention, but how good is the evidence and how similar are they to human culture? New data on chimpanzees suggest their culture may even have an element of conformity.

  19. Quantum massive conformal gravity

    Energy Technology Data Exchange (ETDEWEB)

    Faria, F.F. [Universidade Estadual do Piaui, Centro de Ciencias da Natureza, Teresina, PI (Brazil)

    2016-04-15

    We first find the linear approximation of the second plus fourth order derivative massive conformal gravity action. Then we reduce the linearized action to separated second order derivative terms, which allows us to quantize the theory by using the standard first order canonical quantization method. It is shown that quantum massive conformal gravity is renormalizable but has ghost states. A possible decoupling of these ghost states at high energies is discussed. (orig.)

  20. Delineating the conformal window

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Pickup, Thomas; Teper, Michael

    2011-01-01

    We identify and characterise the conformal window in gauge theories relevant for beyond the standard model building, e.g. Technicolour, using the criteria of metric confinement and causal analytic couplings, which are known to be consistent with the phase diagram of supersymmetric QCD from Seiberg...... duality. Using these criteria we find perturbation theory to be consistent throughout the predicted conformal window for several of these gauge theories and we discuss recent lattice results in the light of our findings....

  1. Conformally coupled inflation

    CERN Document Server

    Faraoni, Valerio

    2013-01-01

    A massive scalar field in a curved spacetime can propagate along the light cone, a causal pathology, which can, in principle, be eliminated only if the scalar couples conformally to the Ricci curvature of spacetime. This property mandates conformal coupling for the field driving inflation in the early universe. During slow-roll inflation, this coupling can cause super-acceleration and, as a signature, a blue spectrum of primordial gravitational waves.

  2. Group Size and Conformity

    OpenAIRE

    Bond, Rod

    2005-01-01

    Abstract This paper reviews theory and research on the relationship between group size and conformity and presents a meta-analysis of 125 Asch-type conformity studies. It questions the assumption of a single function made in formal models of social influence and proposes instead that the function will vary depending on which social influence process predominates. It is argued that normative influence is lik...

  3. Conformism and Wealth Distribution

    OpenAIRE

    Mino, Kazuo; Nakamoto, Yasuhiro

    2014-01-01

    This paper explores the role of consumption externalities in a neoclassical growth model in which households have heterogeneous preferences. We fi?nd that the degree of conformism in consumption held by each household signifi?cantly affects the speed of convergence of the aggregate economy as well as the patterns of wealth distribution in the steady state equilibrium. In particular, a higher degree of consumption conformism accelerates the convergence speed of the economy towards the steady s...

  4. Conformally Coupled Inflation

    Directory of Open Access Journals (Sweden)

    Valerio Faraoni

    2013-07-01

    Full Text Available A massive scalar field in a curved spacetime can propagate along the light cone, a causal pathology, which can, in principle, be eliminated only if the scalar couples conformally to the Ricci curvature of spacetime. This property mandates conformal coupling for the field driving inflation in the early universe. During slow-roll inflation, this coupling can cause super-acceleration and, as a signature, a blue spectrum of primordial gravitational waves.

  5. Conformational sampling techniques.

    Science.gov (United States)

    Hatfield, Marcus P D; Lovas, Sándor

    2014-01-01

    The potential energy hyper-surface of a protein relates the potential energy of the protein to its conformational space. This surface is useful in determining the native conformation of a protein or in examining a statistical-mechanical ensemble of structures (canonical ensemble). In determining the potential energy hyper-surface of a protein three aspects must be considered; reducing the degrees of freedom, a method to determine the energy of each conformation and a method to sample the conformational space. For reducing the degrees of freedom the choice of solvent, coarse graining, constraining degrees of freedom and periodic boundary conditions are discussed. The use of quantum mechanics versus molecular mechanics and the choice of force fields are also discussed, as well as the sampling of the conformational space through deterministic and heuristic approaches. Deterministic methods include knowledge-based statistical methods, rotamer libraries, homology modeling, the build-up method, self-consistent electrostatic field, deformation methods, tree-based elimination and eigenvector following routines. The heuristic methods include Monte Carlo chain growing, energy minimizations, metropolis monte carlo and molecular dynamics. In addition, various methods to enhance the conformational search including the deformation or smoothing of the surface, scaling of system parameters, and multi copy searching are also discussed.

  6. 4-Dimensionally Guided 3-Dimensional Color-Doppler Ultrasonography Quantifies Carotid Artery Stenosis With High Reproducibility and Accuracy.

    Science.gov (United States)

    Macharzina, Roland Richard; Kocher, Sascha; Messé, Steven R; Rutkowski, Thomas; Hoffmann, Fabian; Vogt, Matthias; Vach, Werner; Fan, Nian; Rastan, Aljoscha; Neumann, Franz-Josef; Zeller, Thomas

    2017-07-13

    The purpose was to analyze the agreement and binary accuracy of the degree of internal carotid artery stenosis (ICAS) as determined by 4-dimensionally (4D) real-time gray-scale guided 3-dimensional (3D) color-Doppler ultrasonography (3DC-US) (4D/3DC-US) compared with catheter angiography (CA) and duplex ultrasonography (DUS). This study hypothesized that 4D/3DC-US is noninferior to CA and DUS in grading ICAS in selected patients. Clinical stratification in patients with ICAS largely depends on a patient's symptomatic status and the degree of stenosis. Screening with 4D/3DC-US was prospectively performed in 93 study patients (with 122 ICASs), thus yielding 80 patients for analysis (with 103 ICASs) after excluding patients with insufficient image quality, previous revascularization, and contraindications to CA. The ultrasound examination (10 MHz) consisted of consensus conform DUS examination and independent real-time 4D-guided gray-scale views for orientation followed by static 3DC-US NASCET (North American Symptomatic Carotid Endarterectomy Trial) percent stenosis quantification using off-line multiplanar rendering. Multiplanar selective CA of the same ICASs was quantified with dedicated software in a blinded fashion. Quantitative CA of 103 stenoses with a mean degree of 65 ± 17% was compared with 4D/3DC-US, with a resulting concordance correlation coefficient of 0.89 and a standard deviation of differences (SDD) of 8.1% at a bias of +1.7%. Binary 50% and 70% stenosis detection with 4D/3DC-US revealed a sensitivity of 97% and 87%, respectively, and a specificity of 92% and 84%, respectively. Interobserver SDD for CA of 52 stenoses (7.2%) did not differ from SDD for 4D/3DC-US and CA (p = 0.274). Accuracy of 50% stenosis detection by 4D/3DC-US was tendentially higher compared with DUS (96% vs. 91%). The 4D/3DC-US method provides reliable and accurate stenosis quantification and binary classification with good diagnostic accuracy compared with CA and DUS. Copyright

  7. Electromagnetic characterization of conformal antennas

    Science.gov (United States)

    Volakis, John L.; Kempel, Leo C.; Alexanian, Angelos; Jin, J. M.; Yu, C. L.; Woo, Alex C.

    1992-01-01

    The ultimate objective of this project is to develop a new technique which permits an accurate simulation of microstrip patch antennas or arrays with various feed, superstrate and/or substrate configurations residing in a recessed cavity whose aperture is planar, cylindrical or otherwise conformed to the substructure. The technique combines the finite element and boundary integral methods to formulate a system suitable for solution via the conjugate gradient method in conjunction with the fast Fourier transform. The final code is intended to compute both scattering and radiation patterns of the structure with an affordable memory demand. With upgraded capabilities, the four included papers examined the radar cross section (RCS), input impedance, gain, and resonant frequency of several rectangular configurations using different loading and substrate/superstrate configurations.

  8. Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG)

    Energy Technology Data Exchange (ETDEWEB)

    Specht, Lena, E-mail: lena.specht@regionh.dk [Department of Oncology and Hematology, Rigshospitalet, University of Copenhagen (Denmark); Yahalom, Joachim [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Illidge, Tim [Institute of Cancer Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Christie Hospital NHS Trust, Manchester (United Kingdom); Berthelsen, Anne Kiil [Department of Radiation Oncology and PET Centre, Rigshospitalet, University of Copenhagen (Denmark); Constine, Louis S. [Department of Radiation Oncology and Pediatrics, James P. Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York (United States); Eich, Hans Theodor [Department of Radiation Oncology, University of Münster (Germany); Girinsky, Theodore [Department of Radiation Oncology, Institut Gustave-Roussy, Villejuif (France); Hoppe, Richard T. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Mauch, Peter [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States); Mikhaeel, N. George [Department of Clinical Oncology and Radiotherapy, Guy' s and St Thomas' NHS Foundation Trust, London (United Kingdom); Ng, Andrea [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts (United States)

    2014-07-15

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced volumes and doses is addressed, integrating modern imaging with 3-dimensional (3D) planning and advanced techniques of treatment delivery. The previously applied extended field (EF) and original involved field (IF) techniques, which treated larger volumes based on nodal stations, have now been replaced by the use of limited volumes, based solely on detectable nodal (and extranodal extension) involvement at presentation, using contrast-enhanced computed tomography, positron emission tomography/computed tomography, magnetic resonance imaging, or a combination of these techniques. The International Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided radiation therapy, and 4-dimensional imaging, should be implemented when their use is expected to decrease significantly the risk for normal tissue damage while still achieving the primary goal of local tumor control. The highly conformal involved node radiation therapy (INRT), recently introduced for patients for whom optimal imaging is available, is explained. A new concept, involved site radiation therapy (ISRT), is introduced as the standard conformal therapy for the scenario, commonly encountered, wherein optimal imaging is not available. There is increasing evidence that RT doses used in the past are higher than necessary for disease control in this era of combined modality therapy. The use of INRT and of lower doses in early-stage HL is supported by available data. Although the

  9. Electrodynamics with a Future Conformal Horizon

    OpenAIRE

    Ibison, Michael

    2010-01-01

    We investigate the impact of singularities occurring at future times in solutions of the Friedmann equations expressed in conformal coordinates. We focus on the consequences of extending the time coordinate through the singularity for the physics of matter and radiation occupying just one side. Mostly this involves investigation of the relationship between the metric with line element ds^2 = a^2(t) * (dt^2 - dx^2) and time reversal symmetry within electrodynamics. It turns out compatibility b...

  10. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    Directory of Open Access Journals (Sweden)

    Koichi Tomita, MD, PhD

    2015-03-01

    Full Text Available Summary: Recent advances in 3-dimensional (3D surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP flaps (5 immediate, 6 delayed using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast.

  11. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    Science.gov (United States)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  12. Investigation of 3-dimensional structural morphology for enhancing light trapping with control of surface haze

    Science.gov (United States)

    Park, Hyeongsik; Shin, Myunghun; Kim, Hyeongseok; Kim, Sunbo; Le, Anh Huy Tuan; Kang, Junyoung; Kim, Yongjun; Pham, Duy Phong; Jung, Junhee; Yi, Junsin

    2017-04-01

    A comparative study of 3-dimensional textured glass morphologies with variable haze value and chemical texturing of the glass substrates was conducted to enhance light trapping in silicon (Si) thin film solar cells (TFSCs). The light trapping characteristics of periodic honeycomb structures show enhanced transmittance and haze ratio in numerical and experimental approaches. The periodic honeycomb structure of notched textures is better than a random or periodic carved structure. It has high transmittance of ∼95%, and haze ratio of ∼52.8%, and the haze property of the angular distribution function of transmittance shows wide scattering angles in the long wavelength region because of the wide spacing and aspect ratio of the texture. The numerical and experimental approaches of the 3-D texture structures in this work will be useful in developing high-performance Si TFSCs with light trapping.

  13. Large-eddy-simulation of 3-dimensional Rayleigh-Taylor instability in incompressible fluids

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The 3-dimensional incompressible Rayleigh-Taylor instability is numerically studied through the large-eddy-simulation (LES) approach based on the passive scalar transport model. Both the instantaneous velocity and the passive scalar fields excited by sinusoidal perturbation and random perturbation are simulated. A full treatment of the whole evolution process of the instability is addressed. To verify the reliability of the LES code, the averaged turbulent energy as well as the flux of passive scalar are calculated at both the resolved scale and the subgrid scale. Our results show good agreement with the experimental and other numerical work. The LES method has proved to be an effective approach to the Rayleigh-Taylor instability.

  14. The 3-dimensional numerical simulation of artificially altitude-triggered negative lightning

    Science.gov (United States)

    Zhang, Bo; Chen, Bin; Shi, Lihua; Chen, Qiang

    2013-03-01

    A 3-dimensional numerical model for artificially altitude-triggered negative lightning is developed based on an analytic thunderstorm model and the Dielectric Breakdown Model (DBM). Two major parameters are concerned, they are the thundercloud electric field and the length of the nylon wire which isolates the triggering wire from the ground. A few groups of contrast numerical experiments are done to study their effects on the success rates of altitude-triggered lightning. It is found that the success rates of altitude-triggered lightning increase when the thundercloud electric field enhances or the length of the nylon wire increases. Another interesting phenomenon is that the upward positive leader is always initiated earlier than the downward negative leader in either case.

  15. Design of a 3-dimensional visual illusion speed reduction marking scheme.

    Science.gov (United States)

    Liang, Guohua; Qian, Guomin; Wang, Ye; Yi, Zige; Ru, Xiaolei; Ye, Wei

    2017-03-01

    To determine which graphic and color combination for a 3-dimensional visual illusion speed reduction marking scheme presents the best visual stimulus, five parameters were designed. According to the Balanced Incomplete Blocks-Law of Comparative Judgment, three schemes, which produce strong stereoscopic impressions, were screened from the 25 initial design schemes of different combinations of graphics and colors. Three-dimensional experimental simulation scenes of the three screened schemes were created to evaluate four different effects according to a semantic analysis. The following conclusions were drawn: schemes with a red color are more effective than those without; the combination of red, yellow and blue produces the best visual stimulus; a larger area from the top surface and the front surface should be colored red; and a triangular prism should be painted as the graphic of the marking according to the stereoscopic impression and the coordination of graphics with the road.

  16. Reference Trajectory Generation for 3-Dimensional Walking of a Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Humanoid walking planning is a complicated task because of the high number of degrees of freedom (DOFs) and the variable mechanical structure during walking. In this paper, a planning method for 3-dimensional (3-D) walking movements was developed based on a model of a typical humanoid robot with 12 DOFs on the lower body. The planning process includes trajectory generation for the hip, ankle, and knee joints in the Cartesian space. The balance of the robot was ensured by adjusting the hip motion. The angles for each DOF were obtained from 3-D kinematics calculation. The calculation gave reference trajectories of all the DOFs on the humanoid robot which were used to control the real robot. The simulation results show that the method is effective.

