WorldWideScience

Sample records for 3-d x-ray system

  1. Development of a 3-D X-ray system

    Science.gov (United States)

    Evans, James Paul Owain

    The interpretation of standard two-dimensional x-ray images by humans is often very difficult. This is due to the lack of visual cues to depth in an image which has been produced by transmitted radiation. The solution put forward in this research is to introduce binocular parallax, a powerful physiological depth cue, into the resultant shadowgraph x-ray image. This has been achieved by developing a binocular stereoscopic x-ray imaging technique, which can be used for both visual inspection by human observers and also for the extraction of three-dimensional co-ordinate information. The technique is implemented in the design and development of two experimental x-ray systems and also the development of measurement algorithms. The first experimental machine is based on standard linear x-ray detector arrays and was designed as an optimum configuration for visual inspection by human observers. However, it was felt that a combination of the 3-D visual inspection capability together with a measurement facility would enhance the usefulness of the technique. Therefore, both a theoretical and an empirical analysis of the co-ordinate measurement capability of the machine has been carried out. The measurement is based on close-range photogrammetric techniques. The accuracy of the measurement has been found to be of the order of 4mm in x, 3mm in y and 6mm in z. A second experimental machine was developed and based on the same technique as that used for the first machine. However, a major departure has been the introduction of a dual energy linear x-ray detector array which will allow, in general, the discrimination between organic and inorganic substances. The second design is a compromise between ease of visual inspection for human observers and optimum three-dimensional co-ordinate measurement capability. The system is part of an on going research programme into the possibility of introducing psychological depth cues into the resultant x-ray images. The research presented in

  2. Development of a 3-D x-ray system

    CERN Document Server

    Evans, J P O

    1993-01-01

    major departure has been the introduction of a dual energy linear x-ray detector array which will allow, in general, the discrimination between organic and inorganic substances. The second design is a compromise between ease of visual inspection for human observers and optimum three-dimensional co-ordinate measurement capability. The system is part of an on going research programme into the possibility of introducing psychological depth cues into the resultant x-ray images. The research presented in this thesis was initiated to enhance the visual interpretation of complex x-ray images, specifically in response to problems encountered in the routine screening of freight by HM. Customs and Excise. This phase of the work culminated in the development of the first experimental machine. During this work the security industry was starting to adopt a new type of x-ray detector, namely the dual energy x-ray sensor. The Department of Transport made available funding to the Police Scientific Development Branch (P.S.D.B...

  3. The EOS 2D/3D X-ray imaging system

    OpenAIRE

    Faria, Rita; McKenna, Claire; Wade, Rosalind Fay; Yang, Huiqin; Woolacott, Nerys; Sculpher, Mark

    2013-01-01

    OBJECTIVES: To evaluate the cost-effectiveness of the EOS® 2D/3D X-ray imaging system compared with standard X-ray for the diagnosis and monitoring of orthopaedic conditions. MATERIALS AND METHODS: A decision analytic model was developed to quantify the long-term costs and health outcomes, expressed as quality-adjusted life years (QALYs) from the UK health service perspective. Input parameters were obtained from medical literature, previously developed cancer models and expert advice. Thresho...

  4. Flexible laboratory system for 3D x-ray microtomography of 3-50 mm specimens

    Science.gov (United States)

    Reimann, David A.; Flynn, Michael J.; Hames, Sean M.

    1995-03-01

    Point projection microradiography has established value for imaging large, wet, opaque, and intact specimens in 2D projection views. We have developed a 3D microtomography system by combining the principles of microradiography with computed tomography (CT). An extension of conventional CT methods is utilized to yield 3D data from 2D microradiographic projections. Use of 2D cone beam projections rather than 1D projections of a slice simplifies the specimen motion hardware, and reduces the amount of wasted radiation. Our imaging system consists of a microfocus x-ray source and x-ray image intensifier coupled to a CCD camera. The system is flexible in the size of specimens which can be imaged. Resolving power varies with specimen size from 4 lp/mm for 50 mm diameter objects to 40 lp/mm for 3 mm diameter objects. Image resolution is isotropic in three dimensions. The 3D nature of the resulting image data can be used to visualize internal structure and compute stereologic parameters such as volume, surface area, and surface/volume orientation. This instrument has been used to image bone specimens in studies of human vertebrae, human femoral necks, dog metacarpals, and rabbit tibias. Other applications include imaging small industrial parts, plastics, ceramics, composite materials, and geologic specimens.

  5. Toroidal and poloidal soft X-ray imaging system on the D3-D tokamak

    Science.gov (United States)

    Snider, R.; Evanko, R.; Haskovec, J.

    1988-02-01

    A toroidal soft X-ray imaging system is being added to the currently installed poloidal soft X-ray system on the D3-D tokamak. The poloidal array is used to determine the poloidal mode structure and location of internal helical MHD perturbations in the plasma. The new array will add toroidal mode identification capability. The four detector arrays are toroidally spaced in a manner which allows identification of toroidal mode numbers of up to 24. Beryllium vacuum windows separate the detectors from the tokamak vacuum and also serve as low energy filters. The separate detector vacuum chambers can be filled with a gas which changes the low energy cutoff of the system. By proper selection of the gas and pressure the low energy cutoff can be chosen over the entire range of the detector sensitivity (500 eV to 1200 eV). This capability can be used to produce crude X-ray spectra for the entire imaging system or for gain control.

  6. Moving-Article X-Ray Imaging System and Method for 3-D Image Generation

    Science.gov (United States)

    Fernandez, Kenneth R. (Inventor)

    2012-01-01

    An x-ray imaging system and method for a moving article are provided for an article moved along a linear direction of travel while the article is exposed to non-overlapping x-ray beams. A plurality of parallel linear sensor arrays are disposed in the x-ray beams after they pass through the article. More specifically, a first half of the plurality are disposed in a first of the x-ray beams while a second half of the plurality are disposed in a second of the x-ray beams. Each of the parallel linear sensor arrays is oriented perpendicular to the linear direction of travel. Each of the parallel linear sensor arrays in the first half is matched to a corresponding one of the parallel linear sensor arrays in the second half in terms of an angular position in the first of the x-ray beams and the second of the x-ray beams, respectively.

  7. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    Science.gov (United States)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  8. Mobile Biplane X-Ray Imaging System for Measuring 3D Dynamic Joint Motion During Overground Gait.

    Science.gov (United States)

    Guan, Shanyuanye; Gray, Hans A; Keynejad, Farzad; Pandy, Marcus G

    2016-01-01

    Most X-ray fluoroscopy systems are stationary and impose restrictions on the measurement of dynamic joint motion; for example, knee-joint kinematics during gait is usually measured with the subject ambulating on a treadmill. We developed a computer-controlled, mobile, biplane, X-ray fluoroscopy system to track human body movement for high-speed imaging of 3D joint motion during overground gait. A robotic gantry mechanism translates the two X-ray units alongside the subject, tracking and imaging the joint of interest as the subject moves. The main aim of the present study was to determine the accuracy with which the mobile imaging system measures 3D knee-joint kinematics during walking. In vitro experiments were performed to measure the relative positions of the tibia and femur in an intact human cadaver knee and of the tibial and femoral components of a total knee arthroplasty (TKA) implant during simulated overground gait. Accuracy was determined by calculating mean, standard deviation and root-mean-squared errors from differences between kinematic measurements obtained using volumetric models of the bones and TKA components and reference measurements obtained from metal beads embedded in the bones. Measurement accuracy was enhanced by the ability to track and image the joint concurrently. Maximum root-mean-squared errors were 0.33 mm and 0.65° for translations and rotations of the TKA knee and 0.78 mm and 0.77° for translations and rotations of the intact knee, which are comparable to results reported for treadmill walking using stationary biplane systems. System capability for in vivo joint motion measurement was also demonstrated for overground gait.

  9. High-quality 3-D coronary artery imaging on an interventional C-arm x-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Hansis, Eberhard; Carroll, John D.; Schaefer, Dirk; Doessel, Olaf; Grass, Michael [Philips Technologie GmbH Forschungslaboratorien, Roentgenstrasse 24-26, 22335 Hamburg (Germany); Department of Medicine, Division of Cardiology, Health Sciences Center, University of Colorado, Denver, Colorado 80262 (United States); Philips Technologie GmbH Forschungslaboratorien, Roentgenstrasse 24-26, 22335 Hamburg (Germany); Institute of Biomedical Engineering, University of Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany); Philips Technologie GmbH Forschungslaboratorien, Roentgenstrasse 24-26, 22335 Hamburg (Germany)

    2010-04-15

    Purpose: Three-dimensional (3-D) reconstruction of the coronary arteries during a cardiac catheter-based intervention can be performed from a C-arm based rotational x-ray angiography sequence. It can support the diagnosis of coronary artery disease, treatment planning, and intervention guidance. 3-D reconstruction also enables quantitative vessel analysis, including vessel dynamics from a time-series of reconstructions. Methods: The strong angular undersampling and motion effects present in gated cardiac reconstruction necessitate the development of special reconstruction methods. This contribution presents a fully automatic method for creating high-quality coronary artery reconstructions. It employs a sparseness-prior based iterative reconstruction technique in combination with projection-based motion compensation. Results: The method is tested on a dynamic software phantom, assessing reconstruction accuracy with respect to vessel radii and attenuation coefficients. Reconstructions from clinical cases are presented, displaying high contrast, sharpness, and level of detail. Conclusions: The presented method enables high-quality 3-D coronary artery imaging on an interventional C-arm system.

  10. Method for the determination of the modulation transfer function (MTF) in 3D x-ray imaging systems with focus on correction for finite extent of test objects

    Science.gov (United States)

    Schäfer, Dirk; Wiegert, Jens; Bertram, Matthias

    2007-03-01

    It is well known that rotational C-arm systems are capable of providing 3D tomographic X-ray images with much higher spatial resolution than conventional CT systems. Using flat X-ray detectors, the pixel size of the detector typically is in the range of the size of the test objects. Therefore, the finite extent of the "point" source cannot be neglected for the determination of the MTF. A practical algorithm has been developed that includes bias estimation and subtraction, averaging in the spatial domain, and correction for the frequency content of the imaged bead or wire. Using this algorithm, the wire and the bead method are analyzed for flat detector based 3D X-ray systems with the use of standard CT performance phantoms. Results on both experimental and simulated data are presented. It is found that the approximation of applying the analysis of the wire method to a bead measurement is justified within 3% accuracy up to the first zero of the MTF.

  11. Exceptionally preserved Cambrian trilobite digestive system revealed in 3D by synchrotron-radiation X-ray tomographic microscopy.

    Directory of Open Access Journals (Sweden)

    Mats E Eriksson

    Full Text Available The Cambrian 'Orsten' fauna comprises exceptionally preserved and phosphatised microscopic arthropods. The external morphology of these fossils is well known, but their internal soft-tissue anatomy has remained virtually unknown. Here, we report the first non-biomineralised tissues from a juvenile polymerid trilobite, represented by digestive structures, glands, and connective strands harboured in a hypostome from the Swedish 'Orsten' fauna. Synchrotron-radiation X-ray tomographic microscopy enabled three-dimensional internal recordings at sub-micrometre resolution. The specimen provides the first unambiguous evidence for a J-shaped anterior gut and the presence of a crop with a constricted alimentary tract in the Trilobita. Moreover, the gut is Y-shaped in cross section, probably due to a collapsed lumen of that shape, another feature which has not previously been observed in trilobites. The combination of anatomical features suggests that the trilobite hypostome is functionally analogous to the labrum of euarthropods and that it was a sophisticated element closely integrated with the digestive system. This study also briefly addresses the preservational bias of the 'Orsten' fauna, particularly the near-absence of polymerid trilobites, and the taphonomy of the soft-tissue-harbouring hypostome.

  12. Accuracy of x-ray image-based 3D localization from two C-arm views: a comparison between an ideal system and a real device

    Science.gov (United States)

    Brost, Alexander; Strobel, Norbert; Yatziv, Liron; Gilson, Wesley; Meyer, Bernhard; Hornegger, Joachim; Lewin, Jonathan; Wacker, Frank

    2009-02-01

    arm X-ray imaging devices are commonly used for minimally invasive cardiovascular or other interventional procedures. Calibrated state-of-the-art systems can, however, not only be used for 2D imaging but also for three-dimensional reconstruction either using tomographic techniques or even stereotactic approaches. To evaluate the accuracy of X-ray object localization from two views, a simulation study assuming an ideal imaging geometry was carried out first. This was backed up with a phantom experiment involving a real C-arm angiography system. Both studies were based on a phantom comprising five point objects. These point objects were projected onto a flat-panel detector under different C-arm view positions. The resulting 2D positions were perturbed by adding Gaussian noise to simulate 2D point localization errors. In the next step, 3D point positions were triangulated from two views. A 3D error was computed by taking differences between the reconstructed 3D positions using the perturbed 2D positions and the initial 3D positions of the five points. This experiment was repeated for various C-arm angulations involving angular differences ranging from 15° to 165°. The smallest 3D reconstruction error was achieved, as expected, by views that were 90° degrees apart. In this case, the simulation study yielded a 3D error of 0.82 mm +/- 0.24 mm (mean +/- standard deviation) for 2D noise with a standard deviation of 1.232 mm (4 detector pixels). The experimental result for this view configuration obtained on an AXIOM Artis C-arm (Siemens AG, Healthcare Sector, Forchheim, Germany) system was 0.98 mm +/- 0.29 mm, respectively. These results show that state-of-the-art C-arm systems can localize instruments with millimeter accuracy, and that they can accomplish this almost as well as an idealized theoretical counterpart. High stereotactic localization accuracy, good patient access, and CT-like 3D imaging capabilities render state-of-the-art C-arm systems ideal devices for X-ray

  13. 3D Rotational X-Ray guidance for surgical interventions

    NARCIS (Netherlands)

    Kraats, Everine Brenda van de

    2005-01-01

    The research described in this thesis is aimed at increasing the accuracy and decreasing the invasiveness of surgical procedures, with a focus on spine procedures, by using a combination of multi-modality images, computer-assisted navigation, intraoperative 3D rotational X-ray (3DRX) imaging, and mi

  14. Mobile 3D rotational X-ray: comparison with CT in sinus surgery

    Energy Technology Data Exchange (ETDEWEB)

    Carelsen, B. [Dept. of Medical Physics, Academic Medical Center, Amsterdam (Netherlands); Bakker, N.H. [Dept. of Man-Machine Systems, Delft Univ. of Technology, Delft (Netherlands); Boon, S.N. [General X-ray Surgery, Philips Medical Systems, Best (Netherlands); Fokkens, W.J. [ENT Dept., Academic Medical Center, Amsterdam (Netherlands); Freling, N.J.M. [Radiology Dept., Academic Medical Center, Amsterdam (Netherlands); Noordhoek, N.J. [X-ray Pre-development, Philips Medical Systems, Best (Netherlands)

    2004-11-01

    Clinical evaluation of a 3D rotational X-ray (3D-RX) system, comprising a modified Philips BV Pulsera C-arm system and a Philips 3D-RA workstation, demonstrates good diagnostic accuracy in functional endoscopic sinus surgery.

  15. 3D Hydrodynamic & Radiative Transfer Models of X-ray Emission from Colliding Wind Binaries

    CERN Document Server

    Russell, Christopher M P; Owocki, Stanley P; Corcoran, Michael F; Hamaguchi, Kenji; Sugawara, Yasuharu

    2014-01-01

    Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. The massive stars in these systems possess powerful stellar winds with speeds up to $\\sim$3000 km s$^{-1}$, and their collision leads to hot plasma (up to $\\sim10^8$K) that emit thermal X-rays (up to $\\sim$10 keV). Many X-ray telescopes have observed CWBs, including Suzaku, and our work aims to model these X-ray observations. We use 3D smoothed particle hydrodynamics (SPH) to model the wind-wind interaction, and then perform 3D radiative transfer to compute the emergent X-ray flux, which is folded through X-ray telescopes' response functions to compare directly with observations. In these proceedings, we present our models of Suzaku observations of the multi-year-period, highly eccentric systems $\\eta$ Carinae and WR 140. The models reproduce the observations well away from periastron passage, but only $\\eta$ Carinae's X-ray spectrum is reproduced at periastron; the WR 140 model produces too much flux during this more complicated p...

  16. New opportunities for 3D materials science of polycrystalline materials at the micrometre lengthscale by combined use of X-ray diffraction and X-ray imaging

    DEFF Research Database (Denmark)

    Ludwig, W.; King, A.; Reischig, P.

    2009-01-01

    Non-destructive, three-dimensional (3D) characterization of the grain structure in mono-phase polycrystalline materials is an open challenge in material science. Recent advances in synchrotron based X-ray imaging and diffraction techniques offer interesting possibilities for mapping 3D grain shapes...... and crystallographic orientations for certain categories of polycrystalline materials. Direct visualisation of the three-dimensional grain boundary network or of two-phase (duplex) grain structures by means of absorption and/or phase contrast techniques may be possible, but is restricted to specific material systems....... A recent extension of this methodology, termed X-ray diffraction contrast tomography (DCT), combines the principles of X-ray diffraction imaging, three-dimensional X-ray diffraction microscopy (3DXRD) and image reconstruction from projections. DCT provides simultaneous access to 3D grain shape...

  17. 3D ablation catheter localisation using individual C-arm x-ray projections

    Science.gov (United States)

    Haase, C.; Schäfer, D.; Dössel, O.; Grass, M.

    2014-11-01

    Cardiac ablation procedures during electrophysiology interventions are performed under x-ray guidance with a C-arm imaging system. Some procedures require catheter navigation in complex anatomies like the left atrium. Navigation aids like 3D road maps and external tracking systems may be used to facilitate catheter navigation. As an alternative to external tracking a fully automatic method is presented here that enables the calculation of the 3D location of the ablation catheter from individual 2D x-ray projections. The method registers a high resolution, deformable 3D attenuation model of the catheter to a 2D x-ray projection. The 3D localization is based on the divergent beam projection of the catheter. On an individual projection, the catheter tip is detected in 2D by image filtering and a template matching method. The deformable 3D catheter model is adapted using the projection geometry provided by the C-arm system and 2D similarity measures for an accurate 2D/3D registration. Prior to the tracking and registration procedure, the deformable 3D attenuation model is automatically extracted from a separate 3D cone beam CT reconstruction of the device. The method can hence be applied to various cardiac ablation catheters. In a simulation study of a virtual ablation procedure with realistic background, noise, scatter and motion blur an average 3D registration accuracy of 3.8 mm is reached for the catheter tip. In this study four different types of ablation catheters were used. Experiments using measured C-arm fluoroscopy projections of a catheter in a RSD phantom deliver an average 3D accuracy of 4.5 mm.

  18. Measuring the 3D shape of X-ray clusters

    CERN Document Server

    Samsing, Johan; Hansen, Steen H

    2012-01-01

    Observations and numerical simulations of galaxy clusters strongly indicate that the hot intracluster x-ray emitting gas is not spherically symmetric. In many earlier studies spherical symmetry has been assumed partly because of limited data quality, however new deep observations and instrumental designs will make it possible to go beyond that assumption. Measuring the temperature and density profiles are of interest when observing the x-ray gas, however the spatial shape of the gas itself also carries very useful information. For example, it is believed that the x-ray gas shape in the inner parts of galaxy clusters is greatly affected by feedback mechanisms, cooling and rotation, and measuring this shape can therefore indirectly provide information on these mechanisms. In this paper we present a novel method to measure the three-dimensional shape of the intracluster x-ray emitting gas. We can measure the shape from the x-ray observations only, i.e. the method does not require combination with independent mea...

  19. 3D global estimation and augmented reality visualization of intra-operative X-ray dose.

    Science.gov (United States)

    Rodas, Nicolas Loy; Padoy, Nicolas

    2014-01-01

    The growing use of image-guided minimally-invasive surgical procedures is confronting clinicians and surgical staff with new radiation exposure risks from X-ray imaging devices. The accurate estimation of intra-operative radiation exposure can increase staff awareness of radiation exposure risks and enable the implementation of well-adapted safety measures. The current surgical practice of wearing a single dosimeter at chest level to measure radiation exposure does not provide a sufficiently accurate estimation of radiation absorption throughout the body. In this paper, we propose an approach that combines data from wireless dosimeters with the simulation of radiation propagation in order to provide a global radiation risk map in the area near the X-ray device. We use a multi-camera RGBD system to obtain a 3D point cloud reconstruction of the room. The positions of the table, C-arm and clinician are then used 1) to simulate the propagation of radiation in a real-world setup and 2) to overlay the resulting 3D risk-map onto the scene in an augmented reality manner. By using real-time wireless dosimeters in our system, we can both calibrate the simulation and validate its accuracy at specific locations in real-time. We demonstrate our system in an operating room equipped with a robotised X-ray imaging device and validate the radiation simulation on several X-ray acquisition setups.

  20. Statistical skull models from 3D X-ray images

    CERN Document Server

    Berar, M; Bailly, G; Payan, Y; Berar, Maxime; Desvignes, Michel; Payan, Yohan

    2006-01-01

    We present 2 statistical models of the skull and mandible built upon an elastic registration method of 3D meshes. The aim of this work is to relate degrees of freedom of skull anatomy, as static relations are of main interest for anthropology and legal medicine. Statistical models can effectively provide reconstructions together with statistical precision. In our applications, patient-specific meshes of the skull and the mandible are high-density meshes, extracted from 3D CT scans. All our patient-specific meshes are registrated in a subject-shared reference system using our 3D-to-3D elastic matching algorithm. Registration is based upon the minimization of a distance between the high density mesh and a shared low density mesh, defined on the vertexes, in a multi resolution approach. A Principal Component analysis is performed on the normalised registrated data to build a statistical linear model of the skull and mandible shape variation. The accuracy of the reconstruction is under the millimetre in the shape...

  1. 3D localization of electrophysiology catheters from a single x-ray cone-beam projection

    Energy Technology Data Exchange (ETDEWEB)

    Robert, Normand, E-mail: normand.robert@sri.utoronto.ca; Polack, George G.; Sethi, Benu; Rowlands, John A. [Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Crystal, Eugene [Division of Cardiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2015-10-15

    Purpose: X-ray images allow the visualization of percutaneous devices such as catheters in real time but inherently lack depth information. The provision of 3D localization of these devices from cone beam x-ray projections would be advantageous for interventions such as electrophysiology (EP), whereby the operator needs to return a device to the same anatomical locations during the procedure. A method to achieve real-time 3D single view localization (SVL) of an object of known geometry from a single x-ray image is presented. SVL exploits the change in the magnification of an object as its distance from the x-ray source is varied. The x-ray projection of an object of interest is compared to a synthetic x-ray projection of a model of said object as its pose is varied. Methods: SVL was tested with a 3 mm spherical marker and an electrophysiology catheter. The effect of x-ray acquisition parameters on SVL was investigated. An independent reference localization method was developed to compare results when imaging a catheter translated via a computer controlled three-axes stage. SVL was also performed on clinical fluoroscopy image sequences. A commercial navigation system was used in some clinical image sequences for comparison. Results: SVL estimates exhibited little change as x-ray acquisition parameters were varied. The reproducibility of catheter position estimates in phantoms denoted by the standard deviations, (σ{sub x}, σ{sub y}, σ{sub z}) = (0.099 mm,  0.093 mm,  2.2 mm), where x and y are parallel to the detector plane and z is the distance from the x-ray source. Position estimates (x, y, z) exhibited a 4% systematic error (underestimation) when compared to the reference method. The authors demonstrated that EP catheters can be tracked in clinical fluoroscopic images. Conclusions: It has been shown that EP catheters can be localized in real time in phantoms and clinical images at fluoroscopic exposure rates. Further work is required to characterize

  2. 3D X-ray imaging methods in support catheter ablations of cardiac arrhythmias.

    Science.gov (United States)

    Stárek, Zdeněk; Lehar, František; Jež, Jiří; Wolf, Jiří; Novák, Miroslav

    2014-10-01

    Cardiac arrhythmias are a very frequent illness. Pharmacotherapy is not very effective in persistent arrhythmias and brings along a number of risks. Catheter ablation has became an effective and curative treatment method over the past 20 years. To support complex arrhythmia ablations, the 3D X-ray cardiac cavities imaging is used, most frequently the 3D reconstruction of CT images. The 3D cardiac rotational angiography (3DRA) represents a modern method enabling to create CT like 3D images on a standard X-ray machine equipped with special software. Its advantage lies in the possibility to obtain images during the procedure, decreased radiation dose and reduction of amount of the contrast agent. The left atrium model is the one most frequently used for complex atrial arrhythmia ablations, particularly for atrial fibrillation. CT data allow for creation and segmentation of 3D models of all cardiac cavities. Recently, a research has been made proving the use of 3DRA to create 3D models of other cardiac (right ventricle, left ventricle, aorta) and non-cardiac structures (oesophagus). They can be used during catheter ablation of complex arrhythmias to improve orientation during the construction of 3D electroanatomic maps, directly fused with 3D electroanatomic systems and/or fused with fluoroscopy. An intensive development in the 3D model creation and use has taken place over the past years and they became routinely used during catheter ablations of arrhythmias, mainly atrial fibrillation ablation procedures. Further development may be anticipated in the future in both the creation and use of these models.

  3. Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction.

    Science.gov (United States)

    Albiol, Francisco; Corbi, Alberto; Albiol, Alberto

    2016-08-01

    We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT.

  4. 3D Reconstruction from X-ray Fluoroscopy for Clinical Veterinary Medicine using Differential Volume Rendering

    Science.gov (United States)

    Khongsomboon, Khamphong; Hamamoto, Kazuhiko; Kondo, Shozo

    3D reconstruction from ordinary X-ray equipment which is not CT or MRI is required in clinical veterinary medicine. Authors have already proposed a 3D reconstruction technique from X-ray photograph to present bone structure. Although the reconstruction is useful for veterinary medicine, the thechnique has two problems. One is about exposure of X-ray and the other is about data acquisition process. An x-ray equipment which is not special one but can solve the problems is X-ray fluoroscopy. Therefore, in this paper, we propose a method for 3D-reconstruction from X-ray fluoroscopy for clinical veterinary medicine. Fluoroscopy is usually used to observe a movement of organ or to identify a position of organ for surgery by weak X-ray intensity. Since fluoroscopy can output a observed result as movie, the previous two problems which are caused by use of X-ray photograph can be solved. However, a new problem arises due to weak X-ray intensity. Although fluoroscopy can present information of not only bone structure but soft tissues, the contrast is very low and it is very difficult to recognize some soft tissues. It is very useful to be able to observe not only bone structure but soft tissues clearly by ordinary X-ray equipment in the field of clinical veterinary medicine. To solve this problem, this paper proposes a new method to determine opacity in volume rendering process. The opacity is determined according to 3D differential coefficient of 3D reconstruction. This differential volume rendering can present a 3D structure image of multiple organs volumetrically and clearly for clinical veterinary medicine. This paper shows results of simulation and experimental investigation of small dog and evaluation by veterinarians.

  5. Three-Dimensional Backscatter X-Ray Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the proposal is to design, develop and demonstrate a potentially portable Compton x-ray scatter 3D-imaging system by using specially...

  6. X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution

    Science.gov (United States)

    Weinekoetter, Christian

    2008-09-01

    High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.

  7. X-ray microscopy for in situ characterization of 3D nanostructural evolution in the laboratory

    Science.gov (United States)

    Hornberger, Benjamin; Bale, Hrishikesh; Merkle, Arno; Feser, Michael; Harris, William; Etchin, Sergey; Leibowitz, Marty; Qiu, Wei; Tkachuk, Andrei; Gu, Allen; Bradley, Robert S.; Lu, Xuekun; Withers, Philip J.; Clarke, Amy; Henderson, Kevin; Cordes, Nikolaus; Patterson, Brian M.

    2015-09-01

    X-ray microscopy (XRM) has emerged as a powerful technique that reveals 3D images and quantitative information of interior structures. XRM executed both in the laboratory and at the synchrotron have demonstrated critical analysis and materials characterization on meso-, micro-, and nanoscales, with spatial resolution down to 50 nm in laboratory systems. The non-destructive nature of X-rays has made the technique widely appealing, with potential for "4D" characterization, delivering 3D micro- and nanostructural information on the same sample as a function of sequential processing or experimental conditions. Understanding volumetric and nanostructural changes, such as solid deformation, pore evolution, and crack propagation are fundamental to understanding how materials form, deform, and perform. We will present recent instrumentation developments in laboratory based XRM including a novel in situ nanomechanical testing stage. These developments bridge the gap between existing in situ stages for micro scale XRM, and SEM/TEM techniques that offer nanometer resolution but are limited to analysis of surfaces or extremely thin samples whose behavior is strongly influenced by surface effects. Several applications will be presented including 3D-characterization and in situ mechanical testing of polymers, metal alloys, composites and biomaterials. They span multiple length scales from the micro- to the nanoscale and different mechanical testing modes such as compression, indentation and tension.

  8. 3D polymer gel dosimetry and Geant4 Monte Carlo characterization of novel needle based X-ray source

    Science.gov (United States)

    Liu, Y.; Sozontov, E.; Safronov, V.; Gutman, G.; Strumban, E.; Jiang, Q.; Li, S.

    2010-11-01

    In the recent years, there have been a few attempts to develop a low energy x-ray radiation sources alternative to conventional radioisotopes used in brachytherapy. So far, all efforts have been centered around the intent to design an interstitial miniaturized x-ray tube. Though direct irradiation of tumors looks very promising, the known insertable miniature x-ray tubes have many limitations: (a) difficulties with focusing and steering the electron beam to the target; (b)necessity to cool the target to increase x-ray production efficiency; (c)impracticability to reduce the diameter of the miniaturized x-ray tube below 4mm (the requirement to decrease the diameter of the x-ray tube and the need to have a cooling system for the target have are mutually exclusive); (c) significant limitations in changing shape and energy of the emitted radiation. The specific aim of this study is to demonstrate the feasibility of a new concept for an insertable low-energy needle x-ray device based on simulation with Geant4 Monte Carlo code and to measure the dose rate distribution for low energy (17.5 keV) x-ray radiation with the 3D polymer gel dosimetry.

  9. High-resolution 3D X-ray imaging of intracranial nitinol stents

    Energy Technology Data Exchange (ETDEWEB)

    Snoeren, Rudolph M.; With, Peter H.N. de [Eindhoven University of Technology (TU/e), Faculty Electrical Engineering, Signal Processing Systems group (SPS), Eindhoven (Netherlands); Soederman, Michael [Karolinska University Hospital, Department of Neuroradiology, Stockholm (Sweden); Kroon, Johannes N.; Roijers, Ruben B.; Babic, Drazenko [Philips Healthcare, Best (Netherlands)

    2012-02-15

    To assess an optimized 3D imaging protocol for intracranial nitinol stents in 3D C-arm flat detector imaging. For this purpose, an image quality simulation and an in vitro study was carried out. Nitinol stents of various brands were placed inside an anthropomorphic head phantom, using iodine contrast. Experiments with objects were preceded by image quality and dose simulations. We varied X-ray imaging parameters in a commercially interventional X-ray system to set 3D image quality in the contrast-noise-sharpness space. Beam quality was varied to evaluate contrast of the stents while keeping absorbed dose below recommended values. Two detector formats were used, paired with an appropriate pixel size and X-ray focus size. Zoomed reconstructions were carried out and snapshot images acquired. High contrast spatial resolution was assessed with a CT phantom. We found an optimal protocol for imaging intracranial nitinol stents. Contrast resolution was optimized for nickel-titanium-containing stents. A high spatial resolution larger than 2.1 lp/mm allows struts to be visualized. We obtained images of stents of various brands and a representative set of images is shown. Independent of the make, struts can be imaged with virtually continuous strokes. Measured absorbed doses are shown to be lower than 50 mGy Computed Tomography Dose Index (CTDI). By balancing the modulation transfer of the imaging components and tuning the high-contrast imaging capabilities, we have shown that thin nitinol stent wires can be reconstructed with high contrast-to-noise ratio and good detail, while keeping radiation doses within recommended values. Experimental results compare well with imaging simulations. (orig.)

  10. 3D non-destructive fluorescent X-ray computed tomography (FXCT) with a CdTe array

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Chang Yeon; Lee, Won Ho; Kim, Young Hak [Dept. of Bio-convergence Engineering, Korea University Graduate School, Seoul (Korea, Republic of)

    2015-10-15

    In our research, the material was exposed to an X-ray and not only the conventional transmission image but also 3D images based on the information of characteristic X-ray detected by a 2D CdTe planar detector array were reconstructed. Since atoms have their own characteristic X-ray energy, our system was able to discriminate materials of even a same density if the materials were composed of different atomic numbers. We applied FXCT to distinguish various unknown materials with similar densities. The materials with similar densities were clearly distinguished in the 3D reconstructed images based on the information of the detected characteristic X-ray, while they were not discriminated from each other in the images based on the information of the detected transmission X-ray. In the fused images consisting of 3D transmitted and characteristic X-ray images, all of the positions, densities and atomic numbers of materials enclosed in plastic phantom or pipe were clearly identified by analyzing energy, position and amount of detected radiation.

  11. 3D printing of preclinical X-ray computed tomographic data sets.

    Science.gov (United States)

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-03-22

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.

  12. X-rays from solar system objects

    CERN Document Server

    Bhardwaj, Anil; Gladstone, G Randall; Cravens, Thomas E; Lisse, Carey M; Dennerl, Konrad; Branduardi-Raymont, Graziella; Wargelin, Bradford J; Waite, J Hunter; Robertson, Ina; Ostgaard, Nikolai; Beiersdorfer, Peter; Snowden, Steven L; Kharchenko, Vasili; 10.1016/j.pss.2006.11.009

    2010-01-01

    During the last few years our knowledge about the X-ray emission from bodies within the solar system has significantly improved. Several new solar system objects are now known to shine in X-rays at energies below 2 keV. Apart from the Sun, the known X-ray emitters now include planets (Venus, Earth, Mars, Jupiter, and Saturn), planetary satellites (Moon, Io, Europa, and Ganymede), all active comets, the Io plasma torus (IPT), the rings of Saturn, the coronae (exospheres) of Earth and Mars, and the heliosphere. The advent of higher-resolution X-ray spectroscopy with the Chandra and XMM-Newton X-ray observatories has been of great benefit in advancing the field of planetary X-ray astronomy. Progress in modeling X-ray emission, laboratory studies of X-ray production, and theoretical calculations of cross-sections, have all contributed to our understanding of processes that produce X-rays from the solar system bodies. At Jupiter and Earth, both auroral and non-auroral disk X-ray emissions have been observed. X-ray...

  13. Cochlear implant electrode array insertion monitoring with intra-operative 3D rotational X-ray

    NARCIS (Netherlands)

    Carelsen, B; Grolman, W; Tange, R; Streekstra, G J; van Kemenade, P; Jansen, R J; Freling, N J M; White, M; Maat, B; Fokkens, W J

    2007-01-01

    During cochlear implantation surgery, we use a mobile C-arm with 3D functionality to acquire per-operative 3D X-ray images. Scanning the multielectrode array is performed once before removal of the stylet and once after full insertion. When dissatisfied with the position of the multielectrode a repo

  14. 2D-3D image registration in diagnostic and interventional X-Ray imaging

    NARCIS (Netherlands)

    Bom, I.M.J. van der

    2010-01-01

    Clinical procedures that are conventionally guided by 2D x-ray imaging, may benefit from the additional spatial information provided by 3D image data. For instance, guidance of minimally invasive procedures with CT or MRI data provides 3D spatial information and visualization of structures that are

  15. 2p3d Resonant X-ray emission spectroscopy of cobalt compounds

    NARCIS (Netherlands)

    van Schooneveld, M.M.

    2013-01-01

    This manuscript demonstrates that 2p3d resonant X-ray emission spectroscopy (RXES) yields unique information on the chemically relevant valence electrons of transition metal atoms or ions. Experimental data on cobalt compounds and several theories were used hand-in-hand. In chapter 1 2p3d RXES was s

  16. 3D Image Reconstruction from X-Ray Measurements with Overlap

    CERN Document Server

    Klodt, Maria

    2016-01-01

    3D image reconstruction from a set of X-ray projections is an important image reconstruction problem, with applications in medical imaging, industrial inspection and airport security. The innovation of X-ray emitter arrays allows for a novel type of X-ray scanners with multiple simultaneously emitting sources. However, two or more sources emitting at the same time can yield measurements from overlapping rays, imposing a new type of image reconstruction problem based on nonlinear constraints. Using traditional linear reconstruction methods, respective scanner geometries have to be implemented such that no rays overlap, which severely restricts the scanner design. We derive a new type of 3D image reconstruction model with nonlinear constraints, based on measurements with overlapping X-rays. Further, we show that the arising optimization problem is partially convex, and present an algorithm to solve it. Experiments show highly improved image reconstruction results from both simulated and real-world measurements.

  17. 3D contrast-enhanced MR portography and direct X-ray portography: a correlation study

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jiang; Zhou Kangrong; Chen Zuang; Wang Jianhua; Yan Ziping [Department of Radiology, ZhongShan Hospital, Fudan University, Shanghai (China); Wang Yixiang J. [Department of Radiology, Rui Jin Hospital, Shanghai Second Medical Univeristy, Shanghai (China)

    2003-06-01

    Our objective was to compare 3D contrast-enhanced MR portography (3D CE MRP) on a 1.5-T MR imager with direct X-ray portography. Twenty-six consecutive patients underwent 3D CE MRP with in-plane resolution of 1.4 or 1.8 mm, and direct X-ray portography. The findings of these two methods were evaluated and compared. The main portal vein (PV), right PV with its anterior and posterior segmental branches, and left PV including its sagittal segment were shown clearly without diagnostic problem in all cases on MRP. The main PV appearance was accordant with MRP and X-ray. For intrahepatic PVs, the results agreed in 21 patients but disagreed in 5 patients. In 1 patient with a huge tumor in right liver, the right posterior PV was classified as occluded at MRP, but diffusely narrowed at X-ray. The findings of left intrahepatic PV were discordant in 3 patients with hepatocelluar carcinoma in the left lobe. The MRP demonstrated complete occlusion of the left PVs, whereas X-ray showed proximal narrowing and distal occlusion. In another patient with hepatocelluar carcinoma, a small non-occlusive thrombus involving the sagittal segment of the left PV was seen on MRP but not on X-ray. With demonstration of varices and portosystemic shunts, MRP showed results similar to those of X-ray, except one recanalized para-umbilical vein was excluded from the field of view at MRP due to the patient's limited ability of breathholding. The 3D CE MRP correlated well with direct X-ray portography in most cases, it was limited in distinguishing narrowing of an intrahepatic PV from occlusion, but it showed advantage in demonstrating small thrombus within PV. (orig.)

  18. 2D/3D registration for X-ray guided bronchoscopy using distance map classification.

    Science.gov (United States)

    Xu, Di; Xu, Sheng; Herzka, Daniel A; Yung, Rex C; Bergtholdt, Martin; Gutierrez, Luis F; McVeigh, Elliot R

    2010-01-01

    In X-ray guided bronchoscopy of peripheral pulmonary lesions, airways and nodules are hardly visible in X-ray images. Transbronchial biopsy of peripheral lesions is often carried out blindly, resulting in degraded diagnostic yield. One solution of this problem is to superimpose the lesions and airways segmented from preoperative 3D CT images onto 2D X-ray images. A feature-based 2D/3D registration method is proposed for the image fusion between the datasets of the two imaging modalities. Two stereo X-ray images are used in the algorithm to improve the accuracy and robustness of the registration. The algorithm extracts the edge features of the bony structures from both CT and X-ray images. The edge points from the X-ray images are categorized into eight groups based on the orientation information of their image gradients. An orientation dependent Euclidean distance map is generated for each group of X-ray feature points. The distance map is then applied to the edge points of the projected CT images whose gradient orientations are compatible with the distance map. The CT and X-ray images are registered by matching the boundaries of the projected CT segmentations to the closest edges of the X-ray images after the orientation constraint is satisfied. Phantom and clinical studies were carried out to validate the algorithm's performance, showing a registration accuracy of 4.19(± 0.5) mm with 48.39(± 9.6) seconds registration time. The algorithm was also evaluated on clinical data, showing promising registration accuracy and robustness.

  19. X-ray imaging and 3D reconstruction of in-flight exploding foil initiator flyers

    Science.gov (United States)

    Willey, T. M.; Champley, K.; Hodgin, R.; Lauderbach, L.; Bagge-Hansen, M.; May, C.; Sanchez, N.; Jensen, B. J.; Iverson, A.; van Buuren, T.

    2016-06-01

    Exploding foil initiators (EFIs), also known as slapper initiators or detonators, offer clear safety and timing advantages over other means of initiating detonation in high explosives. This work outlines a new capability for imaging and reconstructing three-dimensional images of operating EFIs. Flyer size and intended velocity were chosen based on parameters of the imaging system. The EFI metal plasma and plastic flyer traveling at 2.5 km/s were imaged with short ˜80 ps pulses spaced 153.4 ns apart. A four-camera system acquired 4 images from successive x-ray pulses from each shot. The first frame was prior to bridge burst, the 2nd images the flyer about 0.16 mm above the surface but edges of the foil and/or flyer are still attached to the substrate. The 3rd frame captures the flyer in flight, while the 4th shows a completely detached flyer in a position that is typically beyond where slappers strike initiating explosives. Multiple acquisitions at different incident angles and advanced computed tomography reconstruction algorithms were used to produce a 3-dimensional image of the flyer at 0.16 and 0.53 mm above the surface. Both the x-ray images and the 3D reconstruction show a strong anisotropy in the shape of the flyer and underlying foil parallel vs. perpendicular to the initiating current and electrical contacts. These results provide detailed flyer morphology during the operation of the EFI.

  20. 3D Prior Image Constrained Projection Completion for X-ray CT Metal Artifact Reduction

    NARCIS (Netherlands)

    Mehranian, Abolfazl; Ay, Mohammad Reza; Rahmim, Arman; Zaidi, Habib

    2013-01-01

    The presence of metallic implants in the body of patients undergoing X-ray computed tomography (CT) examinations often results insevere streaking artifacts that degrade image quality. In this work, we propose a new metal artifact reduction (MAR) algorithm for 2D fan-beam and 3D cone-beam CT based on

  1. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Chris [Stony Brook Univ., NY (United States). Dept. of Physics and Astronomy

    2011-04-14

    This project helped pioneer the core capabilities of coherent diffraction imaging (CDI) using X rays at synchrotron light source facilities. We developed an apparatus that was used for CDI at the Advanced Light Source, and applied it to 2D and 3D imaging of nanostructures. We also explored a number of conceptual and computational issues on the reconstruction of CDI data.

  2. Relativistic 3D jet simulations for the X-ray binary SS433

    CERN Document Server

    Monceau-Baroux, Remi; Meliani, Zakaria; Porth, Oliver

    2013-01-01

    Context. Modern high resolution observations allow to view closer into the objects powering relativistic jets. This is especially the case for SS433, an X-ray binary from which a precessing jet is observed down to the sub-parsec scale. Aims. We want to study full 3D dynamics of relativistic jets associated with AGN or XRB. We study the precessing motion of a jet as a model for the jet associated with the XRB SS433. Our study of the jet dynamics in this system focuses on the sub-parsec scales. We investigate the impact of jet precession and the variation of the Lorentz factor of the injected matter on the general 3D jet dynamics and its energy transfer to the surrounding medium. We realize synthetic radio mapping of the data, to compare our results with observations. Methods. For our study we use the code MPI-AMRVAC with SRHD model of a baryonic jet. We use a AMR scheme and an inner time-dependent boundary prescription to inject the jets. Parameters extracted from observations were used. 3D jet realizations th...

  3. Fast generation of virtual X-ray images for reconstruction of 3D anatomy.

    Science.gov (United States)

    Ehlke, Moritz; Ramm, Heiko; Lamecker, Hans; Hege, Hans-Christian; Zachow, Stefan

    2013-12-01

    We propose a novel GPU-based approach to render virtual X-ray projections of deformable tetrahedral meshes. These meshes represent the shape and the internal density distribution of a particular anatomical structure and are derived from statistical shape and intensity models (SSIMs). We apply our method to improve the geometric reconstruction of 3D anatomy (e.g. pelvic bone) from 2D X-ray images. For that purpose, shape and density of a tetrahedral mesh are varied and virtual X-ray projections are generated within an optimization process until the similarity between the computed virtual X-ray and the respective anatomy depicted in a given clinical X-ray is maximized. The OpenGL implementation presented in this work deforms and projects tetrahedral meshes of high resolution (200.000+ tetrahedra) at interactive rates. It generates virtual X-rays that accurately depict the density distribution of an anatomy of interest. Compared to existing methods that accumulate X-ray attenuation in deformable meshes, our novel approach significantly boosts the deformation/projection performance. The proposed projection algorithm scales better with respect to mesh resolution and complexity of the density distribution, and the combined deformation and projection on the GPU scales better with respect to the number of deformation parameters. The gain in performance allows for a larger number of cycles in the optimization process. Consequently, it reduces the risk of being stuck in a local optimum. We believe that our approach will improve treatments in orthopedics, where 3D anatomical information is essential.

  4. Note: design and construction of a multi-scale, high-resolution, tube-generated x-ray computed-tomography system for three-dimensional (3D) imaging.

    Science.gov (United States)

    Mertens, J C E; Williams, J J; Chawla, Nikhilesh

    2014-01-01

    The design and construction of a high resolution modular x-ray computed tomography (XCT) system is described. The approach for meeting a specified set of performance goals tailored toward experimental versatility is highlighted. The instrument is unique in its detector and x-ray source configuration, both of which enable elevated optimization of spatial and temporal resolution. The process for component selection is provided. The selected components are specified, the custom component design discussed, and the integration of both into a fully functional XCT instrument is outlined. The novelty of this design is a new lab-scale detector and imaging optimization through x-ray source and detector modularity.

  5. A method based on diffraction theory for predicting 3D focusing performance of compound refractive X-ray lenses

    Institute of Scientific and Technical Information of China (English)

    Zichun Le; Kai Liu; Jingqiu Liang

    2005-01-01

    A method based on the diffraction theory for estimating the three-dimensional (3D) focusing performance of the compound refractive X-ray lenses is presented in this paper. As a special application, the 3D X-ray intensity distribution near the focus is derived for a plano-concave compound refractive X-ray lens.Moreover, the computer codes are developed and some results of 3D focusing performance for a compound refractive X-ray lens with Si material are shown and discussed.

  6. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy.

    Science.gov (United States)

    Jiang, Huaidong; Song, Changyong; Chen, Chien-Chun; Xu, Rui; Raines, Kevin S; Fahimian, Benjamin P; Lu, Chien-Hung; Lee, Ting-Kuo; Nakashima, Akio; Urano, Jun; Ishikawa, Tetsuya; Tamanoi, Fuyuhiko; Miao, Jianwei

    2010-06-22

    Microscopy has greatly advanced our understanding of biology. Although significant progress has recently been made in optical microscopy to break the diffraction-limit barrier, reliance of such techniques on fluorescent labeling technologies prohibits quantitative 3D imaging of the entire contents of cells. Cryoelectron microscopy can image pleomorphic structures at a resolution of 3-5 nm, but is only applicable to thin or sectioned specimens. Here, we report quantitative 3D imaging of a whole, unstained cell at a resolution of 50-60 nm by X-ray diffraction microscopy. We identified the 3D morphology and structure of cellular organelles including cell wall, vacuole, endoplasmic reticulum, mitochondria, granules, nucleus, and nucleolus inside a yeast spore cell. Furthermore, we observed a 3D structure protruding from the reconstructed yeast spore, suggesting the spore germination process. Using cryogenic technologies, a 3D resolution of 5-10 nm should be achievable by X-ray diffraction microscopy. This work hence paves a way for quantitative 3D imaging of a wide range of biological specimens at nanometer-scale resolutions that are too thick for electron microscopy.

  7. Non-destructive investigations of a copper and argon doped sputtered beryllium capsule using x-rays in 3d

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Brian M [Los Alamos National Laboratory; Defriend, Kimberly A [Los Alamos National Laboratory; Havrilla, George J [Los Alamos National Laboratory; Nikroo, Abbas [GENERAL ATOMICS

    2008-01-01

    The combination of 3D computed micro x-ray tomography (micro CT) and 3D confocal micro x-ray fluorescence (confocal MXRF) are very useful nondestructive metrology techniques for determining the unique compositional and morphological information of fusion targets and target materials.

  8. 3D Medipix2 detector characterization with a micro-focused X-ray beam

    Science.gov (United States)

    Gimenez, E. N.; Maneuski, D.; Mac Raighne, A.; Parkes, C.; Bates, R.; O'Shea, V.; Fleta, C.; Pellegrini, G.; Lozano, M.; Alianelli, L.; Sawhney, K. J. S.; Marchal, J.; Tartoni, N.

    2011-05-01

    Three-dimensional (3D) photodiode detectors offer advantages over standard planar photodiodes in a wide range of applications. The main advantage of these sensors for X-ray imaging is their reduced charge sharing between adjacent pixels, which could improve spatial and spectral resolution. However, a drawback of 3D sensors structures is the loss of detection efficiency due to the presence in the pixel structure of heavily doped electrode columns which are insensitive to X-ray. In this work two types of 3D silicon detectors: n-type wafer with hole collecting readout-columns (N-TYPE) and p-type wafer with electron collecting readout-columns (P-TYPE), bump-bounded to a Medipix2 read-out chip were characterized with a 14.5 keV micro-focused X-ray beam from a synchrotron. Measurements of the detection efficiency and the charge sharing were performed at different bias voltages and Medipix2 energy thresholds and compared with those of a standard planar silicon sensor.

  9. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging

    DEFF Research Database (Denmark)

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie

    2016-01-01

    PURPOSE: A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed...... imaging (TPI). METHODS: Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed...... was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). CONCLUSIONS: The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from...

  10. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging

    DEFF Research Database (Denmark)

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie

    2017-01-01

    PURPOSE: A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed...... imaging (TPI). METHODS: Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed...... was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). CONCLUSIONS: The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from...

  11. STEMS3D: An X-ray spectral model for magnetar persistent radiations

    Science.gov (United States)

    Gogus, Ersin; Weng, Shan-Shan

    2016-07-01

    Anomalous X-ray pulsars and soft gamma-ray repeaters are recognized as the most promising magnetar candidates, as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature kT, surface magnetic field strength B, magnetospheric twist angle Δφ, and the normalized electron velocity β. We also create a tabular model (STEMS3D) and apply it to X-ray spectra of magnetars.

  12. Three-Dimensional X-ray Observation of Atmospheric Biological Samples by Linear-Array Scanning-Electron Generation X-ray Microscope System

    Science.gov (United States)

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si3N4 thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields. PMID:21731770

  13. Three-dimensional X-ray observation of atmospheric biological samples by linear-array scanning-electron generation X-ray microscope system.

    Science.gov (United States)

    Ogura, Toshihiko

    2011-01-01

    Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM), which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB) and the thin film of the sample mount. We present herein a three-dimensional (3D) X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD) array. The specimens are placed under a CuZn-coated Si₃N₄ thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields.

  14. Three-dimensional X-ray observation of atmospheric biological samples by linear-array scanning-electron generation X-ray microscope system.

    Directory of Open Access Journals (Sweden)

    Toshihiko Ogura

    Full Text Available Recently, we developed a soft X-ray microscope called the scanning-electron generation X-ray microscope (SGXM, which consists of a simple X-ray detection system that detects X-rays emitted from the interaction between a scanning electron beam (EB and the thin film of the sample mount. We present herein a three-dimensional (3D X-ray detection system that is based on the SGXM technology and designed for studying atmospheric biological samples. This 3D X-ray detection system contains a linear X-ray photodiode (PD array. The specimens are placed under a CuZn-coated Si₃N₄ thin film, which is attached to an atmospheric sample holder. Multiple tilt X-ray images of the samples are detected simultaneously by the linear array of X-ray PDs, and the 3D structure is calculated by a new 3D reconstruction method that uses a simulated-annealing algorithm. The resulting 3D models clearly reveal the inner structure of the bacterium. In addition, the proposed method can easily be used for diverse samples in a broad range of scientific fields.

  15. A 3D reconstruction method of the body envelope from biplanar X-rays: Evaluation of its accuracy and reliability.

    Science.gov (United States)

    Nérot, Agathe; Choisne, Julie; Amabile, Célia; Travert, Christophe; Pillet, Hélène; Wang, Xuguang; Skalli, Wafa

    2015-12-16

    The aim of this study was to propose a novel method for reconstructing the external body envelope from the low dose biplanar X-rays of a person. The 3D body envelope was obtained by deforming a template to match the surface profiles in two X-rays images in three successive steps: global morphing to adopt the position of a person and scale the template׳s body segments, followed by a gross deformation and a fine deformation using two sets of pre-defined control points. To evaluate the method, a biplanar X-ray acquisition was obtained from head to foot for 12 volunteers in a standing posture. Up to 172 radio-opaque skin markers were attached to the body surface and used as reference positions. Each envelope was reconstructed three times by three operators. Results showed a bias lower than 7mm and a confidence interval (95%) of reproducibility lower than 6mm for all body parts, comparable to other existing methods matching a template onto stereographic photographs. The proposed method offers the possibility of reconstructing body shape in addition to the skeleton using a low dose biplanar X-rays system.

  16. Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography.

    Science.gov (United States)

    Eberhardt, C N; Clarke, A R

    2002-04-01

    The characterization of fibrous structures is important in both composites and textiles research for relating to the bulk properties of the material. However, the microscopic nature of the fibres and their high densities make them very difficult to characterize. Many techniques have been developed for the measurement and characterization of fibrous structures but they tend to be restricted to measurements on the sample surface or within physical cross-sections. X-ray microtomography can be used to non-destructively probe the internal structure of a range of fibrous materials, providing large amounts of 3D data. A technique has been developed for tracing fibres within 3D datasets acquired by X-ray microtomography and this has been applied to a glass fibre reinforced composite and also a non-woven textile sample. The 3D fibrous structures of both samples were successfully reconstructed and their fibre orientation distributions calculated. This technique enables novel characterizations, such as the through-thickness variation of fibre orientation in non-wovens.

