Sample records for 3-d ultrasound guidance

  1. Precisely shaped acoustic ablation of tumors utilizing steerable needle and 3D ultrasound image guidance (United States)

    Boctor, Emad M.; Stolka, Philipp; Kang, Hyun-Jae; Clarke, Clyde; Rucker, Caleb; Croom, Jordon; Burdette, E. Clif; Webster, Robert J., III


    Many recent studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to place the ablator device precisely into the target. Irregularly shaped target volumes typically require multiple insertions and several overlapping (thermal) lesions, which are even more challenging to accomplish in a precise, predictable, and timely manner without causing excessive damage to surrounding normal tissues. In answer to these problems, we have developed a steerable acoustic ablator called the ACUSITT with the ability of directional energy delivery to precisely shape the applied thermal dose . In this paper, we address image guidance for this device, proposing an innovative method for accurate tracking and tool registration with spatially-registered intra-operative three-dimensional US volumes, without relying on an external tracking device. This method is applied to guid-ance of the flexible, snake-like, lightweight, and inexpensive ACUSITT to facilitate precise placement of its ablator tip within the liver, with ablation monitoring via strain imaging. Recent advancements in interstitial high-power ultrasound applicators enable controllable and penetrating heating patterns which can be dynamically altered. This paper summarizes the design and development of the first synergistic system that integrates a novel steerable interstitial acoustic ablation device with a novel trackerless 3DUS guidance strategy.

  2. Development of 3D ultrasound needle guidance for high-dose-rate interstitial brachytherapy of gynaecological cancers (United States)

    Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.


    High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.

  3. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... Field II simulations and measurements with the ultrasound research scanner SARUS and a 3.5MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a smaller main-lobe, lower sidelobes, higher contrast, and better signal to noise ratio than parallel...

  4. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound (United States)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry


    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  5. Freehand 3D ultrasound breast tumor segmentation (United States)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao


    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  6. Experimental evaluation of ultrasound-guided 3D needle steering in biological tissue

    NARCIS (Netherlands)

    Abayazid, M.; Vrooijink, G.J.; Patil, Sachin; Alterovitz, Ron; Misra, S.


    Purpose In this paper, we present a system capable of automatically steering bevel tip flexible needles under ultrasound guidance toward stationary and moving targets in gelatin phantoms and biological tissue while avoiding stationary and moving obstacles. We use three-dimensional (3D) ultrasound to

  7. 3D Flow reconstruction using ultrasound PIV

    NARCIS (Netherlands)

    Poelma, C.; Mari, J.M.; Foin, N.; Tang, M.-X.; Krams, R.; Caro, C.G.; Weinberg, P.D.; Westerweel, J.


    Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the techniq

  8. Volumetric ultrasound panorama based on 3D SIFT. (United States)

    Ni, Dong; Qul, Yingge; Yang, Xuan; Chui, Yim Pan; Wong, Tien-Tsin; Ho, Simon S M; Heng, Pheng Ann


    The reconstruction of three-dimensional (3D) ultrasound panorama from multiple ultrasound volumes can provide a wide field of view for better clinical diagnosis. Registration of ultrasound volumes has been a key issue for the success of this panoramic process. In this paper, we propose a method to register and stitch ultrasound volumes, which are scanned by dedicated ultrasound probe, based on an improved 3D Scale Invariant Feature Transform (SIFT) algorithm. We propose methods to exclude artifacts from ultrasound images in order to improve the overall performance in 3D feature point extraction and matching. Our method has been validated on both phantom and clinical data sets of human liver. Experimental results show the effectiveness and stability of our approach, and the precision of our method is comparable to that of the position tracker based registration.

  9. Prenatal 3D Ultrasound Diagnostics in Cleidocranial Dysplasia

    DEFF Research Database (Denmark)

    Hermann, NV; Hove, HD; Jørgensen, C


    A 34-year-old Caucasian woman with cleidocranial dysplasia (CCD) and a known family history of CCD was referred for an ultrasound examination in the first trimester of her second pregnancy. Molecular genetic analysis of the RUNX2 gene was non-informative. A routine 2D ultrasound examination carried...... in the calvarial midline and missing nasal bones, are easily recognizable using 3D ultrasound as early as in week 15. Copyright (C) 2009 S. Karger AG, Basel....

  10. Reproducibility of Two 3-D Ultrasound Carotid Plaque Quantification Methods

    DEFF Research Database (Denmark)

    Graebe, Martin; Entrekin, Robert; Collet-Billon, Antoine;


    -sectional, 2-D freehand sweep and a mechanical 3-D ultrasound investigation of 62 carotid artery plaques is reported with intra-class correlation coefficients (with 95% confidence intervals). Inter-observer agreement was 0.60 (0.29-0.77) for the freehand method and 0.89 (0.83-0.93) for the mechanical 3-D...

  11. Ovarian tumor characterization using 3D ultrasound. (United States)

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Saba, Luca; Molinari, Filippo; Guerriero, Stefano; Suri, Jasjit S


    Among gynecological malignancies, ovarian cancer is the most frequent cause of death. Preoperative determination of whether a tumor is benign or malignant has often been found to be difficult. Because of such inconclusive findings from ultrasound images and other tests, many patients with benign conditions have been offered unnecessary surgeries thereby increasing patient anxiety and healthcare cost. The key objective of our work is to develop an adjunct Computer Aided Diagnostic (CAD) technique that uses ultrasound images of the ovary and image mining algorithms to accurately classify benign and malignant ovarian tumor images. In this algorithm, we extract texture features based on Local Binary Patterns (LBP) and Laws Texture Energy (LTE) and use them to build and train a Support Vector Machine (SVM) classifier. Our technique was validated using 1000 benign and 1000 malignant images, and we obtained a high accuracy of 99.9% using a SVM classifier with a Radial Basis Function (RBF) kernel. The high accuracy can be attributed to the determination of the novel combination of the 16 texture based features that quantify the subtle changes in the images belonging to both classes. The proposed algorithm has the following characteristics: cost-effectiveness, complete automation, easy deployment, and good end-user comprehensibility. We have also developed a novel integrated index, Ovarian Cancer Index (OCI), which is a combination of the texture features, to present the physicians with a more transparent adjunct technique for ovarian tumor classification.

  12. Chest wall segmentation in automated 3D breast ultrasound scans. (United States)

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico


    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm.

  13. Orthobiologic Interventions Using Ultrasound Guidance. (United States)

    Malanga, Gerard; Abdelshahed, Dena; Jayaram, Prathap


    The application of regenerative therapies for the treatment of musculoskeletal conditions has emerged over the last decade with recent acceleration. These include prolotherapy, platelet-rich plasma, and mesenchymal stem cell therapy. These strategies augment the body's innate physiology to heal pathologic processes. This article presents an overview of platelet-rich plasma and mesenchymal stem cell therapy for the treatment of musculoskeletal injuries. A brief literature review is included, as are techniques for the use of ultrasound guidance to assist with these procedures.

  14. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail:; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)


    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  15. Midbrain segmentation in transcranial 3D ultrasound for Parkinson diagnosis. (United States)

    Ahmadi, Seyed-Ahmad; Baust, Maximilian; Karamalis, Athanasios; Plate, Annika; Boetzel, Kai; Klein, Tassilo; Navab, Nassir


    Ultrasound examination of the human brain through the temporal bone window, also called transcranial ultrasound (TC-US), is a completely non-invasive and cost-efficient technique, which has established itself for differential diagnosis of Parkinson's Disease (PD) in the past decade. The method requires spatial analysis of ultrasound hyperechogenicities produced by pathological changes within the Substantia Nigra (SN), which belongs to the basal ganglia within the midbrain. Related work on computer aided PD diagnosis shows the urgent need for an accurate and robust segmentation of the midbrain from 3D TC-US, which is an extremely difficult task due to poor image quality of TC-US. In contrast to 2D segmentations within earlier approaches, we develop the first method for semi-automatic midbrain segmentation from 3D TC-US and demonstrate its potential benefit on a database of 11 diagnosed Parkinson patients and 11 healthy controls.

  16. The Application of Ultrasound in 3D Bio-Printing. (United States)

    Zhou, Yufeng


    Three-dimensional (3D) bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation) in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF) and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  17. The Application of Ultrasound in 3D Bio-Printing

    Directory of Open Access Journals (Sweden)

    Yufeng Zhou


    Full Text Available Three-dimensional (3D bioprinting is an emerging and promising technology in tissue engineering to construct tissues and organs for implantation. Alignment of self-assembly cell spheroids that are used as bioink could be very accurate after droplet ejection from bioprinter. Complex and heterogeneous tissue structures could be built using rapid additive manufacture technology and multiple cell lines. Effective vascularization in the engineered tissue samples is critical in any clinical application. In this review paper, the current technologies and processing steps (such as printing, preparation of bioink, cross-linking, tissue fusion and maturation in 3D bio-printing are introduced, and their specifications are compared with each other. In addition, the application of ultrasound in this novel field is also introduced. Cells experience acoustic radiation force in ultrasound standing wave field (USWF and then accumulate at the pressure node at low acoustic pressure. Formation of cell spheroids by this method is within minutes with uniform size and homogeneous cell distribution. Neovessel formation from USWF-induced endothelial cell spheroids is significant. Low-intensity ultrasound could enhance the proliferation and differentiation of stem cells. Its use is at low cost and compatible with current bioreactor. In summary, ultrasound application in 3D bio-printing may solve some challenges and enhance the outcomes.

  18. Localization of liver tumors in freehand 3D laparoscopic ultrasound (United States)

    Shahin, O.; Martens, V.; Besirevic, A.; Kleemann, M.; Schlaefer, A.


    The aim of minimally invasive laparoscopic liver interventions is to completely resect or ablate tumors while minimizing the trauma caused by the operation. However, restrictions such as limited field of view and reduced depth perception can hinder the surgeon's capabilities to precisely localize the tumor. Typically, preoperative data is acquired to find the tumor(s) and plan the surgery. Nevertheless, determining the precise position of the tumor is required, not only before but also during the operation. The standard use of ultrasound in hepatic surgery is to explore the liver and identify tumors. Meanwhile, the surgeon mentally builds a 3D context to localize tumors. This work aims to upgrade the use of ultrasound in laparoscopic liver surgery. We propose an approach to segment and localize tumors intra-operatively in 3D ultrasound. We reconstruct a 3D laparoscopic ultrasound volume containing a tumor. The 3D image is then preprocessed and semi-automatically segmented using a level set algorithm. During the surgery, for each subsequent reconstructed volume, a fast update of the tumor position is accomplished via registration using the previously segmented and localized tumor as a prior knowledge. The approach was tested on a liver phantom with artificial tumors. The tumors were localized in approximately two seconds with a mean error of less than 0.5 mm. The strengths of this technique are that it can be performed intra-operatively, it helps the surgeon to accurately determine the location, shape and volume of the tumor, and it is repeatable throughout the operation.

  19. 3D ultrasound imaging for prosthesis fabrication and diagnostic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, A.K.; Bow, W.J.; Strong, D.S. [and others


    The fabrication of a prosthetic socket for a below-the-knee amputee requires knowledge of the underlying bone structure in order to provide pressure relief for sensitive areas and support for load bearing areas. The goal is to enable the residual limb to bear pressure with greater ease and utility. Conventional methods of prosthesis fabrication are based on limited knowledge about the patient`s underlying bone structure. A 3D ultrasound imaging system was developed at Sandia National Laboratories. The imaging system provides information about the location of the bones in the residual limb along with the shape of the skin surface. Computer assisted design (CAD) software can use this data to design prosthetic sockets for amputees. Ultrasound was selected as the imaging modality. A computer model was developed to analyze the effect of the various scanning parameters and to assist in the design of the overall system. The 3D ultrasound imaging system combines off-the-shelf technology for image capturing, custom hardware, and control and image processing software to generate two types of image data -- volumetric and planar. Both volumetric and planar images reveal definition of skin and bone geometry with planar images providing details on muscle fascial planes, muscle/fat interfaces, and blood vessel definition. The 3D ultrasound imaging system was tested on 9 unilateral below-the- knee amputees. Image data was acquired from both the sound limb and the residual limb. The imaging system was operated in both volumetric and planar formats. An x-ray CT (Computed Tomography) scan was performed on each amputee for comparison. Results of the test indicate beneficial use of ultrasound to generate databases for fabrication of prostheses at a lower cost and with better initial fit as compared to manually fabricated prostheses.

  20. Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes (United States)

    Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad


    Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.

  1. Breast tumour visualization using 3D quantitative ultrasound methods (United States)

    Gangeh, Mehrdad J.; Raheem, Abdul; Tadayyon, Hadi; Liu, Simon; Hadizad, Farnoosh; Czarnota, Gregory J.


    Breast cancer is one of the most common cancer types accounting for 29% of all cancer cases. Early detection and treatment has a crucial impact on improving the survival of affected patients. Ultrasound (US) is non-ionizing, portable, inexpensive, and real-time imaging modality for screening and quantifying breast cancer. Due to these attractive attributes, the last decade has witnessed many studies on using quantitative ultrasound (QUS) methods in tissue characterization. However, these studies have mainly been limited to 2-D QUS methods using hand-held US (HHUS) scanners. With the availability of automated breast ultrasound (ABUS) technology, this study is the first to develop 3-D QUS methods for the ABUS visualization of breast tumours. Using an ABUS system, unlike the manual 2-D HHUS device, the whole patient's breast was scanned in an automated manner. The acquired frames were subsequently examined and a region of interest (ROI) was selected in each frame where tumour was identified. Standard 2-D QUS methods were used to compute spectral and backscatter coefficient (BSC) parametric maps on the selected ROIs. Next, the computed 2-D parameters were mapped to a Cartesian 3-D space, interpolated, and rendered to provide a transparent color-coded visualization of the entire breast tumour. Such 3-D visualization can potentially be used for further analysis of the breast tumours in terms of their size and extension. Moreover, the 3-D volumetric scans can be used for tissue characterization and the categorization of breast tumours as benign or malignant by quantifying the computed parametric maps over the whole tumour volume.

  2. Local phase tensor features for 3-D ultrasound to statistical shape+pose spine model registration. (United States)

    Hacihaliloglu, Ilker; Rasoulian, Abtin; Rohling, Robert N; Abolmaesumi, Purang


    Most conventional spine interventions are performed under X-ray fluoroscopy guidance. In recent years, there has been a growing interest to develop nonionizing imaging alternatives to guide these procedures. Ultrasound guidance has emerged as a leading alternative. However, a challenging problem is automatic identification of the spinal anatomy in ultrasound data. In this paper, we propose a local phase-based bone feature enhancement technique that can robustly identify the spine surface in ultrasound images. The local phase information is obtained using a gradient energy tensor filter. This information is used to construct local phase tensors in ultrasound images, which highlight the spine surface. We show that our proposed approach results in a more distinct enhancement of the bone surfaces compared to recently proposed techniques based on monogenic scale-space filters and logarithmic Gabor filters. We also demonstrate that registration accuracy of a statistical shape+pose model of the spine to 3-D ultrasound images can be significantly improved, using the proposed method, compared to those obtained using monogenic scale-space filters and logarithmic Gabor filters.

  3. Glasses for 3D ultrasound computer tomography: phase compensation (United States)

    Zapf, M.; Hopp, T.; Ruiter, N. V.


    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  4. Fast and robust 3D ultrasound registration--block and game theoretic matching. (United States)

    Banerjee, Jyotirmoy; Klink, Camiel; Peters, Edward D; Niessen, Wiro J; Moelker, Adriaan; van Walsum, Theo


    Real-time 3D US has potential for image guidance in minimally invasive liver interventions. However, motion caused by patient breathing makes it hard to visualize a localized area, and to maintain alignment with pre-operative information. In this work we develop a fast affine registration framework to compensate in real-time for liver motion/displacement due to breathing. The affine registration of two consecutive ultrasound volumes in time is performed using block-matching. For a set of evenly distributed points in one volume and their correspondences in the other volume, we propose a robust outlier rejection method to reject false matches. The inliers are then used to determine the affine transformation. The approach is evaluated on 13 4D ultrasound sequences acquired from 8 subjects. For 91 pairs of 3D ultrasound volumes selected from these sequences, a mean registration error of 1.8mm is achieved. A graphics processing unit (GPU) implementation runs the 3D US registration at 8 Hz.

  5. 3-D ultrasound-guided robotic needle steering in biological tissue. (United States)

    Adebar, Troy K; Fletcher, Ashley E; Okamura, Allison M


    Robotic needle steering systems have the potential to greatly improve medical interventions, but they require new methods for medical image guidance. Three-dimensional (3-D) ultrasound is a widely available, low-cost imaging modality that may be used to provide real-time feedback to needle steering robots. Unfortunately, the poor visibility of steerable needles in standard grayscale ultrasound makes automatic segmentation of the needles impractical. A new imaging approach is proposed, in which high-frequency vibration of a steerable needle makes it visible in ultrasound Doppler images. Experiments demonstrate that segmentation from this Doppler data is accurate to within 1-2 mm. An image-guided control algorithm that incorporates the segmentation data as feedback is also described. In experimental tests in ex vivo bovine liver tissue, a robotic needle steering system implementing this control scheme was able to consistently steer a needle tip to a simulated target with an average error of 1.57 mm. Implementation of 3-D ultrasound-guided needle steering in biological tissue represents a significant step toward the clinical application of robotic needle steering.

  6. Framework for 3D TransRectal Ultrasound

    CERN Document Server

    Mozer, Pierre; Chevreau, G; Daanen, Vincent; Moreau-Gaudry, Alexandre; Troccaz, Jocelyne


    Prostate biopsies are mainly performed under 2D TransRectal UltraSound (TRUS) control by sampling the prostate according to a predefined pattern. In case of first biopsies, this pattern follows a random systematic plan. Sometimes, repeat biopsies can be needed to target regions unsampled by previous biopsies or resample critical regions (for example in case of cancer expectant management or previous prostatic intraepithelial neoplasia findings). From a clinical point of view, it could be useful to control the 3D spatial distribution of theses biopsies inside the prostate. Modern 3D-TRUS probes allow acquiring high-quality volumes of the prostate in few seconds. We developed a framework to track the prostate in 3D TRUS images. It means that if one acquires a reference volume at the beginning of the session and another during each biopsy, it is possible to determine the relationship between the prostate in the reference and the others volumes by aligning images. We used this tool to evaluate the ability of a si...

  7. Virtual Ultrasound Guidance for Inexperienced Operators (United States)

    Caine, Timothy; Martin, David


    Medical ultrasound or echocardiographic studies are highly operator-dependent and generally require lengthy training and internship to perfect. To obtain quality echocardiographic images in remote environments, such as on-orbit, remote guidance of studies has been employed. This technique involves minimal training for the user, coupled with remote guidance from an expert. When real-time communication or expert guidance is not available, a more autonomous system of guiding an inexperienced operator through an ultrasound study is needed. One example would be missions beyond low Earth orbit in which the time delay inherent with communication will make remote guidance impractical. The Virtual Ultrasound Guidance system is a combination of hardware and software. The hardware portion includes, but is not limited to, video glasses that allow hands-free, full-screen viewing. The glasses also allow the operator a substantial field of view below the glasses to view and operate the ultrasound system. The software is a comprehensive video program designed to guide an inexperienced operator through a detailed ultrasound or echocardiographic study without extensive training or guidance from the ground. The program contains a detailed description using video and audio to demonstrate equipment controls, ergonomics of scanning, study protocol, and scanning guidance, including recovery from sub-optimal images. The components used in the initial validation of the system include an Apple iPod Classic third-generation as the video source, and Myvue video glasses. Initially, the program prompts the operator to power-up the ultrasound and position the patient. The operator would put on the video glasses and attach them to the video source. After turning on both devices and the ultrasound system, the audio-video guidance would then instruct on patient positioning and scanning techniques. A detailed scanning protocol follows with descriptions and reference video of each view along with

  8. 3D ultrasound computer tomography: update from a clinical study (United States)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.


    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  9. 3D Rotational X-Ray guidance for surgical interventions

    NARCIS (Netherlands)

    Kraats, Everine Brenda van de


    The research described in this thesis is aimed at increasing the accuracy and decreasing the invasiveness of surgical procedures, with a focus on spine procedures, by using a combination of multi-modality images, computer-assisted navigation, intraoperative 3D rotational X-ray (3DRX) imaging, and mi

  10. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis (United States)


    analysis ( Venta et al. 1994; Leucht et conventional ultrasound scanner (Spectra VST, Dia- al. 1988). When the objective was clearly defined as sonics, Inc...Measurement of blood perfu- Venta LA. Dudiak CM. Salamon CG. Flisak ME. Sonographic evalu- sion in tissue using Doppler ultrasound. Ultrasound Med Biol

  11. Reconstruction of volumetric ultrasound panorama based on improved 3D SIFT. (United States)

    Ni, Dong; Chui, Yim Pan; Qu, Yingge; Yang, Xuan; Qin, Jing; Wong, Tien-Tsin; Ho, Simon S H; Heng, Pheng Ann


    Registration of ultrasound volumes is a key issue for the reconstruction of volumetric ultrasound panorama. In this paper, we propose an improved three-dimensional (3D) scale invariant feature transform (SIFT) algorithm to globally register ultrasound volumes acquired from dedicated ultrasound probe, where local deformations are corrected by block-based warping algorithm. Original SIFT algorithm is extended to 3D and improved by combining the SIFT detector with Rohr3D detector to extract complementary features and applying the diffusion distance algorithm for robust feature comparison. Extensive experiments have been performed on both phantom and clinical data sets to demonstrate the effectiveness and robustness of our approach.

  12. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: a feasibility study. (United States)

    Selmi, Sonia Y; Promayon, Emmanuel; Troccaz, Jocelyne


    The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity-based function. The results are encouraging and show acceptable errors with simulated transforms applied on ultrasound volumes from real patients.

  13. Three dimensional (3d) transverse oscillation vector velocity ultrasound imaging

    DEFF Research Database (Denmark)


    An ultrasound imaging system (300) includes a transducer array (302) with a two- dimensional array of transducer elements configured to transmit an ultrasound signal and receive echoes, transmit circuitry (304) configured to control the transducer array to transmit the ultrasound signal so...... as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structures such as flowing blood cells, organ cells etc. A beamformer...... (312) configured to beamform the echoes, and a velocity processor (314) configured to separately determine a depth velocity component, a transverse velocity component and an elevation velocity component, wherein the velocity components are determined based on the same transmitted ultrasound signal...

  14. 3D reconstruction of carotid atherosclerotic plaque: comparison between spatial compound ultrasound models and anatomical models

    DEFF Research Database (Denmark)

    Lind, Bo L.; Fagertun, Jens; Wilhjelm, Jens E.;


    This study deals with the creation of 3D models that can work as a tool for discriminating between tissue and background in the development of tissue classification methods. Ten formalin-fixed atherosclerotic carotid plaques removed by endarterectomy were scanned with 3D multi-angle spatial...... compound ultrasound (US) and subsequently sliced and photographed to produce a 3D anatomical data set. Outlines in the ultrasound data were found by means of active contours and combined into 10 3D ultrasound models. The plaque regions of the anatomical photographs were outlined manually and then combined...... into 10 3D anatomical models. The volumes of the anatomical models correlated with the volume found by a water displacement method (r = 0.95), except for an offset. The models were compared in three ways. Visual inspection showed quite good agreement between the models. The volumes of the ultrasound...

  15. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system

    CERN Document Server

    Baumann, Michael; Daanen, Vincent; Troccaz, Jocelyne


    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space a...

  16. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis (United States)


    registration by maximization of mutual information. Med considered as unlikely. Image Anal 1996;1:35-51. Our reference: UMB 5398 ELSEVIER SCIENCE INC . TRANSFER...retrieval systems. Rights of authors Elsevier Science Inc . and World Federation for Ultrasound in Medicine and Biology recognizes the retention of the...indication of the Elsevier Science Inc . and World Federation for Ultrasound in Medicine and Biology copyright and a full citation of the journal source

  17. Evaluation of low-dose limits in 3D-2D rigid registration for surgical guidance (United States)

    Uneri, A.; Wang, A. S.; Otake, Y.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gallia, G. L.; Gokaslan, Z. L.; Siewerdsen, J. H.


    An algorithm for intensity-based 3D-2D registration of CT and C-arm fluoroscopy is evaluated for use in surgical guidance, specifically considering the low-dose limits of the fluoroscopic x-ray projections. The registration method is based on a framework using the covariance matrix adaptation evolution strategy (CMA-ES) to identify the 3D patient pose that maximizes the gradient information similarity metric. Registration performance was evaluated in an anthropomorphic head phantom emulating intracranial neurosurgery, using target registration error (TRE) to characterize accuracy and robustness in terms of 95% confidence upper bound in comparison to that of an infrared surgical tracking system. Three clinical scenarios were considered: (1) single-view image + guidance, wherein a single x-ray projection is used for visualization and 3D-2D guidance; (2) dual-view image + guidance, wherein one projection is acquired for visualization, combined with a second (lower-dose) projection acquired at a different C-arm angle for 3D-2D guidance; and (3) dual-view guidance, wherein both projections are acquired at low dose for the purpose of 3D-2D guidance alone (not visualization). In each case, registration accuracy was evaluated as a function of the entrance surface dose associated with the projection view(s). Results indicate that images acquired at a dose as low as 4 μGy (approximately one-tenth the dose of a typical fluoroscopic frame) were sufficient to provide TRE comparable or superior to that of conventional surgical tracking, allowing 3D-2D guidance at a level of dose that is at most 10% greater than conventional fluoroscopy (scenario #2) and potentially reducing the dose to approximately 20% of the level in a conventional fluoroscopically guided procedure (scenario #3).

  18. Measuring Femoral Torsion In Vivo Using Freehand 3-D Ultrasound Imaging. (United States)

    Passmore, Elyse; Pandy, Marcus G; Graham, H Kerr; Sangeux, Morgan


    Despite variation in bone geometry, muscle and joint function is often investigated using generic musculoskeletal models. Patient-specific bone geometry can be obtained from computerised tomography, which involves ionising radiation, or magnetic resonance imaging (MRI), which is costly and time consuming. Freehand 3-D ultrasound provides an alternative to obtain bony geometry. The purpose of this study was to determine the accuracy and repeatability of 3-D ultrasound in measuring femoral torsion. Measurements of femoral torsion were performed on 10 healthy adults using MRI and 3-D ultrasound. Measurements of femoral torsion from 3-D ultrasound were, on average, smaller than those from MRI (mean difference = 1.8°; 95% confidence interval: -3.9°, 7.5°). MRI and 3-D ultrasound had Bland and Altman repeatability coefficients of 3.1° and 3.7°, respectively. Accurate measurements of femoral torsion were obtained with 3-D ultrasound offering the potential to acquire patient-specific bone geometry for musculoskeletal modelling. Three-dimensional ultrasound is non-invasive and relatively inexpensive and can be integrated into gait analysis.

  19. 3D-2D ultrasound feature-based registration for navigated prostate biopsy: A feasibility study


    Selmi, Sonia,; Promayon, Emmanuel; Troccaz, Jocelyne


    International audience; The aim of this paper is to describe a 3D-2D ultrasound feature-based registration method for navigated prostate biopsy and its first results obtained on patient data. A system combining a low-cost tracking system and a 3D-2D registration algorithm was designed. The proposed 3D-2D registration method combines geometric and image-based distances. After extracting features from ultrasound images, 3D and 2D features within a defined distance are matched using an intensity...

  20. 3D-Ultrasound probe calibration for computer-guided diagnosis and therapy

    CERN Document Server

    Baumann, Michael; Leroy, Antoine; Troccaz, Jocelyne


    With the emergence of swept-volume ultrasound (US) probes, precise and almost real-time US volume imaging has become available. This offers many new opportunities for computer guided diagnosis and therapy, 3-D images containing significantly more information than 2-D slices. However, computer guidance often requires knowledge about the exact position of US voxels relative to a tracking reference, which can only be achieved through probe calibration. In this paper we present a 3-D US probe calibration system based on a membrane phantom. The calibration matrix is retrieved by detection of a membrane plane in a dozen of US acquisitions of the phantom. Plane detection is robustly performed with the 2-D Hough transformation. The feature extraction process is fully automated, calibration requires about 20 minutes and the calibration system can be used in a clinical context. The precision of the system was evaluated to a root mean square (RMS) distance error of 1.15mm and to an RMS angular error of 0.61 degrees. The...

  1. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API (United States)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor


    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  2. Intensity-based image registration for 3D spatial compounding using a freehand 3D ultrasound system (United States)

    Pagoulatos, Niko; Haynor, David R.; Kim, Yongmin


    3D spatial compounding involves the combination of two or more 3D ultrasound (US) data sets, acquired under different insonation angles and windows, to form a higher quality 3D US data set. An important requirement for this method to succeed is the accurate registration between the US images used to form the final compounded image. We have developed a new automatic method for rigid and deformable registration of 3D US data sets, acquired using a freehand 3D US system. Deformation is provided by using a 3D thin-plate spline (TPS). Our method is fundamentally different from the previous ones in that the acquired scattered US 2D slices are registered and compounded directly into the 3D US volume. Our approach has several benefits over the traditional registration and spatial compounding methods: (i) we only peform one 3D US reconstruction, for the first acquired data set, therefore we save the computation time required to reconstruct subsequent acquired scans, (ii) for our registration we use (except for the first scan) the acquired high-resolution 2D US images rather than the 3D US reconstruction data which are of lower quality due to the interpolation and potential subsampling associated with 3D reconstruction, and (iii) the scans performed after the first one are not required to follow the typical 3D US scanning protocol, where a large number of dense slices have to be acquired; slices can be acquired in any fashion in areas where compounding is desired. We show that by taking advantage of the similar information contained in adjacent acquired 2D US slices, we can reduce the computation time of linear and nonlinear registrations by a factor of more than 7:1, without compromising registration accuracy. Furthermore, we implemented an adaptive approximation to the 3D TPS with local bilinear transformations allowing additional reduction of the nonlinear registration computation time by a factor of approximately 3.5. Our results are based on a commercially available

  3. Incremental Volume Rendering Algorithm for Interactive 3D Ultrasound Imaging (United States)


    hidden surface removal, such effects as cutaway viewing of the 17 Rat -cache (16 samples organized as 4-ary tree) embedded in an array,1,f -f I I I I I I...70. [Stick84] Stickels, K. R., and Wann, L.S. (1984). "An Analysis of Three- Dimensional Reconstructive Echocardiography ." Ultrasound in Med. & Biol

  4. Correlation of preoperative MRI and intraoperative 3D ultrasound to measure brain tissue shift (United States)

    Gobbi, David G.; Lee, Belinda K. H.; Peters, Terence M.