  17. Using 3-dimensional printing to create presurgical models for endodontic surgery.

    Science.gov (United States)

    Bahcall, James K

    2014-09-01

    Advances in endodontic surgery--from both a technological and procedural perspective-have been significant over the last 18 years. Although these technologies and procedural enhancements have significantly improved endodontic surgical treatment outcomes, there is still an ongoing challenge of overcoming the limitations of interpreting preoperative 2-dimensional (2-D) radiographic representation of a 3-dimensional (3-D) in vivo surgical field. Cone-beam Computed Tomography (CBCT) has helped to address this issue by providing a 3-D enhancement of the 2-D radiograph. The next logical step to further improve a presurgical case 3-D assessment is to create a surgical model from the CBCT scan. The purpose of this article is to introduce 3-D printing of CBCT scans for creating presurgical models for endodontic surgery.

  18. A 3-Dimensional Cockpit Display with Traffic and Terrain Information for the Small Aircraft Transportation System

    Science.gov (United States)

    UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.

    2004-01-01

    The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.

  19. Relation between qualitative and quantitative 3-dimensional ultrasound and ki-67 expression in breast cancer.

    Science.gov (United States)

    Wang, Xiao-Yan; Zhang, Bing; He, Yan; Ning, Bing; Nong, Mei-Fen; Wei, Hai-Ming; Huang, Xiang-Hong

    2015-01-01

    To investigate the relation between quantitative blood flow parameters on 3-dimensional (3D) color histogram, 3D ultrasound characteristics and Ki-67 expression in breast cancer. Three-dimensional ultrasound characteristics and histological classifications of 76 breast tumors in 75 confirmed cases were analyzed. Relations of tumor volume (V), vascularization index (VI), flow index (FI) and vascularization-flow index (VFI) on 3D color histogram to Ki-67 expression were studied by statistical methods. VI and VFI measurements of tumors in positive Ki-67 expression group were obviously increased compared with the negative expression group (P0.05). Cases showing positive expression of Ki-67 were more likely to have lymph node metastases (P0.05). Qualitative and quantitative 3D ultrasound characteristics correlated with positive expression of Ki-67 in breast cancer. Quantitative analysis with 3D color histogram more accurately evaluates blood supply of breast tumors, providing references for predicting biological behaviors and prognosis of breast cancer.

  20. Towards a mathematical definition of Coulomb branches of $3$-dimensional $\\mathcal N=4$ gauge theories, I

    CERN Document Server

    Nakajima, Hiraku

    2015-01-01

    Consider the $3$-dimensional $\\mathcal N=4$ supersymmetric gauge theory associated with a compact Lie group $G$ and its quaternionic representation $\\mathbf M$. Physicists study its Coulomb branch, which is a noncompact hyper-K\\"ahler manifold, such as instanton moduli spaces on $\\mathbb R^4$, $SU(2)$-monopole moduli spaces on $\\mathbb R^3$, etc. In this paper and its sequel, we propose a mathematical definition of the coordinate ring of the Coulomb branch, using the vanishing cycle cohomology group of a certain moduli space for a gauged $\\sigma$-model on the $2$-sphere associated with $(G,\\mathbf M)$. In this first part, we check that the cohomology group has the correct graded dimensions expected from the monopole formula proposed by Cremonesi, Hanany and Zaffaroni arXiv:1309.2657. A ring structure (on the cohomology of a modified moduli space) will be introduced in the sequel of this paper.

  1. On Exact Controllability of Networks of Nonlinear Elastic Strings in 3-Dimensional Space

    Institute of Scientific and Technical Information of China (English)

    Günter R. LEUGERING; E. J. P. Georg SCHMIDT

    2012-01-01

    This paper concerns a system of nonlinear wave equations describing the vibrations of a 3-dimensional network of elastic strings.The authors derive the equations and appropriate nodal conditions,determine equilibrium solutions,and,by using the methods of quasilinear hyperbolic systems,prove that for tree networks the natural initial,bound-ary value problem has classical solutions existing in neighborhoods of the "stretched" equilibrium solutions.Then the local controllability of such networks near such equilibrium configurations in a certain specified time interval is proved.Finally,it is proved that,given two different equilibrium states satisfying certain conditions,it is possible to control the network from states in a small enough neighborhood of one equilibrium to any state in a suitable neighborhood of the second equilibrium over a sufficiently large time interval.

  2. Epigenetic and 3-dimensional regulation of V(D)J rearrangement of immunoglobulin genes.

    Science.gov (United States)

    Degner-Leisso, Stephanie C; Feeney, Ann J

    2010-12-01

    V(D)J recombination is a crucial component of the adaptive immune response, allowing for the production of a diverse antigen receptor repertoire (Ig and TCR). This review will focus on how epigenetic regulation and 3-dimensional (3D) interactions may control V(D)J recombination at Ig loci. The interplay between transcription factors and post-translational modifications at the Igh, Igκ, and Igλ loci will be highlighted. Furthermore, we propose that the spatial organization and epigenetic boundaries of each Ig loci before and during V(D)J recombination may be influenced in part by the CTCF/cohesin complex. Taken together, the many epigenetic and 3D layers of control ensure that Ig loci are only rearranged at appropriate stages of B cell development.

  3. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability

    Science.gov (United States)

    Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad

    2015-01-01

    Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768

  4. Vectors a Fortran 90 module for 3-dimensional vector and dyadic arithmetic

    Energy Technology Data Exchange (ETDEWEB)

    Brock, B.C.

    1998-02-01

    A major advance contained in the new Fortran 90 language standard is the ability to define new data types and the operators associated with them. Writing computer code to implement computations with real and complex three-dimensional vectors and dyadics is greatly simplified if the equations can be implemented directly, without the need to code the vector arithmetic explicitly. The Fortran 90 module described here defines new data types for real and complex 3-dimensional vectors and dyadics, along with the common operations needed to work with these objects. Routines to allow convenient initialization and output of the new types are also included. In keeping with the philosophy of data abstraction, the details of the implementation of the data types are maintained private, and the functions and operators are made generic to simplify the combining of real, complex, single- and double-precision vectors and dyadics.

  5. The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process

    DEFF Research Database (Denmark)

    Stockmarr, Anders

    2002-01-01

    Populations of particles dispersed in the 2-dimensional plane from a single pointsource may be grouped as focus expansion patterns, with an exponentially decreasing density, and more diffuse patterns with thicker tails. Exponentially decreasing distributions are often modelled as the result of 2......-dimensional diffusion processes acting to disperse the particles, while thick-tailed distributions tend to be modelled by purely descriptive distributions. Models based on the Cauchy distribution have been suggested, but these have not been related to diffusion modelling. However, the distribution...... of particles dispersed from a point source by a 3-dimensional Brownian motion that incorporates a constant drift, under the condition that the particle starts at a given height and is stopped when it reaches the xy plane (zero height) may be shown to result in both slim-tailed exponentially decreasing...

  6. Sonographic Parameters for Prediction of Miscarriage: Role of 3-Dimensional Volume Measurement.

    Science.gov (United States)

    Wie, Jeong Ha; Choe, Suyearn; Kim, Sa Jin; Shin, Jong Chul; Kwon, Ji Young; Park, In Yang

    2015-10-01

    To evaluate the value of volume measurement using 3-dimensional sonography for prediction of miscarriage. We prospectively enrolled 188 singleton pregnant women at 5 to 9 weeks' gestation. The 3-dimensional sonographic gestational sac volume and yolk sac volume were measured together with the fetal heart rate, gestational sac diameter, and yolk sac diameter. For each sonographic parameter, nomograms were created; z scores were calculated for each measurement, and the values were compared between miscarriage and ongoing pregnancy groups. Sonographic parameters for prediction of miscarriage were evaluated by multivariate analysis, and the screening performance was assessed by a receiver operating characteristic curve. Among the 188 pregnancies, 30 (16.0%) had miscarriage. Multivariate analysis showed that fetal heart rate below the 5th percentile (odds ratio, 6.43), gestational sac diameter below the 5th percentile (odds ratio, 4.87), gestational sac volume below the 5th percentile (odds ratio, 5.25), and yolk sac diameter below the 2.5th or above the 97.5th percentile (odds ratio, 15.86) were significant predictors of miscarriage (P = .018; P = .018; P = .033; and P < .001, respectively). At a false-positive rate of 30%, the detection rate for miscarriage in screening by a combination of fetal heart rate, gestational sac diameter, gestational sac volume, and yolk sac diameter was 77.8%. A small-for-gestational-age gestational sac volume is a significant sonographic predictor of miscarriage, as are fetal bradycardia, a small gestational sac diameter, and a small or large yolk sac diameter. © 2015 by the American Institute of Ultrasound in Medicine.

  7. Correlation Between Transperineal 3-Dimensional Ultrasound Measurements of Levator Hiatus and Female Sexual Function.

    Science.gov (United States)

    Aydin, Serdar; Bakar, Rabia Zehra; Arioğlu Aydin, Çağri; Ateş, Seda

    2017-03-09

    The aim of this study is to investigate the association of sexual functions with levator hiatus biometry measurements and levator ani muscle defect. In 62 heterosexual, sexually active premenopausal women without pelvic floor disorders or urinary incontinence, 3-dimensional transperineal ultrasound imaging was used. Two 3-dimensional volumes were recorded, one at rest and one on Valsalva maneuver. Levator biometry measurements and levator defect were evaluated in an axial plane. Sexual function was assessed by a validated questionnaire, Female Sexual Function Index (FSFI). The primary outcome measure was correlation of sexual functions with the levator hiatus area, transverse and anteroposterior diameters, levator ani muscle thickness, vaginal length, and changes in measurements with Valsalva and levator defect. Forty-two women (67.7%) had low total FSFI scores (<26.55). Levator defect rates were similar in female sexual dysfunction (7/42, 16.7%) and women without female sexual dysfunction (5/20, 25%). The FSFI was negatively and weakly correlated with Δhiatal anteroposterior diameter (r = -0.33, P < 0.009) in the study population. There was a weak and inverse correlation between Δhiatal anteroposterior diameter and arousal (r = -0.35, P < 0.002), desire (r = -0.38, P < 0.001), and orgasm (r = -0.33, P < 0.007). Pain and lubrication did not correlate with any measurement. Hiatal area and diameters at rest are not related to sexual functions. Changes in anteroposterior diameter of the levator hiatus during Valsalva, which may be a sign of pelvic floor laxity or levator muscle weakness, are weakly associated with sexual functions, particularly desire, arousal, and orgasm domains.

  8. Accuracy of 3-dimensional curvilinear measurements on digital models with intraoral scanners.

    Science.gov (United States)

    Mack, Spencer; Bonilla, Tammy; English, Jeryl D; Cozad, Benjamin; Akyalcin, Sercan

    2017-09-01

    Our objectives were to evaluate and compare the digital dental models generated from 2 commercial intraoral scanners with manual measurements when performing 3-dimensional surface measurements along a curved line (curvilinear). Dry mandibles (n = 61) with intact dentition were used. The mandibles were digitized using 2 chair-side intraoral scanners: Cadent iTero (Align Technology, San Jose, Calif) and Lythos Digital Impression system (Ormco, Orange, Calif). Digitized 3-dimensional models were converted to individual stereolithography files and used with commercial software to obtain the curvilinear measurements. Manual measurements were carried out directly on the mandibular teeth. Measurements were made on different locations on the dental arch in various directions. One-sample t tests and linear regression analyses were performed. To further graphically examine the accuracy between the different methods, Bland-Altman plots were computed. The level of significance was set at P 0.05). Bland-Altman analysis showed no fixed bias of 1 approach vs the other, and random errors were detected in all comparisons. Although the mean biases of the digital models obtained by the iTero and Lythos scanners, when compared with direct caliper measurements, were low, the comparison of the 2 intraoral scanners yielded the lowest mean bias. No comparison displayed statistical significance for the t scores; this indicated the absence of proportional bias in these comparisons. The intraoral scanners tested in this study produced digital dental models that were comparatively accurate when performing direct surface measurements along a curved line in 3 dimensions. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  9. Use of 3-Dimensional Printing to Create Patient-Specific Thoracic Spine Models as Task Trainers.

    Science.gov (United States)

    Jeganathan, Jelliffe; Baribeau, Yanick; Bortman, Jeffrey; Mahmood, Feroze; Shnider, Marc; Ahmed, Muneeb; Mashari, Azad; Amir, Rabia; Amador, Yannis; Matyal, Robina

    Thoracic epidural anesthesia is a technically challenging procedure with a high failure rate of 24% to 32% nationwide. Residents in anesthesiology have limited opportunities to practice this technique adequately, and there are no training tools available for this purpose. Our objective was to build a low-cost patient-specific thoracic epidural training model. We obtained thoracic computed tomography scan data from patients with normal and kyphotic spine. The thoracic spine was segmented from the scan, and a 3-dimensional model of the spine was generated and printed. It was then placed in a customized wooden box and filled with different types of silicone to mimic human tissues. Attending physicians in our institution then tested the final model. They were asked to fill out a brief questionnaire after the identification of the landmarks and epidural space using ultrasound and real-time performance for a thoracic epidural on the model (Supplemental Digital Content 1, http://links.lww.com/AAP/A197). Likert scoring system was used for scoring. The time to develop this simulator model took less than 4 days, and the materials cost approximately $400. Fourteen physicians tested the model for determining the realistic sensation while palpating the spinous process, needle entry through the silicone, the "pop" sensation and ultrasound fidelity of the model. Whereas the tactile fidelity scores were "neutral" (3.08, 3.06, and 3.0, respectively), the ultrasound guidance and overall suitability for residents were highly rated as being the most realistic (4.85 and 4.0, respectively). It is possible to develop homemade, low-cost, patient-specific, and high-fidelity ultrasound guidance simulators for resident training in thoracic epidurals using 3-dimensional printing technology.

  10. Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.

    Science.gov (United States)

    Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur

    2017-03-01

    Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (P<.001). The largest dimensional changes were detected in the anterior abutments of both of the definitive casts. The changes mostly occurred in the mesiodistal dimension (P<.001). Within the limitations of this in vitro study, the accuracy of presectioned and postsectioned definitive casts is susceptible

  11. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    Science.gov (United States)

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  12. Comparison of 3-dimensional proton-photon dose distribution and evaluation of side effects after radiotherapy

    CERN Document Server

    Poljanc, K

    2000-01-01

    The use of high precision radiation with particles (protons and ions) allows the radiation of tumors near risk organs and immedicable tumors. The aim of this work is the comparison between normal tissue complication probability for craniocerebral tumors of children and youth during simulation of photontherapy and proton therapy. The multivariate analysis gives the possibility to determine the tolerance dose for certain organs.

  13. Radiation-induced fibrosis in the boost area after three-dimensional conformal radiotherapy with a simultaneous integrated boost technique for early-stage breast cancer : A multivariable prediction model

    NARCIS (Netherlands)

    Hammer, C.; Maduro, J. H.; Bantema-Joppe, E. J.; van der Schaaf, A.; van der Laan, H. P.; Langendijk, J. A.; Crijns, A. P. G.