  17. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    Science.gov (United States)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  18. X-ray enabled MOCASSIN: a 3D code for photoionized media

    CERN Document Server

    Ercolano, Barbara; Drake, Jeremy J; Raymond, John C

    2007-01-01

    We present a new version of the fully 3D photoionization and dust radiative transfer code, MOCASSIN, that uses a Monte Carlo approach for the transfer of radiation. The X-ray enabled MOCASSIN allows a fully geometry independent description of low-density gaseous environments strongly photoionized by a radiation field extending from radio to gamma rays. The code has been thoroughly benchmarked against other established codes routinely used in the literature, using simple plane parallel models designed to test performance under standard conditions. We show the results of our benchmarking exercise and discuss applicability and limitations of the new code, which should be of guidance for future astrophysical studies with MOCASSIN.

  19. 3D numerical model of the Omega Nebula (M17): simulated thermal X-ray emission

    CERN Document Server

    Reyes-Iturbide, J; Rosado, M; Rodríguez-Gónzalez, A; González, R F; Esquivel, A

    2009-01-01

    We present 3D hydrodynamical simulations of the superbubble M17, also known as the Omega nebula, carried out with the adaptive grid code yguazu'-a, which includes radiative cooling. The superbubble is modelled considering the winds of 11 individual stars from the open cluster inside the nebula (NGC 6618), for which there are estimates of the mass loss rates and terminal velocities based on their spectral types. These stars are located inside a dense interstellar medium, and they are bounded by two dense molecular clouds. We carried out three numerical models of this scenario, considering different line of sight positions of the stars (the position in the plane of the sky is known, thus fixed). Synthetic thermal X-ray emission maps are calculated from the numerical models and compared with ROSAT observations of this astrophysical object. Our models reproduce successfully both the observed X-ray morphology and the total X-ray luminosity, without taking into account thermal conduction effects.

  20. Calculations of magnetic x-ray dichroism in the 3d absorption spectra of rare-earth compounds

    NARCIS (Netherlands)

    GOEDKOOP, JB; THOLE, BT; VANDERLAAN, G; SAWATZKY, GA; DEGROOT, FMF; FUGGLE, JC; de Groot, Frank

    1988-01-01

    We present atomic calculations for the recently discovered magnetic x-ray dichroism (MXD) displayed by the 3d x-ray-absorption spectra of rare-earth compounds. The spectral shapes expected at T=0 K for linear polarization parallel and normal to the local magnetic field is given, together with the te

  1. Differential phase contrast X-ray imaging system and components

    Science.gov (United States)

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  2. Differential phase contrast X-ray imaging system and components

    Energy Technology Data Exchange (ETDEWEB)

    Stutman, Daniel; Finkenthal, Michael

    2017-01-31

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  3. 3D Imaging of Transition Metals in the Zebrafish Embryo by X-ray Fluorescence Microtomography

    Science.gov (United States)

    Bourassa, Daisy; Gleber, Sophie-Charlotte; Vogt, Stefan; Yi, Hong; Will, Fabian; Richter, Heiko; Shin, Chong Hyun; Fahrni, Christoph J.

    2014-01-01

    Synchrotron X-ray fluorescence (SXRF) microtomography has emerged as a powerful technique for the 3D visualization of the elemental distribution in biological samples. The mechanical stability, both of the instrument and the specimen, is paramount when acquiring tomographic projection series. By combining the progressive lowering of temperature method (PLT) with femtosecond laser sectioning, we were able to embed, excise, and preserve a zebrafish embryo at 24 hours post fertilization in an X-ray compatible, transparent resin for tomographic elemental imaging. Based on a data set comprised of 60 projections, acquired with a step size of 2 μm during 100 hours of beam time, we reconstructed the 3D distribution of zinc, iron, and copper using the iterative maximum likelihood expectation maximization (MLEM) reconstruction algorithm. The volumetric elemental maps, which entail over 124 million individual voxels for each transition metal, revealed distinct elemental distributions that could be correlated with characteristic anatomical features at this stage of embryonic development. PMID:24992831

  4. 3D-printing of undisturbed soil imaged by X-ray

    Science.gov (United States)

    Bacher, Matthias; Koestel, John; Schwen, Andreas

    2014-05-01

    The unique pore structures in Soils are altered easily by water flow. Each sample has a different morphology and the results of repetitions vary as well. Soil macropores in 3D-printed durable material avoid erosion and have a known morphology. Therefore potential and limitations of reproducing an undisturbed soil sample by 3D-printing was evaluated. We scanned an undisturbed soil column of Ultuna clay soil with a diameter of 7 cm by micro X-ray computer tomography at a resolution of 51 micron. A subsample cube of 2.03 cm length with connected macropores was cut out from this 3D-image and printed in five different materials by a 3D-printing service provider. The materials were ABS, Alumide, High Detail Resin, Polyamide and Prime Grey. The five print-outs of the subsample were tested on their hydraulic conductivity by using the falling head method. The hydrophobicity was tested by an adapted sessile drop method. To determine the morphology of the print-outs and compare it to the real soil also the print-outs were scanned by X-ray. The images were analysed with the open source program ImageJ. The five 3D-image print-outs copied from the subsample of the soil column were compared by means of their macropore network connectivity, porosity, surface volume, tortuosity and skeleton. The comparison of pore morphology between the real soil and the print-outs showed that Polyamide reproduced the soil macropore structure best while Alumide print-out was the least detailed. Only the largest macropore was represented in all five print-outs. Printing residual material or printing aid material remained in and clogged the pores of all print-out materials apart from Prime Grey. Therefore infiltration was blocked in these print-outs and the materials are not suitable even though the 3D-printed pore shapes were well reproduced. All of the investigated materials were insoluble. The sessile drop method showed angles between 53 and 85 degrees. Prime Grey had the fastest flow rate; the

  5. Registration of 3D+t coronary CTA and monoplane 2D+t X-ray angiography.

    Science.gov (United States)

    Metz, Coert T; Schaap, Michiel; Klein, Stefan; Baka, Nora; Neefjes, Lisan A; Schultz, Carl J; Niessen, Wiro J; van Walsum, Theo

    2013-05-01

    A method for registering preoperative 3D+t coronary CTA with intraoperative monoplane 2D+t X-ray angiography images is proposed to improve image guidance during minimally invasive coronary interventions. The method uses a patient-specific dynamic coronary model, which is derived from the CTA scan by centerline extraction and motion estimation. The dynamic coronary model is registered with the 2D+t X-ray sequence, considering multiple X-ray time points concurrently, while taking breathing induced motion into account. Evaluation was performed on 26 datasets of 17 patients by comparing projected model centerlines with manually annotated centerlines in the X-ray images. The proposed 3D+t/2D+t registration method performed better than a 3D/2D registration method with respect to the accuracy and especially the robustness of the registration. Registration with a median error of 1.47 mm was achieved.

  6. The terminal velocity of volcanic particles with shape obtained from 3D X-ray microtomography

    Science.gov (United States)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-01-01

    New experiments of falling volcanic particles were performed in order to define terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity Φ3D and fractal dimension D3D were obtained. They are easier to measure and less operator dependent than the 2D shape parameters used in previous papers. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3 × 10- 2 < Re < 104), while earlier formulations made use of different equations at different ranges of Re. The new drag laws are well suited for the modelling of particle transportation both in the eruptive column, where coarse and fine particles are present, and also in the distal part of the umbrella region, where fine ash is involved in the large-scale domains of atmospheric circulation. A table of the typical values of Φ3D and D3D of particles from known plinian, subplinian and ash plume eruptions is presented. Graphs of terminal velocity as a function of grain size are finally proposed as tools to help volcanologists and atmosphere scientists to model particle transportation of explosive eruptions.

  7. Accurate 3D kinematic measurement of temporomandibular joint using X-ray fluoroscopic images

    Science.gov (United States)

    Yamazaki, Takaharu; Matsumoto, Akiko; Sugamoto, Kazuomi; Matsumoto, Ken; Kakimoto, Naoya; Yura, Yoshiaki

    2014-04-01

    Accurate measurement and analysis of 3D kinematics of temporomandibular joint (TMJ) is very important for assisting clinical diagnosis and treatment of prosthodontics and orthodontics, and oral surgery. This study presents a new 3D kinematic measurement technique of the TMJ using X-ray fluoroscopic images, which can easily obtain the TMJ kinematic data in natural motion. In vivo kinematics of the TMJ (maxilla and mandibular bone) is determined using a feature-based 2D/3D registration, which uses beads silhouette on fluoroscopic images and 3D surface bone models with beads. The 3D surface models of maxilla and mandibular bone with beads were created from CT scans data of the subject using the mouthpiece with the seven strategically placed beads. In order to validate the accuracy of pose estimation for the maxilla and mandibular bone, computer simulation test was performed using five patterns of synthetic tantalum beads silhouette images. In the clinical applications, dynamic movement during jaw opening and closing was conducted, and the relative pose of the mandibular bone with respect to the maxilla bone was determined. The results of computer simulation test showed that the root mean square errors were sufficiently smaller than 1.0 mm and 1.0 degree. In the results of clinical application, during jaw opening from 0.0 to 36.8 degree of rotation, mandibular condyle exhibited 19.8 mm of anterior sliding relative to maxillary articular fossa, and these measurement values were clinically similar to the previous reports. Consequently, present technique was thought to be suitable for the 3D TMJ kinematic analysis.

  8. Resonant x-ray scattering in 3d-transition-metal oxides: Anisotropy and charge orderings

    Science.gov (United States)

    Subías, G.; García, J.; Blasco, J.; Herrero-Martín, J.; Sánchez, M. C.

    2009-11-01

    The structural, magnetic and electronic properties of transition metal oxides reflect in atomic charge, spin and orbital degrees of freedom. Resonant x-ray scattering (RXS) allows us to perform an accurate investigation of all these electronic degrees. RXS combines high-Q resolution x-ray diffraction with the properties of the resonance providing information similar to that obtained by atomic spectroscopy (element selectivity and a large enhancement of scattering amplitude for this particular element and sensitivity to the symmetry of the electronic levels through the multipole electric transitions). Since electronic states are coupled to the local symmetry, RXS reveals the occurrence of symmetry breaking effects such as lattice distortions, onset of electronic orbital ordering or ordering of electronic charge distributions. We shall discuss the strength of RXS at the K absorption edge of 3d transition-metal oxides by describing various applications in the observation of local anisotropy and charge disproportionation. Examples of these resonant effects are (I) charge ordering transitions in manganites, Fe3O4 and ferrites and (II) forbidden reflections and anisotropy in Mn3+ perovskites, spinel ferrites and cobalt oxides. In all the studied cases, the electronic (charge and/or anisotropy) orderings are determined by the structural distortions.

  9. Multi-contrast 3D X-ray imaging of porous and composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Sarapata, Adrian; Herzen, Julia [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Ruiz-Yaniz, Maite [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); European Synchrotron Radiation Facility, 38000 Grenoble (France); Zanette, Irene [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Rack, Alexander [European Synchrotron Radiation Facility, 38000 Grenoble (France); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Institut für Diagnostische und Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München (Germany)

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  10. Towards the reconstruction of 3D orientation information from direction-sensitive X-ray projections

    Energy Technology Data Exchange (ETDEWEB)

    Malecki, Andreas; Biernath, Thomas; Bech, Martin; Potdevin, Guillaume; Pfeiffer, Franz [Technische Univ. Muenchen (Germany). Dept. of Physics (E17); Technische Univ. Muenchen (Germany). Inst. of Medical Engineering (IMETUM); Lasser, Tobias [Technische Univ. Muenchen (Germany). Chair for Computer Aided Medical Procedures and Augmented Reality (CAMP)

    2011-07-01

    For medical in vivo applications the resolution of a computed tomography (CT) scan is limited by the acceptable patient received dose. Thus it does not allow to image microstructures in the body. Novel X-ray contrast mechanisms provide two additional signal channels, phase contrast and dark-field contrast. In this study we report on our progress to use the dark-field signal to gain micro-structural information by reconstructing a tensor field describing the local sample scattering power. For that purpose we developed an experimental setup composed of an X-ray tube, a Talbot Lau interferometer, an Euler cradle to orient the sample and a detector. This setup allows a direct measurement of the sample scattering strength in all directions. The reconstruction of several test samples is done using filtered back-projection or the algebraic reconstruction technique. The definition of the physical model behind the reconstructed quantity is obtained from a second ansatz by using 3D density map (micro-CT) data as an input to a computer simulation of the whole setup. We consider this project important for diagnostic improvements in the case of bone pathologies. (orig.)

  11. Accurate 3D modeling of Cable in Conduit Conductor type superconductors by X-ray microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Tiseanu, Ion, E-mail: tiseanu@infim.ro [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Bucharest-Magurele (Romania); Zani, Louis [CEA/Cadarache – Institut de Recherche sur la Fusion Magnetique, St Paul-lez-Durance Cedex (France); Tiseanu, Catalin-Stefan [University of Bucharest, Faculty of Mathematics and Computer Science (Romania); Craciunescu, Teddy; Dobrea, Cosmin [National Institute for Laser, Plasma and Radiation Physics (INFLPR), Bucharest-Magurele (Romania)

    2015-10-15

    Graphical abstract: - Highlights: • Quality controls monitoring of Cable in Conduit Conductor (CICC) by X-ray tomography. • High resolution (≈40 μm) X-ray tomography images of CICC section up to 300 mm long. • Assignment of vast majority of strand trajectories over relevant section of CICC. • Non-invasive accurate measurements of local void fraction statistics. - Abstract: Operation and data acquisition of an X-ray microtomography developed at INFLPR are optimized to produce stacks of 2-D high-resolution tomographic sections of Cable in Conduit Conductor (CICC) type superconductors demanded in major fusion projects. High-resolution images for CCIC samples (486 NbTi&Cu strands of 0.81 mm diameter, jacketed in rectangular stainless steel pipes of 22 × 26 mm{sup 2}) are obtained by a combination of high energy/intensity and small focus spot X-ray source and high resolution/efficiency detector array. The stack of reconstructed slices is then used for quantitative analysis consisting of accurate strand positioning, determination of the local and global void fraction and 3D strand trajectory assignment for relevant fragments of cable (∼300 mm). The strand positioning algorithm is based on the application of Gabor Annular filtering followed by local maxima detection. The local void fraction is extensively mapped by employing local segmentation methods at a space resolution of about 50 sub-cells sized to be relevant to the triplet of triplet twisting pattern. For the strand trajectory assignment part we developed a global algorithm of the linear programing type which provides the vast majority of correct strand trajectories for most practical applications. For carefully manufactured benchmark CCIC samples over 99% of the trajectories are correctly assigned. For production samples the efficiency of the algorithm is around 90%. Trajectory assignment of a high proportion of the strands is a crucial factor for the derivation of statistical properties of the cable

  12. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging.

    Science.gov (United States)

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie; Michaelsen, Maria Høtoft; Müllertz, Anette; Rantanen, Jukka; Rades, Thomas; Bøtker, Johan

    2017-05-01

    A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed imaging (TPI). Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XμCT data. The print resolution and accuracy was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XμCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.

  13. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  14. Application of the probability theory in predicting 3D focusing behaviors of compound X-ray refractive lenses

    Institute of Scientific and Technical Information of China (English)

    Zichun Le; Xinjian Zhao; Jingqiu Liang; Yaping Sun; Kai Liu; Ming Zhang; Shuqin Guo; Bisheng Quan

    2005-01-01

    A theoretical method based on the diffractive theory is used for predicting three-dimensional (3D) focusing performances of the compound X-rays refractive lenses (CRLs). However, the derivation of the 3D intensity distribution near focus for the X-ray refractive lenses is quite complicated. In this paper, we introduce a simple theoretical method that is based on the first and second moments in the theory of probability. As an example, the 3D focusing performance of a CRL with Si material is predicted. Moreover, the results are compared with those obtained by the diffractive theory. It is shown that the method introduced in this paper is accurate enough.

  15. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    DEFF Research Database (Denmark)

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted...... through the crystalline material sample, a second X-ray detector (7) positioned between the staging device and the first X-ray detector for detecting diffracted X-ray beams, and a processing device (15) for analysing detected values. The crystallographic grain orientation of the individual grain...

  16. 3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy

    Science.gov (United States)

    Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.

    2017-02-01

    Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.

  17. Visualising, segmenting and analysing heterogenous glacigenic sediments using 3D x-ray CT.

    Science.gov (United States)

    Carr, Simon; Diggens, Lucy; Groves, John; O'Sullivan, Catherine; Marsland, Rhona

    2015-04-01

    Whilst there has been significant application of 3D x-ray CT to geological contexts, much of this work has focused on examining properties such as porosity, which are important in reservoir assessment and hydrological evaluations. There has been considerably less attention given to the analysis of the properties of sediments themselves. One particular challenge in CT analysis is to effectively observe and discriminate the relationships between the skeleton and matrix of a sediment. This is particularly challenging in glacial sediments, which comprise an admixture of particles of a wide range of size, morphology and composition within a variably-consolidated sediment body. A key sedimentological component of glacial sediments is their fabric properties. Till fabric data has long been applied to the analysis of the coupling between glaciers and their deformable substrates. This work has typically focused on identifying former ice-flow directions, processes of till deformation and emplacement, and such data is often used to reconcile the sedimentary evidence of former glaciation with the predicted glacier and ice-sheet dynamics derived from numerical models. The collection and interpretation of till fabric data has received significant criticism in recent years, with issues such as low sample populations (typically ~50 grains per sample), small-scale spatial variation in till fabric and operator bias during data collection, all of which compromise the reliability of macro-scale till fabric analysis. Recent studies of micro-scale till fabrics have substantially added to our understanding, and suggest there is systematic variation in particle fabric as a function of particle size. However, these findings are compromised by the 2D nature of the samples (derived from thin sections) capturing only apparent orientations of particles, and are again limited to relatively small datasets. As such, there are fundamental limitations in the quality and application of till fabric

  18. Resonant x-ray scattering in correlated systems

    CERN Document Server

    Ishihara, Sumio

    2017-01-01

    The research and its outcomes presented here is devoted to the use of x-ray scattering to study correlated electron systems and magnetism. Different x-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with x-ray diffraction is shown.

  19. Resonant X-ray scattering in correlated systems

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Youichi [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan). Inst. of Materials Structure Science; Ishihara, Sumio (ed.) [Tohoku Univ., Sendai, Miyagi (Japan). Dept. of Physics

    2017-03-01

    The research and its outcomes presented here is devoted to the use of X-ray scattering to study correlated electron systems and magnetism. Different X-ray based methods are provided to analyze three dimensional electron systems and the structure of transition-metal oxides. Finally the observation of multipole orderings with X-ray diffraction is shown.

  20. 3D RECONSTRUCTION FROM MULTI-VIEW MEDICAL X-RAY IMAGES – REVIEW AND EVALUATION OF EXISTING METHODS

    Directory of Open Access Journals (Sweden)

    S. Hosseinian

    2015-12-01

    Full Text Available The 3D concept is extremely important in clinical studies of human body. Accurate 3D models of bony structures are currently required in clinical routine for diagnosis, patient follow-up, surgical planning, computer assisted surgery and biomechanical applications. However, 3D conventional medical imaging techniques such as computed tomography (CT scan and magnetic resonance imaging (MRI have serious limitations such as using in non-weight-bearing positions, costs and high radiation dose(for CT. Therefore, 3D reconstruction methods from biplanar X-ray images have been taken into consideration as reliable alternative methods in order to achieve accurate 3D models with low dose radiation in weight-bearing positions. Different methods have been offered for 3D reconstruction from X-ray images using photogrammetry which should be assessed. In this paper, after demonstrating the principles of 3D reconstruction from X-ray images, different existing methods of 3D reconstruction of bony structures from radiographs are classified and evaluated with various metrics and their advantages and disadvantages are mentioned. Finally, a comparison has been done on the presented methods with respect to several metrics such as accuracy, reconstruction time and their applications. With regards to the research, each method has several advantages and disadvantages which should be considered for a specific application.

  1. X-ray self-emission imaging used to diagnose 3-D nonuniformities in direct-drive ICF implosions

    Science.gov (United States)

    Davis, A. K.; Michel, D. T.; Craxton, R. S.; Epstein, R.; Hohenberger, M.; Mo, T.; Froula, D. H.

    2016-11-01

    As hydrodynamics codes develop to increase understanding of three-dimensional (3-D) effects in inertial confinement fusion implosions, diagnostics must adapt to evaluate their predictive accuracy. A 3-D radiation postprocessor was developed to investigate the use of soft x-ray self-emission images of an imploding target to measure the size of nonuniformities on the target surface. Synthetic self-emission images calculated from 3-D simulations showed a narrow ring of emission outside the ablation surface of the target. Nonuniformities growing in directions perpendicular to the diagnostic axis were measured through angular variations in the radius of the steepest intensity gradient on the inside of the ring and through changes in the peak x-ray intensity in the ring as a function of angle. The technique was applied to an implosion to measure large 3-D nonuniformities resulting from two dropped laser beam quads at the National Ignition Facility.

  2. 2D-3D shape reconstruction of the distal femur from stereo X-Ray imaging using statistical shape models

    DEFF Research Database (Denmark)

    Baka, N.; Kaptein, B. L.; de Bruijne, Marleen

    2011-01-01

    pose estimation of ground truth shapes as well as 3D shape estimation using a SSM of the whole femur, from stereo cadaver X-rays, in vivo biplane fluoroscopy image-pairs, and an in vivo biplane fluoroscopic sequence. Ground truth shapes for all experiments were available in the form of CT segmentations...

  3. Low kV rotational 3D X-ray imaging for improved CNR of iodine contrast agent

    NARCIS (Netherlands)

    Schaefer, D.; Ahrens, M.; Grass, M.

    2011-01-01

    The contrast of iodine to soft tissue (water) decreases with higher tube voltage in reconstructed 3D X-ray images. Improved acquisition protocols with a tube voltage of about 80 kV for imaging iodine have been proposed earlier for diagnostic CT imaging. We investigate the contrast-to-noise ratio (CN

  4. 3D Nanoscale Chemical Imaging of the Distribution of Aluminum Coordination Environments in Zeolites with Soft X-Ray Microscopy

    NARCIS (Netherlands)

    Aramburo, Luis R.; Liu, Yijin; Tyliszczak, Tolek; de Groot, Frank M. F.; Andrews, Joy C.; Weckhuysen, Bert M.

    2013-01-01

    Here, we present the first nanoscale chemical imaging study revealing the spatial distribution of the amount and coordination environment of aluminum in zeolite materials with 3D scanning transmission X-ray microscopy (STXM). For this purpose, we have focused on two showcase samples involving the in

  5. Development of X-ray CCD camera based X-ray micro-CT system.

    Science.gov (United States)

    Sarkar, Partha S; Ray, N K; Pal, Manoj K; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y; Sinha, A; Gadkari, S C

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  6. Development of X-ray CCD camera based X-ray micro-CT system

    Science.gov (United States)

    Sarkar, Partha S.; Ray, N. K.; Pal, Manoj K.; Baribaddala, Ravi; Agrawal, Ashish; Kashyap, Y.; Sinha, A.; Gadkari, S. C.

    2017-02-01

    Availability of microfocus X-ray sources and high resolution X-ray area detectors has made it possible for high resolution microtomography studies to be performed outside the purview of synchrotron. In this paper, we present the work towards the use of an external shutter on a high resolution microtomography system using X-ray CCD camera as a detector. During micro computed tomography experiments, the X-ray source is continuously ON and owing to the readout mechanism of the CCD detector electronics, the detector registers photons reaching it during the read-out period too. This introduces a shadow like pattern in the image known as smear whose direction is defined by the vertical shift register. To resolve this issue, the developed system has been incorporated with a synchronized shutter just in front of the X-ray source. This is positioned in the X-ray beam path during the image readout period and out of the beam path during the image acquisition period. This technique has resulted in improved data quality and hence the same is reflected in the reconstructed images.

  7. Optomechanical design of a high-precision detector robot arm system for x-ray nano-diffraction with x-ray nanoprobe

    Science.gov (United States)

    Shu, D.; Kalbfleisch, S.; Kearney, S.; Anton, J.; Chu, Y. S.

    2014-03-01

    Collaboration between Argonne National Laboratory and Brookhaven National Laboratory has created a design for the high-precision detector robot arm system that will be used in the x-ray nano-diffraction experimental station at the Hard X-ray Nanoprobe (HXN) beamline for the NSLS-II project. The robot arm system is designed for positioning and manipulating an x-ray detector in three-dimensional space for nano-diffraction data acquisition with the HXN x-ray microscope. It consists of the following major component groups: a granite base with air-bearing support, a 2-D horizontal base stage, a vertical axis goniometer, a 2-D vertical plane robot arm, a 3-D fast scanning stages group, and a 2-D x-ray pixel detector. The design specifications and unique optomechanical structure of this novel high-precision detector robot arm system will be presented in this paper.

  8. Fully 3D-Integrated Pixel Detectors for X-Rays

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gabriella, Carini [SLAC National Accelerator Lab., Menlo Park, CA (United States); Enquist, Paul [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grybos, Pawel [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Holm, Scott [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lipton, Ronald [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maj, Piotr [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Patti, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Siddons, David Peter [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Szczygiel, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yarema, Raymond [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-01-01

    The vertically integrated photon imaging chip (VIPIC1) pixel detector is a stack consisting of a 500-μm-thick silicon sensor, a two-tier 34-μm-thick integrated circuit, and a host printed circuit board (PCB). The integrated circuit tiers were bonded using the direct bonding technology with copper, and each tier features 1-μm-diameter through-silicon vias that were used for connections to the sensor on one side, and to the host PCB on the other side. The 80-μm-pixel-pitch sensor was the direct bonding technology with nickel bonded to the integrated circuit. The stack was mounted on the board using Sn–Pb balls placed on a 320-μm pitch, yielding an entirely wire-bond-less structure. The analog front-end features a pulse response peaking at below 250 ns, and the power consumption per pixel is 25 μW. We successful completed the 3-D integration and have reported here. Additionally, all pixels in the matrix of 64 × 64 pixels were responding on well-bonded devices. Correct operation of the sparsified readout, allowing a single 153-ns bunch timing resolution, was confirmed in the tests on a synchrotron beam of 10-keV X-rays. An equivalent noise charge of 36.2 e- rms and a conversion gain of 69.5 μV/e- with 2.6 e- rms and 2.7 μV/e- rms pixel-to-pixel variations, respectively, were measured.

  9. A novel diamond anvil cell for x-ray diffraction at cryogenic temperatures manufactured by 3D printing

    Science.gov (United States)

    Jin, H.; Woodall, C. H.; Wang, X.; Parsons, S.; Kamenev, K. V.

    2017-03-01

    A new miniature high-pressure diamond anvil cell was designed and constructed using 3D micro laser sintering technology. This is the first application of the use of rapid prototyping technology to construct high-pressure apparatus. The cell is specifically designed for use as an X-ray diffraction cell that can be used with commercially available diffractometers and open-flow cryogenic equipment to collect data at low temperature and high pressure. The cell is constructed from stainless steel 316L and is about 9 mm in diameter and 7 mm in height, giving it both small dimensions and low thermal mass, and it will fit into the cooling envelope of a standard CryostreamTM cooling system. The cell is clamped using a customized miniature buttress thread of diameter 7 mm and pitch of 0.5 mm enabled by 3D micro laser sintering technology; such dimensions are not attainable using conventional machining. The buttress thread was used as it has favourable uniaxial load properties allowing for higher pressure and better anvil alignment. The clamp can support the load of at least 1.5 kN according to finite element analysis (FEA) simulations. FEA simulations were also used to compare the performance of the standard thread and the buttress thread, and demonstrate that stress is distributed more uniformly in the latter. Rapid prototyping of the pressure cell by the laser sintering resulted in a substantially higher tensile yield strength of the 316L stainless steel (675 MPa compared to 220 MPa for the wrought type of the same material), which increased the upper pressure limit of the cell. The cell is capable of reaching pressures of up to 15 GPa with 600 μm diameter culets of diamond anvils. Sample temperature and pressure changes on cooling were assessed using X-ray diffraction on samples of NaCl and HMT-d12.

  10. 3D spatially-resolved characterization of chemical environment distributions by inelastic X-ray scattering in confocal setup

    Energy Technology Data Exchange (ETDEWEB)

    Leani, J.J.; Sanchez, H.J.; Perez, R.D. [Universidad Nacional de Cordoba, Cordoba, Cba (Argentina); Perez, C.A. [Laboratoorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil)

    2012-07-01

    Full text: 3D-micro X-ray fluorescence spectroscopy enables non-destructive three-dimensional investigation of elemental distribution in samples in the micrometer regime. In the last few years, accurate quantification procedures have been developed [1,2]. The most important problem in these quantification procedures is the existence of light elements in the sample from which no fluorescence is detected. This dark matrix problem is not yet solved and is now the most serious limitation of this technique [2]. Resonant Raman scattering is an inelastic scattering process that becomes dominant when atoms are irradiated with incident energy lower and close to an absorption edge. Recently, a spectroscopic technique in formation based in this process showed to be useful to distinguish surrounded chemical environments [3,4]. We present first results regarding the possibility of determining the oxidation state of an element, in a three-dimensional regime, by resonant Raman scattering using an energy dispersive system combined with a confocal setup. A depth scanning of a multilayer sample in confocal setup was carried out in the XRF Beamline of the LNLS (Campinas, Brazil) [5]. The sample consisted of different layers of Cu oxides over a Cu substrate. The sample was irradiated with monochromatic photons having energy close but lower than the K absorption edge of Cu. The Raman peaks were analyzed, residuals were determined and a FFT smoothing procedure, taking into account the instrument functions of the detecting system, was applied. The results show an oscillation pattern that depends on the oxidation state of cooper. The result is relevant since allows the discrimination of the oxidation state of the elements present in a sample in a 3D-micrometer regime by means of resonant Raman scattering combined with a confocal setup. This result could be used as a tool to determine the dark matrix present in the sample with the aim of establishing a reliable quantification procedure. 1

  11. 3D printing in X-ray and gamma-ray imaging: A novel method for fabricating high-density imaging apertures

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Brian W., E-mail: molinero@email.arizona.edu [Center for Gamma-Ray Imaging, University of Arizona, Tucson, Arizona 85719 (United States); Moore, Jared W.; Barrett, Harrison H. [Center for Gamma-Ray Imaging, University of Arizona, Tucson, Arizona 85719 (United States); Frye, Teresa [TechForm Advanced Casting Technology, LLC, Portland, Oregon 97222 (United States); Adler, Steven [A3DM, Portland, Oregon 97222 (United States); Sery, Joe [Tungsten Heavy Powder, San Diego, California 92121 (United States); Furenlid, Lars R. [Center for Gamma-Ray Imaging, University of Arizona, Tucson, Arizona 85719 (United States)

    2011-12-11

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented.

  12. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    Science.gov (United States)

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  13. Petrophysical analysis of limestone rocks by nuclear logging and 3D high-resolution X-ray computed microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.F.S. [Nuclear Instrumentation Laboratory, COPPE-PEN, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro, RJ (Brazil); Lima, I., E-mail: inaya@lin.ufrj.br [Nuclear Instrumentation Laboratory, COPPE-PEN, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro, RJ (Brazil); Department of Mechanical Engineering and Energy, IPRJ-UERJ, Nova Friburgo, RJ (Brazil); Ferrucio, P.L.; Abreu, C.J.; Borghi, L. [Geology Department, Geosciences Institute, Rio de Janeiro Federal University, Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Nuclear Instrumentation Laboratory, COPPE-PEN, UFRJ, P.O. Box 68509, 21941-972 Rio de Janeiro, RJ (Brazil)

    2011-10-01

    This study presents the pore-space system analysis of the 2-ITAB-1-RJ well cores, which were drilled in the Sao Jose do Itaborai Basin, in the state of Rio de Janeiro, Brasil. The analysis presented herein has been developed based on two techniques: nuclear logging and 3D high-resolution X-ray computed microtomography. Nuclear logging has been proven to be the technique that provides better quality and more quantitative information about the porosity using radioactive sources. The Density Gamma Probe and the Neutron Sonde used in this work provide qualitative information about bulk density variations and compensated porosity of the geological formation. The samples obtained from the well cores were analyzed by microtomography. The use of this technique in sedimentary rocks allows quantitative evaluation of pore system and generates high-resolution 3D images ({approx}microns order). The images and data obtained by microtomography were integrated with the response obtained by nuclear logging. The results obtained by these two techniques allow the understanding of the pore-size distribution and connectivity, as well as the porosity values. Both techniques are important and they complement each other.

  14. Doppler Tomography in 2D and 3D of the X-ray Binary Cyg X-1 for June 2007

    Science.gov (United States)

    Sharova, O. I.; Agafonov, M. I.; Karitskaya, E. A.; Bochkarev, N. G.; Zharikov, S. V.; Butenko, G. Z.; Bondar, A. V.

    2012-04-01

    The 2D and 3D Doppler tomograms of X-ray binary system Cyg X-1 (V1357 Cyg) were reconstructed from spectral data for the line HeII 4686Å obtained with 2-m telescope of the Peak Terskol Observatory (Russia) and 2.1-m telescope of the Mexican National Observatory in June, 2007. Information about gas motions outside the orbital plane, using all of the three velocity components Vx, Vy, Vz, was obtained for the first time. The tomographic reconstruction was carried out for the system inclination angle of 45°. The equal resolution (50 × 50 × 50 km/s) is realized in this case, in the orbital plane (Vx, Vy) and also in the perpendicular direction Vz. The checkout tomograms were realized also for the inclination angle of 40° because of the angle uncertainty. Two versions of the result showed no qualitative discrepancy. Details of the structures revealed by the 3D Doppler tomogram were analyzed.

  15. X-Ray Computed Tomography Analysis of Sajau Coal, Berau Basin, Indonesia: 3D Imaging of Cleat and Microcleat Characteristics

    Directory of Open Access Journals (Sweden)

    Ahmad Helman Hamdani

    2015-01-01

    Full Text Available The Pliocene Sajau coals of the Berau Basin area have a moderately to highly developed cleat system. Mostly the cleat fractures are well developed in both bright and dull bands, and these cleats are generally inclined or perpendicular to the bedding planes of the seam. The presence of cleat networks/fractures in coal seam is the important point in coalbed methane prospect. The 3D X-ray computed tomography (CT technique was performed to identify cleats characteristics in the Sajau coal seams, such as the direction of coal cleats, geometry of cleat, and cleats mineralization. By CT scan imaging technique two different types of natural fractures observed in Sajau coals have been identified, that is, face cleats and butt cleats. This technique also identified the direction of face cleats and butt cleats as shown in the resulting 3D images. Based on the images, face cleats show a NNE-SSW direction while butt cleats have a NW-SE direction. The crosscutting relationship indicated that NNE-SSW cleats were formed earlier than NW-SE cleats. The procedure also identified the types of minerals that filled the cleats apertures. Based on their density, the minerals are categorized as follows: very high density minerals (pyrite, high density minerals (anastase, and low density minerals (kaolinite, calcite were identified filling the cleats aperture.

  16. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging.

    Science.gov (United States)

    Schmidgunst, C; Ritter, D; Lang, E

    2007-09-01

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems, (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  17. STXM goes 3D: digital reconstruction of focal stacks as novel approach towards confocal soft x-ray microscopy.

    Science.gov (United States)

    Späth, Andreas; Scho Ll, Simon; Riess, Christian; Schmidtel, Daniel; Paradossi, Gaio; Raabe, Jo Rg; Hornegger, Joachim; Fink, Rainer H

    2014-09-01

    Fresnel zone plate based soft x-ray transmission microspectroscopy has developed into a routine technique for high-resolution elemental or chemical 2D imaging of thin film specimens. The availability of high resolution Fresnel lenses with short depth of focus offers the possibility of optical slicing (in the third dimension) by focus series with resolutions in the submicron regime. We introduce a 3D reconstruction algorithm that uses a variance-based metric to assign a focus measure as basis for volume rendering. The algorithm is applied to simulated geometries and opaque soft matter specimens thus enabling 3D visualization. These studies with z-resolution of few 100nm serve as important step towards the vision of a confocal transmission x-ray microscope.

  18. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    Directory of Open Access Journals (Sweden)

    Yannick M Staedler

    Full Text Available Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of

  19. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    Science.gov (United States)

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  20. Modeling and characterization of X-ray yield in a polychromatic, lab-scale, X-ray computed tomography system

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, J.C.E.; Chawla, Nikhilesh, E-mail: nchawla@asu.edu

    2015-05-21

    A modular X-ray computed micro-tomography (µXCT) system is characterized in terms of X-ray yield resulting both from the generated X-ray spectrum and from X-ray detection with an energy-sensitive detector. The X-ray computed tomography system is composed of a commercially available cone-beam microfocus X-ray source and a modular optically-coupled-CCD-scintillator X-ray detector. The X-ray yield is measured and reported in units independent from exposure time, X-ray tube beam target current, and cone-beam-to-detector geometry. The polychromatic X-ray source is modeled as a broad Bremsstrahlung X-ray spectrum in order to understand the effect of the controllable parameters, that is, X-ray tube accelerating voltage and X-ray beam filtering. An approach is adopted which expresses the absolute number of emitted X-rays. The response of the energy-sensitive detector to the modeled spectrum is modeled as a function of scintillator composition and thickness. The detection efficiency model for the polychromatic X-ray detector considers the response of the light collection system and the electronic imaging array in order to predict absolute count yield under the studied conditions. The modeling approach is applied to the specific hardware implemented in the current µXCT system. The model's predictions for absolute detection rate are in reasonable agreement with measured values under a range of conditions applied to the system for X-ray microtomography imaging, particularly for the LuAG:Ce scintillator material.

  1. Theoretical analysis of the magnetic circular dichroism in the 2p3d and 2p4d x-ray emission of Gd

    NARCIS (Netherlands)

    Groot, F.M.F. de; Nakazawa, M.; Kotani, A.; Krisch, M.H.; Sette, F.

    1997-01-01

    The 2p3d and 2p4d x-ray emission spectral shapes have been calculated using a theoretical description of spin-polarized 2p photoemission and atomic multiplet calculations of the 2p3d and 2p4d radiative decay. Emphasis is given to the use of circular-polarized x rays for the excitation process. Good

  2. Revealing the 3D internal structure of natural polymer microcomposites using X-ray ultra microtomography.

    Science.gov (United States)

    Pakzad, A; Parikh, N; Heiden, P A; Yassar, R S

    2011-07-01

    Properties of composite materials are directly affected by the spatial arrangement of reinforcement and matrix. In this research, partially hydrolysed cellulose microcrystals were used to fabricate polycaprolactone microcomposites. The spatial distribution of cellulose microcrystals was characterized by a newly developed technique of X-ray ultra microscopy and microtomography. The phase and absorption contrast imaging of X-ray ultra microscopy revealed two-dimensional and three-dimensional information on CMC distribution in polymer matrices. The highest contrast and flux (signal-to-noise ratio) were obtained using vanadium foil targets with the accelerating voltage of 30 keV and beam current of >200 nA. The spatial distribution of cellulose microcrystals was correlated to the mechanical properties of the microcomposites. It was observed that heterogeneous distribution and clustering of cellulose microcrystals resulted in degradation of tensile strength and elastic modulus of composites. The utilization of X-ray ultra microscopy can open up new opportunities for composite researchers to explore the internal structure of microcomposites. X-ray ultra microscopy sample preparation is relatively simple in comparison to transmission electron microscopy and the spatial information is gathered at much larger scale.

  3. Development of a CZT spectroscopic 3D imager prototype for hard X ray astronomy

    DEFF Research Database (Denmark)

    Auricchio, N.; Caroli, E.; Basili, A.

    2013-01-01

    The development of focusing optics based on wide band Laue lenses operating from ∼60 keV up to several hundreds of keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best its intrinsic capabiliti...

  4. Grating-based X-ray tomography of 3D food structures

    DEFF Research Database (Denmark)

    Miklos, Rikke; Nielsen, Mikkel Schou; Einarsdottir, Hildur;

    2016-01-01

    A novel grating based X-ray phase-contrast tomographic method has been used to study how partly substitution of meat proteins with two different types of soy proteins affect the structure of the formed protein gel in meat emulsions. The measurements were performed at the Swiss synchrotron radiati...

  5. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  6. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    Science.gov (United States)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  7. New highlights of phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results

    Science.gov (United States)

    Alexandre, A.; Basile-Doelsch, I.; Delhaye, T.; Borshneck, D.; Mazur, J. C.; Reyerson, P.; Santos, G. M.

    2015-02-01

    Phytoliths contain occluded organic compounds called phytC. Recently, phytC content, nature, origin, paleoenvironmental meaning and impact in the global C cycle have been the subject of increasing debate. Inconsistencies were fed by the scarcity of in situ characterizations of phytC in phytoliths. Here we reconstructed at high spatial resolution the 3-D structure of harvested grass short cell (GSC) phytoliths using 3-D X-ray microscopy. While this technique has been widely used for 3-D reconstruction of biological systems it has never been applied in high-resolution mode to silica particles. Simultaneously, we investigated the location of phytC using nanoscale secondary ion mass spectrometry (NanoSIMS). Our data evidenced that the silica structure contains micrometric internal cavities. These internal cavities were sometimes observed isolated from the outside. Their opening may be an original feature or may result from a beginning of dissolution of silica during the chemical extraction procedure, mimicking the progressive dissolution process that can happen in natural environments. The phytC that may originally occupy the cavities is thus susceptible to rapid oxidation. It was not detected by the NanoSIMS technique. However, another pool of phytC, continuously distributed in and protected by the silica structure, was observed. Its N/C ratio (0.27) is in agreement with the presence of amino acids. These findings constitute a basis to further characterize the origin, occlusion process, nature and accessibility of phytC, as a prerequisite for assessing its significance in the global C cycle.

  8. New highlights on phytolith structure and occluded carbon location: 3-D X-ray microscopy and NanoSIMS results

    Science.gov (United States)

    Alexandre, A.; Basile-Doelsch, I.; Delhaye, T.; Borshneck, D.; Mazur, J. C.; Reyerson, P.; Santos, G. M.

    2014-10-01

    Phytoliths contain occluded organic compounds called phytC. Recently, phytC content, nature, origin, paleoenvironmental meaning and impact in the global C cycle has been the subject of increasing debate. Inconsistencies were fed by the scarcity of in-situ characterization of phytC in phytoliths. Here we reconstructed at high spatial resolution the 3-dimensional (3-D) structure of harvested grass short cell (GSC) phytoliths using 3-D X-ray microscopy. While this technic has been widely used for 3-D reconstruction of biological systems it has never been applied in high resolution mode to silica particles. Simultaneously, we investigated the location of phytC using Nano-scale Secondary Ion Mass Spectrometry (NanoSIMS). Our data evidenced that the silica structure contains micrometric internal cavities. These internal cavities were sometimes observed isolated from the outside. Their opening may be an original feature or may result from a beginning of dissolution of silica during the chemical extraction procedure, mimicking the progressive dissolution process that can happen in natural environments. The phytC that may originally occupy the cavities is thus susceptible to rapid oxidation. It was not detected by the nanoSIMS technique. To the contrary another pool of phytC, continuously distributed in and protected by the silica structure was evidenced. Its N/C ratio (0.27) is in agreement with the presence of amino acids. These findings allowed to discuss discrepancies in phytC quantification, evaluate phytC accessibility to oxidation, and reassess the paleo-environmental meaning of opaque features observed in phytoliths by natural light (NL) microcopy. They also should help to reappraise the significance of phytC in the global C cycle.

  9. Systems and methods for detecting x-rays

    Science.gov (United States)

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  10. Image quality simulation and verification of x-ray volume imaging systems

    Science.gov (United States)

    Kroon, Han; Schoumans, Nicole; Snoeren, Ruud

    2006-03-01

    Nowadays, 2D X-ray systems are used more and more for 3-dimensional rotational X-ray imaging (3D-RX) or volume imaging, such as 3D rotational angiography. However, it is not evident that the application of settings for optimal 2D images also guarantee optimal conditions for 3D-RX reconstruction results. In particular the search for a good compromise between patient dose and IQ may lead to different results in case of 3D imaging. For this purpose we developed an additional 3D-RX module for our full-scale image quality & patient dose (IQ&PD) simulation model, with specific calculations of patient dose under rotational conditions, and contrast, sharpness and noise of 3D images. The complete X-ray system from X-ray tube up to and including the display device is modelled in separate blocks for each distinguishable component or process. The model acts as a tool for X-ray system design, image quality optimisation and patient dose reduction. The model supports the decomposition of system level requirements, and takes inherently care of the prerequisite mutual coherence between component requirements. The short calculation times enable comprehensive multi-parameter optimisation studies. The 3D-RX IQ&PD performance is validated by comparing calculation results with actual measurements performed on volume images acquired with a state-of-the-art 3D-RX system. The measurements include RXDI dose index, signal and contrast based on Hounsfield units (H and ΔH), modulation transfer function (MTF), noise variance (σ2) and contrast-to-noise ratio (CNR). Further we developed a new 3D contrast-delta (3D-CΔ) phantom with details of varying size and contrast medium material and concentration. Simulation and measurement results show a significant correlation.

  11. Advanced 3D textile composites reinforcements meso F.E analyses based on X-ray computed tomography

    Science.gov (United States)

    Naouar, Naim; Vidal-Salle, Emmanuelle; Boisse, Philippe

    2016-10-01

    Meso-FE modelling of 3D textile composites is a powerful tool, which can help determine mechanical properties and permeability of the reinforcements or composites. The quality of the meso FE analyses depends on the quality of the initial model. A direct method based on X-ray tomography imaging is introduced to determine finite element models based on the real geometry of 3D composite reinforcements. The method is particularly suitable regarding 3D textile reinforcements for which internal geometries are numerous and complex. The approach used for the separation of the yarns in different directions is specialized because the fibres flow in three-dimensional space. An analysis of the image's texture is performed. A hyperelastic model developed for fibre bundles is used for the simulation of the deformation of the 3D reinforcement.

  12. Mass transfer in binary X-ray systems

    Science.gov (United States)

    Mccray, R.; Hatchett, S.

    1975-01-01

    The influence of X-ray heating on gas flows in binary X-ray systems is examined. A simple estimate is obtained for the evaporative wind flux from a stellar atmosphere due to X-ray heating which agrees with numerical calculations by Alme and Wilson (1974) but disagrees with calculations by Arons (1973) and by Basko and Sunyaev (1974) for the Her X-1/HZ Her system. The wind flux is sensitive to the soft X-ray spectrum. The self-excited wind mechanism does not work. Mass transfer in the Hercules system probably occurs by flow of the atmosphere of HZ Her through the gravitational saddle point of the system. The accretion gas stream is probably opaque with atomic density of not less than 10 to the 15th power per cu cm and is confined to a small fraction of 4(pi) steradians. Other binary X-ray systems are briefly discussed.

  13. X-ray diffraction contrast tomography (DCT) system, and an X-ray diffraction contrast tomography (DCT) method

    DEFF Research Database (Denmark)

    2012-01-01

    Source: US2012008736A An X-ray diffraction contrast tomography system (DCT) comprising a laboratory X-ray source (2), a staging device (5) rotating a polycrystalline material sample in the direct path of the X-ray beam, a first X-ray detector (6) detecting the direct X-ray beam being transmitted ...... in the polycrystalline sample is determined based on the two-dimensional position of extinction spots and the associated angular position of the sample for a set of extinction spots pertaining to the individual grain....

  14. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    Energy Technology Data Exchange (ETDEWEB)

    Iota, V; Park, J; Baer, B; Yoo, C; Shen, G

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at high pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d

  15. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yifei; Manjubala, Inderchand; Fratzl, Peter [Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam (Germany); Roschger, Paul [4th Medical Department, Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, 1140 Vienna (Austria); Schell, Hanna; Duda, Georg N, E-mail: fratzl@mpikg.mpg.d [Julius Wolff Institut and Center for Musculoskeletal Surgery, Charite- University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  16. Single-shot 3D structure determination of nanocrystals with femtosecond X-ray free electron laser pulses

    CERN Document Server

    Xu, Rui; Song, Changyong; Rodriguez, Jose A; Huang, Zhifeng; Chen, Chien-Chun; Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Kim, Sangsoo; Kim, Sunam; Suzuki, Akihiro; Takayama, Yuki; Oroguchi, Tomotaka; Takahashi, Yukio; Fan, Jiadong; Zou, Yunfei; Hatsui, Takaki; Inubushi, Yuichi; Kameshima, Takashi; Yonekura, Koji; Tono, Kensuke; Togashi, Tadashi; Sato, Takahiro; Yamamoto, Masaki; Nakasako, Masayoshi; Yabashi, Makina; Ishikawa, Tetsuya; Miao, Jianwei

    2013-01-01

    Coherent diffraction imaging (CDI) using synchrotron radiation, X-ray free electron lasers (X-FELs), high harmonic generation, soft X-ray lasers, and optical lasers has found broad applications across several disciplines. An active research direction in CDI is to determine the structure of single particles with intense, femtosecond X-FEL pulses based on diffraction-before-destruction scheme. However, single-shot 3D structure determination has not been experimentally realized yet. Here we report the first experimental demonstration of single-shot 3D structure determination of individual nanocrystals using ~10 femtosecond X-FEL pulses. Coherent diffraction patterns are collected from high-index-faceted nanocrystals, each struck by a single X-FEL pulse. Taking advantage of the symmetry of the nanocrystal, we reconstruct the 3D structure of each nanocrystal from a single-shot diffraction pattern at ~5.5 nm resolution. As symmetry exists in many nanocrystals and virus particles, this method can be applied to 3D st...

  17. Analysis of the KROTOS KFC test by coupling X-Ray image analysis and MC3D calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brayer, C.; Charton, A.; Grishchenko, D.; Fouquart, P.; Bullado, Y.; Compagnon, F.; Correggio, P.; Cassiaut-Louis, N.; Piluso, P. [Commissariat a l' Energie Atomique et Aux Energies Alternatives, CEA Cadarache, DEN, F-13108 Saint-Paul-Les-Durance (France)

    2012-07-01

    During a hypothetical severe accident sequence in a Pressurized Water Reactor (PWR), the hot molten materials (corium) issuing from the degraded reactor core may generate a steam explosion if they come in contact with water and may damage the structures and threaten the reactor integrity. The SERENA program is an international OECD project that aims at helping the understanding of this phenomenon also called Fuel Coolant Interaction (FCI) by providing data. CEA takes part in this program by performing tests in its KROTOS facility where steam explosions using prototypic corium can be triggered. Data about the different phases in the premixing are extracted from the KROTOS X-Ray radioscopy images by using KIWI software (KROTOS Image analysis of Water-corium Interaction) currently developed by CEA. The MC3D code, developed by IRSN, is a thermal-hydraulic multiphase code mainly dedicated to FCI studies. It is composed of two applications: premixing and explosion. An overall FCI calculation with MC3D requires a premixing calculation followed by an explosion calculation. The present paper proposes an alternative approach in which all the features of the premixing are extracted from the X-Ray pictures using the KIWI software and transferred to an MC3D dataset for a direct simulation of the explosion. The main hypothesis are discussed as well as the first explosion results obtained with MC3D for the KROTOS KFC test. These results are rather encouraging and are analyzed on the basis of comparisons with the experimental data. (authors)

  18. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    Science.gov (United States)

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-08-18

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  19. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    Science.gov (United States)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  20. Development status of a CZT spectrometer prototype with 3D spatial resolution for hard x-ray astronomy

    Science.gov (United States)

    Auricchio, N.; Caroli, E.; Basili, A.; Benassi, G.; Budtz Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Kuvvetli, I.; Milano, L.; Moscatelli, F.; Stephen, J. B.; Zanichelli, M.; Zappettini, A.

    2012-07-01

    The development of new focusing optics based on wide band Laue lenses operating from ~60 keV up to several hundred keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best their intrinsic capabilities. We describe a three dimensional (3D) position sensitive detector prototype suitable as the basic module for a high efficiency Laue lens focal plane detector. This detector configuration is currently under study for use in a balloon payload dedicated to performing a high significance measurement of the polarization status of the Crab between 100 and 500 keV. The prototype is made by packing 8 linear modules, each composed of one basic sensitive unit bonded onto a thin supporting ceramic layer. Each unit is a drift strip detector based on a CZT crystal, irradiated transversally to the electric field direction. The anode is segmented into 8 detection cells, each comprising one collecting strip and 8 surrounding drift strips. The drift strips are biased by a voltage divider. The cathode is divided into 4 horizontal strips for the reconstruction of the Z interaction position. The detector readout electronics is based on RENA-3 ASIC and the data handling system uses a custom electronics based on FPGA to provide the ASIC setting, the event handling logic, and the data acquisition. This paper mainly describes the components and the status of the undergoing activities for the construction of the proposed 3D CZT prototype and shows the results of the electronics tests.

  1. Multiscale 3D characterization with dark-field x-ray microscopy

    DEFF Research Database (Denmark)

    Simons, Hugh; Jakobsen, Anders Clemen; Ahl, Sonja Rosenlund

    2016-01-01

    Dark-field x-ray microscopy is a new way to three-dimensionally map lattice strain and orientation in crystalline matter. It is analogous to dark-field electron microscopy in that an objective lens magnifies diffracting features of the sample; however, the use of high-energy synchrotron x...... of the technique are presented-mapping the evolution of subgrains during the processing of plastically deformed aluminum, mapping domains and strain fields in ferroelectric crystals, and the three-dimensional mapping of strain fields around individual dislocations. This ability to directly characterize complex...

  2. 3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy

    CERN Document Server

    Li, Ruijiang; Jia, Xun; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Song, William Y; Jiang, Steve B

    2011-01-01

    Recently we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency were then evaluated on 1) a digital respiratory phantom, 2) a physical respiratory phantom, and 3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 seconds, for both regular and irreg...

  3. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S., E-mail: sichen@aps.anl.gov; Vine, D. J.; Lai, B. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Paunesku, T.; Yuan, Y.; Woloschak, G. E. [Department of Radiation Oncology, Northwester University, Chicago, IL 60611 (United States); Deng, J. [Applied Physics, Northwestern University, Evanston, IL 60208 (United States); Jin, Q.; Hong, Y. P. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Flachenecker, C.; Hornberger, B. [Carl Zeiss X-ray Microscopy, Pleasanton, CA 94588 (United States); Brister, K. [Synchrotron Research Center, Northwestern University, Argonne, IL 60439 (United States); Jacobsen, C. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Applied Physics, Northwestern University, Evanston, IL 60208 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Vogt, S. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Department of Radiation Oncology, Northwester University, Chicago, IL 60611 (United States)

    2016-01-28

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation.