    B-Mode ultrasound is often used during neurosurgery to provide intra-operative images of the brain though a craniotomy, but the use of 3D ultrasound during surgery is still in its infancy. We have developed a system that provides real-time freehand 3D ultrasound reconstruction at a reduced resolution. The reconstruction proceeds incrementally and the 3D image is overlayed, via a computer, on a pre-operative 3D MRI scan. This provides the operator with the necessary feedback to maintain a constant freehand sweep-rate, and also ensures that the sweep covers the desired anatomical volume. All of the ultrasound video frames are buffered, and a full-resolution, compounded reconstruction proceeds once the manual sweep is complete. We have also developed tools for manual tagging of homologous landmarks in the 3D MRI and 3D ultrasound volumes that use a piecewise cubic approximation of thin-plate spline interpolation to achieve interactive nonlinear registration and warping of the MRI volume to the ultrasound volume: Each time a homologous point-pair is identified by the use, the image of the warped MRI is updated on the computer screen after less than 0.5 s.

  5. A framework for human spine imaging using a freehand 3D ultrasound system

    NARCIS (Netherlands)

    Purnama, Ketut E.; Wilkinson, Michael. H. F.; Veldhuizen, Albert G.; van Ooijen, Peter. M. A.; Lubbers, Jaap; Burgerhof, Johannes G. M.; Sardjono, Tri A.; Verkerke, Gijbertus J.


    The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis wh

  6. 3D temperature field reconstruction using ultrasound sensing system (United States)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei


    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  7. Vascular Structure Identification in Intraoperative 3D Contrast-Enhanced Ultrasound Data

    Directory of Open Access Journals (Sweden)

    Elisee Ilunga-Mbuyamba


    Full Text Available In this paper, a method of vascular structure identification in intraoperative 3D Contrast-Enhanced Ultrasound (CEUS data is presented. Ultrasound imaging is commonly used in brain tumor surgery to investigate in real time the current status of cerebral structures. The use of an ultrasound contrast agent enables to highlight tumor tissue, but also surrounding blood vessels. However, these structures can be used as landmarks to estimate and correct the brain shift. This work proposes an alternative method for extracting small vascular segments close to the tumor as landmark. The patient image dataset involved in brain tumor operations includes preoperative contrast T1MR (cT1MR data and 3D intraoperative contrast enhanced ultrasound data acquired before (3D-iCEUS s t a r t and after (3D-iCEUS e n d tumor resection. Based on rigid registration techniques, a preselected vascular segment in cT1MR is searched in 3D-iCEUS s t a r t and 3D-iCEUS e n d data. The method was validated by using three similarity measures (Normalized Gradient Field, Normalized Mutual Information and Normalized Cross Correlation. Tests were performed on data obtained from ten patients overcoming a brain tumor operation and it succeeded in nine cases. Despite the small size of the vascular structures, the artifacts in the ultrasound images and the brain tissue deformations, blood vessels were successfully identified.

  8. Two-dimensional ultrasound measurement of thyroid gland volume: a new equation with higher correlation with 3-D ultrasound measurement. (United States)

    Ying, Michael; Yung, Dennis M C; Ho, Karen K L


    This study aimed to develop a new two-dimensional (2-D) ultrasound thyroid volume estimation equation using three-dimensional (3-D) ultrasound as the standard of reference, and to compare the thyroid volume estimation accuracy of the new equation with three previously reported equations. 2-D and 3-D ultrasound examinations of the thyroid gland were performed in 150 subjects with normal serum thyrotropin (TSH, thyroid-stimulating hormone) and free thyroxine (fT4) levels (63 men and 87 women, age range: 17 to 71 y). In each subject, the volume of both thyroid lobes was measured by 3-D ultrasound. On 2-D ultrasound, the craniocaudal (CC), lateromedial (LM) and anteroposterior (AP) dimensions of the thyroid lobes were measured. The equation was derived by correlating the volume of the thyroid lobes measured with 3-D ultrasound and the product of the three dimensions measured with 2-D ultrasound using linear regression analysis, in 75 subjects without thyroid nodule. The accuracy of thyroid volume estimation of the new equation and the three previously reported equations was evaluated and compared in another 75 subjects (without thyroid nodule, n = 30; with thyroid nodule, n = 45). It is suggested that volume of thyroid lobe may be estimated as: volume of thyroid lobe = 0.38.(CC.LM.AP) + 1.76. Result showed that the new equation (16.9% to 36.1%) had a significantly smaller thyroid volume estimation error than the previously reported equations (20.8% to 54.9%) (p thyroid volume estimation error when thyroid glands with nodules were examined (p thyroid volume equation, 2-D ultrasound can be a useful alternative in thyroid volume measurement when 3-D ultrasound is not available.

  9. Real-time 3-D ultrasound scan conversion using a multicore processor. (United States)

    Zhuang, Bo; Shamdasani, Vijay; Sikdar, Siddhartha; Managuli, Ravi; Kim, Yongmin


    Real-time 3-D ultrasound scan conversion (SC) in software has not been practical due to its high computation and I/O data handling requirements. In this paper, we describe software-based 3-D SC with high volume rates using a multicore processor, Cell. We have implemented both 3-D SC approaches: 1) the separable 3-D SC where two 2-D coordinate transformations in orthogonal planes are performed in sequence and 2) the direct 3-D SC where the coordinate transformation is directly handled in 3-D. One Cell processor can scan-convert a 192 x 192 x 192 16-bit volume at 87.8 volumes/s with the separable 3-D SC algorithm and 28 volumes/s with the direct 3-D SC algorithm.

  10. Advanced 3-D Ultrasound Imaging: 3-D Synthetic Aperture Imaging using Fully Addressed and Row-Column Addressed 2-D Transducer Arrays

    DEFF Research Database (Denmark)

    Bouzari, Hamed

    companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners......Compared with conventional 2-D ultrasound imaging, real-time 3-D (or 4-D) ultrasound imaging has several advantages, resulting in a significant progress in the ultrasound imaging instrumentation over the past decade. Viewing the patient’s anatomy as a volume helps physicians to comprehend...... the important diagnostic information in a noninvasive manner. Diagnostic and therapeutic decisions often require accurate estimates of e.g., organ, cyst, or tumor volumes. 3-D ultrasound imaging can provide these measurements without relying on the geometrical assumptions and operator-dependent skills involved...

  11. Advantages and disadvantages of 3D ultrasound of thyroid nodules including thin slice volume rendering

    Directory of Open Access Journals (Sweden)

    Slapa Rafal


    Full Text Available Abstract Background The purpose of this study was to assess the advantages and disadvantages of 3D gray-scale and power Doppler ultrasound, including thin slice volume rendering (TSVR, applied for evaluation of thyroid nodules. Methods The retrospective evaluation by two observers of volumes of 71 thyroid nodules (55 benign, 16 cancers was performed using a new TSVR technique. Dedicated 4D ultrasound scanner with an automatic 6-12 MHz 4D probe was used. Statistical analysis was performed with Stata v. 8.2. Results Multiple logistic regression analysis demonstrated that independent risk factors of thyroid cancers identified by 3D ultrasound include: (a ill-defined borders of the nodule on MPR presentation, (b a lobulated shape of the nodule in the c-plane and (c a density of central vessels in the nodule within the minimal or maximal ranges. Combination of features provided sensitivity 100% and specificity 60-69% for thyroid cancer. Calcification/microcalcification-like echogenic foci on 3D ultrasound proved not to be a risk factor of thyroid cancer. Storage of the 3D data of the whole nodules enabled subsequent evaluation of new parameters and with new rendering algorithms. Conclusions Our results indicate that 3D ultrasound is a practical and reproducible method for the evaluation of thyroid nodules. 3D ultrasound stores volumes comprising the whole lesion or organ. Future detailed evaluations of the data are possible, looking for features that were not fully appreciated at the time of collection or applying new algorithms for volume rendering in order to gain important information. Three-dimensional ultrasound data could be included in thyroid cancer databases. Further multicenter large scale studies are warranted.

  12. Automated 3D ultrasound image segmentation for assistant diagnosis of breast cancer (United States)

    Wang, Yuxin; Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A.; Du, Sidan; Yuan, Jie; Wang, Xueding; Carson, Paul L.


    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  13. Automated 3D ultrasound image segmentation to aid breast cancer image interpretation. (United States)

    Gu, Peng; Lee, Won-Mean; Roubidoux, Marilyn A; Yuan, Jie; Wang, Xueding; Carson, Paul L


    Segmentation of an ultrasound image into functional tissues is of great importance to clinical diagnosis of breast cancer. However, many studies are found to segment only the mass of interest and not all major tissues. Differences and inconsistencies in ultrasound interpretation call for an automated segmentation method to make results operator-independent. Furthermore, manual segmentation of entire three-dimensional (3D) ultrasound volumes is time-consuming, resource-intensive, and clinically impractical. Here, we propose an automated algorithm to segment 3D ultrasound volumes into three major tissue types: cyst/mass, fatty tissue, and fibro-glandular tissue. To test its efficacy and consistency, the proposed automated method was employed on a database of 21 cases of whole breast ultrasound. Experimental results show that our proposed method not only distinguishes fat and non-fat tissues correctly, but performs well in classifying cyst/mass. Comparison of density assessment between the automated method and manual segmentation demonstrates good consistency with an accuracy of 85.7%. Quantitative comparison of corresponding tissue volumes, which uses overlap ratio, gives an average similarity of 74.54%, consistent with values seen in MRI brain segmentations. Thus, our proposed method exhibits great potential as an automated approach to segment 3D whole breast ultrasound volumes into functionally distinct tissues that may help to correct ultrasound speed of sound aberrations and assist in density based prognosis of breast cancer.

  14. 3D ultrasound to stereoscopic camera registration through an air-tissue boundary. (United States)

    Yip, Michael C; Adebar, Troy K; Rohling, Robert N; Salcudean, Septimiu E; Nguan, Christopher Y


    A novel registration method between 3D ultrasound and stereoscopic cameras is proposed based on tracking a registration tool featuring both ultrasound fiducials and optical markers. The registration tool is pressed against an air-tissue boundary where it can be seen both in ultrasound and in the camera view. By localizing the fiducials in the ultrasound volume, knowing the registration tool geometry, and tracking the tool with the cameras, a registration is found. This method eliminates the need for external tracking, requires minimal setup, and may be suitable for a range of minimally invasive surgeries. A study of the appearance of ultrasound fiducials on an air-tissue boundary is presented, and an initial assessment of the ability to localize the fiducials in ultrasound with sub-millimeter accuracy is provided. The overall accuracy of registration (1.69 +/- 0.60 mm) is a noticeable improvement over other reported methods and warrants patient studies.

  15. A 3D sparse motion field filtering for quantitative analysis of fascial layers mobility based on 3D ultrasound scans. (United States)

    Turini, G; Condino, S; Stecco, A; Ferrari, V; Ferrari, M; Gesi, M


    In the last few years, there has been an increasing interest in the role of deep fascia mobility in musculoskeletal dynamics and chronic pain mechanisms. In a previous paper we presented an innovative semiautomatic approach to evaluate the 3D motion of the fascia using ultrasound (US) imaging, generating a sparse deformation vector field. This paper presents an improvement of our original method, focusing on the filtering of the sparse vector field and its validation. Moreover, in order to evaluate the performance of the algorithm, a method is proposed to generate synthetic deformation vector fields, including: expansion, rotation, horizontal shear, and oblique shear components. Preliminary tests on the final synthetic deformation vector fields showed promising results. Further experiments are required in order to optimize the tuning of the algorithm.

  16. Mapping cardiac fiber orientations from high-resolution DTI to high-frequency 3D ultrasound (United States)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Wagner, Mary B.; Fei, Baowei


    The orientation of cardiac fibers affects the anatomical, mechanical, and electrophysiological properties of the heart. Although echocardiography is the most common imaging modality in clinical cardiac examination, it can only provide the cardiac geometry or motion information without cardiac fiber orientations. If the patient's cardiac fiber orientations can be mapped to his/her echocardiography images in clinical examinations, it may provide quantitative measures for diagnosis, personalized modeling, and image-guided cardiac therapies. Therefore, this project addresses the feasibility of mapping personalized cardiac fiber orientations to three-dimensional (3D) ultrasound image volumes. First, the geometry of the heart extracted from the MRI is translated to 3D ultrasound by rigid and deformable registration. Deformation fields between both geometries from MRI and ultrasound are obtained after registration. Three different deformable registration methods were utilized for the MRI-ultrasound registration. Finally, the cardiac fiber orientations imaged by DTI are mapped to ultrasound volumes based on the extracted deformation fields. Moreover, this study also demonstrated the ability to simulate electricity activations during the cardiac resynchronization therapy (CRT) process. The proposed method has been validated in two rat hearts and three canine hearts. After MRI/ultrasound image registration, the Dice similarity scores were more than 90% and the corresponding target errors were less than 0.25 mm. This proposed approach can provide cardiac fiber orientations to ultrasound images and can have a variety of potential applications in cardiac imaging.

  17. Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay. (United States)

    Liao, Hongen; Ishihara, Hirotaka; Tran, Huy Hoang; Masamune, Ken; Sakuma, Ichiro; Dohi, Takeyoshi


    This paper describes a precision-guided surgical navigation system for minimally invasive surgery. The system combines a laser guidance technique with a three-dimensional (3D) autostereoscopic image overlay technique. Images of surgical anatomic structures superimposed onto the patient are created by employing an animated imaging method called integral videography (IV), which can display geometrically accurate 3D autostereoscopic images and reproduce motion parallax without the need for special viewing or tracking devices. To improve the placement accuracy of surgical instruments, we integrated an image overlay system with a laser guidance system for alignment of the surgical instrument and better visualization of patient's internal structure. We fabricated a laser guidance device and mounted it on an IV image overlay device. Experimental evaluations showed that the system could guide a linear surgical instrument toward a target with an average error of 2.48 mm and standard deviation of 1.76 mm. Further improvement to the design of the laser guidance device and the patient-image registration procedure of the IV image overlay will make this system practical; its use would increase surgical accuracy and reduce invasiveness.

  18. GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Liu Li


    Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.

  19. Modeling of multi-view 3D freehand radio frequency ultrasound. (United States)

    Klein, T; Hansson, M; Navab, Nassir


    Nowadays ultrasound (US) examinations are typically performed with conventional machines providing two dimensional imagery. However, there exist a multitude of applications where doctors could benefit from three dimensional ultrasound providing better judgment, due to the extended spatial view. 3D freehand US allows acquisition of images by means of a tracking device attached to the ultrasound transducer. Unfortunately, view dependency makes the 3D representation of ultrasound a non-trivial task. To address this we model speckle statistics, in envelope-detected radio frequency (RF) data, using a finite mixture model (FMM), assuming a parametric representation of data, in which the multiple views are treated as components of the FMM. The proposed model is show-cased with registration, using an ultrasound specific distribution based pseudo-distance, and reconstruction tasks, performed on the manifold of Gamma model parameters. Example field of application is neurology using transcranial US, as this domain requires high accuracy and data systematically features low SNR, making intensity based registration difficult. In particular, 3D US can be specifically used to improve differential diagnosis of Parkinson's disease (PD) compared to conventional approaches and is therefore of high relevance for future application.

  20. Maxillary length in 11- to 26-week-old normal fetuses studied by 3D ultrasound

    DEFF Research Database (Denmark)

    Hermann, N V; Darvann, T A; Sundberg, K


    OBJECTIVES: The objective of this article is to investigate normal prenatal maxillary length using 3D ultrasound and to correlate this with previously reported results for the mandible and the biparietal diameter (BPD). METHODS: Seventy-two 3D ultrasound volumes from normal pregnancies in 52...... volunteers (gestational age: 11-26 weeks) were obtained using a GE Voluson 730 Expert 3D scanner. Maxillary length and BPD were measured. Growth velocity and rate were calculated. Maxillary values were correlated with BPD and previously reported mandibular values. RESULTS: The mean total maxillary length...... maxilla and mandible, whereas the velocity of the increase in BPD growth was significantly larger than that of the jaws. However, the growth rate was larger for the jaws than for the BPD. CONCLUSIONS: Normative measures for the maxilla in 11- to 26-week-old fetuses are presented. Change in maxillary...

  1. Passive markers for tracking surgical instruments in real-time 3-D ultrasound imaging. (United States)

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E


    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts.

  2. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance (United States)

    Kang, Hyejoo; Lovelock, Dale M.; Yorke, Ellen D.; Kriminiski, Sergey; Lee, Nancy; Amols, Howard I.


    Our goal is to determine an optimized image-guided setup by comparing setup errors determined by two-dimensional (2D) and three-dimensional (3D) image guidance for head and neck cancer (HNC) patients immobilized by customized thermoplastic masks. Nine patients received weekly imaging sessions, for a total of 54, throughout treatment. Patients were first set up by matching lasers to surface marks (initial) and then translationally corrected using manual registration of orthogonal kilovoltage (kV) radiographs with DRRs (2D-2D) on bony anatomy. A kV cone beam CT (kVCBCT) was acquired and manually registered to the simulation CT using only translations (3D-3D) on the same bony anatomy to determine further translational corrections. After treatment, a second set of kVCBCT was acquired to assess intrafractional motion. Averaged over all sessions, 2D-2D registration led to translational corrections from initial setup of 3.5 ± 2.2 (range 0–8) mm. The addition of 3D-3D registration resulted in only small incremental adjustment (0.8 ± 1.5 mm). We retrospectively calculated patient setup rotation errors using an automatic rigid-body algorithm with 6 degrees of freedom (DoF) on regions of interest (ROI) of in-field bony anatomy (mainly the C2 vertebral body). Small rotations were determined for most of the imaging sessions; however, occasionally rotations > 3° were observed. The calculated intrafractional motion with automatic registration was < 3.5 mm for eight patients, and < 2° for all patients. We conclude that daily manual 2D-2D registration on radiographs reduces positioning errors for mask-immobilized HNC patients in most cases, and is easily implemented. 3D-3D registration adds little improvement over 2D-2D registration without correcting rotational errors. We also conclude that thermoplastic masks are effective for patient immobilization. PMID:21330971

  3. 3D cone-beam CT guidance, a novel technique in renal biopsy - results in 41 patients with suspected renal masses

    Energy Technology Data Exchange (ETDEWEB)

    Braak, Sicco J.; Heesewijk, Johannes P.M. van; Strijen, Marco J.L. van [St Antonius Hospital, Department of Radiology, PO Box 2500, Nieuwegein (Netherlands); Melick, Harm H.E. van; Onaca, Mircea G. [St Antonius Hospital, Department of Urology, Nieuwegein (Netherlands)


    To determine whether 3D cone-beam computed tomography (CBCT) guidance allows safe and accurate biopsy of suspected small renal masses (SRM), especially in hard-to-reach anatomical locations. CBCT guidance was used to perform 41 stereotactic biopsy procedures of lesions that were inaccessible for ultrasound guidance or CT guidance. In CBCT guidance, a 3D-volume data set is acquired by rotating a C-arm flat-panel detector angiosystem around the patient. In the data set, a needle trajectory is determined and, after co-registration, a fusion image is created from fluoroscopy and a slice from the data set, enabling the needle to be positioned in real time. Of the 41 lesions, 22 were malignant, 17 were benign, and 2 were nondiagnostic. The two nondiagnostic lesions proved to be renal cell carcinoma. There was no growth during follow-up imaging of the benign lesions (mean 29 months). This resulted in a sensitivity, specificity, PPV, NPV, and accuracy of 91.7, 100, 100, 89.5, and 95.1%, respectively. Mean dose-area product value was 44.0{sup 2} (range 16.5-126.5). There was one minor bleeding complication. With CBCT guidance, safe and accurate biopsy of a suspected SRM is feasible, especially in hard-to-reach locations of the kidney. (orig.)

  4. Using Rotation for Steerable Needle Detection in 3D Color-Doppler Ultrasound Images


    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne


    International audience; This paper demonstrates a new way to detect needles in 3D color-Doppler volumes of biological tissues. It uses rotation to generate vibrations of a needle using an existing robotic brachytherapy system. The results of our detection for color-Doppler and B-Mode ultrasound are compared to a needle location reference given by robot odometry and robot ultrasound calibration. Average errors between detection and reference are 5.8 mm on needle tip for B-Mode images and 2.17 ...

  5. The application of transabdominal 3D ultrasound for the diagnosis of gastric varices: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, Hitoshi, E-mail:; Kamezaki, Hidehiro, E-mail:; Kondo, Takayuki, E-mail:; Sekimoto, Tadashi, E-mail:; Shimada, Taro, E-mail:; Takahashi, Masanori, E-mail:; Yokosuka, Osamu, E-mail:


    Objective: The aim of this study was to determine the feasibility of using transabdominal three-dimensional (3D) colour Doppler ultrasound as a non-invasive tool to demonstrate and quantify gastric varices. Subjects and methods: A phantom study compared the 3D water flow volume data in a hose with the actual volume inside the hose at three different flow velocities. The prospective clinical study examined the reliability and reproducibility of 3D volume data for gastric varices (mild 28, moderate 26, large 8) in 62 patients. The 3D images were acquired using the colour Doppler with both convex and micro-convex probes. Results: The phantom study showed a 12.4–17.6% difference between the 3D data and the actual volume with no difference between the two types of probes or three velocities. The detectability of gastric varices was identical between the two probes (54/62, 87.1%). However, the scanning efficiency was significantly greater for the micro-convex probe (66.9 ± 14.1%) than the convex probe (57.3 ± 14%, p = 0.012). Body mass index was the only factor that had a significant relationship with the detectability of varices. The mean volume (mL) of the 3D signal was 0.82 ± 0.74 for mild varices, 5.48 ± 3.84 for moderate varices, and 10.63 ± 6.67 for large varices with significant differences between different grades. The intra-/inter-rater reliability was excellent. Conclusion: The method of 3D colour Doppler ultrasound is reliable and reproducible in the quantitative assessment of vascular volume and is applicable for grading gastric varices. This study may offer a practical usefulness for 3D ultrasonography as an alternative to endoscopy.

  6. Usefulness limitation of 3D-ultrasound diagnosis of breast masses

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yong Seok; Chung, Soo Young; Yang, Ik; Lee, Kyung Won; Kim, Hong Dae; Shin, Sang Joon; Chung, Bong Wha [College of Medicine, Hallym Univ., Seoul (Korea, Republic of)


    To compare 3D ultrasound (3D-US) with 2D ultrasound (2D-US) in terms of their usefulness and limitations in the diagnosis of breast masses. We obtained 2D and 3D US images of 37 breast lesions present in 20 cases of fibroadenoma, nine of cancer, and eight of fibrocystic disease proven in a total of 26 cases [ fibroadenoma (n=13), breast cancer (n=9), fibrocystic disease (n=4)] by histologic examination, and by clinical evaluation and clinical evaluation with sonographic imaging in eleven. When comparing 3D and 2D-US images we had no prior information regarding detection rate according to the size of lesions, whether or not internal and boundary echo patterns could be interpreted, accurate differentiation between tumorous and non-tumorous lesions, or the accuracy with which benign and malignant tumors could be differentiated. For lesions of 1 cm or less in diameter the detection rate of 3D-US was lower than that of 2D-US, but for lesions over 1 cm there was no difference between the two modalities. In fibroadenoma and breast cancer, 3D-US was more useful than 2D-US for the evaluation of both internal and boundary echo, but with fibrocystic disease and in the diagnosis of tumor/non-tumor, there was no significant difference. In breast cancer, however, 3D-US more accurately determined malignancy, and in fibroadenoma, because of the pseudospicule revealed by 3D-US, this modality was less exact in determining benignancy. In the evaluation of internal and boundary echo in breast mass diagnosis, 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was more useful than its 2D counterpart. For lesions of 1 cm or less in diameter, however, the detection rate of 3D-US was low, and since in some benign cases a pseudospicule was apparent, the possibility of confusion with malignancy arose. For these reasons, the usefulness of 3D-US was limited.

  7. Free-hand 3D reconstruction and tumor segmentation of Laparoscopic Ultrasounds for pancreatic MIS interventions


    Fernández Pena, A.; Viana Matesanz, M.; Rodríguez Vila, Borja; Oropesa García, Ignacio; Sánchez González, Patricia; Sánchez Margallo, Juan Antonio; Moyano García-Cuevas, J.L.; Sánchez Margallo, Francisco Miguel; Gómez Aguilera, Enrique J.


    Pancreatic cancer's treatment dilemma comes while trying to determine the precise nature of the lesion. The best approach is defined by diagnose of the tumor cells' staging. This paper presents a fast approach towards acquiring an estimation of the tumor positioning and size through laparoscopic ultrasound (LUS) images. The method segments 2D images of pancreas and lesions before reconstructing the extracted tumors into a full 3D volume. The whole method is integrated into a visualization and...

  8. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS) (United States)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram


    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  9. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis (United States)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian


    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  10. Inter-rater reliability in the classification of supraspinatus tendon tears using 3D ultrasound – a question of experience?

    Directory of Open Access Journals (Sweden)

    Giorgio Tamborrini


    Full Text Available Background: Three-dimensional (3D ultrasound of the shoulder is characterized by a comparable accuracy to two-dimensional (2D ultrasound. No studies investigating 2D versus 3D inter-rater reliability in the detection of supraspinatus tendon tears taking into account the level of experience of the raters have been carried out so far. Objectives: The aim of this study was to determine the inter-rater reliability in the analysis of 3D ultrasound image sets of the supraspinatus tendon between sonographer with different levels of experience. Patients and methods: Non-interventional, prospective, observational pilot study of 2309 images of 127 adult patients suffering from unilateral shoulder pain. 3D ultrasound image sets were scored by three raters independently. The intra-and interrater reliabilities were calculated. Results: There was an excellent intra-rater reliability of rater A in the overall classification of supraspinatus tendon tears (2D vs 3D κ = 0.892, pairwise reliability 93.81%, 3D scoring round 1 vs 3D scoring round 2 κ = 0.875, pairwise reliability 92.857%. The inter-rater reliability was only moderate compared to rater B on 3D (κ = 0.497, pairwise reliability 70.95% and fair compared to rater C (κ = 0.238, pairwise reliability 42.38%. Conclusions: The reliability of 3D ultrasound of the supraspinatus tendon depends on the level of experience of the sonographer. Experience in 2D ultrasound does not seem to be sufficient for the analysis of 3D ultrasound imaging sets. Therefore, for a 3D ultrasound analysis new diagnostic criteria have to be established and taught even to experienced 2D sonographers to improve reproducibility.

  11. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation. (United States)

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William


    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  12. Omnidirectional autonomous entry guidance based on 3-D analytical glide formulas. (United States)

    Yu, Wenbin; Chen, Wanchun; Jiang, Zhiguo; Liu, Xiaoming; Zhou, Hao


    An autonomous entry guidance law is developed based on 3-D analytical glide formulas, where the downrange formula is used to plan the longitudinal reference profile in order to meet the downrange and final energy requirements, and the crossrange formula is used to regulate the bank reversals in order to eliminate the crossrange error. As the analytical glide formulas ignore the effects of the Earth׳s rotation, a series of strategies is proposed for compensating these effects, which provides the guidance with the capability of steering the hypersonic glide vehicle with high Lift to Drag ratio (L/D) to any place of the world accurately. The compensation strategies can be summarized into two parts: (1) the reference profiles are properly adjusted by roughly evaluating the effects of the Earth׳s rotation on the aerodynamic profiles over the whole flight, which can compensate most of the effects; (2) the current effects are accurately evaluated and then the guidance commands are slightly modulated for compensating the remaining effects. Due to careful design, the strategies will not result in drastic changes in the Angle of Attack (AOA) and can keep the bank angle almost constant during most of flight.

  13. Towards real-time 3D US-CT registration on the beating heart for guidance of minimally invasive cardiac interventions (United States)

    Li, Feng; Lang, Pencilla; Rajchl, Martin; Chen, Elvis C. S.; Guiraudon, Gerard; Peters, Terry M.


    Compared to conventional open-heart surgeries, minimally invasive cardiac interventions cause less trauma and sideeffects to patients. However, the direct view of surgical targets and tools is usually not available in minimally invasive procedures, which makes image-guided navigation systems essential. The choice of imaging modalities used in the navigation systems must consider the capability of imaging soft tissues, spatial and temporal resolution, compatibility and flexibility in the OR, and financial cost. In this paper, we propose a new means of guidance for minimally invasive cardiac interventions using 3D real-time ultrasound images to show the intra-operative heart motion together with preoperative CT image(s) employed to demonstrate high-quality 3D anatomical context. We also develop a method to register intra-operative ultrasound and pre-operative CT images in close to real-time. The registration method has two stages. In the first, anatomical features are segmented from the first frame of ultrasound images and the CT image(s). A feature based registration is used to align those features. The result of this is used as an initialization in the second stage, in which a mutual information based registration is used to register every ultrasound frame to the CT image(s). A GPU based implementation is used to accelerate the registration.

  14. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth (United States)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus


    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  15. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates (United States)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.


    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular system. There is the potential to use this system to monitor the progression of ventriculomegaly over time in patients with IVH.

  16. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System. (United States)

    Chen, Zhaohong; Chen, Yongdong; Huang, Qinghua


    Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time.

  17. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings (United States)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug


    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  18. Using rotation for steerable needle detection in 3D color-Doppler ultrasound images. (United States)

    Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne


    This paper demonstrates a new way to detect needles in 3D color-Doppler volumes of biological tissues. It uses rotation to generate vibrations of a needle using an existing robotic brachytherapy system. The results of our detection for color-Doppler and B-Mode ultrasound are compared to a needle location reference given by robot odometry and robot ultrasound calibration. Average errors between detection and reference are 5.8 mm on needle tip for B-Mode images and 2.17 mm for color-Doppler images. These results show that color-Doppler imaging leads to more robust needle detection in noisy environment with poor needle visibility or when needle interacts with other objects.