    2017-01-01

    Background and purpose: To develop a multivariable prediction model for the risk of grade >= 2 fibrosis in the boost area after breast conserving surgery (BCS) followed by three-dimensional conformal radiotherapy (RT) with a simultaneous integrated photon boost (3D-CRT-SIB), five years after RT. Mat

  14. Standard fractionation intensity modulated radiation therapy (IMRT of primary and recurrent glioblastoma multiforme

    Directory of Open Access Journals (Sweden)

    Fuller Clifton D

    2007-07-01

    Full Text Available Abstract Background Intensity-modulated radiation therapy (IMRT affords unparalleled capacity to deliver conformal radiation doses to tumors in the central nervous system. However, to date, there are few reported outcomes from using IMRT, either alone or as a boost technique, for standard fractionation radiotherapy for glioblastoma multiforme (GBM. Methods Forty-two patients were treated with IMRT alone (72% or as a boost (28% after 3-dimensional conformal radiation therapy (3D-CRT. Thirty-three patients with primary disease and 9 patients with recurrent tumors were included. Thirty-four patients (81% had surgery, with gross tumor resection in 13 patients (36%; 22 patients (53% received chemo-radiotherapy. The median total radiation dose for all patients was 60 Gy with a range from 30.6 to 74 Gy. Standard fractions of 1.8 Gy/day to 2.0 Gy/day were utilized. Results Median survival was 8.7 months, with 37 patients (88% deceased at last contact. Nonparametric analysis showed no survival difference in IMRT-boost vs. IMRT-only groups. Conclusion While technically feasible, preliminary results suggest delivering standard radiation doses by IMRT did not improve survival outcomes in this series compared to historical controls. In light of this lack of a survival benefit and the costs associated with use of IMRT, future prospective trials are needed to evaluate non-survival endpoints such as quality of life and functional preservation. Short of such evidence, the use of IMRT for treatment of GBM needs to be carefully rationalized.

  15. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Satoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Harris, Timothy J.; Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yoshimura, Kiyoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C. [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); De Marzo, Angelo M. [Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.

  16. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  17. Conformal field theory

    CERN Document Server

    Ketov, Sergei V

    1995-01-01

    Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general

  18. Stress analysis in platform-switching implants: a 3-dimensional finite element study.

    Science.gov (United States)

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Júnior, Joel Ferreira Santiago; de Carvalho, Paulo Sérgio Perri; de Moraes, Sandra Lúcia Dantas; Noritomi, Pedro Yoshito

    2012-10-01

    The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and peri-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the SolidWorks 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0°), oblique (45°), and lateral (90°) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the peri-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

  19. [Our experiences with the use of 3-dimensional meshes to prevent and to repair parastomal hernias].

    Science.gov (United States)

    Jánó, Zoltán; Mohos, Elemér; Réti, György; Kovács, Tamás; Mohay, József; Berki, Csaba; Horváth, Sándor; Bene, Krisztina; Horzov, Myroslav; Bognár, Gábor; Sándor, Gábor; Szenkovits, Péter; Mohos, Petra; Tornai, Gábor; Nagy, Attila

    2016-12-01

    Albeit there is decreasing tendency nowadays for stoma construction, if it still happens, parastomal herniation might occur in up to 50% of cases afterwards. One third of the cases requires surgical correction, not rarely as an emergency. The different methods of repair can be quite demanding and the complication rates are high. From 2003 we have started to use specially designed 3-dimensional meshes for the prevention and repair of parastomal hernias. From 1st of January 2012 to 1st of June 2016 we have used these devices within the framework of a prospective, controlled, randomized study enrolling the patients in preventive and repair arms. Until now mesh was implanted for prevention at the time of the index operation in 38 cases, (control group: 46 cases), and for repair in 14 cases (control group: 18 cases). Recruitment of the patients will end in 2017. The operations were performed by laparoscopic approach in 22 cases and by open approach in 62 cases in the preventive arm, and 6/26 cases in the repair arm respectively. Mean follow up period is 19.2 months in the mesh group and 22.6 months in the non mesh group in the preventive arm, and 25.9/20.4 months in the repair arm respectively. No statistical analysis was used to interpret these interim results in this paper, we intend to analyze our results at the end of the study. At this stage apparently there is no difference between the group of patients in terms of complications in both arms. Parastomal herniation was found in 18 cases (39.1%) in the non mesh group and in 3 cases (7.8%) in the mesh group in the preventive arm. Recurrency was noted in 8 cases (44%) in the non mesh group, and in 1 case (7.1%) in the mesh group in the repair arm. Our results correlate with other studies where mesh insertion was used to prevent and/or repair parastomal hernias. We attribute these results mainly to the special, 3-dimensional design of the meshes used by us. This construction was developed based on understanding the

  20. Conformational stability of calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte S; Trandum, Christa; Larsen, Nanna Brink

    2005-01-01

    The conformational stability of calreticulin was investigated. Apparent unfolding temperatures (Tm) increased from 31 degrees C at pH 5 to 51 degrees C at pH 9, but electrophoretic analysis revealed that calreticulin oligomerized instead of unfolding. Structural analyses showed that the single C-...

  1. A CONFORMATIONAL ELASTICITY THEORY

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A new statistical theory based on the rotational isomeric state model describing the chain conformational free energy has been proposed. This theory can be used to predict different tensions of rubber elongation for chemically different polymers, and the energy term during the elongation of natural rubber coincides with the experimental one.

  2. Conformal cloak for waves

    CERN Document Server

    Chen, Huanyang; Tyc, Tomas

    2011-01-01

    Conformal invisibility devices are only supposed to work within the validity range of geometrical optics. Here we show by numerical simulations and analytical arguments that for certain quantized frequencies they are nearly perfect even in a regime that clearly violates geometrical optics. The quantization condition follows from the analogy between the Helmholtz equation and the stationary Schrodinger equation.

  3. Conformal General Relativity

    CERN Document Server

    Pervushin, V

    2001-01-01

    The inflation-free solution of problems of the modern cosmology (horizon, cosmic initial data, Planck era, arrow of time, singularity,homogeneity, and so on) is considered in the conformal-invariant unified theory given in the space with geometry of similarity where we can measure only the conformal-invariant ratio of all quantities. Conformal General Relativity is defined as the $SU_c(3)\\times SU(2)\\times U(1)$-Standard Model where the dimensional parameter in the Higgs potential is replaced by a dilaton scalar field described by the negative Penrose-Chernikov-Tagirov action. Spontaneous SU(2) symmetry breaking is made on the level of the conformal-invariant angle of the dilaton-Higgs mixing, and it allows us to keep the structure of Einstein's theory with the equivalence principle. We show that the lowest order of the linearized equations of motion solves the problems mentioned above and describes the Cold Universe Scenario with the constant temperature T and z-history of all masses with respect to an obser...

  4. Conformational changes in biopolymers

    Science.gov (United States)

    Ivanov, Vassili

    2005-12-01

    Biopolymer conformational changes are involved in many biological processes. This thesis summarizes some theoretical and experimental approaches which I have taken at UCLA to explore conformational changes in biopolymers. The reversible thermal denaturation of the DNA double helix is, perhaps, the simplest example of biopolymer conformational change. I have developed a statistical mechanics model of DNA melting with reduced degrees of freedom, which allows base stacking interaction to be taken into account and treat base pairing and stacking separately. Unlike previous models, this model describes both the unpairing and unstacking parts of the experimental melting curves and explains the observed temperature dependence of the effective thermodynamic parameters used in models of the nearest neighbor type. I developed a basic kinetic model for irreversible thermal denaturation of F-actin, which incorporates depolymerization of F-actin from the ends and breaking of F-actin fiber in the middle. The model explains the cooperativity of F-actin thermal denaturation observed by D. Pavlov et al. in differential calorimetry measurements. CG-rich DNA sequences form left-handed Z-DNA at high ionic strength or upon binding of polyvalent ions and some proteins. I studied experimentally the B-to-Z transition of the (CG)6 dodecamer. Improvement of the locally linearized model used to interpret the data gives evidence for an intermediate state in the B-to-Z transition of DNA, contrary to previous research on this subject. In the past 15 years it has become possible to study the conformational changes of biomolecules using single-molecule techniques. In collaboration with other lab members I performed a single-molecule experiment, where we monitored the displacement of a micrometer-size bead tethered to a surface by a DNA probe undergoing the conformational change. This technique allows probing of conformational changes with subnanometer accuracy. We applied the method to detect

  5. Duplication of complete dentures using general-purpose handheld optical scanner and 3-dimensional printer: Introduction and clinical considerations.

    Science.gov (United States)

    Kurahashi, Kosuke; Matsuda, Takashi; Goto, Takaharu; Ishida, Yuichi; Ito, Teruaki; Ichikawa, Tetsuo

    2017-01-01

    To introduce a new clinical procedure for fabricating duplicates of complete dentures by bite pressure impression using digital technology, and to discuss its clinical significance. The denture is placed on a rotary table and the 3-dimensional form of the denture is digitized using a general-purpose handheld optical scanner. The duplicate denture is made of polylactic acid by a 3-dimensional printer using the 3-dimensional data. This procedure has the advantages of wasting less material, employing less human power, decreasing treatment time at the chair side, lowering the rates of contamination, and being readily fabricated at the time of the treatment visit. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  6. Whirling orbits around twirling black holes from conformal symmetry

    CERN Document Server

    Hadar, Shahar

    2016-01-01

    Dynamics in the throat of rapidly rotating Kerr black holes is governed by an emergent near-horizon conformal symmetry. The throat contains unstable circular orbits at radii extending from the ISCO down to the light ring. We show that they are related by conformal transformations to physical plunges and osculating trajectories. These orbits have angular momentum arbitrarily higher than that of ISCO. Using the conformal symmetry we compute analytically the radiation produced by the physical orbits. We also present a simple formula for the full self-force on such trajectories in terms of the self-force on circular orbits.

  7. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  8. The effect of stereoscopic anaglyphic 3-dimensional video didactics on learning neuroanatomy.

    Science.gov (United States)

    Goodarzi, Amir; EdM, Sara Monti; Lee, Darrin; Girgis, Fady

    2017-07-29

    The teaching of neuroanatomy in medical education has historically been based on didactic instruction, cadaveric dissections, and intra-operative experience for students. Multiple novel 3-Dimensional (3D) modalities have recently emerged. Among these, stereoscopic anaglyphic video is easily accessible and affordable, however, its effects have not yet formally been investigated. This study aimed to investigate if 3D stereoscopic anaglyphic video instruction in neuroanatomy could improve learning for content-naive students, as compared to 2D video instruction. A single-site controlled prospective case control study was conducted at the School of Education. Content knowledge was assessed at baseline, followed by the presentation of an instructional neuroanatomy video. Participants viewed the video in either 2D or 3D format, then completed a written test of skull base neuroanatomy. Pre-test and post-test performances were analyzed with independent t-tests and ANCOVA. 249 subjects completed the study. At baseline, the 2D (n=124, F=97) and 3D groups (n=125, F=96) were similar, although the 3D group was older by 1.7 years (p=.0355) and the curricula of participating classes differed (pvideo instruction into curricula without careful integration is insufficient to promote learning over 2D video. Published by Elsevier Inc.

  9. Research on the method of cavitations resistance in a piezoelectric pump with 3-dimensional mesh structure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-hui; XIA Qi-xiao; Bai Heng-jun; NING Hong-gang; ONUKI Akiyoshi

    2006-01-01

    The volume valve piezoelectric pump has received increasing attention from many areas because of its different characteristics such as the absence of chemical pollution and electromagnetic pollution.However,when the pump is working,it produces cavitations and the air bubbles that originate from these will flow out of the pump.Cavitations occurring in the pump will bring out noise and shorten the life of the pump.Furthermore,air bubbles flowing out of the pump will hinder its application in areas such as medical treatment and health care where blood transfusion and infusion are concerned.As a solution to this disadvantage,the CR3DMS (cavitations resistance with 3-dimensional mesh structure) method is developed,which is tested and verified to be effective on not only reducing the occurrence of cavitations and eliminating cavitations' flowing out,but also restraining the emission of noise.In conclusion,the pump with CR3DMS,on the relationship between flow and driving frequency and the relationship between flow and the number of Resistant-Layers in both theory and test,are analyzed.

  10. Embedding and publishing interactive, 3-dimensional, scientific figures in Portable Document Format (PDF) files.

    Science.gov (United States)

    Barnes, David G; Vidiassov, Michail; Ruthensteiner, Bernhard; Fluke, Christopher J; Quayle, Michelle R; McHenry, Colin R

    2013-01-01

    With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2).

  11. The Usefulness of 3-Dimensional Virtual Simulation Using Haptics in Training Orotracheal Intubation

    Directory of Open Access Journals (Sweden)

    Dong Hoon Lee

    2013-01-01

    Full Text Available Objectives. Airway control is the most critical treatment. The most common and basic method of endotracheal intubation is orotracheal intubation. To perform accurate and rapid tracheal intubation, appropriate education and training are required. We developed the virtual simulation program utilizing the 3-dimensional display and haptic device to exercise orotracheal intubation, and the educational effect of this program was compared with that of the mannequin method. Method. The control group used airway mannequin and virtual intubation group was trained with new program. We videotaped both groups during objective structured clinical examination (OSCE with airway mannequin. The video was reviewed and scored, and the rate of success and time were calculated. Result. The success rate was 78.6% in virtual intubation group and 93.3% in control group (P=0.273. There was no difference in overall score of OSCE (21.14 ± 4.28 in virtual intubation group and 23.33 ± 4.45 in control group, P=0.188, the time spent in successful intubation (P=0.432, and the number of trials (P>0.101. Conclusion. The virtual simulation with haptics had a similar effect compared with mannequin, but it could be more cost effective and convenient than mannequin training in time and space.

  12. Optimal iodine dose for 3-dimensional multidetector-row CT angiography of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomoaki, E-mail: ichikawa@yamanashi.ac.jp [Department of Radiology, University of Yamanashi, Yamanashi (Japan); Motosugi, Utaroh; Morisaka, Hiroyuki; Sou, Hironobu; Onohara, Kojiro; Sano, Katsuhiro; Araki, Tsutomu [Department of Radiology, University of Yamanashi, Yamanashi (Japan)

    2012-09-15

    Purpose: To clarify the optimal iodine dose of contrast material for 3-dimensional multidetector-row CT angiography (3D-MDCTA) of the venous vasculature of the liver using volume rendering technique. Materials and methods: This study included 103 patients who were randomly assigned to 5 contrast-enhanced MDCT protocol groups with different body-weight-tailored doses of contrast material: 500, 600, 630, 650, and 700 mgI/kg body weight. The arterial, portal, and hepatic parenchymal phases were obtained to evaluate enhancement values of the aorta, portal vein, and hepatic vein. Visualization of the portal and hepatic veins on the volume-rendering images of 3D-MDCTA was evaluated using a 5-point grade. Dunnett's test was used to compare the mean enhancement value and mean grades of image quality (700 mgI/kg dose group was control). Results: The mean enhancement values of portal and hepatic vein in the group with 500 and 600 mgI/kg were significantly lower than those of the control group. During visual assessment, a significantly lower mean grades were observed in 500 mgI/kg groups for the portal vein, and 500 and 600 mgI/kg groups for hepatic vein. There were no significant intergroup differences in mean enhancement values and visual assessment among the groups using 630 mgI/kg or more. Conclusion: Iodine doses of 630 mgI/kg was recommended for 3D-MDCTA.