  4. A Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray Catheterization Sequence and 3D Rotational Angiography.

    Science.gov (United States)

    Ambrosini, Pierre; Smal, Ihor; Ruijters, Daniel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-11-07

    In minimal invasive image guided catheterization procedures, physicians require information of the catheter position with respect to the patient's vasculature. However, in fluoroscopic images, visualization of the vasculature requires toxic contrast agent. Static vasculature roadmapping, which can reduce the usage of iodine contrast, is hampered by the breathing motion in abdominal catheterization. In this paper, we propose a method to track the catheter tip inside the patient's 3D vessel tree using intra-operative single-plane 2D X-ray image sequences and a peri-operative 3D rotational angiography (3DRA). The method is based on a hidden Markov model (HMM) where states of the model are the possible positions of the catheter tip inside the 3D vessel tree. The transitions from state to state model the probabilities for the catheter tip to move from one position to another. The HMM is updated following the observation scores, based on the registration between the 2D catheter centerline extracted from the 2D X-ray image, and the 2D projection of 3D vessel tree centerline extracted from the 3DRA. The method is extensively evaluated on simulated and clinical datasets acquired during liver abdominal catheterization. The evaluations show a median 3D tip tracking error of 2.3 mm with optimal settings in simulated data. The registered vessels close to the tip have a median distance error of 4.7 mm with angiographic data and optimal settings. Such accuracy is sufficient to help the physicians with an up-to-date roadmapping. The method tracks in real-time the catheter tip and enables roadmapping during catheterization procedures.

  5. X-ray diffraction study on the thermal properties of CuMPt6 (M= 3d elements) alloys

    OpenAIRE

    2009-01-01

    The effect of ternary addition of the 3d elements Ti, V, Cr, Mn, Fe, Co and Ni to CuPt3 to form ternary CuMPt6 alloys on the thermal properties was investigated using high-temperature X-ray diffraction method. Data obtained were utilized to determine the lattice parameters, coefficients of thermal expansion, Debye temperature and mean-square displacements of an atom. It was found that the addition increases the lattice spacing, increases the degree of thermal expansion and lowers the Debye te...

  6. X-ray tomography system for industrial applications

    Science.gov (United States)

    Auditore, L.; Barna, R. C.; Emanuele, U.; Loria, D.; Trifiro, A.; Trimarchi, M.

    2008-05-01

    X-ray radiography and tomography are two of the most used non-destructive testing techniques both in industrial and cultural heritage fields. However, the inspection of heavy materials or thick objects requires X-ray energies larger than the maximum energy provided by commercial X-ray tubes (600 kV). For this reason, and owing to the long experience of the INFN-Gruppo Collegato di Messina in designing and assembling low energy electron linacs, a 5 MeV electron linac based X-ray tomographic system has been developed at the Dipartimento di Fisica, Università di Messina. The X-ray source, properly designed, provides a 16 cm diameter X-ray spot at the sample position, and a beam opening angle of about 3.6 degree. Optimization of the parameters influencing the e-γ conversion and the X-ray beam characteristics have been studied by means of the MCNP-4C2 (Monte-Carlo-N-Particle, version 4C2) code. The image acquisition system consists of a CCD camera and a scintillator screen. Preliminary radiographies and tomographies showing the high quality performances of the tomographic system have been acquired. Finally, the compactness of the accelerator system is one of the advantages of the discussed tomography device which could be made transportable.

  7. Simulating 3D Stellar Winds and Diffuse X-ray Emissions from Gases in Non-equilibrium Ionization State

    Science.gov (United States)

    Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li

    2017-08-01

    We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.

  8. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery.

    Science.gov (United States)

    van de Kraats, Everine B; Carelsen, Bart; Fokkens, Wytske J; Boon, Sjirk N; Noordhoek, Niels; Niessen, Wiro J; van Walsum, Theo

    2005-12-21

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.

  9. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    Science.gov (United States)

    van de Kraats, Everine B.; Carelsen, Bart; Fokkens, Wytske J.; Boon, Sjirk N.; Noordhoek, Niels; Niessen, Wiro J.; van Walsum, Theo

    2005-12-01

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.

  10. Direct navigation on 3D rotational x-ray data acquired with a mobile propeller C-arm: accuracy and application in functional endoscopic sinus surgery

    Energy Technology Data Exchange (ETDEWEB)

    Kraats, Everine B van de [Image Sciences Institute, University Medical Center Utrecht (Netherlands); Carelsen, Bart [Academic Medical Center Amsterdam, Medical Physics Department (Netherlands); Fokkens, Wytske J [Academic Medical Center Amsterdam, Department of Otorhinolaryngology (Netherlands); Boon, Sjirk N [Philips Medical Systems, Best (Netherlands); Noordhoek, Niels [Philips Medical Systems, Best (Netherlands); Niessen, Wiro J [Image Sciences Institute, University Medical Center Utrecht (Netherlands); Walsum, Theo van [Image Sciences Institute, University Medical Center Utrecht (Netherlands)

    2005-12-21

    Recently, three-dimensional (3D) rotational x-ray imaging has been combined with navigation technology, enabling direct 3D navigation for minimally invasive image guided interventions. In this study, phantom experiments are used to determine the accuracy of such a navigation set-up for a mobile C-arm with propeller motion. After calibration of the C-arm system, the accuracy is evaluated by pinpointing divots on a special-purpose phantom with known geometry. This evaluation is performed both with and without C-arm motion in between calibration and registration for navigation. The variation caused by each of the individual transformations in the calibration and registration process is also studied. The feasibility of direct navigation on 3D rotational x-ray images for functional endoscopic sinus surgery has been evaluated in a cadaver navigation experiment. Navigation accuracy was approximately 1.0 mm, which is sufficient for functional endoscopic sinus surgery. C-arm motion in between calibration and registration slightly degraded the registration accuracy by approximately 0.3 mm. Standard deviations of each of the transformations were in the range 0.15-0.31 mm. In the cadaver experiment, the navigation images were considered in good correspondence with the endoscopic images by an experienced ENT surgeon. Availability of 3D localization information provided by the navigation system was considered valuable by the ENT surgeon.

  11. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    Science.gov (United States)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  12. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    OpenAIRE

    de Groot, F. M. F.

    2001-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption process. Section II discusses 1s X-ray absorption, i.e., the K edges, and section III deals with 2p X-ray absorption, the L edges. X-ray emission is discussed in, respectively, the L edges. X-ray emis...

  13. Development of cable fed flash X-ray (FXR) system

    Science.gov (United States)

    Menon, Rakhee; Mitra, S.; Patel, A. S.; Kumar, R.; Singh, G.; Senthil, K.; Kumar, Ranjeet; Kolge, T. S.; Roy, Amitava; Acharya, S.; Biswas, D.; Sharma, Archana

    2017-08-01

    Flash X-ray sources driven by pulsed power find applications in industrial radiography, and a portable X-ray source is ideal where the radiography needs to be taken at the test site. A compact and portable flash X-ray (FXR) system based on a Marx generator has been developed with the high voltage fed to the FXR tube via a cable feed-through arrangement. Hard bremsstrahlung X-rays of few tens of nanosecond duration are generated by impinging intense electron beams on an anode target of high Z material. An industrial X-ray source is developed with source size as low as 1 mm. The system can be operated from 150 kV to 450 kV peak voltages and a dose of 10 mR has been measured at 1 m distance from the source window. The modeling of the FXR source has been carried out using particle-in-cell and Monte Carlo simulations for the electron beam dynamics and X-ray generation, respectively. The angular dose profile of X-ray has been measured and compared with the simulation.

  14. Towards laboratory x-ray nanotomography: instrumental improvements on a SEM-based system

    Science.gov (United States)

    Gomes Perini, L. A.; Bleuet, P.; Buijsse, B.; Kwakman, L. F. Tz.; Parker, W.

    2016-10-01

    We aim at resolving deca-nanometer features in microelectronic samples using a laboratory SEM-based X-ray tomography microscope. Such a system produces X-rays through the interaction between a focused SEM electron beam and a metallic target. The effective source size of the X-ray beam can be adjusted by varying the target material and geometry. For instance, the use of tungsten nanowires (few hundred nanometers of length) combined with a high electron beam current leads to an increased X-ray flux generated in a reduced volume, necessary for detecting interface details of the analyzed object. It improves resolution and signal-to-noise ratio (SNR), but is also sensitive to electron beam-target instabilities during the scan. To improve robustness, a FFT-based image correlation is integrated in the process through a closed-loop control scheme. It allows stabilizing the electron beam on the target and to preserve the X-ray flux intensity and alignment. Also, a state of the art high-resolution scientific-CMOS (sCMOS) X-ray detector was installed, allowing to reduce noise and to increase quantum efficiency. Results show that such numerical and equipment improvements lead to significant gains in spatial resolution, SNR and scanning time of the SEM-based tomography. It paves the way to routine, high resolution, 3D X-ray imaging in the laboratory.

  15. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    Science.gov (United States)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; Bartling, Stephan; Fennel, Thomas; Meiwes-Broer, Karl-Heinz; Möller, Thomas

    2015-02-01

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncovered from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science.

  16. 3D Quantitative Analysis of Graphite Morphology in Ductile Cast Iron by X-ray Microtomography

    Science.gov (United States)

    Yin, Yajun; Tu, Zhixin; Zhou, Jianxin; Zhang, Dongqiao; Wang, Min; Guo, Zhao; Liu, Changchang; Chen, Xiang

    2017-08-01

    In this article, X-ray microtomography and color metallographic techniques have been used to perform three-dimensional quantitative characterization of graphite nodule morphology in a step-shaped ductile cast iron casting. Statistical analyses of the graphite nodule count, diameter, sphericity, and spatial distribution have been processed for three samples in detail. The results reveal that graphite nodules in ductile cast iron can be categorized into two categories. The first types are nodules located in eutectic cells (NIECs), and the other one refers to nodules located between the eutectic cells (NBECs). The NIECs possess a larger average diameter but smaller sphericity compared with the NBECs, and the sphericity decreases along with the increasing of diameter. The increasing casting thickness results in an increasing count and percentage of NBECs. In addition, most nodules are NIECs in thin walls instead of NBECs in thick walls. Nonuniform spatial distributions of graphite nodules caused by the existence of NBECs have been found to become more obvious along with the increase of cast thickness.

  17. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Cuevas, Ariadna, E-mail: ariadna@mail.or [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba); Perez Gravie, Homero, E-mail: homero.perezgravie@mail.co [Archaeometry Laboratory, Colegio Universitario San Geronimo de La Habana, Obispo, entre San Ignacio y Mercaderes, Habana Vieja, cp 10 100, Havana (Cuba)

    2011-03-21

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  18. Characterization of X-Ray Diffraction System with a Microfocus X-Ray Source and a Polycapillary Optic

    Science.gov (United States)

    Gubarev, Mikhail; Marshall, Joy K.; Ciszak, Ewa; Ponomarev, Igor

    2000-01-01

    We present here an optimized microfocus x-ray source and polycapillary optic system designed for diffraction of small protein crystals. The x-ray beam is formed by a 5.5mm focal length capillary collimator coupled with a 40 micron x-ray source operating at 46Watts. Measurements of the x-ray flux, the divergence and the spectral characteristics of the beam are presented, This optimized system provides a seven fold greater flux than our recently reported configuration [M. Gubarev, et al., J. of Applied Crystallography (2000) 33, in press]. We now make a comparison with a 5kWatts rotating anode generator (Rigaku) coupled with confocal multilayer focusing mirrors (Osmic, CMF12- 38Cu6). The microfocus x-ray source and polycapillary collimator system delivers 60% of the x-ray flux from the rotating anode system. Additional ways to improve our microfocus x-ray system, and thus increase the x-ray flux will be discussed.

  19. Personalized x-ray reconstruction of the proximal femur via a non-rigid 2D-3D registration

    Science.gov (United States)

    Yu, Weimin; Zysset, Philippe; Zheng, Guoyan

    2015-03-01

    In this paper we present a new approach for a personalized X-ray reconstruction of the proximal femur via a non-rigid registration of a 3D volumetric template to 2D calibrated C-arm images. The 2D-3D registration is done with a hierarchical two-stage strategy: the global scaled rigid registration stage followed by a regularized deformable b-spline registration stage. In both stages, a set of control points with uniform spacing are placed over the domain of the 3D volumetric template and the registrations are driven by computing updated positions of these control points, which then allows to accurately register the 3D volumetric template to the reference space of the C-arm images. Comprehensive experiments on simulated images, on images of cadaveric femurs and on clinical datasets are designed and conducted to evaluate the performance of the proposed approach. Quantitative and qualitative evaluation results are given, which demonstrate the efficacy of the present approach.

  20. Development of an advanced 3D cone beam tomographic system

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  1. 3-D reconstruction of an ancient Egyptian mummy using X-ray computer tomography.

    Science.gov (United States)

    Baldock, C; Hughes, S W; Whittaker, D K; Taylor, J; Davis, R; Spencer, A J; Tonge, K; Sofat, A

    1994-12-01

    Computer tomography has been used to image and reconstruct in 3-D an Egyptian mummy from the collection of the British Museum. This study of Tjentmutengebtiu, a priestess from the 22nd dynasty (945-715 BC) revealed invaluable information of a scientific, Egyptological and palaeopathological nature without mutilation and destruction of the painted cartonnage case or linen wrappings. Precise details on the removal of the brain through the nasal cavity and the viscera from the abdominal cavity were obtained. The nature and composition of the false eyes were investigated. The detailed analysis of the teeth provided a much closer approximation of age at death. The identification of materials used for the various amulets including that of the figures placed in the viscera was graphically demonstrated using this technique.

  2. Contour-based models for 3D binary reconstruction in X-ray tomography

    Science.gov (United States)

    Soussen, C.; Mohammad-Djafari, A.

    2001-05-01

    We study the reconstruction of a 3D compact homogeneous object lying inside a homogeneous background for computer aided design (CAD) or nondestructive testing (NDT) applications. Such a binary scene describes either a solid object or an homogeneous material in which a fault is sought. The goal in both cases is to reconstruct the shape of the scene from sparse radiographic data. This problem is under-determined and one needs to use all prior information about the scene to find a satisfactory solution. A natural approach is to model the exterior contour of the fault by a deformable geometric template, which we reconstruct directly from the radiographic data. In this communication, we give a synthetic view of these contour-based methods and compare their relative performances and limitations to recover complex faults. .

  3. Optical and X-ray Outbursts of Be/X-ray binary system SAX J2103.5+4545

    CERN Document Server

    Kiziloglu, U; Kiziloglu, N; Baykal, A

    2009-01-01

    We present the relations between Halpha equivalent width, optical brightness and X-ray flux of Be/X-ray binary system SAX J2103.5+4545, by analyzing the optical photometric and spectroscopic observations together with the X-ray observations. In the photometric observations PSF photometry were applied using MIDAS and its DAOPHOT package. The reduction and analysis of spectra were done by using MIDAS and its suitable packages. The X-ray outburst of the system occurred just after the optical outburst. The nearly symmetric Halpha emission line profiles observed during the beginning of optical outburst turn into asymmetric profiles with increased EW values during the dissipation of Be disc. Halpha lines changed from emission to absorption during the observation period. The observed double peaked HeI emission lines might come from the accretion disc of neutron star which is temporarily formed at the time of X-ray outburst.

  4. 2D/3D registration system based on single X-ray image and CT data%基于单幅X线图像和CT数据的2D/3D配准系统

    Institute of Scientific and Technical Information of China (English)

    焦培峰; 秦安; 赵卫东; 欧阳钧; 张美超; 樊继宏; 钟世镇; 李鉴轶

    2010-01-01

    目的 建立基于统一计算架构(CUDA)下以单幅x线图像及CT扫描数据为数据源的2D/3D配准系统,并应用于膝关节在体运动及植入假体稳定性研究.方法首先应用张正友标定法对采集X线图像设备进行标定;其次基于CUDA构架利用光线跟踪算法生成数字影像重建图像,以相关性函数为相似性测度计算2D/3D配准参数;最后以三维激光扫描仪所获得的点云数据进行3D/3D配准,以验证2D/3D配准结果.结果 以标本整体位置变换进行配准实验,6自由度平均误差中,位移小于1 mm,旋转小于1°.结论 此2D/3D配准系统达到了运动检测精度的要求,可以作为研究膝关节运动情况和假体在体稳定性研究的计算平台.

  5. Cascaded-systems analysis of sandwich x-ray detectors

    Science.gov (United States)

    Kim, D. W.; Kim, J.; Yun, S.; Youn, H.; Kim, H. K.

    2016-12-01

    Active sandwich-like multilayer detectors have been developed, and their potential for motion-artifact-free dual-energy x-ray imaging at a single exposure has been demonstrated in the material decomposition context. Since the sandwich detector uses the x-ray beam transmittance through the front layer, direct x-ray interaction within photodiodes in the front layer is unavoidable, and which can increase noise in the front detector images. Similar direct x-ray interaction can also occur in the rear detector layer. To obtain a better contrast performance, an additional filter layer can be placed between the two detector layers. However, this filter layer can increase adversely noise in images obtained from the rear detector layer by reducing the number of x-ray photons reaching it. A theoretical model, which can describe the signal-to-noise performance of the sandwich detector as functions of various design parameters, has been developed by using a linear cascaded-systems theory. From the cascaded-systems analysis, the direct x-ray interaction increases noise at the high spatial frequencies where the number of secondary quanta lessens. The intermediate filter layer enhances the contribution of additive electronic noise in the overall noise performance of the rear detector layer. The detailed cascaded-systems analysis on the x-ray sandwich detectors are reported in comparisons with the measured noise-power spectra and detective quantum efficiencies. The developed model will be useful for a better design and practical use of a sandwich detector for single-shot dual-energy imaging.

  6. Imaging in 3D under pressure: a decade of high-pressure X-ray microtomography development at GSECARS

    Science.gov (United States)

    Yu, Tony; Wang, Yanbin; Rivers, Mark L.

    2016-12-01

    The high-pressure X-ray microtomography (HPXMT) apparatus has been operating at the GeoSoilEnviroCARS (GSECARS) bending magnet beamline at the Advanced Photon Source since 2005. By combining the powerful synchrotron X-ray source and fast switching between white (for X-ray diffraction) and monochromatic (for absorption imaging) modes, this technique provides the high-pressure community with a unique opportunity to image the three-dimensional volume, texture, and microstructure of materials under high pressure and temperature. The ability to shear the sample with unlimited strain by twisting the two opposed anvils in the apparatus allows shear deformation studies under extreme pressure and temperature to be performed. HPXMT is a powerful tool for studying the physical properties of both crystalline and non-crystalline materials under high pressure and high temperature. Over the past 10 years, continuous effort has been put into technical development, modifications to improve the overall performance, and additional probing techniques to meet users' needs. Here, we present an up-to-date report on the HPXMT system, a brief review of some of its many exciting scientific applications, and a discussion of future developments.

  7. A readout system for X-ray powder crystallography

    CERN Document Server

    Loukas, D; Pavlidis, A; Karvelas, E; Psycharis, K; Misiakos, V; Mousa, J; Dre, C

    2000-01-01

    A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 mu m pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.

  8. A readout system for X-ray powder crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Loukas, D. E-mail: loukas@inplab.ariadne-t.gr; Haralabidis, N.; Pavlidis, A.; Karvelas, E.; Psycharis, K.; Misiakos, V.; Mousa, J.; Dre, Ch

    2000-06-11

    A system for capturing and processing data, from radiation detectors, in the field of X-ray crystallography has been developed. The system includes a custom-made mixed analog-digital 16-channel VLSI circuit in 50 {mu}m pitch. Each channel comprises a charge amplifier, a shaper, a comparator and a 21-bit counter. The circuit can be scaled in a daisy chain configuration. Data acquisition is performed with a custom made PCI card while the control software is developed with Visual C++ under the MS Windows NT environment. Performance of a fully operational system, in terms of electronic noise, statistical variations and data capture speed is presented. The noise level permits counting of X-rays down to 8 keV while the counting capability is in excess of 200 kHz. The system is intended for X-ray crystallography with silicon detectors.

  9. Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

    Directory of Open Access Journals (Sweden)

    Smita Mukherjee

    2015-12-01

    Full Text Available In order to form a nanostructured metallic layer below a Langmuir monolayer, radiolysis synthesis was carried out in an adapted geometry that we call surface X-ray radiolysis. In this procedure, an X-ray beam produced by a synchrotron beamline intercepts the surface of an aqueous metal-ion solution covered by a Langmuir monolayer at an angle of incidence below the critical angle for total internal reflection. Underneath the organic layer, the X-ray beam induces the radiolytic synthesis of a nanostructured metal–organic layer whose ultrathin thickness is defined by the vertical X-ray penetration depth. We have shown that increasing the X-ray flux on the surface, which considerably enhances the kinetics of the silver layer formation, results in a second growth regime of silver nanocrystals. Here the formation of the oriented thin layer is followed by the appearance of a 3D powder of silver clusters.

  10. A Compact X-Ray System for Macromolecular Crystallography. 5

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  11. A Compact X-Ray System for Macromolecular Crystallography

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  12. The drag and terminal velocity of volcanic ash and lapilli with 3D shape obtained by X-ray microtomography

    Science.gov (United States)

    Dioguardi, Fabio; Mele, Daniela; Dellino, Pierfrancesco; Dürig, Tobias

    2017-04-01

    New experiments of falling volcanic particles were performed in order to define drag and terminal velocity models applicable in a wide range of Reynolds number Re. Experiments were carried out with fluids of various viscosities and with particles that cover a wide range of size, density and shape. Particle shape, which strongly influences fluid drag, was measured in 3D by High-resolution X-ray microtomography, by which sphericity and fractal dimension were obtained, the latter used for quantifying the aerodynamic drag of irregular particles for the first time. With this method, the measure of particle shape descriptors proved to be easier and less operator dependent than previously used 2D image particle analyses. Drag laws that make use of the new 3D parameters were obtained by fitting particle data to the experiments, and single-equation terminal velocity models were derived. They work well both at high and low Re (3x10-2 scientists to model particle transportation of explosive eruptions. Some volcanological application examples are finally presented.

  13. Energy-dispersive X-ray diffraction mapping on a benchtop X-ray fluorescence system

    OpenAIRE

    Lane, D W.; Nyombi, A.; Shackel, J.

    2014-01-01

    A method for energy-dispersive X-ray diffraction mapping is presented, using a conventional low-power benchtop X-ray fluorescence spectrometer, the Seiko Instruments SEA6000VX. Hyper spectral X-ray maps with a 10µm step size were collected from polished metal surfaces, sectioned Bi, Pb and steel shot gun pellets. Candidate diffraction lines were identified by eliminating those that matched a characteristic line for an element and those predicted for escape peaks, sum peaks, and Rayleigh and C...

  14. MIXI: Mobile Intelligent X-Ray Inspection System

    Science.gov (United States)

    Arodzero, Anatoli; Boucher, Salime; Kutsaev, Sergey V.; Ziskin, Vitaliy

    2017-07-01

    A novel, low-dose Mobile Intelligent X-ray Inspection (MIXI) concept is being developed at RadiaBeam Technologies. The MIXI concept relies on a linac-based, adaptive, ramped energy source of short X-ray packets of pulses, a new type of fast X-ray detector, rapid processing of detector signals for intelligent control of the linac, and advanced radiography image processing. The key parameters for this system include: better than 3 mm line pair resolution; penetration greater than 320 mm of steel equivalent; scan speed with 100% image sampling rate of up to 15 km/h; and material discrimination over a range of thicknesses up to 200 mm of steel equivalent. Its minimal radiation dose, size and weight allow MIXI to be placed on a lightweight truck chassis.

  15. The missing Wolf-Rayet X-ray binary systems

    Science.gov (United States)

    Munoz, M.; Moffat, A. F. J.; Hill, G. M.; Richardson, N. D.; Pablo, H.

    We investigate the rarity of the Wolf-Rayet X-ray binaries (WRXRBs) in contrast to their predecessors, the high mass X-ray binaries (HMXRBs). Recent studies suggest that common envelope (CE) mergers during the evolution of a HMXRBs may be responsible (Linden et al. 2012). We conduct a binary population synthesis to generate a population of HMXRBs mimicking the Galactic sample and vary the efficiency parameter during the CE phase to match the current WRXRB to HMXRB ratio. We find that ˜50% of systems must merge to match observational constraints.

  16. Image processing system for digital chest X-ray images

    Energy Technology Data Exchange (ETDEWEB)

    Cocklin, M.; Gourlay, A.; Jackson, P.; Kaye, G.; Miessler, M. (I.B.M. U.K. Scientific Centre, Winchester (UK)); Kerr, I.; Lams, P. (Radiology Department, Brompton Hospital, London (UK))

    1984-01-01

    This paper investigates the requirements for image processing of digital chest X-ray images. These images are conventionally recorded on film and are characterised by large size, wide dynamic range and high resolution. X-ray detection systems are now becoming available for capturing these images directly in photoelectronic-digital form. The hardware and software facilities required for handling these images are described. These facilities include high resolution digital image displays, programmable video look up tables, image stores for image capture and processing and a full range of software tools for image manipulation. Examples are given of the applications of digital image processing techniques to this class of image.

  17. Pulse pile-up in hard X-ray detector systems. [for solar X-rays

    Science.gov (United States)

    Datlowe, D. W.

    1975-01-01

    When pulse-height spectra are measured by a nuclear detection system at high counting rates, the probability that two or more pulses will arrive within the resolving time of the system is significant. This phenomenon, pulse pile-up, distorts the pulse-height spectrum and must be considered in the interpretation of spectra taken at high counting rates. A computational technique for the simulation of pile-up is developed. The model is examined in the three regimes where (1) the time between pulses is long compared to the detector-system resolving time, (2) the time between pulses is comparable to the resolving time, and (3) many pulses occur within the resolving time. The technique is used to model the solar hard X-ray experiment on the OSO-7 satellite; comparison of the model with data taken during three large flares shows excellent agreement. The paper also describes rule-of-thumb tests for pile-up and identifies the important detector design factors for minimizing pile-up, i.e., thick entrance windows and short resolving times in the system electronics.

  18. Miniature, mobile X-ray computed radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Scott A; Rose, Evan A

    2017-03-07

    A miniature, portable x-ray system may be configured to scan images stored on a phosphor. A flash circuit may be configured to project red light onto a phosphor and receive blue light from the phosphor. A digital monochrome camera may be configured to receive the blue light to capture an article near the phosphor.

  19. 3D algebraic iterative reconstruction for cone-beam x-ray differential phase-contrast computed tomography.

    Science.gov (United States)

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications.

  20. X-ray tomography system to investigate granular materials during mechanical loading

    CERN Document Server

    Athanassiadis, Athanasios G; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M

    2014-01-01

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in-situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3d computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3d-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)$^3$ field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  1. X-ray tomography system to investigate granular materials during mechanical loading

    Science.gov (United States)

    Athanassiadis, Athanasios G.; La Rivière, Patrick J.; Sidky, Emil; Pelizzari, Charles; Pan, Xiaochuan; Jaeger, Heinrich M.

    2014-08-01

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm)3 field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  2. X-ray tomography system to investigate granular materials during mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Athanassiadis, Athanasios G. [James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); La Rivière, Patrick J.; Sidky, Emil; Pan, Xiaochuan [Department of Radiology, The University of Chicago, Chicago, Illinois 60637 (United States); Pelizzari, Charles [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States); Jaeger, Heinrich M., E-mail: h-jaeger@uchicago.edu [James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)

    2014-08-15

    We integrate a small and portable medical x-ray device with mechanical testing equipment to enable in situ, non-invasive measurements of a granular material's response to mechanical loading. We employ an orthopedic C-arm as the x-ray source and detector to image samples mounted in the materials tester. We discuss the design of a custom rotation stage, which allows for sample rotation and tomographic reconstruction under applied compressive stress. We then discuss the calibration of the system for 3D computed tomography, as well as the subsequent image reconstruction process. Using this system to reconstruct packings of 3D-printed particles, we resolve packing features with 0.52 mm resolution in a (60 mm){sup 3} field of view. By analyzing the performance bounds of the system, we demonstrate that the reconstructions exhibit only moderate noise.

  3. Geometry calibration between X-ray source and detector for tomosynthesis with a portable X-ray system.

    Science.gov (United States)

    Sato, Kohei; Ohnishi, Takashi; Sekine, Masashi; Haneishi, Hideaki

    2017-05-01

    Tomosynthesis is attracting attention as a low-dose tomography technology compared with X-ray CT. However, conventional tomosynthesis imaging devices are large and stationary. Furthermore, there is a limitation in the working range of the X-ray source during image acquisition. We have previously proposed the use of a portable X-ray device for tomosynthesis that can be used for ward rounds and emergency medicine. The weight of this device can be reduced by using a flat panel detector (FPD), and flexibility is realized by the free placement of the X-ray source and FPD. Tomosynthesis using a portable X-ray device requires calibration of the geometry between the X-ray source and detector at each image acquisition. We propose a method for geometry calibration and demonstrate tomosynthesis image reconstruction by this method. An image processing-based calibration method using an asymmetric and multilayered calibration object (AMCO) is presented. Since the AMCO is always attached to the X-ray source housing for geometry calibration, the additional setting of a calibration object or marker around or on the patients is not required. The AMCO's multilayer structure improves the calibration accuracy, especially in the out-of-plane direction. Two experiments were conducted. The first was performed to evaluate the calibration accuracy using an XY positioning stage and a gonio stage. As a result, an accuracy of approximately 1 mm was achieved both in the in-plane and out-of-plane directions. An angular accuracy of approximately [Formula: see text] was confirmed. The second experiment was conducted to evaluate the reconstructed image using a foot model phantom. Only the sagittal plane could be clearly observed with the proposed method. We proposed a tomosynthesis imaging system using a portable X-ray device. From the experimental results, the proposed method could provide sufficient calibration accuracy and a clear sagittal plane of the reconstructed tomosynthesis image.

  4. Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography

    Science.gov (United States)

    Yermukhambetova, Assiya; Tan, Chun; Daemi, Sohrab R.; Bakenov, Zhumabay; Darr, Jawwad A.; Brett, Daniel J. L.; Shearing, Paul R.

    2016-10-01

    Lithium sulfur (Li-S) batteries offer higher theoretical specific capacity, lower cost and enhanced safety compared to current Li-ion battery technology. However, the multiple reactions and phase changes in the sulfur conversion cathode result in highly complex phenomena that significantly impact cycling life. For the first time to the authors’ knowledge, a multi-scale 3D in-situ tomography approach is used to characterize morphological parameters and track microstructural evolution of the sulfur cathode across multiple charge cycles. Here we show the uneven distribution of the sulfur phase fraction within the electrode thickness as a function of charge cycles, suggesting significant mass transport limitations within thick-film sulfur cathodes. Furthermore, we report a shift towards larger particle sizes and a decrease in volume specific surface area with cycling, suggesting sulfur agglomeration. Finally, we demonstrate the nano-scopic length-scale required for the features of the carbon binder domain to become discernible, confirming the need for future work on in-situ nano-tomography. We anticipate that X-ray tomography will be a powerful tool for optimization of electrode structures for Li-S batteries.

  5. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    Science.gov (United States)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-01

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  6. Coherent 3D nanostructure of γ-Al2O3: Simulation of whole X-ray powder diffraction pattern

    Science.gov (United States)

    Pakharukova, V. P.; Yatsenko, D. A.; Gerasimov, E. Yu.; Shalygin, A. S.; Martyanov, O. N.; Tsybulya, S. V.

    2017-02-01

    The structure and nanostructure features of nanocrystalline γ-Al2O3 obtained by dehydration of boehmite with anisotropic platelet-shaped particles were investigated. The original models of 3D coherent nanostructure of γ-Al2O3 were constructed. The models of nanostructured γ-Al2O3 particles were first confirmed by a direct simulation of powder X-Ray diffraction (XRD) patterns using the Debye Scattering Equation (DSE) with assistance of high-resolution transmission electron microscopy (HRTEM) study. The average crystal structure of γ-Al2O3 was shown to be tetragonally distorted. The experimental results revealed that thin γ-Al2O3 platelets were heterogeneous on a nanometer scale and nanometer-sized building blocks were separated by partially coherent interfaces. The XRD simulation results showed that a specific packing of the primary crystalline blocks in the nanostructured γ-Al2O3 particles with formation of planar defects on {001}, {100}, and {101} planes nicely accounted for pronounced diffuse scattering, anisotropic peak broadening and peak shifts in the experimental XRD pattern. The identified planar defects in cation sublattice seem to be described as filling cation non-spinel sites in existing crystallographic models of γ-Al2O3 structure. The overall findings provided an insight into the complex nanostructure, which is intrinsic to the metastable γ-Al2O3 oxide.

  7. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raguvarun, K., E-mail: prajagopal@iitm.ac.in; Balasubramaniam, Krishnan, E-mail: prajagopal@iitm.ac.in; Rajagopal, Prabhu, E-mail: prajagopal@iitm.ac.in [Centre for NDE, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Palanisamy, Suresh [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia); Nagarajah, Romesh; Kapoor, Ajay [Swinburne University of Technology, Faculty of Engineering, Science and Technology, Hawthorn, Victoria 3122 (Australia); Hoye, Nicholas; Curiri, Dominic [University of Wollongong, Faculty of Engineering, New South Wales 2522, Australia and Defence Materials Technology Centre, Hawthorn, Victoria 3122 (Australia)

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  8. Observations of 3-D transverse dispersion and dilution in natural consolidated rock by X-ray tomography

    Science.gov (United States)

    Boon, Maartje; Bijeljic, Branko; Niu, Ben; Krevor, Sam

    2016-10-01

    Recent studies have demonstrated the importance of transverse dispersion for dilution and mixing of solutes but most observations have remained limited to two-dimensional sand-box models. We present a new core-flood test to characterize solute transport in 3-D natural-rock media. A device consisting of three annular regions was used for fluid injection into a cylindrical rock core. Pure water was injected into the center and outer region and a NaI solution into the middle region. Steady state transverse dispersion of NaI was visualized with an X-ray medical CT-scanner for a range of Peclét numbers. Three methods were used to calculate Dt: (1) fitting an analytical solution, (2) analyzing the second-central moment, and (3) analyzing the dilution index and reactor ratio. Transverse dispersion decreased with distance due to flow focusing. Furthermore, Dt in the power-law regime showed sub-linear behavior. Overall, the reactor ratios were high confirming the homogeneity of Berea sandstone.

  9. [Flat-panel detectors in X-ray systems].

    Science.gov (United States)

    Spahn, M; Heer, V; Freytag, R

    2003-05-01

    For all application segments X-ray systems with flat-panel detectors increasingly enter the market. In digital radiography,mammography and cardiologic angiography flat-panel detectors are already well established while they are made ready for market introduction in general angiography and fluoroscopy. Two flat-panel detector technologies are available. One technology is based on an indirect conversion process of X-rays while the other one uses a direct conversion method. For radiography and dynamic applications the indirect method provides substantial advantages, while the direct method has some benefits for mammography. In radiography and mammography flat-panel detectors lead to clear improvements with respect to workflow, image quality and dose reduction potentials. These improvements are fostered by the immediate availability of the image, the large dynamic range and the high sensitivity to X-rays. New applications and the use of complex image processing algorithms have the potential to enlarge the present diagnostic range of applications. Up to now, image intensifiers are still the well-established technology for angiography and fluoroscopy. Nevertheless flat-panel detectors begin to enter this field, especially in cardiologic angiography. Characteristics of flat-panel detectors such as the availability of distortion-free images, the excellent contrast resolution, the large dynamic range, the high sensitivity to X-rays and the usability in magnetic fields provide the basis for improved and new diagnostic and interventional methods.

  10. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy

    Science.gov (United States)

    Gelb, Jeff; Finegan, Donal P.; Brett, Dan J. L.; Shearing, Paul R.

    2017-07-01

    In the present study, a commercial 18650 Li-ion cylindrical cell is investigated with non-destructive 3D X-ray microscopy across a range of length scales, beginning with a survey of the entire cell and non-destructively enlarging a smaller section. Active materials are extracted from a disassembled cell and imaging performed using a combination of sub-micron X-ray microscopy and 2D scanning-electron microscopy, which point toward the need for multi-scale analysis in order to accurately characterize the cell. Furthermore, a small section is physically isolated for 3D nano-scale X-ray microscopy, which provides a measurement of porosity and enables the effective diffusivity and 3-dimensional tortuosities to be calculated via computer simulation. Finally, the 3D X-ray microscopy data is loaded into a correlative microscopy environment, where a representative sub-surface region is identified and, subsequently, analyzed using electron microscopy and energy-dispersive X-ray spectroscopy. The results of this study elucidate the microstructural characteristics and potential degradation mechanisms of a commercial NCA battery and, further, establish a technique for extracting the Bruggeman exponent for a real-world microstructure using correlative microscopy.

  11. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography.

    Science.gov (United States)

    Zielke, L; Barchasz, C; Waluś, S; Alloin, F; Leprêtre, J-C; Spettl, A; Schmidt, V; Hilger, A; Manke, I; Banhart, J; Zengerle, R; Thiele, S

    2015-06-04

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance.

  12. Interface Orientation Distribution during Grain Growth in Bulk SrTiO3 Measured by Means of 3D X-Ray Diffraction Contrast Tomography

    DEFF Research Database (Denmark)

    Syha, Melanie; Rheinheimer, Wolfgang; Bäurer, Michael

    2012-01-01

    3D x-ray diffraction contrast tomography (DCT) is a non-destructive technique for the determination of grain shape and crystallography in polycrystalline bulk materials. Using this technique, a strontium titanate specimen was repeatedly measured between annealing steps.. A systematic analysis...

  13. Interface Orientation Distribution during Grain Growth in Bulk SrTiO3 Measured by Means of 3D X-Ray Diffraction Contrast Tomography

    DEFF Research Database (Denmark)

    Syha, Melanie; Rheinheimer, Wolfgang; Bäurer, Michael;

    2012-01-01

    3D x-ray diffraction contrast tomography (DCT) is a non-destructive technique for the determination of grain shape and crystallography in polycrystalline bulk materials. Using this technique, a strontium titanate specimen was repeatedly measured between annealing steps.. A systematic analysis...

  14. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  15. A compact PC-based X-ray imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Asimidis, A. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece)]. E-mail: aasimid@cc.uoi.gr; Evangelou, I. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Kokkas, P. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Manthos, N. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Triantis, F. [Physics Department, Laboratory B, University of Ioannina, GR-45110 Ioannina (Greece); Speller, R.D. [Medical Physics and Bioengineering Department, University College London, 11-20 Capper Street, London WC1E 6JA (United Kingdom); Hall, G. [Physics Department, Imperial College, London SW7 2BW (United Kingdom); Stelt, P.F. van der [Department of Oral and Maxillofacial Radiology, Academic Centre for Dentistry Amsterdam, NL 1066 EA Amsterdam (Netherlands)

    2007-04-01

    A compact, portable PC-based X-ray imaging system has been developed based on a 2D silicon microstrip sensor and particle physics readout electronics. The sensor is housed in a specially built hybrid, which also hosts the front-end electronics. The control and the readout electronics used are based on the standard PCI and PMC architectures and were originally developed for High Energy Physics Experiments. The use of PCI based electronics and the development of the control software for the PC-Linux platform led to a compact, portable, low cost imaging system. The system was initially tested and evaluated with beta particles from a {sup 90}Sr radioactive source, gamma rays from an {sup 241}Am radioactive source and cosmic rays, and it displayed consistent response. It was then operated using a compact X-ray machine with Mo tube and images of various targets were reconstructed offline using the ROOT data analysis package.

  16. DARHT2 X-ray converter target system comparison

    Energy Technology Data Exchange (ETDEWEB)

    Bergstrom, P M; Caporaso, G J; Chen, Y J; Ho, D D; McCarrick, J F; Pincosy, P A; Rambo, P W

    1999-03-24

    Four short current pulses with various pulse widths and spacing will be delivered to the x-ray converter target on the second-axis of the Dual-Axis Radiographic Hydrodynamic Test (DARHT-II) facility. To ensure that the DARHT-II multi-pulse target will provide enough target material for x-ray production for all four pulses, the target needs either to survive the strike of four electron pulses or to accommodate target replenishment. A distributed target may survive hitting of four electron pulses. For target replenishment, two types of target configurations are being considered: stationary target systems with beam repositioning and dynamic moving target systems. They compare these three target systems and their radiographic performance.

  17. X-ray cone beam CT system calibration

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.

    1993-12-01

    Recently x-ray cone beam computed tomography (CT) has become of interest for nondestructive testing (NDT) of advanced materials. Such a technique takes advantage of the cone beam geometry, to reduce the acquisition time and increase the resolution. Performances of CT systems rely mainly on geometric precision and measurement quality. Inaccurate geometry or incorrect data produce artifacts and blurring which limit the spatial resolution. A precise geometric calibration procedure is required and some corrections must be applied to the raw attenuation data in order to obtain accurate measurements. An x-ray cone beam CT system has been developed at the LETI. This machine was designed to control small parts limited to a few centimeters, with a high spatial resolution close to 30 microns. This paper introduces the machine setup and describes the calibration computing resources involved in the system. Then, we discuss the performances on experimental data.

  18. Optimization of Three-Dimensional (3D) Chemical Imaging by Soft X-Ray Spectro-Tomography Using a Compressed Sensing Algorithm.

    Science.gov (United States)

    Wu, Juan; Lerotic, Mirna; Collins, Sean; Leary, Rowan; Saghi, Zineb; Midgley, Paul; Berejnov, Slava; Susac, Darija; Stumper, Juergen; Singh, Gurvinder; Hitchcock, Adam P

    2017-09-12

    Soft X-ray spectro-tomography provides three-dimensional (3D) chemical mapping based on natural X-ray absorption properties. Since radiation damage is intrinsic to X-ray absorption, it is important to find ways to maximize signal within a given dose. For tomography, using the smallest number of tilt series images that gives a faithful reconstruction is one such method. Compressed sensing (CS) methods have relatively recently been applied to tomographic reconstruction algorithms, providing faithful 3D reconstructions with a much smaller number of projection images than when conventional reconstruction methods are used. Here, CS is applied in the context of scanning transmission X-ray microscopy tomography. Reconstructions by weighted back-projection, the simultaneous iterative reconstruction technique, and CS are compared. The effects of varying tilt angle increment and angular range for the tomographic reconstructions are examined. Optimization of the regularization parameter in the CS reconstruction is explored and discussed. The comparisons show that CS can provide improved reconstruction fidelity relative to weighted back-projection and simultaneous iterative reconstruction techniques, with increasingly pronounced advantages as the angular sampling is reduced. In particular, missing wedge artifacts are significantly reduced and there is enhanced recovery of sharp edges. Examples of using CS for low-dose scanning transmission X-ray microscopy spectroscopic tomography are presented.

  19. Phase-contrast microfocus X-ray system

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Henrique S.; Pereira, Gabriela R.; Oliveira, Davi F.; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: henrique@lin.ufrj.br; gabriela@lin.ufrj.br; davi@lin.ufrj.br; ricardo@lin.ufrj.br

    2007-07-01

    A phase-contrast X-ray system was developed using a microfocus source. This system uses a highly coherent cone-beam with ten micrometers of minimal focal spot size in a free-space propagation method to obtain phase contrast imaging (PCI). The phase contrast technique relies on its ability to record intensity data which contains information on the X-ray's phase shift. In this technique, the contrast is obtained through refraction, differing from the conventional techniques that use the X-ray attenuation. The system was developed at the Nuclear Instrumentation Laboratory (LIN), COPPE/UFRJ, and it utilizes a high-resolution image plate as a detector. This image plate has a high energy-efficiency in low energy. The results showed that the system allows obtaining high contrast images with less than fifty micrometers of resolution for low density samples and it can be used in several areas, mainly in biology, medical physics and in applications with composites materials. (author)

  20. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali [Laboratoire des Signaux et Systèmes 3, Rue Joliot-Curie 91192 Gif sur Yvette (France)

    2015-01-13

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 512{sup 3} to 8192{sup 3} voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and H{sup t} (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume 'Shepp and Logan' in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  1. 3D tissue-engineered construct analysis via conventional high-resolution microcomputed tomography without X-ray contrast.

    Science.gov (United States)

    Voronov, Roman S; VanGordon, Samuel B; Shambaugh, Robert L; Papavassiliou, Dimitrios V; Sikavitsas, Vassilios I

    2013-05-01

    As the field of tissue engineering develops, researchers are faced with a large number of degrees of freedom regarding the choice of material, architecture, seeding, and culturing. To evaluate the effectiveness of a tissue-engineered strategy, histology is typically done by physically slicing and staining a construct (crude, time-consuming, and unreliable). However, due to recent advances in high-resolution biomedical imaging, microcomputed tomography (μCT) has arisen as a quick and effective way to evaluate samples, while preserving their structure in the original state. However, a major barrier for using μCT to do histology has been its inability to differentiate between materials with similar X-ray attenuation. Various contrasting strategies (hardware and chemical staining agents) have been proposed to address this problem, but at a cost of additional complexity and limited access. Instead, here we suggest a strategy for how virtual 3D histology in silico can be conducted using conventional μCT, and we provide an illustrative example from bone tissue engineering. The key to our methodology is an implementation of scaffold surface architecture that is ordered in relation to cells and tissue, in concert with straightforward image-processing techniques, to minimize the reliance on contrasting for material segmentation. In the case study reported, μCT was used to image and segment porous poly(lactic acid) nonwoven fiber mesh scaffolds that were seeded dynamically with mesenchymal stem cells and cultured to produce soft tissue and mineralized tissue in a flow perfusion bioreactor using an osteogenic medium. The methodology presented herein paves a new way for tissue engineers to identify and distinguish components of cell/tissue/scaffold constructs to easily and effectively evaluate the tissue-engineering strategies that generate them.

  2. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Adam K., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Zhang, Rongxiao [Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Pogue, Brian W., E-mail: Adam.K.Glaser@dartmouth.edu, E-mail: Brian.W.Pogue@dartmouth.edu [Thayer School of Engineering and Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755 (United States); Gladstone, David J. [Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03766 (United States)

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  3. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    Science.gov (United States)

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data.

  4. Spectral Change in 3d-4f Resonant Inelastic X-ray Scattering of Ce Intermetallics Across the Transition between Kondo Singlet and Localized-Spin State

    Science.gov (United States)

    Sasabe, Norimasa; Tonai, Hironori; Uozumi, Takayuki

    2017-09-01

    The spectral change in the 3d resonant X-ray inelastic scattering (RIXS) induced by the spin-state transition between Kondo singlet (KS) and localized spin (LS) state is theoretically investigated for γ-like Ce intermetallics by means of a single impurity Anderson model. The basis configurations with an electron-hole pair are included in the calculation within the configuration interaction scheme, in addition to the intra-atomic full multiplet coupling of the Ce impurity. A distinct spectral change is found across the KS-LS transition in the RIXS excited at the charge-transfer satellite of the 3d X-ray absorption spectrum (XAS) under a polarized geometry. In contrast, the 3d XAS and RIXS spectra under a depolarized geometry are rather insensitive to the spin-state transition.

  5. Adaptation Measurement of CAD/CAM Dental Crowns with X-Ray Micro-CT: Metrological Chain Standardization and 3D Gap Size Distribution

    Directory of Open Access Journals (Sweden)

    L. Tapie

    2016-01-01

    Full Text Available Computer-Aided Design and Manufacturing systems are increasingly used to produce dental prostheses, but the parts produced suffer from a lack of evaluation, especially concerning the internal gap of the final assembly, that is, the space between the prepared tooth and the prosthesis. X-ray micro-Computed Tomography (micro-CT is a noninvasive imaging technique enabling the internal inspection of the assembly. It has proved to be an efficient tool for measuring the gap. In this study, a critical review of the protocols using micro-CT to quantify the gap is proposed as an introduction to a new protocol aimed at minimizing errors and enabling comparison between CAD/CAM systems. To compare different systems, a standardized protocol is proposed including two reference geometries. Micro-CT is used to acquire the reference geometries. A new 3D method is then proposed and a new indicator is defined (Gap Size Distribution (GSD. In addition, the usual 2D measurements are described and discussed. The 3D gap measurement method proposed can be used in clinical case geometries and has the considerable advantage of minimizing the data processing steps before performing the measurements.

  6. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    Directory of Open Access Journals (Sweden)

    M. Schmitt

    2015-12-01

    Full Text Available Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT, the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3 from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  7. Thin soil layer of green roof systems studied by X-Ray CT

    Science.gov (United States)

    Šácha, Jan; Jelínková, Vladimíra; Dohnal, Michal

    2016-04-01

    The popular non-invasive visualization technique of X-ray computed tomography (CT) has been used for 3D examination of thin soil layer of vegetated roof systems. The two categories of anthropogenic soils, usually used for green roof systems, were scanned during the first months after green roof system construction. First was represented by stripped topsoil with admixed crushed bricks and was well graded in terms of particle size distribution. The other category represented a commercial lightweight technogenic substrate. The undisturbed soil samples of total volume of 62.8 ccm were studied be means of X-ray Computed Tomography using X-ray Inspection System GE Phoenix Nanomex 180T with resulting spatial resolution about 57 μm in all directions. For both soil categories visible macroporosity, connectivity (described by the Euler characteristic), dimensionless connectivity and critical cross section of pore network were determined. Moreover, the temporal structural changes of studied soils were discussed together with heat and water regime of the green roof system. The analysis of CT images of anthropogenic soils was problematic due to the different X-ray attenuation of individual constituents. The correct determination of the threshold image intensity differentiating the soil constituents from the air phase had substantial importance for soil pore network analyses. However, X-ray CT derived macroporosity profiles reveal significant temporal changes notably in the soil comprised the stripped topsoil with admixed crushed bricks. The results implies that the technogenic substrate is structurally more stable over time compared to the stripped topsoil. The research was realized as a part of the University Centre for Energy Efficient Buildings supported by the EU and with financial support from the Czech Science Foundation under project number 14-10455P.

  8. Electronic structure and characteristics of Fe 3d valence states of Fe(1.01)Se superconductors under pressure probed by x-ray absorption spectroscopy and resonant x-ray emission spectroscopy.

    Science.gov (United States)

    Chen, J M; Haw, S C; Lee, J M; Chen, S A; Lu, K T; Deng, M J; Chen, S W; Ishii, H; Hiraoka, N; Tsuei, K D

    2012-12-28

    The electronic structure and characteristics of Fe 3d valence states of iron-chalcogenide Fe(1.01)Se superconductors under pressure were probed with x-ray absorption spectroscopy and resonant x-ray emission spectroscopy (RXES). The intensity of the pre-edge peak at ~7112.7 eV of the Fe K-edge x-ray absorption spectrum of Fe(1.01)Se decreases for pressure from 0.5 GPa increased to 6.9 GPa. The satellite line Kβ' was reduced in intensity upon applying pressure and became absent for pressure 52 GPa. Fe(1.01)Se shows a small net magnetic moment of Fe(2+), likely arising from strong Fe-Fe spin fluctuations. The 1s3p-RXES spectra of Fe(1.01)Se at pressures 0.5, 6.9, and 52 GPa recorded at the Fe K-edge reveal that unoccupied Fe 3d states exhibit a delocalized character, stemming from hybridization of Fe 3d and 4p orbitals arising from a local distortion around the Fe atom in a tetrahedral site. Application of pressure causes suppression of this on-site Fe 3d-Fe 4p hybridization, and thereby decreases the intensity of the pre-edge feature in the Fe K-edge absorption spectrum of Fe(1.01)Se. Compression enhances spin fluctuations at Fe sites in Fe(1.01)Se and increases the corresponding T(c), through a competition between nearest-neighbor ferromagnetic and next-nearest-neighbor antiferromagnetic superexchange interactions. This result aids our understanding of the physics underlying iron-based superconductors.

  9. A density-based segmentation for 3D images, an application for X-ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thanh N., E-mail: thanh.tran@merck.com [Center for Mathematical Sciences Merck, MSD Molenstraat 110, 5342 CC Oss, PO Box 20, 5340 BH Oss (Netherlands); Nguyen, Thanh T.; Willemsz, Tofan A. [Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen (Netherlands); Pharmaceutical Sciences and Clinical Supplies, Merck MSD, PO Box 20, 5340 BH Oss (Netherlands); Kessel, Gijs van [Center for Mathematical Sciences Merck, MSD Molenstraat 110, 5342 CC Oss, PO Box 20, 5340 BH Oss (Netherlands); Frijlink, Henderik W. [Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen (Netherlands); Voort Maarschalk, Kees van der [Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen (Netherlands); Competence Center Process Technology, Purac Biochem, Gorinchem (Netherlands)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We revised the DBSCAN algorithm for segmentation and clustering of large 3D image dataset and classified multivariate image. Black-Right-Pointing-Pointer The algorithm takes into account the coordinate system of the image data to improve the computational performance. Black-Right-Pointing-Pointer The algorithm solved the instability problem in boundaries detection of the original DBSCAN. Black-Right-Pointing-Pointer The segmentation results were successfully validated with synthetic 3D image and 3D XMT image of a pharmaceutical powder. - Abstract: Density-based spatial clustering of applications with noise (DBSCAN) is an unsupervised classification algorithm which has been widely used in many areas with its simplicity and its ability to deal with hidden clusters of different sizes and shapes and with noise. However, the computational issue of the distance table and the non-stability in detecting the boundaries of adjacent clusters limit the application of the original algorithm to large datasets such as images. In this paper, the DBSCAN algorithm was revised and improved for image clustering and segmentation. The proposed clustering algorithm presents two major advantages over the original one. Firstly, the revised DBSCAN algorithm made it applicable for large 3D image dataset (often with millions of pixels) by using the coordinate system of the image data. Secondly, the revised algorithm solved the non-stability issue of boundary detection in the original DBSCAN. For broader applications, the image dataset can be ordinary 3D images or in general, it can also be a classification result of other type of image data e.g. a multivariate image.