  19. Surgical repair of bilateral levator ani muscles with ultrasound guidance. (United States)

    Rostaminia, Ghazaleh; Shobeiri, S Abbas; Quiroz, Lieschen H


    Separation of the levator ani muscles from pubic bone is a common major levator trauma that may occur in vaginal delivery and is associated with pelvic floor dysfunctions. We describe a novel ultrasound-guided technique to repair these muscles. A 33-year-old woman presented with a history of difficult vaginal delivery and complaint of numbness and weakness of the vagina. In evaluation, bilateral levator defects were diagnosed by physical examination, three-dimensional endovaginal ultrasound, and magnetic resonance imaging. With ultrasound guidance the detached ends of muscles were tagged and sutured to their insertion points at the pubic bone. The patient's normal anatomy was restored with the return to normal pelvic floor tone. A follow-up ultrasound showed restored levator anatomy at 3 months.

  20. Can 3D ultrasound identify trochlea dysplasia in newborns? Evaluation and applicability of a technique

    Energy Technology Data Exchange (ETDEWEB)

    Kohlhof, Hendrik, E-mail: [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Heidt, Christoph, E-mail: [Department of Orthopedic Surgery, University Children' s Hospital Zurich, Steinwiesstrasse 74, 8032 Switzerland (Switzerland); Bähler, Alexandrine, E-mail: [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Kohl, Sandro, E-mail: [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Gravius, Sascha, E-mail: [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Friedrich, Max J., E-mail: [Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127 Bonn (Germany); Ziebarth, Kai, E-mail: [Department of Orthopedic Surgery, University Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland); Stranzinger, Enno, E-mail: [Department of Pediatric Radiology, University Children' s Hospital Berne, Freiburgstrasse 18, 3010 Berne (Switzerland)


    Highlights: • We evaluated a possible screening method for trochlea dysplasia. • 3D ultrasound was used to perform the measurements on standardized axial planes. • The evaluation of the technique showed comparable results to other studies. • This technique may be used as a screening technique as it is quick and easy to perform. - Abstract: Femoro-patellar dysplasia is considered as a significant risk factor of patellar instability. Different studies suggest that the shape of the trochlea is already developed in early childhood. Therefore early identification of a dysplastic configuration might be relevant information for the treating physician. An easy applicable routine screening of the trochlea is yet not available. The purpose of this study was to establish and evaluate a screening method for femoro-patellar dysplasia using 3D ultrasound. From 2012 to 2013 we prospectively imaged 160 consecutive femoro-patellar joints in 80 newborns from the 36th to 61st gestational week that underwent a routine hip sonography (Graf). All ultrasounds were performed by a pediatric radiologist with only minimal additional time to the routine hip ultrasound. In 30° flexion of the knee, axial, coronal, and sagittal reformats were used to standardize a reconstructed axial plane through the femoral condyle and the mid-patella. The sulcus angle, the lateral-to-medial facet ratio of the trochlea and the shape of the patella (Wiberg Classification) were evaluated. In all examinations reconstruction of the standardized axial plane was achieved, the mean trochlea angle was 149.1° (SD 4.9°), the lateral-to-medial facet ratio of the trochlea ratio was 1.3 (SD 0.22), and a Wiberg type I patella was found in 95% of the newborn. No statistical difference was detected between boys and girls. Using standardized reconstructions of the axial plane allows measurements to be made with lower operator dependency and higher accuracy in a short time. Therefore 3D ultrasound is an easy

  1. 3D Elastic Registration of Ultrasound Images Based on Skeleton Feature

    Institute of Scientific and Technical Information of China (English)

    LI Dan-dan; LIU Zhi-Yan; SHEN Yi


    In order to eliminate displacement and elastic deformation between images of adjacent frames in course of 3D ultrasonic image reconstruction, elastic registration based on skeleton feature was adopt in this paper. A new automatically skeleton tracking extract algorithm is presented, which can extract connected skeleton to express figure feature. Feature points of connected skeleton are extracted automatically by accounting topical curvature extreme points several times. Initial registration is processed according to barycenter of skeleton. Whereafter, elastic registration based on radial basis function are processed according to feature points of skeleton. Result of example demonstrate that according to traditional rigid registration, elastic registration based on skeleton feature retain natural difference in shape for organ's different part, and eliminate slight elastic deformation between frames caused by image obtained process simultaneously. This algorithm has a high practical value for image registration in course of 3D ultrasound image reconstruction.

  2. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments (United States)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.


    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  3. Smart Ultrasound Remote Guidance Experiment (SURGE)- Concept of Operations Evaluation for Using Remote Guidance Ultrasound for Planetary Space Flight (United States)

    Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott


    Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for

  4. Early detection of liver fibrosis in rats using 3-D ultrasound Nakagami imaging: a feasibility evaluation. (United States)

    Ho, Ming-Chih; Tsui, Po-Hsiang; Lee, Yu-Hsin; Chen, Yung-Sheng; Chen, Chiung-Nien; Lin, Jen-Jen; Chang, Chien-Cheng


    We investigated the feasibility of using 3-D ultrasound Nakagami imaging to detect the early stages of liver fibrosis in rats. Fibrosis was induced in livers of rats (n = 60) by intraperitoneal injection of 0.5% dimethylnitrosamine (DMN). Group 1 was the control group, and rats in groups 2-6 received DMN injections for 1-5 weeks, respectively. Each rat was sacrificed to perform 3-D ultrasound scanning of the liver in vitro using a single-element transducer of 6.5 MHz. The 3-D raw data acquired at a sampling rate of 50 MHz were used to construct 3-D Nakagami images. The liver specimen was further used for histologic analysis with hematoxylin and eosin and Masson staining to score the degree of liver fibrosis. The results indicate that the Metavir scores of the hematoxylin and eosin-stained sections in Groups 1-4 were 0 (defined as early liver fibrosis in this study), and those in groups 5 and 6 ranged from 1 to 2 and 2 to 3, respectively. To quantify the degree of early liver fibrosis, the histologic sections with Masson stain were analyzed to calculate the number of fiber-related blue pixels. The number of blue pixels increased from (2.36 ± 0.79) × 10(4) (group 1) to (7.68 ± 2.62) × 10(4) (group 4) after DMN injections for 3 weeks, indicating that early stages of liver fibrosis were successfully induced in rats. The Nakagami parameter increased from 0.36 ± 0.02 (group 1) to 0.55 ± 0.03 (group 4), with increasing numbers of blue pixels in the Masson-stained sections (p-value Nakagami imaging has potential in the early detection of liver fibrosis in rats and may serve as an image-based pathologic model to visually track fibrosis formation and growth.

  5. Mechanically assisted 3D ultrasound for pre-operative assessment and guiding percutaneous treatment of focal liver tumors (United States)

    Sadeghi Neshat, Hamid; Bax, Jeffery; Barker, Kevin; Gardi, Lori; Chedalavada, Jason; Kakani, Nirmal; Fenster, Aaron


    Image-guided percutaneous ablation is the standard treatment for focal liver tumors deemed inoperable and is commonly used to maintain eligibility for patients on transplant waitlists. Radiofrequency (RFA), microwave (MWA) and cryoablation technologies are all delivered via one or a number of needle-shaped probes inserted directly into the tumor. Planning is mostly based on contrast CT/MRI. While intra-procedural CT is commonly used to confirm the intended probe placement, 2D ultrasound (US) remains the main, and in some centers the only imaging modality used for needle guidance. Corresponding intraoperative 2D US with planning and other intra-procedural imaging modalities is essential for accurate needle placement. However, identification of matching features of interest among these images is often challenging given the limited field-of-view (FOV) and low quality of 2D US images. We have developed a passive tracking arm with a motorized scan-head and software tools to improve guiding capabilities of conventional US by large FOV 3D US scans that provides more anatomical landmarks that can facilitate registration of US with both planning and intra-procedural images. The tracker arm is used to scan the whole liver with a high geometrical accuracy that facilitates multi-modality landmark based image registration. Software tools are provided to assist with the segmentation of the ablation probes and tumors, find the 2D view that best shows the probe(s) from a 3D US image, and to identify the corresponding image from planning CT scans. In this paper, evaluation results from laboratory testing and a phase 1 clinical trial for planning and guiding RFA and MWA procedures using the developed system will be presented. Early clinical results show a comparable performance to intra-procedural CT that suggests 3D US as a cost-effective alternative with no side-effects in centers where CT is not available.


    Directory of Open Access Journals (Sweden)

    Enrico Vezzetti


    Full Text Available In the last decade, three-dimensional landmarking has gained attention for different applications, such as face recognition for both identification of suspects and authentication, facial expression recognition, corrective and aesthetic surgery, syndrome study and diagnosis. This work focuses on the last one by proposing a geometrically-based landmark extraction algorithm aimed at diagnosing syndromes on babies before their birth. Pivotal role in this activity is the support provided by physicians and 3D ultrasound tools for working on real faces. In particular, the landmarking algorithm here proposed only relies on descriptors coming from Differential Geometry (Gaussian, mean, and principal curvatures, derivatives, coefficients of first and second fundamental forms, Shape and Curvedness indexes and is tested on nine facial point clouds referred to nine babies taken by a three-dimensional ultrasound tool at different weeks' gestation. The results obtained, validated with the support of four practitioners, show that the localization is quite accurate. All errors lie in the range between 0 and 3.5 mm and the mean distance for each shell is in the range between 0.6 and 1.6 mm. The landmarks showing the highest errors are the ones belonging to the mouth region. Instead, the most precise landmark is the pronasal, on the nose tip, with a mean distance of 0.55 mm. Relying on current literature, this study is something missing in the state-of-the-art of the field, as present facial studies on 3D ultrasound do not work on automatic landmarking yet.

  7. Fast myocardial strain estimation from 3D ultrasound through elastic image registration with analytic regularization (United States)

    Chakraborty, Bidisha; Heyde, Brecht; Alessandrini, Martino; D'hooge, Jan


    Image registration techniques using free-form deformation models have shown promising results for 3D myocardial strain estimation from ultrasound. However, the use of this technique has mostly been limited to research institutes due to the high computational demand, which is primarily due to the computational load of the regularization term ensuring spatially smooth cardiac strain estimates. Indeed, this term typically requires evaluating derivatives of the transformation field numerically in each voxel of the image during every iteration of the optimization process. In this paper, we replace this time-consuming step with a closed-form solution directly associated with the transformation field resulting in a speed up factor of ~10-60,000, for a typical 3D B-mode image of 2503 and 5003 voxels, depending upon the size and the parametrization of the transformation field. The performance of the numeric and the analytic solutions was contrasted by computing tracking and strain accuracy on two realistic synthetic 3D cardiac ultrasound sequences, mimicking two ischemic motion patterns. Mean and standard deviation of the displacement errors over the cardiac cycle for the numeric and analytic solutions were 0.68+/-0.40 mm and 0.75+/-0.43 mm respectively. Correlations for the radial, longitudinal and circumferential strain components at end-systole were 0.89, 0.83 and 0.95 versus 0.90, 0.88 and 0.92 for the numeric and analytic regularization respectively. The analytic solution matched the performance of the numeric solution as no statistically significant differences (p>0.05) were found when expressed in terms of bias or limits-of-agreement.

  8. 3D/4D Imaging Drives Ultrasound Growth%3D/4D 影像技术推动超声发展

    Institute of Scientific and Technical Information of China (English)

    Ann-Sofi Hoff


    作为一种安全和非侵入式技术,加之具有成本效益优势及卓越的图像质量,现代超声设备在医疗机构的主要诊断中获得广泛使用,同时也在不断扩展至全新的应用领域。3D和4D影像技术最近取得的进展也推动着超声市场的增长。整体而言,超声技术在医疗保健行业的应用正向更多领域扩展,同时也在向非专业用户普及。对于超声技术自身而言,3D/4D应用正快速增长,其原因有很多,如硬件和软件平台的发展使得超声系统供应商可以提供更多的3D/4D功能;3D/4D技术整体上愈发成熟稳定,为用户提供了更好的工作流程;此外,设备的成本也越来越有吸引力。%With the advantages of being safe, non-invasive and cost-effectiveness and with superior image quality, modern ultrasound equipment is being extensively used in health institutions for primary diagnosis and continuously expands into new application areas. The recent technological advancements in 3D and four-dimensional (4D) imaging are further boosting market growth. The use of ultrasound in healthcare is in general growing into more applications and also to less specialized users. Within ultrasound the 3D/4D usage is rapidly growing. The reasons for that are many The fast development of hardware and software platforms enables the Ultrasound system suppliers to offer more 3D/4D functionality, the overal 3D/4D technology is more mature and stable with a much bet er workflow for users, and the cost for such equipment is get ing more at ractive.

  9. 3D endobronchial ultrasound reconstruction and analysis for multimodal image-guided bronchoscopy (United States)

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher R.; Toth, Jennifer W.; Higgins, William E.


    State-of-the-art image-guided intervention (IGI) systems for lung-cancer management draw upon high-resolution three-dimensional multi-detector computed-tomography (MDCT) images and bronchoscopic video. An MDCT scan provides a high-resolution three-dimensional (3D) image of the chest that is used for preoperative procedure planning, while bronchoscopy gives live intraoperative video of the endobronchial airway tree structure. However, because neither source provides live extraluminal information on suspect nodules or lymph nodes, endobronchial ultrasound (EBUS) is often introduced during a procedure. Unfortunately, existing IGI systems provide no direct synergistic linkage between the MDCT/video data and EBUS data. Hence, EBUS proves difficult to use and can lead to inaccurate interpretations. To address this drawback, we present a prototype of a multimodal IGI system that brings together the various image sources. The system enables 3D reconstruction and visualization of structures depicted in the 2D EBUS video stream. It also provides a set of graphical tools that link the EBUS data directly to the 3D MDCT and bronchoscopic video. Results using phantom and human data indicate that the new system could potentially enable smooth natural incorporation of EBUS into the system-level work flow of bronchoscopy.

  10. Active ultrasound pattern injection system (AUSPIS for interventional tool guidance.

    Directory of Open Access Journals (Sweden)

    Xiaoyu Guo

    Full Text Available Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  11. Active ultrasound pattern injection system (AUSPIS) for interventional tool guidance. (United States)

    Guo, Xiaoyu; Kang, Hyun-Jae; Etienne-Cummings, Ralph; Boctor, Emad M


    Accurate tool tracking is a crucial task that directly affects the safety and effectiveness of many interventional medical procedures. Compared to CT and MRI, ultrasound-based tool tracking has many advantages, including low cost, safety, mobility and ease of use. However, surgical tools are poorly visualized in conventional ultrasound images, thus preventing effective tool tracking and guidance. Existing tracking methods have not yet provided a solution that effectively solves the tool visualization and mid-plane localization accuracy problem and fully meets the clinical requirements. In this paper, we present an active ultrasound tracking and guiding system for interventional tools. The main principle of this system is to establish a bi-directional ultrasound communication between the interventional tool and US imaging machine within the tissue. This method enables the interventional tool to generate an active ultrasound field over the original imaging ultrasound signals. By controlling the timing and amplitude of the active ultrasound field, a virtual pattern can be directly injected into the US machine B mode display. In this work, we introduce the time and frequency modulation, mid-plane detection, and arbitrary pattern injection methods. The implementation of these methods further improves the target visualization and guiding accuracy, and expands the system application beyond simple tool tracking. We performed ex vitro and in vivo experiments, showing significant improvements of tool visualization and accurate localization using different US imaging platforms. An ultrasound image mid-plane detection accuracy of ±0.3 mm and a detectable tissue depth over 8.5 cm was achieved in the experiment. The system performance is tested under different configurations and system parameters. We also report the first experiment of arbitrary pattern injection to the B mode image and its application in accurate tool tracking.

  12. Quantification of cerebral ventricle volume change of preterm neonates using 3D ultrasound images (United States)

    Chen, Yimin; Kishimoto, Jessica; Qiu, Wu; de Ribaupierre, Sandrine; Fenster, Aaron; Chiu, Bernard


    Intraventricular hemorrhage (IVH) is a major cause of brain injury in preterm neonates. Quantitative measurement of ventricular dilation or shrinkage is important for monitoring patients and in evaluation of treatment options. 3D ultrasound (US) has been used to monitor the ventricle volume as a biomarker for ventricular dilation. However, volumetric quantification does not provide information as to where dilation occurs. The location where dilation occurs may be related to specific neurological problems later in life. For example, posterior horn enlargement, with thinning of the corpus callosum and parietal white matter fibres, could be linked to poor visuo-spatial abilities seen in hydrocephalic children. In this work, we report on the development and application of a method used to analyze local surface change of the ventricles of preterm neonates with IVH from 3D US images. The technique is evaluated using manual segmentations from 3D US images acquired in two imaging sessions. The surfaces from baseline and follow-up were registered and then matched on a point-by-point basis. The distance between each pair of corresponding points served as an estimate of local surface change of the brain ventricle at each vertex. The measurements of local surface change were then superimposed on the ventricle surface to produce the 3D local surface change map that provide information on the spatio-temporal dilation pattern of brain ventricles following IVH. This tool can be used to monitor responses to different treatment options, and may provide important information for elucidating the deficiencies a patient will have later in life.

  13. Automated 3D ultrasound elastography of the breast: a phantom validation study (United States)

    Hendriks, Gijs A. G. M.; Holländer, Branislav; Menssen, Jan; Milkowski, Andy; Hansen, Hendrik H. G.; de Korte, Chris L.


    In breast cancer screening, the automated breast volume scanner (ABVS) was introduced as an alternative for mammography since the latter technique is less suitable for women with dense breasts. Although clinical studies show promising results, clinicians report two disadvantages: long acquisition times (>90 s) introducing breathing artefacts, and high recall rates due to detection of many small lesions of uncertain malignant potential. Technical improvements for faster image acquisition and better discrimination between benign and malignant lesions are thus required. Therefore, the aim of this study was to investigate if 3D ultrasound elastography using plane-wave imaging is feasible. Strain images of a breast elastography phantom were acquired by an ABVS-mimicking device that allowed axial and elevational movement of the attached transducer. Pre- and post-deformation volumes were acquired with different constant speeds (between 1.25 and 40.0 mm s-1) and by three protocols: Go-Go (pre- and post-volumes with identical start and end positions), Go-Return (similar to Go-Go with opposite scanning directions) and Control (pre- and post-volumes acquired per position, this protocol can be seen as reference). Afterwards, 2D and 3D cross-correlation and strain algorithms were applied to the acquired volumes and the results were compared. The Go-Go protocol was shown to be superior with better strain image quality (CNRe and SNRe) than Go-Return and to be similar as Control. This can be attributed to applying opposite mechanical forces to the phantom during the Go-Return protocol, leading to out-of-plane motion. This motion was partly compensated by using 3D cross-correlation. However, the quality was still inferior to Go-Go. Since these results were obtained in a phantom study with controlled deformations, the effect of possible uncontrolled in vivo tissue motion artefacts has to be addressed in future studies. In conclusion, it seems feasible to implement 3D ultrasound

  14. 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework (United States)

    Yang, Xiaofeng; Rossi, Peter J.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian


    We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which is based on patch-based feature learning framework. Patient-specific anatomical features are extracted from aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to train the kernel support vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new patient. Our segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentations (gold standard). The mean volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentations.

  15. Simulation Study of Real Time 3-D Synthetic Aperture Sequential Beamforming for Ultrasound Imaging

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian; Rasmussen, Morten Fischer; Stuart, Matthias Bo;


    This paper presents a new beamforming method for real-time three-dimensional (3-D) ultrasound imaging using a 2-D matrix transducer. To obtain images with sufficient resolution and contrast, several thousand elements are needed. The proposed method reduces the required channel count from...... the transducer to the main imaging system, by including electronics in the transducer handle. The reduction of element channel count is achieved using a sequential beamforming scheme. The beamforming scheme is a combination of a fixed focus beamformer in the transducer and a second dynamic focus beamformer...... in the main system. The real-time imaging capability is achieved using a synthetic aperture beamforming technique, utilizing the transmit events to generate a set of virtual elements that in combination can generate an image. The two core capabilities in combination is named Synthetic Aperture Sequential...

  16. GPCA vs. PCA in Recognition and 3-D Localization of Ultrasound Reflectors

    Directory of Open Access Journals (Sweden)

    Carlos A. Luna


    Full Text Available In this paper, a new method of classification and localization of reflectors, using the time-of-flight (TOF data obtained from ultrasonic transducers, is presented. The method of classification and localization is based on Generalized Principal Component Analysis (GPCA applied to the TOF values obtained from a sensor that contains four ultrasound emitters and 16 receivers. Since PCA works with vectorized representations of TOF, it does not take into account the spatial locality of receivers. The GPCA works with two-dimensional representations of TOF, taking into account information on the spatial position of the receivers. This report includes a detailed description of the method of classification and localization and the results of achieved tests with three types of reflectors in 3-D environments: planes, edges, and corners. The results in terms of processing time, classification and localization were very satisfactory for the reflectors located in the range of 50–350 cm.

  17. Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound. (United States)

    Mohareri, Omid; Ramezani, Mahdi; Adebar, Troy K; Abolmaesumi, Purang; Salcudean, Septimiu E


    Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical system is the current state-of-the-art treatment option for clinically confined prostate cancer. Given the limited field of view of the surgical site in RALRP, several groups have proposed the integration of transrectal ultrasound (TRUS) imaging in the surgical workflow to assist with accurate resection of the prostate and the sparing of the neurovascular bundles (NVBs). We previously introduced a robotic TRUS manipulator and a method for automatically tracking da Vinci surgical instruments with the TRUS imaging plane, in order to facilitate the integration of intraoperative TRUS in RALRP. Rapid and automatic registration of the kinematic frames of the da Vinci surgical system and the robotic TRUS probe manipulator is a critical component of the instrument tracking system. In this paper, we propose a fully automatic registration technique based on automatic 3-D TRUS localization of robot instrument tips pressed against the air-tissue boundary anterior to the prostate. The detection approach uses a multiscale filtering technique to identify and localize surgical instrument tips in the TRUS volume, and could also be used to detect other surface fiducials in 3-D ultrasound. Experiments have been performed using a tissue phantom and two ex vivo tissue samples to show the feasibility of the proposed methods. Also, an initial in vivo evaluation of the system has been carried out on a live anaesthetized dog with a da Vinci Si surgical system and a target registration error (defined as the root mean square distance of corresponding points after registration) of 2.68 mm has been achieved. Results show this method's accuracy and consistency for automatic registration of TRUS images to the da Vinci surgical system.

  18. Nonlinear 3-D simulation of high-intensity focused ultrasound therapy in the kidney

    CERN Document Server

    Suomi, Visa; Treeby, Bradley; Cleveland, Robin


    Kidney cancer is a severe disease which can be treated non-invasively using high-intensity focused ultrasound (HIFU) therapy. However, tissue in front of the transducer and the deep location of kidney can cause significant losses to the efficiency of the treatment. The effect of attenuation, refraction and reflection due to different tissue types on HIFU therapy of the kidney was studied using a nonlinear ultrasound simulation model. The geometry of the tissue was derived from a computed tomography (CT) dataset of a patient which had been segmented for water, bone, soft tissue, fat and kidney. The combined effect of inhomogeneous attenuation and sound-speed was found to result in an 11.0 dB drop in spatial peak-temporal average (SPTA) intensity in the kidney compared to pure water. The simulation without refraction effects showed a 6.3 dB decrease indicating that both attenuation and refraction contribute to the loss in focal intensity. The losses due to reflections at soft tissue interfaces were less than 0....

  19. Ultrasound and 3D Skin Imaging: Methods to Evaluate Efficacy of Striae Distensae Treatment

    Directory of Open Access Journals (Sweden)

    Mariella Bleve


    Full Text Available Background. Over time, the striae rubra develop into striae alba that appear white, flat, and depressed. It is very important to determine the optimum striae management. In order to evaluate the effectiveness of these therapies, objective measurement tools are necessary. Objective. The aim of this study is to evaluate if ultrasonography and PRIMOS can be used to obtain an objective assessment of stretch marks type and stage; furthermore, we aim to apply these techniques to evaluate the efficacy of a topical treatment. Methods. 20 volunteers were enrolled with a two-month study. A marketed cosmetic product was used as the active over one body area. The controlateral area with stretch marks was treated with a “placebo” formulation without active, as a control. The instrumental evaluation was carried out at the beginning of the trial (baseline values or 0, after 1 month (1, and at the end of the study (2. Results. PRIMOS was able to measure and document striae distensae maturation; furthermore, ultrasound imaging permitted to visualize and diagnose the striae. Statistical analysis of skin roughness demonstrated a statistically significant reduction of Rp value only in a treated group. In fact, the Rp value represented a maximum peak height in the area selected. These results demonstrated that after two months of treatment only the striae rubra can be treated successfully. Conclusions. This work demonstrated that the 22MHz ultrasound can diagnose stretch marks; PRIMOS device can detect and measure striae distensae type and maturation. Furthermore, the high-frequency ultrasound and the 3D image device, described in this work, can be successfully employed in order to evaluate the efficacy of a topical treatment.

  20. Automated kidney detection for 3D ultrasound using scan line searching (United States)

    Noll, Matthias; Nadolny, Anne; Wesarg, Stefan


    Ultrasound (U/S) is a fast and non-expensive imaging modality that is used for the examination of various anatomical structures, e.g. the kidneys. One important task for automatic organ tracking or computer-aided diagnosis is the identification of the organ region. During this process the exact information about the transducer location and orientation is usually unavailable. This renders the implementation of such automatic methods exceedingly challenging. In this work we like to introduce a new automatic method for the detection of the kidney in 3D U/S images. This novel technique analyses the U/S image data along virtual scan lines. Here, characteristic texture changes when entering and leaving the symmetric tissue regions of the renal cortex are searched for. A subsequent feature accumulation along a second scan direction produces a 2D heat map of renal cortex candidates, from which the kidney location is extracted in two steps. First, the strongest candidate as well as its counterpart are extracted by heat map intensity ranking and renal cortex size analysis. This process exploits the heat map gap caused by the renal pelvis region. Substituting the renal pelvis detection with this combined cortex tissue feature increases the detection robustness. In contrast to model based methods that generate characteristic pattern matches, our method is simpler and therefore faster. An evaluation performed on 61 3D U/S data sets showed, that in 55 cases showing none or minor shadowing the kidney location could be correctly identified.

  1. Characterization of neonatal patients with intraventricular hemorrhage using 3D ultrasound cerebral ventricle volumes (United States)

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S. C.; de Ribaupierre, Sandrine


    One of the major non-congenital cause of neurological impairment among neonates born very preterm is intraventricular hemorrhage (IVH) - bleeding within the lateral ventricles. Most IVH patients will have a transient period of ventricle dilation that resolves spontaneously. However, those patients most at risk of long-term impairment are those who have progressive ventricle dilation as this causes macrocephaly, an abnormally enlarged head, then later causes increases intracranial pressure (ICP). 2D ultrasound (US) images through the fontanelles of the patients are serially acquired to monitor the progression of the ventricle dilation. These images are used to determine when interventional therapies such as needle aspiration of the built up CSF might be indicated for a patient. Initial therapies usually begin during the third week of life. Such interventions have been shown to decrease morbidity and mortality in IVH patients; however, this comes with risks of further hemorrhage or infection; therefore only patients requiring it should be treated. Previously we have developed and validated a 3D US system to monitor the progression of ventricle volumes (VV) in IVH patients. This system has been validated using phantoms and a small set of patient images. The aim of this work is to determine the ability of 3D US generated VV to categorize patients into those who will require interventional therapies, and those who will have spontaneous resolution. Patients with higher risks could therefore be monitored better, by re-allocating some of the resources as the low risks infants would need less monitoring.

  2. 3D functional ultrasound imaging of the cerebral visual system in rodents. (United States)

    Gesnik, Marc; Blaize, Kevin; Deffieux, Thomas; Gennisson, Jean-Luc; Sahel, José-Alain; Fink, Mathias; Picaud, Serge; Tanter, Mickaël


    3D functional imaging of the whole brain activity during visual task is a challenging task in rodents due to the complex tri-dimensional shape of involved brain regions and the fine spatial and temporal resolutions required to reveal the visual tract. By coupling functional ultrasound (fUS) imaging with a translational motorized stage and an episodic visual stimulation device, we managed to accurately map and to recover the activity of the visual cortices, the Superior Colliculus (SC) and the Lateral Geniculate Nuclei (LGN) in 3D. Cerebral Blood Volume (CBV) responses during visual stimuli were found to be highly correlated with the visual stimulus time profile in visual cortices (r=0.6), SC (r=0.7) and LGN (r=0.7). These responses were found dependent on flickering frequency and contrast, and optimal stimulus parameters for largest CBV increases were obtained. In particular, increasing the flickering frequency higher than 7Hz revealed a decrease of visual cortices response while the SC response was preserved. Finally, cross-correlation between CBV signals exhibited significant delays (d=0.35s +/-0.1s) between blood volume response in SC and visual cortices in response to our visual stimulus. These results emphasize the interest of fUS imaging as a whole brain neuroimaging modality for brain vision studies in rodent models.

  3. Estimation of 3D cardiac deformation using spatio-temporal elastic registration of non-scanconverted ultrasound data (United States)

    Elen, An; Loeckx, Dirk; Choi, Hon Fai; Gao, Hang; Claus, Piet; Maes, Frederik; Suetens, Paul; D'hooge, Jan


    Current ultrasound methods for measuring myocardial strain are often limited to measurements in one or two dimensions. Spatio-temporal elastic registration of 3D cardiac ultrasound data can however be used to estimate the 3D motion and full 3D strain tensor. In this work, the spatio-temporal elastic registration method was validated for both non-scanconverted and scanconverted images. This was done using simulated 3D pyramidal ultrasound data sets based on a thick-walled deforming ellipsoid and an adapted convolution model. A B-spline based frame-to-frame elastic registration method was applied to both the scanconverted and non-scanconverded data sets and the accuracy of the resulting deformation fields was quantified. The mean accuracy of the estimated displacement was very similar for the scanconverted and non-scanconverted data sets and thus, it was shown that 3D elastic registration to estimate the cardiac deformation from ultrasound images can be performed on non-scanconverted images, but that avoiding of the scanconversion step does not significantly improve the results of the displacement estimation.

  4. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation. (United States)

    Cruz Perez, Benjamin; Pavlatos, Elias; Morris, Hugh J; Chen, Hong; Pan, Xueliang; Hart, Richard T; Liu, Jun


    This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye.