  13. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report.

    Science.gov (United States)

    Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott

    2016-03-01

    Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor.

  14. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  15. Guided Autotransplantation of Teeth: A Novel Method Using Virtually Planned 3-dimensional Templates.

    Science.gov (United States)

    Strbac, Georg D; Schnappauf, Albrecht; Giannis, Katharina; Bertl, Michael H; Moritz, Andreas; Ulm, Christian

    2016-12-01

    The aim of this study was to introduce an innovative method for autotransplantation of teeth using 3-dimensional (3D) surgical templates for guided osteotomy preparation and donor tooth placement. This report describes autotransplantation of immature premolars as treatment of an 11-year-old boy having suffered severe trauma with avulsion of permanent maxillary incisors. This approach uses modified methods from guided implant surgery by superimposition of Digital Imaging and Communications in Medicine files and 3D data sets of the jaws in order to predesign 3D printed templates with the aid of a fully digital workflow. The intervention in this complex case could successfully be accomplished by performing preplanned virtual transplantations with guided osteotomies to prevent bone loss and ensure accurate donor teeth placement in new recipient sites. Functional and esthetic restoration could be achieved by modifying methods used in guided implant surgery and prosthodontic rehabilitation. The 1-year follow-up showed vital natural teeth with physiological clinical and radiologic parameters. This innovative approach uses the latest diagnostic methods and techniques of guided implant surgery, enabling the planning and production of 3D printed surgical templates. These accurate virtually predesigned surgical templates could facilitate autotransplantation in the future by full implementation of recommended guidelines, ensuring an atraumatic surgical protocol. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Pilot study of endoscopic retrograde 3-dimensional - computed tomography enteroclysis for the assessment of Crohn's disease.

    Science.gov (United States)

    Tanabe, Hiroki; Ito, Takahiro; Inaba, Yuhei; Ando, Katsuyoshi; Nomura, Yoshiki; Ueno, Nobuhiro; Kashima, Shin; Moriichi, Kentaro; Fujiya, Mikihiro; Okumura, Toshikatsu

    2017-01-01

    Endoscopic retrograde ileography (ERIG) is developed in our institute and applied clinically for the diagnosis and assessment of the Crohn's disease activity. We have further improved the technique using 3-dimensional - computed tomography enteroclysis (3D-CTE) and conducted a retrospective study to determine the feasibility and the diagnostic value of endoscopic retrograde 3D-CTE (ER 3D-CTE) in Crohn's disease patients in a state of remission. Thirteen Crohn's patients were included in this pilot study. CTE was performed after the infusion of air or CO2 through the balloon tube following conventional colonoscopy. The primary endpoint of this study was to assess the safety of this method. Secondarily, the specific findings of Crohn's disease and length of the visualized small intestine were assessed. The procedures were completed without any adverse events. Gas passed through the small intestine and enterographic images were obtained in 10 out of 13 cases, but, in the remaining patients, insertion of the balloon tubes into the terminal ileum failed. Various features specific to Crohn's disease were visualized using ER 3D-CTE. A cobble stone appearance or hammock-like malformation was specific and effective for diagnosing Crohn's disease and the features of anastomosis after the surgical operations were also well described. Therefore, this technique may be useful after surgery. In this study, ER 3D-CTE was performed safely in Crohn's disease patients and may be used for the diagnosis and follow-up of this disease.

  17. Tunneling currents between carbon nanotubes inside the 3-dimensional potential of a dielectric matrix

    Science.gov (United States)

    Tsagarakis, M. S.; Xanthakis, J. P.

    2017-07-01

    We have examined the tunneling currents between CNTs dispersed in a dielectric matrix as is normally the case in a tensile stress or toxic gas sensors. Due to the randomness of the immersion process the CNTs are at random angles and configurations between them, thus producing a 3-dimensional potential (3-D). We have produced a method that solves the Laplace equation for this type of problem and uses the WKB formulation to calculate the transmission coefficient between CNTs. We have then shown that the tunneling currents between a pair of CNTs depend critically on their relative angle and configuration. In particular we have shown that the tunneling currents do not occur only along a CNT tip to CNT tip configuration but other more efficient paths exist which give a current higher by two orders of magnitude from what a simple 1D theory would give. On the other hand the tunneling current between non-coplanar CNTs is negligible. We conclude that such phenomena cannot be analyzed by a simple 1-dimensional WKB theory and the percolation threshold necessary for conduction may be lower than the one such a theory would predict.

  18. Feasibility of 3-dimensional video-assisted thoracic surgery (3D-VATS) for pulmonary resection.

    Science.gov (United States)

    Dickhoff, Chris; Li, Wilson W; Symersky, Petr; Hartemink, Koen J

    2015-01-01

    Two-dimensional video-assisted thoracic surgery (2D-VATS) has gained its position in daily practise. Although very useful, its two-dimensional view has its drawbacks when performing pulmonary resections. We report our first experience with 3-dimensional video-assisted surgery (3D-VATS). Advantages and differences with 2D-VATS and robotic surgery (RS) are discussed. To evaluate feasibility, we scheduled patients for surgery by 3D-VATS who would normally be treated with 2D-VATS. The main difference of the equipment in 3D-VATS compared with former VATS equipment, is the flexible camera-tip (100-degrees) and the necessary 3D-glasses. Four patients were successfully operated for anatomic pulmonary resections. On-the-structure dissection was easily performed and with the flexible camera-tip, a perfect view can be obtained, with clear visualisation of important (hilar) structures. These features highly facilitate the surgeon in tissue preparation and recognition of the dissection planes. In our opinion, 3D-VATS is superior to 2D-VATS for performing anatomic pulmonary resection and we expect an improvement in terms of operation time and learning curve. Furthermore, it is a valuable alternative for RS at lower costs.

  19. Hamiltonian Analysis of 3-Dimensional Connection Dynamics in Bondi-like Coordinates

    Science.gov (United States)

    Huang, Chao-Guang; Kong, Shi-Bei

    2017-08-01

    The Hamiltonian analysis for a 3-dimensional connection dynamics of {s}{o}(1,2), spanned by {L-+, L-2, L+2 } instead of {L01, L02, L12 }, is first conducted in a Bondi-like coordinate system. The symmetry of the system is clearly presented. A null coframe with 3 independent variables and 9 connection coefficients are treated as basic configuration variables. All constraints and their consistency conditions, the solutions of Lagrange multipliers as well as the equations of motion are presented. There is no physical degree of freedom in the system. The Bañados-Teitelboim-Zanelli (BTZ) spacetime is discussed as an example to check the analysis. Unlike the ADM formalism, where only non-degenerate geometries on slices are dealt with and the Ashtekar formalism, where non-degenerate geometries on slices are mainly concerned though the degenerate geometries may be studied as well, in the present formalism the geometries on the slices are always degenerate though the geometries for the spacetime are not degenerate. Supported by National Natural Science Foundation of China under Grant Nos. 11275207 and 11690022

  20. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf , Muhammad N.

    2016-01-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity. PMID:28008983

  1. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Science.gov (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  2. Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment.

    Science.gov (United States)

    Langridge, Benjamin; Momin, Sheikh; Coumbe, Ben; Woin, Evelina; Griffin, Michelle; Butler, Peter

    2017-07-17

    The use of 3-dimensional (3D) printing in medicine has rapidly expanded in recent years as the technology has developed. The potential uses of 3D printing are manifold. This article provides a systematic review of the uses of 3D printing within surgical training and assessment. A structured literature search of the major literature databases was performed in adherence to PRISMA guidelines. Articles that met predefined inclusion and exclusion criteria were appraised with respect to the key objectives of the review and sources of bias were analysed. Overall, 49 studies were identified for inclusion in the qualitative analysis. Heterogeneity in study design and outcome measures used prohibited meaningful meta-analysis. 3D printing has been used in surgical training across a broad range of specialities but most commonly in neurosurgery and otorhinolaryngology. Both objective and subjective outcome measures have been studied, demonstrating the usage of 3D printed models in training and education. 3D printing has also been used in anatomical education and preoperative planning, demonstrating improved outcomes when compared to traditional educational methods and improved patient outcomes, respectively. 3D printing technology has a broad range of potential applications within surgical education and training. Although the field is still in its relative infancy, several studies have already demonstrated its usage both instead of and in addition to traditional educational methods. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. Current Status of 3-Dimensional Speckle Tracking Echocardiography: A Review from Our Experiences

    Science.gov (United States)

    Ishizu, Tomko; Aonuma, Kazutaka

    2014-01-01

    Cardiac function analysis is the main focus of echocardiography. Left ventricular ejection fraction (LVEF) has been the clinical standard, however, LVEF is not enough to investigate myocardial function. For the last decade, speckle tracking echocardiography (STE) has been the novel clinical tool for regional and global myocardial function analysis. However, 2-dimensional imaging methods have limitations in assessing 3-dimensional (3D) cardiac motion. In contrast, 3D echocardiography also has been widely used, in particular, to measure LV volume measurements and assess valvular diseases. Joining the technology bandwagon, 3D-STE was introduced in 2008. Experimental studies and clinical investigations revealed the reliability and feasibility of 3D-STE-derived data. In addition, 3D-STE provides a novel deformation parameter, area change ratio, which have the potential for more accurate assessment of overall and regional myocardial function. In this review, we introduced the features of the methodology, validation, and clinical application of 3D-STE based on our experiences for 7 years. PMID:25031794

  4. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model

    Science.gov (United States)

    Tezera, Liku B; Bielecka, Magdalena K; Chancellor, Andrew; Reichmann, Michaela T; Shammari, Basim Al; Brace, Patience; Batty, Alex; Tocheva, Annie; Jogai, Sanjay; Marshall, Ben G; Tebruegge, Marc; Jayasinghe, Suwan N; Mansour, Salah; Elkington, Paul T

    2017-01-01

    Cell biology differs between traditional cell culture and 3-dimensional (3-D) systems, and is modulated by the extracellular matrix. Experimentation in 3-D presents challenges, especially with virulent pathogens. Mycobacterium tuberculosis (Mtb) kills more humans than any other infection and is characterised by a spatially organised immune response and extracellular matrix remodelling. We developed a 3-D system incorporating virulent mycobacteria, primary human blood mononuclear cells and collagen–alginate matrix to dissect the host-pathogen interaction. Infection in 3-D led to greater cellular survival and permitted longitudinal analysis over 21 days. Key features of human tuberculosis develop, and extracellular matrix integrity favours the host over the pathogen. We optimised multiparameter readouts to study emerging therapeutic interventions: cytokine supplementation, host-directed therapy and immunoaugmentation. Each intervention modulates the host-pathogen interaction, but has both beneficial and harmful effects. This methodology has wide applicability to investigate infectious, inflammatory and neoplastic diseases and develop novel drug regimes and vaccination approaches. DOI: http://dx.doi.org/10.7554/eLife.21283.001 PMID:28063256

  5. Casting of 3-dimensional footwear prints in snow with foam blocks.

    Science.gov (United States)

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear.

  6. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    Science.gov (United States)

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  7. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    Science.gov (United States)

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures.

  8. A customized bolus produced using a 3-dimensional printer for radiotherapy.

    Science.gov (United States)

    Kim, Shin-Wook; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2014-01-01

    Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient's skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D) printer and evaluated its feasibility for radiotherapy. We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses.

  9. Development of a 3-Dimensional Dosimetry System for Leksell Gamma Knife-Perfexion

    CERN Document Server

    Yoon, KyoungJun; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-01-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife-Perfexion TM (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S;Tb phosphor sheets for dosimetric measurements. Also, to compensate the lack of backscatter, we located a 1 cm thick PMMA plate downstream of the active layer. The PMMA plate was transparent for scintillation lights to reach the CCD with 1200x1200 pixels by a 5.2 um pitch. Using this system, three hundred images by a 0.2 mm slice gap were acquired under each of three collimator setups, i.e. 4 mm, 8 mm, and 16 mm, respectively. The 2D projected images taken by CCD camera were compared with the dose distributions measured by EBT3 films in the same conditions. All ...

  10. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O’Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  11. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    Science.gov (United States)

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  12. PAMELA positron and electron spectra are reproduced by 3-dimensional cosmic-ray modeling

    CERN Document Server

    Gaggero, Daniele; Maccione, Luca; Di Bernardo, Giuseppe; Evoli, Carmelo

    2013-01-01

    The PAMELA collaboration recently released the $e^+$ absolute spectrum between 1 and 300 GeV in addition to the positron fraction and $e^-$ spectrum previously measured in the same time period. We use the newly developed 3-dimensional upgrade of the DRAGON code and the charge dependent solar modulation HelioProp code to consistently describe those data. We obtain very good fits of all data sets if a $e^+$ + $e^-$ hard extra-component peaked at 1 TeV is added to a softer $e^-$ background and the secondary $e^\\pm$ produced by the spallation of cosmic ray proton and helium nuclei. All sources are assumed to follow a realistic spiral arm spatial distribution. Remarkably, PAMELA data do not display any need of charge asymmetric extra-component. Finally, plain diffusion, or low re-acceleration, propagation models which are tuned against nuclear data, nicely describe PAMELA lepton data with no need to introduce a low energy break in the proton and Helium spectra.

  13. [Establishment of 3-dimensional finite element model of human knee joint and its biomechanics].

    Science.gov (United States)

    Yuan, Ping; Wang, Wanchun

    2010-01-01

    To establish a 3-dimensional (3-D) finite element knee model in healthy Chinese males, to verify the validity of the model, and to analyze the biomechanics of this model under axial load, flexion moment, varus/valgus torque, and internal/external axial torque. A set of consecutive transectional computerized tomography images of normal male knee joints in upright weight-bearing position was selected. With image processing and inversion technology, the 3-D finite element model of the normal knee joint was established through the software ABAQOUS/STANDARD Version-6.5.Biomechanical analysis of this model was processed under axial load, flexion moment, varus/valgus torque, and internal/external axial torque. A 3-D finite element model of healthy Chinese males was successfully established. The ranges of motion of varus and valgus were both small and the difference between them has no statistical significance (P>0.05). The motion of internal and external rotation of the knee took place only in flexion situation.The range of motion of external rotation was larger than that of internal rotation in the same knee (Pknee resembles the actual knee segments. It can imitate the knee response to different loads. This model could be used for further study on knee biomechanics.