  10. 3D Imaging of Nickel Oxidation States using Full Field X-ray Absorption Near Edge Structure Nanotomography

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, George; Harris, William; Izzo, John; Grew, Kyle N. (Connecticut); (USARL)

    2012-01-20

    Reduction-oxidation (redox) cycling of the nickel electrocatalyst phase in the solid oxide fuel cell (SOFC) anode can lead to performance degradation and cell failure. A greater understanding of nickel redox mechanisms at the microstructural level is vital to future SOFC development. Transmission x-ray microscopy (TXM) provides several key techniques for exploring oxidation states within SOFC electrode microstructure. Specifically, x-ray nanotomography and x-ray absorption near edge structure (XANES) spectroscopy have been applied to study samples of varying nickel (Ni) and nickel oxide (NiO) compositions. The imaged samples are treated as mock SOFC anodes containing distinct regions of the materials in question. XANES spectra presented for the individual materials provide a basis for the further processing and analysis of mixed samples. Images of composite samples obtained are segmented, and the distinct nickel and nickel oxide phases are uniquely identified using full field XANES spectroscopy. Applications to SOFC analysis are discussed.

  11. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for...

  12. 21 CFR 1020.30 - Diagnostic x-ray systems and their major components.

    Science.gov (United States)

    2010-04-01

    ... imaging assembly means a subsystem in which x-ray photons produce a set of fluoroscopic images or... scan. Solid state x-ray imaging device means an assembly, typically in a rectangular panel... aluminum equivalent of each filter. (5) Imaging system information. For x-ray systems manufactured on or...

  13. Development status of a CZT spectrometer prototype with 3D spatial resolution for hand x-ray astronomy

    DEFF Research Database (Denmark)

    Auricchio, N.; Caroli, E.; Basili, A.

    2012-01-01

    The development of new focusing optics based on wide band Laue lenses operating from ~60 keV up to several hundred keV is particularly challenging. This type of hard X-ray or gamma ray optics requires a high performance focal plane detector in order to exploit to the best their intrinsic capabili...

  14. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain is cha...

  15. Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications

    DEFF Research Database (Denmark)

    Hiller, Jochen; Maisl, Michael; Reindl, Leonard M

    2012-01-01

    This paper presents physical and metrological characterization measurements conducted for an industrial x-ray micro-computed tomography (CT) system. As is well known in CT metrology, many factors, e.g., in the scanning and reconstruction process, the image processing, and the 3D data evaluation...

  16. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    Science.gov (United States)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  17. High density resolution synchrotron radiation based x-ray microtomography (SR μCT) for quantitative 3D-morphometrics in zoological sciences

    Science.gov (United States)

    Nickel, Michael; Hammel, Jörg U.; Herzen, Julia; Bullinger, Eric; Beckmann, Felix

    2008-08-01

    Zoological sciences widely rely on morphological data to reconstruct and understand body structures of animals. The best suitable methods like tomography allow for a direct representation of 3D-structures. In recent years, synchrotron radiation based x-ray microtomography (SR μCT) placed high resolutions to the disposal of morphologists. With the development of highly brilliant and collimated third generation synchrotron sources, phase contrast SR μCT became widely available. A number of scientific contributions stressed the superiority of phase contrast over absorption contrast. However, here we demonstrate the power of high density resolution methods based on absorption-contrast SRμCT for quantitative 3D-measurements of tissues and other delicate bio-structures in zoological sciences. We used beamline BW2 at DORIS III (DESY, Hamburg, Germany) to perform microtomography on tissue and mineral skeletons of marine sponges (Porifera) which were shock frozen and/or fixed in a glutamate osmium tetroxide solution, followed by critical point drying. High density resolution tomographic reconstructions allowed running quantitative 3D-image analyses in Matlab and ImageJ. By applying contrast and shape rule based algorithms we semi-automatically extracted and measured sponge body structures like mineral spicules, elements of the canal system or tissue structures. This lead to a better understanding of sponge biology: from skeleton functional morphology and internal water flow regimes to body contractility. Our high density resolution based quantitative approach can be applied to a wide variety of biological structures. However, two prerequisites apply: (1) maximum density resolution is necessary; (2) edge effects as seen for example in phase outline contrast SR μCT must not be present. As a consequence, to allow biological sciences to fully exploit the power of SR μCT further increase of density resolution in absorption contrast methods is desirable.

  18. X-ray studies of the ovomucoid-DHPC system.

    Science.gov (United States)

    Neitchev, V Z

    1979-08-31

    Complex of ovomucoid with 1,2 dihehadecyl-snglycero-3-phosphatidylcholine (DHPC) in water solution has been used as a model system for glycoprotein-lipid interactions. The structural parameters of this complex were determined with small angle-X-ray diffraction techniques. Knowing the repeat distance, the chemical composition of the association and the partial specific volumes of the components, the partial thickness of the glycoprotein, lipid and water layers can be determined and compared with the thickness of the lipid layers observed in pure lipid-water systems and lamellar associations in the absence of glycoprotein. The variation of the structural parameters at room temperature with the concentration of water was determined. Our results showed: the intersheet spacing increases from 112 to 157 A, the thickness of the hydrocarbon chain layers decreases from 49 to 40A and the thickness of glycoprotein layer increases from 62 to 100 A. In this case the glycoprotein-lipid interaction appears to be of weak electrostatic nature and to involve mainly the polar regions of the structure. Fluorescence experiments have also been carried out to confirm the X-ray data.

  19. Automatic Weed Control System For Transplanted Processing Tomatoes Using X-ray Stem Sensing

    Science.gov (United States)

    A stem detection system was developed for automatic weed control in transplanted tomato fields. A portable x-ray source projected an x-ray beam perpendicular to the crop row and parallel to the soil surface. The plant’s main stem absorbs x-ray energy, decreasing the detected signal and allowing ste...

  20. X-ray based stem detection in an automatic tomato weeding system

    Science.gov (United States)

    A stem detection system was developed for automatic weed control in transplanted tomato fields. A portable x-ray source projected an x-ray beam perpendicular to the crop row and parallel to the soil surface. The plant’s main stem absorbs x-ray energy, decreasing the detected signal and allowing stem...

  1. X-ray based stem detection in an automated tomato weeding system

    Science.gov (United States)

    A stem detection system was developed for automatic weed control in transplanted tomato fields. A portable x-ray source projected an x-ray beam perpendicular to the crop row and parallel to the soil surface. The plant’s main stem absorbs x-ray energy, decreasing the detected signal and allowing stem...

  2. MTF Optimization in Digital Dental X-ray Systems

    CERN Document Server

    Costa, E T; Costa, Eduardo Tavares; Albuquerque, Jorge Andre Girao

    2003-01-01

    In this work, we have studied the MTF optimisation relative to the detector aperture of four digital dental X-ray image systems: 1) Digora and Denoptix systems, based on PSPL detectors; 2) CDR and Sens-A-Ray 2000, based on CCD detectors. The MTF was evaluated by ERF method and linearized as a Gaussian process. The CCD based systems presented Gaussian characteristics. The PSPL based systems presented a composition of two Gaussian processes. We conclude that one process is due to the laser and stimulated light scattering inside the PSPL plate and the other is due to the laser beam focal aperture. Matching focal aperture to laser scattering allows the optimization of the PSPL systems resolution. An optimal pixel width found to be 62 um.

  3. Hybrid object detection system for x-ray radiographs

    Science.gov (United States)

    Vita, Joshua A.; Wantuch, Andrew C.; Jimenez, Edward S.; Bray, Iliana E.

    2016-10-01

    While object detection is a relatively well-developed field with respect to visible light photographs, there are significantly fewer algorithms designed to work with other imaging modalities. X-ray radiographs have many unique characteristics that introduce additional challenges that can cause common image processing and object detection algorithms to begin to fail. Examples of these problematic attributes include the fact that radiographs are only represented in gray scale with similar textures and that transmission overlap occurs when multiple objects are overlaid on top of each other. In this paper we not only analyze the effectiveness of common object detection techniques as applied to our specific database, but also outline how we combined various techniques to improve overall performance. While significant strides have been made towards developing a robust object detection algorithm for use with the given database, it is still a work in progress. Further research will be needed in order to deal with the specific obstacles posed by radiographs and X-ray imaging systems. Success in this project would have disruptive repercussions in fields ranging from medical imaging to manufacturing quality assurance and national security.

  4. MiniMAX: miniature, mobile, agile, x-ray system

    Science.gov (United States)

    Watson, Scott A.; Cunningham, Gwynneth; Gonzales, Samuel

    2012-06-01

    We present a unique, lightweight, compact, low-cost, x-ray imager: MiniMAX (Miniature, Mobile, Agile, X-ray). This system, which exploits the best aspects of Computed Radiography (CR) and Digital Radiography (DR) technology, weighs less than 6lbs, fits into a 6" diameter x 16" long carbon-fiber tube, and is constructed almost entirely from offthe- shelf components. MiniMAX is suitable for use in weld inspection, archaeology, homeland security, and veterinary medicine. While quantum limited for MeV radiography, the quantum-efficiency is too low for routine medical use. Formats include: 4"x6", 8"x12", or 16"x24" and can be readily displayed on the camera back, using a pocket projector, or on a tablet computer. In contrast to a conventional, flying-spot scanner, MiniMAX records a photostimulated image from the entire phosphor at once using a bright, red LED flash filtered through an extremely efficient (OD>9) dichroic filter.

  5. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials

    DEFF Research Database (Denmark)

    Emerson, Monica Jane; Jespersen, Kristine Munk; Dahl, Anders Bjorholm

    2017-01-01

    The aim of this paper is to characterise the fibre orientation in unidirectional fibre reinforced polymers, namely glass and carbon fibre composites. The compression strength of the composite is related to the orientation of the fibres. Thus the orientation is essential when designing materials...... for wind turbine blades. The calculation of the fibre orientation distribution is based on segmenting the individual fibres from volumes that have been acquired through X-ray tomography. The segmentation method presented in this study can accurately extract individual fibres from low contrast X-ray scans...... of composites with high fibre volume fraction. From the individual fibre orientations, it is possible to obtain results which are independent of the scanning quality. The compression strength for both composites is estimated from the average fibre orientations and is found to be of the same order of magnitude...

  6. Quantitative 3D X-ray imaging of densification, delamination and fracture in a micro-composite under compression

    DEFF Research Database (Denmark)

    Bø Fløystad, Jostein; Skjønsfjell, Eirik Torbjørn Bakken; Guizar-Sicairos, Manuel

    2015-01-01

    Phase-contrast three-dimensional tomograms showing in unprecedented detail the mechanical response of a micro-composite subjected to a mechanical compression test are reported. The X-ray ptychography images reveal the deformation and fracture processes of a 10 μm diameter composite, consisting......-dimensional tomograms reveal with unprecedented detail the mechanical response, including delamination, densification and fracture, of a polymer-core/silver-shell micro-composite subjected in situ to a mechanical compression test....

  7. Three-Dimensional Backscatter X-Ray Imaging System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA application requires a system that can generate 3D images of non-metallic material when access is limited to one side of the material. The objective of this...

  8. SU-E-J-126: Generation of Fluoroscopic 3D Images Using Single X-Ray Projections on Realistic Modified XCAT Phantom Data.

    Science.gov (United States)

    Mishra, P; Li, R; St James, S; Yue, Y; Mak, R; Berbeco, R; Lewis, J

    2012-06-01

    To simulate the process of generating fluoroscopic 3D treatment images from 4DCT and measured 2D x-ray projections using a realistic modified XCAT phantom based on measured patient 3D tumor trajectories. First, the existing XCAT phantom is adapted to incorporate measured patient lung tumor trajectories. Realistic diaphragm and chest wall motion are automatically generated based on input tumor motion and position, producing synchronized, realistic motion in the phantom. Based on 4DCT generated with the XCAT phantom, we derive patient-specific motion models that are used to generate 3D fluoroscopic images. Patient-specific models are created in two steps: first, the displacement vector fields (DVFs) are obtained through deformable image registration of each phase of 4DCT with respect to a reference image (typically peak-exhale). Each phase is registered to the reference image to obtain (n-1) DVFs. Second, the most salient characteristics in the DVFs are captured in a compact representation through principal component analysis (PCA). Since PCA is a linear decomposition method, all the DVFs can be represented as linear combinations of eigenvectors. Fluoroscopic 3D images are obtained using the projection image to determine optimal weights for the eigenvectors. These weights are determined through iterative optimization of a cost function relating the projection image to the 3D image via the PCA lung motion model and a projection operator. Constructing fluoroscopic 3D images is thus reduced to finding optimal weights for the eigenvectors. Fluoroscopic 3D treatment images were generated using the modified XCAT phantom. The average relative error of the reconstructed image over 30 sec is 0.0457 HU and the standard deviation is 0.0063. The XCAT phantom was modified to produce realistic images by incorporating patient tumor trajectories. The modified XCAT phantom can be used to simulate the process of generating fluoroscopic 3D treatment images from 4DCT and 2D x-ray

  9. Tissue Equivalent Phantom Design for Characterization of a Coherent Scatter X-ray Imaging System

    Science.gov (United States)

    Albanese, Kathryn Elizabeth

    Scatter in medical imaging is typically cast off as image-related noise that detracts from meaningful diagnosis. It is therefore typically rejected or removed from medical images. However, it has been found that every material, including cancerous tissue, has a unique X-ray coherent scatter signature that can be used to identify the material or tissue. Such scatter-based tissue-identification provides the advantage of locating and identifying particular materials over conventional anatomical imaging through X-ray radiography. A coded aperture X-ray coherent scatter spectral imaging system has been developed in our group to classify different tissue types based on their unique scatter signatures. Previous experiments using our prototype have demonstrated that the depth-resolved coherent scatter spectral imaging system (CACSSI) can discriminate healthy and cancerous tissue present in the path of a non-destructive x-ray beam. A key to the successful optimization of CACSSI as a clinical imaging method is to obtain anatomically accurate phantoms of the human body. This thesis describes the development and fabrication of 3D printed anatomical scatter phantoms of the breast and lung. The purpose of this work is to accurately model different breast geometries using a tissue equivalent phantom, and to classify these tissues in a coherent x-ray scatter imaging system. Tissue-equivalent anatomical phantoms were designed to assess the capability of the CACSSI system to classify different types of breast tissue (adipose, fibroglandular, malignant). These phantoms were 3D printed based on DICOM data obtained from CT scans of prone breasts. The phantoms were tested through comparison of measured scatter signatures with those of adipose and fibroglandular tissue from literature. Tumors in the phantom were modeled using a variety of biological tissue including actual surgically excised benign and malignant tissue specimens. Lung based phantoms have also been printed for future

  10. Coherence transport through imperfect x-ray optical systems.

    Science.gov (United States)

    Nugent, K; Tran, C; Roberts, A

    2003-09-22

    The latest generation of synchrotron sources, so-called third generation sources, are able to produce copious amounts of coherent radiation. However it has become evident that the experimental systems that have been developed are unable to fully utilize the coherent flux. This has led to a perception that coherence is lost while the radiation is transported down the beamline. However it is well established that the degree of coherence must be preserved, or increased, by an experimental system, and so this apparent "decoherence" must have its origin in the nature of the measurement process. In this paper we use phase space methods to present an argument that the loss of useful coherent flux can be attributed to unresolved speckle in the x-ray beam.

  11. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme, A. [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal); Coroado, J. [Instituto Politecnico Tomar, Dep. Arte Conservacao and Restauro, P-2300313 Tomar (Portugal); Santos, J.M.F. dos [GIAN, Departamento de Fisica, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Luehl, L.; Wolff, T.; Kanngiesser, B. [Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin, Hardenbergstr. 36 D-10623 Berlin (Germany); Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt [Departamento de Fisica da Faculdade de Ciencias, Centro de Fisica Atomica da Universidade de Lisboa, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa (Portugal)

    2011-05-15

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with {mu}-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each 'layer'. Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  12. 3D models of radiatively driven colliding winds in massive O+O star binaries - III. Thermal X-ray emission

    CERN Document Server

    Pittard, J M

    2009-01-01

    The X-ray emission from the wind-wind collision in short-period massive O+O-star binaries is investigated. The emission is calculated from three-dimensional hydrodynamical models which incorporate gravity, the driving of the winds, orbital motion of the stars, and radiative cooling of the shocked plasma. Changes in the amount of stellar occultation and circumstellar attenuation introduce phase-dependent X-ray variability in systems with circular orbits, while strong variations in the intrinsic emission also occur in systems with eccentric orbits. The X-ray emission in eccentric systems can display strong hysteresis, with the emission softer after periastron than at corresponding orbital phases prior to periastron, reflecting the physical state of the shocked plasma at these times. Furthermore, the rise of the luminosity to maximum does not necessarily follow a 1/D law. Our models further demonstrate that the effective circumstellar column can be highly energy dependent. We simulate Chandra and Suzaku observat...

  13. Effective incorporation of spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    Science.gov (United States)

    Zheng, Guoyan

    2008-01-01

    This paper addresses the problem of estimating the 3D rigid pose of a CT volume of an object from its 2D X-ray projections. We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on X-ray and CT datasets of a plastic phantom and a cadaveric spine segment.

  14. Solution structure of the complex between CR2 SCR 1-2 and C3d of human complement: an X-ray scattering and sedimentation modelling study.

    Science.gov (United States)

    Gilbert, Hannah E; Eaton, Julian T; Hannan, Jonathan P; Holers, V Michael; Perkins, Stephen J

    2005-02-25

    Complement receptor type 2 (CR2, CD21) forms a tight complex with C3d, a fragment of C3, the major complement component. Previous crystal structures of the C3d-CR2 SCR 1-2 complex and free CR2 SCR 1-2 showed that the two SCR domains of CR2 form contact with each other in a closed V-shaped structure. SCR 1 and SCR 2 are connected by an unusually long eight-residue linker peptide. Medium-resolution solution structures for CR2 SCR 1-2, C3d, and their complex were determined by X-ray scattering and analytical ultracentrifugation. CR2 SCR 1-2 is monomeric. For CR2 SCR 1-2, its radius of gyration R(G) of 2.12(+/-0.05) nm, its maximum length of 10nm and its sedimentation coefficient s20,w(o) of 1.40(+/-0.03) S do not agree with those calculated from the crystal structures, and instead suggest an open structure. Computer modelling of the CR2 SCR1-2 solution structure was based on the structural randomisation of the eight-residue linker peptide joining SCR 1 and SCR 2 to give 9950 trial models. Comparisons with the X-ray scattering curve indicated that the most favoured arrangements for the two SCR domains corresponded to an open V-shaped structure with no contacts between the SCR domains. For C3d, X-ray scattering and sedimentation velocity experiments showed that it exists as a monomer-dimer equilibrium with a dissociation constant of 40 microM. The X-ray scattering curve for monomeric C3d gave an R(G) value of 1.95 nm, and this together with its s20,w(o) value of 3.17 S gave good agreement with the monomeric C3d crystal structure. Modelling of the C3d dimer gave good agreements with its scattering and ultracentrifugation parameters. For the complex, scattering and ultracentrifugation experiments showed that there was no dimerisation, indicating that the C3d dimerisation site was located close to the CR2 SCR 1-2 binding site. The R(G) value of 2.44(+/-0.1) nm, its length of 9 nm and its s20,w(o) value of 3.45(+/-0.01) S showed that its structure was not much more

  15. Methodology For Determination Of Space Control For 3D Reconstruction In Statscan Digital X-Ray Radiology Using Static Frame Model

    Directory of Open Access Journals (Sweden)

    Jacinta S. Kimuyu

    2015-08-01

    Full Text Available The methodology was designed to employ two positioning techniques in order to determine the three-dimensional control space of target points on static metal frame model to be used as space control data in 3D reconstructions in Statscan digital X-Ray imaging. These techniques were digital close-range photogrammetry and precise theodolite positioning method. The space coordinates for the target points were determined 3D using both techniques. Point positioning accuracy 0.5mm in root mean square error of X Y and Z space coordinates was achieved. The outcome of the comparison of the results obtained from both methods were of satisfactory accuracy hence further use of the control space data in Stastcan imaging and 3D reconstruction.

  16. Investigating the X-ray emission from the massive WR+O binary WR 22 using 3D hydrodynamical models

    CERN Document Server

    Parkin, E R

    2011-01-01

    We examine the dependence of the wind-wind collision and subsequent X-ray emission from the massive WR+O star binary WR~22 on the acceleration of the stellar winds, radiative cooling, and orbital motion. Simulations were performed with instantaneously accelerated and radiatively driven stellar winds. Radiative transfer calculations were performed on the simulation output to generate synthetic X-ray data, which are used to conduct a detailed comparison against observations. When instantaneously accelerated stellar winds are adopted in the simulation, a stable wind-wind collision region (WCR) is established at all orbital phases. In contrast, when the stellar winds are radiatively driven, and thus the acceleration regions of the winds are accounted for, the WCR is far more unstable. As the stars approach periastron, the ram pressure of the WR's wind overwhelms the O star's and, following a significant disruption of the shocks by non-linear thin-shell instabilities (NTSIs), the WCR collapses onto the O star. X-r...

  17. Communication: Systematic shifts of the lowest unoccupied molecular orbital peak in x-ray absorption for a series of 3d metal porphyrins

    DEFF Research Database (Denmark)

    García Lastra, Juan Maria; Cook, P. L.; Himpsel, F. J.

    2010-01-01

    Porphyrins are widely used as dye molecules in solar cells. Knowing the energies of their frontier orbitals is crucial for optimizing the energy level structure of solar cells. We use near edge x-ray absorption fine structure (NEXAFS) spectroscopy to obtain the energy of the lowest unoccupied...... molecular orbital (LUMO) with respect to the N-1s core level of the molecule. A systematic energy shift of the N-1s to LUMO transition is found along a series of 3d metal octaethylporphyrins and explained by density functional theory. It is mainly due to a shift of the N-1s level rather than a shift...

  18. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

    Science.gov (United States)

    Manuwong, Theerapatt; Zhang, Wei; Kazinczi, Peter Lobo; Bodey, Andrew J.; Rau, Christoph; Mi, Jiawei

    2015-07-01

    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

  19. [Comparison of quality on digital X-ray devices with 3D-capability for ENT-clinical objectives in imaging of temporal bone and paranasal sinuses].

    Science.gov (United States)

    Knörgen, M; Brandt, S; Kösling, S

    2012-12-01

    Comparison of dosage and spatial resolution of digital X-Ray devices with 3D-capability in head and neck imaging. Three on-site X-Ray devices, a general purpose multi-slice CT (CT), a dedicated cone-beam CT (CBCT) and the CT-mode of a device for digital angiography (DSA) of the same generation were compared using paranasal sinus (PNS) and temporal bone imaging protocols. The radiation exposure was measured with a puncture measuring chamber on a CTDI head phantom as well as with chip-strate-dosimeters on an Alderson head phantom in the regions of the eyes and thyroid gland. By using the Alderson head phantom, the specific dosage of the X-Ray device with regard to different protocols was read out. For the assessment of the high-contrast resolution of the devices, images of a self-made phantom were qualitatively analysed by six observers. The three devices showed marked variations in the dosage and spatial resolution depending on the protocol and/or modus. In both parameters, CBCT was superior to CT and DSA using standard protocols, with the difference being less obvious for the investigation with PNS. For high-contrast investigations CBCT CT is a remarkable option in head and neck radiology. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Dynamic Granularity for X-Ray Imaging Systems

    Science.gov (United States)

    Geissel, Matthias; Bigman, Verle H.; Edens, Aaron D.; Schollmeier, Marius; Smith, Ian C.; Shores, Jonathon E.; Porter, John L.

    2013-10-01

    Dynamic range and spatial resolution are correlated, because imaging units such as pixels or film grains can cover a wider dynamic range if they are larger, so that they can contain more electrons in a well or fluorescence centers in a grain. However, for systems that are subject to low photon flux, statistical noise influences the spatial resolution. Statistical noise is important for many experiments that rely on single shot X-ray imaging diagnostics. Detectors face a limited photon flux and often also a limited detection probability, where photons of higher energy may just penetrate the detector. The effective spatial resolution depends on detector efficiency, incident photon flux, detector cell size (grain/pixel), and the detector's inherent noise. We describe the combined influences with a ``dynamic granularity'' function, based on measurements of the grain size dependent distinguishability of grey levels. The dynamic granularity is unique to each imaging system, but allows us to quantify the performance of different detectors in a system. We have characterized a fast microchannel plate imaging detector and imaging plate with respect to dynamic granularity on the 6.151 keV crystal imaging system at the Z-Beamlet laser. Sandia Natl. Labs is a multi-program laboratory managed and operated by Sandia Corp., a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's Natl. Nucl. Security Administration under contract DE-AC04-94AL8500.

  1. Development and tests of x-ray multifoil optical system for 1D imaging (Conference Presentation)

    Science.gov (United States)

    Pína, Ladislav; Hudec, René; Inneman, Adolf J.; Baca, Tomas; Blazek, M.; Platkevic, M.; Sieger, Ladislav; Doubravova, Daniela; McEntaffer, Randall L.; Schultz, Ted B.; Dániel, Vladimír.

    2016-09-01

    The proposed wide-field optical system has not been used yet. Described novel approach is based on the use of 1D "Lobster eye" optics in combination with Timepix X-ray detector in the energy range 3 - 40 keV. The proposed project includes theoretical study and a functional sample of the Timepix X-ray detector with multifoil wide-field X-ray "Lobster eye" optics. Using optics to focus X-rays on a detector is necessary in cases where the intensity of impinging X-ray radiation is below the sensitivity of the detector without optic. Generally this is the case of very low light phenomena, or e.g. monitoring astrophysical objects in space. Namely, such optical system could find applications in laboratory spectroscopy systems or in a rocket space experiment. Designed wide-field optical system combined with Timepix X-ray detector is described together with experimental results obtained during laboratory tests.

  2. Effective incorporating spatial information in a mutual information based 3D-2D registration of a CT volume to X-ray images.

    Science.gov (United States)

    Zheng, Guoyan

    2010-10-01

    This paper addresses the problem of estimating the 3D rigid poses of a CT volume of an object from its 2D X-ray projection(s). We use maximization of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measures only take intensity values into account without considering spatial information and their robustness is questionable. In this paper, instead of directly maximizing mutual information, we propose to use a variational approximation derived from the Kullback-Leibler bound. Spatial information is then incorporated into this variational approximation using a Markov random field model. The newly derived similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experiments were conducted on datasets from two applications: (a) intra-operative patient pose estimation from a limited number (e.g. 2) of calibrated fluoroscopic images, and (b) post-operative cup orientation estimation from a single standard X-ray radiograph with/without gonadal shielding. The experiment on intra-operative patient pose estimation showed a mean target registration accuracy of 0.8mm and a capture range of 11.5mm, while the experiment on estimating the post-operative cup orientation from a single X-ray radiograph showed a mean accuracy below 2 degrees for both anteversion and inclination. More importantly, results from both experiments demonstrated that the newly derived similarity measures were robust to occlusions in the X-ray image(s).

  3. A rotational and axial motion system load frame insert for in situ high energy x-ray studies

    Energy Technology Data Exchange (ETDEWEB)

    Shade, Paul A., E-mail: paul.shade.1@us.af.mil; Schuren, Jay C.; Turner, Todd J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States); Blank, Basil [PulseRay, Beaver Dams, New York 14812 (United States); Kenesei, Peter; Goetze, Kurt; Lienert, Ulrich; Almer, Jonathan [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Suter, Robert M. [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Bernier, Joel V.; Li, Shiu Fai [Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lind, Jonathan [Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Engineering Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-09-15

    High energy x-ray characterization methods hold great potential for gaining insight into the behavior of materials and providing comparison datasets for the validation and development of mesoscale modeling tools. A suite of techniques have been developed by the x-ray community for characterizing the 3D structure and micromechanical state of polycrystalline materials; however, combining these techniques with in situ mechanical testing under well characterized and controlled boundary conditions has been challenging due to experimental design requirements, which demand new high-precision hardware as well as access to high-energy x-ray beamlines. We describe the design and performance of a load frame insert with a rotational and axial motion system that has been developed to meet these requirements. An example dataset from a deforming titanium alloy demonstrates the new capability.

  4. L-Edge X-ray Absorption Spectroscopy of Dilute Systems Relevant to Metalloproteins Using an X-ray Free-Electron Laser

    Science.gov (United States)

    Mitzner, Rolf; Rehanek, Jens; Kern, Jan; Gul, Sheraz; Hattne, Johan; Taguchi, Taketo; Alonso-Mori, Roberto; Tran, Rosalie; Weniger, Christian; Schröder, Henning; Quevedo, Wilson; Laksmono, Hartawan; Sierra, Raymond G.; Han, Guangye; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Kubicek, Katharina; Schreck, Simon; Kunnus, Kristjan; Brzhezinskaya, Maria; Firsov, Alexander; Minitti, Michael P.; Turner, Joshua J.; Moeller, Stefan; Sauter, Nicholas K.; Bogan, Michael J.; Nordlund, Dennis; Schlotter, William F.; Messinger, Johannes; Borovik, Andrew; Techert, Simone; de Groot, Frank M. F.; Föhlisch, Alexander; Erko, Alexei; Bergmann, Uwe; Yachandra, Vittal K.; Wernet, Philippe; Yano, Junko

    2013-01-01

    L-edge spectroscopy of 3d transition metals provides important electronic structure information and has been used in many fields. However, the use of this method for studying dilute aqueous systems, such as metalloenzymes, has not been prevalent because of severe radiation damage and the lack of suitable detection systems. Here we present spectra from a dilute Mn aqueous solution using a high-transmission zone-plate spectrometer at the Linac Coherent Light Source (LCLS). The spectrometer has been optimized for discriminating the Mn L-edge signal from the overwhelming O K-edge background that arises from water and protein itself, and the ultrashort LCLS X-ray pulses can outrun X-ray induced damage. We show that the deviations of the partial-fluorescence yield-detected spectra from the true absorption can be well modeled using the state-dependence of the fluorescence yield, and discuss implications for the application of our concept to biological samples. PMID:24466387

  5. Three dimensional co-registration between a positron emission tracking system and a C-arm x-ray imaging system

    Science.gov (United States)

    Spencer, Benjamin A.

    Real-time motion tracking is required for accurate delivery of radiation therapy to tumours undergoing motion due to respiration, as well as for the precise guidance, manipulation, and operation of surgical tools or devices used during non-invasive interventional procedures. Positron emission real-time three-dimensional (3D) tracking (PeTrack) is a proposed solution to these problems which is currently being developed at Carleton University. The technique involves the localization and tracking of positron emission fiducial markers which could be implanted into a tumour volume or integrated into a surgical tool or instrument. The research presented here describes the co-registration of the PeTrack localization and tracking system with a C-arm x-ray imaging system capable of 3D cone-beam imaging. This co-registration allows the display of objects tracked in 3D by the PeTrack system on to a 3D reconstructed image. The acquisition of accurate 3D images from the x-ray imaging system requires: x-ray detector distortion correction, geometric calibration of the C-arm x-ray scanner, and then a method to reconstruct 3D images. PeTrack localization and tracking of positron sources requires a detector system capable of detecting positron sources, and an algorithm which can localize and track positron sources based on the information provided by the detector system. This tracking algorithm has previously been developed. The co-registration of the x-ray imaging system and the PeTrack tracking system requires the geometric calibrations of the PeTrack and the x-ray imaging systems both defined in a common 3D reference frame. The results presented in this work show that distortion correction is essential for the acquisition of high quality 3D image reconstructions. The method of x-ray scanner geometric calibration implemented was validated for the the first time with real data. A method of PeTrack geometric calibration was developed and evaluated. A simulation study showed that

  6. SU-C-18C-03: Dual-Energy X-Ray Fluoroscopy Imaging System

    Energy Technology Data Exchange (ETDEWEB)

    Virshup, G; Richmond, M; Mostafavi, H; Ganguly, A [Ginzton Technology Center, Varian Medical Systems Inc, Palo Alto, CA (United States); Fu, D [Ruier Medical, Wuxi, Jiangsu Province (China)

    2014-06-01

    Purpose: This work studies the clinical utility of dual energy (DE) subtraction fluoroscopy for fiducial-free tumor tracking in lung radiation therapy (RT). Improvement in tumor visualization and quantification of tumor shift within a breathing cycle were analyzed. Methods: Twenty subjects who were undergoing RT for lung cancer were recruited following institutional review board approval. The subjects had a range of tumor sizes, locations in the lungs, and body sizes. An x-ray imaging system was setup with the following components: (a) x-ray tube (Varian G-242, Varian Medical Systems (VMS), CA) (b) flat panel detector (4030CB, VMS, CA) and (c) x-ray generator (EPS 50RF, EMD, Canada). Firmware and software modifications were made to the generator to allow 10 x-ray pulse pairs with alternating low/high kV, 100 ms apart for ∼4s (one breathing cycle). Images were obtained at 4 angles: 0°, 45°, 90° and 135°. Weighted subtraction of a kV-pair image set was used to create a “bone-free” image of the lungs. The 2D tumor-shift in each subtracted image and the 3D shift during a breathing cycle was calculated using all views. Results: The subjects enrolled had the following statistics: average age 62.3±7.1 years, 5 female/15 male, 11 had tumors on the right and 9 on the left and the average tumor size was ∼31.4±10.8 mm. X-ray imaging conditions for the pulse pairs were: 70/120 kVp, 280/221 mA and 65/8 ms. For views where these parameters were insufficient 80/130 kVp, 280/221 mA and 60/12 ms was used. Tumor visibility improved for 0°, 45°, 90° and 135° in 100%, 55%, 75% and 80% of the cases respectively. Tumor shift during a breathing cycle was: 2.4±1.0 mm AP, 2.7±1.4 mm LR and 7.6±4.8 mm IS. Conclusion: DE subtraction fluoroscopy allowed improved visualization and quantification of movement of tumors in the lungs during a breathing cycle. This study was entirely funded by Varian Medical Systems.

  7. Microtomographic images of rat's lumbar vertebra microstructure using 30 keV synchrotron X-rays: an analysis in terms of 3D visualization

    Energy Technology Data Exchange (ETDEWEB)

    Rao, D.V.; Takeda, T. E-mail: ttakeda@md.tsukuba.ac.jp; Kawakami, T.; Uesugi, K.; Tsuchiya, Y.; Wu, J.; Lwin, T.T.; Itai, Y.; Zeniya, T.; Yuasa, T.; Akatsuka, T

    2004-05-01

    Microtomographic images of rat's lumbar vertebra of different age groups varying from 8, 56 and 78 weeks were obtained at 30 keV using synchrotron X-rays with a spatial resolution of 12 {mu}m. The images are analyzed in terms of 3D visualization and micro-architecture. Density histogram of rat's lumbar vertebra is compared with test phantoms. Rat's lumbar volume and phantom volume are studied at different concentrations of hydroxyapatite with slice number. With the use of 2D slices, 3D images are reconstructed, in order to know the evolution and a state of decline of bone microstructure with aging. Cross-sectional {mu}-CT images shows that the bone of young rat has a fine trabecular microstructure while that of the old rat has large meshed structure.

  8. Precision scans of the Pixel cell response of double sided 3D Pixel detectors to pion and X-ray beams

    CERN Document Server

    Mac Raighne, A; Crossley, M; Alianelli, L; Lozano, M; Dumps, R; Fleta, C; Collins, P; Rodrigues, E; Sawhney, K J S; Tlustos, L; Pennicard, D; Buytaert, J; Stewart, G; Parkes, C; Eklund, L; Campbell, M; Marchal, J; Akiba, K; Pellegrini, G; Llopart, X; Plackett, R; Maneuski, D; Gligorov, V V; Tartoni, N; Nicol, M; Bates, R; Gallas, A; Gimenez, E N; van Beuzekom, M; John, M

    2011-01-01

    Three-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55 m m pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0 +/- 0.5\\% is measured. After a 10 degrees rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises ...

  9. Study of the L{sub 2,3} edges of 3d transition metals by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Akguel, G. [Physics Department, University of Cukurova, 01330 Adana (Turkey); Aksoy, F. [Physics Department, University of Cukurova, 01330 Adana (Turkey); Physics Department, University of Nigde, 51100 Nigde (Turkey); Bozduman, A.; Ozkendir, O.M. [Physics Department, University of Cukurova, 01330 Adana (Turkey); Ufuktepe, Y. [Physics Department, University of Cukurova, 01330 Adana (Turkey)], E-mail: ufuk@cu.edu.tr; Luening, J. [Universite Pierre and Marie Curie, Laboratoire de Chimie Physique-Matiere et Rayonnement 75231 Paris (France)

    2008-11-28

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons ({lambda}{sub e}) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band.

  10. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    Science.gov (United States)

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  11. Genetically targeted 3D visualisation of Drosophila neurons under Electron Microscopy and X-Ray Microscopy using miniSOG

    Science.gov (United States)

    Ng, Julian; Browning, Alyssa; Lechner, Lorenz; Terada, Masako; Howard, Gillian; Jefferis, Gregory S. X. E.

    2016-01-01

    Large dimension, high-resolution imaging is important for neural circuit visualisation as neurons have both long- and short-range patterns: from axons and dendrites to the numerous synapses at terminal endings. Electron Microscopy (EM) is the favoured approach for synaptic resolution imaging but how such structures can be segmented from high-density images within large volume datasets remains challenging. Fluorescent probes are widely used to localise synapses, identify cell-types and in tracing studies. The equivalent EM approach would benefit visualising such labelled structures from within sub-cellular, cellular, tissue and neuroanatomical contexts. Here we developed genetically-encoded, electron-dense markers using miniSOG. We demonstrate their ability in 1) labelling cellular sub-compartments of genetically-targeted neurons, 2) generating contrast under different EM modalities, and 3) segmenting labelled structures from EM volumes using computer-assisted strategies. We also tested non-destructive X-ray imaging on whole Drosophila brains to evaluate contrast staining. This enabled us to target specific regions for EM volume acquisition. PMID:27958322

  12. Feasibility of 3D tracking of surgical tools using 2D single plane x-ray projections

    Science.gov (United States)

    Seslija, Petar; Habets, Damiaan F.; Peters, Terry M.; Holdsworth, David W.

    2008-03-01

    Fluoroscopy is widely used for intra-procedure image guidance, however its planar images provide limited information about the location of the surgical tools or targets in three-dimensional space. An iterative method based on the projection-Procrustes technique can determine the three-dimensional positions and orientations of known sparse objects from a single, perspective projection. We assess the feasibility of applying this technique to track surgical tools by measuring its accuracy and precision through in vitro experiments. Two phantoms were fabricated to perform this assessment: a grid plate phantom with numerous point-targets at regular distances from each other; and a sparse object used as a surgical tool phantom. Two-dimensional projections of the phantoms were acquired using an image intensifier-based C-arm x-ray unit. The locations of the markers projected onto the images were identified and measured using an automated algorithm. The three-dimensional location of the phantom tool tip was identified from these images using the projection-Procrustes technique. The accuracy and precision of the tip localization were used to assess our technique. The average three-dimensional root-mean-square target registration error of the phantom tool tip was 1.8 mm. The average three-dimensional root-mean-square precision of localizing the tool tip was 0.5 mm.

  13. Optical Synchronization Systems for Femtosecond X-raySources

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, Russell; Staples, John W.; Holzwarth, Ronald

    2004-05-09

    In femtosecond pump/probe experiments using short X-Ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error over 100 meter of glass fiber. For stabilization in the hundred femtosecond range a CW laser is amplitude modulated at 1 10 GHz, the signal retroreflected from the far end, and the relative phase used to correct the transit time with a piezoelectric phase modulator. For the sub-10 fsec range the laser frequency itself is upshifted 55 MHz with an acousto-optical modulator, retroreflected, upshifted again and phase compared at the sending end to a 110 MHz reference. Initial experiments indicate less than 1 fsec timing jitter. To lock lasers in the sub-10 fs range we will lock two single-frequency lasers separated by several tera Hertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes.

  14. Optical Synchronization Systems for Femtosecond X-Ray Sources

    CERN Document Server

    Wilcox, Russell; Staples, John W

    2005-01-01

    In femtosecond pump/probe experiments using short x-ray and optical pulses, precise synchronization must be maintained between widely separated lasers in a synchrotron or FEL facility. We are developing synchronization systems using optical signals for applications requiring different ranges of timing error. For the sub-100fs range we use an amplitude modulated CW laser at 1GHz to transmit RF phase information, and control the delay through a 100m fiber by observing the retroreflected signal. Initial results show 40fs peak-to-peak error above 10Hz, and 200fs long term drift, mainly due to amplitude sensitivity in the analog mixers. For the sub-10fs range we will lock two single-frequency lasers separated by several teraHertz to a master modelocked fiber laser, transmit the two frequencies over fiber, and lock two comb lines of a slave laser to these frequencies, thus synchronizing the two modelocked laser envelopes. For attosecond synchronization we propose a stabilized, free space link using bulk lens wavegu...

  15. 3-D template simulation system in Total Hip Arthroplasty

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Nobuhiko [Nagoya City Univ. (Japan). Medical School

    2000-09-01

    In Total Hip Arthroplastry, 2D template on Plain X-ray is usually used for preoperative planning. But deformity and contracture can cause malposition and measurement error. To reduce those problems, a 3D preoperative simulation system was developed. Three methods were compared in this study. One is to create very accurate AP and ML images which can use for standard 2D template. One is fully 3D preoperative template system using computer graphics. Last one is substantial simulation using stereo-lithography model. 3D geometry data of the bone was made from Helical 3-D CT data. AP and ML surface cutting 3D images of the femur were created using workstation (Advantage Workstation; GE Medical Systems). The extracted 3D geometry was displayed on personal computer using Magics (STL data visualization software), then 3D geometry of the stem was superimposed in it. The full 3D simulation system made it possible to observe the bone and stem geometry from any direction and by any section view. Stereo-lithography model was useful for detailed observation of the femur anatomy. (author)

  16. Development of a coincidence system for the measurement of X-ray emission atomic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Filiberto; Miranda, Javier [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, 01000 Mexico, D.F (Mexico)

    2013-07-03

    Preliminary results obtained in experiments carried out with an x-ray spectrometer built at the Instituto de Fisica for Atomic Physics and environmental sciences studies are presented. The experiments are based on a coincidence method for signals produced by LEGe and Si(Li) detectors. The x-ray fluorescence yields ({omega}{sub Li}) and Coster-Kronig transition probabilities (f{sub ij}) for elements with 55 {<=} Z {<=} 60 are among the quantities of interest. The method is based on the simultaneous detection of K x-rays with the LEGe detector and the L x-rays with the Si(Li) detector. The primary radiation source is an x-ray tube with Rh anode. The system was tested with the coincidence of the L x-rays from Ce with its K line, demonstrating the feasibility of the experiments.

  17. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system.

    Science.gov (United States)

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T; Pelc, Norbert J

    2008-09-01

    In this x-ray/MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is approximately 0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner.

  18. X-ray computed tomography system for laboratory small-object imaging: Enhanced tomography solutions.

    Science.gov (United States)

    Kharfi, F; Yahiaoui, M L; Boussahoul, F

    2015-07-01

    A portable X-ray tomography system has been installed and actually being tested at our medical imaging laboratory. This tomography system employs a combination of scintillator screen and CCD camera as image detector. The limit of spatial resolution of 290 μm of this imaging system is determined by the establishment of its modulation transfer function (MTF). In this work, we present attempts to address some issues such as limited resolution and low contrast through the development of affordable post-acquisition solutions based on the application of super-resolution method (projection onto convex sets, POCS) to create new projections set enabling the reconstruction of an improved 3D image in terms of contrast, resolution and noise. In addition to small-object examination, this tomography system is used for hands-on training activities involving students and scientists.

  19. Magnetic resonance imaging of the central nervous system. Comparison with X-ray CT

    Energy Technology Data Exchange (ETDEWEB)

    Kajima, Toshio; Kagawa, Yoshihiro; Katsuta, Shizutomo.

    1987-06-01

    Magnetic resonance imaging (MRI) and X-ray computed tomography (X-ray CT) have been performed in 169 consecutive patients with central nervous system diseases. The findings from the two methods were compared for the capacity to defect lesions. Magnetic resonance imaging was more sensitive than or equivalent to X-ray CT in detecting lesions - especially detecting. Arnold-Chiari malformation, syringomyelia, spinal cord injury, and pituitary adenoma - in 158 patients (94 %). In six patients (10 %), lesion detection was possible only by MRI. Magnetic resonance imaging was inferior to X-ray CT in 11 patients (7 %) in detecting calcified lesions, meningioma, and cavernous hemangioma. (Namekawa, K.).

  20. Mechanized X-ray inspection system for large tanks

    Science.gov (United States)

    Occhipinti, G. C.

    1967-01-01

    Mechanized X ray equipment provides nondestructive inspection of structural weldments at various positions on very large tanks. It mechanizes the placement of the film, automates the identification process, adheres to safety requirements, and eliminates all the usual time-consuming manual operations in industrial radiography.

  1. Recognition of binary x-ray systems utilizing the doppler effect

    Science.gov (United States)

    Novak, B. L.

    1980-01-01

    The possibility of recognizing the duality of a single class of X-ray systems utilizing the Doppler effect is studied. The procedure is based on the presence of a period which coincides with the orbital period at the intensity of the radiation in a fixed energy interval of the X-ray component of a binary system.

  2. Chemical U-Th-Pb dating of monazite by 3D-Micro x-ray fluorescence analysis with synchrotron radiation

    DEFF Research Database (Denmark)

    Schmitz, Susanne; Möller, Andreas; Wilke, Max

    2009-01-01

    A confocal set-up for three-dimensional (3D) micro X-ray fluorescence (micro-XRF) was used at the mySpot beamline at BESSY II, which allows compositional depth profiling for various applications. We present results obtained with a confocal 3D micro-XRF set-up for chemical age dating using the U, Th......-XRF set-up is suitable for dating of minerals with low Pb concentrations as long as all Pb is radiogenic, allowing spatial resolution comparable to ion microprobe or laser ablation techniques. The set-up was tested on monazites that are well characterized by isotopic techniques and have a wide range...... of ages, varying from 20 Ma to 1.82 Ga. Reference materials (GM3, F6, 3345) can be reproduced within error. The spread in the ages of all points determined by 3D micro-XRF is within 8 % of the isotopic reference value. The average 3D micro-XRF dates reproduce the reference ages with discrepancies between...

  3. 3D microstructural characterization and mechanical properties of constituent particles in Al 7075 alloys using X-ray synchrotron tomography and nanoindentation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sudhanshu S.; Schwartzstein, Cary; Williams, Jason J. [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States); Xiao, Xianghui; De Carlo, Francesco [Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Chawla, Nikhilesh, E-mail: nchawla@asu.edu [Materials Science and Engineering, Arizona State University, Tempe, AZ 85287-6106 (United States)

    2014-07-25

    Highlights: • Combined 3D microstructural characterization and mechanical properties of inclusions in Al 7075 alloys. • 3D microstructural characterization of inclusions was obtained by X-ray synchrotron tomography. • Mechanical properties of inclusions was obtained by CSM technique in nanoindentation. • Quantitative characterization of volume fraction, size, and morphology of inclusions and porosity. - Abstract: Inclusions (constituent particles) in Al 7075 alloys can be classified as Fe-bearing and Si-bearing inclusions. They play important roles in the deformation behavior, particular under fatigue loading. Thus, in order to understand the deformation behavior under fatigue loading of Al 7075 alloys, it is important to investigate the size and distribution of these inclusions and porosity in the material, along with their mechanical properties. X-ray synchrotron tomography was used to obtain the 3D microstructure of these microconstituents in Al 7075 alloy. Quantitative analysis in terms of volume, size, and morphology of inclusions and porosity was performed. The mechanical properties of these constituent particles along with the matrix were obtained using nanoindentation. Scanning electron microscopy (SEM) and EDS was used to analyze the indentations after testing. The Young’s modulus and hardness of all inclusions were higher than the matrix. The Young’s modulus values of Al{sub 7}Cu{sub 2}Fe, Al{sub 23}Fe{sub 4}Cu, and Mg{sub 2}Si were measured to be 160.2 ± 10.9, 139.5 ± 3.7, and 94.8 ± 7.5 GPa respectively. Values of hardness of Al{sub 7}Cu{sub 2}Fe, Al{sub 23}Fe{sub 4}Cu, and Mg{sub 2}Si were 8.8 ± 0.9, 7.5 ± 0.8, and 5.2 ± 0.5 GPa respectively. Comparison of these values with nanoindentation data in the literature was also conducted.

  4. Simultaneous analysis of Grazing Incidence X-Ray reflectivity and X-ray standing waves from periodic multilayer systems

    NARCIS (Netherlands)

    Yakunin, S.N.; Makhotkin, I.; Chuyev, M.A.; Seregin, A.Y.; Pashayev, E.M.; Louis, E.; Kruijs, van de R.W.E.; Bijkerk, F.; Kovalchuk, M.V.

    2012-01-01

    Structural analysis of periodic multilayers with small period thickness (~4 nm) is a challenging task, especially when thicknesses of intermixed interfaces become comparable to individual layer thicknesses. In general, angular dependent X-ray fluorescence measurements, excited by the X-ray standing

  5. Ultrafast three-dimensional X-ray computed tomography for the investigation of two-phase flows in porous media; Ultraschnelle 3D-Roentgentomographie zur Untersuchung zweiphasiger Stroemungen in poroesen Medien

    Energy Technology Data Exchange (ETDEWEB)

    Stuerzel, Thilo

    2013-04-15

    An ultrafast X-ray computed tomography system has been devised, which enables two- and three-dimensional imaging using a scanned electron beam. Therefore the electron beam is focused on a specially designed X-ray transparent target to generate a fast moving X-ray source following the cone-beam tomography principles. The maximum frame rate of the system is 10 kHz for two-dimensional scanning and 1,25 kHz for three-dimensional scanning. Phantom experiments proved a spatial resolution of 1.5 mm for the applied 3D frame rate of 250 Hz. As the spatial resolution is influenced by the chosen frame rate, it can be flexibly adjusted to the measurement demands. A higher spatial resolution is achieved for a reduced temporal resolution. Experiments with two-phase flows in debris beds were performed for mono-dispersed beds of spherical particles. For the identification and detection of the flow regimes bubbly, slug and annular flow geometry and stability criteria were defined. It was found that bubbly and slug flow appear simultaneously, whereas the gas transport basically performed via slug flow. This may be caused by the isothermal character of the air water flow. Applying the stability criteria a clear transition into the annular flow regime could be detected. Hence it was possible to validate the dependence of this transition on the particle diameter, as already supposed in literature.

  6. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  7. A Compact X-Ray System for Support of High Throughput Crystallography

    Science.gov (United States)

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  8. Characterising the structural properties of polymer separators for lithium-ion batteries in 3D using phase contrast X-ray microscopy

    Science.gov (United States)

    Finegan, Donal P.; Cooper, Samuel J.; Tjaden, Bernhard; Taiwo, Oluwadamilola O.; Gelb, Jeff; Hinds, Gareth; Brett, Dan J. L.; Shearing, Paul R.

    2016-11-01

    Separators are an integral component for optimising performance and safety of lithium-ion batteries; therefore, a clear understanding of how their microstructure affects cell performance and safety is crucial. Phase contrast X-ray microscopy is used here to capture the microstructures of commercial monolayer, tri-layer, and ceramic-coated lithium-ion battery polymer separators. Spatial variations in key structural parameters, including porosity, tortuosity factor and pore size distribution, are determined through the application of 3D quantification techniques and stereology. The architectures of individual layers in multi-layer membranes are characterised, revealing anisotropy in porosity, tortuosity factor and mean pore size of the three types of separator. Detailed structural properties of the individual layers of multi-layered membranes are then related with their expected effect on safety and rate capability of cells.

  9. Reconstructing the 3D shape and bone mineral density distribution of the proximal femur from dual-energy X-ray absorptiometry.

    Science.gov (United States)

    Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; Del Rio Barquero, Luis M; Frangi, Alejandro F

    2011-12-01

    The accurate diagnosis of osteoporosis has gained increasing importance due to the aging of our society. Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is an established criterion in the diagnosis of osteoporosis. This measure, however, is limited by its two-dimensionality. This work presents a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image used in clinical routine. A statistical model of the combined shape and BMD distribution is presented, together with a method for its construction from a set of quantitative computed tomography (QCT) scans. A reconstruction is acquired in an intensity based 3D-2D registration process whereby an instance of the model is found that maximizes the similarity between its projection and the DXA image. Reconstruction experiments were performed on the DXA images of 30 subjects, with a model constructed from a database of QCT scans of 85 subjects. The accuracy was evaluated by comparing the reconstructions with the same subject QCT scans. The method presented here can potentially improve the diagnosis of osteoporosis and fracture risk assessment from the low radiation dose and low cost DXA devices currently used in clinical routine.

  10. Novel experimental technique for 3D investigation of high-speed cavitating diesel fuel flows by X-ray micro computed tomography

    Science.gov (United States)

    Lorenzi, M.; Mitroglou, N.; Santini, M.; Gavaises, M.

    2017-03-01

    An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.

  11. Use of high-resolution X-ray computed tomography and 3D image analysis to quantify mineral dissemination and pore space in oxide copper ore particles

    Science.gov (United States)

    Yang, Bao-hua; Wu, Ai-xiang; Narsilio, Guillermo A.; Miao, Xiu-xiu; Wu, Shu-yue

    2017-09-01

    Mineral dissemination and pore space distribution in ore particles are important features that influence heap leaching performance. To quantify the mineral dissemination and pore space distribution of an ore particle, a cylindrical copper oxide ore sample (ϕ4.6 mm × 5.6 mm) was scanned using high-resolution X-ray computed tomography (HRXCT), a nondestructive imaging technology, at a spatial resolution of 4.85 μm. Combined with three-dimensional (3D) image analysis techniques, the main mineral phases and pore space were segmented and the volume fraction of each phase was calculated. In addition, the mass fraction of each mineral phase was estimated and the result was validated with that obtained using traditional techniques. Furthermore, the pore phase features, including the pore size distribution, pore surface area, pore fractal dimension, pore centerline, and the pore connectivity, were investigated quantitatively. The pore space analysis results indicate that the pore size distribution closely fits a log-normal distribution and that the pore space morphology is complicated, with a large surface area and low connectivity. This study demonstrates that the combination of HRXCT and 3D image analysis is an effective tool for acquiring 3D mineralogical and pore structural data.