  5. Semiautomatic registration of 3D transabdominal ultrasound images for patient repositioning during postprostatectomy radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Presles, Benoît, E-mail:; Rit, Simon; Sarrut, David [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon F-69621, France and Léon Bérard Cancer Center, Université de Lyon, Lyon F-69373 (France); Fargier-Voiron, Marie; Liebgott, Hervé [Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Lyon F-69621 (France); Biston, Marie-Claude; Munoz, Alexandre; Pommier, Pascal [Léon Bérard Cancer Center, Université de Lyon, Lyon F-69373 (France); Lynch, Rod [The Andrew Love Cancer Centre, University Hospital Geelong, Geelong 3220 (Australia)


    Purpose: The aim of the present work is to propose and evaluate registration algorithms of three-dimensional (3D) transabdominal (TA) ultrasound (US) images to setup postprostatectomy patients during radiation therapy. Methods: Three registration methods have been developed and evaluated to register a reference 3D-TA-US image acquired during the planning CT session and a 3D-TA-US image acquired before each treatment session. The first method (method A) uses only gray value information, whereas the second one (method B) uses only gradient information. The third one (method C) combines both sets of information. All methods restrict the comparison to a region of interest computed from the dilated reference positioning volume drawn on the reference image and use mutual information as a similarity measure. The considered geometric transformations are translations and have been optimized by using the adaptive stochastic gradient descent algorithm. Validation has been carried out using manual registration by three operators of the same set of image pairs as the algorithms. Sixty-two treatment US images of seven patients irradiated after a prostatectomy have been registered to their corresponding reference US image. The reference registration has been defined as the average of the manual registration values. Registration error has been calculated by subtracting the reference registration from the algorithm result. For each session, the method has been considered a failure if the registration error was above both the interoperator variability of the session and a global threshold of 3.0 mm. Results: All proposed registration algorithms have no systematic bias. Method B leads to the best results with mean errors of −0.6, 0.7, and −0.2 mm in left–right (LR), superior–inferior (SI), and anterior–posterior (AP) directions, respectively. With this method, the standard deviations of the mean error are of 1.7, 2.4, and 2.6 mm in LR, SI, and AP directions, respectively

  6. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement (United States)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.


    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TRExConclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  7. Breast Density Analysis with Automated Whole-Breast Ultrasound: Comparison with 3-D Magnetic Resonance Imaging. (United States)

    Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng


    In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.

  8. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling. (United States)

    Lorintiu, Oana; Liebgott, Hervé; Alessandrini, Martino; Bernard, Olivier; Friboulet, Denis


    In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs.

  9. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation. (United States)

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace


    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application.

  10. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation (United States)

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace


    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  11. A high-frequency transimpedance amplifier for CMOS integrated 2D CMUT array towards 3D ultrasound imaging. (United States)

    Huang, Xiwei; Cheong, Jia Hao; Cha, Hyouk-Kyu; Yu, Hongbin; Je, Minkyu; Yu, Hao


    One transimpedance amplifier based CMOS analog front-end (AFE) receiver is integrated with capacitive micromachined ultrasound transducers (CMUTs) towards high frequency 3D ultrasound imaging. Considering device specifications from CMUTs, the TIA is designed to amplify received signals from 17.5MHz to 52.5MHz with center frequency at 35MHz; and is fabricated in Global Foundry 0.18-µm 30-V high-voltage (HV) Bipolar/CMOS/DMOS (BCD) process. The measurement results show that the TIA with power-supply 6V can reach transimpedance gain of 61dBΩ and operating frequency from 17.5MHz to 100MHz. The measured input referred noise is 27.5pA/√Hz. Acoustic pulse-echo testing is conducted to demonstrate the receiving functionality of the designed 3D ultrasound imaging system.

  12. Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo; Lee, Jae Young; Hwang, Eui Jin; Hwang, In Pyeong; Woo, Sung Min; Lee, Chang Joo; Park, Eun Joo; Choi, Byung Ihn [Dept. of Radiology and Institute of Radiation Medicine, Seoul National University Hospital, Seoul (Korea, Republic of)


    The aim of this study was to evaluate the safety and accuracy of a new portable ultrasonography-guided high-intensity focused ultrasound (USg-HIFU) system with a 3-dimensional (3D) electronic steering transducer, a simultaneous ablation and imaging module, real-time cavitation monitoring, and 3D image reconstruction algorithms. To address the accuracy of the transducer, hydrophones in a water chamber were used to assess the generation of sonic fields. An animal study was also performed in five pigs by ablating in vivo thighs by single-point sonication (n=10) or volume sonication (n=10) and ex vivo kidneys by single-point sonication (n=10). Histological and statistical analyses were performed. In the hydrophone study, peak voltages were detected within 1.0 mm from the targets on the y- and z-axes and within 2.0-mm intervals along the x-axis (z-axis, direction of ultrasound propagation; y- and x-axes, perpendicular to the direction of ultrasound propagation). Twenty-nine of 30 HIFU sessions successfully created ablations at the target. The in vivo porcine thigh study showed only a small discrepancy (width, 0.5-1.1 mm; length, 3.0 mm) between the planning ultrasonograms and the pathological specimens. Inordinate thermal damage was not observed in the adjacent tissues or sonic pathways in the in vivo thigh and ex vivo kidney studies. Our study suggests that this new USg-HIFU system may be a safe and accurate technique for ablating soft tissues and encapsulated organs.

  13. Chest-wall segmentation in automated 3D breast ultrasound images using thoracic volume classification (United States)

    Tan, Tao; van Zelst, Jan; Zhang, Wei; Mann, Ritse M.; Platel, Bram; Karssemeijer, Nico


    Computer-aided detection (CAD) systems are expected to improve effectiveness and efficiency of radiologists in reading automated 3D breast ultrasound (ABUS) images. One challenging task on developing CAD is to reduce a large number of false positives. A large amount of false positives originate from acoustic shadowing caused by ribs. Therefore determining the location of the chestwall in ABUS is necessary in CAD systems to remove these false positives. Additionally it can be used as an anatomical landmark for inter- and intra-modal image registration. In this work, we extended our previous developed chestwall segmentation method that fits a cylinder to automated detected rib-surface points and we fit the cylinder model by minimizing a cost function which adopted a term of region cost computed from a thoracic volume classifier to improve segmentation accuracy. We examined the performance on a dataset of 52 images where our previous developed method fails. Using region-based cost, the average mean distance of the annotated points to the segmented chest wall decreased from 7.57±2.76 mm to 6.22±2.86

  14. Combinatorial and probabilistic fusion of noisy correlation measurements for untracked freehand 3-D ultrasound. (United States)

    Laporte, Catherine; Arbel, Tal


    In freehand 3-D ultrasound (US), the relative positions of US images are usually measured using a position tracking device despite its cumbersome nature. The probe trajectory can instead be estimated from image data, using registration techniques to recover in-plane motion and speckle decorrelation to recover out-of-plane transformations. The relationship between speckle decorrelation and elevational separation is typically represented by a single curve, estimated from calibration data. Distances read off such a curve are corrupted by bias and uncertainty, and only provide an absolute estimate of elevational displacement. This paper presents a probabilistic model of the relationship between correlation measurements and elevational separation. This representation captures the skewed distribution of distance estimates based on high correlations and the uncertainties attached to each measurement. Multiple redundant correlation measurements can then be integrated within a maximum likelihood estimation framework. This paper also introduces a new method based on the traveling salesman problem for resolving sign ambiguities in data sets resulting from nonmonotonic probe motion and frame intersections. Experiments with real and synthetic US data show that by combining these new methods, out-of-plane US probe motion is recovered with improved accuracy over baseline methods using a deterministic model and fewer measurements.

  15. Robust 3-D Algorithm for Flare Planning and Guidance for Impaired Aircraft Project (United States)

    National Aeronautics and Space Administration — Development of a robust nonlinear guidance law for planning and executing the flare-touchdown maneuver for impaired aircraft under adverse wind conditions is...

  16. Quantitative analysis of vascular heterogeneity in breast lesions using contrast-enhanced 3-D harmonic and subharmonic ultrasound imaging. (United States)

    Sridharan, Anush; Eisenbrey, John R; Machado, Priscilla; Ojeda-Fournier, Haydee; Wilkes, Annina; Sevrukov, Alexander; Mattrey, Robert F; Wallace, Kirk; Chalek, Carl L; Thomenius, Kai E; Forsberg, Flemming


    Ability to visualize breast lesion vascularity and quantify the vascular heterogeneity using contrast-enhanced 3-D harmonic (HI) and subharmonic (SHI) ultrasound imaging was investigated in a clinical population. Patients (n = 134) identified with breast lesions on mammography were scanned using power Doppler imaging, contrast-enhanced 3-D HI, and 3-D SHI on a modified Logiq 9 scanner (GE Healthcare). A region of interest corresponding to ultrasound contrast agent flow was identified in 4D View (GE Medical Systems) and mapped to raw slice data to generate a map of time-intensity curves for the lesion volume. Time points corresponding to baseline, peak intensity, and washout of ultrasound contrast agent were identified and used to generate and compare vascular heterogeneity plots for malignant and benign lesions. Vascularity was observed with power Doppler imaging in 84 lesions (63 benign and 21 malignant). The 3-D HI showed flow in 8 lesions (5 benign and 3 malignant), whereas 3-D SHI visualized flow in 68 lesions (49 benign and 19 malignant). Analysis of vascular heterogeneity in the 3-D SHI volumes found benign lesions having a significant difference in vascularity between central and peripheral sections (1.71 ± 0.96 vs. 1.13 ± 0.79 dB, p < 0.001, respectively), whereas malignant lesions showed no difference (1.66 ± 1.39 vs. 1.24 ± 1.14 dB, p = 0.24), indicative of more vascular coverage. These preliminary results suggest quantitative evaluation of vascular heterogeneity in breast lesions using contrast-enhanced 3-D SHI is feasible and able to detect variations in vascularity between central and peripheral sections for benign and malignant lesions.

  17. High-resolution 3D ultrasound jawbone surface imaging for diagnosis of periodontal bony defects: an in vitro study. (United States)

    Mahmoud, Ahmed M; Ngan, Peter; Crout, Richard; Mukdadi, Osama M


    Although medical specialties have recognized the importance of using ultrasonic imaging, dentistry is only beginning to discover its benefit. This has particularly been important in the field of periodontics which studies infections in the gum and bone tissues that surround the teeth. This study investigates the feasibility of using a custom-designed high-frequency ultrasound imaging system to reconstruct high-resolution (3D) surface images of periodontal defects in human jawbone. The system employs single-element focused ultrasound transducers with center frequencies ranging from 30 to 60 MHz. Continuous acquisition using a 1 GHz data acquisition card is synchronized with a high-precision two-dimensional (2D) positioning system of ±1 μm resolution for acquiring accurate measurements of the mandible, in vitro. Signal and image processing algorithms are applied to reconstruct high-resolution ultrasound images and extract the jawbone surface in each frame. Then, all edges are combined and smoothed in order to render a 3D surface image of the jawbone. In vitro experiments were performed to assess the system performance using mandibles with teeth (dentate) or without (nondentate). The system was able to reconstruct 3D images for the mandible's outer surface with superior spatial resolution down to 24 μm, and to perform the whole scanning in images were confirmed with the anatomical structures on the mandibles. All the anatomical landmarks were detected and fully described as 3D images using this novel ultrasound imaging technique, whereas the 2D X-ray radiographic images suffered from poor contrast. These results indicate the great potential of utilizing high-resolution ultrasound as a noninvasive, nonionizing imaging technique for the early diagnosis of the more severe form of periodontal disease.

  18. Intraoperative neuronavigation integrated high resolution 3D ultrasound for brainshift and tumor resection control

    Directory of Open Access Journals (Sweden)

    Giovani A.


    Full Text Available INTRODUCTION: The link between the neurosurgeon’s knowledge and the scientific improvements made a dramatic change in the field expressed both in impressive drop in the mortality and morbidity rates that were operated in the beginning of the XXth century and in operating with high rates of success cases that were considered inoperable in the past. Neuronavigation systems have been used for many years on surgical orientation purposes especially for small, deep seated lesions where the use of neuronavigation is correlated with smaller corticotomies and with the extended use of transulcal approaches. The major problem of neuronavigation, the brainshift once the dura is opened can be solved either by integrated ultrasound or intraoperative MRI which is out of reach for many neurosurgical departments. METHOD: The procedure of neuronavigation and ultrasonic localization of the tumor is described starting with positioning the patient in the visual field of the neuronavigation integrated 3D ultrasonography system to the control of tumor resection by repeating the ultrasonographic scan in the end of the procedure. DISCUSSION: As demonstrated by many clinical trials on gliomas, the more tumor removed, the better long term control of tumor regrowth and the longer survival with a good quality of life. Of course, no matter how aggressive the surgery, no new deficits are acceptable in the modern era neurosurgery. There are many adjuvant methods for the neurosurgeon to achieve this maximal and safe tumor removal, including the 3T MRI combined with tractography and functional MRI, the intraoperative neuronavigation and neurophysiologic monitoring in both anesthetized and awake patients. The ultrasonography integrated in neuronavigaton comes as a welcomed addition to this adjuvants to help the surgeon achieve the set purpose. CONCLUSION: With the use of this real time imaging device, the common problem of brainshift encountered with the neuronavigation systems

  19. 3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy (United States)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Siewerdsen, J. H.


    An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ˜0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ˜10°-20° achieved TRE registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.

  20. Low intensity pulse ultrasound stimulate chondrocytes growth in a 3-D alginate scaffold through improved porosity and permeability. (United States)

    Guo, Gepu; Lu, Lu; Ji, Hongfei; Ma, Yong; Dong, Rui; Tu, Juan; Guo, Xiasheng; Qiu, Yuanyuan; Wu, Junru; Zhang, Dong


    A 3-D scaffold culture system has been used to promote in producing functional chondrocytes for repairing damaged cartilage. In the present study, the low intensity pulse ultrasound (LIPUS) (P(-)=0, 0.055, 0.085 and 0.11 MPa) was applied to improve the porosity and permeability of a 3-D alginate scaffold which was beneficial for the nutrition supply and metabolism during cell growth in 3-D alginate scaffold. The porosity and permeability of the scaffold was quantitatively analyzed based on scanning electron microscopy examination and fluorescence image observation. The results suggest that, for the scaffold exposed to LIPUS, its porosity and permeability could be significantly enhanced by the increasing LIPUS amplitude, which might be induced by the microstreaming shear stress generated by ultrasound-driven microbubble oscillations. Furthermore, the assessments of cell proliferation and collagen II expression confirmed that chondrocytes growth could be effectively promoted in 3-D alginate scaffolds treated by LIPUS, because of the improved scaffold porosity and permeability might benefit cell growth space and nutrition supply. It should also be noticed that appropriate LIPUS driving parameters should be adapted to achieve optimized chondrocytes culture effect in 3-D alginate scaffold.

  1. Accuracy evaluation of a 3D-printed individual template for needle guidance in head and neck brachytherapy (United States)

    Huang, Ming-Wei; Zhang, Jian-Guo; Zheng, Lei; Liu, Shu-Ming; Yu, Guang-Yan


    To transfer the preplan for the head and neck brachytherapy to the clinical implantation procedure, a preplan-based 3D-printed individual template for needle insertion guidance had previously been designed and used. The accuracy of needle insertion using this kind template was assessed in vivo. In the study, 25 patients with head and neck tumors were implanted with 125I radioactive seeds under the guidance of the 3D-printed individual template. Patients were divided into four groups based on the site of needle insertion: the parotid and masseter region group (nine patients); the maxillary and paranasal region group (eight patients); the submandibular and upper neck area group (five patients); and the retromandibular region group (six patients). The distance and angular deviations between the preplanned and placed needles were compared, and the complications and time required for needle insertion were assessed. The mean entrance point distance deviation for all 619 needles was 1.18 ± 0.81 mm, varying from 0.857 ± 0.545 to 1.930 ± 0.843 mm at different sites. The mean angular deviation was 2.08 ± 1.07 degrees, varying from 1.85 ± 0.93 to 2.73 ± 1.18 degrees at different sites. All needles were manually inserted to their preplanned positions in a single attempt, and the mean time to insert one needle was 7.5 s. No anatomical complications related to inaccurately placed implants were observed. Using the 3D-printed individual template for the implantation of 125I radioactive seeds in the head and neck region can accurately transfer a CT-based preplan to the brachytherapy needle insertion procedure. Moreover, the addition of individual template guidance can reduce the time required for implantation and minimize the damage to normal tissues. PMID:27422928

  2. 3-D Ultrasound Imaging Performance of a Row-Column Addressed 2-D Array Transducer: A Measurement Study

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Jensen, Jørgen Arendt


    A real-time 3-D ultrasound measurement using only 32 elements and 32 emissions is presented. The imaging quality is compared to a conventionally fully addressed array using 1024 elements and 256 emissions. The main-lobe of the measured line spread function is almost identical, but the side-lobe l...... ultrasound probe made by Vermon S.A....... is 510% larger than when row-column addressing the array. The cyst radius needed to achieve -20 dB intensity in the cyst is 396% larger for the fully addressed array compared to the row-column addressed array. The measurements were made using the experimental ultrasound scanner SARUS and a 32x32 element...

  3. Register cardiac fiber orientations from 3D DTI volume to 2D ultrasound image of rat hearts (United States)

    Qin, Xulei; Wang, Silun; Shen, Ming; Zhang, Xiaodong; Lerakis, Stamatios; Wagner, Mary B.; Fei, Baowei


    Two-dimensional (2D) ultrasound or echocardiography is one of the most widely used examinations for the diagnosis of cardiac diseases. However, it only supplies the geometric and structural information of the myocardium. In order to supply more detailed microstructure information of the myocardium, this paper proposes a registration method to map cardiac fiber orientations from three-dimensional (3D) magnetic resonance diffusion tensor imaging (MR-DTI) volume to the 2D ultrasound image. It utilizes a 2D/3D intensity based registration procedure including rigid, log-demons, and affine transformations to search the best similar slice from the template volume. After registration, the cardiac fiber orientations are mapped to the 2D ultrasound image via fiber relocations and reorientations. This method was validated by six images of rat hearts ex vivo. The evaluation results indicated that the final Dice similarity coefficient (DSC) achieved more than 90% after geometric registrations; and the inclination angle errors (IAE) between the mapped fiber orientations and the gold standards were less than 15 degree. This method may provide a practical tool for cardiologists to examine cardiac fiber orientations on ultrasound images and have the potential to supply additional information for diagnosis of cardiac diseases.

  4. Skeletonization approach for characterization of benign vs. malignant single thyroid nodules using 3D contrast enhanced ultrasound (United States)

    Molinari, Filippo; Mantovani, Alice; Deandrea, Maurilio; Limone, Paolo; Garberoglio, Roberto; Suri, Jasjit S.


    High-resolution ultrasonography (HRUS) has potentialities in differential diagnosis between malignant and benign thyroid lesions, but interpretative pitfalls remain and accuracy is still poor. We developed an image processing technique for characterizing the intra-nodular vascularization of thyroid lesions. Twenty nodules (ten malignant) were analyzed by 3-D contrast-enhanced ultrasound imaging. The 3-D volumes were preprocessed and skeletonized. Seven vascular parameters were computed on the skeletons: number of vascular trees (NT); vascular density (VD); number of branching nodes (or branching points) (NB); mean vessel radius (MR); 2-D (DM) and 3-D (SOAM) tortuosity; and inflection count metric (ICM). Results showed that the malignant nodules had higher values of NT (83.1 vs. 18.1), VD (00.4 vs. 0.01), NB (1453 vs. 552), DM (51 vs. 18), ICM (19.9 vs. 8.7), and SOAM (26 vs. 11). Quantification of nodular vascularization based on 3-D contrast-enhanced ultrasound and skeletonization could help differential diagnosis of thyroid lesions.

  5. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    Directory of Open Access Journals (Sweden)

    Agurto Carla


    Full Text Available Abstract Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions

  6. A-mode ultrasound-based intra-femoral bone cement detection and 3D reconstruction in RTHR. (United States)

    Heger, Stefan; Mumme, Thorsten; Sellei, Richard; De La Fuente, Matias; Wirtz, Dieter-C; Radermacher, Klaus


    Due to the difficulty of determining the 3D boundary of the cement-bone interface in Revision Total Hip Replacement (RTHR), the removal of the distal intra-femoral bone cement can be a time-consuming and risky operation. Within the framework of computer- and robot-assisted cement removal, the principles and first results of an automatic detection and 3D surface reconstruction of the cement-bone boundary using A-mode ultrasound are described. Sound propagation time and attenuation of cement were determined considering different techniques for the preparation of bone cement, such as the use of a vacuum system (Optivac, Biomet). A laboratory setup using a rotating, standard 5-MHz transducer was developed. The prototype enables scanning of bisected cement-prepared femur samples in a 90 degrees rotation range along their rotation axis. For system evaluation ex vivo, the distal femur of a human cadaver was prepared with bone cement and drilled (Ø 10 mm) to simulate the prosthesis cavity in a first approximation. The sample was cut in half and CT scanned (0.24 mm resolution; 0.5 mm distance; 0.5 mm thickness), and 3D voxel models of the manually segmented bone cement were reconstructed, providing the ground truth. Afterwards, 90 degrees segments of each ex-vivo sample were scanned by the A-mode ultrasound system. To obtain better ultrasound penetration, we used coded signal excitation and pulse compression filtering. A-mode ultrasound signal detection, filtering and segmentation were accomplished fully automatically. Subsequently, 3D voxel models of each sample were calculated. Accuracy evaluation of the measured ultrasound data was performed by ICP matching of each ultrasound dataset ( approximately 8000 points) to the corresponding CT dataset and calculation of the residual median distance error between the corresponding datasets. Prior to each ICP matching, an initial pre-registration was calculated using prominent landmarks in the corresponding datasets. This method

  7. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    DEFF Research Database (Denmark)

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.


    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined...... to the bone structures. Since the US images were significantly better than the CBCT images in terms of soft-tissue visualization, the US system can provide an optional image-guided radiation therapy (IGRT) system. US imaging might be a better IGRT system than CBCT, despite difficulty in capturing the entire...

  8. In vivo validation of a 3D ultrasound system for imaging the lateral ventricles of neonates (United States)

    Kishimoto, J.; Fenster, A.; Chen, N.; Lee, D.; de Ribaupierre, S.


    Dilated lateral ventricles in neonates can be due to many different causes, such as brain loss, or congenital malformation; however, the main cause is hydrocephalus, which is the accumulation of fluid within the ventricular system. Hydrocephalus can raise intracranial pressure resulting in secondary brain damage, and up to 25% of patients with severely enlarged ventricles have epilepsy in later life. Ventricle enlargement is clinically monitored using 2D US through the fontanels. The sensitivity of 2D US to dilation is poor because it cannot provide accurate measurements of irregular volumes such as the ventricles, so most clinical evaluations are of a qualitative nature. We developed a 3D US system to image the cerebral ventricles of neonates within the confines of incubators that can be easily translated to more open environments. Ventricle volumes can be segmented from these images giving a quantitative volumetric measurement of ventricle enlargement without moving the patient into an imaging facility. In this paper, we report on in vivo validation studies: 1) comparing 3D US ventricle volumes before and after clinically necessary interventions removing CSF, and 2) comparing 3D US ventricle volumes to those from MRI. Post-intervention ventricle volumes were less than pre-intervention measurements for all patients and all interventions. We found high correlations (R = 0.97) between the difference in ventricle volume and the reported removed CSF with the slope not significantly different than 1 (p < 0.05). Comparisons between ventricle volumes from 3D US and MR images taken 4 (±3.8) days of each other did not show significant difference (p=0.44) between 3D US and MRI through paired t-test.

  9. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images (United States)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.


    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  10. Guided Interventions for Prostate Cancer Using 3D-Transurethral Ultrasound and MRI Fusion (United States)


    accomplishing Figure 1: SOLIDWORKS CAD software prostate phantom model, (a) with 20 deg urethra bend, (b) 30 deg urethra bend, and (c) 40 deg urethra...degrees and 40 degrees were designed in SOLIDWORKS CAD software to develop a prostate phantom model (Fig. 1). The prostate is the same shape and size in...a standard recipe [ii] for the prostate and the 3D printed mold designed in SOLIDWORKS . Figure 2 illustrates an example of the TUUS phantom after

  11. The Correlation Between the GFR and the Renal Dimensions in Glomerulopathy Patients: Comparison of 2D and 3D Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyoung Min [Seoul National University Hospital, Seoul (Korea, Republic of); Lee, Hak Jong; Hwang, Sung Il; Chin, Ho Jun [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)


    We wanted to determine the correlation between the renal length as measured on two dimensional (2D) ultrasonography (US) and the renal parenchymal volume as measured with a new three-dimensional (3D) volume probe ultrasound system. We also wanted to determine the correlation between the renal length or renal parenchymal volume and the glomerular filtration rate (GFR) in patients with glomerulopathy. From July 2007 to December 2007, 26 patients who were pathologically confirmed to have glomerulopathy by biopsy were enrolled. Renal length was measured with 2D US and the renal parenchymal volume was measured with 3D US just prior to biopsy. The GFR was obtained from the electronic medical records. Pearson's correlation coefficients were used to analyze the correlation between the renal length and the renal parenchymal volume, the correlation between the renal length and the GFR and the correlation between the renal parenchymal volume and the GFR. The renal length and the renal parenchymal volume showed strong positive correlation (r = 0.850, p = 0.0001). The correlation coefficient between the renal length and the GFR was 0.623 (p = 0.0007) and the correlation coefficient between the renal volume and the GFR was 0.590 (p = 0.0015). Both the renal length and renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. The renal length showed strong positive correlations with the renal parenchymal volume. Both the renal length and the renal parenchymal volume showed apparently positive correlations with the GFR in glomerulopathy patients. In glomerulopathy patients, the renal dimensions measured by ultrasound can reflect the status of the GFR, and the measurement of the 2D renal length could be sufficient for follow up. Further studies are needed to evaluate the role of 3D US for assessing patients with renal disease

  12. 3D non-rigid registration using surface and local salient features for transrectal ultrasound image-guided prostate biopsy (United States)

    Yang, Xiaofeng; Akbari, Hamed; Halig, Luma; Fei, Baowei


    We present a 3D non-rigid registration algorithm for the potential use in combining PET/CT and transrectal ultrasound (TRUS) images for targeted prostate biopsy. Our registration is a hybrid approach that simultaneously optimizes the similarities from point-based registration and volume matching methods. The 3D registration is obtained by minimizing the distances of corresponding points at the surface and within the prostate and by maximizing the overlap ratio of the bladder neck on both images. The hybrid approach not only capture deformation at the prostate surface and internal landmarks but also the deformation at the bladder neck regions. The registration uses a soft assignment and deterministic annealing process. The correspondences are iteratively established in a fuzzy-to-deterministic approach. B-splines are used to generate a smooth non-rigid spatial transformation. In this study, we tested our registration with pre- and postbiopsy TRUS images of the same patients. Registration accuracy is evaluated using manual defined anatomic landmarks, i.e. calcification. The root-mean-squared (RMS) of the difference image between the reference and floating images was decreased by 62.6+/-9.1% after registration. The mean target registration error (TRE) was 0.88+/-0.16 mm, i.e. less than 3 voxels with a voxel size of 0.38×0.38×0.38 mm3 for all five patients. The experimental results demonstrate the robustness and accuracy of the 3D non-rigid registration algorithm.

  13. 3-D microvessel-mimicking ultrasound phantoms produced with a scanning motion system. (United States)

    Gessner, Ryan C; Kothadia, Roshni; Feingold, Steven; Dayton, Paul A


    Ultrasound techniques are currently being developed that can assess the vascularization of tissue as a marker for therapeutic response. Some of these ultrasound imaging techniques seek to extract quantitative features about vessel networks, whereas high-frequency imaging also allows individual vessels to be resolved. The development of these new techniques, and subsequent imaging analysis strategies, necessitates an understanding of their sensitivities to vessel and vessel network structural abnormalities. Constructing in-vitro flow phantoms for this purpose can be prohibitively challenging, because simulating precise flow environments with nontrivial structures is often impossible using conventional methods of construction for flow phantoms. Presented in this manuscript is a method to create predefined structures with precision using a three-axis motion system. The application of this technique is demonstrated for the creation of individual vessel and vessel networks, which can easily be made to simulate the development of structural abnormalities typical of diseased vasculature in vivo. In addition, beyond facilitating the creation of phantoms that would otherwise be very challenging to construct, the method presented herein enables one to precisely simulate very slow blood flow and respiration artifacts, and to measure imaging resolution.

  14. Linearity of patient positioning detection. A phantom study of skin markers, cone beam computed tomography, and 3D ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Ballhausen, Hendrik; Hieber, Sheila; Li, Minglun; Belka, Claus; Reiner, Michael [University Hospital of LMU, Department of Radiation Oncology, Munich (Germany); Parodi, Katia [Ludwig-Maximilian-University, Department of Experimental Physics - Medical Physics, Munich (Germany)


    Three-dimensional ultrasound (3D-US) is a modality complementary to kilovoltage cone beam computed tomography (kV-CBCT) and skin markers for patient positioning detection. This study compares the linearity of evaluations based on measurements using a modern 3D-US system (Elekta Clarity {sup registered}; Elekta, Stockholm, Sweden), a kV-CBCT system (Elekta iView {sup registered}), and skin markers. An investigator deliberately displaced a multimodal phantom by up to ± 30 mm along different axes. The following data points were acquired: 27 along the lateral axis, 29 along the longitudinal axis, 27 along the vertical axis, and 27 along the space diagonal. At each of these 110 positions, the displacements according to skin' markers were recorded and scans were performed using both 3D-US and kV-CBCT. Shifts were detected by matching bony anatomy or soft tissue density to a reference planning CT in the case of kV-CBCT and for 3D-US, by matching ultrasound volume data to a reference planning volume. A consensus value was calculated from the average of the four modalities. With respect to this consensus value, the linearity (offset and regression coefficient, i.e., slope), average offset, systematic error, and random error of all four modalities were calculated for each axis. Linearity was similar for all four modalities, with regression coefficients between 0.994 and 1.012, and all offsets below 1 mm. The systematic errors of skin markers and 3D-US were higher than for kV-CBCT, but random errors were similar. In particular, 3D-US demonstrated an average offset of 0.36 mm to the right, 0.08 mm inferiorly, and 0.15 mm anteriorly; the systematic error was 0.36 mm laterally, 0.35 mm longitudinally, and 0.22 mm vertically; the random error was 0.15 mm laterally, 0.30 mm longitudinally, and 0.12 mm vertically. A total of 109 out of 110 (99 %) 3D-US measurements were within 1 mm of the consensus value on either axis. The linearity of 3D-US was no worse than that of skin

  15. Comparison between Thin-Slice 3-D Volumetric Ultrasound and Conventional Ultrasound in the Differentiation of Benign and Malignant Thyroid Lesions. (United States)

    Li, Wen-Bo; Zhang, Bo; Zhu, Qing-Li; Jiang, Yu-Xin; Sun, Jian; Yang, Meng; Li, Jian-Chu


    We explored the efficacy of thin-slice volumetric 3-D ultrasound (3-DUS) in distinguishing between benign and malignant thyroid nodules. A total of 103 thyroid nodules were evaluated prospectively using 3-D gray-scale ultrasonography. The shape, margin, halo and potential capsular invasion of the nodules were compared with the findings of conventional 2-D ultrasound (2-DUS). Of the 103 thyroid nodules, there were 50 pathologically confirmed benign lesions and 53 malignant lesions (51.5%). Shape irregularity, ill-defined margins and capsular invasion provided sensitivities of 90.0%, 47.2% and 39.6% and specificities of 88.0%, 84.0% and 100%, respectively, for the malignant lesions. The diagnosis of thyroid cancer was improved in 3-DUS compared with 2-DUS, with a sensitivity of 88.7%, specificity of 90.0%, positive predictive value of 90.4%, negative predictive value of 88.2% and accuracy of 89.3%. The sensitivity of detection for lesions with capsular invasion increased to 39.6% with 3-DUS, more than twice that of 2-DUS. Three-dimensional US is highly accurate in diagnosing thyroid nodules, particularly those with capsular invasion.