  14. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    Science.gov (United States)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  15. 3-dimensionally integrated photo-detector for neutrino physics and beyond

    Science.gov (United States)

    Retiere, Fabrice

    2016-09-01

    Silicon photo-multipliers (SiPMs) are a promising solution for the detection of scintillation light of liquid Xenon and Argon in applications requiring minimum radioactivity content such as neutrinoless double beta decay. The nEXO experiment in particular is planning to use SiPM planes covering 5 m2 for the detection of the light emitted within 5tons of liquid Xenon. The 3-dimensionally digital integrated SiPMs (3DdSiPMs) is an emerging technology that if successful would challenge the analog SiPM technology. Indeed, by combining separate photo-detector and electronics chips within a single package, 3DdSiPM achieve excellent performances for photon counting and time stamping, while dissipating minimum power. Being mostly based on high purity silicon chips, 3DdSiPMs are also expected to achieve excellent radiopurity.The development of 3DdSiPMs for applications in liquid Xenon is expected to progress rapidly by altering the design of the first successful chip assembly developed for medical imaging, focusing on minimizing power dissipation and large area (> cm2) scaling. In this talk we will describe the 3DdSiPM concept a solution for ``light to bit conversion'' within a single package and show how it may revolutionize light detection in noble-gas liquids and beyond.

  16. A 3-dimensional rigid cluster thorax model for kinematic measurements during gait.

    Science.gov (United States)

    Kiernan, D; Malone, A; O'Brien, T; Simms, C K

    2014-04-11

    The trunk has been shown to work as an active segment rather than a passenger unit during gait and it is felt that trunk kinematics should be given more consideration during gait assessment. While 3-dimensional assessment of the thorax with respect to the pelvis and laboratory can provide a comprehensive description of trunk movement, the majority of existing 3-D thorax models demonstrate shortcomings such as the need for multiple skin marker configurations, difficult landmark identification and practical issues for assessment on female subjects. A small number of studies have used rigid cluster models to quantify thorax movement, however the models and points of attachment are not well described and validation rarely considered. The aim of this study was to propose an alternative rigid cluster 3-D thorax model to quantify movement during gait and provide validation of this model. A rigid mount utilising active markers was developed and applied over the 3rd thoracic vertebra, previously reported as an area of least skin movement artefact on the trunk. The model was compared to two reference thorax models through simultaneous recording during gait on 15 healthy subjects. Excellent waveform similarity was demonstrated between the proposed model and the two reference models (CMC range 0.962-0.997). Agreement of discrete parameters was very-good to excellent. In addition, ensemble average graphs demonstrated almost identical curve displacement between models. The results suggest that the proposed model can be confidently used as an alternative to other thorax models in the clinical setting.

  17. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    Energy Technology Data Exchange (ETDEWEB)

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru [Wakayama Medical Univ., Wakayama (Japan); Nishimura, Michihiko

    2001-08-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  18. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery

    DEFF Research Database (Denmark)

    Shearing, P.R.; Howard, L.E.; Jørgensen, Peter Stanley

    2010-01-01

    The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub-volumes ......The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub...

  19. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty.

    Science.gov (United States)

    Wijdh-den Hamer, Inez J; Bouma, Wobbe; Lai, Eric K; Levack, Melissa M; Shang, Eric K; Pouch, Alison M; Eperjesi, Thomas J; Plappert, Theodore J; Yushkevich, Paul A; Hung, Judy; Mariani, Massimo A; Khabbaz, Kamal R; Gleason, Thomas G; Mahmood, Feroze; Acker, Michael A; Woo, Y Joseph; Cheung, Albert T; Gillespie, Matthew J; Jackson, Benjamin M; Gorman, Joseph H; Gorman, Robert C

    2016-09-01

    Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Intraoperative transesophageal 2-dimensional echocardiography and 3-dimensional echocardiography were performed in 50 patients undergoing undersized annuloplasty for ischemic mitral regurgitation. Two-dimensional echocardiography annular diameter and tethering parameters were measured in the apical 2- and 4-chamber views. A customized protocol was used to assess 3-dimensional annular geometry and regional leaflet tethering. Recurrence (grade ≥2) was assessed with 2-dimensional transthoracic echocardiography at 6 months. Preoperative 2- and 3-dimensional annular geometry were similar in all patients with ischemic mitral regurgitation. Preoperative 2- and 3-dimensional leaflet tethering were significantly higher in patients with recurrence (n = 13) when compared with patients without recurrence (n = 37). Multivariate logistic regression revealed preoperative 2-dimensional echocardiography posterior tethering angle as an independent predictor of recurrence with an optimal cutoff value of 32.0° (area under the curve, 0.81; 95% confidence interval, 0.68-0.95; P = .002) and preoperative 3-dimensional echocardiography P3 tethering angle as an independent predictor of recurrence with an optimal cutoff value of 29.9° (area under the curve, 0.92; 95% confidence interval, 0.84-1.00; P 3-dimensional geometric multivariate model can be augmented by adding basal aneurysm/dyskinesis (area under the curve, 0.94; 95% confidence interval, 0.87-1.00; P 3-dimensional echocardiography P3 tethering angle is a stronger predictor of ischemic mitral regurgitation recurrence after annuloplasty than preoperative 2-dimensional echocardiography posterior tethering angle, which is highly influenced by viewing plane. In

  20. A Conformal Extension Theorem based on Null Conformal Geodesics

    CERN Document Server

    Lübbe, Christian

    2008-01-01

    In this article we describe the formulation of null geodesics as null conformal geodesics and their description in the tractor formalism. A conformal extension theorem through an isotropic singularity is proven by requiring the boundedness of the tractor curvature and its derivatives to sufficient order along a congruence of null conformal geodesic. This article extends earlier work by Tod and Luebbe.

  1. Clinical Research on Three-Dimensional Conformal Radiotherapy of Non-Small Cell Lung Cancer

    Institute of Scientific and Technical Information of China (English)

    Baolin Yuan; Tao Zhang; Jianqi Luo; Liang Zhang; Suqun Chen; Lina Yang; Yong Wu; Yuying Ma

    2008-01-01

    OBJECTIVE To investigate the clinical efficacy and toxic effect of the 3-dimensional conformal radiation therapy (3DCRT) for non-small cell lung cancer (NSCLC).METHODS Fifty-two patients with the Stage-I and W NSCLC were treated with 3DCRT. Cross analysis of the clinical data was conducted in the comparison between the 52 cases with 3DCRT and the other 50 cases with the conventional radiation therapy (CRT). In the 3DCRT group, only the primary tumor and positive lymph-node draining area were included in the clinical target area, setting 4 to 6 coplanar or non-coplanar irradiation fields, with 2 Gy or 3 Gy/fraction, 1 fraction a day and 5 fractions per week.The total dose ranged from a test dose (DT) of 66 Gy to 72 Gy. In the CRT group, the field area contained the primary tumor plus the homolateral hilum of the lung, the mediastinum superior or hol-mediastinum, and opposed anteroposterior irradiation. When the dosage reached DT 36~40 Gy, an oblique portal administered radiation was conducted in order to avoid injuring the spinal cord.The DT was 1.8~2.0 Gy/fraction, 1 fraction a day, 5 fractions per week, with a total dose of 60 Gy to 70 Gy.RESULTS The therapeutic effect (CR + PR) was 90.4% in the 3DCRT group, and was 72% in the CRT group. There was statistically significant difference between the two groups, P 0.05. The toxic reaction was 12.5% and 23.7% respectively in the 3DCRT and CRT groups.Acute radioactive esophagitis and leucopenia were markedly lower in the 3DCRT group than in the CRT group. There was a statistically significant difference between the groups, P <0.05. Notoxic reaction of Stage-Ⅲ and over was found in the 3DCRT group during radiation therapy.CONCLUSION The 3DCRT method has a satisfactory short-term efficacy and improvement of clinical symptoms in treating NSCLC, with a mild toxic reaction and good tolerance in patients.It can be used for enhancing the tumor-control rate and bettering the quality of life.

  2. Transportation Conformity Training and Presentations

    Science.gov (United States)

    EPA's OTAQ has provided multiple conformity training sessions in the past to assist state and local governments in implementing conformity requirements. As training information is prepared for other venues, it will be posted on this page.

  3. From integrable to conformal theory

    Energy Technology Data Exchange (ETDEWEB)

    Babelon, O. (Paris-6 Univ., 75 (France). Lab. de Physique Theorique et Hautes Energies)

    1990-12-01

    Working in the context of Toda field theory, we establish the relationship between their integrability properties and their conformal structure, thereby clarifying the role of the Yang-Baxter equation in conformal field theory. (orig.).

  4. On conformal lenses

    CERN Document Server

    Chen, Huanyang; Li, Hui

    2011-01-01

    Plane mirror can make one object into two for observers on the object's side. Yet, there seems no way to achieve the same effect for observers from all directions. In this letter, we will design a new class of gradient index lenses from multivalued optical conformal mapping. We shall call them the conformal lenses. Such lenses can transform one source into two (or even many) omnidirectionally. Like the overlapped illusion optics does, they can even transform multiple sources into one. Rather than using negative index materials, implementation here only needs isotropic positive index materials like other gradient index lenses. One obvious drawback however, is that they have singular permittivity values which restrict them to functioning at one single frequency. This however, needs not be the case when applying transmutation methods, which enable the lenses to work in a broadband frequency range.

  5. Multiscale conformal pattern transfer

    Science.gov (United States)

    Lodewijks, Kristof; Miljkovic, Vladimir; Massiot, Inès; Mekonnen, Addis; Verre, Ruggero; Olsson, Eva; Dmitriev, Alexandre

    2016-06-01

    We demonstrate a method for seamless transfer from a parent flat substrate of basically any lithographic top-down or bottom-up pattern onto essentially any kind of surface. The nano- or microscale patterns, spanning macroscopic surface areas, can be transferred with high conformity onto a large variety of surfaces when such patterns are produced on a thin carbon film, grown on top of a sacrificial layer. The latter allows lifting the patterns from the flat parent substrate onto a water-air interface to be picked up by the host surface of choice. We illustrate the power of this technique by functionalizing broad range of materials including glass, plastics, metals, rough semiconductors and polymers, highlighting the potential applications in in situ colorimetry of the chemistry of materials, anti-counterfeit technologies, biomolecular and biomedical studies, light-matter interactions at the nanoscale, conformal photovoltaics and flexible electronics.

  6. Conformational flexibility of aspartame.

    Science.gov (United States)

    Toniolo, Claudio; Temussi, Pierandrea

    2016-05-01

    L-Aspartyl-L-phenylalanine methyl ester, better known as aspartame, is not only one of the most used artificial sweeteners, but also a very interesting molecule with respect to the correlation between molecular structure and taste. The extreme conformational flexibility of this dipeptide posed a huge difficulty when researchers tried to use it as a lead compound to design new sweeteners. In particular, it was difficult to take advantage of its molecular model as a mold to infer the shape of the, then unknown, active site of the sweet taste receptor. Here, we follow the story of the 3D structural aspects of aspartame from early conformational studies to recent docking into homology models of the receptor. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 376-384, 2016.

  7. Conformal Complementarity Maps

    CERN Document Server

    Barbón, José L F

    2013-01-01

    We study quantum cosmological models for certain classes of bang/crunch singularities, using the duality between expanding bubbles in AdS with a FRW interior cosmology and perturbed CFTs on de Sitter space-time. It is pointed out that horizon complementarity in the AdS bulk geometries is realized as a conformal transformation in the dual deformed CFT. The quantum version of this map is described in full detail in a toy model involving conformal quantum mechanics. In this system the complementarity map acts as an exact duality between eternal and apocalyptic Hamiltonian evolutions. We calculate the commutation relation between the Hamiltonians corresponding to the different frames. It vanishes only on scale invariant states.

  8. Conformal boundaries of warped products

    DEFF Research Database (Denmark)

    Kokkendorff, Simon Lyngby

    2006-01-01

    In this note we prove a result on how to determine the conformal boundary of a type of warped product of two length spaces in terms of the individual conformal boundaries. In the situation, that we treat, the warping and conformal distortion functions are functions of distance to a base point....... The result is applied to produce examples of CAT(0)-spaces, where the conformal and ideal boundaries differ in interesting ways....

  9. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Mary, E-mail: maryfeng@umich.edu [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Normolle, Daniel [Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Pan, Charlie C. [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Dawson, Laura A. [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario (Canada); Amarnath, Sudha [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Ensminger, William D. [Department of Internal Medicine, Division of Hematology Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States); Lawrence, Theodore S.; Ten Haken, Randall K. [Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan (United States)

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  10. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.

    Science.gov (United States)

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz

    2016-12-01

    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.

  11. The accuracy of reformatted images using a new virtual 3-dimensional dental implant system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Seok; Kim, Eun Kyung; Han, Won Jeong [Dankook University College of Medicine, Seoul (Korea, Republic of)

    2003-09-15

    To compare the measurements of the mandible and the detectability of the mandibular canal on reformatted images using a newly developed 3-dimensional implant simulation program with traditionally used CT multiplanar reconstruction program and true measurements. Ten dry dog mandibles were used in this study. Occlusal templates for CT examination were fabricated and marked with gutta percha at ten sites. Axial CT scans were taken and reconstructed using DentaScan (D group) and Vimplant program (V group), and each mandible was sectioned at the previously marked sites (R group). Maximum vertical height (H) and maximum width (W) of the mandible, the distances from buccal border of the mandibular canal to the most buccal aspect of the mandible (X), and the distance from the superior border of the mandibular canal to the alveolar crest (Y) were measured, and the mandibular measurements in each group were compared. Detectability of mandibular canal was evaluated using a 3-point scale in both V and D groups by three oral radiologists and compared. H in the V group was slightly greater than that in the D group, and W and X in the V group was slightly less than those in the D group. H in the V group was less than that in the R group, and W and X in the V group was larger than those in the R group. The detectability of the mandibular canal did not show statistically significant differences between V and D groups. The results of the experiment show that the newly developed, inexpensive Vimplant simulation program can be used as an alternative to the traditionally used, and more expensive CT multiplanar reconstruction program.

  12. A customized bolus produced using a 3-dimensional printer for radiotherapy.

    Directory of Open Access Journals (Sweden)

    Shin-Wook Kim

    Full Text Available OBJECTIVE: Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient's skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D printer and evaluated its feasibility for radiotherapy. METHODS: We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. RESULTS: The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. CONCLUSIONS: A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses.

  13. 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body.