  12. Using three-dimensional 3D grazing-incidence small-angle X-ray scattering (GISAXS) analysis to probe pore deformation in mesoporous silica films.

    Science.gov (United States)

    Panduro, Elvia Anabela Chavez; Granlund, Håvard; Sztucki, Michael; Konovalov, Oleg; Breiby, Dag W; Gibaud, Alain

    2014-02-26

    In the past decade, remarkable progress has been made in studying nanoscale objects deposited on surfaces by grazing-incidence small-angle X-ray scattering (GISAXS). However, unravelling the structural properties of mesostructured thin films containing highly organized internal three-dimensional (3D) structures remains a challenging issue, because of the lack of efficient algorithms that allow prediction of the GISAXS intensity patterns. Previous attempts to calculate intensities have mostly been limited to cases of two-dimensional (2D) assemblies of nanoparticles at surfaces, or have been adapted to specific 3D cases. Here, we demonstrate that highly organized 3D mesoscale structures (for example, porous networks) can be modeled by the combined use of established crystallography formalism and the Distorted Wave Born Approximation (DWBA). Taking advantage of the near-zero intensity of symmetry-allowed Bragg reflections, the casual extinction or existence of certain reflections related to the anisotropy of the form factor of the pores can be used as a highly sensitive method to extract structural information. We employ this generic method to probe the slightly compressed anisotropic shape and orientation of pores in a mesoporous silica thin film having P63/mmc symmetry.

  13. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    Science.gov (United States)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  14. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    Science.gov (United States)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  15. Automatic localization of vertebral levels in x-ray fluoroscopy using 3D-2D registration: a tool to reduce wrong-site surgery

    Science.gov (United States)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-09-01

    Surgical targeting of the incorrect vertebral level (wrong-level surgery) is among the more common wrong-site surgical errors, attributed primarily to the lack of uniquely identifiable radiographic landmarks in the mid-thoracic spine. The conventional localization method involves manual counting of vertebral bodies under fluoroscopy, is prone to human error and carries additional time and dose. We propose an image registration and visualization system (referred to as LevelCheck), for decision support in spine surgery by automatically labeling vertebral levels in fluoroscopy using a GPU-accelerated, intensity-based 3D-2D (namely CT-to-fluoroscopy) registration. A gradient information (GI) similarity metric and a CMA-ES optimizer were chosen due to their robustness and inherent suitability for parallelization. Simulation studies involved ten patient CT datasets from which 50 000 simulated fluoroscopic images were generated from C-arm poses selected to approximate the C-arm operator and positioning variability. Physical experiments used an anthropomorphic chest phantom imaged under real fluoroscopy. The registration accuracy was evaluated as the mean projection distance (mPD) between the estimated and true center of vertebral levels. Trials were defined as successful if the estimated position was within the projection of the vertebral body (namely mPD <5 mm). Simulation studies showed a success rate of 99.998% (1 failure in 50 000 trials) and computation time of 4.7 s on a midrange GPU. Analysis of failure modes identified cases of false local optima in the search space arising from longitudinal periodicity in vertebral structures. Physical experiments demonstrated the robustness of the algorithm against quantum noise and x-ray scatter. The ability to automatically localize target anatomy in fluoroscopy in near-real-time could be valuable in reducing the occurrence of wrong-site surgery while helping to reduce radiation exposure. The method is applicable beyond

  16. Hard X-Ray PHA System on the HT-7 Tokamak

    Science.gov (United States)

    Lin, Shiyao; Shi, Yuejiang; Wan, Baonian; Chen, Zhongyong; Hu, Liqun

    2006-05-01

    A new hard X-ray pulse-height analysis (PHA) system has been established on HT-7 tokamak for long pulse steady-state operation. This PHA system consists of hard X-ray diagnostics and multi-channel analysers (MCA). The hard X-ray diagnostics consists of a vertical X-ray detector array (CdTe) and a horizontal X-ray detector array (NaI). The hard X-ray diagnostics can provide the profile of power deposition and the distribution function of fast electron during radio frequency (RF) current drive. The MCA system is the electronic part of the PHA system, which has been modularized and linked to PC through LAN. Each module of MCA can connect with 8 X-ray detectors. The embedded Ethernet adapter in the MCA module makes the data communication between PC and MCA very convenient. A computer can control several modules of MCA through certain software and a hub. The RAM in MCA can store 1024 or more spectra for each detector and therefore the PHA system can be applied in the long pulse discharge of several minutes.

  17. Distorted Tetrahedral CoII in K5H[CoW12O40]·xH2O Probed by 2p3d Resonant Inelastic X-ray Scattering

    NARCIS (Netherlands)

    Liu, LIU BY; Wang, Ru Pan; Glass, Elliot N.; Hill, Craig L.; Cuk, Tanja; Okamoto, Jun; Huang, Di Jing; Van Schooneveld, Matti M.; De Groot, Frank M F

    2016-01-01

    The Co 2p3/2 X-ray absorption spectroscopy and high-energy-resolution (∼0.09 eV fwhm) 2p3d resonant inelastic X-ray scattering (RIXS) spectra of the single-cobalt-centered polyoxometalate K5H[CoW12O40]·xH2O were measured. The low-energy dd transition features at 0.55 eV, unmeasurable with

  18. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  19. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  20. Capability of Resonant Photoemission with Soft X-Rays in Rare-Earth Systems

    Science.gov (United States)

    Harasaki, Akiko; Tanaka, Arata; Jo, Takeo

    1993-07-01

    We theoretically discuss the capability of resonant photoemission with soft X-rays in clarifying the valence electronic state, by choosing Ce 4d core X-ray photoemission spectroscopy (4d XPS) at the Ce 3d threshold in CeRh3B2 with hexagonal crystal structure. On the basis of the Anderson model including multiplet splitting, we show that the dependence of 4d XPS on the energy and the linear polarization with respect to the hexagonal c-axis of the incident photon and the binding energy can be a powerful characteristic for probing a proposed uniaxial anisotropic distribution of 4f electrons.

  1. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  2. X-ray spectroscopy of chemical systems in liquids phase

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Zhong; Kubicek, Katharina [Max Planck Institute for Biophysical Chemistry, Goettingen (Germany); Deutsches Elektronen Synchrotron DESY, Hamburg (Germany); Techert, Simone; Rajkovic, Ivan [Max Planck Institute for Biophysical Chemistry, Goettingen (Germany); Foehlisch, Alexander [Helmholtz Zentrum Berlin, Berlin (Germany); University of Potsdam (Germany); Wernet, Philippe; Quevedo, Wilson [Helmholtz Zentrum Berlin, Berlin (Germany)

    2013-07-01

    Based on their ability to salt in or salt out macromolecules salt ions are classified according to the Hofmeister series. While the macroscopic effect is known for over 100 years, the origin of the effect on the molecular level is still not understood. We present X-ray emission spectroscopy (XES) on the oxygen K-edge of water in aqueous solutions of inorganic salts using BESSY II synchrotron (Berlin, Germany) X-rays. The FlexRIXS end station utilized a liquid micro jet for sample delivery. The element- and site-specific XES method contains information about occupied and unoccupied molecular orbitals and is therefore sensitive to the chemical environment. The aim of our measurements was to reveal the influence of the water-ion interactions on the local water structure further elucidating the understanding of the structure maker and structure breaker concept. Structural changes while utilizing different salts were expected to show as spectral changes in the oxygen K-edge spectra, e.g. of peak shapes or intensities.

  3. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy

    CERN Document Server

    Li, Ruijiang; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-01-01

    Purpose: To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Methods: Given a set of volumetric images of a patient at N breathing phases as the training data, we perform deformable image registration between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, we can generate new DVFs, which, when applied on the reference image, lead to new volumetric images. We then can reconstruct a volumetric image from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. Our algorithm was implemented on graphics processing units...

  4. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A. [Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2009-04-15

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  5. X-ray studies of solar system objects: now and the next decade

    Science.gov (United States)

    Branduardi-Raymont, G.

    2016-06-01

    XMM-Newton and Chandra have revealed the multiplicity of X-ray emissions from planets, comets and minor bodies in our solar system. This presentation will review the main findings so far and will look forward to the unique contributions that XMM-Newton can continue to provide in solar system exploration. As a prime example, Jupiter's polar regions show bright soft X-ray aurorae with a line-rich spectrum arising from charge exchange interactions of atmospheric neutrals with local and/or solar wind high charge-state heavy ions. At energies above ˜3 keV the auroral X-ray spectrum is featureless, pointing to an origin from electron bremsstrahlung. Jupiter's atmosphere scatters solar X-rays, so that the planet's disk displays an X-ray spectrum that closely resembles that of solar flares. The arrival of Juno at Jupiter this July will enable in situ measurements simultaneous with XMM-Newton observations, offering unique opportunities to validate models developed to describe the planet's behaviour. Unlike Jupiter, Mars and Venus lack a strong magnetic field, yet they show X-ray emissions from their disks and exospheres, via solar X-ray scattering and charge exchange. Future XMM-Newton observations of solar system targets, under different solar activity conditions, will provide ever deeper insights into their close relationships with their parent star.

  6. X-ray Studies of Planetary Systems: An Astro2010 Decadal Survey White Paper

    CERN Document Server

    Feigelson, Eric; Elsner, Ronald; Glassgold, Alfred; Gudel, Manuel; Montmerle, Thierry; Ohashi, Takaya; Smith, Randall; Wargelin, Bradford; Wolk, Scott

    2009-01-01

    While it may seem counterintuitive that X-ray astronomy should give any insights into low-temperature planetary systems, planets orbit stars whose magnetized surfaces divert a small fraction of the stellar energy into high energy products: coronal UV and X-rays, flare X-rays and energetic particles, and a high-velocity stellar wind. In our Solar System, X-ray emission gives unique insights into the solar activity, planetary atmospheres, cometary comae, charge exchange physics, and space weather across the Solar System. The stellar activity of young stars is greatly elevated and can substantially affect protoplanetary disks and planet formation processes. We highlight six studies achievable with the planned International X-ray Observatory which address in unique ways issues in planetary sciences: probing X-ray irradiation of protoplanetary disks with the iron fluorescent line and its effects on disk turbulence; study the complex charge-exchange X-ray emission from Jupiter and the Martian exosphere; elucidate c...

  7. Investigation of Propellant and Explosive Solid Solution Systems II X-Ray Studies

    Science.gov (United States)

    1978-03-01

    A\\Yj* ^\\C/*^ ^ 1 tatf AD 7t ott w AD-E400 125 TECHNICAL REPORT ARLCD-TR-77066 INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS...Report ARLCD-TR-77066 2. GOVT ACCESSION NO. *. TITLE (and Subtitle) INVESTIGATION OF PROPELLANT AND EXPLOSIVE SOLID SOLUTION SYSTEMS II X-RAY...Interplanar spacings and x-ray diffraction 9 intensities of AP, KP and their physical mixtures and solid solutions 4 X-ray data of 3 AN: KP solid solution and

  8. Development and evaluation of a four-channel digital flash X-ray imaging system

    CERN Document Server

    Wang Yi; Du Hong Lian; Li Yuan Jing; Tian Hui

    2003-01-01

    A four-channel digital flash X-ray imaging system has been developed in our lab. The four flash X-ray heads and four detectors can be used to obtain four radiographic images at four time intervals of an explosion and ballistic trajectory. The cascaded imaging system mainly consists of three parts: (1) a phosphor screen to convert incident X-rays into visible photons; (2) a lens to efficiently collect visible photons emitted by the phosphor screen; and (3) a charge coupled device image sensor to obtain the visible light image. From the analysis of signal and noise propagation, the system is not X-ray quantum-limited, rather the system has secondary quantum sink at the light collecting stage. The construction of the system, theoretical and experimental analysis of performance are presented.

  9. AM CVn systems as optical, X-ray and GWR sources

    NARCIS (Netherlands)

    Yungelson, L.; Nelemans, G.; Portegies Zwart, S.F.; Tovmassian, G.; Sion, E.

    2004-01-01

    We discuss the model for the Galactic sample of the AM CVn systems with P[orb] ≤ 1500 s that can be detected in the optical and/or X-ray bands and may be resolved by the gravitational waves detector LISA. At 3 ≲P ≲ 10 min all detectable systems are X-ray sources. At P ≳ 10 min most systems are only

  10. Quantification of 3D macropore networks in forest soils in Touzhai valley (Yunnan, China) using X-ray computed tomography and image analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-ming; XU Ze-min; LI Feng; HOU Ru-ji; REN Zhe

    2017-01-01

    The three dimensional (3D) geometry of soil macropores largely controls preferential flow,which is a significant infiltrating mechanism for rainfall in forest soils and affects slope stability.However,detailed studies on the 3D geometry of macropore networks in forest soils are rare.The intense rainfall-triggered potentially unstable slopes were threatening the villages at the downstream of Touzhai valley (Yunnan,China).We visualized and quantified the 3D macropore networks in undisturbed soil columns (Histosols) taken from a forest hillslope in Touzhai valley,and compared them with those in agricultural soils (corn and soybean in USA;barley,fodder beet and red fescue in Denmark) and grassland soils in USA.We took two large undisturbed soil columns (250 mmx250 mm×500 mm),and scanned the soil columns at in-situ soil water content conditions using X-ray computed tomography at a voxel resolution of 0.945 x 0.945 × 1.500 mm3.After reconstruction and visualization,we quantified the characteristics of macropore networks.In the studied forest soils,the main types of macropores were root channels,inter-aggregate voids,macropores without knowing origin,root-soil interface and stone-soil interface.While macropore networks tend to be more complex,larger,deeper and longer.The forest soils have high macroporosity,total macropore wall area density,node density,and large macropore volume,hydraulic radius,mean macropore length,angle,and low tortuosity.The findings suggest that macropore networks in the forest soils have high interconnectivity,vertical continuity,linearity and less vertically oriented.

  11. A technique for evaluating bone ingrowth into 3D printed, porous Ti6Al4V implants accurately using X-ray micro-computed tomography and histomorphometry.

    Science.gov (United States)

    Palmquist, Anders; Shah, Furqan A; Emanuelsson, Lena; Omar, Omar; Suska, Felicia

    2017-03-01

    This paper investigates the application of X-ray micro-computed tomography (micro-CT) to accurately evaluate bone formation within 3D printed, porous Ti6Al4V implants manufactured using Electron Beam Melting (EBM), retrieved after six months of healing in sheep femur and tibia. All samples were scanned twice (i.e., before and after resin embedding), using fast, low-resolution scans (Skyscan 1172; Bruker micro-CT, Kontich, Belgium), and were analysed by 2D and 3D morphometry. The main questions posed were: (i) Can low resolution, fast scans provide morphometric data of bone formed inside (and around) metal implants with a complex, open-pore architecture?, (ii) Can micro-CT be used to accurately quantify both the bone area (BA) and bone-implant contact (BIC)?, (iii) What degree of error is introduced in the quantitative data by varying the threshold values?, and (iv) Does resin embedding influence the accuracy of the analysis? To validate the accuracy of micro-CT measurements, each data set was correlated with a corresponding centrally cut histological section. The results show that quantitative histomorphometry corresponds strongly with 3D measurements made by micro-CT, where a high correlation exists between the two techniques for bone area/volume measurements around and inside the porous network. On the contrary, the direct bone-implant contact is challenging to estimate accurately or reproducibly. Large errors may be introduced in micro-CT measurements when segmentation is performed without calibrating the data set against a corresponding histological section. Generally, the bone area measurement is strongly influenced by the lower threshold limit, while the upper threshold limit has little or no effect. Resin embedding does not compromise the accuracy of micro-CT measurements, although there is a change in the contrast distributions and optimisation of the threshold ranges is required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Comprehensive Non-Destructive Conservation Documentation of Lunar Samples Using High-Resolution Image-Based 3D Reconstructions and X-Ray CT Data

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Hanna, R. D.; Ketcham, R. A.

    2015-01-01

    Established contemporary conservation methods within the fields of Natural and Cultural Heritage encourage an interdisciplinary approach to preservation of heritage material (both tangible and intangible) that holds "Outstanding Universal Value" for our global community. NASA's lunar samples were acquired from the moon for the primary purpose of intensive scientific investigation. These samples, however, also invoke cultural significance, as evidenced by the millions of people per year that visit lunar displays in museums and heritage centers around the world. Being both scientifically and culturally significant, the lunar samples require a unique conservation approach. Government mandate dictates that NASA's Astromaterials Acquisition and Curation Office develop and maintain protocols for "documentation, preservation, preparation and distribution of samples for research, education and public outreach" for both current and future collections of astromaterials. Documentation, considered the first stage within the conservation methodology, has evolved many new techniques since curation protocols for the lunar samples were first implemented, and the development of new documentation strategies for current and future astromaterials is beneficial to keeping curation protocols up to date. We have developed and tested a comprehensive non-destructive documentation technique using high-resolution image-based 3D reconstruction and X-ray CT (XCT) data in order to create interactive 3D models of lunar samples that would ultimately be served to both researchers and the public. These data enhance preliminary scientific investigations including targeted sample requests, and also provide a new visual platform for the public to experience and interact with the lunar samples. We intend to serve these data as they are acquired on NASA's Astromaterials Acquisistion and Curation website at http://curator.jsc.nasa.gov/. Providing 3D interior and exterior documentation of astromaterial

  13. FY05 Xradia 3D (mu)XCT System Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Martz, Jr., H E; Brown, W D

    2005-08-26

    The Xradia 3D {mu}XCT system was delivered to LLNL on April 5, 2005. The system became operational the week of April 11, 2005. The Xradia 3D {mu}XCT system has been extensively used to scan several high-energy density physics (see Table 1) and other programmatic (NIF, E&E and DNT) materials, components and full assemblies. In this summary we only focus on the HEDP program. X-ray radiographs and tomograms of materials such as aerogel foams and gradient density reservoirs are being used to better understand material synthesis. Radiographs and tomograms of components include a glass capsule encapsulated within a 50-mg/cm{sup 3} SiO{sub 2} aerogel foam and then machined to final outer dimensions, while full up assemblies include low-temperature Raleigh-Taylor (LoTRT) [Brown, et al. 2005] and DDP targets. We highlight two full up assembled targets: DDPs and LoTRTs. Representative X-ray digital radiographs are shown in Figures 1 and 2 for the DDP and LoTRT, respectively. The examples very clearly show that the assemblies were performed correctly.

  14. X-ray today

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, U. [Philips Medical Systems, Hamburg (Germany)

    2001-09-01

    The interest attracted by the new imaging modalities tends to overshadow the continuing importance of projection radiography and fluoroscopy. Nevertheless, projection techniques still represent by far the greatest proportion of diagnostic imaging examinations, and play an essential role in the growing number of advanced interventional procedures. This article describes some of the latest developments in X-ray imaging technology, using two products from the Philips range as examples: the Integris Allura cardiovascular system with 3D image reconstruction, and the BV Pulsera: a high-end, multi-functional mobile C-arm system with cardiac capabilities. (orig.)

  15. Convertible source system of thermal neutron and X-ray at Hokkaido University electron linac facility

    Science.gov (United States)

    Kamiyama, T.; Hara, K. Y.; Taira, H.; Sato, H.

    2016-11-01

    The convertible source system for the neutron and the X-ray imagings was installed in the 45MeV electron linear accelerator facility at Hokkaido University. The source system is very useful for a complementary imaging. The imaging measurements for a sample were performed with both beams by using a vacuum tube type image intensifier. The enhanced contrast was obtained from the dataset of the radiograms measured with the neutron and X-ray beams.

  16. Two-stage reflective optical system for achromatic 10 nm x-ray focusing

    Science.gov (United States)

    Motoyama, Hiroto; Mimura, Hidekazu

    2015-12-01

    Recently, coherent x-ray sources have promoted developments of optical systems for focusing, imaging, and interferometers. In this paper, we propose a two-stage focusing optical system with the goal of achromatically focusing pulses from an x-ray free-electron laser (XFEL), with a focal width of 10 nm. In this optical system, the x-ray beam is expanded by a grazing-incidence aspheric mirror, and it is focused by a mirror that is shaped as a solid of revolution. We describe the design procedure and discuss the theoretical focusing performance. In theory, soft-XFEL lights can be focused to a 10 nm area without chromatic aberration and with high reflectivity; this creates an unprecedented power density of 1020 W cm-2 in the soft-x-ray range.

  17. Assessment of Image Processing and Resolution on Permeability and Drainage Simulations Through 3D Pore-networks Obtained Using X-ray Computed Tomography

    Science.gov (United States)

    Mills, G.; Willson, C. S.; Thompson, K. E.; Rivers, M. L.

    2013-12-01

    Typically, continuum-scale flow parameters are obtained through laboratory experiments. Over the past several years, image-based modeling, which is a direct simulation of flow through the structural arrangements of the voids and solids obtained using X-ray computed tomography (XCT) in a sample porous medium, has become a reliable technique for predicting certain flow parameters. Even though XCT is capable of resolving micron-level details, the voxel resolution of the reconstructed image is still dependent upon a number of factors, including the sample size, X-ray energy and XCT beamline setup. Thus, each imaging experiment requires a tradeoff between the sample size that can be imaged, the voxel resolution, and the length scale of the pore space that can be extracted. In addition, the geometric and topological properties of the void space and 3D pore network structure are dictated by the image processing and the choice of pore network generation method. In this research, image-based pore network models are used to quantitatively assess the impact of image resolution, image processing and the choice of pore network generation methods on simulated parameters. A 5 mm diameter and ~15 mm in length Berea sandstone core was scanned two times. First, a ~12 mm long section of the entire cross-section was scanned at 4.1 micron voxel resolution; next, a ~1.4 mm diameter and ~4.12 mm length section within the 1st domain was scanned at 1 micron voxel resolution. The resulting 3D datasets were filtered and segmented into solid and void space. The low resolution image was filtered and segmented using two different approaches in order to evaluate the potential of each approach in identifying the different solid phases in the original 16 bit dataset. A set of networks were created by varying the pore density on both the high and low resolution datasets in order to assess the impact of these factors on flow simulations. Single-phase permeability and a two-phase drainage pore

  18. Discovery of an X-Ray-emitting Contact Binary System 2MASS J11201034-2201340

    Science.gov (United States)

    Hu, Chin-Ping; Yang, Ting-Chang; Chou, Yi; Liu, L.; Qian, S.-B.; Hui, C. Y.; Kong, Albert K. H.; Lin, L. C. C.; Tam, P. H. T.; Li, K. L.; Ngeow, Chow-Choong; Chen, W. P.; Ip, Wing-Huen

    2016-06-01

    We report the detection of orbital modulation, a model solution, and the X-ray properties of a newly discovered contact binary, Two Micron All Sky Survey (2MASS) J11201034-2201340. We serendipitously found this X-ray point source outside the error ellipse when searching for possible X-ray counterparts of γ-ray millisecond pulsars among the unidentified objects detected by the Fermi Gamma-ray Space Telescope. The optical counterpart of the X-ray source (unrelated to the γ-ray source) was then identified using archival databases. The long-term Catalina Real-Time Transient Survey detected a precise signal with a period of P=0.28876208(56) days. A follow-up observation made by the Super Light Telescope of Lulin Observatory revealed the binary nature of the object. Utilizing archived photometric data of multi-band surveys, we construct the spectral energy distribution (SED), which is well fit by a K2V spectral template. The fitting result of the orbital profile using the Wilson-Devinney code suggests that 2MASS J11201034-2201340 is a short-period A-type contact binary and the more massive component has a cool spot. The X-ray emission was first noted in observations made by Swift, and then further confirmed and characterized by an XMM-Newton observation. The X-ray spectrum can be described by a power law or thermal Bremsstrahlung. Unfortunately, we could not observe significant X-ray orbital modulation. Finally, according to the SED, this system is estimated to be 690 pc from Earth with a calculated X-ray intensity of (0.7-1.5)× {10}30 erg s-1, which is in the expected range of an X-ray emitting contact binary.

  19. The Be/X-ray binary system V 0332+53: A Short Review

    CERN Document Server

    Caballero-Garcia, M D; Arabaci, M Ozbey; Hudec, R

    2015-01-01

    Be/X-ray binary systems provide an excellent opportunity to study the physics around neutron stars through the study of the behaviour of matter around them. Intermediate and low-luminosity type outbursts are interesting because they provide relatively clean environments around neutron stars. In these conditions the physics of the magnetosphere around the neutron star can be better studied without being very disturbed by other phenomena regarding the transfer of matter between the two components of the Be/X-ray binary system. A recent study presents the optical longterm evolution of the Be/X-ray binary V 0332+53 plus the X-ray emission mainly during the intermediate-luminosity outburst on 2008. In this paper we comment on the context of these observations and on the properties that can be derived through the analysis of them.

  20. X-ray-based machine vision system for distal locking of intramedullary nails.

    Science.gov (United States)

    Juneho, F; Bouazza-Marouf, K; Kerr, D; Taylor, A J; Taylor, G J S

    2007-05-01

    In surgical procedures for femoral shaft fracture treatment, current techniques for locking the distal end of intramedullary nails, using two screws, rely heavily on the use of two-dimensional X-ray images to guide three-dimensional bone drilling processes. Therefore, a large number of X-ray images are required, as the surgeon uses his/her skills and experience to locate the distal hole axes on the intramedullary nail. The long-term effects of X-ray radiation and their relation to different types of cancer still remain uncertain. Therefore, there is a need to develop a surgical technique that can limit the use of X-rays during the distal locking procedure. A robotic-assisted orthopaedic surgery system has been developed at Loughborough University to assist orthopaedic surgeons by reducing the irradiation involved in such operations. The system simplifies the current approach as it uses only two near-orthogonal X-ray images to determine the drilling trajectory of the distal locking holes, thereby considerably reducing irradiation to both the surgeon and patient. Furthermore, the system uses robust machine vision features to reduce the surgeon's interaction with the system, thus reducing the overall operating time. Laboratory test results have shown that the proposed system is very robust in the presence of variable noise and contrast in the X-ray images.

  1. First Results from a Microfocus X-Ray System for Macromolecular Crystallography

    Science.gov (United States)

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    1999-01-01

    The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.

  2. Development of a combined optical and x-ray interferometer (COXI) system for nanometrology

    Science.gov (United States)

    Yim, Noh B.; Kim, Min Seok; Eom, Cheon I.

    1998-07-01

    In the COXI (Combined Optical and X-ray Interferometer) system, optical and x-ray interferometers are combined to provide a means for the calibration of transducers with the traceability to the standards of length in the sub-nanometer region. The COXI mainly comprises a laser interferometer, an x-ray interferometer, and a precision translation stage. The laser interferometer used for the COXI instrument was a Michelson type, differential heterodyne interferometer having common optical path. A monolithic x-ray interferometer was made from a silicon single crystal. We have designed a control procedure to operate the COXI instrument for the calibration of nano-transducers and developed a phase demodulator for use with the laser interferometer. The bandwidth, phase resolution, and the measurement uncertainty of the interferometer were found 1 kHz, 0.01 degree, and 0.1 degree, respectively.

  3. The application of in-situ 3D X-ray diffraction in annealing experiments: First interpretation of substructure development in deformed NaCl

    DEFF Research Database (Denmark)

    Borthwick, Verity; Schmidt, Søren; Piazolo, Sandra;

    2012-01-01

    In-situ 3D X-ray diffraction (3DXRD) annealing experiments were conducted at the ID-11 beamline at the European Synchrotron Radiation Facility in Grenoble. This allowed us to nondestructively document and subsequently analyse the development of substructures during heating, without the influence...... of surface effects. A sample of deformed single crystal halite was heated to between 260-400 °. Before and after heating a volume of 500 by 500 by 300 μm was mapped using a planar beam, which was translated over the sample volume at intervals of 5-10 μm in the vertical dimension. In the following we present...... partially reconstructed orientation maps over one layer before and after heating for 240min at 260 °. Additional small syn-heating "maps" over a constrained sample rotation of 12-30°. The purpose of this was to illuminate a few reflections from 1 or 2 subgrains and follow their evolution during heating...

  4. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    Science.gov (United States)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  5. A 3D kinematic estimation of knee prosthesis using X-ray projection images: clinical assessment of the improved algorithm for fluoroscopy images.

    Science.gov (United States)

    Hirokawa, Shunji; Abrar Hossain, M; Kihara, Yuichi; Ariyoshi, Shogo

    2008-12-01

    In this paper, we propose three ideas to improve a kinematic estimation algorithm for total knee arthroplasty. The first is a two-step estimation algorithm that improves estimation accuracy by excluding certain assumptions needed for the pattern matching algorithm reported by Banks and Hodge. The second is incorporating a 3D geometric articulation model into the algorithm to improve estimation accuracy substantially for the depth translation, and to introduce contact points' trajectories between the articular surfaces. The third is an algorithm to process estimation even when the silhouettes of two components overlap. To assess our algorithm's potential for clinical application, we carried out two experiments. First, we used a robot to position the prosthesis. Estimation accuracy was checked by comparing input data to the robot with the estimates from X-ray photographs. Incorporating our articulation model remarkably reduced the error in the depth translation. Next, we performed a clinical assessment by applying the algorithm and articulation model to fluoroscopy images of a patient who had recently had TKA.

  6. Microscopic study of dental hard tissues in primary teeth with Dentinogenesis Imperfecta Type II: Correlation of 3D imaging using X-ray microtomography and polarising microscopy.

    Science.gov (United States)

    Davis, Graham R; Fearne, Janice M; Sabel, Nina; Norén, Jörgen G

    2015-07-01

    The aim of this study was to examine the histological appearance of dental hard tissues in primary teeth from children with DI using conventional polarised light microscopy and correlate that with 3D imaging using X-ray microtomograpy (XMT) to gain a further understanding of the dentine structure of teeth diagnosed with dentinogenesis imperfecta. Undecalcified sections of primary teeth from patients diagnosed with Dentinogenesis Imperfecta Type II were examined using polarised light microscopy. XMT was employed for 3D-imaging and analysis of the dentine. The polarised light microscopy and XMT revealed tubular structures in the dentine seen as vacuoles coinciding with the path of normal dentinal tubules but not continuous tubules. The size of the tubules was close to that of capillaries. The largest tubular structures had a direction corresponding to where the pulp tissue would have been located during primary dentine formation. The dysfunctional mineralisation of the dentine and obliteration of the pulp evidently leaves blood vessels in the dentine which have in the main been tied off and, in the undecalcified sections, appear as vacuoles. Although from radiographs, the pulp in teeth affected by Dentinogenesis Imperfect type II appears to be completely obliterated, a network of interconnected vessels may remain. The presence of large dentinal tubules and blood vessels, or the remnants of blood vessels, could provide a pathway for bacteria from the oral cavity. This might account for why some of these teeth develop periapical abscesses in spite of apparently having no pulp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. SoilJ - An ImageJ plugin for semi-automatized image-processing of 3-D X-ray images of soil columns

    Science.gov (United States)

    Koestel, John

    2016-04-01

    3-D X-ray imaging is a formidable tool for quantifying soil structural properties which are known to be extremely diverse. This diversity necessitates the collection of large sample sizes for adequately representing the spatial variability of soil structure at a specific sampling site. One important bottleneck of using X-ray imaging is however the large amount of time required by a trained specialist to process the image data which makes it difficult to process larger amounts of samples. The software SoilJ aims at removing this bottleneck by automatizing most of the required image processing steps needed to analyze image data of cylindrical soil columns. SoilJ is a plugin of the free Java-based image-processing software ImageJ. The plugin is designed to automatically process all images located with a designated folder. In a first step, SoilJ recognizes the outlines of the soil column upon which the column is rotated to an upright position and placed in the center of the canvas. Excess canvas is removed from the images. Then, SoilJ samples the grey values of the column material as well as the surrounding air in Z-direction. Assuming that the column material (mostly PVC of aluminium) exhibits a spatially constant density, these grey values serve as a proxy for the image illumination at a specific Z-coordinate. Together with the grey values of the air they are used to correct image illumination fluctuations which often occur along the axis of rotation during image acquisition. SoilJ includes also an algorithm for beam-hardening artefact removal and extended image segmentation options. Finally, SoilJ integrates the morphology analyses plugins of BoneJ (Doube et al., 2006, BoneJ Free and extensible bone image analysis in ImageJ. Bone 47: 1076-1079) and provides an ASCII file summarizing these measures for each investigated soil column, respectively. In the future it is planned to integrate SoilJ into FIJI, the maintained and updated edition of ImageJ with selected

  8. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the first-ro

  9. Spin-polarized x-ray emission of 3d transition-metal ions : A comparison via K alpha and K beta detection

    NARCIS (Netherlands)

    Wang, Xin; deGroot, F.M.F.; Cramer, SP

    1997-01-01

    This paper demonstrates that spin-polarized x-ray-excitation spectra can be obtained using K alpha emission as well as K beta lines. A spin-polarized analysis of K alpha x-ray emission and the excitation spectra by K alpha detection on a Ni compound is reported. A systematic analysis of the

  10. Assessment of nanocomposite photonic systems with the X-ray photoelectron spectroscopy

    Institute of Scientific and Technical Information of China (English)

    L. Minati; G. Speranza; M. Anderle; M. Ferrari; A. Chiasera; G. C. Righini

    2007-01-01

    The chemical compositions of Ag-Er co-doped phosphate and silicate glasses were investigated with X-ray photoelectron spectroscopy with the purpose to identify the chemical state of silver. The analysis of the Ag 3d core lines show the presence of nanometer-sized silver particles in each of the annealed samples, even if these Ag 3d lines appear to be very different from each other. We explain these results as a different interaction of silver with the two glasses matrix, which leads to a different nucleation rate of the Ag clusters.

  11. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  12. 3D Backscatter Imaging System

    Science.gov (United States)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  13. Depth-resolved registration of transesophageal echo to x-ray fluoroscopy using an inverse geometry fluoroscopy system

    Energy Technology Data Exchange (ETDEWEB)

    Hatt, Charles R. [Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Tomkowiak, Michael T.; Dunkerley, David A. P.; Slagowski, Jordan M. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States); Funk, Tobias [Triple Ring Technologies, Inc., Newark, California 94560 (United States); Raval, Amish N. [Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53792 (United States); Speidel, Michael A., E-mail: speidel@wisc.edu [Departments of Medical Physics and Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2015-12-15

    Purpose: Image registration between standard x-ray fluoroscopy and transesophageal echocardiography (TEE) has recently been proposed. Scanning-beam digital x-ray (SBDX) is an inverse geometry fluoroscopy system designed for cardiac procedures. This study presents a method for 3D registration of SBDX and TEE images based on the tomosynthesis and 3D tracking capabilities of SBDX. Methods: The registration algorithm utilizes the stack of tomosynthetic planes produced by the SBDX system to estimate the physical 3D coordinates of salient key-points on the TEE probe. The key-points are used to arrive at an initial estimate of the probe pose, which is then refined using a 2D/3D registration method adapted for inverse geometry fluoroscopy. A phantom study was conducted to evaluate probe pose estimation accuracy relative to the ground truth, as defined by a set of coregistered fiducial markers. This experiment was conducted with varying probe poses and levels of signal difference-to-noise ratio (SDNR). Additional phantom and in vivo studies were performed to evaluate the correspondence of catheter tip positions in TEE and x-ray images following registration of the two modalities. Results: Target registration error (TRE) was used to characterize both pose estimation and registration accuracy. In the study of pose estimation accuracy, successful pose estimates (3D TRE < 5.0 mm) were obtained in 97% of cases when the SDNR was 5.9 or higher in seven out of eight poses. Under these conditions, 3D TRE was 2.32 ± 1.88 mm, and 2D (projection) TRE was 1.61 ± 1.36 mm. Probe localization error along the source-detector axis was 0.87 ± 1.31 mm. For the in vivo experiments, mean 3D TRE ranged from 2.6 to 4.6 mm and mean 2D TRE ranged from 1.1 to 1.6 mm. Anatomy extracted from the echo images appeared well aligned when projected onto the SBDX images. Conclusions: Full 6 DOF image registration between SBDX and TEE is feasible and accurate to within 5 mm. Future studies will focus on

  14. Characterizing X-ray detectors for prototype digital breast tomosynthesis systems

    Science.gov (United States)

    Kim, Y.-s.; Park, H.-s.; Park, S.-J.; Choi, S.; Lee, H.; Lee, D.; Choi, Y.-W.; Kim, H.-J.

    2016-03-01

    The digital breast tomosynthesis (DBT) system is a newly developed 3-D imaging technique that overcomes the tissue superposition problems of conventional mammography. Therefore, it produces fewer false positives. In DBT system, several parameters are involved in image acquisition, including geometric components. A series of projections should be acquired at low exposure. This makes the system strongly dependent on the detector's characteristic performance. This study compares two types of x-ray detectors developed by the Korea Electrotechnology Research Institute (KERI). The first prototype DBT system has a CsI (Tl) scintillator/CMOS based flat panel digital detector (2923 MAM, Dexela Ltd.), with a pixel size of 0.0748 mm. The second uses a-Se based direct conversion full field detector (AXS 2430, analogic) with a pixel size of 0.085 mm. The geometry of both systems is same, with a focal spot 665.8 mm from the detector, and a center of rotation 33 mm above the detector surface. The systems were compared with regard to modulation transfer function (MTF), normalized noise power spectrum (NNPS), detective quantum efficiency (DQE) and a new metric, the relative object detectability (ROD). The ROD quantifies the relative performance of each detector at detecting specified objects. The system response function demonstrated excellent linearity (R2>0.99). The CMOS-based detector had a high sensitivity, while the Anrad detector had a large dynamic range. The higher MTF and noise power spectrum (NPS) values were measured using an Anrad detector. The maximum DQE value of the Dexela detector was higher than that of the Anrad detector with a low exposure level, considering one projection exposure for tomosynthesis. Overall, the Dexela detector performed better than did the Anrad detector with regard to the simulated Al wires, spheres, test objects of ROD with low exposure level. In this study, we compared the newly developed prototype DBT system with two different types of x-ray

  15. Fabrication of applicator system of miniature X-ray tube based on carbon nanotubes for a skin cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Han Beom; Kim, Hyun Jin; Lee, Ju Hyuk; Ha, Jun Mok; Cho, Sung Oh [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    A miniature X-ray tube is a small X-ray generation device generally with a diameter of less than 10 mm. Because of the feasible installation in a spatially constrained area and the possibility of electrical on/off control, miniature X-ray tubes can be widely used for nondestructive X-ray radiography, hand held X-ray spectrometers, electric brachytherapy, and interstitial or intracavitary radiation therapy or imaging with the substitution of radioactive isotopes. Miniature X-ray tubes have been developed mostly using thermionic electron sources or secondary X-ray emission. The X-ray tube show excellent field emission properties and good X-ray spectrum. Also, the flattening filter was made to irradiate uniformly. The X-ray dose radial uniformities between installed flattening filter and non-installed flattening filter were measured. When flattening filter is equipped, X-ray uniformity was improved from higher than 20% to lower than 10%. As a result, the fabricated applicator system of the miniature X-ray tube using optimized flattening filter exhibited fairly excellent properties.

  16. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    Science.gov (United States)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  17. Development of an X-ray imaging system with SOI pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Ryutaro, E-mail: ryunishi@post.kek.jp [School of High Energy Accelerator Science, SOKENDAI (The Graduate University for Advanced Studies), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Arai, Yasuo; Miyoshi, Toshinobu [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK-IPNS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK-IMSS), Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)

    2016-09-21

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented. - Highlights: • The X-ray imaging system employing the SOI pixel sensor is currently under development. • The DAQ of the first prototype has the bottleneck in the total throughput. • The new DAQ release solve the bottleneck by parallel processing and FIFO buffer. • The new DAQ release was tested using 33.3 keV and 9.5 keV mono X-rays.

  18. An explosives detection system for airline security using coherent x-ray scattering technology

    Science.gov (United States)

    Madden, Robert W.; Mahdavieh, Jacob; Smith, Richard C.; Subramanian, Ravi

    2008-08-01

    L-3 Communications Security and Detection Systems (SDS) has developed a new system for automated alarm resolution in airline baggage Explosive Detection Systems (EDS) based on coherent x-ray scattering spectroscopy. The capabilities of the system were demonstrated in tests with concealed explosives at the Transportation Security Laboratory and airline passenger baggage at Orlando International Airport. The system uses x-ray image information to identify suspicious objects and performs targeted diffraction measurements to classify them. This extra layer of detection capability affords a significant reduction in the rate of false alarm objects that must presently be resolved by opening passenger bags for hand inspection.

  19. Breast density mapping based upon system calibration, x-ray techniques, and FFDM images

    Science.gov (United States)

    Chen, Biao; Smith, Andrew P.; Jing, Zhenxue; Wu, Tao

    2007-03-01

    Clinical studies have correlated a high breast density to a women's risk of breast cancer. A breast density measurement that can quantitatively depict the volume distribution and percentage of dense tissues in breasts would be very useful for risk factor assessment of breast cancer, and might be more predictive of risks than the common but subjective and coarse 4-point BIRADS scale. This paper proposes to use a neural-network mapping to compute the breast density information based upon system calibration data, x-ray techniques, and Full Field Digital Mammography (FFDM) images. The mapping consists of four modules, namely, system calibration, generator of beam quality, generator of normalized absorption, and a multi-layer feed-forward neural network. As the core of breast density mapping, the network accepts x-ray target/filter combination, normalized x-ray absorption, pixel-wise breast thickness map, and x-ray beam quality during image acquisition as input elements, and exports a pixel-wise breast density distribution and a single breast density percentage for the imaged breast. Training and testing data sets for the design and verification of the network were formulated from calibrated x-ray beam quality, imaging data with a step wedge phantom under a variety x-ray imaging techniques, and nominal breast densities of tissue equivalent materials. The network was trained using a Levenberg-Marquardt algorithm based back-propagation learning method. Various thickness and glandular density phantom studies were performed with clinical x-ray techniques. Preliminary results showed that the neural network mapping is promising in accurately computing glandular density distribution and breast density percentage.

  20. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics.

    Science.gov (United States)

    Laloum, D; Printemps, T; Lorut, F; Bleuet, P

    2015-01-01

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  1. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Laloum, D., E-mail: david.laloum@cea.fr [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Printemps, T.; Bleuet, P. [Université Grenoble Alpes, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Lorut, F. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France)

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  2. Infant Hip Joint Diagnostic Support System Based on Clinical Manifestations in X-ray Images

    Directory of Open Access Journals (Sweden)

    Honda,Mitsugi

    2010-06-01

    Full Text Available Plain X-ray radiography is frequently used for the diagnosis of developmental dislocation of the hip (DDH. The aim of this study was to construct a diagnostic support system for DDH based on clinical findings obtained from the X-ray images of 154 female infants with confirmed diagnoses made by orthopedists. The data for these subjects were divided into 2 groups. The Min-Max method of nonlinear analysis was applied to the data from Group 1 to construct the diagnostic support system based on the measurement of 4 items in X-ray images:the outward displacement rate, upward displacement rate, OE angle, and alpha angle. This system was then applied to the data from Group 2, and the results were compared between the 2 groups to verify the reliability of the system. We obtained good results that matched the confirmed diagnoses of orthopedists with an accuracy of 85.9%.

  3. Fluid Dynamics (Science Press, Beijing, 2004).Design principles of a novel X-ray imaging system

    Institute of Scientific and Technical Information of China (English)

    Chunyu Yu; Benkang Chang; Shiyun Wang; Qingbao Wang

    2006-01-01

    @@ A novel X-ray imaging system (NXRIS) and the design principles are given in this paper. Different from the existing digital X-ray imaging systems, the X-ray image intensifying system of NXRIS is a non-vacuum system composed of the intensifying screen and the brightness intensifier, and the brightness intensifier is named low light level image intensifier applied in military affairs. This structure makes NXRIS of big visual field (15 inch, even to larger) and low cost. When designing NXRIS, the spectral compatibility of the component devices and the relation between the visual field and the spatial resolution of the component devices are analyzed. The images produced by NXRIS are given and the image performance is good enough to be applied to security checking, non-destructive testing, and industry detection.

  4. Development of an X-ray imaging system with SOI pixel detectors

    Science.gov (United States)

    Nishimura, Ryutaro; Arai, Yasuo; Miyoshi, Toshinobu; Hirano, Keiichi; Kishimoto, Shunji; Hashimoto, Ryo

    2016-09-01

    An X-ray imaging system employing pixel sensors in silicon-on-insulator technology is currently under development. The system consists of an SOI pixel detector (INTPIX4) and a DAQ system based on a multi-purpose readout board (SEABAS2). To correct a bottleneck in the total throughput of the DAQ of the first prototype, parallel processing of the data taking and storing processes and a FIFO buffer were implemented for the new DAQ release. Due to these upgrades, the DAQ throughput was improved from 6 Hz (41 Mbps) to 90 Hz (613 Mbps). The first X-ray imaging system with the new DAQ software release was tested using 33.3 keV and 9.5 keV mono X-rays for three-dimensional computerized tomography. The results of these tests are presented.

  5. Transmission diffraction-tomography system using a high-energy X-ray tube.

    Science.gov (United States)

    Garrity, D J; Jenneson, P M; Crook, R; Vincent, S M

    2010-01-01

    A high-energy bench-top energy dispersive X-ray diffraction (EDXRD) system for 3-dimensional mapping of the crystalline structure and phase transformations in steel is described, for which preliminary data and system development are presented here. The use of precision tungsten slit screens with up to 225 keV X-rays allows for diffraction through samples of 304 L austenitic stainless steel of thickness 3-10 mm, while sample positioning is carried out with a precision goniometer and translation stage system.

  6. 25 Tesla pulsed-high-magnetic-field system for soft X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, M., E-mail: mhaya@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Narumi, Y.; Nojiri, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Nakamura, T.; Hirono, T.; Kinoshita, T. [JASRI/SPring-8, Sayo, Hyogo 679-5198 (Japan); Kodama, K. [Department of Mechanical Engineering, Nara National College of Technology, Nara 639-1080 (Japan); Kindo, K. [Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581 (Japan)

    2011-04-15

    Research highlights: {yields} We have developed a 25 T pulsed magnetic field system for soft X-ray MCD. {yields} The new capacitor bank can generate a field in the bipolar mode. {yields} We measured the Soft X-ray MCD of paramagnetic Gd{sub 2}O{sub 3} up to 25 T. - Abstract: We have developed a 25 T pulsed high magnetic field system for soft X-ray Magnetic Circular Dichroism: XMCD. The ultra-high vacuum chamber with a pulse magnet coil is installed. By using a newly developed bipolar capacitor bank, the XMCD of paramagnetic Gd{sub 2}O{sub 3} at the M{sub 5} and the M{sub 4} edges was clearly observed at low temperatures. The present system is capable of measuring XMCD of field induced moments in various compounds including paramagnets and antiferromagnets.

  7. Semi-automated x-ray gauging process control system. [For pressed-material components

    Energy Technology Data Exchange (ETDEWEB)

    Draut, C.F.; Homan, D.A.

    1976-10-08

    An x-ray gauging method was developed and a production gauging system was subsequently fabricated to control the quality of precision manufactured components. The gauging system measures via x-ray absorption the density of pressed finely divided solids held in a dissimilar container. The two dissimilar materials condition necessitated a ''two scan'' technique: first, the x-ray attenuation (absorption) of the empty container prior to loading and then, the attenuation of the loaded container are measured; that is, four variables. The system provided greatly improved product control via timely data feedback and increased product quality assurance via 100 percent inspection of product. In addition, it reduced labor costs, product cost, and possibilities for human errors.

  8. Universal Behavior of X-Ray Flares from Black Hole Systems

    Science.gov (United States)

    Wang, F. Y.; Dai, Z. G.; Yi, S. X.; Xi, S. Q.

    2015-01-01

    X-ray flares have been discovered in black hole systems such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A* at the center of our Galaxy, and some active galactic nuclei. Occurrences of X-ray flares are always accompanied by relativistic jets. However, it is still unknown whether or not there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here, we report observed data of X-ray flares and show that they have three statistical properties similar to solar flares, including power-law distributions of their energies, durations, and waiting times, which can be explained by a fractal-diffusive, self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetically dominated.

  9. Resonant Inelastic X-ray Scattering of Rare-Earth and CopperSystems

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina [Uppsala Univ. (Sweden)

    2007-07-11

    Rare earths and copper systems were studied using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The use of monochromased synchotron radiation and improved energy resolution for RIXS made possible to obtain valuable information on the electronic structure in 4f, 5f and 3d systems. Experimental results for rare-earths (Ho, Gd, Cm, U, Np, Pu) were analyzed by atomic multiplet theory based on the Hartree-Fock calculations. The inelastic scattering structures in RIXS spectra at 5d edge of actinides found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248-curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248 curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge indicate the reduction of U(VI), NP(V) and Pu(VI) to U(IV), Np(IV) and Pu(IV) by presence of iron ions. This thesis is also addressed to the study of changes in the electronic structure of copper films during interaction with synthetic groundwater solutions. The surface modifications induced by chemical reactions of oxidized 100 Angstrom Cu films with CL-, SO42- and HCO3- ions in aqueous solutions with various concentrations were studied in-situ using XAS. It was shown that the pH value, the

  10. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  11. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    Science.gov (United States)

    Menon, Rakhee; Roy, Amitava; Mitra, S.; Sharma, A.; Mondal, J.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-10-01

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm2 current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO4:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance ˜1/xn, where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  12. Development of an X-ray fluorescence holographic measurement system for protein crystals

    Science.gov (United States)

    Sato-Tomita, Ayana; Shibayama, Naoya; Happo, Naohisa; Kimura, Koji; Okabe, Takahiro; Matsushita, Tomohiro; Park, Sam-Yong; Sasaki, Yuji C.; Hayashi, Kouichi

    2016-06-01

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α2β2 tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm3) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  13. Development of an X-ray fluorescence holographic measurement system for protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sato-Tomita, Ayana, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Shibayama, Naoya, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp; Okabe, Takahiro [Division of Biophysics, Department of Physiology, Jichi Medical University, Yakushiji, Shimotsuke 329-0498 (Japan); Happo, Naohisa [Department of Computer and Network Engineering, Graduate School of Information Sciences, Hiroshima City University, Asa-Minami-Ku, Hiroshima 731-3194 (Japan); Kimura, Koji [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Matsushita, Tomohiro [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo 679-5198 (Japan); Park, Sam-Yong [Drug Design Laboratory, Department of Medical Life Science, Yokohama City University, Suehiro, Tsurumi, Yokohama 230-0045 (Japan); Sasaki, Yuji C. [Department of Advanced Material Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwanoha, Kashiwa 277-8561 (Japan); Hayashi, Kouichi, E-mail: ayana.sato@jichi.ac.jp, E-mail: shibayam@jichi.ac.jp, E-mail: hayashi.koichi@nitech.ac.jp [Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan); Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555 (Japan)

    2016-06-15

    Experimental procedure and setup for obtaining X-ray fluorescence hologram of crystalline metalloprotein samples are described. Human hemoglobin, an α{sub 2}β{sub 2} tetrameric metalloprotein containing the Fe(II) heme active-site in each chain, was chosen for this study because of its wealth of crystallographic data. A cold gas flow system was introduced to reduce X-ray radiation damage of protein crystals that are usually fragile and susceptible to damage. A χ-stage was installed to rotate the sample while avoiding intersection between the X-ray beam and the sample loop or holder, which is needed for supporting fragile protein crystals. Huge hemoglobin crystals (with a maximum size of 8 × 6 × 3 mm{sup 3}) were prepared and used to keep the footprint of the incident X-ray beam smaller than the sample size during the entire course of the measurement with the incident angle of 0°-70°. Under these experimental and data acquisition conditions, we achieved the first observation of the X-ray fluorescence hologram pattern from the protein crystals with minimal radiation damage, opening up a new and potential method for investigating the stereochemistry of the metal active-sites in biomacromolecules.

  14. On Detecting the X-ray Silhouette of a Damped Lyman alpha System

    CERN Document Server

    Dijkstra, M; Schärf, C; Dijkstra, Mark; Haiman, Zoltan; Scharf, Caleb

    2004-01-01

    We explore the possibility of resolving an image of a damped Lyman alpha (DLA) system in absorption against an extended, diffuse background X-ray source. Typical columns of neutral hydrogen in DLAs are high enough to block out up to ~30% of the soft X-ray flux at an observed photon energy of 0.5 keV, and we find that ~ 1% of the area of extended X-ray sources at z > 1 have their 0.5 keV flux reduced by at least 20%. We discuss the observability of such absorption and find that 300 photons per angular resolution element are required in the 0.3-8 keV band for its detection, and in order to distinguish it from intrinsic surface brightness fluctuations. For the surface brightness of the currently known high-redshift extended X-ray sources, this requires an integration time of a few Msec on Chandra. The detection will be within the reach of a routine observation with a next generation X-ray telescope such as XEUS or Generation X.

  15. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  16. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  17. 3D packaging for integrated circuit systems

    Energy Technology Data Exchange (ETDEWEB)

    Chu, D.; Palmer, D.W. [eds.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  18. Single x-ray transmission system for bone mineral density determination

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Mendoza, Daniel; Vargas-Vazquez, Damian [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas s/n., C.P. 76010, Queretaro, Qro. (Mexico); Espinosa-Arbelaez, Diego G. [Posgrado en Ciencia e Ingenieria en Materiales, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, C.P. 04510, Coyoacan, Mexico D.F. (Mexico); Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico); Giraldo-Betancur, Astrid L. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Libramiento Norponiente 2000, C.P. 76230, Fracc. Real de Juriquilla, Qro. (Mexico); Hernandez-Urbiola, Margarita I. [Posgrado en Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico); Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico); Rodriguez-Garcia, Mario E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Boulevard Juriquilla 3001, C.P. 76230, A.P. 1-1010, Juriquilla, Qro. (Mexico)

    2011-12-15

    Bones are the support of the body. They are composed of many inorganic compounds and other organic materials that all together can be used to determine the mineral density of the bones. The bone mineral density is a measure index that is widely used as an indicator of the health of the bone. A typical manner to evaluate the quality of the bone is a densitometry study; a dual x-ray absorptiometry system based study that has been widely used to assess the mineral density of some animals' bones. However, despite the success stories of utilizing these systems in many different applications, it is a very expensive method that requires frequent calibration processes to work properly. Moreover, its usage in small species applications (e.g., rodents) has not been quite demonstrated yet. Following this argument, it is suggested that there is a need for an instrument that would perform such a task in a more reliable and economical manner. Therefore, in this paper we explore the possibility to develop a new, affordable, and reliable single x-ray absorptiometry system. The method consists of utilizing a single x-ray source, an x-ray image sensor, and a computer platform that all together, as a whole, will allow us to calculate the mineral density of the bone. Utilizing an x-ray transmission theory modified through a version of the Lambert-Beer law equation, a law that expresses the relationship among the energy absorbed, the thickness, and the absorption coefficient of the sample at the x-rays wavelength to calculate the mineral density of the bone can be advantageous. Having determined the parameter equation that defines the ratio of the pixels in radiographies and the bone mineral density [measured in mass per unit of area (g/cm{sup 2})], we demonstrated the utility of our novel methodology by calculating the mineral density of Wistar rats' femur bones.