  16. Development of a 3D ultrasound system to investigate post-hemorrhagic hydrocephalus in pre-term neonates (United States)

    Kishimoto, J.; Lee, D.; St. Lawrence, K.; Romano, W.; Fenster, A.; de Ribaupierre, S.


    Clinical intracranial ultrasound (US) is performed as a standard of care on neonates at risk of intraventricular hemorrhaging (IVH) and is also used after a diagnosis to monitor for potential ventricular dilation. However, it is difficult to estimate the volume of ventricles with 2D US due to their irregular shape. We developed a 3D US system to be used as an adjunct to a clinical system to investigate volumetric changes in the ventricles of neonates with IVH. Our system has been found have an error of within 1% of actual distance measurements in all three directions and volume measurements of manually segmented volumes from phantoms were not statistically significantly different from the actual values (p>0.3). Interobserver volume measurements of the lateral ventricles in a patient with grade III IVH found no significant differences between measurements. There is the potential to use this system in IVH patients to monitor the progression of ventriculomegaly over time.

  17. Circulating AMH reflects ovarian morphology by Magnetic Resonance Imaging and 3D-ultrasound in 121 healthy girls

    DEFF Research Database (Denmark)

    Hagen, Casper P; Mouritsen, Annette; Mieritz, Mikkel G;


    if serum levels of AMH reflects ovarian morphology in healthy girls. Design: Population-based cohort study. Setting: General community. Participants: 121 healthy girls aged 9.8 - 14.7 years. Main outcome measures: Clinical examination, including pubertal breast stage (Tanner´s classification B1 - 5......). Ovarian volume as well as the number and size of antral follicles were assessed by two independent modalities: A) Magnetic resonance imaging (MRI): Ellipsoid volume, follicles ≥ 2mm, and B) Transabdominal ultrasound (TAUS): Ellipsoid- and 3D volume, follicles ≥ 1mm. Circulating levels of AMH, inhibin B......, estradiol, FSH and LH were assessed by immunoassays; testosterone and androstenedione by LC-MS/MS. Results: AMH reflected the number of small (MRI 2 - 3mm) and medium (4 - 6mm) follicles (Pearson´s Rho (r) = 0.531 and r = 0.512, p

  18. 3D optical imagery for motion compensation in a limb ultrasound system (United States)

    Ranger, Bryan J.; Feigin, Micha; Zhang, Xiang; Mireault, Al; Raskar, Ramesh; Herr, Hugh M.; Anthony, Brian W.


    Conventional processes for prosthetic socket fabrication are heavily subjective, often resulting in an interface to the human body that is neither comfortable nor completely functional. With nearly 100% of amputees reporting that they experience discomfort with the wearing of their prosthetic limb, designing an effective interface to the body can significantly affect quality of life and future health outcomes. Active research in medical imaging and biomechanical tissue modeling of residual limbs has led to significant advances in computer aided prosthetic socket design, demonstrating an interest in moving toward more quantifiable processes that are still patient-specific. In our work, medical ultrasonography is being pursued to acquire data that may quantify and improve the design process and fabrication of prosthetic sockets while greatly reducing cost compared to an MRI-based framework. This paper presents a prototype limb imaging system that uses a medical ultrasound probe, mounted to a mechanical positioning system and submerged in a water bath. The limb imaging is combined with three-dimensional optical imaging for motion compensation. Images are collected circumferentially around the limb and combined into cross-sectional axial image slices, resulting in a compound image that shows tissue distributions and anatomical boundaries similar to magnetic resonance imaging. In this paper we provide a progress update on our system development, along with preliminary results as we move toward full volumetric imaging of residual limbs for prosthetic socket design. This demonstrates a novel multi-modal approach to residual limb imaging.

  19. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, F; Pernot, M; Aubry, J-F; Montaldo, G; Tanter, M; Fink, M [Laboratoire Ondes et Acoustique, ESPCI, Universite Paris VII, UMR CNRS 7587, 10 rue Vauquelin, 75005 Paris (France); Marsac, L [Supersonic Imagine, Les Jardins de la Duranne, 510 rue Rene Descartes, 13857 Aix-en-Provence (France)], E-mail:


    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  20. Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results (United States)

    Marquet, F.; Pernot, M.; Aubry, J.-F.; Montaldo, G.; Marsac, L.; Tanter, M.; Fink, M.


    A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.

  1. Noninvasive quantification of in vitro osteoblastic differentiation in 3D engineered tissue constructs using spectral ultrasound imaging. (United States)

    Gudur, Madhu Sudhan Reddy; Rao, Rameshwar R; Peterson, Alexis W; Caldwell, David J; Stegemann, Jan P; Deng, Cheri X


    Non-destructive monitoring of engineered tissues is needed for translation of these products from the lab to the clinic. In this study, non-invasive, high resolution spectral ultrasound imaging (SUSI) was used to monitor the differentiation of MC3T3 pre-osteoblasts seeded within collagen hydrogels. SUSI was used to measure the diameter, concentration and acoustic attenuation of scatterers within such constructs cultured in either control or osteogenic medium over 21 days. Conventional biochemical assays were used on parallel samples to determine DNA content and calcium deposition. Construct volume and morphology were accurately imaged using ultrasound. Cell diameter was estimated to be approximately 12.5-15.5 µm using SUSI, which corresponded well to measurements of fluorescently stained cells. The total number of cells per construct assessed by quantitation of DNA content decreased from 5.6±2.4×10(4) at day 1 to 0.9±0.2×10(4) at day 21. SUSI estimation of the equivalent number of acoustic scatters showed a similar decreasing trend, except at day 21 in the osteogenic samples, which showed a marked increase in both scatterer number and acoustic impedance, suggestive of mineral deposition by the differentiating MC3T3 cells. Estimation of calcium content by SUSI was 41.7±11.4 µg/ml, which agreed well with the biochemical measurement of 38.7±16.7 µg/ml. Color coded maps of parameter values were overlaid on B-mode images to show spatiotemporal changes in cell diameter and calcium deposition. This study demonstrates the use of non-destructive ultrasound imaging to provide quantitative information on the number and differentiated state of cells embedded within 3D engineered constructs, and therefore presents a valuable tool for longitudinal monitoring of engineered tissue development.

  2. Prenatal Diagnosis of Amniotic Band Syndrome in the Third Trimester of Pregnancy using 3D Ultrasound

    Directory of Open Access Journals (Sweden)

    Luciano Marcondes Machado Nardozza


    Full Text Available Amniotic band syndrome is characterized by a build-up of bands and strings of fibrous tissue that adhere to the fetus and can compress parts of the fetus, thus causing malformations and even limb amputation while the fetus is still in the uterus. The clinical manifestations are extremely variable and their extent may range from a single abnormality, like a constriction ring, to multiple abnormalities. Such abnormalities are generally diagnosed at the end of the first or the beginning of the second trimester using two-dimensional ultrasonography (2DUS. Three-dimensional ultrasonography (3DUS in rendering mode allows spatial analysis of the fetus and amniotic band, thus enabling better comprehension of this pathological condition and better counseling for the parents. There has not previously been any evidence to show that 3DUS would be useful in cases of late diagnosis (third trimester of amniotic band syndrome. In the present case, a primigravid woman underwent her second obstetric ultrasound scan in the 34 th week, from which we observed two bands in contact with the right forearm, but with normal movement of this limb and its fingers. 3DUS made it possible to see the spatial relationship of these bands to the fetal body, thereby confirming their adherence to the limb. After the birth, the prenatal diagnosis of amniotic band syndrome without limb constriction was confirmed. A surgical procedure was carried out on the third day after birth to excise the bands, and the newborn was then discharged in a good general condition.

  3. Left-Atrial Segmentation From 3-D Ultrasound Using B-Spline Explicit Active Surfaces With Scale Uncoupling. (United States)

    Almeida, Nuno; Friboulet, Denis; Sarvari, Sebastian Imre; Bernard, Olivier; Barbosa, Daniel; Samset, Eigil; Dhooge, Jan


    Segmentation of the left atrium (LA) of the heart allows quantification of LA volume dynamics which can give insight into cardiac function. However, very little attention has been given to LA segmentation from three-dimensional (3-D) ultrasound (US), most efforts being focused on the segmentation of the left ventricle (LV). The B-spline explicit active surfaces (BEAS) framework has been shown to be a very robust and efficient methodology to perform LV segmentation. In this study, we propose an extension of the BEAS framework, introducing B-splines with uncoupled scaling. This formulation improves the shape support for less regular and more variable structures, by giving independent control over smoothness and number of control points. Semiautomatic segmentation of the LA endocardium using this framework was tested in a setup requiring little user input, on 20 volumetric sequences of echocardiographic data from healthy subjects. The segmentation results were evaluated against manual reference delineations of the LA. Relevant LA morphological and functional parameters were derived from the segmented surfaces, in order to assess the performance of the proposed method on its clinical usage. The results showed that the modified BEAS framework is capable of accurate semiautomatic LA segmentation in 3-D transthoracic US, providing reliable quantification of the LA morphology and function.

  4. Magnetic resonance imaging-targeted, 3D transrectal ultrasound-guided fusion biopsy for prostate cancer: Quantifying the impact of needle delivery error on diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Peter R., E-mail: [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Cool, Derek W. [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7, Canada and Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Romagnoli, Cesare [Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Fenster, Aaron [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Medical Imaging, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Ward, Aaron D. [Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Oncology, The University of Western Ontario, London, Ontario N6A 3K7 (Canada)


    Purpose: Magnetic resonance imaging (MRI)-targeted, 3D transrectal ultrasound (TRUS)-guided “fusion” prostate biopsy intends to reduce the ∼23% false negative rate of clinical two-dimensional TRUS-guided sextant biopsy. Although it has been reported to double the positive yield, MRI-targeted biopsies continue to yield false negatives. Therefore, the authors propose to investigate how biopsy system needle delivery error affects the probability of sampling each tumor, by accounting for uncertainties due to guidance system error, image registration error, and irregular tumor shapes. Methods: T2-weighted, dynamic contrast-enhanced T1-weighted, and diffusion-weighted prostate MRI and 3D TRUS images were obtained from 49 patients. A radiologist and radiology resident contoured 81 suspicious regions, yielding 3D tumor surfaces that were registered to the 3D TRUS images using an iterative closest point prostate surface-based method to yield 3D binary images of the suspicious regions in the TRUS context. The probabilityP of obtaining a sample of tumor tissue in one biopsy core was calculated by integrating a 3D Gaussian distribution over each suspicious region domain. Next, the authors performed an exhaustive search to determine the maximum root mean squared error (RMSE, in mm) of a biopsy system that gives P ≥ 95% for each tumor sample, and then repeated this procedure for equal-volume spheres corresponding to each tumor sample. Finally, the authors investigated the effect of probe-axis-direction error on measured tumor burden by studying the relationship between the error and estimated percentage of core involvement. Results: Given a 3.5 mm RMSE for contemporary fusion biopsy systems,P ≥ 95% for 21 out of 81 tumors. The authors determined that for a biopsy system with 3.5 mm RMSE, one cannot expect to sample tumors of approximately 1 cm{sup 3} or smaller with 95% probability with only one biopsy core. The predicted maximum RMSE giving P ≥ 95% for each

  5. Evaluation of the relationship between renal function and renal volume-vascular indices using 3D power Doppler ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Cansu, Aysegul, E-mail:; Kupeli, Ali; Kul, Sibel; Eyuboglu, Ilker; Oguz, Sukru; Ozturk, Mehmet Halil; Dinc, Hasan


    Purpose: To investigate the relationship between renal function and total renal volume-vascular indices using 3D power Doppler ultrasound (3DPDUS). Materials and methods: One hundred six patients with hypertensive proteinuric nephropathy (HPN) (49 male, 57 female) and 65 healthy controls (32 male, 33 female) were evaluated prospectively using 3DPDUS. Total renal volume (RV), vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were calculated using Virtual Organ Computer-aided Analysis (VOCAL). The estimated glomerular filtration rates (GFRs) of the patients with HPN and the control group were calculated. The patients with HPN were divided into two groups on the basis of GFR, normal (≥90) or reduced (<90). Differences between groups were compared using ANOVA. Correlations between GFR, renal volume and vascular indices were analyzed using Pearson's correlation analysis. Significance was set at p < 0.05. Results: The mean total RV, VI, FI and VFI values in the reduced GFR, normal GFR and control groups were RV (ml): 234.7, 280.7 and 294.6; VI: 17.6, 27.6 and 46.8; FI: 79.1, 88.7 and 93.9 and VFI: 7.1, 12.7 and 23.8. There were statistically significant differences between the groups (p < 0.001). Total RVs and vascular indices exhibited significant correlations with estimated GFR (r = 0.53–0.59, p < 0.001) Conclusion: Three-dimensional power Doppler ultrasound is a reliable predictive technique in renal function analysis.

  6. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics (United States)

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng


    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the

  7. Elsevier Trophoblast Research Award Lecture: Searching for an early pregnancy 3-D morphometric ultrasound marker to predict fetal growth restriction. (United States)

    Collins, S L; Stevenson, G N; Noble, J A; Impey, L


    Fetal growth restriction (FGR) is a major cause of perinatal morbidity and mortality, even in term babies. An effective screening test to identify pregnancies at risk of FGR, leading to increased antenatal surveillance with timely delivery, could decrease perinatal mortality and morbidity. Placental volume, measured with commercially available packages and a novel, semi-automated technique, has been shown to predict small for gestational age babies. Placental morphology measured in 2-D in the second trimester and ex-vivo post delivery, correlates with FGR. This has also been investigated using 2-D estimates of diameter and site of cord insertion obtained using the Virtual Organ Computer-aided AnaLysis (VOCAL) software. Data is presented describing a pilot study of a novel 3-D method for defining compactness of placental shape. We prospectively recruited women with a singleton pregnancy and BMI of <35. A 3-D ultrasound scan was performed between 11 and 13 + 6 weeks' gestation. The placental volume, total placental surface area and the area of the utero-placental interface were calculated using our validated technique. From these we generated dimensionless indices including sphericity (ψ), standardised placental volume (sPlaV) and standardised functional area (sFA) using Buckingham π theorem. The marker for FGR used was small for gestational age, defined as <10th customised birth weight centile (cSGA). Regression analysis examined which of the morphometric indices were independent predictors of cSGA. Data were collected for 143 women, 20 had cSGA babies. Only sPlaV and sFA were significantly correlated to birth weight (p < 0.001). Regression demonstrated all dimensionless indices were inter-dependent co-factors. ROC curves showed no advantage for using sFA over the simpler sPlaV. The generated placental indices are not independent of placental volume this early in gestation. It is hoped that another placental ultrasound marker based on vascularity can improve the

  8. Rapidly-steered single-element ultrasound for real-time volumetric imaging and guidance (United States)

    Stauber, Mark; Western, Craig; Solek, Roman; Salisbury, Kenneth; Hristov, Dmitre; Schlosser, Jeffrey


    Volumetric ultrasound (US) imaging has the potential to provide real-time anatomical imaging with high soft-tissue contrast in a variety of diagnostic and therapeutic guidance applications. However, existing volumetric US machines utilize "wobbling" linear phased array or matrix phased array transducers which are costly to manufacture and necessitate bulky external processing units. To drastically reduce cost, improve portability, and reduce footprint, we propose a rapidly-steered single-element volumetric US imaging system. In this paper we explore the feasibility of this system with a proof-of-concept single-element volumetric US imaging device. The device uses a multi-directional raster-scan technique to generate a series of two-dimensional (2D) slices that were reconstructed into three-dimensional (3D) volumes. At 15 cm depth, 90° lateral field of view (FOV), and 20° elevation FOV, the device produced 20-slice volumes at a rate of 0.8 Hz. Imaging performance was evaluated using an US phantom. Spatial resolution was 2.0 mm, 4.7 mm, and 5.0 mm in the axial, lateral, and elevational directions at 7.5 cm. Relative motion of phantom targets were automatically tracked within US volumes with a mean error of -0.3+/-0.3 mm, -0.3+/-0.3 mm, and -0.1+/-0.5 mm in the axial, lateral, and elevational directions, respectively. The device exhibited a mean spatial distortion error of 0.3+/-0.9 mm, 0.4+/-0.7 mm, and -0.3+/-1.9 in the axial, lateral, and elevational directions. With a production cost near $1000, the performance characteristics of the proposed system make it an ideal candidate for diagnostic and image-guided therapy applications where form factor and low cost are paramount.

  9. Use of cone-beam CT and live 3-D needle guidance to facilitate percutaneous nephrostomy and nephrolithotripsy access in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Hawkins, C.M. [Emory University School of Medicine, Department of Radiology and Imaging Sciences, Atlanta, GA (United States); Kukreja, Kamlesh [Texas Children' s Hospital, Department of Radiology, Houston, TX (United States); Singewald, Timothy; Johnson, Neil D.; Racadio, John M. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Minevich, Eugene; Reddy, Pramod [Cincinnati Children' s Hospital Medical Center, Department of Urology, Cincinnati, OH (United States)


    Gaining access into non-dilated renal collecting systems for percutaneous nephrolithotripsy, particularly in patients with prohibitive body habitus and/or scoliosis, is often challenging using conventional techniques. To evaluate the feasibility of cone-beam CT for percutaneous nephrostomy placement for subsequent percutaneous nephrolithotripsy in children and adolescents. A retrospective review of percutaneous nephrostomy revealed use of cone-beam CT and 3-D guidance in 12 percutaneous nephrostomy procedures for 9 patients between 2006 and 2015. All cone-beam CT-guided percutaneous nephrostomies were for pre-lithotripsy access and all 12 were placed in non-dilated collecting systems. Technical success was 100%. There were no complications. Cone-beam CT with 3-D guidance is a technically feasible technique for percutaneous nephrostomy in children and adolescents, specifically for nephrolithotripsy access in non-dilated collecting systems. (orig.)

  10. Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Hakime, Antoine, E-mail:; Deschamps, Frederic; Marques De Carvalho, Enio Garcia; Barah, Ali; Auperin, Anne; Baere, Thierry De [Gustave Roussy Institute (France)


    Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid on the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is

  11. Ultrasound-Based Guidance for Partial Breast Irradiation Therapy (United States)


    image obtained with cross correlation. In Fig. 3(b), a 3 3 median filter is applied to the displacement measurements, before differentiation , as a 2-D...a ( denoised ) strain image whose RIVAZ et al.: REAL-TIME REGULARIZED ULTRASOUND ELASTOGRAPHY 935 pixel is . This step ensures continuity in the...find the ML estimate of the µz, we differentiate this equation with respect to µz and set it to zero, arriving at Σni=1 f ′i(µz)(ρi − fi(µz)) σ2i = 0

  12. Evaluating the Learning Curve for Percutaneous Nephrolithotomy under Total Ultrasound Guidance.

    Directory of Open Access Journals (Sweden)

    Yan Song

    Full Text Available To investigate the learning curve of percutaneous nephrolithotomy under total ultrasound guidance.One hundred and twenty consecutive PCNL operations under total ultrasound guidance performed by a novice surgeon in a tertiary referral center were studied. Operations were analyzed in cohorts of 15 to determine when a plateau was reached for the variables such as operation duration, ultrasound screening time, tract dilation time, stone-free rate and complication rate. Comparison was made with the results of a surgeon who had performed more than 1000 PCNLs. Fluoroscopy was not used at all during procedure.The mean operation time dropped from 82.5 min for the first 15 patients to a mean of 64.7 min for cases 46 through 60(P = 0.047. The ultrasound screening time was a peak of 6.4 min in the first 15 cases, whereas it dropped to a mean of 3.9 min for cases 46 through 60(P = 0.01. The tract dilation time dropped from 4.9 min for the first 15 patients to a mean of 3.8 min for cases 46 through 60(P = 0.036. The senior surgeon had a mean operating time, screening time and tract dilation time equivalent to those of the novice surgeon after 60 cases. There was no significant difference in stone free rate and complication rate.The competence of ultrasound guided PCNL is reached after 60 cases with good stone free rate and without major complications.

  13. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng


    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  14. Hemodialysis catheter implantation in the axillary vein by ultrasound guidance versus palpation or anatomical reference

    Directory of Open Access Journals (Sweden)

    Restrepo Valencia CA


    Full Text Available Cesar A Restrepo Valencia,1 Carlos A Buitrago Villa,1 Jose A Chacon Cardona21Internal Medicine, Nephrology, 2Epidemiology, Caldas University, Manizales, ColombiaBackground: We compared the results of four different methods of hemodialysis catheter insertion in the medial segment of the axillary vein: ultrasound guidance, palpation, anatomical reference, and prior transient catheter.Methods: All patients that required acute or chronic hemodialysis and for whom it was determined impossible or not recommended either to place a catheter in the internal jugular vein (for instance, those patients with a tracheostomy, or to practice arteriovenous fistula or graft; it was then essential to obtain an alternative vascular access. When the procedure of axillary vein catheter insertion was performed in the Renal Care Facility (RCF, ultrasound guidance was used, but in the intensive care unit (ICU, this resource was unavailable, so the palpation or anatomical reference technique was used.Results: Two nephrologists with experience in the technique performed 83 procedures during a period lasting 15 years and 8 months (from January 1997–August 2012: 41 by ultrasound guidance; 19 by anatomical references; 15 by palpation of the contiguous axillary artery; and 8 through a temporary axillary catheter previously placed. The ultrasound-guided patients had fewer punctures than other groups, but the value was not statistically significant. Arterial punctures were infrequent in all techniques. Analyzing all the procedure-related complications, such as hematoma, pneumothorax, brachial-plexus injury, as well as the reasons for catheter removal, no differences were observed among the groups. The functioning time was longer in the ultrasound-guided and previous catheter groups. In 15 years and 8 months of surveillance, no clinical or image evidence for axillary vein stenosis was found.Conclusion: The ultrasound guide makes the procedure of inserting catheters in the

  15. Transvaginal Drainage of Pelvic Abscesses and Collections Using Transabdominal Ultrasound Guidance

    Directory of Open Access Journals (Sweden)

    Kevin C. Ching


    Full Text Available Objectives. To evaluate clinical outcomes following transvaginal catheter placement using transabdominal ultrasound guidance for management of pelvic fluid collections. Methods. A retrospective review was performed for all patients who underwent transvaginal catheter drainage of pelvic fluid collections utilizing transabdominal ultrasound guidance between July 2008 and July 2013. 24 consecutive patients were identified and 24 catheters were placed. Results. The mean age of patients was 48.1 years (range = 27–76 y. 88% of collections were postoperative (n=21, 8% were from pelvic inflammatory disease (n=2, and 4% were idiopathic (n=1. Of the 24 patients, 83% of patients (n=20 had previously undergone a hysterectomy and 1 patient (4% was pregnant at the time of drainage. The mean volume of initial drainage was 108 mL (range = 5 to 570. Catheters were left in place for an average of 4.3 days (range = 1–17 d. Microbial sampling was performed in all patients with 71% (n=17 returning a positive culture. All collections were successfully managed percutaneously. There were no technical complications. Conclusions. Transvaginal catheter drainage of pelvic fluid collections using transabdominal ultrasound guidance is a safe and clinically effective procedure. Appropriate percutaneous management can avoid the need for surgery.

  16. Ultrasound guidance improves the success rate of axillary plexus block: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Qin Qin


    Full Text Available ABSTRACT OBJECTIVE: To evaluate the value of real-time ultrasound (US guidance for axillary brachial plexus block (AXB through the success rate and the onset time. METHODS: The meta-analysis was carried out in the Anesthesiology Department of the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China. A literature search of Medline, EMBASE, Cochrane database from the years 2004 to 2014 was performed. The literature searches were carried out using medical subject headings and free-text word: "axilla", "axillary", "brachial plexus", "ultrasonography", "ultrasound", "ultrasonics". Two different reviewers carried out the search and evaluated studies independently. RESULTS: Seven randomized controlled trials, one cohort study and three retrospective studies were included. A total of 2042 patients were identified. 1157 patients underwent AXB using US guidance (US group and the controlled group included 885 patients (246 patients using traditional approach (TRAD and 639 patients using nerve stimulation (NS. Our analysis showed that the success rate was higher in the US group compared to the controlled group (90.64% vs. 82.21%, p < 0.00001. The average time to perform the block and the onset of sensory time were shorter in the US group than the controlled group. CONCLUSION: The present study demonstrated that the real-time ultrasound guidance for axillary brachial plexus block improves the success rate and reduce the mean time to onset of anesthesia and the time of block performance.

  17. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Stéphane, E-mail: [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Didday, Rich [INDEC Medical Systems Inc., Santa Clara, CA (United States); Slots, Tristan [Pie Medical Imaging BV, Maastricht (Netherlands); Kayaert, Peter; Sonck, Jeroen [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium); El-Mourad, Mike; Preumont, Nicolas [Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels (Belgium); Schoors, Dany; Van Camp, Guy [Department of Cardiology, Universitair Ziekenhuis - UZ Brussel, Brussels (Belgium)


    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator’s identification of landmarks to establish the image synchronization.

  18. 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism (United States)

    Ba, Ningning; Zhu, Lianjie; Li, Hongbin; Zhang, Guangzhi; Li, Jianfa; Sun, Jingfeng


    3-dimensional (3D) rod-like CuO with nanowire hierarchical structure has been synthesized successfully by a facile ultrasound assisted method combined with thermal conversion, using rouaite Cu2(OH)3NO3 as the precursor. The product was characterized by XRD, SEM, TEM, HRTEM and FT-IR spectrum. Its optical properties were studied by means of UV-Vis diffuse reflectance absorption spectroscopy and photoluminescence (PL) spectrum. Series of control experiments have been performed to explore influencing factors to the product morphologies and a possible formation mechanism has been proposed. The results show that each CuO rod assembled by tens of nanowires is 200-300 nm in diameter and about 1000 nm in length. Each nanowire contains many interconnected nanoparticles with sizes of about 15 nm. Particularly, ultrasound processing was found beneficial to the formation of the 3D rod-like CuO with nanowire hierarchical structure.

  19. Dual-projection 3D-2D registration for surgical guidance: preclinical evaluation of performance and minimum angular separation (United States)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Gallia, G. L.; Rigamonti, D.; Wolinsky, J.-P.; Gokaslan, Ziya L.; Khanna, A. J.; Siewerdsen, J. H.


    An algorithm for 3D-2D registration of CT and x-ray projections has been developed using dual projection views to provide 3D localization with accuracy exceeding that of conventional tracking systems. The registration framework employs a normalized gradient information (NGI) similarity metric and covariance matrix adaptation evolution strategy (CMAES) to solve for the patient pose in 6 degrees of freedom. Registration performance was evaluated in anthropomorphic head and chest phantoms, as well as a human torso cadaver, using C-arm projection views acquired at angular separations (Δ𝜃) ranging 0-178°. Registration accuracy was assessed in terms target registration error (TRE) and compared to that of an electromagnetic tracker. Studies evaluated the influence of C-arm magnification, x-ray dose, and preoperative CT slice thickness on registration accuracy and the minimum angular separation required to achieve TRE ~2 mm. The results indicate that Δ𝜃 as small as 10-20° is adequate to achieve TRE registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers, and manual registration. The studies support potential application to percutaneous spine procedures and intracranial neurosurgery.

  20. An ultrasound tomography system with polyvinyl alcohol (PVA) moldings for coupling: in vivo results for 3-D pulse-echo imaging of the female breast. (United States)

    Koch, Andreas; Stiller, Florian; Lerch, Reinhard; Ermert, Helmut


    Full-angle spatial compounding (FASC) is a concept for pulse-echo imaging using an ultrasound tomography (UST) system. With FASC, resolution is increased and speckles are suppressed by averaging pulse-echo data from 360°. In vivo investigations have already shown a great potential for 2-D FASC in the female breast as well as for finger-joint imaging. However, providing a small number of images of parallel cross-sectional planes with enhanced image quality is not sufficient for diagnosis. Therefore, volume data (3-D) is needed. For this purpose, we further developed our UST add-on system to automatically rotate a motorized array (3-D probe) around the object of investigation. Full integration of external motor and ultrasound electronics control in a custom-made program allows acquisition of 3-D pulse-echo RF datasets within 10 min. In case of breast cancer imaging, this concept also enables imaging of near-thorax tissue regions which cannot be achieved by 2-D FASC. Furthermore, moldings made of polyvinyl alcohol hydrogel (PVA-H) have been developed as a new acoustic coupling concept. It has a great potential to replace the water bath technique in UST, which is a critical concept with respect to clinical investigations. In this contribution, we present in vivo results for 3-D FASC applied to imaging a female breast which has been placed in a PVA-H molding during data acquisition. An algorithm is described to compensate time-of-flight and consider refraction at the water-PVA-H molding and molding-tissue interfaces. Therefore, the mean speed of sound (SOS) for the breast tissue is estimated with an image-based method. Our results show that the PVA-H molding concept is applicable and feasible and delivers good results. 3-D FASC is superior to 2-D FASC and provides 3-D volume data at increased image quality.