    Science.gov (United States)

    Kim, Choong; Lee, Kang Sun; Bang, Jae Hoon; Kim, Young Eyn; Kim, Min-Cheol; Oh, Kwang Wook; Lee, Soo Hyun; Kang, Ji Yoon

    2011-03-07

    This paper proposes a microfluidic device for the on-chip differentiation of an embryoid body (EB) formed in a microwell via 3-dimensional cultures of mouse embryonic carcinoma (EC) cells. The device adjusted the size of the EB by fluid volume, differentiated the EB by chemical treatment, and evaluated its effects in EC cells by on-chip immunostaining. A microfluidic resistance network was designed to control the size of the embryoid body. The duration time and flow rate into each microwell regulated the initial number of trapped cells in order to adjust the size of the EB. The docked cells were aggregated and formed a spherical EB on the non-adherent surface of the culture chip for 3 days. The EC cells in the EB were then differentiated into diverse cell lineages without attachment for an additional 4 days; meanwhile, retinoic acid (RA) was applied without serum to direct the cells into early neuronal lineage. On-chip immunostaining of the EB in the microwell with a neuronal marker was conducted to assess the differentiation-inducing ability of RA. The effect of RA on neuronal differentiation was analyzed with confocal microscopic images of the TuJ1 marker. The RA-treated cells expressed more neuronal markers and appeared as mature neuronal cells with long neurites. The fluorescence intensity of the TuJ1 in the RA-treated EB was twice that observed in the non-treated EB on day 5. It was demonstrated that the pre-screening of inducing chemicals on the early neuronal differentiation of EC cells in a single microfluidic chip was indeed feasible. This chip is expected to constitute a useful tool for assessing the early differentiation of ES cells without attachment, and is also expected to prove useful as an anti-cancer drug test platform for the cytotoxicity assay with cellular spheroids.

  14. Sensitivity of 3-Dimensional Sonography in Preoperative Evaluation of Parathyroid Glands in Patients With Primary Hyperparathyroidism.

    Science.gov (United States)

    Frank, Susan J; Goldman-Yassen, Adam E; Koenigsberg, Tova; Libutti, Steven K; Koenigsberg, Mordecai

    2017-09-01

    Preoperative localization of parathyroid adenomas in patients with primary hyperparathyroidism facilitates targeted surgery. We assessed the sensitivity of 3-dimensional (3D) sonography for preoperative localization of abnormal parathyroid glands. We conducted a retrospective review of patients who underwent parathyroidectomy for primary hyperparathyroidism at a single site at our institution. We compared preoperative 2-dimensional (2D) sonography, 3D sonography, and sestamibi scans with final gland localization at surgery. Two readers reviewed the sonograms to assess inter-reader variability. From January 2010 through April 2015, 52 patients underwent parathyroidectomy after preoperative 2D sonography, 3D sonography, and sestamibi scans. Three-dimensional sonography had sensitivity of 88-92% compared with 69-71% for 2D sonography for gland localization. In patients in whom sonography and sestamibi scans localized abnormalities to the same side, the sensitivities were 100% (43 of 43) for 3D sonography and 96% (48 of 50) for 2D sonography. Three-dimensional sonography had significantly higher sensitivity for localization of glands smaller than 500 mg compared with 2D sonography (88% versus 58%; P = .012). There was better inter-reader agreement between the radiologists when using 3D sonography (κ = 0.65) compared with 2D sonography (κ = 0.41). We found a significantly higher sensitivity and better inter-reader agreement for 3D sonography compared with 2D sonography for preoperative identification of abnormal parathyroid glands, especially among smaller glands. © 2017 by the American Institute of Ultrasound in Medicine.

  15. A Customized Bolus Produced Using a 3-Dimensional Printer for Radiotherapy

    Science.gov (United States)

    Kim, Shin-Wook; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2014-01-01

    Objective Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient’s skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D) printer and evaluated its feasibility for radiotherapy. Methods We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. Results The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. Conclusions A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses. PMID:25337700

  16. Validation of a Novel 3-Dimensional Sonographic Method for Assessing Gastric Accommodation in Healthy Adults.

    Science.gov (United States)

    Buisman, Wijnand J; van Herwaarden-Lindeboom, Maud Y A; Mauritz, Femke A; El Ouamari, Mourad; Hausken, Trygve; Olafsdottir, Edda J; van der Zee, David C; Gilja, Odd Helge

    2016-07-01

    A novel automated 3-dimensional (3D) sonographic method has been developed for measuring gastric volumes. This study aimed to validate and assess the reliability of this novel 3D sonographic method compared to the reference standard in 3D gastric sonography: freehand magneto-based 3D sonography. A prospective study with 8 balloons (in vitro) and 16 stomachs of healthy volunteers (in vivo) was performed. After a 500-mL liquid meal, 1 preprandial and 3 postprandial volume scans of the stomachs were performed by the novel 3D sonographic method and the current reference-standard 3D sonographic method. The in vitro study showed a mean volume difference between the novel method and the true balloon volume of -1.3 mL; limits of agreement (LoA) were small (-39.3 to12.3 mL), with an intraclass correlation coefficient (ICC) of 0.998. The in vivo study showed a mean gastric volume of 321 mL between the novel method and the freehand magneto-based method, with a mean volume difference of -4.4 mL; LoA were -40.1 to 31.2 mL, and the ICC was 0.991. The intraobserver and interobserver variability rates were low, at 0.8 mL (LoA, -24.0 to 25.6 mL), with an ICC of 0.995, and 0.5 mL (LoA, of -26.8 to 27.8 mL), with an ICC of 0.999, respectively. The novel 3D sonographic method with automated acquisition showed good agreement with the current reference-standard gastric 3D sonographic method, with low intraobserver and interobserver variability. This novel 3D sonographic method is a valid and reliable technique for determining gastric accommodation.

  17. An Innovative 3-dimensional Model of the Epitympanum for Teaching of Middle Ear Anatomy.

    Science.gov (United States)

    Ng, Chew Lip; Liu, Xuandao; Chee, Shuo Chian Jeremy; Ngo, Raymond Yeow Seng

    2015-11-01

    To facilitate teaching of the anatomy of the epitympanum, we developed and evaluated the effectiveness of an interactive 3-dimensional (3D) computer model that can be viewed from all angles. Questionnaire-based prospective randomized controlled trial. Undergraduate medical education program. The model was created using Google Sketchup, a 3D modeling software. We recruited 72 graduating medical students and randomized them into 2 groups. One group was given the 3D model and reading materials on the epitympanic anatomy (3D group), while the other group relied on reading material and pictures (2-dimensional [2D] group). A questionnaire and anatomy quiz assessed the utility of the 3D model in learning the anatomy of the epitympanum. The mean age of the participants was 22 years. There were no statistically significant differences in demographics and previous experience with 3D models. The 3D group was significantly more confident in its ability to identify structures of the epitympanum on pictures and computed tomography scans when compared to the 2D group. Most participants were in favor of the model as a useful learning tool and preferred to use it with an instructor. In the anatomy quiz, the 3D group fared significantly better, achieving a mean score of 65.1% compared to 32.4% in the 2D group (P < .001). The 3D teaching model of the epitympanum is efficacious in short-term recall. By allowing the learner to visualize relations of the epitympanum from all directions, the model aids in appreciation of anatomy and identifications of structures of this region. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  18. A New Reliable Method for Evaluating Gallbladder Dynamics: The 3-Dimensional Sonographic Examination.

    Science.gov (United States)

    Serra, Carla; Pallotti, Francesca; Bortolotti, Mauro; Caputo, Carla; Felicani, Cristina; De Giorgio, Roberto; Barbara, Giovanni; Nardi, Elena; Labate, Antonio Maria Morselli

    2016-02-01

    The purpose of this study was to compare conventional 2-dimensional (2D) B-mode sonography with 3-dimensional (3D) sonography for assessing gallbladder volume and contractility. Gallbladder volume and contractility were evaluated in 32 healthy volunteers after fasting and abstinence from smoking for 8 hours and after a standardized balanced liquid meal. The gallbladder was evaluated with 2D sonography (with the use of the ellipsoid method) and with 3D sonography using a volumetric matrix probe. Both measurements were made by an operator who was skilled in sonography and an unskilled operator. The group of volunteers was subdivided into 2 subgroups including 16 participants, which represented the "2 moments" of acquisition by the techniques, particularly for the unskilled operator. The postprandial volumes obtained with 3D sonography were significantly lower in comparison to the volumes obtained with 2D sonography (P= .013), and there was a significant difference between the measurements made by the skilled and unskilled operators only for 2D sonography (P< .001), whereas between the 2 moments of acquisition by the 3D technique, there was no significant difference. The reproducibility of the technique for evaluation of gallbladder volumes was higher for 3D sonography than 2D sonography, particularly for the postprandial evaluation. The new 3D sonographic method using a volumetric matrix probe is a simple, reliable, and more reproducible technique than conventional 2D sonography, even if performed by an unskilled operator, and it allows a reliable stimulation test for a gallbladder dynamic study. © 2016 by the American Institute of Ultrasound in Medicine.

  19. In Vivo 3-Dimensional Kinematics of Thumb Carpometacarpal Joint During Thumb Opposition.

    Science.gov (United States)

    Kawanishi, Yohei; Oka, Kunihiro; Tanaka, Hiroyuki; Okada, Kiyoshi; Sugamoto, Kazuomi; Murase, Tsuyoshi

    2017-09-07

    This study primarily aimed to demonstrate the screw-home rotation of the thumb carpometacarpal (CMC) joint and the function of surrounding ligaments during thumb oppositional motion. A 3-dimensional kinematic analysis of the thumb CMC joint was conducted using data derived from computed tomography of 9 healthy volunteers. Scans were obtained in the neutral forearm and wrist position and the thumb in maximum radial abduction, maximum palmar abduction, and maximum opposition. The movements of the first metacarpal and the palmar and dorsal bases on the trapezium during thumb oppositional motion from radial abduction through palmar abduction were quantified using a coordinate system originating on the trapezium. In addition to the kinematic analyses, the length of virtual ligaments, including the anterior oblique, ulnar collateral, dorsal radial, dorsal central (DCL), and posterior oblique ligament (POL), were calculated at each thumb position. From radial abduction to opposition of the thumb through palmar abduction, the first metacarpal was abducted, internally rotated, and flexed on the trapezium. The palmar base of the first metacarpal moved in the palmar-ulnar direction, and the dorsal base moved in the palmar-distal direction along the concave surface of the trapezium. Although the DCL and POL lengthened, the lengths of other ligaments did not change significantly. During thumb oppositional motion, internal rotation of the first metacarpal occurred, with the palmar base rotating primarily with respect to the dorsal base. The DCL and POL may be strained in thumb functional positions. Kinematic variables indicated a screw-home rotation of the thumb CMC joint and the contribution of the dorsal ligaments to the stability of the rotation on the pivot point. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  20. A new platform for serological analysis based on porous 3-dimensional polyethylene sinter bodies.

    Science.gov (United States)

    Alasel, Mohammed; Keusgen, Michael

    2017-10-25

    A new sensitive and selective platform, three-dimensional immunosensor, has been developed for a rapid serological diagnosis; detection of a Borrelia infection was considered as a model assay. The immunosensor is based on a 3-dimensional (3D) porous solid surface (sinter body) with dimensions of 2×2.5mm where a recombinant variable lipoprotein surface-exposed protein (VlsE; Borrelia-antigen) is immobilized by different techniques. The sinter body served as a robust and inexpensive carrier, which facilitated a successful hydrophobic adsorption as well as covalent immobilization of the antigen with sufficient amounts of on the surface. Because of sinter body's porosity, the detection could be performed in an immune affinity flow system based on a little disposable plastic column. The flow of reagents through the column is advantageous in terms of reducing the non-specific interaction and shortening the test time. Furthermore, three labels were tested for a colorimetric detection: i) a horseradish peroxidase (HRP) labeled secondary antibody, ii) nanoparticles based on Sudan IV, and iii) gold nanoparticles modified with protein A. HRP secondary labeled antibody provides the most sensitive test, 1000 fold dilution of serum sample can be clearly detected in only 20min. Gold nanoparticles modified with protein A were used as a direct label or as a catalyst for reduction of silver ions. Direct detection with gold nanoparticles provides short time of analysis (5min) while detection of metallic silver required longer time (12min) but with improved sensitivity. Nanoparticles based on Sudan IV showed high background and were less favorable. The assay is distinctive because of the rapid analysis time with all used labels, longest 20min. Compared to classical serological methods for Borrelia diagnosis, the developed method offers a simple, rapid and reliable tool of analysis with minimal cost and can be easily transferred to other infectious diseases. Copyright © 2017 Elsevier

  1. Usefulness of 3-dimensional stereotactic surface projection FDG PET images for the diagnosis of dementia

    Science.gov (United States)

    Kim, Jahae; Cho, Sang-Geon; Song, Minchul; Kang, Sae-Ryung; Kwon, Seong Young; Choi, Kang-Ho; Choi, Seong-Min; Kim, Byeong-Chae; Song, Ho-Chun

    2016-01-01

    Abstract To compare diagnostic performance and confidence of a standard visual reading and combined 3-dimensional stereotactic surface projection (3D-SSP) results to discriminate between Alzheimer disease (AD)/mild cognitive impairment (MCI), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). [18F]fluorodeoxyglucose (FDG) PET brain images were obtained from 120 patients (64 AD/MCI, 38 DLB, and 18 FTD) who were clinically confirmed over 2 years follow-up. Three nuclear medicine physicians performed the diagnosis and rated diagnostic confidence twice; once by standard visual methods, and once by adding of 3D-SSP. Diagnostic performance and confidence were compared between the 2 methods. 3D-SSP showed higher sensitivity, specificity, accuracy, positive, and negative predictive values to discriminate different types of dementia compared with the visual method alone, except for AD/MCI specificity and FTD sensitivity. Correction of misdiagnosis after adding 3D-SSP images was greatest for AD/MCI (56%), followed by DLB (13%) and FTD (11%). Diagnostic confidence also increased in DLB (visual: 3.2; 3D-SSP: 4.1; P < 0.001), followed by AD/MCI (visual: 3.1; 3D-SSP: 3.8; P = 0.002) and FTD (visual: 3.5; 3D-SSP: 4.2; P = 0.022). Overall, 154/360 (43%) cases had a corrected misdiagnosis or improved diagnostic confidence for the correct diagnosis. The addition of 3D-SSP images to visual analysis helped to discriminate different types of dementia in FDG PET scans, by correcting misdiagnoses and enhancing diagnostic confidence in the correct diagnosis. Improvement of diagnostic accuracy and confidence by 3D-SSP images might help to determine the cause of dementia and appropriate treatment. PMID:27930593

  2. Albedo and heat transport in 3-dimensional model simulations of the early Archean climate

    Directory of Open Access Journals (Sweden)

    H. Kienert

    2013-01-01

    Full Text Available At the beginning of the Archean eon (ca. 3.8 billion yr ago, the Earth's climate state was significantly different from today due to the lower solar luminosity, smaller continental fraction, higher rotation rate and, presumably, significantly larger greenhouse gas concentrations. All these aspects play a role in solutions to the "faint young Sun problem" which must explain why the ocean surface was not fully frozen at that time. Here, we present 3-dimensional model simulations of climate states that are consistent with early Archean boundary conditions and have different CO2 concentrations, aiming at an understanding of the fundamental characteristics of the early Archean climate system. We focus on three states: one of them is ice-free, one has the same mean surface air temperature of 288 K as today's Earth and the third one is the coldest stable state in which there is still an area with liquid surface water (i.e. the critical state at the transition to a "snowball Earth". We find a reduction in meridional heat transport compared to today which leads to a steeper latitudinal temperature profile and has atmospheric as well as oceanic contributions. Ocean surface velocities are largely zonal, and the strength of the atmospheric meridional circulation is significantly reduced in all three states. These aspects contribute to the observed relation between global mean temperature and albedo, which we suggest as a parameterisation of the ice-albedo feedback for 1-dimensional model simulations of the early Archean and thus the faint young Sun problem.