  19. Materials identification using a small-scale pixellated x-ray diffraction system

    Science.gov (United States)

    O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.

    2016-05-01

    A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.

  20. Optimization of X-ray tomography through a cooperative computing system in grid

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Moin, E-mail: mmoinhhasan@gmail.com; Goraya, Major Singh, E-mail: mjrsingh@yahoo.com [Department of Computer Science and Engineering, SLIET (Longowal) (India)

    2015-08-28

    Cooperative Computing implemented as Cooperative Computing System (CCS) in grid has been proved a considerably reliable technique to execute the tasks with real time constraints in a grid environment. This technique can be applied in many high performance distributed computing applications. HPC has a large number of applications in various fields of physics. One such application in radiation physics is X-ray tomography. X-Ray tomography contains numerous applications in various fields of science, technology and research. As the technology is changing from analog to digital in almost all the scenarios, this paper presents an idea towards the attachment of X-ray tomography assembly to HPC environment so as to obtain the highly reliable optimization.

  1. High Mass X-ray Binaries: Progenitors of double neutron star systems

    CERN Document Server

    Chaty, Sylvain

    2015-01-01

    In this review I briefly describe the nature of the three kinds of High-Mass X-ray Binaries (HMXBs), accreting through: (i) Be circumstellar disc, (ii) supergiant stellar wind, and (iii) Roche lobe filling supergiants. A previously unknown population of HMXBs hosting supergiant stars has been revealed in the last years, with multi-wavelength campaigns including high energy (INTEGRAL, Swift, XMM, Chandra) and optical/infrared (mainly ESO) observations. This population is divided between obscured supergiant HMXBs, and supergiant fast X-ray transients (SFXTs), characterized by short and intense X-ray flares. I discuss the characteristics of these types of supergiant HMXBs, propose a scenario describing the properties of these high-energy sources, and finally show how the observations can constrain the accretion models (e.g. clumpy winds, magneto-centrifugal barrier, transitory accretion disc, etc). Because they are the likely progenitors of Luminous Blue Variables (LBVs), and also of double neutron star systems,...

  2. Multipurpose X-ray diagnostic system, Ultimax; Tamokuteki x sen shindan system Ultimax

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    A multipurpose X-ray diagnostic system, Ultimax has been developed. It is widely applicable to clinic purposes, e.g., digestive organ examination, angiography and catheterism (interventional treatment) under fluoroscopy, and can be installed in an existing X-ray TV monitoring room. Its major features are: (1) manual adjustment of C arm (stroke: 165 cm) at 18 cm/s at the highest and improved operability/response, to be quickly positioned on a whole body, (2) pulse fluoroscopy, quality filter and low-exposure mode fluoroscopy, which can reduce exposure by up to around 90%, and (3) panel computer adopted on the operational table, facilitating the manipulation by the aid of graphical user interface (GUI). (translated by NEDO)

  3. Design of an Extended Image Field Soft-X-Ray Projection System

    NARCIS (Netherlands)

    Voorma, H. J.; F. Bijkerk,

    1992-01-01

    A soft-x-ray projection system has been designed, which consists of spherical components to be coated with multilayer reflection coatings. In the design, a two-mirror system and a spherical reflection mask, the optical aberrations were minimized. The design enables a resolution of sub-100 nm over a

  4. The formation of the black hole in the X-ray binary system V404 Cyg

    NARCIS (Netherlands)

    J.C.A. Miller-Jones; P.G. Jonker; G. Nelemans; S. Portegies Zwart; V. Dhawan; W. Brisken; E. Gallo; M.P. Rupen

    2009-01-01

    Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be 9.2 +/- 0.3 mas yr(-1). Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to

  5. International workshop on resonant X-ray scattering in electrically-ordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Collins, S.P.; Pettifer, R.F.; Laundy, D.; Ishida, K.; Kokubun, J.; Giles, C.; Yokaichiya, F.; Song, C.; Lee, K.B.; Ji, S.; Koo, J.; Park, Y.J.; Kim, J.Y.; Park, J.H.; Shin, H.J.; Rhyee, J.S.; Oh, B.H.; Cho, B.K.; Wilkins Stuart, B.; Paixao, J.A.; Caciuffo, R.; Javorsky, P.; Wastin, F.; Rebizant, J.; Detlefs, C.; Bernheoft, N.; Lander, G.H.; Bombardi, A.; Bergevin, F. de; Matteo, S. di; Paolasini, L.; Rodriguez-Carvajal, J.; Carretta, P.; Millet, P.; Caciuffo, R.; Goff, J.P.; Deen, P.P.; Lee, S.; Stunault, A.; Brown, S.; Mannix, D.; McIntyre, G.J.; Ward, R.C.C.; Wells, M.R.; Lorenzo, J.E.; Joly, Y.; Nazarenko, E.; Staub, U.; Srajer, G.; Haskel, D.; Choi, Y.; Lee, D.R.; Lang, J.C.; Meersschaut, J.; Jiang, J.S.; Bader, S.D.; Bouchenoire, L.; Brown, S.D.; Beesley, A.; Herring, A.; Thomas, M.; Thompson, P.; Langridge, S.; Stirling, W.G.; Mirone, A.; Lander, G.; Wilkins, S.; Ward, R.C.C.; Wells, M.R.; Zochowski, S.W.; Garcia, J.; Subias, G.; Blasco, J.; Sanchez, M.C.; Proietti, M.G.; Lovesey, S.W.; Dmitrienko, V.E.; Ovchinnikova, E.N.; Ishida, K.; Kokubun, J.; Kirfel, A.; Collins, S.P.; Laundy, D.; Oreshko, A.P.; Strange, P.; Horne, M.; Arola, E.; Winter, H.; Szotek, Z.; Temmerman, W.M.; Igarashi, J.; Usuda, M.; Takahashi, M.; Matteo, S. di; Bernhoeft, N.; Hill, J.P.; Lang, J.C.; McWhan, D.; Lee, D.R.; Haskel, D.; Srajer, G.; Hatton Peter, D.; Katsumata, K.; Braithwaite, D

    2004-07-01

    The research field of Resonant X-ray Scattering (RXS) has achieved tremendous progress in the last years. Nowadays RXS is rapidly becoming the crucial technique for investigating the subtleties of microscopic magnetism in systems where the ground state properties reflect a delicate balance between several different correlated processes. The aim of this workshop is to discuss present and future possibilities for RXS investigations of electronic order, including studies of charge, magnetic, and multipolar ordered states. The sessions will cover experimental and theoretical aspects of hard and soft X-ray resonant scattering from single crystals and thin films. This document gathers the summaries of the presentations.

  6. Cryogenic system for X-ray Compton scattering measurements of superfluid helium below 2 K

    Science.gov (United States)

    Tanaka, Hiroyuki; Yamaguchi, Akira; Koizumi, Akihisa; Kawasaki, Ikuto; Sumiyama, Akihiko; Itou, Masayoshi; Sakurai, Yoshiharu

    2017-07-01

    A cryostat was constructed for high-resolution X-ray Compton scattering measurements at temperature down to 1.7 K, in order to investigate superfluid helium-4. Compton profiles of helium were measured using synchrotron X-rays for gas and liquid phases, respectively. In the measurement of the liquid phase, we succeeded in measuring the Compton profile of the superfluid helium at 1.7 K. Comparison of the results with theoretical calculation reveals importance of many-body effects beyond the mean-field treatment of electron systems.

  7. Design and construction of an X-ray phase contrast CT system at BSRF

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junyue [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Zhu Peiping [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: zhupp@ihep.ac.cn; Yuan Qingxi [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Huang Wanxia [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shu Hang [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Hu Tiandou [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: wuzy@ihep.ac.cn

    2006-11-15

    The 4W1A beamline at the Beijing Synchrotron Radiation Facility (BSRF) had been dedicated to researches in the field of X-ray phase contrast imaging. In both available layouts, e.g., in-line imaging and diffraction enhanced imaging, a spatial resolution better than 10 {mu}m has been achieved and an X-ray phase contrast CT system has been installed and tested on the beamline. With or without analyzer, it can work either in in-line or the diffraction enhanced mode.

  8. Design and construction of an X-ray phase contrast CT system at BSRF

    Science.gov (United States)

    Wang, Junyue; Zhu, Peiping; Yuan, Qingxi; Huang, Wanxia; Shu, Hang; Hu, Tiandou; Wu, Ziyu

    2006-11-01

    The 4W1A beamline at the Beijing Synchrotron Radiation Facility (BSRF) had been dedicated to researches in the field of X-ray phase contrast imaging. In both available layouts, e.g., in-line imaging and diffraction enhanced imaging, a spatial resolution better than 10 μm has been achieved and an X-ray phase contrast CT system has been installed and tested on the beamline. With or without analyzer, it can work either in in-line or the diffraction enhanced mode.

  9. DUVEX: An X-ray counting system based on YAG:Ce scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Andre, J.-M., E-mail: jean-michel.andre1@upmc.fr [Laboratoire de Chimie Physique - Matiere et Rayonnement, UPMC, CNRS UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05 (France); Le Guen, K.; Jonnard, P. [Laboratoire de Chimie Physique - Matiere et Rayonnement, UPMC, CNRS UMR 7614, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05 (France); Menesguen, Y. [CEA, LIST, Laboratoire National Henri Becquerel, F-91191 Gif-sur-Yvette (France)

    2011-12-11

    A detector system, called DUVEX, has been developed for the soft-x-ray and extreme ultraviolet domain. It consists of a YAG:Ce scintillator coupled to a photomultiplier module working under vacuum in counting mode. The design and the performances of this detector in terms of yield, absolute efficiency, response and noise are reported. Spectra in the soft x-ray range of different elements (W, Ag, Al, Mg, Cu, N, C and B) obtained in WDS mode using this detector are presented. DUVEX appears as a competitive detection tool in terms of cost and easiness of implementation.

  10. Magnetism in heterogeneous thin film systems: Resonant x-ray scattering studies

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Jiang, J.S.; Bader, S.D.; Hellwig, O.; Marguiles, D.T.; Fullerton, E.E.

    2002-10-28

    Magnetic and chemical heterogeneity are common in a broad range of magnetic thin film systems. Emerging resonant soft x-ray scattering techniques are well suited to resolve such heterogeneity at relevant length scales. Resonant x-ray magneto-optical Kerr effect measurements laterally average over heterogeneity but can provide depth resolution in different ways, as illustrated in measurements resolving reversible and irreversible changes in different layers of exchange-spring heterostructures. Resonant small-angle scattering measures in-plane heterogeneity and can resolve magnetic and chemical scattering sources in different ways, as illustrated in measurements of granular alloy recording media.

  11. Spectral and timing nature of the symbiotic X-ray binary 4U 1954+319: The slowest rotating neutron star in an X-ray binary system

    Energy Technology Data Exchange (ETDEWEB)

    Enoto, Teruaki; Corbet, Robin H. D. [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 662, Greenbelt, MD 20771 (United States); Sasano, Makoto [Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamada, Shin' ya; Tamagawa, Toru; Makishima, Kazuo [High Energy Astrophysics Laboratory, RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Pottschmidt, Katja; Marcu, Diana [NASA Goddard Space Flight Center, Astrophysics Science Division, Code 661, Greenbelt, MD 20771 (United States); Fuerst, Felix [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Wilms, Jörn, E-mail: teruaki.enoto@nasa.gov [Dr. Remeis-Sternwarte and Erlangen Centre for Astroparticle Physics, Universität Erlangen-Nürnberg, Sternwartstr. 7, D-96049 Bamberg (Germany)

    2014-05-10

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its ∼5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (∼7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-Kα line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (∼60%-80%), and the location in the Corbet diagram favor high B-field (≳ 10{sup 12} G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10{sup 33}-10{sup 35} erg s{sup –1}), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a ∼10{sup 13} G NS, this scheme can explain the ∼5.4 hr equilibrium rotation without employing the magnetar-like field (∼10{sup 16} G) required in the disk accretion case. The timescales of multiple irregular flares (∼50 s) can also be attributed to the free-fall time from the Alfvén shell for a ∼10{sup 13} G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  12. Spectral and Timing Nature of the Symbiotic X-Ray Binary 4U 1954+319: The Slowest Rotating Neutron Star in AN X-Ray Binary System

    Science.gov (United States)

    Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn

    2014-01-01

    The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.

  13. Direct Measurement of Mammographic X-Ray Spectra with a Digital CdTe Detection System

    Directory of Open Access Journals (Sweden)

    Giuseppe Raso

    2012-06-01

    Full Text Available In this work we present a detection system, based on a CdTe detector and an innovative digital pulse processing (DPP system, for high-rate X-ray spectroscopy in mammography (1–30 keV. The DPP system performs a height and shape analysis of the detector pulses, sampled and digitized by a 14-bit, 100 MHz ADC. We show the results of the characterization of the detection system both at low and high photon counting rates by using monoenergetic X-ray sources and a nonclinical X-ray tube. The detection system exhibits excellent performance up to 830 kcps with an energy resolution of 4.5% FWHM at 22.1 keV. Direct measurements of clinical molybdenum X-ray spectra were carried out by using a pinhole collimator and a custom alignment device. A comparison with the attenuation curves and the half value layer values, obtained from the measured and simulated spectra, from an ionization chamber and from a solid state dosimeter, also shows the accuracy of the measurements. These results make the proposed detection system a very attractive tool for both laboratory research, calibration of dosimeters and advanced quality controls in mammography.

  14. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    Science.gov (United States)

    Gianoncelli, Alessandra; Bufon, Jernej; Ahangarianabhari, Mahdi; Altissimo, Matteo; Bellutti, Pierluigi; Bertuccio, Giuseppe; Borghes, Roberto; Carrato, Sergio; Cautero, Giuseppe; Fabiani, Sergio; Giacomini, Gabriele; Giuressi, Dario; Kourousias, George; Menk, Ralf Hendrik; Picciotto, Antonino; Piemonte, Claudio; Rachevski, Alexandre; Rashevskaya, Irina; Stolfa, Andrea; Vacchi, Andrea; Zampa, Gianluigi; Zampa, Nicola; Zorzi, Nicola

    2016-04-01

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  15. A new detector system for low energy X-ray fluorescence coupled with soft X-ray microscopy: First tests and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Gianoncelli, Alessandra, E-mail: alessandra.gianoncelli@elettra.eu [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bufon, Jernej [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Ahangarianabhari, Mahdi [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Altissimo, Matteo [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Bellutti, Pierluigi [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Bertuccio, Giuseppe [Politecnico di Milano, Via Anzani 42, Como 22100 (Italy); INFN Milano, Via Celoria 16, Milano 20133 (Italy); Borghes, Roberto [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Carrato, Sergio [University of Trieste, Piazzale Europa 1, Trieste 34127 (Italy); Cautero, Giuseppe [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Fabiani, Sergio [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Giacomini, Gabriele [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Giuressi, Dario [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Kourousias, George [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); Menk, Ralf Hendrik [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale SS14, km 163.5, Basovizza 34149 (Italy); INFN Trieste, Padriciano 99, Trieste 34149 (Italy); Picciotto, Antonino; Piemonte, Claudio [Fondazione Bruno Kessler, Via Sommarive 18, Trento 38123 (Italy); Rachevski, Alexandre [INFN Trieste, Padriciano 99, Trieste 34149 (Italy); and others

    2016-04-21

    The last decades have witnessed substantial efforts in the development of several detector technologies for X-ray fluorescence (XRF) applications. In spite of the increasing trend towards performing, cost-effective and reliable XRF systems, detectors for soft X-ray spectroscopy still remain a challenge, requiring further study, engineering and customization in order to yield effective and efficient systems. In this paper we report on the development, first characterization and tests of a novel multielement detector system based on low leakage current silicon drift detectors (SDD) coupled to ultra low noise custom CMOS preamplifiers for synchrotron-based low energy XRF. This new system exhibits the potential for improving the count rate by at least an order of magnitude resulting in ten-fold shorter dwell time at an energy resolution similar to that of single element silicon drift detectors.

  16. Development of an ultra high-precision x-ray telescope with an adaptive optics system

    Science.gov (United States)

    Kitamoto, Shunji; Takano, Haruko; Saitoh, Harue; Yamamoto, Norimasa; Kohmura, Takayoshi; Suga, Kazuharu; Sekiguchi, Hiroyuki

    2003-06-01

    We are developing an ultra high precision Soft X-ray telescope. The design of the telescope is a normal incident one for 13.5 nm band using Mo/Si multilayers. Two ideas are introduced. One is the optical measurement system in order to monitor the prevision of the optics system. The other is the adaptive optics system with a deformable mirror. Using an x-ray optical separation filter, we can always monitor the deformation of the optics by optical light. With this information, we can control the deformable mirror to compensate the system deformation as a closed loop system. We confirmed that the absolute precision of the wave front sensor was less than 3 nm rms. The preicison of the deformable mirror was roughly 5 nm rms. The shape of the primary mirror was an off-axis paraboloide with an effective diameter of 80mm. This primary mirror was coated by Mo/Si multilayers. The reflectivity of the primary mirror at 13.5 nm was rnaging from 30 to 50%. The x-ray optical separation filter was made from Zr with a thicknness of ~170nm. The transmission of the filter for low energy x-ray was measured and was roughly 50% at 13.5nm.

  17. The function-transferring model construction for X-ray digital radiographic system

    Science.gov (United States)

    Xiao, Wang; Yan, Han; Guo, Wenming

    2008-02-01

    This paper is aimed at presenting a renovated model-building method of transfer function for industrial X-ray digital radiography based on the amorphous silicon X-ray flat-panel detector. The system, known as point-spreading function (PSF), is composed of three parts: the system geometrical dispersion with a non-spot power source, the scintillating screen dispersion and the aperture sampling of the pixel detector. For the innovation purpose, we have first of all established a mathematical simulation of the PSF and the modulation transfer function (MTF) on the basis of analyzing the intensity distribution of X-ray penetration area in each part and by taking Gaussian functions as a mathematical equation for depicting the transfer behavior of each part of the system. And, then, we have worked out the approximately effective bandwidth of the system from its half-wave width. And, finally, by taking the digital radiography based on the flat-panel detector for sampling, the paper has provided a theoretical foundation for the industrial X-ray radiographic testing and measurement operation. In addition, the author has also estimated the validation of the model through experiments and proved that the method helps to make high resolutions of the diacritical tiniest details in the work-pieces, which has shown and will show its technical rationality, technical appropriateness and practical working value.

  18. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu a

  19. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    Science.gov (United States)

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  20. Resonant soft x-ray scattering and charge density waves in correlated systems

    NARCIS (Netherlands)

    Rusydi, Andrivo

    2006-01-01

    Summary This work describes results obtained on the study of charge density waves (CDW) in strongly correlated systems with a new experimental method: resonant soft x-ray scattering (RSXS). The basic motivation is the 1986 discovery by Bednorz and Müler of a new type of superconductor, based on Cu

  1. A bench-top K X-ray fluorescence system for quantitative measurement of gold nanoparticles for biological sample diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ricketts, K., E-mail: k.ricketts@ucl.ac.uk [Division of Surgery and Interventional Sciences, University College London, Royal Free Campus, Rowland Hill Street, London NW3 2PF (United Kingdom); Guazzoni, C.; Castoldi, A. [Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano and INFN, Sezione di Milano P.za Leonardo da Vinci, 32-20133 Milano (Italy); Royle, G. [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Gold nanoparticles can be targeted to biomarkers to give functional information on a range of tumour characteristics. X-ray fluorescence (XRF) techniques offer potential quantitative measurement of the distribution of such heavy metal nanoparticles. Biologists are developing 3D tissue engineered cellular models on the centimetre scale to optimise targeting techniques of nanoparticles to a range of tumour characteristics. Here we present a high energy bench-top K-X-ray fluorescence system designed for sensitivity to bulk measurement of gold nanoparticle concentration for intended use in such thick biological samples. Previous work has demonstrated use of a L-XRF system in measuring gold concentrations but being a low energy technique it is restricted to thin samples or superficial tumours. The presented system comprised a high purity germanium detector and filtered tungsten X-ray source, capable of quantitative measurement of gold nanoparticle concentration of thicker samples. The developed system achieved a measured detection limit of between 0.2 and 0.6 mgAu/ml, meeting specifications of biologists and being approximately one order of magnitude better than the detection limit of alternative K-XRF nanoparticle detection techniques. The scatter-corrected K-XRF signal of gold was linear with GNP concentrations down to the detection limit, thus demonstrating potential in GNP concentration quantification. The K-XRF system demonstrated between 5 and 9 times less sensitivity than a previous L-XRF bench-top system, due to a fundamental limitation of lower photoelectric interaction probabilities at higher K-edge energies. Importantly, the K-XRF technique is however less affected by overlying thickness, and so offers future potential in interrogating thick biological samples.

  2. A laboratory based system for Laue micro x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Tamura, Nobumichi; Lynch, P.A.; Stevenson, A.W.; Liang, D.; Parry, D.; Wilkins, S.; Tamura, N.

    2007-02-28

    A laboratory diffraction system capable of illuminating individual grains in a polycrystalline matrix is described. Using a microfocus x-ray source equipped with a tungsten anode and prefigured monocapillary optic, a micro-x-ray diffraction system with a 10 mum beam was developed. The beam profile generated by the ellipsoidal capillary was determined using the"knife edge" approach. Measurement of the capillary performance, indicated a beam divergence of 14 mrad and a useable energy bandpass from 5.5 to 19 keV. Utilizing the polychromatic nature of the incident x-ray beam and application of the Laue indexing software package X-Ray Micro-Diffraction Analysis Software, the orientation and deviatoric strain of single grains in a polycrystalline material can be studied. To highlight the system potential the grain orientation and strain distribution of individual grains in a polycrystalline magnesium alloy (Mg 0.2 wt percent Nd) was mapped before and after tensile loading. A basal (0002) orientation was identified in the as-rolled annealed alloy; after tensile loading some grains were observed to undergo an orientation change of 30 degrees with respect to (0002). The applied uniaxial load was measured as an increase in the deviatoric tensile strain parallel to the load axis (37 References).

  3. A hyperspectral X-ray computed tomography system for enhanced material identification

    Science.gov (United States)

    Wu, Xiaomei; Wang, Qian; Ma, Jinlei; Zhang, Wei; Li, Po; Fang, Zheng

    2017-08-01

    X-ray computed tomography (CT) can distinguish different materials according to their absorption characteristics. The hyperspectral X-ray CT (HXCT) system proposed in the present work reconstructs each voxel according to its X-ray absorption spectral characteristics. In contrast to a dual-energy or multi-energy CT system, HXCT employs cadmium telluride (CdTe) as the x-ray detector, which provides higher spectral resolution and separate spectral lines according to the material's photon-counter working principle. In this paper, a specimen containing ten different polymer materials randomly arranged was adopted for material identification by HXCT. The filtered back-projection algorithm was applied for image and spectral reconstruction. The first step was to sort the individual material components of the specimen according to their cross-sectional image intensity. The second step was to classify materials with similar intensities according to their reconstructed spectral characteristics. The results demonstrated the feasibility of the proposed material identification process and indicated that the proposed HXCT system has good prospects for a wide range of biomedical and industrial nondestructive testing applications.

  4. [Research of working condition monitoring and analyzing system for rotating anode X-ray tube based on the vibration measurement].

    Science.gov (United States)

    Wu, Hao; Wang, Weidong; Yan, Yong; Zhang, Shuai; Zu, Hefei; Chen, Weibin

    2011-01-01

    A non-invasive detecting and analyzing method which used to monitor the working condition of rotating anode X-ray was proposed. Based on the NI development environment, accelerometer, 24-bit high resolution data acquisition card and personal computer were connected to construct the system for collecting the vibration signal of X-ray tube. Results demonstrate that the system could acquire and store the vibration data of X-ray tube quickly and efficiently. The characteristics of vibration, were extracted and processed, which proposed a new approach to detect the malfunction of rotating anode X-ray early and effectively.

  5. X-ray diagnostics for TFTR

    Energy Technology Data Exchange (ETDEWEB)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment.

  6. Monte Carlo simulations of a high-resolution X-ray CT system for industrial applications

    Science.gov (United States)

    Miceli, A.; Thierry, R.; Flisch, A.; Sennhauser, U.; Casali, F.; Simon, M.

    2007-12-01

    An X-ray computed tomography (CT) model based on the GEANT4 Monte Carlo code was developed for simulation of a cone-beam CT system for industrial applications. The full simulation of the X-ray tube, object, and area detector was considered. The model was validated through comparison with experimental measurements of different test objects. There is good agreement between the simulated and measured projections. To validate the model we reduced the beam aperture of the X-ray tube, using a source-collimator, to decrease the scattered radiation from the CT system structure and from the walls of the X-ray shielding room. The degradation of the image contrast using larger beam apertures is also shown. Thereafter, the CT model was used to calculate the spatial distribution and the magnitude of the scattered radiation from different objects. It has been assessed that the scatter-to-primary ratio (SPR) is below 5% for small aluminum objects (approx. 5 cm path length), and in the case of large aluminum objects (approx. 20 cm path length) it can reach up to a factor of 3 in the region corresponding to the maximum path length. Therefore, the scatter from the object significantly affects quantitative accuracy. The model was also used to evaluate the degradation of the image contrast due to the detector box.

  7. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: eiichisato@hotmail.co [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Abderyim, Purkhet [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Enomoto, Toshiyuki; Watanabe, Manabu [The 3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Hitomi, Keitaro [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama Kasumi-cho, Taihaku-ku, Sendai 982-8577 (Japan); Takahasi, Kiyomi; Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Ogawae, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo 985-8537 (Japan)

    2010-07-21

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  8. Universal Behavior of X-ray Flares from Black Hole Systems

    CERN Document Server

    Wang, F Y; Yi, S X; Xi, S Q

    2014-01-01

    X-ray flares have been discovered in black hole systems, such as gamma-ray bursts, the tidal disruption event Swift J1644+57, the supermassive black hole Sagittarius A$^*$ at the center of our Galaxy, and some active galactic nuclei. Their occurrences are always companied by relativistic jets. However, it is still unknown whether there is a physical analogy among such X-ray flares produced in black hole systems spanning nine orders of magnitude in mass. Here we report the observed data of X-ray flares, and show that they have three statistical properties similar to solar flares, including power-law distributions of energies, durations, and waiting times, which both can be explained by a fractal-diffusive self-organized criticality model. These statistical similarities, together with the fact that solar flares are triggered by a magnetic reconnection process, suggest that all of the X-ray flares are consistent with magnetic reconnection events, implying that their concomitant relativistic jets may be magnetica...

  9. Athena as the next generation X-ray observatory: Solar system targets and exoplanets

    Science.gov (United States)

    Branduardi-Raymont, Graziella; Sciortino, Salvatore

    Athena studies of the solar system, by providing ever deeper insights in the complex workings of planetary magnetospheres and exospheres, will answer many of the questions left open by the pioneering work of Chandra and XMM-Newton and will add enormously to our understanding of the interactions of space plasmas and magnetic fields. The non-dispersive character of X-IFU spectroscopy will enable Jupiter’s auroral and scattered solar emissions, and the Io Plasma Torus, to be mapped spatially and spectrally at high resolution; will enable surface composition analysis through fluorescence spectra of the Galilean satellites; will establish how planetary exospheres, such as Mars’, and comets respond to the interaction with the solar wind, in a global way that in situ measurements cannot provide. The X-IFU, with its two orders of magnitude improved effective area over current spectrometers, will push the search for auroral X-ray emission on Saturn to much fainter limits, and set very sensitive constraints on Uranus X-ray emission. Athena will explore the magnetic interplay between stars and planets in X-rays by searching for X-ray spectral variability over the planet's orbital phases and for systems of different orbital eccentricity, and will investigate ingress/eclipse/egress effects for transiting hot-Jupiter exoplanets; again instrumental to this will be the vastly improved signal-to-noise ratio provided by Athena over that achieved by XMM-Newton or Chandra.

  10. Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications

    Science.gov (United States)

    Hiller, Jochen; Maisl, Michael; Reindl, Leonard M.

    2012-08-01

    This paper presents physical and metrological characterization measurements conducted for an industrial x-ray micro-computed tomography (CT) system. As is well known in CT metrology, many factors, e.g., in the scanning and reconstruction process, the image processing, and the 3D data evaluation, influence the dimensional measurement properties of the system as a whole. Therefore, it is important to know what leads to, and what are the consequences of, e.g., a geometrical misalignment of the scanner system, image unsharpness (blurring), or noise or image artefacts. In our study, the two main components of a CT scanner, i.e. the x-ray tube and the flat-panel detector, are characterized. The contrast and noise transfer property of the scanner is obtained using image-processing methods based on linear systems theory. A long-term temperature measurement in the scanner cabinet has been carried out. The dimensional measurement property has been quantified by using a calibrated ball-bar and uncertainty budgeting. Information about the performance of a CT scanner system in terms of contrast and noise transmission and sources of geometrical errors will help plan CT scans more efficiently. In particular, it will minimize the user's influence by a systematic line of action, taking into account the physical and technical limitations and influences on dimensional measurements.

  11. 3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography

    DEFF Research Database (Denmark)

    Herbig, M.; King, Andrew; Reischig, Peter;

    2011-01-01

    X-ray diffraction contrast tomography is a recently developed, non-destructive synchrotron imaging technique which characterizes microstructure and grain orientation in polycrystalline materials in three dimensions. By combining it with propagation-based phase-contrast tomography it is possible...

  12. Multiplet calculations of L2,3 x-ray absorption near-edge structures for 3d transition-metal compounds

    NARCIS (Netherlands)

    de Groot, F.M.F.; Ikeno, H.; Stavitski, E.; Tanaka, I.

    2009-01-01

    The purpose of this work is to compare the two different procedures to calculate the L2,3 x-ray absorption spectra of transition-metal compounds: (1) the semi-empirical charge transfer multiplet (CTM) approach and (2) the ab initio configuration-interaction (CI) method based on molecular orbitals.

  13. Ex-situ time-lapse x-ray CT study of 3D micro-structural fatigue damage evolution in uni-directional composites

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Wang, Ying; Zangenberg Hansen, Jens

    2016-01-01

    In this study, the progress of damage under tension-tension fatigue of a uni-directional (UD) glass fibre composite made from a non-crimp fabric is studied using transilluminated white light imaging (TWLI) and X-ray computed tomography (CT). TWLI images are automatically captured throughout...

  14. A Simple X-ray Spectrometer and PC-based Data Acquisition System for Newly Developed X-ray Source Based on Laser Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    LUO Wen; XU Wang; PAN Qiang-yan; XU Yi; FAN Gong-tao; FAN Guang-wei; YANG Li-feng; LI Yong-jiang; YAN Zhe; XU Ben-ji

    2009-01-01

    A simple X-ray spectrometer and a PC-Based Data Acquisition System(DAS) have been developed newly in Shanghai Institute of Applied Physics(SINAP),Chinese Academy of Sciences (CAS) for the measurement of the X-ray source generated using laser Compton scattering.The system consists of liquid nitrogen cooled high resolution Si(Li) detector,electronics and a DAQ.The Si(Li) detector was designed and made by Center of Advanced Instruments in SINAP,CAS,it allows us to measure X-rays with the energy up to 60 keV and the energy resolution(FWHM) of 184 eV at 5.9 keV.We measured the system uncertainty was 0.2 eV and time drifting of detector was 0.05% both at 5.9 keV.The DAQ was based on Object-Oriented software LabVIEW 7.1,it has data on-line analysis and original data saved functions.

  15. FUX-Sim: Implementation of a fast universal simulation/reconstruction framework for X-ray systems.

    Science.gov (United States)

    Abella, Monica; Serrano, Estefania; Garcia-Blas, Javier; García, Ines; de Molina, Claudia; Carretero, Jesus; Desco, Manuel

    2017-01-01

    The availability of digital X-ray detectors, together with advances in reconstruction algorithms, creates an opportunity for bringing 3D capabilities to conventional radiology systems. The downside is that reconstruction algorithms for non-standard acquisition protocols are generally based on iterative approaches that involve a high computational burden. The development of new flexible X-ray systems could benefit from computer simulations, which may enable performance to be checked before expensive real systems are implemented. The development of simulation/reconstruction algorithms in this context poses three main difficulties. First, the algorithms deal with large data volumes and are computationally expensive, thus leading to the need for hardware and software optimizations. Second, these optimizations are limited by the high flexibility required to explore new scanning geometries, including fully configurable positioning of source and detector elements. And third, the evolution of the various hardware setups increases the effort required for maintaining and adapting the implementations to current and future programming models. Previous works lack support for completely flexible geometries and/or compatibility with multiple programming models and platforms. In this paper, we present FUX-Sim, a novel X-ray simulation/reconstruction framework that was designed to be flexible and fast. Optimized implementation for different families of GPUs (CUDA and OpenCL) and multi-core CPUs was achieved thanks to a modularized approach based on a layered architecture and parallel implementation of the algorithms for both architectures. A detailed performance evaluation demonstrates that for different system configurations and hardware platforms, FUX-Sim maximizes performance with the CUDA programming model (5 times faster than other state-of-the-art implementations). Furthermore, the CPU and OpenCL programming models allow FUX-Sim to be executed over a wide range of hardware

  16. Application of X-ray 3D CT Technology on Electrocomponent Failure Analysis%X射线三维CT技术在元器件失效分析中的应用

    Institute of Scientific and Technical Information of China (English)

    路浩天; 卢晓青; 张祥春; 蔡良续; 吴琼; 张辉

    2012-01-01

    Through comparing the functional characteristics of X-ray, traditional CT and SAM, the advantage of X-ray 3D CT technology was analyzed. With the analysis of solder voids, micro switch and different package components, research on the application of 3D CT technology in electronic component failure analysis was conducted. In addition, according to the feature of X-ray 3D CT imaging, the prospect of this technology was discussed.%通过比较X射线DR,普通断层CT技术,扫描声学显微镜的功能特点,分析了X射线三维CT技术的优势。通过对焊接空洞、微动开关失效案例以及不同封装形式器件的分析,研究了X射线三维CT技术在电子元器件失效分析领域的应用。同时根据X射线三维CT成像的特点,分析了该技术发展的前景。

  17. Development of a stacked detector system for the x-ray range and its possible applications

    Science.gov (United States)

    Maier, Daniel; Limousin, Olivier; Meuris, Aline; Pürckhauer, Sabina; Santangelo, Andrea; Schanz, Thomas; Tenzer, Christoph

    2014-07-01

    We have constructed a stacked detector system operating in the X-ray range from 0.5 keV to 250 keV that consists of a Si-based 64×64 DePFET-Matrix in front of a CdTe hybrid detector called Caliste-64. The setup is operated under laboratory conditions that approximate the expected environment of a space-borne observatory. The DePFET detector is an active pixel matrix that provides high count-rate capabilities with a near Fanolimited spectral resolution at energies up to 15 keV. The Caliste-64 hard X-ray camera consists of a 1mm thick CdTe crystal combined with very compact integrated readout electronics, constituting a high performance spectro-imager with event-triggered time-tagging capability in the energy range between 2 keV and 200 keV. In this combined geometry the DePFET detector works as the Low Energy Detector (LED) while the Caliste-64 - as the High Energy Detector (HED) - detects predominantly the high energetic photons that have passed the LED. In addition to the individual optimization of both detectors, we use the setup to test and optimize the performance of the combined detector system. Side-effects like X-ray fluorescence photons, electrical crosstalk, and mutual heating have negative impacts on the data quality and will be investigated. Besides the primary application as a combined imaging detector system with high sensitivity across a broad energy range, additional applications become feasible. Via the analysis of coincident events in both detectors we can estimate the capabilities of the setup to be used as a Compton camera and as an X-ray polarimeter - both desirable functionalities for use in the lab as well as for future X-ray missions.

  18. Impacts of Filtration on Contrast-Detail Detectability of an X-ray Imaging System

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The purpose of this study is to investigate the impacts of added filtration on the contrast-detail detectability of a digital X-ray imaging system for small animal studies. A digital X-ray imaging system specifically designed for small animal studies was used. This system is equipped with a micro X-ray source with a tungsten target and a beryllium window filtration and a CCD-based digital detector. Molybdenum filters of 0 mm, 0.02 mm, and 0.05 mm in thickness were added. The corresponding X-ray spectra and contrast-detail detectabilities were measured using two phantoms of different thicknesses simulating breast tissue under different exposures. The added Mo filters reduced the low-energy as well as the high-energy photons, hence providing a narrowband for imaging quality improvement. In the experiments with a 1.15 cm phantom, the optimal image detectability was observed using 22 kVp and the 0.05 mm Mo filter. With the 2.15 cm phantom, the best detectability was obtained with 22 kVp and the 0.02 mm Mo filter. Our experiments showed that appropriate filtrations could reduce certain low- and high-energy components of X-ray spectra which have limited contributions to image contrast. At the same time, such filtration could improve the contrast-detail detectability, particularly at relatively low kVp and high filtration. Therefore, optimal image quality can be obtained with the same absorbed radiation dose by the subjects when appropriate filtration is used.

  19. X-ray monitoring optical elements

    Energy Technology Data Exchange (ETDEWEB)

    Stoupin, Stanislav; Shvydko, Yury; Katsoudas, John; Blank, Vladimir D.; Terentyev, Sergey A.

    2016-12-27

    An X-ray article and method for analyzing hard X-rays which have interacted with a test system. The X-ray article is operative to diffract or otherwise process X-rays from an input X-ray beam which have interacted with the test system and at the same time provide an electrical circuit adapted to collect photoelectrons emitted from an X-ray optical element of the X-ray article to analyze features of the test system.

  20. XAssist A System for the Automation of X-ray Astrophysics Analysis

    CERN Document Server

    Ptak, A

    2003-01-01

    XAssist is a NASA AISR-funded project for the automation of X-ray astrophysics, with emphasis on galaxies. It is nearing completion of its initially funded effort, and is working well for Chandra and ROSAT HRI data. Initial support for XMM-Newton data is present as well. It is capable of data reprocessing, source detection, and preliminary spatial, temporal and spectral analysis for each source with sufficient counts. The bulk of the system is written in Python, which in turn drives underlying software (CIAO for Chandra data, etc.). Future work will include a GUI (mainly for beginners and status monitoring) and the exposure of at least some functionality as web services. The latter will help XAssist to eventually become part of the VO, making advanced queries possible, such as determining the X-ray fluxes of counterparts to HST or SDSS sources (including the use of unpublished X-ray data), and add the ability of ``on-the-fly'' X-ray processing. Pipelines are running on ROSAT, Chandra and now XMM-Newton observ...

  1. Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System

    Science.gov (United States)

    Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.

    2016-02-01

    The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.

  2. Miniaturized 3D microscope imaging system

    Science.gov (United States)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  3. DISCOVERY OF X-RAY EMISSION FROM THE FIRST Be/BLACK HOLE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M. [Departament d' Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Iwasawa, K. [ICREA, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona (Spain); Zabalza, V. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Casares, J. [Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife (Spain)

    2014-05-10

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k{sub B}T=0.07{sub −0.03}{sup +0.04} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above ≅0.8 keV. The obtained total flux is F(0.3-5.5 keV)=(4.6{sub −1.1}{sup +1.3})×10{sup −14} erg cm{sup –2} s{sup –1}. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L {sub X} = (3.7 ± 1.7) × 10{sup 31} erg s{sup –1}. Considering the estimated range of BH masses to be 3.8-6.9 M {sub ☉}, this luminosity represents (6.7 ± 4.4) × 10{sup –8} L {sub Edd}, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ∼10{sup –8} L {sub Edd}. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  4. Discovery of X-Ray Emission from the First Be/Black Hole System

    Science.gov (United States)

    Munar-Adrover, P.; Paredes, J. M.; Ribó, M.; Iwasawa, K.; Zabalza, V.; Casares, J.

    2014-05-01

    MWC 656 (=HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with XMM-Newton, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a blackbody plus a power law, with k_BT = 0.07^{+0.04}_{-0.03} keV and a photon index Γ = 1.0 ± 0.8, respectively. The non-thermal component dominates above sime0.8 keV. The obtained total flux is F(0.3-5.5\\, keV) = (4.6^{+1.3}_{-1.1})\\times 10^{-14} erg cm-2 s-1. At a distance of 2.6 ± 0.6 kpc the total flux translates into a luminosity L X = (3.7 ± 1.7) × 1031 erg s-1. Considering the estimated range of BH masses to be 3.8-6.9 M ⊙, this luminosity represents (6.7 ± 4.4) × 10-8 L Edd, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spectral components: the thermal component is associated with the hot wind of the Be star, whereas the power-law component is associated with emission from the vicinity of the BH. We also find that the position of MWC 656 in the radio versus X-ray luminosity diagram may be consistent with the radio/X-ray correlation observed in BH low-mass X-ray binaries. This suggests that this correlation might also be valid for BH high-mass X-ray binaries (HMXBs) with X-ray luminosities down to ~10-8 L Edd. MWC 656 will allow the accretion processes and the accretion/ejection coupling at very low luminosities for BH HMXBs to be studied.

  5. X-ray optical system for imaging laser plumes with a spatial resolution of up to 70 nm

    Science.gov (United States)

    Nechai, A. N.; Pestov, A. E.; Polkovnikov, V. N.; Salashchenko, N. N.; Toropov, M. N.; Chkhalo, N. I.; Tsybin, N. N.; Shcherbakov, A. V.

    2016-04-01

    We consider an X-ray optical system which permits obtaining laser plume images at a wavelength of 13.5 nm with a resolution of up to 70 nm. The X-ray optical system comprises an X-ray Schwarzschild objective made up of two aspherical multilayer mirrors, a scintillator (YAG : Ce ceramics), which converts X-rays to the visible radiation, and a visible-optical system, which images the scintillator surface onto a CCD camera. The spatial resolution of the system is limited by the resolution of the optical system (0.7 μm) and the magnification (10×) of the X-ray objective and is as high as 70 nm. The effect of Schwarzschild objective mirror shapes on the spatial resolution is analysed. The profile of concave mirror aspherisation is considered, which provides the attainment of the diffraction-limited quality of the objective. Data are given for the quantum efficiency of the system at a wavelength of 13.5 nm. We describe the experimental test bench intended for studying the developed X-ray optical system and outline the first experimental data which illustrate its efficiency. Owing to the natural division into the 'X-ray' and 'visible' parts, the optical system under discussion permits an easy change of the magnification and the field of view without realigning the X-ray optical elements. The wavelength may be varied in a range between 3 and 40 nm by changing the multilayer mirrors.

  6. Engineering Specification Document (ESD) of X-ray Vacuum Transport System (XVTS) for LCLS XTOD

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S

    2006-01-25

    The vacuum system of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. The preliminary system layout, detailed analyses and suggested selection of the vacuum components for the XTOD tunnel section are presented in the preliminary design report [1]. This document briefly reviews the preliminary design and provides engineering specifications for the system, which can be used as 'design to' specifications for the final design. Also included are the requirements of plans for procurement, mechanical integration, schedule and the cost estimates.

  7. Developments of compact pulsed-power system toward X-ray sources

    Directory of Open Access Journals (Sweden)

    Miyamoto Takuya

    2013-11-01

    Full Text Available In order to generate X-rays from X-pinch, the peak current and current-rising time required are estimated to be 100 kA and 100 ns, respectively. To obtain these parameters, we developed a pulsed-power system, which consists of a parallelized pulse-forming network (PFN. The 20 PFN modules of the system were driven at a charging voltage of 20 kV by a thin copper wire of load resistance. The results showed that the current and current-rising time are 18 kA and 107 ns, respectively. The wire/plasma temperature is 6.9 eV. The pulsed-power system is expected to generate X-rays from X-pinch by the proposed system. This can be achieved by raising the voltage and increasing the number of PFN modules.

  8. Data Acquisition System of Low-dose X-ray for People and Package Synchronous Detection

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Shuai; ZHANG; Guo-guang; FENG; Shu-qiang

    2015-01-01

    Low-dose X-ray system for people and parcel detection at the same time is a system of double angle one-dimensional array detector scanning imaging.It’s front detector using LYSO crystal of UM-MicroC Si-PMT.Each 16pixels package for a small module,and export signals.Each 8small modules composite one floor(128pixels

  9. X-ray studies of the redback system PSR J2129-0429

    Science.gov (United States)

    Noori, Hind Al; Roberts, Mallory; Hessels, Jason; McLaughlin, Maura; Breton, Rene

    2016-04-01

    We present new NuStar data of the redback millisecond pulsar (MSP) system PSR J2129-0429. Redback systems are important when it comes to understanding the evolution of MSPs, in terms of pulsar recycling, as they have been observed to transition between a state of accretion, where emission is in the optical and X-ray regimes, and a state of eclipsed radio pulsation. This system is particularly interesting due to some peculiarities: it has a more massive companion as well as a stronger magnetic field than other redbacks, indicating that the system is in a fairly early stage of recycling. It’s X-ray lightcurve (as obtained from XMM-Newton data) has a very hard power-law component and exhibits an efficiency of a few percent in X-ray. With the NuStar data, the spectrum can be seen to extend to ~30 keV. Additionally, it shows strong orbital variation, about 5 times greater than is typical for other systems, and is also very clearly double peaked. Hints of similar peaks have been observed in the lightcurves of other redback systems, and so this system can help in understanding the intrabinary shock of eclipsing MSPs.

  10. New quantum detection system for very low dose X-ray radiology

    CERN Document Server

    Hilt, B; Prevot, G

    2000-01-01

    A new X-ray radiology system has been devised that significantly reduces the dose of radiation administered to patients in spinal X-ray examinations. The apparatus scans the patient, using a high-efficiency linear solid-state detector and highly sensitive electronics, operating in counting mode. Two specific integrated circuits were developed, one of which contains an automatic offset correction. The detection system characterization data will be briefly presented. Data is acquired in real time by a high-speed computer-controlled VME system. The scan parameters and image filtering are also computer-controlled. The first images recorded using this new apparatus are given, along with the preliminary comparative dosimetric analysis.

  11. MIT modular x-ray source systems for the study of plasma diagnostics

    Science.gov (United States)

    Coleman, J. W.; Wenzel, K. W.; Petrasso, R. D.; Lo, D. H.; Li, C. K.; Lierzer, J. R.; Wei, T.

    1992-10-01

    Two new x-ray source systems are now on line at our facility. Each provides an e-beam to 25 kV. Targets are interchangeable between machines, and four x-ray detectors may be used simultaneously with a target. The gridded e-gun of the RACEHORSE system gives a 0.5-1.0-cm pulsable spot on target. The nongridded e-gun of the SCORPION system provides a 0.3-mm or smaller dc microspot on target. RACEHORSE is being used to study and characterize type-II diamond photoconductors for use in diagnosing plasmas, while SCORPION is being used to develop a slitless spectrograph using photographic film. Source design details and some RACEHORSE results are presented.

  12. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  13. Processing of x-ray image in the intelligent setting system for fracture

    Science.gov (United States)

    Zheng, Wei; Zhang, Liyong; Liu, Sijiu; Yu, Zhiguo

    2006-11-01

    Intelligent setting system based on biomechanics and bone fracture therapy can accomplish micro-wound, intelligence and high efficiency of fracture setting. X-ray images grabbed by C-shape-arm X-ray machine supply the most key data for intelligent setting. Processing, analysis and transmission security of the image is the core in the system. According to characteristics being shown in three dimensions gray distribution figure and frequency spectrum of the image, histogram equalization in space domain and homomorphic filtering in frequency domain are separately proposed to enhance contrast and sharpness. On the foundation of mining orthopedics experts experience knowledge, setting for femoral-neck fracture is turned into three in-continuous operations that are reflected in the X-ray images through nine points, six lines, two angles and one distance and that are able to be implemented by mechanical manipulator and control device in the system. Master-slave reference frame is put forward to supply a stable reference standard to calculate parameters. Encryption method based on chaos dynamics system is brought forward to ensure image information security in the process of telemedicine intelligent setting for fracture. Clinic experience proved that the system can help orthopedists to correctly and reliably complete setting for bone fracture.

  14. Building a graphite calorimetry system for the dosimetry of therapeutic x-ray beams

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Jung; Kim, Byoung Chul; Kim, Joong Hyun; Chung, Jae Pil; Kim, Hyun Moon; Yi, Chul Young [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2017-06-15

    A graphite calorimetry system was built and tested under irradiation. The noise level of the temperature measurement system was approximately 0.08 mK (peak to peak). The temperature of the core part rose by approximately 8.6 mK at 800 MU (monitor unit) for 6-MV X-ray beams, and it increased as X-ray energy increased. The temperature rise showed less spread when it was normalized to the accumulated charge, as measured by an external monitoring chamber. The radiation energy absorbed by the core part was determined to have values of 0.798 J/μC, 0.389 J/μC, and 0.352 J/μC at 6 MV, 10 MV, and 18 MV, respectively. These values were so consistent among repeated runs that their coefficient of variance was less than 0.15%.

  15. Design and performance of an imaging plate system for X-ray diffraction study

    Science.gov (United States)

    Amemiya, Yoshiyuki; Matsushita, Tadashi; Nakagawa, Atsushi; Satow, Yoshinori; Miyahara, Junji; Chikawa, Jun-ichi

    1988-04-01

    A new readout system for a BaFBr: Eu 2+ photostimulable phosphor screen (imaging plate) was constructed by modifying a drum scanner, with a design optimized for X-ray diffraction and scattering applications. An effort was made to achieve a high detective quantum efficiency below 20 keV, a small pixel size (25 μm × 25 μm), a low quantization noise (0.22%) using 12-bit A/D converters, and the capability to cover an inherent dynamic range (1:10 5) of the photostimulated luminescence by using two photomultiplier tubes. This system is being used in several synchrotron radiation experiments: Laue diffraction of protein crystals, small angle diffraction from a single muscle fiber, powder diffraction from crystals in a diamond anvil cell, and time-resolved small-angle X-ray scattering from a synthetic polymer during stretching.

  16. Toroidal and poloidal soft x-ray imaging system on the DIII-D tokamak

    Science.gov (United States)

    Snider, R. T.; Evanko, R.; Haskovec, J.

    1988-08-01

    A toroidal soft x-ray imaging system is being added to the currently installed poloidal soft x-ray system on the DIII-D tokamak. The poloidal array is used to determine the poloidal mode structure and location of internal helical MHD perturbations in the plasma. The new array will add toroidal mode identification capability. The four detector arrays are toroidally spaced in a manner that allows identification of toroidal mode numbers up to 24. Beryllium vacuum windows separate the detectors from the tokamak vacuum and also serve as low-energy filters. The separate detector vacuum chambers can be filled with a gas that changes the low-energy cutoff of the system. By proper selection of the gas and pressure the low-energy cutoff can be chosen over the entire range of the detector sensitivity (500-1200 eV). This capability can be used to produce crude x-ray spectra for the entire imaging system or for gain control.

  17. 3D investigation on polystyrene colloidal crystals by floatage self-assembly with mixed solvent via synchrotron radiation x-ray phase-contrast computed tomography

    Science.gov (United States)

    Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao

    2017-06-01

    The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.

  18. The vacuum system of the European X-ray free electron laser XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Zapfe, K; Boehnert, M; Hensler, O; Hoppe, D; Mildner, N; Nagorny, B; Rehlich, K; Remde, H; Wagner, A; Wohlenberg, T; Wojtkiewicz, J [Deutsches Elektronen Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany)], E-mail: kirsten.zapfe@desy.de

    2008-03-01

    The European X-ray Free Electron Laser XFEL, a new international research facility, will be built at DESY/Hamburg. The XFEL will generate extremely brilliant and ultra short pulses of spatially coherent X-rays with tuneable wavelengths down to 0.1 nm, and exploit them for revolutionary scientific experiments at various disciplines. The basic process adopted to produce the X-ray pulses is SASE (Self-Amplified Spontaneous Emission). Therefore electron bunches are produced in a high-brightness gun, brought to high energy of about 20 GeV through a superconducting linear accelerator, and transported to up to 250 m long undulators, where the X-rays are generated. The beam vacuum system of the accelerator contains sections operated at room temperature as well as at 2 K in the areas of the superconducting accelerating structures, thus requiring an insulating vacuum system. In addition to standard UHV requirements, the vacuum system for this facility needs to preserve the cleanliness of the superconducting cavity surfaces. Therefore the preparation of all vacuum components for the 1.6 km long main linac includes cleaning of the components in a clean room to remove particles, installation into the accelerator in local clean rooms, and special procedures for pump down and venting. Further challenges are the undulator vacuum chambers filling more than 700 m, where a high surface quality with respect to surface roughness and thickness of oxide layers is mandatory to reduce wake field effects, and the vacuum systems for the various beam dumps, where exit windows acting as vacuum barriers of sufficient reliability need to be developed. In addition, a large amount of about 1.7 km of transport beam lines is required. The layout of the various vacuum sections as well as experience with prototype components will be described.

  19. 3-D reconstruction and virtual ductoscopy of high-grade ductal carcinoma in situ of the breast with casting type calcifications using refraction-based X-ray CT.