  1. Quantitative assessment of cancer vascular architecture by skeletonization of high-resolution 3-D contrast-enhanced ultrasound images: role of liposomes and microbubbles. (United States)

    Molinari, F; Meiburger, K M; Giustetto, P; Rizzitelli, S; Boffa, C; Castano, M; Terreno, E


    The accurate characterization and description of the vascular network of a cancer lesion is of paramount importance in clinical practice and cancer research in order to improve diagnostic accuracy or to assess the effectiveness of a treatment. The aim of this study was to show the effectiveness of liposomes as an ultrasound contrast agent to describe the 3-D vascular architecture of a tumor. Eight C57BL/6 mice grafted with syngeneic B16-F10 murine melanoma cells were injected with a bolus of 1,2-Distearoyl-sn-glycero-3-phosphocoline (DSPC)-based non-targeted liposomes and with a bolus of microbubbles. 3-D contrast-enhanced images of the tumor lesions were acquired in three conditions: pre-contrast, after the injection of microbubbles, and after the injection of liposomes. By using a previously developed reconstruction and characterization image processing technique, we obtained the 3-D representation of the vascular architecture in these three conditions. Six descriptive parameters of these networks were also computed: the number of vascular trees (NT), the vascular density (VD), the number of branches, the 2-D curvature measure, the number of vascular flexes of the vessels, and the 3-D curvature. Results showed that all the vascular descriptors obtained by liposome-based images were statistically equal to those obtained by using microbubbles, except the VD which was found to be lower for liposome images. All the six descriptors computed in pre-contrast conditions had values that were statistically lower than those computed in presence of contrast, both for liposomes and microbubbles. Liposomes have already been used in cancer therapy for the selective ultrasound-mediated delivery of drugs. This work demonstrated their effectiveness also as vascular diagnostic contrast agents, therefore proving that liposomes can be used as efficient "theranostic" (i.e. therapeutic 1 diagnostic) ultrasound probes.

  2. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo. (United States)

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V


    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes.

  3. Transient neurological deficit due to a misplacement of central venous catheter despite ultrasound guidance and ultrasound assistance. (United States)

    Idialisoa, Rado; Jouffroy, Romain; Saint Martin, Laure Castres; Lamhaut, Lionel; Baud, Frédéric; Philippe, Pascal; Carli, Pierre; Vivien, Benoît


    Central venous catheters (CVC) are frequently used in intensive care units (ICU), with a low incidence of complications, most of them being of mechanical origin and occurring during the insertion of the catheter. To avoid such complications, "ultrasound guidance" and "ultrasound assistance" are recommended. Nevertheless, even with trained and experienced physicians, mechanical complications of IJV access such as carotid punctures are still reported. We report the case of a 75-year-old woman, admitted into the ICU for CVC insertion due to impossibility of peripheral venous access. About 12 hours after the procedure, the patient presented a neurological deficit. The cervical and thoracic CT scan showed a transfixing path of the catheter from the left IJV into the left common carotid artery, with distal extremity of the catheter localized in the ascending aorta. The catheter was removed, and thereafter the neurological deficit immediately and definitely disappeared. Onset of a neurological deficit after CVC insertion into the IJV, regardless the time of occurrence after the procedure, should suggest complication due to the CVC insertion, even if procedure was uneventful and chest radiography confirmed the apparent accurate position of CVC.

  4. Influence of ultrasound power on acoustic streaming and micro-bubbles formations in a low frequency sono-reactor: mathematical and 3D computational simulation. (United States)

    Sajjadi, Baharak; Raman, Abdul Aziz Abdul; Ibrahim, Shaliza


    This paper aims at investigating the influence of ultrasound power amplitude on liquid behaviour in a low-frequency (24 kHz) sono-reactor. Three types of analysis were employed: (i) mechanical analysis of micro-bubbles formation and their activities/characteristics using mathematical modelling. (ii) Numerical analysis of acoustic streaming, fluid flow pattern, volume fraction of micro-bubbles and turbulence using 3D CFD simulation. (iii) Practical analysis of fluid flow pattern and acoustic streaming under ultrasound irradiation using Particle Image Velocimetry (PIV). In mathematical modelling, a lone micro bubble generated under power ultrasound irradiation was mechanistically analysed. Its characteristics were illustrated as a function of bubble radius, internal temperature and pressure (hot spot conditions) and oscillation (pulsation) velocity. The results showed that ultrasound power significantly affected the conditions of hotspots and bubbles oscillation velocity. From the CFD results, it was observed that the total volume of the micro-bubbles increased by about 4.95% with each 100 W-increase in power amplitude. Furthermore, velocity of acoustic streaming increased from 29 to 119 cm/s as power increased, which was in good agreement with the PIV analysis.

  5. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kenton, O; Valdes, G; Yin, L; Teo, B [The Hospital of the University of Pennsylvania, Philadelphia, PA (United States); Brousmiche, S; Wikler, D [Ion Beam Application, Louvain-la-neuve (Belgium)


    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.

  6. Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking with Biaxial Testing (United States)

    Park, Dae Woo; Sebastiani, Andrea; Yap, Choon Hwai; Simon, Marc A.; Kim, Kang


    Mechanical and structural changes of right ventricular (RV) in response to pulmonary hypertension (PH) are inadequately understood. While current standard biaxial testing provides information on the mechanical behavior of RV tissues using surface markers, it is unable to fully assess structural and mechanical properties across the full tissue thickness. In this study, the mechanical and structural properties of normotensive and pulmonary hypertension right ventricular (PHRV) myocardium through its full thickness were examined using mechanical testing combined with 3D ultrasound speckle tracking (3D-UST). RV pressure overload was induced in Sprague–Dawley rats by pulmonary artery (PA) banding. The second Piola–Kirchhoff stress tensors and Green-Lagrangian strain tensors were computed in the RV myocardium using the biaxial testing combined with 3D-UST. A previously established non-linear curve-fitting algorithm was applied to fit experimental data to a Strain Energy Function (SEF) for computation of myofiber orientation. The fiber orientations obtained by the biaxial testing with 3D-UST compared well with the fiber orientations computed from the histology. In addition, the re-orientation of myofiber in the right ventricular free wall (RVFW) along longitudinal direction (apex-to-outflow-tract direction) was noticeable in response to PH. For normotensive RVFW samples, the average fiber orientation angles obtained by 3D-UST with biaxial test spiraled from 20° at the endo-cardium to -42° at the epi-cardium (Δ = 62°). For PHRV samples, the average fiber orientation angles obtained by 3D-UST with biaxial test had much less spiral across tissue thickness: 3° at endo-cardium to -7° at epi-cardium (Δ = 10°, P<0.005 compared to normotensive). PMID:27780271

  7. Automatic registration between 3D intra-operative ultrasound and pre-operative CT images of the liver based on robust edge matching (United States)

    Nam, Woo Hyun; Kang, Dong-Goo; Lee, Duhgoon; Lee, Jae Young; Ra, Jong Beom


    The registration of a three-dimensional (3D) ultrasound (US) image with a computed tomography (CT) or magnetic resonance image is beneficial in various clinical applications such as diagnosis and image-guided intervention of the liver. However, conventional methods usually require a time-consuming and inconvenient manual process for pre-alignment, and the success of this process strongly depends on the proper selection of initial transformation parameters. In this paper, we present an automatic feature-based affine registration procedure of 3D intra-operative US and pre-operative CT images of the liver. In the registration procedure, we first segment vessel lumens and the liver surface from a 3D B-mode US image. We then automatically estimate an initial registration transformation by using the proposed edge matching algorithm. The algorithm finds the most likely correspondences between the vessel centerlines of both images in a non-iterative manner based on a modified Viterbi algorithm. Finally, the registration is iteratively refined on the basis of the global affine transformation by jointly using the vessel and liver surface information. The proposed registration algorithm is validated on synthesized datasets and 20 clinical datasets, through both qualitative and quantitative evaluations. Experimental results show that automatic registration can be successfully achieved between 3D B-mode US and CT images even with a large initial misalignment.

  8. Ultrasound Guidance for Central Venous Access by Emergency Physicians in Colorado

    Directory of Open Access Journals (Sweden)

    Brandon H. Backlund


    Full Text Available Introduction: To survey emergency physicians (EP regarding the frequency of use of ultrasound guidance for placement of central venous catheters (UGCVC and to assess their perceptions regarding the technique and barriers to its implementation.Methods: A 25-question Web-based survey was e-mailed to all members of the Colorado chapter of the American College of Emergency Physicians with a listed e-mail address. A total of 3 reminderswere sent to nonresponders.Results: Responses were received from 116 out of 330 invitations. Ninety-seven percent (n¼112 of respondents indicated they have an ultrasound machine available in their emergency department, and 78% indicated they use UGCVC. Seventy-seven percent (n ¼ 90 agreed with the statement, ‘‘Ultrasound guidance is the preferred method for central venous catheter placement in the emergencydepartment.’��� However, 23% of respondents stated they have received no specific training in UGCVC. Twenty-six percent (n ¼28 of respondents stated they felt ‘‘uncomfortable’’ or ‘‘very uncomfortable’’with UGCVC, and 47% cite lack of training in UGCVC as a barrier to performing the technique.Conclusion: Although the majority of surveyed EPs feel UGCVC is a valuable technique and do perform it, a significant percentage reported receiving no training in the procedure and also reported being uncomfortable performing it. Nearly half of those surveyed cited lack of training as a barrier to more widespread implementation of UGCVC. This suggests that there continues to be a need for education and training of EPs in UGCVC.

  9. 3D versus 2D Systematic Transrectal Ultrasound-Guided Prostate Biopsy: Higher Cancer Detection Rate in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Alexandre Peltier


    Full Text Available Objectives. To compare prostate cancer detection rates of extended 2D versus 3D biopsies and to further assess the clinical impact of this method in day-to-day practice. Methods. We analyzed the data of a cohort of 220 consecutive patients with no prior history of prostate cancer who underwent an initial prostate biopsy in daily practice due to an abnormal PSA and/or DRE using, respectively, the classical 2D and the new 3D systems. All the biopsies were done by a single experienced operator using the same standardized protocol. Results. There was no significant difference in terms of age, total PSA, or prostate volume between the two groups. However, cancer detection rate was significantly higher using the 3D versus the 2D system, 50% versus 34% (P<0.05. There was no statistically significant difference while comparing the 2 groups in term of nonsignificant cancer detection. Conclusion. There is reasonable evidence demonstrating the superiority of the 3D-guided biopsies in detecting prostate cancers that would have been missed using the 2D extended protocol.

  10. A 3D time reversal cavity for the focusing of high-intensity ultrasound pulses over a large volume (United States)

    Robin, J.; Arnal, B.; Tanter, M.; Pernot, M.


    Shock wave ultrasound therapy techniques, increasingly used for non-invasive surgery, require extremely high pressure amplitudes in precise focal spots, and large high-power transducers arranged on a spherical shell are usually used to achieve that. This solution allows limited steering of the beam around the geometrical focus of the device at the cost of a large number of transducer elements, and the treatment of large and moving organs like the heart is challenging or impossible. This paper validates numerically and experimentally the possibility of using a time reversal cavity (TRC) for the same purpose. A 128-element, 1 MHz power transducer combined with different multiple scattering media in a TRC was used. We were able to focus high-power ultrasound pulses over a large volume in a controlled manner, with a limited number of transducer elements. We reached sufficiently high pressure amplitudes to erode an Ultracal® target over a 10 cm2 area.

  11. Ultrasound Guidance for Renal Tract Access and Dilation Reduces Radiation Exposure during Percutaneous Nephrolithotomy

    Directory of Open Access Journals (Sweden)

    Thomas Chi


    Full Text Available Purposes. To present our series of 38 prone percutaneous nephrolithotomy procedures performed with renal access and tract dilation purely under ultrasound guidance and describe the benefits and challenges accompanying this approach. Methods. Thirty-eight consecutive patients presenting for percutaneous nephrolithotomy for renal stone removal were included in this prospective cohort study. Ultrasonographic imaging in the prone position was used to obtain percutaneous renal access and guide tract dilation. Fluoroscopic screening was used only for nephrostomy tube placement. Preoperative, intraoperative, and postoperative procedural and patient data were collected for analysis. Results. Mean age of patients was 52.7±17.2 years. Forty-five percent of patients were male with mean BMI of 26.1±7.3 and mean stone size of 27.2±17.6 millimeters. Renal puncture was performed successfully with ultrasonographic guidance in all cases with mean puncture time of 135.4±132.5 seconds. Mean dilation time was 11.5±3.8 min and mean stone fragmentation time was 37.5±29.0 min. Mean total operative time was 129.3±41.1. No patients experienced any significant immediate postoperative complication. All patients were rendered stone-free and no additional secondary procedures were required. Conclusions. Ultrasound guidance for renal access and tract dilation in prone percutaneous nephrolithotomy is a feasible and effective technique. It can be performed safely with significantly reduced fluoroscopic radiation exposure to the patient, surgeon, and intraoperative personnel.

  12. Volumetry and biomechanical parameters detected by 3D and 2D ultrasound in patients with and without an abdominal aortic aneurysm. (United States)

    Batagini, Nayara Cioffi; Ventura, Carlos Augusto Pinto; Raghavan, Madhavan L; Chammas, Maria Cristina; Tachibana, Adriano; da Silva, Erasmo Simão


    The objective was to demonstrate the ability of ultrasound (US) with 3D properties to evaluate volumetry and biomechanical parameters of the aorta in patients with and without abdominal aortic aneurysm (AAA). Thirty-one patients with normal aortas (group 1), 46 patients with AAA measuring 3.0-5.5 cm (group 2) and 31 patients with AAA ⩾ 5.5 cm (group 3) underwent a 2D/3D-US examination of the infra-renal aorta, and the images were post-processed prior to being analyzed. In the maximum diameter, the global circumferential strain and the global maximum rotation assessed by 2D speckle-tracking algorithms were compared among the three groups. The volumetry data obtained using 3D-US from 40 AAA patients were compared with the volumetry data obtained by a contemporary computed tomography (CT) scan. The median global circumferential strain was 2.0% (interquartile range (IR): 1.0-3.0), 1.0% (IR: 1.0-2.0) and 1.0% (IR: 1.0-1.75) in groups 1, 2 and 3, respectively (p < 0.001). The median global maximum rotation decreased progressively from group 1 to group 3 (1.38º (IR: 0.77-2.13), 0.80º (IR: 0.57-1.0) and 0.50º (IR: 0.31-0.75), p < 0.001). AAA volume estimations by 3D-US correlated well with CT (R(2) = 0.76). In conclusion, US with 3D properties is non-invasive and has the potential to evaluate volumetry and biomechanical characteristics of AAA.

  13. Prenatal diagnosis of a giant foetal lymphangioma and haemangiolymphoma in the second trimester using 2D and 3D ultrasound. (United States)

    Mittermayer, C; Blaicher, W; Deutinger, J; Bernaschek, G; Lee, A


    Lymphangiomas are benign tumours of the lymphatic system. Early prenatal diagnosis is important to permit a planned delivery and provide adequate postnatal care. It thereby improves prognosis and allows the option of terminating the pregnancy if poor outcome is predicted. We report two cases, a giant haemangiolymphoma and a lymphangioma. 2D and 3D US findings are presented and differential diagnosis, therapeutic options and prognosis are discussed.

  14. [CT guidance (125)I seed implantation for pelvic recurrent rectal cancer assisted by 3D printing individual non-coplanar template]. (United States)

    Wang, H; Wang, J J; Jiang, Y L; Tian, S Q; Ji, Z; Guo, F X; Sun, H T; Fan, J H; Xu, Y P


    Objective: To analyze the difference of dosimetric parameters between pre-plan and post-plan of (125)I radioactive seed implantation assisted by 3D printing individual non-coplanar template (3D printing template) for locally recurrent rectal cancer (LRRC). Methods: From February 2016 to April 2016, a total of 10 patients with locally recurrent rectal cancer received (125)I seeds implantation under CT guidance assisted by 3D printing template in Department of Radiation Oncology, Peking University Third Hospital.Each patient underwent CT simulation, three-dimentional treatment planning pre-implantation, 3D printing template design, radioactive seed implantation assisted by 3D printing template and dosimetric verification post implantation. The median activity of seed was 0.63 mCi (0.58 to 0.7 mCi) (2.15- 2.59×10(7) Bq), and the median number of seeds was 80 (19 to 192). D90, D100, V100, V150, CI, EI, HI, D5cc, D2cc of bladder and bowel of pre-plan and post-plan were calculated, respectively.Paired t test was used to evaluate the difference of dosimetric parameters between pre-plan and post-plan. Results: The median D90 of pre-plan and post-plan were 13 761.0 and 12 798.8 cGy, respectively.The median D100 of pre-plan and post-plan were 5 293.6 and 5 397.9 cGy, respectively.The median V100 of pre-plan and post-plan were 90.0% and 90.0%, respectively.The median V150 of pre-plan and post-plan were 63.8% and 62.4%, respectively.The median CI of pre-plan and post-plan were 0.73 and 0.67.The median EI of pre-plan and post-plan were 0.22 and 0.30, respectively. The median HI of pre-plan and post-plan were 0.29 and 0.31.The median bladder D2cc of pre-plan and post-plan were 3 088.8 and 4 240.4 cGy, respectively.The median bowel D2cc of pre-plan and post-plan were 7 051.6 and 7 903.9 cGy, respectively. Conclusions: 3D printing template might be helpful for locally recurrent rectal cancer patients who received (125)I radioactive seed implantation assisted by 3D printing

  15. Experience of percutaneous access under ultrasound guidance in renal transplant patients with allograft lithiasis

    Directory of Open Access Journals (Sweden)

    Silvano Palazzo


    Full Text Available Objective: Urolithiasis of the transplanted kidney has an incidence of 0.2 to 1.7%, it increases the risk of infection in immunosuppressed patients and it can lead to ureteral obstruction that is often associated with deterioration of renal function. Urolithiasis of the transplanted kidney has different characteristics compared to the native kidney, due to the absence of innervation, which does not lead to colic pain. Percutaneous approach is an optimal choice in transplant patients. Material and methods: Here we report our experience in two cadaveric transplant patients with urolithiasis. The first case was a patient of 68 years with a 20 mm stone located in the transplanted kidney pelvis and another smaller in a lower calyx. The second case was a patient of 65 years with a 15 mm stone in the distal part of the transplanted ureter. In both cases the patients were asymptomatic, but they had a reduction in urine output associated with worsening of the transplanted kidney function. The diagnosis was performed in both cases with ultrasound study, showing a severe hydronephrosis and it was confirmed by computed tomography scan. In both cases, we performed a Percutaneous Nephrolithotomy (PCNL. Access was made after targeting the stone, through a lower pole puncture under ultrasound guidance. The first case was treated with pneumatic and laser energy, breaking stones through a nephroscope. In the second case we performed a laser lithotripsy of the ureteral stone, using a flexible videoureteroscope. At the end of both procedures a Double-J stent and a 14 Fr Malecot nephrostomy were positioned, that were removed at 6 weeks and 10 days, respectively. Results: Both patients achieved a resolution of the worsening of renal function, recovering the spontaneous diuresis. The surgical procedure using ultrasound guidance was safe and allowed quick access to the renal pelvis. Both patients experienced no bleeding or infection during hospitalization. Conclusions

  16. Pulsed radiofrequency on radial nerve under ultrasound guidance for treatment of intractable lateral epicondylitis. (United States)

    Oh, Dae Seok; Kang, Tae Hyung; Kim, Hyae Jin


    Lateral epicondylitis is a painful and functionally limiting disorder. Although lateral elbow pain is generally self-limiting, in a minority of people symptoms persist for a long time. When various conservative treatments fail, surgical approach is recommended. Surgical denervation of several nerves that innervate the lateral humeral epicondyle could be considered in patients with refractory pain because it denervates the region of pain. Pulsed radiofrequency is a minimally invasive procedure that improves chronic pain when applied to various neural tissues without causing any significant destruction and painful complication. This procedure is safe, minimally invasive, and has less risk of complications relatively compared to the surgical approach. The radial nerve can be identified as a target for pulsed radiofrequency lesioning in lateral epicondylitis. This innovative method of pulsed radiofrequency applied to the radial nerve has not been reported before. We reported on two patients with intractable lateral epicondylitis suffering from elbow pain who did not respond to nonoperative treatments, but in whom the ultrasound-guided pulsed radiofrequency neuromodulation of the radial nerve induced symptom improvement. After a successful diagnostic nerve block, radiofrequency probe adjustment around the radial nerve was performed on the lateral aspect of the distal upper arm under ultrasound guidance and multiple pulsed treatments were applied. A significant reduction in pain was reported over the follow-up period of 12 weeks.

  17. Research on the aero-thermal effects by 3D analysis model of the optical window of the infrared imaging guidance (United States)

    Xu, Bo; Li, Lin; Zhu, Ying


    Researches on hypersonic vehicles have been a hotspot in the field of aerospace because of the pursuits for higher speed by human being. Infrared imaging guidance is playing a very important role in modern warfare. When an Infrared Ray(IR) imaging guided missile is flying in the air at high speed, its optical dome suffers from serious aero-optic effects because of air flow. The turbulence around the dome and the thermal effects of the optical window would cause disturbance to the wavefront from the target. Therefore, detected images will be biased, dithered and blurred, and the capabilities of the seeker for detecting, tracking and recognizing are weakened. In this paper, methods for thermal and structural analysis with Heat Transfer and Elastic Mechanics are introduced. By studying the aero-thermal effects and aero-thermal radiation effects of the optical window, a 3D analysis model of the optical window is established by using finite element method. The direct coupling analysis is employed as a solving strategy. The variation regularity of the temperature field is obtained. For light with different incident angles, the influence on the ray propagation caused by window deformation is analyzed with theoretical calculation and optical/thermal/structural integrated analysis method respectively.

  18. Intensity-Based Registration of Freehand 3D Ultrasound and CT-scan Images of the Kidney

    CERN Document Server

    Leroy, Antoine; Payan, Yohan; Troccaz, Jocelyne


    This paper presents a method to register a pre-operative Computed-Tomography (CT) volume to a sparse set of intra-operative Ultra-Sound (US) slices. In the context of percutaneous renal puncture, the aim is to transfer planning information to an intra-operative coordinate system. The spatial position of the US slices is measured by optically localizing a calibrated probe. Assuming the reproducibility of kidney motion during breathing, and no deformation of the organ, the method consists in optimizing a rigid 6 Degree Of Freedom (DOF) transform by evaluating at each step the similarity between the set of US images and the CT volume. The correlation between CT and US images being naturally rather poor, the images have been preprocessed in order to increase their similarity. Among the similarity measures formerly studied in the context of medical image registration, Correlation Ratio (CR) turned out to be one of the most accurate and appropriate, particularly with the chosen non-derivative minimization scheme, n...

  19. Clinical feasibility of 3D automated coronary atherosclerotic plaque quantification algorithm on coronary computed tomography angiography: Comparison with intravascular ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Bok [Yonsei University Health System, Yonsei-Cedar Sinai Integrative Cardiovascular Imaging Research Center, Seoul (Korea, Republic of); Myongji Hospital, Division of Cardiology, Cardiovascular Center, Goyang (Korea, Republic of); Lee, Byoung Kwon [Yonsei University College of Medicine, Division of Cardiology, Gangnam Severance Hospital, Seoul (Korea, Republic of); Shin, Sanghoon [Yonsei University Health System, Yonsei-Cedar Sinai Integrative Cardiovascular Imaging Research Center, Seoul (Korea, Republic of); National Health Insurance Corporation Ilsan Hospital, Division of Cardiology, Goyang (Korea, Republic of); Heo, Ran; Chang, Hyuk-Jae; Chung, Namsik [Yonsei University Health System, Yonsei-Cedar Sinai Integrative Cardiovascular Imaging Research Center, Seoul (Korea, Republic of); Yonsei University Health System, Division of Cardiology, Severance Cardiovascular Hospital, Seoul (Korea, Republic of); Arsanjani, Reza [Cedars-Sinai Medical Center, Departments of Imaging and Medicine, Cedars-Sinai Heart Institute, Los Angeles, CA (United States); Kitslaar, Pieter H. [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Medis medical Imaging Systems B.V., Leiden (Netherlands); Broersen, Alexander; Dijkstra, Jouke [Leiden University Medical Center, Department of Radiology, Division of Image Processing, Leiden (Netherlands); Ahn, Sung Gyun [Yonsei University Wonju Severance Christian Hospital, Division of Cardiology, Wonju (Korea, Republic of); Min, James K. [New York-Presbyterian Hospital, Institute for Cardiovascular Imaging, Weill-Cornell Medical College, New York, NY (United States); Hong, Myeong-Ki; Jang, Yangsoo [Yonsei University Health System, Division of Cardiology, Severance Cardiovascular Hospital, Seoul (Korea, Republic of)


    To evaluate the diagnostic performance of automated coronary atherosclerotic plaque quantification (QCT) by different users (expert/non-expert/automatic). One hundred fifty coronary artery segments from 142 patients who underwent coronary computed tomography angiography (CCTA) and intravascular ultrasound (IVUS) were analyzed. Minimal lumen area (MLA), maximal lumen area stenosis percentage (%AS), mean plaque burden percentage (%PB), and plaque volume were measured semi-automatically by expert, non-expert, and fully automatic QCT analyses, and then compared to IVUS. Between IVUS and expert QCT analysis, the correlation coefficients (r) for the MLA, %AS, %PB, and plaque volume were excellent: 0.89 (p < 0.001), 0.84 (p < 0.001), 0.91 (p < 0.001), and 0.94 (p < 0.001), respectively. There were no significant differences in the mean parameters (all p values >0.05) except %AS (p = 0.01). The automatic QCT analysis showed comparable performance to non-expert QCT analysis, showing correlation coefficients (r) of the MLA (0.80 vs. 0.82), %AS (0.82 vs. 0.80), %PB (0.84 vs. 0.73), and plaque volume (0.84 vs. 0.79) when they were compared to IVUS, respectively. Fully automatic QCT analysis showed clinical utility compared with IVUS, as well as a compelling performance when compared with semiautomatic analyses. (orig.)

  20. Non-rigid registration of a 3D ultrasound and a MR image data set of the female pelvic floor using a biomechanical model

    Directory of Open Access Journals (Sweden)

    Rexilius Jan


    Full Text Available Abstract Background The visual combination of different modalities is essential for many medical imaging applications in the field of Computer-Assisted medical Diagnosis (CAD to enhance the clinical information content. Clinically, incontinence is a diagnosis with high clinical prevalence and morbidity rate. The search for a method to identify risk patients and to control the success of operations is still a challenging task. The conjunction of magnetic resonance (MR and 3D ultrasound (US image data sets could lead to a new clinical visual representation of the morphology as we show with corresponding data sets of the female anal canal with this paper. Methods We present a feasibility study for a non-rigid registration technique based on a biomechanical model for MR and US image data sets of the female anal canal as a base for a new innovative clinical visual representation. Results It is shown in this case study that the internal and external sphincter region could be registered elastically and the registration partially corrects the compression induced by the ultrasound transducer, so the MR data set showing the native anatomy is used as a frame for the US data set showing the same region with higher resolution but distorted by the transducer Conclusion The morphology is of special interest in the assessment of anal incontinence and the non-rigid registration of normal clinical MR and US image data sets is a new field of the adaptation of this method incorporating the advantages of both technologies.

  1. Mitigation of Variability among 3D Echocardiography-Derived Regional Strain Values Acquired by Multiple Ultrasound Systems by Vendor Independent Analysis.

    Directory of Open Access Journals (Sweden)

    Cole Streiff

    Full Text Available This study compared the variability of 3D echo derived circumferential and longitudinal strain values computed from vendor-specific and vendor-independent analyses of images acquired using ultrasound systems from different vendors.Ten freshly harvested porcine hearts were studied. Each heart was mounted on a custom designed phantom and driven to simulate normal cardiac motion. Cardiac rotation was digitally controlled and held constant at 5°, while pumped stroke volume (SV ranged from 30-70ml. Full-volume image data was acquired using three different ultrasound systems from different vendors. The image data was analyzed for longitudinal and circumferential strains (LS, CS using both vendor-specific and vendor-independent analysis packages.Good linear relationships were observed for each vendor-specific analysis package for both CS and LS at the mid-anterior segment, with correlation coefficients ranging from 0.82-0.91 (CS and 0.86-0.89 (LS. Comparable linear regressions were observed for results determined by a vendor independent program (CS: R = 0.82-0.89; LS: R = 0.86-0.89. Variability between analysis packages was examined via a series of ANOVA tests. A statistical difference was found between vendor-specific analysis packages (p0.05.Circumferential and longitudinal regional strain values differ when quantified by vendor-specific analysis packages; however, this variability is mitigated by use of a vendor-independent quantification method. These results suggest that echocardiograms acquired using different ultrasound systems could be meaningfully compared using vendor-independent software.

  2. Multiple capture locations for 3D ultrasound-guided robotic retrieval of moving bodies from a beating heart (United States)

    Thienphrapa, Paul; Ramachandran, Bharat; Elhawary, Haytham; Taylor, Russell H.; Popovic, Aleksandra


    Free moving bodies in the heart pose a serious health risk as they may be released in the arteries causing blood flow disruption. These bodies may be the result of various medical conditions and trauma. The conventional approach to removing these objects involves open surgery with sternotomy, the use of cardiopulmonary bypass, and a wide resection of the heart muscle. We advocate a minimally invasive surgical approach using a flexible robotic end effector guided by 3D transesophageal echocardiography. In a phantom study, we track a moving body in a beating heart using a modified normalized cross-correlation method, with mean RMS errors of 2.3 mm. We previously found the foreign body motion to be fast and abrupt, rendering infeasible a retrieval method based on direct tracking. We proposed a strategy based on guiding a robot to the most spatially probable location of the fragment and securing it upon its reentry to said location. To improve efficacy in the context of a robotic retrieval system, we extend this approach by exploring multiple candidate capture locations. Salient locations are identified based on spatial probability, dwell time, and visit frequency; secondary locations are also examined. Aggregate results indicate that the location of highest spatial probability (50% occupancy) is distinct from the longest-dwelled location (0.84 seconds). Such metrics are vital in informing the design of a retrieval system and capture strategies, and they can be computed intraoperatively to select the best capture location based on constraints such as workspace, time, and device manipulability. Given the complex nature of fragment motion, the ability to analyze multiple capture locations is a desirable capability in an interventional system.