  3. Delineation of right and left lobe of the liver accessed by 3-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Teleuhan, Nadira [Hiroshima Univ. (Japan). Graduate School of Biomedical Sciences

    2003-02-01

    Adequate delineation of right and left liver lobes is very important especially in partial hepatectomy. We analyzed the sub-volumes of middle hepatic vein (MHV) draining area divided by the Cantlie's plane and MHV plane using CT 3-dimensional images. We examined 10 donor candidates for liver transplantation with multi-detector-row CT. Three-dimensional rendering images of the liver parenchyma and the hepatic vein were created. After identifying hepatic vein draining area, liver volume was divided into three hepatic vein-draining areas. The MHV draining area was divided by two different planes, Cant lie's plane and MHV plane, and draining volumes from right and left lobes were calculated. Total liver volume and right, middle, left hepatic vein-draining volume (ratio of total liver volume) were 1472{+-}259 ml, 708{+-}150 ml (48{+-}10%), 414{+-}175 ml (28{+-}12%), 350{+-}110 ml (24{+-}7%) divided by Cant lie's plane, draining volumes from right and left lobes were 306{+-}200 ml (21{+-}14%) and 108{+-}69 ml (7{+-}5%). Divided by MHV plane, draining volumes from right and left lobes were 198{+-}123 ml (13{+-}8%) and 216{+-}73 ml (15{+-}5%). Volume difference of two sub-volumes was 108{+-}92 ml (7{+-}6%, 0-270 ml). The proportion of MHV draining volume had a considerable dispersion among 10 persons. In most of cases the draining volumes from the left lobe were bigger than those from right lobes. (author)

  4. A 3-dimensional mathematic cylinder phantom for the evaluation of the fundamental performance of SPECT.

    Science.gov (United States)

    Onishi, Hideo; Motomura, Nobutoku; Takahashi, Masaaki; Yanagisawa, Masamichi; Ogawa, Koichi

    2010-03-01

    Degradation of SPECT images results from various physical factors. The primary aim of this study was the development of a digital phantom for use in the characterization of factors that contribute to image degradation in clinical SPECT studies. A 3-dimensional mathematic cylinder (3D-MAC) phantom was devised and developed. The phantom (200 mm in diameter and 200 mm long) comprised 3 imbedded stacks of five 30-mm-long cylinders (diameters, 4, 10, 20, 40, and 60 mm). In simulations, the 3 stacks and the background were assigned radioisotope concentrations and attenuation coefficients. SPECT projection datasets that included Compton scattering effects, photoelectric effects, and gamma-camera models were generated using the electron gamma-shower Monte Carlo simulation program. Collimator parameters, detector resolution, total photons acquired, number of projections acquired, and radius of rotation were varied in simulations. The projection data were formatted in Digital Imaging and Communications in Medicine (DICOM) and imported to and reconstructed using commercial reconstruction software on clinical SPECT workstations. Using the 3D-MAC phantom, we validated that contrast depended on size of region of interest (ROI) and was overestimated when the ROI was small. The low-energy general-purpose collimator caused a greater partial-volume effect than did the low-energy high-resolution collimator, and contrast in the cold region was higher using the filtered backprojection algorithm than using the ordered-subset expectation maximization algorithm in the SPECT images. We used imported DICOM projection data and reconstructed these data using vendor software; in addition, we validated reconstructed images. The devised and developed 3D-MAC SPECT phantom is useful for the characterization of various physical factors, contrasts, partial-volume effects, reconstruction algorithms, and such, that contribute to image degradation in clinical SPECT studies.

  5. Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications.

    Science.gov (United States)

    Moroni, L; Hendriks, J A A; Schotel, R; de Wijn, J R; van Blitterswijk, C A

    2007-02-01

    This report describes a novel system to create rapid prototyped 3-dimensional (3D) fibrous scaffolds with a shell-core fiber architecture in which the core polymer supplies the mechanical properties and the shell polymer acts as a coating providing the desired physicochemical surface properties. Poly[(ethylene oxide) terephthalate-co-poly(butylene) terephthalate] (PEOT/PBT) 3D fiber deposited (3DF) scaffolds were fabricated and examined for articular cartilage tissue regeneration. The shell polymer contained a higher molecular weight of the initial poly(ethylene glycol) (PEG) segments used in the copolymerization and a higher weight percentage of the PEOT domains compared with the core polymer. The 3DF scaffolds entirely produced with the shell or with the core polymers were also considered. After 3 weeks of culture, scaffolds were homogeneously filled with cartilage tissue, as assessed by scanning electron microscopy. Although comparable amounts of entrapped chondrocytes and of extracellular matrix formation were found for all analyzed scaffolds, chondrocytes maintained their rounded shape and aggregated during the culture period on shell-core 3DF scaffolds, suggesting a proper cell differentiation into articular cartilage. This finding was also observed in the 3DF scaffolds fabricated with the shell composition only. In contrast, cells spread and attached on scaffolds made simply with the core polymer, implying a lower degree of differentiation into articular cartilaginous tissue. Furthermore, the shell-core scaffolds displayed an improved dynamic stiffness as a result of a "prestress" action of the shell polymer on the core one. In addition, the dynamic stiffness of the constructs increased compared with the stiffness of the bare scaffolds before culture. These findings suggest that shell-core 3DF PEOT/PBT scaffolds with desired mechanical and surface properties are a promising solution for improved cartilage tissue engineering.

  6. New stereoacuity test using a 3-dimensional display system in children.

    Directory of Open Access Journals (Sweden)

    Sang Beom Han

    Full Text Available The previously developed 3-dimensional (3D display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle with a wide range of crossed horizontal disparities (3000 to 20 arcsec were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional or behind (proposed the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus.

  7. Using a clinical protocol for orthognathic surgery and assessing a 3-dimensional virtual approach: current therapy.

    Science.gov (United States)

    Quevedo, Luis A; Ruiz, Jessica V; Quevedo, Cristobal A

    2011-03-01

    Oral and maxillofacial surgeons who perform orthognathic surgery face major changes in their practices, and these challenges will increase in the near future, because the extraordinary advances in technology applied to our profession are not only amazing but are becoming the standard of care as they promote improved outcomes for our patients. Orthognathic surgery is one of the favorite areas of practicing within the scope of practice of an oral and maxillofacial surgeon. Our own practice in orthognathic surgery has completed over 1,000 surgeries of this type. Success is directly related to the consistency and capability of the surgical-orthodontic team to achieve predictable, stable results, and our hypothesis is that a successful result is directly related to the way we take our records and perform diagnosis and treatment planning following basic general principles. Now that we have the opportunity to plan and treat 3-dimensional (3D) problems with 3D technology, we should enter into this new era with appropriate standards to ensure better results, instead of simply enjoying these new tools, which will clearly show not only us but everyone what we do when we perform orthognathic surgery. Appropriate principles need to be taken into account when implementing this new technology. In other words, new technology is welcome, but we do not have to reinvent the wheel. The purpose of this article is to review the current protocol that we use for orthognathic surgery and compare it with published protocols that incorporate new 3D and virtual technology. This report also describes our approach to this new technology.

  8. Reproducibility of a 3-dimensional gyroscope in measuring shoulder anteflexion and abduction

    Directory of Open Access Journals (Sweden)

    Penning Ludo I F

    2012-07-01

    Full Text Available Abstract Background Few studies have investigated the use of a 3-dimensional gyroscope for measuring the range of motion (ROM in the impaired shoulder. Reproducibility of digital inclinometer and visual estimation is poor. This study aims to investigate the reproducibility of a tri axial gyroscope in measurement of anteflexion, abduction and related rotations in the impaired shoulder. Methods Fifty-eight patients with either subacromial impingement (27 or osteoarthritis of the shoulder (31 participated. Active anteflexion, abduction and related rotations were measured with a tri axial gyroscope according to a test retest protocol. Severity of shoulder impairment and patient perceived pain were assessed by the Disability of Arm Shoulder and Hand score (DASH and the Visual Analogue Scale (VAS. VAS scores were recorded before and after testing. Results In two out of three hospitals patients with osteoarthritis (n = 31 were measured, in the third hospital patients with subacromial impingement (n = 27. There were significant differences among hospitals for the VAS and DASH scores measured before and after testing. The mean differences between the test and retest means for anteflexion were −6 degrees (affected side, 9 (contralateral side and for abduction 15 degrees (affected side and 10 degrees (contralateral side. Bland & Altman plots showed that the confidence intervals for the mean differences fall within −6 up to 15 degrees, individual test - retest differences could exceed these limits. A simulation according to ‘Generalizability Theory’ produces very good coefficients for anteflexion and related rotation as a comprehensive measure of reproducibility. Optimal reproducibility is achieved with 2 repetitions for anteflexion. Conclusions Measurements were influenced by patient perceived pain. Differences in VAS and DASH might be explained by different underlying pathology. These differences in shoulder pathology however did not alter

  9. Diagnostic ability of 3-dimensional contrast-enhanced MR angiography in identifying vertebral basilar artery stenosis.

    Science.gov (United States)

    Yi, Ting-yu; Chen, Wen-huo; Zhang, Mei-fang; Chen, Yue-hong; Cai, Ruo-wei; Wu, Zong-zhong; Wu, Yan-min; Shi, Yan-chuan; Chen, Bai-ling; Guo, Ting-hui; Wu, Chao-xin; Yang, Miao-xiong; Chen, Xue-jiao

    2016-04-15

    Vertebral-basilar artery stenosis is associated with posterior circulation infarction. So correct detection of vertebral basilar artery stenosis is very important. Studies concerning the sensitivity and specificity of 3-dimensional contrast enhanced MR angiography (3D-CE-MRA) in detecting vertebral basilar artery stenosis is generally lacking. Retrospectively reviewed the imagines of consecutive one hundred and forty-nine Chinese patients with ischemic stroke or vertigo/dizziness who underwent 3D-CE-MRA and DSA. DSA and CE-MRA images were studied separately and to determine the presence of mild, moderate, or severe stenosis of the vertebral-basilar arteries. Analysis combined with vascular origin image was applied when evaluating the vertebral artery origin stenosis. Sensitivity, specificity, positive and negative predictive values, and the accuracy of 3D-CE-MRA in detecting and grading of vertebral-basilar artery stenosis were calculated. Compared with DSA, sensitivity, specificity and accuracy of 3D-CE-MRA in detecting of vertebral artery origin ≥70% stenosis or occlusion was 97.1%, 77.4% and 81.9%, but diagnostic consistency was poor (K=0.59); Analysis combined with vascular origin images, the specificity (97.8%), accuracy (92.9%) and consistency (K=0.826) was significantly improved. 3D-CE-MRA is a sensitive and noninvasive technique for the detection of vertebral artery origin stenosis. Furthermore, analysis combined with vascular origin image would improve the diagnostic accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles.

    Science.gov (United States)

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin

    2013-07-01

    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  11. Dynamic in vivo 3-dimensional moment arms of the individual quadriceps components.

    Science.gov (United States)

    Wilson, Nicole A; Sheehan, Frances T

    2009-08-25

    The purpose of this study was to provide the first in vivo 3-dimensional (3D) measures of knee extensor moment arms, measured during dynamic volitional activity. The hypothesis was that the vastus lateralis (VL) and vastus medialis (VM) have significant off-axis moment arms compared to the central quadriceps components. After obtaining informed consent, three 3D dynamic cine phase contrast (PC) MRI sets (x,y,z velocity and anatomic images) were acquired from 22 subjects during active knee flexion and extension. Using a sagittal-oblique and two coronal-oblique imaging planes, the origins and insertions of each quadriceps muscle were identified and tracked through each time frame by integrating the cine-PC velocity data. The moment arm (MA) and relative moment (RM, defined as the cross product of the tendon line-of-action and a line connecting the line-of-action with the patellar center of mass) were calculated for each quadriceps component. The tendencies of the VM and VL to produce patellar tilt were evenly balanced. Interestingly, the magnitude of RM-P(Spin) for the VM and VL is approximately four times greater than the magnitude of RM-P(Tilt) for the same muscles suggesting that patellar spin may play a more important role in patellofemoral kinematics than previously thought. Thus, a force imbalance that leads to excessive lateral tilt, such as VM weakness in patellofemoral pain syndrome, would produce excessive negative spin (positive spin: superior patellar pole rotates laterally) and to a much greater degree. This would explain the increased negative spin found in recent studies of patellar maltracking. Assessing the contribution of each quadriceps component in three dimensions provides a more complete understanding of muscle functionality.

  12. Analysis of 3-dimensional finite element after reconstruction of impaired ankle deltoid ligament.

    Science.gov (United States)

    Ji, Yunhan; Tang, Xianzhong; Li, Yifan; Xu, Wei; Qiu, Wenjun

    2016-12-01

    We compared four repair techniques for impaired ankle ligament deltoideum, namely Wiltberger, Deland, Kitaoka and Hintermann using a 3-dimensional finite element. We built an ankle ligament deltoideum model, including six pieces of bone structures, gristles and main ligaments around the ankle. After testing the model, we built an impaired ligament deltoideum model plus four reconstruction models. Subsequently, different levels of force on ankles with different flexion were imposed and ankle biomechanics were compared. In the course of bending, from plantar flexion 20° to back flexion 20°, the extortion of talus decreased while the eversion increased. Four reconstruction models failed to bring back the impaired ankle to normal, with an obvious increase of extortion and eversion. The Kitaoka technique was useful to reduce the extortion angle in a consequential manner. Compared with the other three techniques, the Kitaoka technique produced better results for extortion angle and the difference was statistically significant. However, in case of eversion, there was no significant difference among the four techniques (P>0.05). Lateral ligament's stress in all the four models was different from the normal one. When the ankle was imposed with extortion moment of force, stress of anterior talofibular ligament with the Kitaoka reconstruction method was close to that of the complete deltoid ligament. When ankle was imposed with eversion moment of force, stress of anterior talofibular ligament with Kitaoka and Deland reconstruction methods were close to that of the complete deltoid ligament. We concluded that Kitaoka and Deland tendon reconstruction technique could recover impaired ankle deltoid ligament and re-established its normal biomechanics characteristics.