    Science.gov (United States)

    Ichihara, Shu; Ando, Masami; Maksimenko, Anton; Yuasa, Tetsuya; Sugiyama, Hiroshi; Hashimoto, Eiko; Yamasaki, Katsuhito; Mori, Kensaku; Arai, Yoshinori; Endo, Tokiko

    2008-01-01

    Stereomicroscopic observations of thick sections, or three-dimensional (3-D) reconstructions from serial sections, have provided insights into histopathology. However, they generally require time-consuming and laborious procedures. Recently, we have developed a new algorithm for refraction-based X-ray computed tomography (CT). The aim of this study is to apply this emerging technology to visualize the 3-D structure of a high-grade ductal carcinomas in situ (DCIS) of the breast. The high-resolution two-dimensional images of the refraction-based CT were validated by comparing them with the sequential histological sections. Without adding any contrast medium, the new CT showed strong contrast and was able to depict the non-calcified fine structures such as duct walls and intraductal carcinoma itself, both of which were barely visible in a conventional absorption-based CT. 3-D reconstruction and virtual endoscopy revealed that the high-grade DCIS was located within the dichotomatous branches of the ducts. Multiple calcifications occurred in the necrotic core of the continuous DCIS, resulting in linear and branching (casting type) calcifications, a hallmark of high-grade DCIS on mammograms. In conclusion, refraction-based X-ray CT approaches the low-power light microscopic view of the histological sections. It provides high quality slice data for 3-D reconstruction and virtual ductosocpy.

  20. 3D Multifunctional Ablative Thermal Protection System

    Science.gov (United States)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  1. An X-ray Imaging System for Hard-to-Reach Facility Diagnosis Using Femtosecond Laser-Plasma

    Science.gov (United States)

    Oishi, Yuji; Nayuki, Takuya; Nakajima, Chikahito; Fujii, Takashi; Zhidkov, Alexei; Nemoto, Koshichi

    2010-04-01

    For hard-to-reach facility diagnosis, a radiographic testing system that consists of a compact laser-plasma X-ray (LPX) generator and a compact X-ray imaging sensor is shown to be competitive to that based on the isotope imaging. A 1-mm-thick CsI charge-coupled device (CCD) sensor supplied with a cooling system was developed to tolerate a long X-ray exposition. Even without optimization of X-ray yield from a Ta thin film irradiated by 230 mJ, 70 fs laser pulses, clear X-ray images of a SUS304 pipe (outer diameter 34 mm with 4.5 mm thickness) with an elbow were produced.

  2. An objectively-analyzed method for measuring the useful penetration of x-ray imaging systems

    Science.gov (United States)

    Glover, Jack L.; Hudson, Lawrence T.

    2016-06-01

    The ability to detect wires is an important capability of the cabinet x-ray imaging systems that are used in aviation security as well as the portable x-ray systems that are used by domestic law enforcement and military bomb squads. A number of national and international standards describe methods for testing this capability using the so called useful penetration test metric, where wires are imaged behind different thicknesses of blocking material. Presently, these tests are scored based on human judgments of wire visibility, which are inherently subjective. We propose a new method in which the useful penetration capabilities of an x-ray system are objectively evaluated by an image processing algorithm operating on digital images of a standard test object. The algorithm advantageously applies the Radon transform for curve parameter detection that reduces the problem of wire detection from two dimensions to one. The sensitivity of the wire detection method is adjustable and we demonstrate how the threshold parameter can be set to give agreement with human-judged results. The method was developed to be used in technical performance standards and is currently under ballot for inclusion in an international aviation security standard.

  3. New Results for Two Optically Faint Low Mass X-Ray Binary Systems

    CERN Document Server

    Wachter, S

    1997-01-01

    We present optical photometry of the low mass X-ray binary systems GX 349+2 and Ser X-1. Extensive VRI photometry of the faint optical counterpart (V=18.4) to GX 349+2 reveals a period of 22.5 +/- 0.1 h and half-amplitude 0.2 mag. This result confirms and extends our previously reported 22~h period. No color change is detected over the orbit, although the limits are modest. We also report the discovery of two new variable stars in the field of GX 349+2, including a probable W UMa system. Ser X-1 is one of the most intense persistent X-ray burst sources known. It is also one of only three burst systems for which simultaneous optical and X-ray bursts have been observed. The faint blue optical counterpart MM Ser (B~19.2) has long been known to have a companion 2.1" distant. Our images indicate that MM Ser is itself a further superposition of two stars, separated by only 1". At the very least, the ratio of inferred burst to quiescent optical flux is affected by the discovery of this additional component. In the w...

  4. Design and characterization of a phase contrast X-ray CT system

    Science.gov (United States)

    Zambelli, Joseph N.

    Phase contrast x-ray imaging has recently attracted wide research interest, as it offers the possibility to exploit different contrast mechanisms than conventional absorption imaging, with the potential for higher quality images or more available information as a result. This work details design and construction of au experimental grating-interferometer-based differential phase contrast computed tomography (DPC-CT) imaging system, presents measurements of performance, and compares this new imaging technique with conventional absorption imaging. Details of the fabrication of the specialized x-ray phase and absorption gratings are also provided. This system is unique in that makes use of a conventional rotating-anode x-ray tube, unlike previous designs which were based upon stationary anode x-ray tubes or synchrotron sources. The imaging system described here enables simultaneous reconstruction of electron density, effective atomic number, attenuation coefficient, and small-angle scatter density with data acquired from a single scan. It is theoretically shown and experimentally verified that DPC-CT imaging allows imaging of electron density at high spatial resolution with a much less severe dose penalty compared with conventional absorption imaging. Improved object visibility using electron density imaging is demonstrated with CNR measurements in physical phantoms and comparisons of reconstructions of breast tissue samples. The ability to directly image both electron density and effective atomic number provides a truly quantitative imaging technique and accuracy of the technique is shown using phantoms and potential applications are demonstrated using breast tissue samples. A new reconstruction algorithm which allows a doubling of the diameter of the scanning field of view, a potential enabling technology for eventual clinical use, is also demonstrated.

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures ...

  6. Supplementary X-ray studies of the Ni-Sn-Bi system

    Directory of Open Access Journals (Sweden)

    Vassilev G.P.

    2007-01-01

    Full Text Available Phase equilibria were studied in the system Ni-Sn-Bi. Special attention has been paid to the identification of the recently found ternary phase. For this purpose samples were synthesized using intimately mixed powders. After annealing and quenching, all alloys were analyzed by scanning electron microscope and by X-ray diffraction. The results give evidences about the existence of a ternary compound with approximate formula Ni6Sn2Bi to Ni7Sn2Bi. Overlapping of some neighboring diffraction peaks of this phase with NiBi and Ni3Sn_LT is the reason for the difficulties related to the X-ray diffraction identification of the ternary phase.

  7. An X-ray photoelectron spectroscopic study of the B-N-Ti system

    Energy Technology Data Exchange (ETDEWEB)

    Seal, S. [Lawrence Berkeley National Lab., CA (United States); Barr, T.L. [Univ. of Wisconsin, Milwaukee, WI (United States); Sobczak, N. [Foundry Research Inst., Cracow (Poland); Benko, E. [Inst. of Metal Cutting, Cracow (Poland); Morgiel, J. [Polish Academy of Sciences, Cracow (Poland). Inst. of Metallurgy and Materials Science

    1997-03-01

    Composite nitrides (such as BN, TiN) are widely used in various industrial applications because of their extreme wear and corrosion resistance, thermal and electrical properties. In order to obtain composite materials with these optimal properties, it is important to elucidate whether any chemical reactions occur at nitride/metal interfaces, e.g., those involving BN-Ti/TiN. Materials of interest include the deposition by PVD of Ti and TiN on BN substrates. Some of these systems were then subjected to varying degrees of physical and thermal alteration. Detailed X-ray photoelectron spectroscopy (XPS) has therefore been rendered of these interfaces using cross-sectional display and sputter etching. Resulting structural and morphological features have been investigated with transmission electron microscopy (TEM) and X-ray diffraction (XRD). Diffusion of the nitridation, oxynitride formation and interfacial growth are of general interest.

  8. A high-field pulsed magnet system for x-ray scattering studies in Voigt geometry

    CERN Document Server

    Islam, Zahirul; Ruff, Jacob P C; Das, Ritesh K; Trakhtenberg, Emil; Nojiri, Hiroyuki; Narumi, Yasuo; Canfield, Paul C

    2011-01-01

    We present a new pulsed-magnet system that enables x-ray single-crystal diffraction in addition to powder and spectroscopic studies in Voigt geometry. The apparatus consists of a large-bore solenoid, cooled by liquid nitrogen. A second independent closed-cycle cryostat is used for cooling samples near liquid helium temperatures. Pulsed magnetic fields up to ~30 T with a minimum of ~6 ms in total duration are generated by discharging a 40 kJ capacitor bank into the magnet coil. The unique characteristic of this instrument is the preservation of maximum scattering angle (~23.6 deg.) through the magnet bore by virtue of a novel double-funnel insert. This instrument would facilitate x-ray diffraction and spectroscopic studies that are impractical, if not impossible, to perform using conventional split-pair magnets and offers a practical solution for preserving optical access in future higher-field pulsed magnets.

  9. Dedicated Stereophotogrammetric X-Ray System For Craniofacial Research And Treatment Planning

    Science.gov (United States)

    Baumrind, Sheldon; Moffitt, Francis; Curry, Sean; Isaacson, Robert J.

    1983-07-01

    We have constructed and brought into use what we believe to be the first dedicated coplanar craniofacial stereometric x-ray system for clinical use. Paired Machlett Dynamax 50/58 x-ray tubes with 0.3 mm focal spots are employed. Displacement between emitters is 16 inches. The focus film distance for both emitters is 66.5 inches. The mid-sagittal plane to focus distance is 60 inches. One film of each stereo pair conforms with the standards of the Second Roentgenocephalometric Workshop and can be used to make all standard two-dimensional orthodontic and cephalometric measurements. When supplemented by data from the conjugate film, a three-dimensional coordinate map can be generated as a machine operation. Specialized complementary software has been developed to increase the reliability of landmark location both in two and in three dimensions.

  10. Alignment System for Full-Shell Replicated X-Ray Mirrors

    Science.gov (United States)

    Gubarev, Mikhail; Arnold, William; Ramsey, Brian

    2009-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysical applications using the electroformnickel replication process. For space-based applications these optics must be light-weight yet stable, which dictates the use of very-thin-walled full-shell mirrors. Such shells have been fabricated with resolution as good as 11 arcsec for hard x-rays, and technology enhancements under development at MSFC are aimed at producing mirrors with resolution better than 10 arcsec. The challenge, however, is to preserve this resolution during mounting and assembly. We present here a status report on a mounting and alignment system currently under development at Marshall Space Flight Center designed to meet this challenge.

  11. An image processing system for digital chest X-ray images.

    Science.gov (United States)

    Cocklin, M; Gourlay, A; Jackson, P; Kaye, G; Miessler, M; Kerr, I; Lams, P

    1984-01-01

    This paper investigates the requirements for image processing of digital chest X-ray images. These images are conventionally recorded on film and are characterised by large size, wide dynamic range and high resolution. X-ray detection systems are now becoming available for capturing these images directly in photoelectronic-digital form. In this report, the hardware and software facilities required for handling these images are described. These facilities include high resolution digital image displays, programmable video look up tables, image stores for image capture and processing and a full range of software tools for image manipulation. Examples are given of the application of digital image processing techniques to this class of image.

  12. 3D-Quantitative Phase Analysis and Strain Mapping of Nanostructured Coatings by Synchrotron Energy Dispersive X-ray Diffraction: A New Approach to Materials Characterization

    Science.gov (United States)

    2009-06-12

    Rutile & Anatase in Precursor Powder & TSC Comparison with X-ray Absorption Data Variation of strain in the...Phase Analysis Results: TiO2 Precursor vs. TSC (εappl = 0) ( ) ( ) ( ) ( ) ( ) ( )( ) 1Rutile 110 1 1Rutile Anatase 110 101 I % Rutile = 100; I +I Rutile ... Rutile Anatase RIR RIR RIR − − −    ×      RIR: Reference Intensity Ratio NSMG 2 powder Rutile (110) 3.2276 11854 11.9 Anatase (101)

  13. Measurement of Localized Corrosion Rates at Inclusion Particles in AA7075 by In Situ Three Dimensional (3D) X-ray Synchrotron Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sudhanshu S.; Williams, Jason J.; Stannard, Tyler J.; Xiao, Xianghui; De Carlo, Francesco; Chawla, Nikhilesh

    2016-03-01

    In situ X-ray synchrotron tomography was used to measure the localized corrosion rate of Mg2Si particles present in 7075 aluminum alloys in deionized ultra-filtered (DIUF) water. The evolution of hydrogen bubbles was captured as a function of time and the measured volume was used to calculate the local corrosion rate of Mg2Si particles. It was shown that in the absence of chloride ions, stress was needed to create fresh particle surfaces, either by fracture or debonding, to initiate corrosion at the particles.

  14. Direct Evidence of the Symmetry Change of Co-3d Orbitals Associated with the Spin-State Transition in LaCoO3 by X-ray Compton Scattering

    Science.gov (United States)

    Kobayashi, Yoshihiko; Sakurai, Yoshiharu; Itou, Masayoshi; Sato, Keisuke; Asai, Kichizo

    2015-11-01

    We have investigated the electron momentum density of Co-3d electrons in LaCoO3 using X-ray Compton scattering in order to demonstrate the symmetry change of the Co(3d) electron orbital states through the spin-state transition. The electron momentum density reconstructed from the Compton profiles indicates the symmetry change in the 3d electron-orbital states between below and above 100 K, which provides the first microscopic direct evidence for the orbital symmetry change of occupied electronic state associated with the spin-state transition in LaCoO3. The reproduced electron orbital states show a covalent bond with O-2p orbitals, which is responsible for the collectiveness in the characteristics of the spin-state transition.

  15. Evaluation of multiple-scale 3D characterization for coal physical structure with DCM method and synchrotron X-ray CT.

    Science.gov (United States)

    Wang, Haipeng; Yang, Yushuang; Yang, Jianli; Nie, Yihang; Jia, Jing; Wang, Yudan

    2015-01-01

    Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM) approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  16. Evaluation of Multiple-Scale 3D Characterization for Coal Physical Structure with DCM Method and Synchrotron X-Ray CT

    Directory of Open Access Journals (Sweden)

    Haipeng Wang

    2015-01-01

    Full Text Available Multiscale nondestructive characterization of coal microscopic physical structure can provide important information for coal conversion and coal-bed methane extraction. In this study, the physical structure of a coal sample was investigated by synchrotron-based multiple-energy X-ray CT at three beam energies and two different spatial resolutions. A data-constrained modeling (DCM approach was used to quantitatively characterize the multiscale compositional distributions at the two resolutions. The volume fractions of each voxel for four different composition groups were obtained at the two resolutions. Between the two resolutions, the difference for DCM computed volume fractions of coal matrix and pores is less than 0.3%, and the difference for mineral composition groups is less than 0.17%. This demonstrates that the DCM approach can account for compositions beyond the X-ray CT imaging resolution with adequate accuracy. By using DCM, it is possible to characterize a relatively large coal sample at a relatively low spatial resolution with minimal loss of the effect due to subpixel fine length scale structures.

  17. Accreting Neutron Stars in Low-Mass X-Ray Binary Systems

    CERN Document Server

    Lamb, Frederick K

    2007-01-01

    Using the Rossi X-ray Timing Explorer (RossiXTE), astronomers have discovered that disk-accreting neutron stars with weak magnetic fields produce three distinct types of high-frequency X-ray oscillations. These oscillations are powered by release of the binding energy of matter falling into the strong gravitational field of the star or by the sudden nuclear burning of matter that has accumulated in the outermost layers of the star. The frequencies of the oscillations reflect the orbital frequencies of gas deep in the gravitational field of the star and/or the spin frequency of the star. These oscillations can therefore be used to explore fundamental physics, such as strong-field gravity and the properties of matter under extreme conditions, and important astrophysical questions, such as the formation and evolution of millisecond pulsars. Observations using RossiXTE have shown that some two dozen neutron stars in low-mass X-ray binary systems have the spin rates and magnetic fields required to become milliseco...

  18. The First Simultaneous X-Ray/Radio Detection of the First Be/BH System MWC 656

    Science.gov (United States)

    Ribó, M.; Munar-Adrover, P.; Paredes, J. M.; Marcote, B.; Iwasawa, K.; Moldón, J.; Casares, J.; Migliari, S.; Paredes-Fortuny, X.

    2017-02-01

    MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Here we report on a deep joint Chandra/VLA observation of MWC 656 (and contemporaneous optical data) conducted in 2015 July that has allowed us to unambiguously identify the X-ray counterpart of the source. The X-ray spectrum can be fitted with a power law with Γ ∼ 2, providing a flux of ≃4 × 10‑15 erg cm‑2 s‑1 in the 0.5–8 keV energy range and a luminosity of LX ≃ 3 × 1030 erg s‑1 at a 2.6 kpc distance. For a 5 M⊙ BH this translates into ≃5 × 10‑9 LEdd. These results imply that MWC 656 is about 7 times fainter in X-rays than it was two years before and reaches the faintest X-ray luminosities ever detected in stellar-mass BHs. The radio data provide a detection with a peak flux density of 3.5 ± 1.1 μJy beam‑1. The obtained X-ray/radio luminosities for this quiescent BH HMXB are fully compatible with those of the X-ray/radio correlations derived from quiescent BH low-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass BHs is independent of the nature of the donor star.

  19. Landmine detection by 3D GPR system

    Science.gov (United States)

    Sato, Motoyuki; Yokota, Yuya; Takahashi, Kazunori; Grasmueck, Mark

    2012-06-01

    In order to demonstrate the possibility of Ground Penetrating Radar (GPR) for detection of small buried objects such as landmine and UXO, conducted demonstration tests by using the 3DGPR system, which is a GPR system combined with high accuracy positing system using a commercial laser positioning system (iGPS). iGPS can provide absolute and better than centimetre precise x,y,z coordinates to multiple mine sensors at the same time. The developed " 3DGPR" system is efficient and capable of high-resolution 3D shallow subsurface scanning of larger areas (25 m2 to thousands of square meters) with irregular topography . Field test by using a 500MHz GPR system equipped with 3DGPR system was conducted. PMN-2 and Type-72 mine models have been buried at the depth of 5-20cm in sand. We could demonstrate that the 3DGPR can visualize each of these buried land mines very clearly.

  20. CIAO: A Modern Data Analysis System for X-Ray Astronomy

    Science.gov (United States)

    Fruscione, Antonella

    2017-08-01

    It is now eighteen years after launch and Chandra continues to produce spectacular results!A portion of the success is to be attributed to the data analysis software CIAO (Chandra Interactive Analysis of Observations) that the Chandra X-Ray Center (CXC) continues to improve and release year after year.CIAO is downloaded more than 1200 times a year and it is used by a wide variety of users around the world: from novice to experienced X-ray astronomers, high school, undergraduate and graduate students, archival users (many new to X-ray or Chandra data), users with extensive resources and others from smaller countries and institutions.The scientific goals and kinds of datasets and analysis cover a wide range: observations spanning from days to years, different instrument configurations and different kinds of targets, from pointlike stars and quasars, to fuzzy galaxies and clusters, to moving solar objects. These different needs and goals require a variety of specialized software and careful and detailed documentation which is what the CIAO software provides. In general, we strive to build a software system which is easy for beginners, yet powerful for advanced users.The complexity of the Chandra data require a flexible data analysis system which provides an environment where the users can apply our tools, but can also explore and construct their own applications. The main purpose of this talk is to present CIAO as a modern data analysis system for X-ray data analysis.CIAO has grown tremendously over the years and we will highlight (a) the most recent advancements with a particular emphasis on the newly developed high-level scripts which simplify the analysis steps for the most common cases making CIAO more accessible to all users - including beginners and users who are not X-ray astronomy specialists, (b) the python-based Sherpa modelling and fitting application and the new stand-alone version openly developed and distributed on Github and (c) progress on methods to

  1. 3D imaging using X-Ray tomography and SEM combined FIB to study non isothermal creep damage of (111) oriented samples of γ / γ ′ nickel base single crystal superalloy MC2

    KAUST Repository

    Jouiad, Mustapha

    2012-01-01

    An unprecedented investigation consisting of the association of X-Ray tomography and Scanning Electron Microscopy combined with Focus Ion Beam (SEM-FIB) is conducted to perform a 3D reconstruction imaging. These techniques are applied to study the non-isothermal creep behavior of close (111) oriented samples of MC2 nickel base superalloys single crystal. The issue here is to develop a strategy to come out with the 3D rafting of γ\\' particles and its interaction whether with dislocation structures or/and with the preexisting voids. This characterization is uncommonly performed away from the conventional studied orientation [001] in order to feed the viscoplastic modeling leading to its improvement by taking into account the crystal anisotropy. The creep tests were performed at two different conditions: classical isothermal tests at 1050°C under 140 MPa and a non isothermal creep test consisting of one overheating at 1200°C and 30 seconds dwell time during the isothermal creep life. The X-Ray tomography shows a great deformation heterogeneity that is pronounced for the non-isothermal tested samples. This deformation localization seems to be linked to the preexisting voids. Nevertheless, for both tested samples, the voids coalescence is the precursor of the observed damage leading to failure. SEM-FIB investigation by means of slice and view technique gives 3D views of the rafted γ\\' particles and shows that γ corridors evolution seems to be the main creep rate controlling parameter. © 2012 Trans Tech Publications, Switzerland.

  2. Simulation of the fundamental and nonlinear harmonic output from an FEL amplifier with a soft x-ray seed laser

    Energy Technology Data Exchange (ETDEWEB)

    Biedron, S. G.; Freund, H. P.; Li, Y.; Milton, S. V.

    2000-07-05

    A single-pass, high-gain free-electron laser (FEL) x-ray amplifier was simulated using the 3D, polychromatic simulation code MEDUSA. The seed for the system is a table-top, soft x-ray laser. The simulated fundamental and nonlinear harmonic x-ray output wavelengths are discussed.

  3. Evaluation of a real-time hybrid three-dimensional echo and X-ray imaging system for guidance of cardiac catheterisation procedures.

    Science.gov (United States)

    Housden, R J; Arujuna, A; Ma, Y; Nijhof, N; Gijsbers, G; Bullens, R; O'Neill, M; Cooklin, M; Rinaldi, C A; Gill, J; Kapetanakis, S; Hancock, J; Thomas, M; Razavi, R; Rhode, K S

    2012-01-01

    Minimally invasive cardiac surgery is made possible by image guidance technology. X-ray fluoroscopy provides high contrast images of catheters and devices, whereas 3D ultrasound is better for visualising cardiac anatomy. We present a system in which the two modalities are combined, with a trans-esophageal echo volume registered to and overlaid on an X-ray projection image in real-time. We evaluate the accuracy of the system in terms of both temporal synchronisation errors and overlay registration errors. The temporal synchronisation error was found to be 10% of the typical cardiac cycle length. In 11 clinical data sets, we found an average alignment error of 2.9 mm. We conclude that the accuracy result is very encouraging and sufficient for guiding many types of cardiac interventions. The combined information is clinically useful for placing the echo image in a familiar coordinate system and for more easily identifying catheters in the echo volume.

  4. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  5. Effect of Moisture Exchange on Interface Formation in the Repair System Studied by X-ray Absorption

    Directory of Open Access Journals (Sweden)

    Mladena Lukovic

    2015-12-01

    Full Text Available In concrete repair systems, material properties of the repair material and the interface are greatly influenced by the moisture exchange between the repair material and the substrate. If the substrate is dry, it can absorb water from the repair material and reduce its effective water-to-cement ratio (w/c. This further affects the hydration rate of cement based material. In addition to the change in hydration rate, void content at the interface between the two materials is also affected. In this research, the influence of moisture exchange on the void content in the repair system as a function of initial saturation level of the substrate is investigated. Repair systems with varying level of substrate saturation are made. Moisture exchange in these repair systems as a function of time is monitored by the X-ray absorption technique. After a specified curing age (3 d, the internal microstructure of the repair systems was captured by micro-computed X-ray tomography (CT-scanning. From reconstructed images, different phases in the repair system (repair material, substrate, voids can be distinguished. In order to quantify the void content, voids were thresholded and their percentage was calculated. It was found that significantly more voids form when the substrate is dry prior to application of the repair material. Air, initially filling voids and pores of the dry substrate, is being released due to the moisture exchange. As a result, air voids remain entrapped in the repair material close to the interface. These voids are found to form as a continuation of pre-existing surface voids in the substrate. Knowledge about moisture exchange and its effects provides engineers with the basis for recommendations about substrate preconditioning in practice.

  6. A portable MBE system for in situ X-Ray investigations at synchrotron beamlines

    CERN Document Server

    Slobodskyy, T; Grigoriev, D; Minkevich, A A; Hu, D Z; Schaadt, D M; Baumbach, T

    2012-01-01

    A portable synchrotron MBE system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, RHEED setup and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in-vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate it's performance by investigating the annealing process of buried InGaAs self organized quantum dots.

  7. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines.

    Science.gov (United States)

    Slobodskyy, T; Schroth, P; Grigoriev, D; Minkevich, A A; Hu, D Z; Schaadt, D M; Baumbach, T

    2012-10-01

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  8. An Effective 3D Ear Acquisition System.

    Directory of Open Access Journals (Sweden)

    Yahui Liu

    Full Text Available The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  9. An Effective 3D Ear Acquisition System.

    Science.gov (United States)

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  10. X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation

    Energy Technology Data Exchange (ETDEWEB)

    Bianconi, A.; Fritsch, E.; Calas, G.; Petiau, J.

    1985-09-15

    The x-ray-absorption near-edge structure (XANES) of transition elements in tetrahedral coordination in crystals and glasses has been studied. We have identified the XANES features in the continuum that can be assigned to multiple scattering within the first coordination shell. The energy positions E/sub r/ of the XANES peaks in the continuum follow the rule (E/sub r/-E/sub b/)d/sup 2/ = const, where E/sub b/ is the energy of the prepeak, defined as the first core excitation to the bound antibonding state of T/sub 2/ symmetry, and d is the interatomic distance. This plot allows us to determine the tetrahedral coordination of a vanadium impurity in a SiO/sub 2/ glass and to get an estimation of the vanadium-oxygen distance (1.77 +- 0.05 A).

  11. X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation

    Science.gov (United States)

    Bianconi, A.; Fritsch, E.; Calas, G.; Petiau, J.

    1985-09-01

    The x-ray-absorption near-edge structure (XANES) of transition elements in tetrahedral coordination in crystals and glasses has been studied. We have identified the XANES features in the continuum that can be assigned to multiple scattering within the first coordination shell. The energy positions Er of the XANES peaks in the continuum follow the rule (Er-Eb)d2= const, where Eb is the energy of the prepeak, defined as the first core excitation to the bound antibonding state of T2 symmetry, and d is the interatomic distance. This plot allows us to determine the tetrahedral coordination of a vanadium impurity in a SiO2 glass and to get an estimation of the vanadium-oxygen distance (1.77+/-0.05 Å).

  12. Performance investigation of a hospital-grade x-ray tube-based differential phase-contrast cone beam CT system

    Science.gov (United States)

    Yu, Yang; Ning, Ruola; Cai, Weixing; Liu, Jiangkun; Conover, David

    2012-03-01

    Differential phase contrast technique could be the next breakthrough in the field of CT imaging. While traditional absorption-based X-ray CT imaging is inefficient at differentiating soft tissues, phase-contrast technique offers great advantage as being able to produce higher contrast images utilizing the phase information of objects. Our long term goal is to develop a gantry-based hospital-grade X-ray tube differential phase contrast cone-beam CT (DPC-CBCT) technology which is able to achieve higher contrast noise ratio (CNR) in soft tissue imaging without increasing the dose level. Based on the micro-focus system built last year, a bench-top hospital-grade X-ray tube DPC-CBCT system is designed and constructed. The DPC-CBCT system consists of an X-ray source, i.e. a hospital-grade X-ray tube and a source grating, a high-resolution detector, a rotating phantom holder, a phase grating and an analyzer grating. Threedimensional (3-D) phase-coefficients are reconstructed, providing us with images enjoying higher CNR than, yet equivalent dose level to, a conventional CBCT scan. Three important aspects of the system are investigated: a) The The system's performance in term of CNR of the reconstruction image with regard to dose levels, b) the impacts of different phase stepping schemes, i.e. 5 steps to 8 steps, in term of CNR on the reconstruction images, and c) the influence of magnification or position of the phantom on image quality, chiefly CNR. The investigations are accomplished via phantom study.

  13. Timing and low-level rf system for an x-ray laser

    Directory of Open Access Journals (Sweden)

    Yuji Otake

    2016-02-01

    Full Text Available An x-ray free-electron laser (XFEL, SACLA, designed to open up new science, was constructed for generating coherent x rays with a peak power of more than 10 GW and a very short pulse of below 30 fs. This feature demands a very highly short-term temporal stability of less than 50 fs to the acceleration rf field of SACLA. For this reason, we developed a timing and low-level rf (LLRF system for SACLA based on that of the SPring8 compact SASE source (SCSS test accelerator for verifying the feasibility of an XFEL. The performance of the system using the in-phase and quadrature rf manipulation method was improved from SCSS’s system. Since the facility length of SACLA is 700 m, which is 10 times longer than that of the SCSS test accelerator, a phase-stabilized optical-fiber system designed to transmit time standard rf signals with low loss was also developed and deployed. This optical-fiber system equips fiber optical-length feedback control in order to mitigate environmental effects, such as temperature and humidity changes. On the other hand, the demanded maximum rf temporal stability is less than 50 fs, which is almost 10 times smaller than that of the SCSS test accelerator. Hence, reducing electric noise and increasing the temperature stability around timing and LLRF instruments were necessary and realized with a very low-noise power supply and a hemathermal 19-inch enclosure. The short-term temporal performance of the timing LLRF system finally attained a temporal stability of less than 13.6 fs in rms measured by a beam arrival-time measurement. This stability greatly helps to achieve the stable x-ray lasing of SACLA for routine operation during user experiments.

  14. Design and optimization of the readout system for X-ray CCDs

    Institute of Scientific and Technical Information of China (English)

    LU Bo; HAN Da-Wei; LI Mao-Shun; YANG Yan-Ji; WANG Juan; CHEN Tian-Xiang; HU Wei; LI Cheng-Kui; LIU Xiao-Yan; CUI Wei-Wei; WANG Yu-Sa; ZHU Yue; ZHANG Yi; XU Yu-Peng; CHEN Yong; HUO Jia; LI Wei

    2012-01-01

    A readout system for X-ray CCDs based on an improved architecture is presented; by optimizing several critical circuit blocks along the analog signal chain,the conflict between the readout speed and readout noise is greatly alleviated.Using CCD47-10 as its target CCD,the readout system has achieved 8.6e- readout noise and 142 eV FWHM at 5.9 keV Mn Kα under a pixel rate of 80 kHz.Also its performance of imaging has been investigated.

  15. A monochromatic x-ray imaging system for characterizing low-density foams

    Energy Technology Data Exchange (ETDEWEB)

    Lanier, Nicholas E. [Los Alamos National Laboratory; Taccetti, Jose M. [Los Alamos National Laboratory; Hamilton, Christopher E. [Los Alamos National Laboratory

    2012-05-04

    In High Energy Density (HED) laser experiments, targets often require small, low-density, foam components. However, their limited size can preclude single component characterization, forcing one to rely solely on less accurate bulk measurements. We have developed a monochromatic imaging a system to characterize both the density and uniformity of single component low-mass foams. This x-ray assembly is capable of determining line-averaged density variations near the 1% level, and provides statistically identical results to those obtained at the Brookhaven's NSLS. This system has the added benefit of providing two-dimensional density data, allowing an assessment of density uniformity.

  16. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Science.gov (United States)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  17. TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Xin; DU Ying-Chao; DU Qiang; LI Ren-Kai; HUA Jian-Fei; HUANG Wen-Hui; TANG Chuan-Xiang

    2009-01-01

    A TW(Tera Watt)laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source(TTX)is being built.Both UV(ultraviolet)laser pulse for driving the photocathode radiofrequency(RF)gun and the IR(infrared)laser pulse as the electron-beam-scattered-light are provided by the system.Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  18. New Results for Two Optically Faint Low Mass X-Ray Binary Systems

    OpenAIRE

    Wachter, Stefanie

    1997-01-01

    We present optical photometry of the low mass X-ray binary systems GX 349+2 and Ser X-1. Extensive VRI photometry of the faint optical counterpart (V=18.4) to GX 349+2 reveals a period of 22.5 +/- 0.1 h and half-amplitude 0.2 mag. This result confirms and extends our previously reported 22 h period. No color change is detected over the orbit, although the limits are modest. We also report the discovery of two new variable stars in the field of GX 349+2, including a probable W UMa system. Ser ...

  19. A dynamic 3D foot reconstruction system.

    Science.gov (United States)

    Thabet, Ali K; Trucco, Emanuele; Salvi, Joaquim; Wang, Weijie; Abboud, Rami J

    2011-01-01

    Foot problems are varied and range from simple disorders through to complex diseases and joint deformities. Wherever possible, the use of insoles, or orthoses, is preferred over surgery. Current insole design techniques are based on static measurements of the foot, despite the fact that orthoses are prevalently used in dynamic conditions while walking or running. This paper presents the design and implementation of a structured-light prototype system providing dense three dimensional (3D) measurements of the foot in motion, and its use to show that foot measurements in dynamic conditions differ significantly from their static counterparts. The input to the system is a video sequence of a foot during a single step; the output is a 3D reconstruction of the plantar surface of the foot for each frame of the input. Engineering and clinical tests were carried out for the validation of the system. The accuracy of the system was found to be 0.34 mm with planar test objects. In tests with real feet, the system proved repeatable, with reconstruction differences between trials one week apart averaging 2.44 mm (static case) and 2.81 mm (dynamic case). Furthermore, a study was performed to compare the effective length of the foot between static and dynamic reconstructions using the 4D system. Results showed an average increase of 9 mm for the dynamic case. This increase is substantial for orthotics design, cannot be captured by a static system, and its subject-specific measurement is crucial for the design of effective foot orthoses.

  20. APPLICATION OF THE MOMENT METHODS TO ANALYSIS OF X-RAY DIFFRACTION LINE PROFILE FOR PA1010-BMI SYSTEM

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hongfang; YU Li; ZHANG Lihua; MO Zhishen; MU Zhongchen

    1995-01-01

    Pure X-ray diffraction profiles have been analysed for polyamide 1010 and PA1010-BMI system by means of multipeak fitting resolution of X-ray diffraction. The methods of variance and fourth moment have been applied to determine the particle size and strain values for the paracrystalline materials. The results indicated that both variance and fourth moment of X-ray diffraction line profile yielded approximately the same values of the particle size and the strain. The particle sizes of (100) reflection have been found to decrease with increasing BMI content, whereas the strain values increased.

  1. X-ray Luminescence Efficiency of GAGG:Ce Single Crystal Scintillators for use in Tomographic Medical Imaging Systems

    Science.gov (United States)

    David, S. L.; Valais, I. G.; Michail, C. M.; Kandarakis, I. S.

    2015-09-01

    The purpose of the present study was to evaluate different scintillator crystal samples, with a cross section of 3×3mm2 and various thicknesses ranging from 4mm up to 20mm, of the new mixed Gd3Al2Ga3O12:Ce (GAGG:Ce) scintillator material under X-ray irradiation, for potential applications in Tomographic Medical Imaging systems. Evaluation was performed by determining the X-ray luminescence efficiency (XLE) (emitted light energy flux over incident X-ray energy flux) in energies employed in general X-ray imaging. For the luminescence efficiency measurements, the scintillator samples were exposed to X-rays using a BMI General Medical Merate tube, with rotating Tungsten anode and inherent filtration equivalent to 2 mm Al. X-ray tube voltages between 50 to 130 kV were selected. An additional 20 mm filtration was introduced to the beam to simulate beam quality alternation equivalent to a human body. The emitted light energy flux measurements were performed using an experimental set up comprising a light integration sphere coupled to an EMI 9798B photomultiplier tube which was connected to a Cary 401 vibrating reed electrometer. The GAGG:Ce sample with dimensions 3×3×10 mm3 exhibited higher XLE values, in the whole X- ray energy range examined. XLE value equal to 0.013 was recorded for this crystal at 130 kVp - a setting frequently used in Computed Tomography applications.

  2. Luminescence properties after X-ray irradiation for dosimetry

    Science.gov (United States)

    Hong, Duk-Geun; Kim, Myung-Jin

    2016-05-01

    To investigate the luminescence characteristics after exposure to X-ray radiation, we developed an independent, small X-ray irradiation system comprising a Varian VF-50J mini X-ray generator, a Pb collimator, a delay shutter, and an Al absorber. With this system, the apparent dose rate increased linearly to 0.8 Gy/s against the emission current for a 50 kV anode potential when the shutter was delayed for an initial 4 s and the Al absorber was 300 µm thick. In addition, an approximately 20 mm diameter sample area was irradiated homogeneously with X rays. Based on three-dimensional (3D) thermoluminescence (TL) spectra, the small X-ray irradiator was considered comparable to the conventional 90Sr/90Y beta source even though the TL intensity from beta irradiation was higher than that from X-ray irradiation. The single aliquot regenerative (SAR) growth curve for the small X-ray irradiator was identical to that for the beta source. Therefore, we concluded that the characteristics of the small X-ray irradiator and the conventional 90Sr/90Y beta source were similar and that X ray irradiation had the potential for being suitable for use in luminescence dosimetry.

  3. Piecewise-rigid 2D-3D registration for pose estimation of snake-like manipulator using an intraoperative x-ray projection

    Science.gov (United States)

    Otake, Y.; Murphy, R. J.; Kutzer, M. D.; Taylor, R. H.; Armand, M.

    2014-03-01

    Background: Snake-like dexterous manipulators may offer significant advantages in minimally-invasive surgery in areas not reachable with conventional tools. Precise control of a wire-driven manipulator is challenging due to factors such as cable deformation, unknown internal (cable friction) and external forces, thus requiring correcting the calibration intraoperatively by determining the actual pose of the manipulator. Method: A method for simultaneously estimating pose and kinematic configuration of a piecewise-rigid object such as a snake-like manipulator from a single x-ray projection is presented. The method parameterizes kinematics using a small number of variables (e.g., 5), and optimizes them simultaneously with the 6 degree-of-freedom pose parameter of the base link using an image similarity between digitally reconstructed radiographs (DRRs) of the manipulator's attenuation model and the real x-ray projection. Result: Simulation studies assumed various geometric magnifications (1.2-2.6) and out-of-plane angulations (0°-90°) in a scenario of hip osteolysis treatment, which demonstrated the median joint angle error was 0.04° (for 2.0 magnification, +/-10° out-of-plane rotation). Average computation time was 57.6 sec with 82,953 function evaluations on a mid-range GPU. The joint angle error remained lower than 0.07° while out-of-plane rotation was 0°-60°. An experiment using video images of a real manipulator demonstrated a similar trend as the simulation study except for slightly larger error around the tip attributed to accumulation of errors induced by deformation around each joint not modeled with a simple pin joint. Conclusions: The proposed approach enables high precision tracking of a piecewise-rigid object (i.e., a series of connected rigid structures) using a single projection image by incorporating prior knowledge about the shape and kinematic behavior of the object (e.g., each rigid structure connected by a pin joint parameterized by a

  4. Data Acquisition, Control, Communication and Computation System of Solar X-ray Spectrometer (SOXS) Mission

    Indian Academy of Sciences (India)

    Amish B. Shah; N. M. Vadher; Rajmal Jain; Hemant Dave; Vishal Shah; K. S. B. Manian; Satish Kayasth; Vinod Patel; Girish Ubale; Kirit Shah; Chirag Solanki; M. R. Deshpande; Ramkrishna Sharma; C. N. Umapathy; N. Viswanath; Ravi Kulkarni; P. S. Kumar

    2006-06-01

    The Solar X-ray Spectrometer (SOXS) mission onboard GSAT-2 Indian Spacecraft was launched on 08 May 2003 using GSLV–D2 rocket by Indian Space Research Organization (ISRO). SOXS aims to study solar flares, which are the most violent and energetic phenomena in the solar system, in the energy range of 4–56 keV with high spectral and temporal resolution. SOXS employs state-of-the-art semiconductor devices, viz., Si-Pin and CZT detectors to achieve sub-keV energy resolution requirements. In this paper, we present an overview of data acquisition, control, communication and computation of low energy payload of the SOXS mission.

  5. Development of achromatic full-field x-ray microscopy with compact imaging mirror system

    Science.gov (United States)

    Matsuyama, S.; Emi, Y.; Kino, H.; Sano, Y.; Kohmura, Y.; Tamasaku, K.; Yabashi, M.; Ishikawa, T.; Yamauchi, K.

    2013-09-01

    Compact advanced Kirkpatrick-Baez optics are used to construct a microscope that is easy to align and robust against vibrations and thermal drifts. The entire length of the imaging mirror system is 286 mm, which is 34% shorter than the previous model. A spatial resolution test is performed in which magnified bright-field images of a pattern are taken with an X-ray camera at an energy of 10 keV at the BL29XUL beamline of SPring-8. A line-and-space pattern having a 50- nm width could be resolved, although the image contrast is low.

  6. A Mechanical Study of a Glass Fabric-Thermoplastic Resin Composite: 3D-DIC and X-ray tomographic observations explained by numerical simulations based on a spectral solver

    CERN Document Server

    Boufaida, Zakariya; André, Stéphane; Farge, Laurent

    2016-01-01

    In the study presented in this paper, we analyzed the mechanical response of a glass fiber plain weave/polymer composite at the fabric millimetric mesoscale. The detail of the stress and strain fields in a fabric repeating unit cell was numerically calculated using CraFT (Composite response and Fourier Transforms), a code specifically conceived for simulating the mechanical behaviour of materials with complex microstructure. The local strain fields obtained by simulation were found to be in very good agreement with measurements carried out using 3D Digital Image Correlation (3D DIC). From numerical stress fields calculated with the CraFT solver, we also highlighted the subregions inside the periodic mesostructure where there is maximum stress. Furthermore, with X-ray tomography post mortem measurements, we were able to confirm that certain damage modes were well initiated in these microstructure subregions of stress concentration.

  7. A novel lobster-eye imaging system based on Schmidt-type objective for X-ray-backscattering inspection

    Science.gov (United States)

    Xu, Jie; Wang, Xin; Zhan, Qi; Huang, Shengling; Chen, Yifan; Mu, Baozhong

    2016-07-01

    This paper presents a novel lobster-eye imaging system for X-ray-backscattering inspection. The system was designed by modifying the Schmidt geometry into a treble-lens structure in order to reduce the resolution difference between the vertical and horizontal directions, as indicated by ray-tracing simulations. The lobster-eye X-ray imaging system is capable of operating over a wide range of photon energies up to 100 keV. In addition, the optics of the lobster-eye X-ray imaging system was tested to verify that they meet the requirements. X-ray-backscattering imaging experiments were performed in which T-shaped polymethyl-methacrylate objects were imaged by the lobster-eye X-ray imaging system based on both the double-lens and treble-lens Schmidt objectives. The results show similar resolution of the treble-lens Schmidt objective in both the vertical and horizontal directions. Moreover, imaging experiments were performed using a second treble-lens Schmidt objective with higher resolution. The results show that for a field of view of over 200 mm and with a 500 mm object distance, this lobster-eye X-ray imaging system based on a treble-lens Schmidt objective offers a spatial resolution of approximately 3 mm.

  8. Structure from Motion Photogrammetry and Micro X-Ray Computed Tomography 3-D Reconstruction Data Fusion for Non-Destructive Conservation Documentation of Lunar Samples

    Science.gov (United States)

    Beaulieu, K. R.; Blumenfeld, E. H.; Liddle, D. A.; Oshel, E. R.; Evans, C. A.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2017-01-01

    Our team is developing a modern, cross-disciplinary approach to documentation and preservation of astromaterials, specifically lunar and meteorite samples stored at the Johnson Space Center (JSC) Lunar Sample Laboratory Facility. Apollo Lunar Sample 60639, collected as part of rake sample 60610 during the 3rd Extra-Vehicular Activity of the Apollo 16 mission in 1972, served as the first NASA-preserved lunar sample to be examined by our team in the development of a novel approach to internal and external sample visualization. Apollo Sample 60639 is classified as a breccia with a glass-coated side and pristine mare basalt and anorthosite clasts. The aim was to accurately register a 3-dimensional Micro X-Ray Computed Tomography (XCT)-derived internal composition data set and a Structure-From-Motion (SFM) Photogrammetry-derived high-fidelity, textured external polygonal model of Apollo Sample 60639. The developed process provided the means for accurate, comprehensive, non-destructive visualization of NASA's heritage lunar samples. The data products, to be ultimately served via an end-user web interface, will allow researchers and the public to interact with the unique heritage samples, providing a platform to "slice through" a photo-realistic rendering of a sample to analyze both its external visual and internal composition simultaneously.

  9. On the question of 3D seed reconstruction in prostate brachytherapy: the determination of x-ray source and film locations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Mutian [Radiation Safety Office, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032 (United States); Zaider, Marco [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Worman, Michael [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States); Cohen, Gilad [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021 (United States)

    2004-10-07

    Inaccuracy in seed placement during permanent prostate implants may lead to significant dosimetric deviations from the intended plan. In two recent publications (Todor et al 2002 Phys. Med. Biol. 47 2031-48, Todor et al 2003 Phys. Med. Biol. 48 1153-71), methodology was described for identifying intraoperatively the positions of seeds already implanted, thus allowing re-optimization of the treatment plan and correcting for such seed misplacement. Seed reconstruction is performed using fluoroscopic images and an important (and non-trivial) component of this approach is the ability to accurately determine the position of the gantry relative to the treatment volume. We describe the methodology for acquiring this information, based on the known geometry of six markers attached to the ultrasound probe. This method does not require the C-arm unit to be isocentric and films can be taken with the gantry set at any arbitrary position. This is significant because the patient positioning on the operating table (in the lithotomy position) restricts the range of angles at which films can be taken to a quite narrow (typically {+-}10{sup 0}) interval and, as a general rule, the closer the angles the larger the uncertainty in the seed location reconstruction along the direction from the x-ray source to the film. (note)

  10. HipMatch: an object-oriented cross-platform program for accurate determination of cup orientation using 2D-3D registration of single standard X-ray radiograph and a CT volume.

    Science.gov (United States)

    Zheng, Guoyan; Zhang, Xuan; Steppacher, Simon D; Murphy, Stephen B; Siebenrock, Klaus A; Tannast, Moritz

    2009-09-01

    The widely used procedure of evaluation of cup orientation following total hip arthroplasty using single standard anteroposterior (AP) radiograph is known inaccurate, largely due to the wide variability in individual pelvic orientation relative to X-ray plate. 2D-3D image registration methods have been introduced for an accurate determination of the post-operative cup alignment with respect to an anatomical reference extracted from the CT data. Although encouraging results have been reported, their extensive usage in clinical routine is still limited. This may be explained by their requirement of a CAD model of the prosthesis, which is often difficult to be organized from the manufacturer due to the proprietary issue, and by their requirement of either multiple radiographs or a radiograph-specific calibration, both of which are not available for most retrospective studies. To address these issues, we developed and validated an object-oriented cross-platform program called "HipMatch" where a hybrid 2D-3D registration scheme combining an iterative landmark-to-ray registration with a 2D-3D intensity-based registration was implemented to estimate a rigid transformation between a pre-operative CT volume and the post-operative X-ray radiograph for a precise estimation of cup alignment. No CAD model of the prosthesis is required. Quantitative and qualitative results evaluated on cadaveric and clinical datasets are given, which indicate the robustness and the accuracy of the program. HipMatch is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway), VTK, and Coin3D and is transportable to any platform.

  11. A small-angle x-ray scattering system with a vertical layout.

    Science.gov (United States)

    Wang, Zhen; Chen, Xiaowei; Meng, Lingpu; Cui, Kunpeng; Wu, Lihui; Li, Liangbin

    2014-12-01

    A small-angle x-ray scattering (SAXS) system with a vertical layout (V-SAXS) has been designed and constructed for in situ detection on nanostructures, which is well suitable for in situ study on self-assembly of nanoparticles at liquid interface and polymer processing. A steel-tower frame on a reinforced basement is built as the supporting skeleton for scattering beam path and detector platform, ensuring the system a high working stability and a high operating accuracy. A micro-focus x-ray source combining parabolic three-dimensional multi-layer mirror and scatteringless collimation system provides a highly parallel beam, which allows us to detect the very small angle range. With a sample-to-detector distance of 7 m, the largest measurable length scale is 420 nm in real space. With a large sample zone, it is possible to install different experimental setups such as film stretching machine, which makes the system perfect to follow the microstructures evolution of materials during processing. The capability of the V-SAXS on in situ study is tested with a drying experiment of a free latex droplet, which confirms our initial design.

  12. A liquid flatjet system for solution phase soft-x-ray spectroscopy

    Science.gov (United States)

    Ekimova, Maria; Quevedo, Wilson; Faubel, Manfred; Wernet, Philippe; Nibbering, Erik T. J.

    2015-01-01

    We present a liquid flatjet system for solution phase soft-x-ray spectroscopy. The flatjet set-up utilises the phenomenon of formation of stable liquid sheets upon collision of two identical laminar jets. Colliding the two single water jets, coming out of the nozzles with 50 μm orifices, under an impact angle of 48° leads to double sheet formation, of which the first sheet is 4.6 mm long and 1.0 mm wide. The liquid flatjet operates fully functional under vacuum conditions (<10−3 mbar), allowing soft-x-ray spectroscopy of aqueous solutions in transmission mode. We analyse the liquid water flatjet thickness under atmospheric pressure using interferomeric or mid-infrared transmission measurements and under vacuum conditions by measuring the absorbance of the O K-edge of water in transmission, and comparing our results with previously published data obtained with standing cells with Si3N4 membrane windows. The thickness of the first liquid sheet is found to vary between 1.4–3 μm, depending on the transverse and longitudinal position in the liquid sheet. We observe that the derived thickness is of similar magnitude under 1 bar and under vacuum conditions. A catcher unit facilitates the recycling of the solutions, allowing measurements on small sample volumes (∼10 ml). We demonstrate the applicability of this approach by presenting measurements on the N K-edge of aqueous NH4+. Our results suggest the high potential of using liquid flatjets in steady-state and time-resolved studies in the soft-x-ray regime. PMID:26798824

  13. Design of an X-ray detecting system based on square polycapillary X-ray lens%一种基于方形多毛细管透镜的X射线探测系统设计

    Institute of Scientific and Technical Information of China (English)

    易龙涛; 孙天希; 王锴; 彭诗棋; 韩悦; 张爽; 刘志国

    2016-01-01

    An X-ray detecting system based on square polycapillary X-ray lens was designed, which had a very small X-ray collection angle. The square polycapillary X-ray lens is an X-ray control device based on total X-ray reflection. The X-ray in large range can be focused on an X-ray CCD detector by the square polycapillary X-ray lens. By measuring the transmission characteristic of the square polycapillary X-ray lens and creating the data modelling, the data detected by the X-ray CCD detector could be corrected and the information of the X-ray in the entry end of the square polycapillary X-ray lens could be restored. The transmission characteristic of the square polycapillary X-ray lens was simulated by the light trajectory tracking method. The results show that this system is suitable for large area X-ray imaging when the energy of the X-ray is lower than 20 keV. It is also suitable for collecting X-ray to improve the detection efficiency when the energy of the X-ray is lower than 14.6 keV. The above characteristics show that this system is not only suitable for some special detecting such as pulsar navigation, but also suitable for normal X-ray detecting.%设计了一种基于方形多毛细管X射线透镜的X射线探测系统,该系统具有较小的X射线收集角。方形多毛细管X射线透镜是一种基于X射线全反射的X射线调控器件,可将大面积范围内的X射线汇聚至X射线CCD探测器。通过测定X射线在方形多毛细管X射线透镜中的传输特性、建立数据模型,可校正X射线CCD所测数据并还原透镜入口端的入射X射线信息。通过光线轨迹追踪方法模拟了方形多毛细管X射线透镜的传输特性。结果表明,该系统适合探测能量低于21.5 keV的X射线,用于大面积成像;也适合探测能量低于14.6 keV的X射线,用于提高探测效率。该系统不仅可用于诸如X射线脉冲星导航等特殊应用,也可用于常规X射线探测。

  14. X-Ray Crystallography Reagent

    Science.gov (United States)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  15. Soft x-ray backlighting of cryogenic implosions using a narrowband crystal imaging system (invited).

    Science.gov (United States)

    Stoeckl, C; Bedzyk, M; Brent, G; Epstein, R; Fiksel, G; Guy, D; Goncharov, V N; Hu, S X; Ingraham, S; Jacobs-Perkins, D W; Jungquist, R K; Marshall, F J; Mileham, C; Nilson, P M; Sangster, T C; Shoup, M J; Theobald, W

    2014-11-01

    A high-performance cryogenic DT inertial confinement fusion implosion experiment is an especially challenging backlighting configuration because of the high self-emission of the core at stagnation and the low opacity of the DT shell. High-energy petawatt lasers such as OMEGA EP promise significantly improved backlighting capabilities by generating high x-ray intensities and short emission times. A narrowband x-ray imager with an astigmatism-corrected bent quartz crystal for the Si Heα line at ∼1.86 keV was developed to record backlit images of cryogenic direct-drive implosions. A time-gated recording system minimized the self-emission of the imploding target. A fast target-insertion system capable of moving the backlighter target ∼7 cm in ∼100 ms was developed to avoid interference with the cryogenic shroud system. With backlighter laser energies of ∼1.25 kJ at a 10-ps pulse duration, the radiographic images show a high signal-to-background ratio of >100:1 and a spatial resolution of the order of 10 μm. The backlit images can be used to assess the symmetry of the implosions close to stagnation and the mix of ablator material into the dense shell.

  16. A stand-alone mesoporous crystal structure model from in situ X-ray diffraction: nitrogen adsorption on 3D cagelike mesoporous silica SBA-16.