  3. Radiologists' performance in the detection of benign and malignant masses with 3D automated breast ultrasound (ABUS)

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jung Min [Department of Radiology and Clinical Research Institute, Seoul National University Hospital and the Institute of Radiation Medicine, Seoul National University Medical Research Center (Korea, Republic of); Moon, Woo Kyung, E-mail: [Department of Radiology and Clinical Research Institute, Seoul National University Hospital and the Institute of Radiation Medicine, Seoul National University Medical Research Center (Korea, Republic of); Cho, Nariya [Department of Radiology and Clinical Research Institute, Seoul National University Hospital and the Institute of Radiation Medicine, Seoul National University Medical Research Center (Korea, Republic of); Park, Jeong Seon [Department of Radiology, Hanyang University College of Medicine, Hanyang University Hospital (Korea, Republic of); Kim, Seung Ja [Department of Radiology, Seoul National Universtiy Boramea Hospital (Korea, Republic of)


    Objectives: To retrospectively evaluate the detection performance of benign and malignant breast masses using 3D volume data obtained by ABUS and to determine lesion variables which affect detectability. Methods: Between November and December of 2007, bilateral whole breast US images were obtained using ABUS in 67 consecutive women who were scheduled to undergo US-guided needle biopsy due to suspicious breast masses. Twenty-four invasive ductal cancers in 23 breasts, 46 benign breast lesions in 44 breasts and 38 normal breasts were included. Three breast radiologists (experience range, 8-16 years) who did not perform the examinations and were blinded to the histology independently reviewed the ABUS data of the 105 breasts to detect suspicious solid masses with pathology as the standard of reference. Sensitivity and specificity in detecting benign and malignant masses were calculated, and lesion characteristics affecting detectability were analyzed. Results: Sensitivities for benign and malignant mass detections were 65.2% (30/46), 95.8% (23/24) for reader 1 (p = 0.007), 66.7% (31/46), 87.5% (21/24) for reader 2 (p = 0.087), and 56.3% (24/46), 91.7% (22/24), for reader 3 (p = 0.001), respectively. Logistic analysis showed that mass size (odds ratio, 95% CI; 1.12, 1.02-1.24), surrounding tissue changes (odds ratio, 95% CI; 0.11, 0.02-0.47), and shape of the mass (odds ratio, 95% CI; 3.12, 1.02-9.55) were the variables associated with detectability at ABUS. Conclusion: In reader studies using ABUS data, significantly higher sensitivity was noted for malignant breast masses than for benign masses.

  4. Current Status and Development of 3D Ultrasound Imaging for Breast Cancer Diagnosis%三维超声成像在乳腺癌诊断中的现状与发展

    Institute of Scientific and Technical Information of China (English)

    姜娓娓; 郑永平


    2D ultrasound imaging is an important method for breast assessment because of its advantages of real-time, radiation-free and high value in differentiating malignant masses from benign masses. 3D breast ultrasound imaging keeps advantages of the conventional 2D ultrasound and can overcome its limitations by providing 3D anatomical information and coronal images of breast. Therefore, 3D breast ultrasound draws more and more attentions and has been rapidly developed. In this paper, recent development and clinical applications of 3D breast ultrasound imaging are reviewed, and further improvements are discussed.%超声成像以其实时性、无辐射和对良恶性肿瘤的高区分性成为乳腺癌检测的重要手段,乳腺三维超声成像在保留上述优势的同时,又能为医生提供更为直观的三维肿瘤信息和对诊断有重要价值的冠状面信息,目前,其已成为生物医学工程领域的1个研究热点.本文从该项技术的应用背景出发,综述该技术成像系统的发展和临床应用的探索,并对其发展前景进行展望.

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... investigation of the uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries ... abnormal uterine bleeding Some physicians also use 3-D ultrasound or sonohysterography for patients with infertility. Three- ...

  6. Review of dynamic contrast-enhanced ultrasound guidance in ablation therapy for hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yasunori Minami; Masatoshi Kudo


    Local ablative techniques-percutaneous ethanol injection, microwave coagulation therapy and radiofrequency ablation (RFA)-have been developed to treat unresectable hepatocellular carcinoma (HCC). The success rate of percutaneous ablation therapy for HCC depends on correct targeting of the tumor via an imaging technique. However, probe insertion often is not completely accurate for small HCC nodules, which are poorly defined on conventional B-mode ultrasound (US) alone. Thus, multiple sessions of ablation therapy are frequently required in difficult cases. By means of two breakthroughs in US technology, harmonic imaging and the development of second-generation contrast agents, dynamic contrast-enhanced harmonic US imaging with an intravenous contrast agent can depict tumor vascularity sensitively and accurately, and is able to evaluate small hypervascular HCCs even when B-mode US cannot adequately characterize the tumors. Therefore, dynamic contrast-enhanced US can facilitate RFA electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of dynamic contrast-enhanced US guidance in ablation therapy for liver cancer is an efficient approach. Here, we present an overview of the current status of dynamic contrast-enhanced US-guided ablation therapy, and summarize the current indications and outcomes of reported clinical use in comparison with that of other modalities.

  7. Feasibility study on photoacoustic guidance for high-intensity focused ultrasound-induced hemostasis (United States)

    Nguyen, Van Phuc; Kim, Jeehyun; Ha, Kang-lyeol; Oh, Junghwan; Kang, Hyun Wook


    The feasibility of photoacoustic imaging (PAI) application was evaluated to map punctured blood vessels thermally treated by high-intensity focused ultrasound (HIFU) for hemostasis. A single-element HIFU transducer with a central frequency of 2.0 MHz, was used to induce thermal hemostasis on the punctured arteries. The HIFU-treated lesion was imaged and localized by high-contrast PAI guidance. The results showed that complete hemostasis was achieved after treatment of the damaged blood vessels within 25 to 52 s at the acoustic intensity of 3600 W/cm2. The coagulation time for the animal artery was ˜20% longer than that of the phantom possibly due to a lower Young's modulus. The reconstructed PA images were able to distinguish the treated area from the surrounding tissue in terms of augmented signal amplitudes (up to three times). Spectroscopic studies demonstrated that the optimal imaging wavelength was found to be 700 nm in order to reconstruct high-contrast photoacoustic images on HIFU-treated lesions. The proposed PAI integrated with HIFU treatment can be a feasible application to obtain safe and rapid hemostasis for acute arterial bleeding.

  8. Evaluation of Freehand B-Mode and Power-Mode 3D Ultrasound for Visualisation and Grading of Internal Carotid Artery Stenosis (United States)

    Karlas, Thomas; Saur, Dorothee


    Background Currently, colour-coded duplex sonography (2D-CDS) is clinical standard for detection and grading of internal carotid artery stenosis (ICAS). However, unlike angiographic imaging modalities, 2D-CDS assesses ICAS by its hemodynamic effects rather than luminal changes. Aim of this study was to evaluate freehand 3D ultrasound (3DUS) for direct visualisation and quantification of ICAS. Methods Thirty-seven patients with 43 ICAS were examined with 2D-CDS as reference standard and with freehand B-mode respectively power-mode 3DUS. Stenotic value of 3D reconstructed ICAS was calculated as distal diameter respectively distal cross-sectional area (CSA) reduction percentage and compared with 2D-CDS. Results There was a trend but no significant difference in successful 3D reconstruction of ICAS between B-mode and power mode (examiner 1 {Ex1} 81% versus 93%, examiner 2 {Ex2} 84% versus 88%). Inter-rater agreement was best for power-mode 3DUS and assessment of stenotic value as distal CSA reduction percentage (intraclass correlation coefficient {ICC} 0.90) followed by power-mode 3DUS and distal diameter reduction percentage (ICC 0.81). Inter-rater agreement was poor for B-mode 3DUS (ICC, distal CSA reduction 0.36, distal diameter reduction 0.51). Intra-rater agreement for power-mode 3DUS was good for both measuring methods (ICC, distal CSA reduction 0.88 {Ex1} and 0.78 {Ex2}; ICC, distal diameter reduction 0.83 {Ex1} and 0.76 {Ex2}). In comparison to 2D-CDS inter-method agreement was good and clearly better for power-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.85, Ex2 0.78; distal CSA reduction percentage: Ex1 0.63, Ex2 0.57) than for B-mode 3DUS (ICC, distal diameter reduction percentage: Ex1 0.40, Ex2 0.52; distal CSA reduction percentage: Ex1 0.15, Ex2 0.51). Conclusions Non-invasive power-mode 3DUS is superior to B-mode 3DUS for imaging and quantification of ICAS. Thereby, further studies are warranted which should now compare power-mode 3DUS with

  9. Fast and Accurate Data Extraction for Near Real-Time Registration of 3-D Ultrasound and Computed Tomography in Orthopedic Surgery. (United States)

    Brounstein, Anna; Hacihaliloglu, Ilker; Guy, Pierre; Hodgson, Antony; Abugharbieh, Rafeef


    Automatic, accurate and real-time registration is an important step in providing effective guidance and successful anatomic restoration in ultrasound (US)-based computer assisted orthopedic surgery. We propose a method in which local phase-based bone surfaces, extracted from intra-operative US data, are registered to pre-operatively segmented computed tomography data. Extracted bone surfaces are downsampled and reinforced with high curvature features. A novel hierarchical simplification algorithm is used to further optimize the point clouds. The final point clouds are represented as Gaussian mixture models and iteratively matched by minimizing the dissimilarity between them using an L2 metric. For 44 clinical data sets from 25 pelvic fracture patients and 49 phantom data sets, we report mean surface registration accuracies of 0.31 and 0.77 mm, respectively, with an average registration time of 1.41 s. Our results suggest the viability and potential of the chosen method for real-time intra-operative registration in orthopedic surgery.

  10. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies. (United States)

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai


    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  11. Needle placement for piriformis injection using 3-D imaging. (United States)

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M


    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure.

  12. Monte Carlo investigation of the dosimetric effect of the Autoscan ultrasound probe for guidance in radiotherapy (United States)

    Martyn, Michael; O'Shea, Tuathan; Harris, Emma; Bamber, Jeffrey; Gilroy, Stephen; Foley, Mark J.


    The aim of this study was to quantify the dosimetric effect of the Autoscan™ ultrasound probe, which is a 3D transperineal probe used for real-time tissue tracking during the delivery of radiotherapy. CT images of an anthropomorphic phantom, with and without the probe placed in contact with its surface, were obtained (0.75 mm slice width, 140 kVp). CT datasets were used for relative dose calculation in Monte Carlo simulations of a 7-field plan delivered to the phantom. The Monte Carlo software packages BEAMnrc and DOSXYZnrc were used for this purpose. A number of simulations, which varied the distance of the radiation field edge from the probe face (0 mm to 5 mm), were performed. Perineal surface doses as a function of distance from the radiation field edge, with and without the probe in place, were compared. The presence of the probe was found to result in an increase in perineal surface dose, relative to the maximum dose. The maximum increase in surface dose was 18.15%, at a probe face to field edge distance of 0 mm. However increases in surface dose fall-off rapidly as this distance increases, agreeing within Monte Carlo simulation uncertainty at distances >= 5 mm. Using data from three patient volunteers, a typical probe face to field edge distance was calculated to be ≍20 mm. Our results therefore indicate that the presence of the probe is unlikely to adversely affect a typical patient treatment, since the dosimetric effect of the probe is minimal at these distances.

  13. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance


    Alberto Chávez-Aragón; Rizwan Macknojia; Pierre Payeur; Robert Laganière


    This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is position...

  14. Ultrasound guided supraclavicular block.

    LENUS (Irish Health Repository)

    Hanumanthaiah, Deepak


    Ultrasound guided regional anaesthesia is becoming increasingly popular. The supraclavicular block has been transformed by ultrasound guidance into a potentially safe superficial block. We reviewed the techniques of performing supraclavicular block with special focus on ultrasound guidance.

  15. Ultrasound (United States)

    Ultrasound is a type of imaging. It uses high-frequency sound waves to look at organs and ... liver, and other organs. During pregnancy, doctors use ultrasound to view the fetus. Unlike x-rays, ultrasound ...

  16. 一种以GPU编程实现快速体绘制的三维超声可视化方法%A 3D Ultrasound Visualization Method to Realize Fast Volume Rendering based on GPU Programming

    Institute of Scientific and Technical Information of China (English)

    郭境峰; 廖晓燕; 李德来


    3D ultrasound features advantages such as intuitive images, precise measurement, accurate spatial positioning, multi-angle view and efficient data collection. 3D ultrasound visualization, mainly achieved through surface rendering and volume rendering, is the fundamental technology of 3D ultrasonic imaging. In recent years, many graphic hardware manufacturers have released graphic processing units (GPU) containing a large number of programmable lfow processors, as a result achieving fast 3D volume rendering based on GPU’s powerful paralel capability becomes possible.%三维超声具有图像形象直观、测量精确、空间定位准确、多角度观察、数据采集效率高等优点。超声三维可视化是三维超声成像中的关键核心技术。超声三维可视化目前主要通过面绘制和体绘制这两大类方法。近几年来,许多图形硬件厂商都推出了包含大量可编程流处理器的图形处理器(G P U),使得借助G P U强大的并行能力实现快速的三维体绘制成为可能。

  17. MO-DE-210-07: Investigation of Treatment Interferences of a Novel Robotic Ultrasound Radiotherapy Guidance System with Clinical VMAT Plans for Liver SBRT Patients

    Energy Technology Data Exchange (ETDEWEB)

    Gong, R [Stanford University, Palo Alto, CA (United States); Bruder, R; Schweikard, A [University of Luebeck, Luebeck, Schleswig-Holstein (Germany); Schlosser, J [SoniTrack Systems Inc., Mountain View, CA (United States); Hristov, D [Stanford University Cancer Center, Palo Alto, CA (United States)


    Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in a prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95% of the

  18. Rapid 3D Modeling and Parts Recognition on Automotive Vehicles Using a Network of RGB-D Sensors for Robot Guidance

    Directory of Open Access Journals (Sweden)

    Alberto Chávez-Aragón


    Full Text Available This paper presents an approach for the automatic detection and fast 3D profiling of lateral body panels of vehicles. The work introduces a method to integrate raw streams from depth sensors in the task of 3D profiling and reconstruction and a methodology for the extrinsic calibration of a network of Kinect sensors. This sensing framework is intended for rapidly providing a robot with enough spatial information to interact with automobile panels using various tools. When a vehicle is positioned inside the defined scanning area, a collection of reference parts on the bodywork are automatically recognized from a mosaic of color images collected by a network of Kinect sensors distributed around the vehicle and a global frame of reference is set up. Sections of the depth information on one side of the vehicle are then collected, aligned, and merged into a global RGB-D model. Finally, a 3D triangular mesh modelling the body panels of the vehicle is automatically built. The approach has applications in the intelligent transportation industry, automated vehicle inspection, quality control, automatic car wash systems, automotive production lines, and scan alignment and interpretation.

  19. The Use of a Novel Ultrasound Guidance System for Real-time Central Venous Cannulation: Safety and Efficacy

    Directory of Open Access Journals (Sweden)

    Robinson M. Ferre


    Full Text Available Introduction: Real-time ultrasound guidance is considered to be the standard of care for central venous access for non-emergent central lines. However, adoption has been slow, in part because of the technical challenges and time required to become proficient. The AxoTrack® system (Soma Access Systems, Greenville, SC is a novel ultrasound guidance system recently cleared for human use by the United States Food and Drug Administration (FDA. Methods: After FDA clearance, the AxoTrack® system was released to three hospitals in the United States. Physicians and nurse practitioners who work in the intensive care unit or emergency department and who place central venous catheters were trained to use the AxoTrack® system. De-identified data about central lines placed in living patients with the AxoTrack® system was prospectively gathered at each of the three hospitals for quality assurance purposes. After institutional review board approval, we consolidated the data for the first five months of use for retrospective review. Results: The AxoTrack® system was used by 22 different health care providers in 50 consecutive patients undergoing central venous cannulation (CVC from September 2012 to February 2013. All patients had successful CVC with the guidance of the AxoTrack® system. All but one patient (98% had successful cannulation on the first site attempted. There were no reported complications, including pneumothorax, hemothorax, arterial puncture or arterial cannulation. Conclusion: The AxoTrack® system was a safe and effective means of CVC that was used by a variety of health care practitioners. [West J Emerg Med. 2014;15(4:536-540.

  20. 3D Rapid Prototyping for Otolaryngology-Head and Neck Surgery: Applications in Image-Guidance, Surgical Simulation and Patient-Specific Modeling.

    Directory of Open Access Journals (Sweden)

    Harley H L Chan

    Full Text Available The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i a mono-material paranasal sinus phantom for endoscopy training ii a multi-material skull base simulator and iii 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and

  1. Fast Conformal Thermal Ablation in the Prostate with Transurethral Multi-Sectored Ultrasound Devices and MR Guidance (United States)

    Kinsey, Adam M.; Diederich, Chris J.; Nau, William H.; Ross, Anthony B.; Pauly, Kim Butts; Rieke, Viola; Sommer, Graham


    Transurethral ultrasound applicators incorporating an array of multisectored tubular transducers were evaluated in theoretical simulations and in vivo canine prostates under MR guidance as a method for fast, conformal thermal therapy of the prostate. Comprehensive simulations with a biothermal model investigated the effect on lesion creation of sector size, perfusion, treatment time, rectal cooling, prostate target dimensions, and feedback controller parameters (maximum temperature, pilot points at boundary, update times). In vivo canine prostates (n = 4) were treated with trisectored ultrasound transducers (3 mm OD) under MR temperature monitoring to contour the ablation zone (>52 C for 1-2 min) to the boundary of the prostate. Contiguous thermal lesions extended 2 cm in radius from the urethra in less than 15 min and independent sector control simultaneously allowed for conformal treatment in the angular dimension. Experiments investigated sequential translation of the transducer assembly within the catheter for tailoring heat treatments to different partitions in the prostate (base, apex) without changing the initial setup. This treatment method offered greater lesion shape control in three dimensions and slightly lengthened the overall treatment time. The MR temperature images correlated with post-treatment histology and accurately controlled the heating to the target boundary. MR-based control of transurethral ultrasound devices appeared more practical with multisectored transducers compared to rotating curvilinear and planar applicators due to less stringent requirements on spatial and temporal MR parameters. This study demonstrated the applicability of these devices in the prostate for anterior-lateral BPH treatment, and whole gland or quadrant target volumes for cancer treatment.

  2. Retroperitoneoscopic drainage of bilateral psoas abscesses under intraoperative laparoscopic ultrasound guidance. (United States)

    Kodama, Koichi; Takase, Yasukazu; Motoi, Isamu; Mizuno, Hideki; Goshima, Kenichi; Sawaguchi, Takeshi


    Despite improved diagnostic modalities for psoas abscesses, the optimum management strategy is not uniform. A 67-year-old man presented with bilateral psoas abscesses secondary to L1-L2 pyogenic discitis. On contrast-enhanced CT, the largest of these abscesses measured 13 × 14 × 33 mm on the right. The patient developed sepsis caused by Klebsiella pneumonia. There were no signs of improvement after 3 weeks of systematic antibiotic administration. We performed surgical drainage of bilateral psoas abscesses by retroperitoneoscopy. Intraoperative laparoscopic ultrasound was useful to determine abscess location in the muscles prior to drainage and confirm no residual abscesses after drainage. The patient was afebrile 3 days later, and his clinical symptoms resolved. Retroperitoneoscopic drainage may represent a feasible minimally invasive therapeutic option for psoas abscess, and intraoperative laparoscopic ultrasound has the potential to increase the safety and efficacy of this surgical procedure.

  3. 产前不同时期三维超声筛查胎儿唇裂的效果比较%Comparison of prenatal 3D ultrasound screening at different periods for fetal cleft lip

    Institute of Scientific and Technical Information of China (English)



    目的:探讨产前不同时期三维超声筛查胎儿唇裂畸形的效果。方法选择2007年8月至2014年6月在衡阳市第一人民医院进行产前检查并确诊胎儿为唇裂的孕妇31例,对其二维图像及三维成像进行对比,研究三维成像对胎儿唇裂的显示率及最佳显示时间。结果31例唇裂中,孕14~19周5例,面部三维成像满意者3例,唇部结构清晰显示者2例(唇裂的三维超声显示率40.0%);孕20~27周17例,面部三维成像满意或基本满意者15例,唇部结构清晰显示者15例(三维超声显示率88.2%);孕28~34周6例,面部三维成像满意或基本满意者3例,唇部结构清晰显示者2例(三维超声显示率33.3%);孕35周~39周3例,仅1例羊水过多患者面部三维成像满意,唇部结构显示清晰(三维超声显示率33.3%)。孕20~27周胎儿唇裂三维成像显示率明显高于孕14~19周(χ2=5.119,P=0.024)、28~34周(χ2=6.933,P=0.008)和35~39周(χ2=4.804,P=0.028),差异均有统计学意义。三维成像满意显示的唇裂中Ⅰ度唇裂3例(15.0%),Ⅱ度唇裂4例(20.0%),Ⅲ度唇裂7例(35.0%),唇裂合并上牙槽突裂3例(15.0%),唇裂合并腭裂3例(15.0%)。结论三维超声诊断胎儿唇裂存在明显的时限性,最佳时间为孕20~27周。%Objective To study the effect of 3D ultrasound screening for fetal cleft lip deformity at different periods .Methods Totally 31 pregnant women ,who had done prenatal examination in the First People ’ s Hospital of Hengyang City during the period of August 2007 to June 2014,were diagnosed with cleft lip .Their 2D images and 3D images were compared to study the display rate and the optimal display time of fetal cleft lip by 3D imaging.Results Of 31 cases of cleft lip, 5 cases were pregnancy at 14-19 gestational weeks, including 3 cases with

  4. Percutaneous transhepatic duodenostomy for a gastrectomy case with CT guidance and real-time visualization by an ultrasound and endoscopy. (United States)

    Moriwaki, Yoshihiro; Otani, Jun; Sawada, Yoshiyuki; Okuda, Junzo; Niwano, Toshiyuki; Ntta, Tachiko; Ohshima, Chiaki


    After gastrectomy, the remnant stomach, a small stomach behind the lateral segment of the liver, is thought to be a relative contraindication to receiving a percutaneous endoscopy-guided gastrostomy (PEG). We successfully performed a percutaneous duodenostomy in a case with remnant stomach. We used a transhepatic pull method with computed tomography (CT) guidance and real-time visualization by using ultrasound (US) and an endoscopy. The procedure was as follows: 1. Full stretching of the remnant stomach; 2. Insertion of a fine injection needle into the duodenal lumen through the lateral segment of the liver without an intrahepatic vascular and biliary injury using real-time visualization through US; 3. Confirmation of the location of the fine needle using abdominal CT, which showed the fine needle penetrating through the lateral segment and the duodenal lumen; 4. Insertion of the thick needle of the PEG kit just laterally of the fine needle; 5. Confirmation of the location of the thick needle using a repeated CT; 6. Endoscopic confirmation of the location of the two needles; 7. Changing the direction of the thick needle using guidance with endoscopy, inserting the thick needle into the duodenal lumen, and removing the fine needle; 8. Insertion of the guide wire through the thick needle; and 9. Placement of the PEG tube using the pull method. Using a real-time US scan, we detected the puncture of the anterior wall of the duodenum or stomach and avoided intrahepatic major vascular and biliary injuries.

  5. 彩色多普勒超声联合二维超声和三维超声TUI对胎儿唇腭裂畸形的临床诊断%Joint Two-dimensional Ultrasound and Color Doppler Ultrasound 3 d Ultrasound TUI Clinical Diagnosis of Fetal Cleft Lip and Palate Deformities

    Institute of Scientific and Technical Information of China (English)

    杨君梅; 马晓芹; 张春云; 王瑶


    Objective:To explore the application of fetal cleft lip and palate malformation joint two-dimensional ultrasound and color Doppler ultrasound 3 d ultrasound technology TUI diagnosis of clinical significance.Method:From May 2015 to May 2016 obstetric delivery in our clinical data of 60 children with cleft lip and palate deformities were analyzed retrospective,all children before birth to joint two-dimensional color Doppler ultrasonic ultrasonic testing joint two-dimensional ultrasound and color Doppler flow imaging,the technology of three-dimensional ultrasound TUI diagnosis, analysis and summarize the diagnosis of fetal cleft lip and palate deformities in ultrasonic image characteristics,two joint diagnosis scheme and actual results the coincidence rate of postpartum were observed.Result:4 cases of induced labor,56 cases of natural childbirth.16 cases with cleft lip, 3 cases wereⅠ degree,7 cases wereⅡ degree,6 cases wereⅢ degree;7 cases with cleft palate,2 cases wereⅠ degree,3 cases wereⅡ degree,2 cases wereⅢ degree;37 cases with cleft lip and palate,9 cases wereⅠ degree,17 cases wereⅡ degree,11 cases wereⅢ degree.Joint two-dimensional color,Doppler ultrasonic ultrasonic testing accurate diagnosis of 47 cases, including 10 cases of cleft lip and 5 cases of cleft palate, 32 cases of cleft lip and palate,accurate diagnostic rate was 78.33%,2 cases of misdiagnosis and 11 cases missed diagnosis.Joint two-dimensional ultrasound and color,Doppler ultrasound 3 d ultrasound technology TUI accurate diagnosis of 58 cases,15 cases of cleft lip and 6 cases of cleft palate,37 cases of cleft lip and palate,accurate diagnostic rate was 96.67%, 2 cases of misdiagnosis.Ultrasound images with discontinuous display lip lines or interrupt the echo of the two-dimensional ultrasound shows the nose showed “triangle”,the three dimensional ultrasound showed a cleft lip, nasal distortion, the tip of the tongue sticking out from the nasal cavity, alveolar arch radian

  6. Registration of a needle-positioning robot to high-resolution 3D ultrasound and computed tomography for image-guided interventions in small animals (United States)

    Waspe, Adam C.; Lacefield, James C.; Holdsworth, David W.; Fenster, Aaron


    Preclinical research often requires the delivery of biological substances to specific locations in small animals. Guiding a needle to targets in small animals with an error animal imaging systems. Both techniques involve moving the needle to predetermined robot coordinates and determining corresponding needle locations in image coordinates. Registration accuracy will therefore be affected by the robot positioning error and is assessed by measuring the target registration error (TRE). A point-based registration between robot and micro-ultrasound coordinates was accomplished by attaching a fiducial phantom onto the needle. A TRE of 145 μm was achieved when moving the needle to a set of robot coordinates and registering the coordinates to needle tip locations determined from ultrasound fiducial measurements. Registration between robot and micro-CT coordinates was accomplished by injecting barium sulfate into tracks created when the robot withdraws the needle from a phantom. Points along cross-sectional slices of the segmented needle tracks were determined using an intensity-weighted centroiding algorithm. A minimum distance TRE of 194 +/- 18 μm was achieved by registering centroid points to robot trajectories using the iterative closest point (ICP) algorithm. Simulations, incorporating both robot and ultrasound fiducial localization errors, verify that robot error is a significant component of the experimental registration. Simulations of micro-CT to robot ICP registration similarly agree with the experimental results. Both registration techniques produce a TRE < 200 μm, meeting design specification.

  7. Chest wall segmentation in automated 3D breast ultrasound using rib shadow enhancement and multi-plane cumulative probability enhanced map (United States)

    Kim, Hyeonjin; Kim, Hannah; Hong, Helen


    We propose an automatic segmentation method of chest wall in 3D ABUS images using rib shadow enhancement and multi-planar cumulative probability enhanced map. For the identification of individual dark rib shadows, each rib shadow is enhanced using intensity transfer function and 3D sheet-like enhancement filtering. Then, wrongly enhanced intercostal regions and small fatty tissues are removed using coronal and sagittal cumulative probability enhanced maps. The large fatty tissues with globular and sheet-like shapes at the top of rib shadow are removed using shape and orientation analysis based on moment matrix. Detected chest walls are connected with cubic B-spline interpolation. Experimental results show that the Dice similarity coefficient of proposed method as comparison with two manually outlining results provides over 90% in average.

  8. Micromachined Ultrasonic Transducers for 3-D Imaging

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lehrmann

    Real-time ultrasound imaging is a widely used technique in medical diagnostics. Recently, ultrasound systems offering real-time imaging in 3-D has emerged. However, the high complexity of the transducer probes and the considerable increase in data to be processed compared to conventional 2-D...... ultrasound imaging results in expensive systems, which limits the more wide-spread use and clinical development of volumetric ultrasound. The main goal of this thesis is to demonstrate new transducer technologies that can achieve real-time volumetric ultrasound imaging without the complexity and cost...... of state-of-the-art 3-D ultrasound systems. The focus is on row-column addressed transducer arrays. This previously sparsely investigated addressing scheme offers a highly reduced number of transducer elements, resulting in reduced transducer manufacturing costs and data processing. To produce...

  9. Theoretical design and evaluation of endoluminal ultrasound applicators for thermal therapy of pancreatic cancer under image guidance (United States)

    Adams, Matthew; Scott, Serena; Salgaonkar, Vasant; Sommer, Graham; Diederich, Chris


    An image-guided endoluminal ultrasound applicator has been proposed for palliative and potential curative thermal therapy of pancreatic tumors. By considering a directional transducer array of planar, tubular, or curvilinear transducers, this design offers the potential for fast volumetric therapy and 3D spatial control over the energy deposition profile. Treatment of pancreatic tumor tissue would be performed in a minimally invasive fashion with the applicator positioned in the gastrointestinal (GI) lumen, and sparing of the luminal wall would be achieved with a water-cooled balloon surrounding the transducers. A theoretical evaluation of this design was performed by developing a 3D acoustic and bioheat transfer model, with temperature and thermal dose solutions obtained using a FEM solver (COMSOL Multiphysics). Parametric studies were performed on a generalized anatomical model of the pancreas, tumor, and adjacent luminal wall to determine preferred transducer configurations and frequencies for maximizing lesion volume and penetration while sparing the luminal wall. Patient-specific models of pancreatic tumors were generated from CT studies and used to assess the feasibility of performing thermal ablation or hyperthermia on small (˜2 cm diameter) pancreatic head tumors with an endoluminal applicator positioned within the duodenum. Simulation results indicate lower transducer operating frequencies (1-3 MHz) are necessary to mitigate damage to the luminal wall, and a tradeoff between penetration depth and lesion volume emerges as the degree of focusing increases. For patient-specific ablation modeling of tumors within 30 mm of the luminal wall, approximately 95% of the volume could be ablated within 15 min using a planar or lightly focused transducer configuration without duodenal damage. Over 90% of the volume could be elevated above 40°C at steady state for hyperthermia applications (e.g., radiation sensitization, drug delivery) using a tubular transducer. For

  10. 3D Surgical Simulation (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael


    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  11. A prospective audit of complications in 100 consecutive pediatric percutaneous renal biopsies done under real-time ultrasound guidance (United States)

    Sinha, R.; Maji, B.; Sarkar, B.; Meur, S.