  13. Interphase Chromosome Conformation and Chromatin-Chromatin Interactions in Human Epithelial Cells Cultured Under Different Gravity Conditions

    Science.gov (United States)

    Zhang, Ye; Wong, Michael; Hada, Megumi; Wu, Honglu

    2015-01-01

    Microgravity has been shown to alter global gene expression patterns and protein levels both in cultured cells and animal models. It has been suggested that the packaging of chromatin fibers in the interphase nucleus is closely related to genome function, and the changes in transcriptional activity are tightly correlated with changes in chromatin folding. This study explores the changes of chromatin conformation and chromatin-chromatin interactions in the simulated microgravity environment, and investigates their correlation to the expression of genes located at different regions of the chromosome. To investigate the folding of chromatin in interphase under various culture conditions, human epithelial cells, fibroblasts, and lymphocytes were fixed in the G1 phase. Interphase chromosomes were hybridized with a multicolor banding in situ hybridization (mBAND) probe for chromosome 3 which distinguishes six regions of the chromosome as separate colors. After images were captured with a laser scanning confocal microscope, the 3-dimensional structure of interphase chromosome 3 was reconstructed at multi-mega base pair scale. In order to determine the effects of microgravity on chromosome conformation and orientation, measures such as distance between homologous pairs, relative orientation of chromosome arms about a shared midpoint, and orientation of arms within individual chromosomes were all considered as potentially impacted by simulated microgravity conditions. The studies revealed non-random folding of chromatin in interphase, and suggested an association of interphase chromatin folding with radiation-induced chromosome aberration hotspots. Interestingly, the distributions of genes with expression changes over chromosome 3 in cells cultured under microgravity environment are apparently clustered on specific loci and chromosomes. This data provides important insights into how mammalian cells respond to microgravity at molecular level.

  14. From certain minimal surfaces in the 5-sphere to minimal Lagrangian submanifolds of the 3-dimensional complex projective space

    NARCIS (Netherlands)

    Bolton, J.; Scharlach, C.; Vrancken, L.

    2001-01-01

    In a previous paper it was shown how to associate with a Lagrangian submanifold satisfying Chen's equality in 3-dimensional complex projective space, a minimal surface in the 5-sphere with ellipse of curvature is a circle. In this paper we focus on the reverse construction.

  15. Cochlear coordinates in regard to cochlear implantation: a clinically individually applicable 3 dimensional CT-based method.

    NARCIS (Netherlands)

    Verbist, B.M.; Joemai, R.M.; Briaire, J.J.; Teeuwisse, W.M.; Veldkamp, W.J.H.; Frijns, J.H.

    2010-01-01

    SETTING: Cochlear implant (CI)/tertiary referral center. SUBJECTS: Twenty-five patients implanted with an Advanced Bionics HiRes90K HiFocus1J CI. STUDY DESIGN/MAIN OUTCOME MEASURES: A 3-dimensional cylindrical coordinate system is introduced using the basal turn of the cochlea as the x and y planes

  16. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Vivian M. Hsu, MD

    2014-09-01

    Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  17. Low energy scattering parameters from the solutions of the non-relativistic Yukawa model on a 3-dimensional lattice

    CERN Document Server

    De Soto, F

    2006-01-01

    The numerical solutions of the non-relativistic Yukawa model on a 3-dimensional size lattice with periodic boundary conditions are obtained. The possibility to extract the corresponding -- infinite space -- low energy parameters and bound state binding energies from eigensates computed at finite lattice size is discussed.

  18. Two Additional Remarks on Conformism

    OpenAIRE

    Schlicht, Ekkehart

    2014-01-01

    Abstract This note offers two comments on the article “Social Influences towards Conformism in Economic Experiments” by Hargreaves Heap that is to appear in the Economics e-Journal. One relates to the concept of conformism, the other lines out some phenomena where an explicit recognition of group processes, such as conformism, may be analytically helpful.

  19. Radiosurgical planning of meningiomas: compromises with conformity.

    Science.gov (United States)

    Rowe, Jeremy G; Walton, Lee; Vaughan, Paul; Malik, Irfan; Radatz, Matthias; Kemeny, Andras

    2004-01-01

    The radiosurgical planning of meningiomas frequently necessitates compromises between irradiating tumour and risking damage to adjacent structures. In selected cases, we resolved this by excluding part of the tumour from the prescription isodose volume. Most of these compromises or 'suboptimal' plans achieved growth control. Growth control could not be related to conformity indices or to various measures of the radiation dose received by the meningioma. Examining recurrences, 75% arose from dura outside the original treatment field. These findings are discussed in terms of dose prescription protocols and the use of conformity indices in planning. The importance of the dural origin of meningiomas is well established in surgical practice, as reflected by Simpson's grades, but may be equally significant in radiosurgical practice.

  20. Biomechanical Properties of 3-Dimensional Printed Volar Locking Distal Radius Plate: Comparison With Conventional Volar Locking Plate.

    Science.gov (United States)

    Kim, Sung-Jae; Jo, Young-Hoon; Choi, Wan-Sun; Lee, Chang-Hun; Lee, Bong-Gun; Kim, Joo-Hak; Lee, Kwang-Hyun

    2017-09-01

    This study evaluated the biomechanical properties of a new volar locking plate made by 3-dimensional printing using titanium alloy powder and 2 conventional volar locking plates under static and dynamic loading conditions that were designed to replicate those seen during fracture healing and early postoperative rehabilitation. For all plate designs, 12 fourth-generation synthetic composite radii were fitted with volar locking plates according to the manufacturers' technique after segmental osteotomy. Each specimen was first preloaded 10 N and then was loaded to 100 N, 200 N, and 300 N in phases at a rate of 2 N/s. Each construct was then dynamically loaded for 2,000 cycles of fatigue loading in each phase for a total 10,000 cycles. Finally, the constructs were loaded to a failure at a rate of 5 mm/min. All 3 plates showed increasing stiffness at higher loads. The 3-dimensional printed volar locking plate showed significantly higher stiffness at all dynamic loading tests compared with the 2 conventional volar locking plates. The 3-dimensional printed volar locking plate had the highest yield strength, which was significantly higher than those of 2 conventional volar locking plates. A 3-dimensional printed volar locking plate has similar stiffness to conventional plates in an experimental model of a severely comminuted distal radius fracture in which the anterior and posterior metaphyseal cortex are involved. These results support the potential clinical utility of 3-dimensional printed volar locking plates in which design can be modified according the fracture configuration and the anatomy of the radius. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  1. Electrodynamics with a Future Conformal Horizon

    Science.gov (United States)

    Ibison, Michael

    2010-12-01

    We investigate the impact of singularities occurring at future times in the Friedmann equations expressed in conformal coordinates to determine the consequences of extending the time coordinate through the singularity for the physics of matter and radiation occupying just one side. Mostly this involves investigation of the relationship between the metric with line element ds2 = a2(t)(dt2-dx2) and time reversal symmetry within electrodynamics. It turns out compatibility between these two is possible only if there is a singular physical event at the time of the singularity or if the topology is not trivial. In both cases the singularity takes on the appearance of a time-like mirror. We are able to demonstrate a relationship between the broken time symmetry in electrodynamics characterized by retarded radiation and radiation reaction and the absolute conformal time relative to the time of the singularity, i.e. between the Electromagnetic and Cosmological arrows of time. It is determined that the Wheeler-Feynman reasoning but with the future absorber replaced by the Cosmological mirror leads to a conflict with observation unless matter is strongly bound electromagnetically to the environment.

  2. Electrodynamics with a Future Conformal Horizon

    CERN Document Server

    Ibison, Michael

    2010-01-01

    We investigate the impact of singularities occurring at future times in solutions of the Friedmann equations expressed in conformal coordinates. We focus on the consequences of extending the time coordinate through the singularity for the physics of matter and radiation occupying just one side. Mostly this involves investigation of the relationship between the metric with line element ds^2 = a^2(t) * (dt^2 - dx^2) and time reversal symmetry within electrodynamics. It turns out compatibility between these two is possible only if there is a singular physical event at the time of the singularity or if the topology is not trivial. In both cases the singularity takes on the appearance of a time-like mirror. We are able to demonstrate a relationship between the broken time symmetry in electrodynamics characterized by retarded radiation and radiation reaction and the absolute conformal time relative to the time of the singularity, i.e. between the Electromagnetic and Cosmological arrows of time. It is determined tha...

  3. Human embryonic growth and development of the cerebellum using 3-dimensional ultrasound and virtual reality.

    Science.gov (United States)

    Rousian, M; Groenenberg, I A L; Hop, W C; Koning, A H J; van der Spek, P J; Exalto, N; Steegers, E A P

    2013-08-01

    The aim of our study was to evaluate the first trimester cerebellar growth and development using 2 different measuring techniques: 3-dimensional (3D) and virtual reality (VR) ultrasound visualization. The cerebellum measurements were related to gestational age (GA) and crown-rump length (CRL). Finally, the reproducibility of both the methods was tested. In a prospective cohort study, we collected 630 first trimester, serially obtained, 3D ultrasound scans of 112 uncomplicated pregnancies between 7 + 0 and 12 + 6 weeks of GA. Only scans with high-quality images of the fossa posterior were selected for the analysis. Measurements were performed offline in the coronal plane using 3D (4D view) and VR (V-Scope) software. The VR enables the observer to use all available dimensions in a data set by visualizing the volume as a "hologram." Total cerebellar diameter, left, and right hemispheric diameter, and thickness were measured using both the techniques. All measurements were performed 3 times and means were used in repeated measurements analysis. After exclusion criteria were applied 177 (28%) 3D data sets were available for further analysis. The median GA was 10 + 0 weeks and the median CRL was 31.4 mm (range: 5.2-79.0 mm). The cerebellar parameters could be measured from 7 gestational weeks onward. The total cerebellar diameter increased from 2.2 mm at 7 weeks of GA to 13.9 mm at 12 weeks of GA using VR and from 2.2 to 13.8 mm using 3D ultrasound. The reproducibility, established in a subset of 35 data sets, resulted in intraclass correlation coefficient values ≥0.98. It can be concluded that cerebellar measurements performed by the 2 methods proved to be reproducible and comparable with each other. However, VR-using all three dimensions-provides a superior method for the visualization of the cerebellum. The constructed reference values can be used to study normal and abnormal cerebellar growth and development.

  4. [Constructing 3-dimensional colorized digital dental model assisted by digital photography].

    Science.gov (United States)

    Ye, Hong-qiang; Liu, Yu-shu; Liu, Yun-song; Ning, Jing; Zhao, Yi-jiao; Zhou, Yong-sheng

    2016-02-18

    To explore a method of constructing universal 3-dimensional (3D) colorized digital dental model which can be displayed and edited in common 3D software (such as Geomagic series), in order to improve the visual effect of digital dental model in 3D software. The morphological data of teeth and gingivae were obtained by intra-oral scanning system (3Shape TRIOS), constructing 3D digital dental models. The 3D digital dental models were exported as STL files. Meanwhile, referring to the accredited photography guide of American Academy of Cosmetic Dentistry (AACD), five selected digital photographs of patients'teeth and gingivae were taken by digital single lens reflex camera (DSLR) with the same exposure parameters (except occlusal views) to capture the color data. In Geomagic Studio 2013, after STL file of 3D digital dental model being imported, digital photographs were projected on 3D digital dental model with corresponding position and angle. The junctions of different photos were carefully trimmed to get continuous and natural color transitions. Then the 3D colorized digital dental model was constructed, which was exported as OBJ file or WRP file which was a special file for software of Geomagic series. For the purpose of evaluating the visual effect of the 3D colorized digital model, a rating scale on color simulation effect in views of patients'evaluation was used. Sixteen patients were recruited and their scores on colored and non-colored digital dental models were recorded. The data were analyzed using McNemar-Bowker test in SPSS 20. Universal 3D colorized digital dental model with better color simulation was constructed based on intra-oral scanning and digital photography. For clinical application, the 3D colorized digital dental models, combined with 3D face images, were introduced into 3D smile design of aesthetic rehabilitation, which could improve the patients' cognition for the esthetic digital design and virtual prosthetic effect. Universal 3D colorized

  5. Acromiohumeral Distance and 3-Dimensional Scapular Position Change After Overhead Muscle Fatigue

    Science.gov (United States)

    Maenhout, Annelies; Dhooge, Famke; Van Herzeele, Maarten; Palmans, Tanneke; Cools, Ann

    2015-01-01

    Context: Muscle fatigue due to repetitive and prolonged overhead sports activity is considered an important factor contributing to impingement-related rotator cuff pathologic conditions in overhead athletes. The evidence on scapular and glenohumeral kinematic changes after fatigue is contradicting and prohibits conclusions about how shoulder muscle fatigue affects acromiohumeral distance. Objective: To investigate the effect of a fatigue protocol resembling overhead sports activity on acromiohumeral distance and 3-dimensional scapular position in overhead athletes. Design: Cross-sectional study. Setting: Institutional laboratory. Patients or Other Participants: A total of 29 healthy recreational overhead athletes (14 men, 15 women; age = 22.23 ± 2.82 years, height = 178.3 ± 7.8 cm, mass = 71.6 ± 9.5 kg). Intervention(s) The athletes were tested before and after a shoulder muscle-fatiguing protocol. Main Outcome Measure(s) Acromiohumeral distance was measured using ultrasound, and scapular position was determined with an electromagnetic motion-tracking system. Both measurements were performed at 3 elevation positions (0°, 45°, and 60° of abduction). We used a 3-factor mixed model for data analysis. Results: After fatigue, the acromiohumeral distance increased when the upper extremity was actively positioned at 45° (Δ = 0.78 ± 0.24 mm, P = .002) or 60° (Δ = 0.58 ± 0.23 mm, P = .02) of abduction. Scapular position changed after fatigue to a more externally rotated position at 45° (Δ = 4.97° ± 1.13°, P < .001) and 60° (Δ = 4.61° ± 1.90°, P = .001) of abduction, a more upwardly rotated position at 45° (Δ = 6.10° ± 1.30°, P < .001) and 60° (Δ = 7.20° ± 1.65°, P < .001) of abduction, and a more posteriorly tilted position at 0°, 45°, and 60° of abduction (Δ = 1.98° ± 0.41°, P < .001). Conclusions: After a fatiguing protocol, we found changes in acromiohumeral distance and scapular position that corresponded with an impingement

  6. Novel 3-dimensional virtual hepatectomy simulation combined with real-time deformation

    Science.gov (United State