    Science.gov (United States)

    Miyasaka, Keiichi; Hano, Hiroko; Kubota, Yoshiki; Lin, Yangzheng; Ryoo, Ryong; Takata, Masaki; Kitagawa, Susumu; Neimark, Alexander V; Terasaki, Osamu

    2012-08-13

    We present a modeling scheme to analyze cagelike silica mesoporous crystals based on in situ X-ray diffraction (XRD) data collected during gas adsorption-desorption (physisorption) processes. Nitrogen physisorption on a silica mesoporous crystal of SBA-16 was directly monitored by using synchrotron in situ powder XRD measurements conducted at SPring-8. SBA-16 is a well-ordered mesoporous silica in which three-dimensional interconnected cagelike primary mesopores are located at the body-centered cubic lattice points. In addition, the surrounding silica matrix contains random microporous and mesoporous intrawall porosities that are significantly influential to the diffusion properties, and thus important to be quantified for this media. The in situ XRD data exhibits seven Bragg reflections throughout the measurements, and the present method allows one to obtain the maximal and stand-alone information about the pore structure (for example, the mesopore size, the matrix density, the intrawall porosity, and pore surface roughness) together with the nitrogen film evolution in the primary mesopores and the intrawall pore-filling in the silica matrix. We furthermore observe a macroscopic amount of nitrogen adsorbed assuming the density of the fluid, and confirm that the XRD "isotherm" recalculated from the analysis result is consistent with the conventional nitrogen isotherm on a semi-quantitative level; however, these results suggest that the intrawall pores would have a greater contribution to the adsorption than considered based on the conventional isotherm analyses. The present method is readily extendable to any ordered mesopores wrapped by the wall matrix containing a certain intrawall porosity.

  17. Algorithm for Reconstruction of 3D Images of Nanorice Particles from Diffraction Patterns of Two Particles in Independent Random Orientations with an X-ray Laser

    Directory of Open Access Journals (Sweden)

    Sung Soon Kim

    2017-06-01

    Full Text Available The method of angular correlations recovers quantities from diffraction patterns of randomly oriented particles, as expected to be measured with an X-ray free electron laser (XFEL, proportional to quadratic functions of the spherical harmonic expansion coefficients of the diffraction volume of a single particle. We have previously shown that it is possible to reconstruct a randomly oriented icosahedral or helical virus from the average over all measured diffraction patterns of such correlations. We point out in this paper that a structure of even simpler particles of 50 Å or so in diameter and consisting of heavier atomic elements (to enhance scattering that has been used as a test case for reconstructions from XFEL diffraction patterns can also be solved by this technique. Even though there has been earlier work on similar objects (prolate spheroids, one advantage of the present technique is its potential to also work with diffraction patterns not only due to single particles as has been suggested on the basis on nonoverlapping delta functions of angular scattering. Accordingly, we calculated from the diffraction patterns the angular momentum expansions of the pair correlations and triple correlations for general particle images and reconstructed those images in the standard way. Although the images looked pretty much the same, it is not totally clear to us that the angular correlations are exactly the same as different numbers of particles due to the possibility of constructive or destructive interference between the scattered waves from different particles. It is of course known that, for a large number of particles contributing to a diffraction parttern, the correlations converge to that of a single particle. It could be that the lack of perfect agreement between the images reconstructed with one and two particles is due to uncancelling constructive and destructive conditions that are not found in the case of solution scattering.

  18. Imaging at soft X-ray wavelengths with high-gain microchannel plate detector systems

    Science.gov (United States)

    Timothy, J. Gethyn

    1986-01-01

    Multianode microchannel array (MAMA) detector systems with formats of 256 x 1024 pixels and active areas of 6 x 26 mm are now under evaluation at visible, UV and soft X-ray wavelengths. Very-large-format versions of the MAMA detectors with formats of 2048 x 2048 pixels and active areas of 52 x 52 mm are under development for use in the NASA Goddard Space Telescope Imaging Spectrograph (STIS). Open-structure versions of these detectors with Cs I photocathodes can provide a high-resolution imaging capability at EUV and soft X-ray wavelengths and can deliver a maximum count rate from each array in excess of 10 to the 6th counts/s. In addition, these detector systems have the unique capability to determine the arrival time of a detected photon to an accuracy of 100 ns or better. The construction, mode of operation, and performance characteristics of the MAMA detectors are described, and the program for the development of the very-large-format detectors is outlined.

  19. Doses under automatic exposure control (AEC) for direct digital radiographic (DDR) X-ray systems.

    Science.gov (United States)

    Bowden, Louise; Faulkner, Ronan; Clancy, Conor; Gallagher, Aoife; Devine, Mark; Gorman, Dermot; O'Reilly, Geraldine; Dowling, Anita

    2011-09-01

    Current guidelines quote tolerances for automatic exposure control (AEC) device performance for X-ray systems as 'Baseline ± X %'. However, in the situation where a baseline figure has not yet been achieved, as in the case of commissioning assessments, this tolerance is not relevant. The purpose of this work is to provide mean doses for direct digital radiography (DDR) X-ray system, operating in AEC, against which comparisons can be made. Dose measurements have been recorded under AEC operation on 29 DDR detectors from three different manufacturers. Two different testing protocols were examined: (1) water equivalent phantoms in front of the DDR detector and (2) aluminium block at the tube head. The average patient exit dose, using the aluminium block was 4.6 μGy with the antiscatter grid in place and 4.0 μGy with the grid removed. Using the water phantoms, the average dose was measured at 17.1 μGy with the antiscatter grid in place and 5.4 μGy with grid removed. Based on these results, it is clear that different testing configurations significantly impact on the measured dose.

  20. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  1. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  2. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis.

    Science.gov (United States)

    Zhao, C; Vassiljev, N; Konstantinidis, A C; Speller, R D; Kanicki, J

    2017-03-07

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm(-1)) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  3. Three-dimensional cascaded system analysis of a 50 µm pixel pitch wafer-scale CMOS active pixel sensor x-ray detector for digital breast tomosynthesis

    Science.gov (United States)

    Zhao, C.; Vassiljev, N.; Konstantinidis, A. C.; Speller, R. D.; Kanicki, J.

    2017-03-01

    High-resolution, low-noise x-ray detectors based on the complementary metal-oxide-semiconductor (CMOS) active pixel sensor (APS) technology have been developed and proposed for digital breast tomosynthesis (DBT). In this study, we evaluated the three-dimensional (3D) imaging performance of a 50 µm pixel pitch CMOS APS x-ray detector named DynAMITe (Dynamic Range Adjustable for Medical Imaging Technology). The two-dimensional (2D) angle-dependent modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were experimentally characterized and modeled using the cascaded system analysis at oblique incident angles up to 30°. The cascaded system model was extended to the 3D spatial frequency space in combination with the filtered back-projection (FBP) reconstruction method to calculate the 3D and in-plane MTF, NNPS and DQE parameters. The results demonstrate that the beam obliquity blurs the 2D MTF and DQE in the high spatial frequency range. However, this effect can be eliminated after FBP image reconstruction. In addition, impacts of the image acquisition geometry and detector parameters were evaluated using the 3D cascaded system analysis for DBT. The result shows that a wider projection angle range (e.g.  ±30°) improves the low spatial frequency (below 5 mm-1) performance of the CMOS APS detector. In addition, to maintain a high spatial resolution for DBT, a focal spot size of smaller than 0.3 mm should be used. Theoretical analysis suggests that a pixelated scintillator in combination with the 50 µm pixel pitch CMOS APS detector could further improve the 3D image resolution. Finally, the 3D imaging performance of the CMOS APS and an indirect amorphous silicon (a-Si:H) thin-film transistor (TFT) passive pixel sensor (PPS) detector was simulated and compared.

  4. Bone diagnosis by X-ray techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lima, I. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)], E-mail: inaya@lin.ufrj.br; Anjos, M.J. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil); Physics Institute, UERJ (Brazil); Farias, M.L.F. [University Hospital, UFRJ (Brazil); Parcegoni, N.; Rosenthal, D. [Biophysics Institute, UFRJ (Brazil); Duarte, M.E.L. [Histologic and Embriology Department, UFRJ (Brazil); Lopes, R.T. [Nuclear Engineering Program/COPPE/UFRJ, P.O. Box 68509, Av. Horacio Macedo, 2030, Sala I-133, Cidade Universitaria, Zip Code: 21941-972 Rio de Janeiro, RJ (Brazil)

    2008-12-15

    In this work, two X-ray techniques used were 3D microcomputed tomography (micro-CT) and X-ray microfluorescence (micro-XRF) in order to investigate the internal structure of the bone samples. Those two techniques work together, e.g. as a complement to each other, to characterize bones structure and composition. Initially, the specimens were used to do the scan procedure in the microcomputer tomography system and the second step consists of doing the X-ray microfluorescence analysis. The results show that both techniques are powerful methods for analyzing, inspecting and characterizing bone samples: they are alternative procedures for examining bone structures and compositions and they are complementary.

  5. X-ray excited optical luminescence studies on the system Ba (, =F, Cl, Br, I)

    Indian Academy of Sciences (India)

    K Govinda Rajan; A Jestin Lenus

    2005-08-01

    The present paper reports the experimental observations on the x-ray excited optical luminescence (XEOL) along with the afterglow and colour center features found for the barium salts, represented by the formula, Ba, where and are the halides. The system thus consists of four dihalides (BaF2, . . . ,BaI2) and six mixed halides (BaFCl,. . . ,BaBrI). To start with, it was found that on two of the binary halides of barium, BaClI and BaBrI, no literature exists, and so these were prepared for the first time and their crystal structures were determined. An x-ray generator of 3-kW rating was next coupled to a spectrometer via a high throughput fiberoptic sensor for recording the luminescence spectra under x-irradiation. Also presented in this paper are the observations on the Ba compounds in which about 0.1 mole% of Eu2+ was doped, in order to study the efficiency between the prompt luminescence and the photostimulated luminescence in these compounds. The crystal structure varies from fluorite (BaF2), to matlockite (BaF) and finally to orthorhombic (BaCl2, . . .,BaBrI) for these compounds. Hence searching for systematics and empirical relations in the observed XEOL behaviour of these compounds is still a challenging problem.

  6. Recent activity of the Be/X-ray binary system SAX J2103.5+4545

    CERN Document Server

    Camero, A; Soto, J Gutierrez; Arabaci, M Ozbey; Nespoli, E; Kiaeerad, F; Beklen, E; Garcia-Rojas, J; Caballero-Garcia, M

    2014-01-01

    Aims. We present a multiwavelength study of the Be/X-ray binary system SAX J2103.5+4545 with the goal of better characterizing the transient behaviour of this source. Methods. SAX J2103.5+4545 was observed by Swift-XRT four times in 2007 from April 25 to May 5, and during quiescence in 2012 August 31. In addition, this source has been monitored from the ground-based astronomical observatories of El Teide (Tenerife, Spain), Roque de los Muchachos (La Palma, Spain) and Sierra Nevada (Granada, Spain) since 2011 August, and from the TUBITAK National Observatory (Antalya, Turkey) since 2009 June. We have performed spectral and photometric temporal analyses in order to investigate the different states exhibited by SAX J2103.5+4545. Results. In X-rays, an absorbed power law model provided the best fit for all the XRT spectra. An iron-line feature at ~6.42 keV was present in all the observations except for that taken during quiescence in 2012. The photon indexes are consistent with previous studies of SAX J2103.5+454...

  7. Einstein detection of X-rays from the Alpha Centauri system

    Science.gov (United States)

    Golub, L.; Harnden, F. R., Jr.; Pallavicini, R.; Rosner, R.; Vaiana, G. S.

    1982-01-01

    Detection of quiescent X-ray emission from the stellar components of the Alpha Cen system: Alpha Cen A (G2 V) and Alpha Cen B (K1 V) is reported. Contrary to previous theoretical expectations, both stars are found to be X-ray emitters and at about the same level: L sub x = 1.2 x 10 to the 27th and 2.8 x 10 to the 27th ergs/s for A and B, respectively; the sum of these values is in agreement with the emission level previously reported for Alpha Cen by Nugent and Garmire (1978). Comparison with previous chromospheric and transition region measurements suggests that Alpha Cen A and B may have changed in relative strength in recent years. The coronal temperature of the combined Cen AB source, which is dominated (approximately 2/3 of the total) by the K star is (2.1 + or - 0.4) x 10 to the 6th K, similar to that of the average solar corona; it is noted that this value is not consistent with the estimate of 5 x 10 to the 5th K quoted by Nugent and Garmire.

  8. Discovery of x-ray emission from the first be/black hole system

    CERN Document Server

    Munar-Adrover, P; Ribó, M; Iwasawa, K; Zabalza, V; Casares, J

    2014-01-01

    MWC 656 (= HD 215227) was recently discovered to be the first binary system composed of a Be star and a black hole (BH). We observed it with \\textit{XMM-Newton}, and detected a faint X-ray source compatible with the position of the optical star, thus proving it to be the first Be/BH X-ray binary. The spectrum analysis requires a model fit with two components, a black body plus a power law, with $k_{\\rm B}T = 0.07^{+0.04}_{-0.03}$~keV and a photon index $\\Gamma= 1.0\\pm0.8$, respectively. The non-thermal component dominates above $\\simeq$0.8 keV. The obtained total flux is $F(0.3$--$5.5~{\\rm keV}) = (4.6^{+1.3}_{-1.1})\\times10^{-14}$ erg cm$^{-2}$ s$^{-1}$. At a distance of $2.6\\pm0.6$~kpc the total flux translates into a luminosity $L_{\\rm X} = (3.7\\pm1.7)\\times10^{31}$ erg s$^{-1}$. Considering the estimated range of BH masses to be 3.8--6.9 $M_{\\odot}$, this luminosity represents $(6.7\\pm4.4)\\times10^{-8}~L_{\\rm Edd}$, which is typical of stellar-mass BHs in quiescence. We discuss the origin of the two spect...

  9. Closed bore XMR (CBXMR) systems for aortic valve replacement: Active magnetic shielding of x-ray tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bracken, John A.; DeCrescenzo, Giovanni; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A. [Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Medical Biophysics and Sunnybrook Health Sciences Center, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada)

    2009-05-15

    Hybrid closed bore x-ray/MRI systems are being developed to improve the safety and efficacy of percutaneous aortic valve replacement procedures by harnessing the complementary strengths of the x-ray and MRI modalities in a single interventional suite without requiring patient transfer between two rooms. These systems are composed of an x-ray C-arm in close proximity ({approx_equal}1 m) to an MRI scanner. The MRI magnetic fringe field can cause the electron beam in the x-ray tube to deflect. The deflection causes the x-ray field of view to shift position on the detector receptacle. This could result in unnecessary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. Therefore, the electron beam deflection must be corrected. The authors developed an active magnetic shielding system that can correct for electron beam deflection to within an accuracy of 5% without truncating the field of view or increasing exposure to the patient. This system was able to automatically adjust to different field strengths as the external magnetic field acting on the x-ray tube was changed. Although a small torque was observed on the shielding coils of the active shielding system when they were placed in a magnetic field, this torque will not impact their performance if they are securely mounted on the x-ray tube and the C-arm. The heating of the coils of the shielding system for use in the clinic caused by electric current was found to be slow enough not to require a dedicated cooling system for one percutaneous aortic valve replacement procedure. However, a cooling system will be required if multiple procedures are performed in one session.

  10. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results. (C) 2015 AIP Publishing LLC.

  11. Modulation transfer function of a digital dental x-ray system.

    Science.gov (United States)

    Chen, S K; Hollender, L

    1994-03-01

    An impulse train method to control aliasing was used to measure the modulation transfer function of a digital dental x-ray system (RVG 32000 ZHR, Trophy Radiologie, Vincennes, France). The detector of this system is composed of an intensifying screen, a fiber optics taper, and a charged couple device chip. The modulation transfer function could not be measured by impulse method such as the line spread function or edge response function because of aliasing from undersampling of the digital system. The system modulation transfer function was difficult to recover at the spatial frequencies smaller than the Nyquist frequency. The modulation transfer function beyond the Nyquist frequencies was impossible to recover in this study.

  12. A one-dimensional ion beam figuring system for x-ray mirror fabrication.

    Science.gov (United States)

    Idir, Mourad; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken; Conley, Ray; Rennie, Kent; Kahn, Jim; Nethery, Richard; Zhou, Lin

    2015-10-01

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  13. Development of a fast readout system of an X-ray CCD

    CERN Document Server

    Awaki, H; Koyama, K; Tomida, H; Tsuru, T

    1999-01-01

    In the course of developing a fast readout system of an X-ray CCD camera with low noise using HPK-CCD, we have succeeded in making a clock generator to read data from a CCD with the speed of 2 Mpixel/s. This generator is fabricated from commercially available products in order to simplify the manufacturing procedure. To determine the noise of the system, we are evaluating the noise from each part which conceivably contributes. It is known that the readout noise depends on the clock speed. Thus, to begin with, we measured the dependency of the system noise from the ADC in the data acquisition system on its clock speed.

  14. A one-dimensional ion beam figuring system for x-ray mirror fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Idir, Mourad, E-mail: midir@bnl.gov; Huang, Lei; Bouet, Nathalie; Kaznatcheev, Konstantine; Vescovi, Matthew; Lauer, Ken [NSLS-II, Brookhaven National Laboratory, P.O. Box 5000, Upton, New York 11973 (United States); Conley, Ray [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Rennie, Kent; Kahn, Jim; Nethery, Richard [Kaufman & Robinson, Inc., 1330 Blue Spruce Drive, Fort Collins, Colorado 80524 (United States); Zhou, Lin [College of Mechatronics and Automation, National University of Defense Technology, 109 Deya Road, Changsha, Hunan 410073 (China); Hu’nan Key Laboratory of Ultra-precision Machining Technology, Changsha, Hunan 410073 (China)

    2015-10-15

    We report on the development of a one-dimensional Ion Beam Figuring (IBF) system for x-ray mirror polishing. Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The system is based on a state of the art sputtering deposition system outfitted with a gridded radio frequency inductive coupled plasma ion beam source equipped with ion optics and dedicated slit developed specifically for this application. The production of an IBF system able to produce an elongated removal function rather than circular is presented in this paper, where we describe in detail the technical aspect and present the first obtained results.

  15. High-Resolution Imaged-Based 3D Reconstruction Combined with X-Ray CT Data Enables Comprehensive Non-Destructive Documentation and Targeted Research of Astromaterials

    Science.gov (United States)

    Blumenfeld, E. H.; Evans, C. A.; Oshel, E. R.; Liddle, D. A.; Beaulieu, K.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.

    2014-01-01

    Providing web-based data of complex and sensitive astromaterials (including meteorites and lunar samples) in novel formats enhances existing preliminary examination data on these samples and supports targeted sample requests and analyses. We have developed and tested a rigorous protocol for collecting highly detailed imagery of meteorites and complex lunar samples in non-contaminating environments. These data are reduced to create interactive 3D models of the samples. We intend to provide these data as they are acquired on NASA's Astromaterials Acquisition and Curation website at http://curator.jsc.nasa.gov/.

  16. Full characterization of the X-ray system in order to evaluate patient dose in interventional cardiology

    Energy Technology Data Exchange (ETDEWEB)

    Cotelo, E.; Gigirey, P.; Zubillaga, J.; Wagner, M. [Universidad de la Republica, Montevideo (Uruguay). School for Medical Technology. Hospital Dr. Manuel Quintela; Paolini, G. [Universidad de la Republica, Montevideo (Uruguay). School of Sciences; Duran, A. [Universidad de la Republica, Montevideo (Uruguay). Hospital Dr. Manuel Quintela. Dept. of Cardiology

    2009-03-15

    The purpose of the present paper is to evaluate interventional radiology x-ray system performance in order to analyze its influence on patient dose. Entrance air kerma rate in fluoroscopy modes and air kerma per image in cine modes were measured at the entrance of PMMA slabs (10 to 30 cm) in two interventional x-ray systems. Air kerma evaluation was performed in all image intensifiers (II) diameters and in all fluoroscopy and cine modes used in the clinical practice with an ionization chamber. High and low contrast resolution was evaluated for all PMMA thickness, II and modes, with two quality image tests (NEMA XR 21 and Leeds TOR-18FG). Significant differences were found in air kerma rate and air kerma per image in both x-ray systems for comparable II and modes. For example, for 24 cm PMMA thickness in fluoroscopic high dose mode, in one x-ray system delivers 0.49 mGy/s and the other one 1.87 mGy/s. However, differences in image quality were not significant. In the same conditions described above, Leeds test showed: 0.032 (low contrast) and 1.25 lp mm (spatial frequency). In addition, when phantom thickness increase, image quality decreases in x-ray systems, but in one of them, the difference is high. Results show that patient dose and image quality depend on the x-ray system characteristics. Due to this it is essential to perform a complete evaluation of the x-ray system in order to help interventional cardiologists (radiologists) to learn possibilities of dose reduction with no lose of image quality. (author)

  17. Compact hard x-ray imaging system with a large FOV

    Science.gov (United States)

    Katsuragawa, Miho; Takeda, Shin'ichiro; Sato, Goro; Harayama, Atsushi; Kennedy, Patrick K.; Deasy, Kieran; Watanabe, Shin; Takahashi, Tadayuki

    2016-07-01

    We have developed a compact hard X-ray imaging system composed of a cadmium telluride double-sided strip detector (CdTe-DSD) and a coded mask. We investigate the imaging performance using two different coded masks with different sizes and patterns. In our system, a CdTe-DSD of pitch 250μm is used in conjunction with a coded mask is placed 70-100 mm above the detector to form a compact imaging system. We obtained an angular resolution of up to 11.8 arc min, as measured from gamma-ray lines of point-like radioactive isotope sources. This is consistent with that expected from the geometry. The energy resolution is 1.7 keV (FWHM) at 60 keV and the energy range of imaging is from 5 keV to 122 keV. These results agree very well with Monte Carlo simulations of the detector.

  18. X-ray fluorescence holography

    CERN Document Server

    Hayashi, K; Takahashi, Y

    2003-01-01

    X-ray fluorescence holography (XFH) is a new structural analysis method of determining a 3D atomic arrangement around fluorescing atoms. We developed an XFH apparatus using advanced X-ray techniques and succeeded in obtaining high-quality hologram data. Furthermore, we introduced applications to the structural analysis of a thin film and the environment around dopants and, discussed the quantitative analysis of local lattice distortion. (author)

  19. A study of X-ray volume imaging system in image guided radiotherapy with variable gantry rotations

    Directory of Open Access Journals (Sweden)

    NVN Madhusudhana Sresty

    2016-03-01

    Full Text Available Purpose: The main purpose of this work is to investigate the optimal usage of X-ray volume imaging (XVI system in image-guided radiotherapy with different gantry rotations in order to reduce scanning volume.Methods: A total of 60 scans of 16 individual patients with breast and head and neck cancer were used in this study. Full and partial gantry rotations were performed at the same time with same setup on the couch using XVI system by changing the preset information. The reference and localization images were matched with this system. The set up errors were evaluated with XVI software.Results: Variation in translational errors with full and half gantry rotations in breast cases were <2 mm in 86.6% of measurements. Similarly, variations between full and partial gantry rotations in head and neck cases were <1 mm in 95.5% of measurements. Results showed almost similar translational and rotational shifts in both full and partial gantry rotations in the majority of the cases.Conclusion: Based on selected cases in this study, partial rotation of the gantry for acquiring 3D cone beam computerized tomography (CBCT is very useful option in reducing scanning volume and total treatment time in IGRT. However, the use of partial rotation of the gantry depends on patient thickness and area to be reconstructed to track anatomical changes near to the target.

  20. Structural integrity--Searching the key factor to suppress the voltage fade of Li-rich layered cathode materials through 3D X-ray imaging and spectroscopy techniques

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yahong; Hu, Enyuan; Yang, Feifei; Corbett, Jeff; Sun, Zhihong; Lyu, Yingchun; Yu, Xiqian; Liu, Yijin; Yang, Xiao-Qing; Li, Hong (BNL); (SLAC); (UCSF); (Donghua); (Chinese Aca. Sci.)

    2016-10-24

    Li-rich layered materials are important cathode compounds used in commercial lithium ion batteries, which, however, suffers from some drawbacks including the so-called voltage fade upon electrochemical cycling. Here, our study employs novel transmission X-ray microscopy to investigate the electrochemical reaction induced morphological and chemical changes in the Li-rich Li2Ru0.5Mn0.5O3 cathode particles at the meso to nano scale. We performed combined X-ray spectroscopy, diffraction and microscopy experiments to systematically study this cathode material's evolution upon cycling as well as to establish a comprehensive understanding of the structural origin of capacity fade through 2D and 3D fine length scale morphology and heterogeneity change of this material. This work suggests that atomic manipulation (e.g. doping, substitution etc.) or nano engineering (e.g. nano-sizing, heterogeneous structure) are important strategies to mitigate the internal strain and defects induced by extensive lithium insertion/extraction. It also shows that maintaining the structural integrity is the key in designing and synthesizing lithium-rich layered materials with better cycle stability.

  1. The X-ray system of crystallographic programs for any computer having a PIDGIN FORTRAN compiler

    Science.gov (United States)

    Stewart, J. M.; Kruger, G. J.; Ammon, H. L.; Dickinson, C.; Hall, S. R.

    1972-01-01

    A manual is presented for the use of a library of crystallographic programs. This library, called the X-ray system, is designed to carry out the calculations required to solve the structure of crystals by diffraction techniques. It has been implemented at the University of Maryland on the Univac 1108. It has, however, been developed and run on a variety of machines under various operating systems. It is considered to be an essentially machine independent library of applications programs. The report includes definition of crystallographic computing terms, program descriptions, with some text to show their application to specific crystal problems, detailed card input descriptions, mass storage file structure and some example run streams.

  2. High-Resolving-Power, Streaked X-Ray Spectroscopy on the OMEGA EP Laser System

    Science.gov (United States)

    Nilson, P. M.; Ehrne, F.; Mileham, C.; Mastrosimone, D.; Jungquist, R. K.; Taylor, C.; Boni, R.; Hassett, J.; Stillman, C. R.; Ivancic, S. T.; Lonobile, D. J.; Kidder, R. W.; Shoup, M. J., III; Solodov, A. A.; Stoeckl, C.; Theobald, W.; Froula, D. H.; Hill, K. W.; Gao, L.; Bitter, M.; Efthimion, P.; Meyerhofer, D. D.

    2016-10-01

    A high-resolving-power, streaked x-ray spectrometer is being developed and tested on the OMEGA EP Laser System to study temperature-equilibration dynamics in rapidly heated solid matter. Temporal spectral shifts of the Cu Kα line in isochorically heated solid targets provide a fairly simple system where the spectrometer performance will be validated. The goal is to achieve a resolving power of several thousand and 2-ps temporal resolution. A time-integrating survey spectrometer has been developed and deployed on OMEGA EP to evaluate the throughput, focusing fidelity, and spectral resolution of two different crystal geometries. The results from these measurements will be presented and used to justify the down-selected time-resolved spectrometer design. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Observer-model optimization of X-ray system in photon-counting breast imaging

    Science.gov (United States)

    Cederström, Björn; Fredenberg, Erik; Lundqvist, Mats; Ericson, Tove; Åslund, Magnus

    2011-08-01

    An ideal-observer model is applied to optimize the design of an X-ray tube intended for use in a multi-slit scanning photon-counting mammography system. The design is such that the anode and the heel effect are reversed and the projected focal spot is smallest at the chest wall. Using linear systems theory, detectability and dose efficiency for a 0.1-mm disk are calculated for different focal spot sizes and anode angles. It is shown that the image acquisition time can be reduced by about 25% with spatial resolution and dose efficiency improved near the chest wall and worsened further away. The image quality is significantly more homogeneous than for the conventional anode orientation, both with respect to noise and detectability of a small object. With the tube rotated 90∘, dose efficiency can be improved by 20% for a fixed image acquisition time.

  4. Residual stress depth profiling in complex hard coating systems by X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Klaus, M. [Technische Universitaet Berlin, Institut fuer Werkstoffwissenschaften und-technologien, Sekr. BH 18, Ernst-Reuter-Platz 1, 10587 Berlin (Germany); Genzel, Ch. [Hahn-Meitner-Institut Berlin, Bereich Strukturforschung, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)], E-mail: genzel@hmi.de; Holzschuh, H. [Walter AG, Derendinger Strasse 53, 72072 Tuebingen (Germany)

    2008-12-01

    X-ray residual stress analysis on multilayered coating systems is a quite difficult and demanding procedure. To obtain information on both, the individual sublayers the coating consists of and the interfacial substrate region, it is necessary to apply different methods which are complementary with respect to the accessible information depth. Based on the concept of an 'equivalent thickness' for describing angle-dispersive diffraction in multilayer structures, a method is proposed that allows for the evaluation of steep intra - as well as interlayer stress gradients within the upper sublayers of multilayer coating systems. Furthermore, energy-dispersive diffraction is shown suitable to detect the residual stress distribution in the near interface substrate zone beneath the coatings. The applicability of the approaches introduced here is demonstrated by the example of cemented carbide WC/Co cutting tools being coated by chemical vapor deposition with sequences of Al{sub 2}O{sub 3}/TiCN sublayers.

  5. Design of 3D integrated circuits and systems

    CERN Document Server

    Sharma, Rohit

    2014-01-01

    Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and sys

  6. A system for finding a 3D target without a 3D image

    Science.gov (United States)

    West, Jay B.; Maurer, Calvin R., Jr.

    2008-03-01

    We present here a framework for a system that tracks one or more 3D anatomical targets without the need for a preoperative 3D image. Multiple 2D projection images are taken using a tracked, calibrated fluoroscope. The user manually locates each target on each of the fluoroscopic views. A least-squares minimization algorithm triangulates the best-fit position of each target in the 3D space of the tracking system: using the known projection matrices from 3D space into image space, we use matrix minimization to find the 3D position that projects closest to the located target positions in the 2D images. A tracked endoscope, whose projection geometry has been pre-calibrated, is then introduced to the operating field. Because the position of the targets in the tracking space is known, a rendering of the targets may be projected onto the endoscope view, thus allowing the endoscope to be easily brought into the target vicinity even when the endoscope field of view is blocked, e.g. by blood or tissue. An example application for such a device is trauma surgery, e.g., removal of a foreign object. Time, scheduling considerations and concern about excessive radiation exposure may prohibit the acquisition of a 3D image, such as a CT scan, which is required for traditional image guidance systems; it is however advantageous to have 3D information about the target locations available, which is not possible using fluoroscopic guidance alone.

  7. Analysis of energy dispersive x-ray diffraction profiles for material identification, imaging and system control

    Science.gov (United States)

    Cook, Emily Jane

    2008-12-01

    This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.

  8. Detection of postoperative granulation tissue with an ICG-enhanced integrated OI-/X-ray System

    Directory of Open Access Journals (Sweden)

    Sutton Elizabeth J

    2008-11-01

    Full Text Available Abstract Background The development of postoperative granulation tissue is one of the main postoperative risks after lumbar spine surgery. This granulation tissue may lead to persistent or new clinical symptoms or complicate a follow up surgery. A sensitive non-invasive imaging technique, that could diagnose this granulation tissue at the bedside, would help to develop appropriate treatments. Thus, the purpose of this study was to establish a fast and economic imaging tool for the diagnosis of granulation tissue after lumbar spine surgery, using a new integrated Optical Imaging (OI/X-ray imaging system and the FDA-approved fluorescent contrast agent Indocyanine Green (ICG. Methods 12 male Sprague Dawley rats underwent intervertebral disk surgery. Imaging of the operated lumbar spine was done with the integrated OI/X-ray system at 7 and 14 days after surgery. 6 rats served as non-operated controls. OI/X-ray scans of all rats were acquired before and after intravenous injection of the FDA-approved fluorescent dye Indocyanine Green (ICG at a dose of 1 mg/kg or 10 mg/kg. The fluorescence signal of the paravertebral soft tissues was compared between different groups of rats using Wilcoxon-tests. Lumbar spines and paravertebral soft tissues were further processed with histopathology. Results In both dose groups, ICG provided a significant enhancement of soft tissue in the area of surgery, which corresponded with granulation tissue on histopathology. The peak and time interval of fluorescence enhancement was significantly higher using 10 mg/kg dose of ICG compared to the 1 mg/kg ICG dose. The levels of significance were p Conclusion ICG-enhanced OI is a suitable technique to diagnose granulation tissue after lumbar spine surgery. This new imaging technique may be clinically applicable for postoperative treatment monitoring. It could be also used to evaluate the effect of anti-inflammatory drugs and may even allow evaluations at the bedside with new

  9. L-Edge X-ray Absorption Spectroscopy of Dilute Systems Relevant to Metalloproteins Using an X-ray Free-Electron Laser

    NARCIS (Netherlands)

    Mitzner, Rolf; Rehanek, Jens; Kern, Jan; Gul, Sheraz; Hattne, Johan; Taguchi, Taketo; Alonso-Mori, Roberto; Tran, Rosalie; Weniger, Christian; Schroeder, Henning; Quevedo, Wilson; Laksmono, Hartawan; Sierra, Raymond G.; Han, Guangye; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Kubicek, Katharina; Schreck, Simon; Kunnus, Kristjan; Brzhezinskaya, Maria; Firsov, Alexander; Minitti, Michael P.; Turner, Joshua J.; Moeller, Stefan; Sauter, Nicholas K.; Bogan, Michael J.; Nordlund, Dennis; Schlotter, William F.; Messinger, Johannes; Borovik, Andrew; Techert, Simone; de Groot, Frank M. F.; Foehlisch, Alexander; Erko, Alexei; Bergmann, Uwe; Yachandra, Vittal K.; Wernet, Philippe; Yano, Junko

    2013-01-01

    L-edge spectroscopy of 3d transition metals provides important electronic structure information and has been used in many fields. However, the use of this method for studying dilute aqueous systems, such as metalloenzymes, has not been prevalent because of severe radiation damage and the lack of sui

  10. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  11. X-ray Pulsars

    CERN Document Server

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  12. Design and performance of an Automatic Gain Control system for the High Energy X-Ray Timing Experiment

    Science.gov (United States)

    Pelling, Michael R.; Rothschild, Richard E.; Macdonald, Daniel R.; Hertel, Robert; Nishiie, Edward

    1991-01-01

    The High Energy X-Ray Timing Experiment (HEXTE), currently under development for the X-Ray Timing Explorer (XTE) mission, employs a closed loop gain control system to attain 0.5 percent stabilization of each of eight-phoswich detector gains. This Automatic Gain Control (AGC) system utilizes a split window discriminator scheme to control the response of each detector pulse height analyzer to gated Am-241 X-ray events at 60 keV. A prototype AGC system has been implemented and tested within the gain perturbation environment expected to be experienced by the HEXTE instrument in flight. The AGC system and test configuration are described. Response, stability and noise characteristics are measured and compared with theoretical predictions. The system is found to be generally suitable for the HEXTE application.

  13. Design and performance of an Automatic Gain Control system for the High Energy X-Ray Timing Experiment

    Science.gov (United States)

    Pelling, Michael R.; Rothschild, Richard E.; Macdonald, Daniel R.; Hertel, Robert; Nishiie, Edward

    1991-01-01

    The High Energy X-Ray Timing Experiment (HEXTE), currently under development for the X-Ray Timing Explorer (XTE) mission, employs a closed loop gain control system to attain 0.5 percent stabilization of each of eight-phoswich detector gains. This Automatic Gain Control (AGC) system utilizes a split window discriminator scheme to control the response of each detector pulse height analyzer to gated Am-241 X-ray events at 60 keV. A prototype AGC system has been implemented and tested within the gain perturbation environment expected to be experienced by the HEXTE instrument in flight. The AGC system and test configuration are described. Response, stability and noise characteristics are measured and compared with theoretical predictions. The system is found to be generally suitable for the HEXTE application.

  14. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    Science.gov (United States)

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  15. Phase matching strategy for the undulator system in the European X-ray Free Electron Laser

    Science.gov (United States)

    Li, Yuhui; Pflueger, Joachim

    2017-02-01

    The undulator system in the European X-ray Free Electron Laser is mainly comprised of 5-m long undulator segments and 1.1 m long intersections in between. The longitudinal component of the electrons' velocity is reduced when traveling inside an undulator due to the wiggle motion. Therefore the optical phase is detuned. The detune effect is also from the undulator fringe field where electron longitudinal speed also deviates from the oscillation condition. The total detune effect is compensated by a magnetic device called phase shifter, which is correspondingly set for a specific undulator gap. In this paper we investigate the homogeneity of the fringe field from different undulators. Different phase matching criteria are studied. The field fitting technique for the phase matching in high accuracy is demonstrated in detail. The impact by air coil is also studied. Eventually the matching test by spontaneous radiation simulation is made. A test method for high sensitivity to matching error is proposed.

  16. The dental X-ray file of crew members in the Scandinavian Airlines System (SAS).

    Science.gov (United States)

    Keiser-Nielsen, S; Johanson, G; Solheim, T

    1981-11-01

    In 1977, the Scandinavian Airlines System (SAS) established a dental X-ray file of all crew members. Its aim was to have immediately available an adequate set of physical antemortem data useful for identification in case of a fatal crash. Recently, an investigation into the quality and suitability of this material was carried out. The radiographs of 100 Danish, 100 Norwegian, and 100 Swedish pilots were picked at random and evaluated for formal deficiences, technical deficiencies, treatment pattern as useful for identification purposes, and the presence of pathology. The major results of the investigation were that a number of formal and technical deficiencies were disclosed, that the treatment pattern would seem adequate for identification purposes, and that a number of pathological findings were made, several of which had to be considered possible safety risks in the form of barodontalgia.

  17. Organ Doses to Airline Passengers Screened by X-Ray Backscatter Imaging Systems.

    Science.gov (United States)

    Stepusin, Elliott J; Maynard, Matthew R; O'Reilly, Shannon E; Redzovic, Sadije; Bolch, Wesley E; Hintenlang, David E; Borak, Thomas B

    2017-02-01

    Advanced imaging technologies (AIT) are being developed for passenger airline transportation. They are designed to provide enhanced security benefits by identifying objects on passengers that would not be detected by methodologies now used for routine surveillance. X-ray backscatter imaging is one AIT system being considered. Since this technology is based on scanning passengers with ionizing radiation, concern has been raised relating to the health risks associated with these exposures. Recommendations for standards of radiation safety have been proposed by the American National Standards Institute published in ANSI/HPS N43.17-2009. A Monte Carlo based methodology for estimating organ doses received from an X-ray backscatter AIT system is presented. Radiological properties of a reference scanner including beam intensity, geometry and energy spectra were modeled based on previous studies and physical measurements. These parameters were incorporated into a Monte Carlo source subroutine and validated with comparison of simulated versus measured data. One extension of this study was to calculate organ and effective dose on a wide range of potential passengers. Computational phantoms with realistic morphologies were used including adults of 5th, 25th, 50th, 75th and 95th percentile weight, children of 5th, 50th and 95th percentile weight, and the developing fetus of 15, 25, and 38 weeks after conception. Additional sensitivity studies were performed to evaluate effects of passenger positioning within the scanner, energy spectrum and beam geometry, as well as failure mode analyses. Results for routine operations yielded a maximum effective dose to the adult and pediatric passengers of 15 and 25 nSv per screen, respectively. The developing fetus received a maximum organ dose and whole body dose of 16 nGy and 8.5 nGy per screen, respectively. The sensitivity analyses indicated that variations in positioning, energy spectra, and beam geometry yielded a range of effective

  18. The effects of image acquisition control of digital X-ray system on radiodensity quantification

    Directory of Open Access Journals (Sweden)

    Wook-Jin Seong,

    2013-08-01

    Full Text Available Objectives Aluminum step wedge (ASW equivalent radiodensity (eRD has been used to quantify restorative material's radiodensity. The aim of this study was to evaluate the effects of image acquisition control (IAC of a digital X-ray system on the radiodensity quantification under different exposure time settings. Materials and Methods Three 1-mm thick restorative material samples with various opacities were prepared. Samples were radiographed alongside an ASW using one of three digital radiographic modes (linear mapping (L, nonlinear mapping (N, and nonlinear mapping and automatic exposure control activated (E under 3 exposure time settings (underexposure, normal-exposure, and overexposure. The ASW eRD of restorative materials, attenuation coefficients and contrasts of ASW, and the correlation coefficient of linear relationship between logarithms of gray-scale value and thicknesses of ASW were compared under 9 conditions. Results The ASW eRD measurements of restorative materials by three digital radiographic modes were statistically different (p = 0.049 but clinically similar. The relationship between logarithms of background corrected grey scale value and thickness of ASW was highly linear but attenuation coefficients and contrasts varied significantly among 3 radiographic modes. Varying exposure times did not affect ASW eRD significantly. Conclusions Even though different digital radiographic modes induced large variation on attenuation of coefficient and contrast of ASW, E mode improved diagnostic quality of the image significantly under the under-exposure condition by improving contrasts, while maintaining ASW eRDs of restorative materials similar. Under the condition of this study, underexposure time may be acceptable clinically with digital X-ray system using automatic gain control that reduces radiation exposure for patient.

  19. Monocular 3D display system for presenting correct depth

    Science.gov (United States)

    Sakamoto, Kunio; Hosomi, Takashi

    2009-10-01

    The human vision system has visual functions for viewing 3D images with a correct depth. These functions are called accommodation, vergence and binocular stereopsis. Most 3D display system utilizes binocular stereopsis. The authors have developed a monocular 3D vision system with accommodation mechanism, which is useful function for perceiving depth.

  20. Automatic Calibration Method of Voxel Size for Cone-beam 3D-CT Scanning System

    CERN Document Server

    Yang, Min; Liu, Yipeng; Men, Fanyong; Li, Xingdong; Liu, Wenli; Wei, Dongbo

    2013-01-01

    For cone-beam three-dimensional computed tomography (3D-CT) scanning system, voxel size is an important indicator to guarantee the accuracy of data analysis and feature measurement based on 3D-CT images. Meanwhile, the voxel size changes with the movement of the rotary table along X-ray direction. In order to realize the automatic calibration of the voxel size, a new easily-implemented method is proposed. According to this method, several projections of a spherical phantom are captured at different imaging positions and the corresponding voxel size values are calculated by non-linear least square fitting. Through these interpolation values, a linear equation is obtained, which reflects the relationship between the rotary table displacement distance from its nominal zero position and the voxel size. Finally, the linear equation is imported into the calibration module of the 3D-CT scanning system, and when the rotary table is moving along X-ray direction, the accurate value of the voxel size is dynamically expo...

  1. X-ray computed tomography uncovers root-root interactions: quantifying spatial relationships between interacting root systems in three dimensions

    Directory of Open Access Journals (Sweden)

    Alexander Martin Paya

    2015-04-01

    Full Text Available Research in the field of plant biology has recently demonstrated that inter- and intra-specific interactions belowground can dramatically alter root growth. Our aim was to answer questions related to the effect of inter- vs. intra-specific interactions on the growth and utilization of undisturbed space by fine roots within three dimensions (3D using micro X-ray computed tomography. To achieve this, Populus tremuloides (quaking aspen and Picea mariana (black spruce seedlings were planted into containers as either solitary individuals, or inter-/intra-specific pairs, allowed to grow for two months, and 3D metrics developed in order to quantify their use of belowground space. In both aspen and spruce, inter-specific root interactions produced a shift in the vertical distribution of the root system volume, and deepened the average position of root tips when compared to intra-specifically growing seedlings. Inter-specific interactions also increased the minimum distance between root tips belonging to the same root system. There was no effect of belowground interactions on the radial distribution of roots, or the directionality of lateral root growth for either species. In conclusion, we found that significant differences were observed more often when comparing controls (solitary individuals and paired seedlings (inter- or intra-specific, than when comparing inter- and intra-specifically growing seedlings. This would indicate that competition between neighboring seedlings was more responsible for shifting fine root growth in both species than was neighbor identity. However, significant inter- vs. intra-specific differences were observed, which further emphasizes the importance of biological interactions in competition studies.

  2. A compact micro-beam system using a tapered glass capillary for proton-induced X-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Jun [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)], E-mail: jhasegaw@nr.titech.ac.jp; Shiba, Shigeki; Fukuda, Hitoshi; Oguri, Yoshiyuki [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2008-05-15

    A compact micro-beam system, containing a tapered glass capillary tube with a tip diameter on the order of 10 {mu}m, was constructed to examine the applicability of capillary-generated micro-beams to high-contrast radiography based on proton-induced quasi-monochromatic X-rays. The transport efficiency of swift protons (2-3 MeV) through the capillary was examined as a function of the capillary tilt angle and the capillary tip diameter. We obtained transport efficiencies of approximately three times larger than would be expected from the geometrical shape of the capillary. This enhancement indicates that a focusing effect occurred in the capillary. A metallic thin foil was irradiated with the micro-beam and quasi-monochromatic X-rays were produced. By calculating the X-ray yields induced by proton bombardment in the foil and comparing them with the X-ray counts observed at the detector, the throughput efficiency of the X-ray imaging system was evaluated. We demonstrated magnification radiography of a small object to show that a spatial resolution on the order of 10 {mu}m was achievable in our system.

  3. Automated 3D-2D registration of X-ray microcomputed tomography with histological sections for dental implants in bone using chamfer matching and simulated annealing.

    Science.gov (United States)

    Becker, Kathrin; Stauber, Martin; Schwarz, Frank; Beißbarth, Tim

    2015-09-01

    We propose a novel 3D-2D registration approach for micro-computed tomography (μCT) and histology (HI), constructed for dental implant biopsies, that finds the position and normal vector of the oblique slice from μCT that corresponds to HI. During image pre-processing, the implants and the bone tissue are segmented using a combination of thresholding, morphological filters and component labeling. After this, chamfer matching is employed to register the implant edges and fine registration of the bone tissues is achieved using simulated annealing. The method was tested on n=10 biopsies, obtained at 20 weeks after non-submerged healing in the canine mandible. The specimens were scanned with μCT 100 and processed for hard tissue sectioning. After registration, we assessed the agreement of bone to implant contact (BIC) using automated and manual measurements. Statistical analysis was conducted to test the agreement of the BIC measurements in the registered samples. Registration was successful for all specimens and agreement of the respective binary images was high (median: 0.90, 1.-3. Qu.: 0.89-0.91). Direct comparison of BIC yielded that automated (median 0.82, 1.-3. Qu.: 0.75-0.85) and manual (median 0.61, 1.-3. Qu.: 0.52-0.67) measures from μCT were significant positively correlated with HI (median 0.65, 1.-3. Qu.: 0.59-0.72) between μCT and HI groups (manual: R(2)=0.87, automated: R(2)=0.75, p<0.001). The results show that this method yields promising results and that μCT may become a valid alternative to assess osseointegration in three dimensions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Investigation of tomosynthetic perfusion measurements using the scanning-beam digital x-ray (SBDX) system

    Science.gov (United States)

    Nett, Brian E.; Chen, Guang-Hong; Van Lysel, Michael S.; Betts, Timothy; Speidel, Michael; Rowley, Howard A.; Aagaard Kienitz, Beverly D.; Mistretta, Charles A.

    2004-10-01

    The feasibility of making regional perfusion measurements using a tomosynthetic digital subtraction angiography (TDSA) acquisition has been demonstrated. The study of tomosynthetic perfusion measurements was motivated by the clinical desire for perfusion measurements in an interventional angiography suite. These pilot studies were performed using the scanning-beam digital x-ray (SBDX) system which is an inverse-geometry imaging device which utilizes an electromagnetically-scanned x-ray source, and a small CdTe direct conversion photon counting detector. The scanning electron source was used to acquire planar-tomographic images of a 12.5 x 12.5 cm field of view at a frame rate of 15 frames/sec during dynamic contrast injection. A beagle animal model was used to evaluate the tomosynthetic perfusion measurements. A manual bolus injection of iodinated contrast solution was used in order to resolve the parameters of the contrast pass curve. The acquired planar tomosynthetic dataset was reconstructed with a simple back-projection algorithm. Digital subtraction techniques were used to visualize the change in contrast agent intensity in each reconstructed plane. Given the TDSA images, region of interest based analysis was used in the selection of the image pixels corresponding to the artery and tissue bed. The mean transit time (MTT), regional cerebral blood volume (rCBV) and regional cerebral blood flow (rCBF) were extracted from the tomosynthetic data for selected regions in each of the desired reconstructed planes. For the purpose of this study, the arterial contrast enhancement curve was fit with a combination of gamma variate terms, and the MTT was calculated using a deconvolution based on the singular value decomposition (SVD). The results of the contrast pass curves derived with TDSA were consistent with the results from perfusion measurements as implemented with CT acquisition.

  5. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Bovenkamp, Gudrun Lisa

    2013-05-15

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L{sub 3}- and Ag L{sub 3}-XANES spectra with regard to their chemical environment. It was shown that Pb L{sub 3}- and Ag L{sub 3}-XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  6. High resolution X-ray fluorescence imaging for a microbeam radiation therapy treatment planning system

    Science.gov (United States)

    Chtcheprov, Pavel; Inscoe, Christina; Burk, Laurel; Ger, Rachel; Yuan, Hong; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) uses an array of high-dose, narrow (~100 μm) beams separated by a fraction of a millimeter to treat various radio-resistant, deep-seated tumors. MRT has been shown to spare normal tissue up to 1000 Gy of entrance dose while still being highly tumoricidal. Current methods of tumor localization for our MRT treatments require MRI and X-ray imaging with subject motion and image registration that contribute to the measurement error. The purpose of this study is to develop a novel form of imaging to quickly and accurately assist in high resolution target positioning for MRT treatments using X-ray fluorescence (XRF). The key to this method is using the microbeam to both treat and image. High Z contrast media is injected into the phantom or blood pool of the subject prior to imaging. Using a collimated spectrum analyzer, the region of interest is scanned through the MRT beam and the fluorescence signal is recorded for each slice. The signal can be processed to show vascular differences in the tissue and isolate tumor regions. Using the radiation therapy source as the imaging source, repositioning and registration errors are eliminated. A phantom study showed that a spatial resolution of a fraction of microbeam width can be achieved by precision translation of the mouse stage. Preliminary results from an animal study showed accurate iodine profusion, confirmed by CT. The proposed image guidance method, using XRF to locate and ablate tumors, can be used as a fast and accurate MRT treatment planning system.

  7. miniPixD: a compact sample analysis system which combines X-ray imaging and diffraction

    Science.gov (United States)

    Moss, Robert; Crews, Chiaki; Wilson, Matthew; Speller, Robert

    2017-02-01

    This paper introduces miniPixD: a new, compact system that utilises transmission X-ray imaging and X-ray diffraction (XRD) to locate and identify materials of interest within an otherwise opaque volume. The system and the embodied techniques have utility in security screening, medical diagnostics, non-destructive testing (NDT) and quality assurance (QA). This paper outlines the design of the system including discussion on the choice of components and presents some data from relevant samples which are compared to other energy dispersive and angular dispersive XRD techniques.

  8. Development of high spatial resolution X-ray CT system at BL47XU in SPring-8

    CERN Document Server

    Uesugi, K; Yagi, N; Tsuchiyama, A; Nakano, T

    2001-01-01

    High spatial resolution, micrometer range, X-ray CT system has been developed at SPring-8. The experiments were performed at the undulator beam line BL47XU. An 'in-vacuum type' undulator is employed as an X-ray source, and the X-rays are monochromatized with a liquid nitrogen cooled Si(1 1 1) double crystal monochromator. High precision rotation stage with air bearing was used for sample rotation. The transmitted images were obtained with a two-dimensional image detector, which consists of a single crystal phosphor screen (Lu sub 2 SiO sub 5 : Ce), an objective lens and a cooled CCD camera. In this system the smallest effective pixel size was set to 0.5 mu mx0.5 mu m. As a result of the experiments, three-dimensional images of a few micrometer-order texture has been successfully obtained with the developed CT system.

  9. X-ray absorption spectroscopy of diluted system by undulator photon source and multi-element solid-state detector

    CERN Document Server

    Tanida, H

    2001-01-01

    In order to measure the extended X-ray absorption fine structure (EXAFS) spectrum of an ultra-diluted system, an optics and detector control system for a synchrotron radiation beamline is developed. The undulator gap width is continuously tuned to obtain the maximum X-ray photon flux during the energy scan for the EXAFS measurement. A piezoelectric translator optimizes the parallelism of the double crystal in a monochromator at each measurement point to compensate for mechanical errors of the monochromator, resulting in a smooth and intense X-ray photon flux during the measurement. For a detection of a weak fluorescence signal from diluted samples, a 19-element solid-state detector and digital signal processor are used. A K-edge EXAFS spectrum of iron in a myoglobin aqueous solution with a concentration of 5.58 parts per million was obtained by this system.

  10. Time-resolved X-ray spectroscopies of chemical systems: New perspectives.

    Science.gov (United States)

    Chergui, Majed

    2016-05-01

    The past 3-5 years have witnessed a dramatic increase in the number of time-resolved X-ray spectroscopic studies, mainly driven by novel technical and methodological developments. The latter include (i) the high repetition rate optical pump/X-ray probe studies, which have greatly boosted the signal-to-noise ratio for picosecond (ps) X-ray absorption spectroscopy studies, while enabling ps X-ray emission spectroscopy (XES) at synchrotrons; (ii) the X-ray free electron lasers (XFELs) are a game changer and have allowed the first femtosecond (fs) XES and resonant inelastic X-ray scattering experiments to be carried out; (iii) XFELs are also opening the road to the development of non-linear X-ray methods. In this perspective, I will mainly focus on the most recent technical developments and briefly address some examples of scientific questions that have been addressed thanks to them. I will look at the novel opportunities in the horizon.

  11. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida 33136 (United States); Wang, Ken Kang-Hsin; Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Eslami, Sohrab; Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Patterson, Michael S. [Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4K1 (Canada)

    2015-04-15

    .0% difference between simulated and measured signal. The calibration of the entire system was confirmed through the CBCT and BLT reconstruction of a bioluminescence source placed inside a tissue-simulating optical phantom. Using a spatial region constraint, the source position was reconstructed with less than 1 mm error and the source strength reconstructed with less than 24% error. Conclusions: A practical and systematic method has been developed to calibrate an integrated x-ray and optical tomography imaging system, including the respective CBCT and optical tomography system calibration and the geometrical calibration of the entire system. The method can be modified and adopted to calibrate CBCT and optical tomography systems that are operated independently or hybrid x-ray and optical tomography imaging systems.

  12. Concept of Indoor 3D-Route UAV Scheduling System

    DEFF Research Database