    Despite being a common procedure, percutaneous renal biopsy (PRB) carries the potential for complications. The British Association of Paediatric Nephrologist (BAPN) has published standards for pediatric PRB. As Indian data are scarce, we conducted a prospective audit of 100 consecutive pediatric renal biopsies (60% males) under real-time ultrasound guidance. Nephrotic syndrome was the most common indication for PRB (68%) with minimal change disease (30%) and focal segmental glomerulosclerosis (25%) being the most common histopathological lesions. Gross hematuria was observed in six cases. Major complications was noted in one case, who needed longer hospital stay. The result of the audit demonstrated achievability of BAPN standards. In addition, we also show the usefulness of 16 gauge biopsy needle over 18 gauge biopsy needles (median number of glomeruli 25, range 3–90 vs 13, range 6–46, P = 0.001) without any increase in complications. Being a single center study, we do hope that our results will encourage a wider survey on the current state of pediatric PRB. PMID:27795625

  12. The use of trigger point "dry" needling under ultrasound guidance for the treatment of myofascial pain (technological innovation and literature review). (United States)

    Bubnov, Rostyslav V


    The aim of the study was to examine the use of trigger point dry needling under ultrasound guidance and myofascial release for the treatment of myofascial pain and to increase the provability of the puncture treatment by visual verification. A review of modern and traditional approaches to myofascial pain treatment is presented in the article. For the first time the trigger point was visualized by ultrasound (US) in this study and ultrasound guided needling therapy of muscles was performed as well. The group of 91 patients, suffered from myofascial pain of different location was included in the study. The patients were treated during last year by patented method (UA patent A 2010 06283). The pain relief effect was registered in 93.3% patients.

  13. Interventional guidance for cardiac resynchronization therapies: merging anatomic X-ray imaging with functional ultrasound imaging based on mutually-shared landmarks

    Energy Technology Data Exchange (ETDEWEB)

    Manzke, R.; Shechter, G.; Gutierrez, L.; Chan, R.C. [Philips Research North America, Briarcliff Manor, NY (United States); Tournoux, F.; Singh, J.; Picard, M. [Dept. of Cardiology, Massachusetts General Hospital, Harvard Medical School (United States); Brink, B. v.d.; Boomen, R. v.d. [Philips Medical System, Best (Netherlands); Gerard, O. [Philips Medical Systems, Paris (France)


    Detailed knowledge of cardiac anatomy and function is required for complex cardiac electrophysiology interventions. Cardiac resynchronization therapies (CRT), for example, requires information about coronary venous anatomy for left ventricular lead placement. In CRT, heart failure patients are equipped with dual-chamber pacemakers in order to improve cardiac output and heart failure symptoms. Cardiac function is mainly assessed with Ultrasound imaging. Fusion of complementary information from X-ray and ultrasound is an essential step towards fully utilizing all available information for CRT guidance. We present an approach for fusion of anatomical information (coronary vein structure) from X-ray with functional information (left ventricular deformation and dynamics) from ultrasound. We propose an image-based fusion approach based on mutually-shared landmarks which enable registration of both imaging spaces without the need for external tracking. (orig.)

  14. Ultrasound (United States)

    ... Saunders; 2014:chap 66. Cosgrove DO, Eckersley RJ, Harvey CJ, Lim A. Ultrasound. In: Adam A, Dixon AK, Gillard ... Northside Radiology Associates, Atlanta, GA. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the ...

  15. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  16. Cost-effective and non-invasive automated benign and malignant thyroid lesion classification in 3D contrast-enhanced ultrasound using combination of wavelets and textures: a class of ThyroScan™ algorithms. (United States)

    Acharya, U R; Faust, O; Sree, S V; Molinari, F; Garberoglio, R; Suri, J S


    Ultrasound has great potential to aid in the differential diagnosis of malignant and benign thyroid lesions, but interpretative pitfalls exist and the accuracy is still poor. To overcome these difficulties, we developed and analyzed a range of knowledge representation techniques, which are a class of ThyroScan™ algorithms from Global Biomedical Technologies Inc., California, USA, for automatic classification of benign and malignant thyroid lesions. The analysis is based on data obtained from twenty nodules (ten benign and ten malignant) taken from 3D contrast-enhanced ultrasound images. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture algorithms are used to extract relevant features from the thyroid images. The resulting feature vectors are fed to three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr). The performance of these classifiers is compared using Receiver Operating Characteristic (ROC) curves. Our results show that combination of DWT and texture features coupled with K-NN resulted in good performance measures with the area of under the ROC curve of 0.987, a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Finally, we have proposed a novel integrated index called Thyroid Malignancy Index (TMI), which is made up of texture features, to diagnose benign or malignant nodules using just one index. We hope that this TMI will help clinicians in a more objective detection of benign and malignant thyroid lesions.

  17. Effectiveness of evaluating tumor vascularization using 3D power Doppler ultrasound with high-definition flow technology in the prediction of the response to neoadjuvant chemotherapy for T2 breast cancer: a preliminary report (United States)

    Shia, Wei-Chung; Chen, Dar-Ren; Huang, Yu-Len; Wu, Hwa-Koon; Kuo, Shou-Jen


    The aim of this study was to evaluate the effectiveness of advanced ultrasound (US) imaging of vascular flow and morphological features in the prediction of a pathologic complete response (pCR) and a partial response (PR) to neoadjuvant chemotherapy for T2 breast cancer. Twenty-nine consecutive patients with T2 breast cancer treated with six courses of anthracycline-based neoadjuvant chemotherapy were enrolled. Three-dimensional (3D) power Doppler US with high-definition flow (HDF) technology was used to investigate the blood flow in and morphological features of the tumors. Six vascularity quantization features, three morphological features, and two vascular direction features were selected and extracted from the US images. A support vector machine was used to evaluate the changes in vascularity after neoadjuvant chemotherapy, and pCR and PR were predicted on the basis of these changes. The most accurate prediction of pCR was achieved after the first chemotherapy cycle, with an accuracy of 93.1% and a specificity of 85.5%, while that of a PR was achieved after the second cycle, with an accuracy of 79.31% and a specificity of 72.22%. Vascularity data can be useful to predict the effects of neoadjuvant chemotherapy. Determination of changes in vascularity after neoadjuvant chemotherapy using 3D power Doppler US with HDF can generate accurate predictions of the patient response, facilitating early decision-making.

  18. Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications (United States)

    O'Shea, Tuathan; Bamber, Jeffrey; Fontanarosa, Davide; van der Meer, Skadi; Verhaegen, Frank; Harris, Emma


    Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by

  19. The European Society of Therapeutic Radiology and Oncology-European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. (United States)

    Korreman, Stine; Rasch, Coen; McNair, Helen; Verellen, Dirk; Oelfke, Uwe; Maingon, Philippe; Mijnheer, Ben; Khoo, Vincent


    The past decade has provided many technological advances in radiotherapy. The European Institute of Radiotherapy (EIR) was established by the European Society of Therapeutic Radiology and Oncology (ESTRO) to provide current consensus statement with evidence-based and pragmatic guidelines on topics of practical relevance for radiation oncology. This report focuses primarily on 3D CT-based in-room image guidance (3DCT-IGRT) systems. It will provide an overview and current standing of 3DCT-IGRT systems addressing the rationale, objectives, principles, applications, and process pathways, both clinical and technical for treatment delivery and quality assurance. These are reviewed for four categories of solutions; kV CT and kV CBCT (cone-beam CT) as well as MV CT and MV CBCT. It will also provide a framework and checklist to consider the capability and functionality of these systems as well as the resources needed for implementation. Two different but typical clinical cases (tonsillar and prostate cancer) using 3DCT-IGRT are illustrated with workflow processes via feedback questionnaires from several large clinical centres currently utilizing these systems. The feedback from these clinical centres demonstrates a wide variability based on local practices. This report whilst comprehensive is not exhaustive as this area of development remains a very active field for research and development. However, it should serve as a practical guide and framework for all professional groups within the field, focussed on clinicians, physicists and radiation therapy technologists interested in IGRT.

  20. 3D Animation Essentials

    CERN Document Server

    Beane, Andy


    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  1. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline


    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  2. Feasibility of Remote Real-Time Guidance of a Cardiac Examination Performed by Novices Using a Pocket-Sized Ultrasound Device

    Directory of Open Access Journals (Sweden)

    Tuan V. Mai


    Full Text Available Background. The potential of pocket-sized ultrasound devices (PUDs to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD, LA enlargement (LAE, ultrasound lung comets (ULC+, and elevated CVP (eCVP. Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc. attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90% versus 130/135 (96% (. CLUE’s combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (% and accuracy for each abnormality ( were LVSD (85%, 0.93, , LAE (89%, 0.74, , ULC+ (100%, 0.94, , and eCVP (78%, 0.91, . Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.

  3. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... uterine cavity . Three-dimensional (3-D) ultrasound permits evaluation of the uterus and ovaries in planes that ... is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. ...

  4. Real-time sentinel lymph node biopsy guidance using combined ultrasound, photoacoustic, fluorescence imaging: in vivo proof-of-principle and validation with nodal obstruction (United States)

    Kang, Jeeun; Chang, Jin Ho; Kim, Sun Mi; Lee, Hak Jong; Kim, Haemin; Wilson, Brian C.; Song, Tai-Kyong


    Precise sentinel lymph node (SLN) identification is crucial not only for accurate diagnosis of micro-metastases at an early stage of cancer progression but also for reducing the number of SLN biopsies (SLNB) to minimize their severe side effects. Furthermore, it is desirable that an SLNB guidance should be as safe as possible in routine clinical use. Although there are currently various SLNB guidance methods for pre-operative or intra-operative assessment, none are ideal. We propose a real-time SLNB guidance method using contrast-enhanced tri-modal images (i.e., ultrasound, photoacoustic, and fluorescence) acquired by a recently developed hand-held tri-modal probe. The major advantage of tri-modal imaging is demonstrated here through an in vivo study of the technically-difficult case of nodal obstruction that frequently leads to false-negative results in patients. The results in a tumor model in rabbits and normal controls showed that tri-modal imaging is capable of clearly identifying obstructed SLNs and of indicating their metastatic involvement. Based on these findings, we propose an SLNB protocol to help surgeons take full advantage of the complementary information obtained from tri-modal imaging, including for pre-operative localization, intra-operative biopsy guidance and post-operative analysis. PMID:28327582

  5. Embryonic staging using a 3D virtual reality system

    NARCIS (Netherlands)

    C.M. Verwoerd-Dikkeboom (Christine); A.H.J. Koning (Anton); P.J. van der Spek (Peter); N. Exalto (Niek); R.P.M. Steegers-Theunissen (Régine)


    textabstractBACKGROUND: The aim of this study was to demonstrate that Carnegie Stages could be assigned to embryos visualized with a 3D virtual reality system. METHODS: We analysed 48 3D ultrasound scans of 19 IVF/ICSI pregnancies at 7-10 weeks' gestation. These datasets were visualized as 3D 'holog

  6. Percutaneous Nephrolithotomy under Ultrasound Guidance in Patients with Renal Calculi and Autosomal Dominant Polycystic Kidney Disease: A Report of 11 Cases

    Directory of Open Access Journals (Sweden)

    Xiao Wang


    Full Text Available Nephrolithiasis accelerates the renal failure in the patients with ADPKD. In order to evaluate the role of percutaneous nephrolithotomy in management of calculus in these patients, 11 patients with autosomal dominant polycystic kidney disease and renal stones were included in the study. Two patients had bilateral renal stones. All patients were treated by percutaneous nephrolithotomy under ultrasound guidance. 13 percutaneous nephrolithotomy procedures were performed in 1 stage by the urology team under ultrasound guidance. 5 people received second operation with flexible nephroscopy in lateral position. The success rate and morbidity and mortality of the technique and hospital stay were recorded. Results. The puncture procedure was fully successful in all cases. The renal function improved in these patients. 5 patients had moderate fever after the surgery. 5 patients received flexible nephroscopy to take out the residual calculi. 2 persons had ESWL therapy after the surgery. Conclusion. PCNL is an ideal, safe, and effective method to remove the stones from those patients with no definite increase in the risk of complication. The outcome and stone-free rate are satisfactory comparable to the PCNL in the patients without ADPKD.



    Brdnik, Lovro


    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  8. Ultrasound guidance to perform intra-articular injection of gadolinium-based contrast material for magnetic resonance arthrography as an alternative to fluoroscopy: the time is now

    Energy Technology Data Exchange (ETDEWEB)

    Messina, Carmelo [Universita degli Studi di Milano, Scuola di Specializzazione in Radiodiagnostica, Milano (Italy); Banfi, Giuseppe [IRCCS Istituto Ortopedico Galeazzi, Milano (Italy); Universita Vita-Salute San Raffaele, Milano (Italy); Aliprandi, Alberto [Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, Milano (Italy); Mauri, Giovanni [Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, Milano (Italy); Istituto Europeo di Oncologia, Unita di Radiologia Interventistica, Milano (Italy); Secchi, Francesco; Sardanelli, Francesco; Sconfienza, Luca Maria [Universita degli Studi di Milano, Dipartimento di Scienze Biomediche per la Salute, Milano (Italy); IRCCS Policlinico San Donato, Servizio di Radiologia, San Donato, Milanese (Italy)


    Magnetic resonance (MR) imaging has been definitively established as the reference standard in the evaluation of joints in the body. Similarly, magnetic resonance arthrography has emerged as a technique that has been proven to increase significantly the diagnostic performance if compared with conventional MR imaging, especially when dealing with fibrocartilage and articular cartilage abnormalities. Diluted gadolinium can be injected in the joint space using different approaches: under palpation using anatomic landmarks or using an imaging guidance, such as fluoroscopy, computed tomography, or ultrasound. Fluoroscopy has been traditionally used, but the involvement of ionizing radiation should represent a remarkable limitation of this modality. Conversely, ultrasound has emerged as a feasible, cheap, quick, and radiation-free modality that can be used to inject joints, with comparable accuracy of fluoroscopy. In the present paper, we discuss the advantages and disadvantages of using fluoroscopy or ultrasound in injecting gadolinium-based contrast agents in joints to perform magnetic resonance arthrography, also in view of the new EuroSAFE Imaging initiative promoted by the European Society of Radiology and the recent updates to the European Atomic Energy Community 2013/59 directive on the medical use of ionizing radiation. (orig.)

  9. Feasibility of remote real-time guidance of a cardiac examination performed by novices using a pocket-sized ultrasound device. (United States)

    Mai, Tuan V; Ahn, David T; Phillips, Colin T; Agan, Donna L; Kimura, Bruce J


    Background. The potential of pocket-sized ultrasound devices (PUDs) to improve global healthcare delivery is limited by the lack of a suitable imaging protocol and trained users. Therefore, we investigated the feasibility of performing a brief, evidence-based cardiac limited ultrasound exam (CLUE) through wireless guidance of novice users. Methods. Three trainees applied PUDs on 27 subjects while directed by an off-site cardiologist to obtain a CLUE to screen for LV systolic dysfunction (LVSD), LA enlargement (LAE), ultrasound lung comets (ULC+), and elevated CVP (eCVP). Real-time remote audiovisual guidance and interpretation by the cardiologist were performed using the iPhone 4/iPod (FaceTime, Apple, Inc.) attached to the PUD and transmitted data wirelessly. Accuracy and technical quality of transmitted images were compared to on-site, gold-standard echo thresholds. Results. Novice versus sonographer imaging yielded technically adequate views in 122/135 (90%) versus 130/135 (96%) (P < 0.05). CLUE's combined SN, SP, and ACC were 0.67, 0.96, and 0.90. Technical adequacy (%) and accuracy for each abnormality (n) were LVSD (85%, 0.93, n = 5), LAE (89%, 0.74, n = 16), ULC+ (100%, 0.94, n = 5), and eCVP (78%, 0.91, n = 1). Conclusion. A novice can perform the CLUE using PUD when wirelessly guided by an expert. This method could facilitate PUD use for off-site bedside medical decision making and triaging of patients.

  10. 3D and Education (United States)

    Meulien Ohlmann, Odile


    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?



    Kolar, Nataša


    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  12. 二维、三维超声技术检测正常胎儿胸腺的研究%Prenatal assessment of the fetal thymus: utility of 2D and 3D ultrasound healthy fetuses

    Institute of Scientific and Technical Information of China (English)

    李凌; 周启昌; 邹琳; 蒲大荣; 章鸣; Joshua Copel; Mert Bahtiyar


    Objective To establish the normative data of the 2D and 3D ultrasound (US)measurements of the developing fetal thymus and comparing the 2DUS and 3DUS measurements of the fetal thymus. Methods The normal fetuses' thymus of 567 cases were assessed, and maximum transverse diameter(MTD),antero posterior diameter (APD), suprainferior diameter (SID), maximum transverse area (MTA) were measured by 2DUS,and thymic volume(TV) was measured by 3DUS. Results 2DUS,3DUS assessments of the fetal thymic MTD, APD, SID, MTA and TV were possible in 541 of 567 normal singletons. The fetal thymic 2D diameters/area and 3D volume grow with the gestational age(GA) in linear correlation. The 3D-US TV measurements and GA was significantly higher than that of any individual 2DUS measurements and GA ( P <0.05). Conclusions This study presents the normative data of the 2DUS and 3DUS measurements of the developing fetal thymus. 3DUS fetal thymus volume is more significantly correlated to GA than the other 2DUS measurements, which indicates 3DUS measurement of the fetal thymus is more accurate than that of 2DUS.%目的 建立胎儿胸腺二维各径线和三维体积的正常值,并比较胎儿胸腺的二维、三维超声测量.方法 采集567例正常胎儿胸腺的二维超声测值,包括最大横径、前后径、上下径、最大横截面积及三维超声体积.结果 567例胎儿中541例胎儿满意获得胎儿胸腺的最大横径、前后径、上下径和最大横截面积和体积.胎儿胸腺二维各径线、三维体积均随孕周的增加而增加,与孕周均呈直线相关,三维体积与孕周的相关性明显高于二维超声测值(P<0.05).结论 本研究建立了胎儿胸腺二维超声面积、周长、直径、横径和三维超声体积的正常参考值.三维超声测量胎儿胸腺体积与孕周相关性更高,提示较二维超声测量更为准确.

  13. Transvaginal ultrasound (United States)

    Endovaginal ultrasound; Ultrasound - transvaginal; Fibroids - transvaginal ultrasound; Vaginal bleeding - transvaginal ultrasound; Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; ...

  14. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne


    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  15. Intravascular ultrasound radiofrequency analysis after optimal coronary stenting with initial quantitative coronary angiography guidance: An ATHEROREMO sub-study

    NARCIS (Netherlands)

    G. Sarno (Giovanna); S.A. Garg (Scot); J. Gomez-Lara (Josep); H.M. Garcia-Garcia (Hector); J.M.R. Ligthart (Jürgen); N. Bruining (Nico); Y. Onuma (Yoshinobu); K. Witberg (Karen); R.J.M. van Geuns (Robert Jan); S.P.M. de Boer (Sanneke); J.J. Wykrzykowska (Joanna); C.J. Schultz (Carl); H.J. Duckers (Henricus); E.S. Regar (Eveline); P.P.T. de Jaegere (Peter); P.J. de Feyter (Pim); G.A. van Es (Gerrit Anne); H. Boersma (Eric); W.J. van der Giessen (Wim); P.W.J.C. Serruys (Patrick)


    textabstractAims: To investigate whether the use of intravascular ultrasound virtual histology (IVUS-VH) leads to any improvements in stent deployment, when performed in patients considered to have had an optimal percutaneous coronary intervention (PCI) by quantitative coronary angiography (QCA). Me

  16. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico


    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  17. Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance. (United States)

    Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A


    We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.

  18. Clinical effect of peripherally inserted central catheters based on modified seldinger technique under guidance of vascular ultrasound (United States)

    Wang, Qingguo; Wang, Ni; Sun, Yuzhen


    Objective: To observe and analyze the application effect of ultrasound-guided modified Seldinger technique (MST) in Peripherally Inserted Central Catheter (PICC) catheterization. Methods: Two hundred patients treated with PICC catheterization from January 2013 to December 2015 were selected and randomly divided into two groups, namely, observation group and control group. The observation group adopted ultrasound-guided MST for catheterization while the control group applied traditional puncture technique for catheterization. Then efficacy of catheterization, success rate of catheterization and incidence rates of complications were compared between two groups. Results: Various indicators of catheterization effects of the observation group were better than those of the control group, and the differences were statistically significant (Psatisfaction and comfort level of patients. PMID:27882017

  19. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  20. Professional Papervision3D

    CERN Document Server

    Lively, Michael


    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  1. AE3D

    Energy Technology Data Exchange (ETDEWEB)


    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  2. DSA辅助超声引导下PICC导管置入的临床研究%Clinical study of DSA PICC catheter placement assisted ultrasound guidance

    Institute of Scientific and Technical Information of China (English)

    孔娟; 贾春怡; 陈艳霞


    目的:探讨数字减影血管造影机(DSA)辅助超声引导在PICC置管患者中的临床应用价值。方法在DSA室采用超声引导结合改良塞丁格技术进行穿刺成功后,在DSA的Roadmap功能下沿血管鞘注入1:1浓度的非离子型碘对比剂形成血管走行途径,在DSA监视下置入PICC导管至上腔静脉中下1/3处。结果21例患者中除一例乳癌健侧手臂无名静脉闭塞的患者改股静脉置管外,其余均顺利置管。结论将DSA及超声有效的结合起来应用于PICC导管置入技术中,既提高了穿刺成功率,又可对导管异位进行及时有效的处理,从而使PICC导管置入过程快速、安全,同时减少了相应并发症的发生,值得临床推广应用。%Objective To investigate the clinical application value of digital subtraction angiography (DSA) in patients with PICC catheter placement assisted ultrasound guidance.MethodsIn DSA room with ultrasound guidance combined with modified seldinger technique of successful puncture, 1:1 concentration of non-ionic iodine contrast agent was injected under DSA roadmap function along the vascular sheath to form the vascular route. PICC catheter was placed in superior vena cava inferior 1/3 under DSA monitoring.Results In 21 patients, except for one case of breast cancer, the patients with no other side of the arm were occluded by the femoral vein.Conclusion The combination of DSA and ultrasound is effective in the treatment of PICC catheter placement. It can improve the success rate of puncture with timely and effective treatment, so that the process of PICC catheter placement is fast and safe, and it can reduce the occurrence of complications.

  3. Real -time 3D ultrasound prenatal diagnosisof the clinical significance of fetal typical facial cleft deformity%实时三维超声产前诊断胎儿典型面裂畸形的临床意义

    Institute of Scientific and Technical Information of China (English)

    龚海英; 李琴; 艾明义


    Objective; To determine the value of Real - time 3D ultrasound prenatal diagnosis of the clinical significance of fetal for typical facial cleft deformity Improving the diagnosticaccuracy of fetal cleft lipand/or palate cleft. Methods; Application of real - time three dimensional echocardiography prenatal fetal normal fetal cleft lip and palate cleft lip and palate parts of two - dimension control. Result; 10 cases of normal fetal lip display rates 100% , On alveolar show 100% , and palate, 70% (7/10) . 10 cases of fetal cleft lip and palate cleft lip includes 7 simple, merge hard on 1 case of cleft lip and palate and 1 cleft lip patients with cleft of soft palate. Real - time 3D diagnostic all 7 example simple cleft palates, diagnostic rate 100% . Diagnosis of unilateral cleft lip with cleft palate in 1 case. There are 1 case of unilateral cleft lip with cleft palate only diagnosis and missed diagnosis of cleft lip and cleft palate, diagnosed in 70% ( Seven - tenths). 1 cases of cleft lip with cleft of soft palate only soft diagnosis and missed diagnosis of cleft lip and cleft palate. Conclusions: Real - time three dimensional echocardiography prenatal diagnosis of fetal cleft lip, especially hard and alveolar process cleft lip with cleft palate diagnostic has a large value, but on the fetus are not merged alveolar cleft of the soft palate and some of the hard palate to make diagnosis and still has a great deal of difficulty.%目的 探讨实时三维超声产前诊断胎儿面裂畸形的临床意义,寻求提高胎儿唇腭裂诊断准确性的有效方法.方法 应用实时三维超声产前对面裂畸形;唇腭裂胎儿和正常胎儿唇腭部位的二维进行对照.结果 10例正常胎儿面部显示率100%,上牙槽突显示率100%,硬腭显示率70% (7/ 10).10例唇腭裂胎儿包括7例单纯唇裂,2例上唇裂合并硬腭裂和1例唇裂合并软腭裂.实时三维诊断了所有7例单纯唇裂,诊断率100%;诊

  4. Radiochromic 3D Detectors (United States)

    Oldham, Mark


    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  5. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A


    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  6. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle


    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  7. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude


    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  8. 攻击机动目标的导弹三维变结构导引律%A 3D Variable Structure Guidance Law for Missiles in Attacking Maneuvering Targets

    Institute of Scientific and Technical Information of China (English)

    周灿辉; 周德云; 张堃


    针对导弹采用变结构导引律攻击机动目标时,容易引起视线角速率抖动的问题,在变结构控制理论的基础上,利用RBF神经网络具有自主学习的能力,提出了一种基于RBF神经网络的变结构趋近律参数项在线自适应调节的三维导引律,克服了导引过程中变结构趋近律参数项不易确定的缺点,从而降低变结构控制的抖振,提高了导弹的命中精度.仿真结果表明,该导引律有很强的自适应能力和鲁棒性,满足导引要求.%When the missile attacks the maneuvering targets using the variable structure guidance law, chattering of line-of-sight angular rate may happen. A 3-dimensional variable structure guidance law was presented based on RBF neural network adaptive parameter adjustment, which combining the self-learning ability of RBF neural network with the variable structure control theory. It solves the problem of the variable structure that the parameter of it is not easy to be determined. So it can reduce the chattering and improve the missile's attack accuracy. The simulation results show that the new guidance law has strong adaptability and robustness, which can meet the need of guidance.

  9. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis


    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  10. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.


    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  11. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  12. 3D photoacoustic imaging (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.


    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  13. A system for finding a 3D target without a 3D image (United States)

    West, Jay B.; Maurer, Calvin R., Jr.


    We present here a framework for a system that tracks one or more 3D anatomical targets without the need for a preoperative 3D image. Multiple 2D projection images are taken using a tracked, calibrated fluoroscope. The user manually locates each target on each of the fluoroscopic views. A least-squares minimization algorithm triangulates the best-fit position of each target in the 3D space of the tracking system: using the known projection matrices from 3D space into image space, we use matrix minimization to find the 3D position that projects closest to the located target positions in the 2D images. A tracked endoscope, whose projection geometry has been pre-calibrated, is then introduced to the operating field. Because the position of the targets in the tracking space is known, a rendering of the targets may be projected onto the endoscope view, thus allowing the endoscope to be easily brought into the target vicinity even when the endoscope field of view is blocked, e.g. by blood or tissue. An example application for such a device is trauma surgery, e.g., removal of a foreign object. Time, scheduling considerations and concern about excessive radiation exposure may prohibit the acquisition of a 3D image, such as a CT scan, which is required for traditional image guidance systems; it is however advantageous to have 3D information about the target locations available, which is not possible using fluoroscopic guidance alone.

  14. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya


    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  15. 3D and beyond (United States)

    Fung, Y. C.


    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  16. Multimodal evaluation of 2-D and 3-D ultrasound, computed tomography and magnetic resonance imaging in measurements of the thyroid volume using universally applicable cross-sectional imaging software: a phantom study. (United States)

    Freesmeyer, Martin; Wiegand, Steffen; Schierz, Jan-Henning; Winkens, Thomas; Licht, Katharina


    A precise estimate of thyroid volume is necessary for making adequate therapeutic decisions and planning, as well as for monitoring therapy response. The goal of this study was to compare the precision of different volumetry methods. Thyroid-shaped phantoms were subjected to volumetry via 2-D and 3-D ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI). The 3-D US scans were performed using sensor navigation and mechanical sweeping methods. Volumetry calculation ensued with the conventional ellipsoid model and the manual tracing method. The study confirmed the superiority of manual tracing with CT and MRI volumetry of the thyroid, but extended this knowledge also to the superiority of the 3-D US method, regardless of whether sensor navigation or mechanical sweeping is used. A novel aspect was successful use of the same universally applicable cross-imaging software for all modalities.

  17. Percutaneous catheter drainage of thoracic fluid: the usefulness and safety of bedside trocar placement under ultrasound guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Heon [Seoul Medical Center, Seoul (Korea, Republic of)


    The author wanted to evaluate the usefulness and safety of the trocar technique for US-guided bedside catheter placement into thoracic fluid collections, and this technique has generally been reserved for the larger or superficial fluid collections. 42 drainage procedures were performed in 38 patients at the bedside. The patients were positioned supine or semi-upright. A drainage catheter system with a stylet and cannula assembly was used and all of the catheters were inserted using the trocar technique. The procedures consisted of drainage of empyema (n=14), malignant effusion (n=13), lung abscess (n=3), massive transudate (n=8), hemothorax (n=2) and chest wall hematoma (n=2). The clinical results were classified as successful (complete and partially successful), failure or undetermined. The medical records and images were retrospectively reviewed to evaluate the success rate, the complications and the procedure time. Technical success was achieved in all of the 42 procedures. With using the trocar technique, all the catheters were placed into even the small collections without significant complications. Drainage was successful in 36 (85.7%) of the 42 procedures. The average volume of thoracic fluid that was aspirated manually at the time of catheter placement was 420 mL (range: 35 to 1470 mL). The procedure time was less than 10 minutes from US-localization to complete catheter placement in all of the procedures. The trocar technique under US guidance can be an efficient and safe alternative to the Seldinger or guide-wire exchange technique for bedside catheter placement in the critically ill or hemodynamically unstable patients.


    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge


    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  19. 基于凸优化理论的三维微分对策制导规律求解%Solution Method of 3-D Differential Game Guidance Law Based on Convex Optimization Theory

    Institute of Scientific and Technical Information of China (English)

    向宇; 陈铁军; 陈治湘


    Aiming at the problem of solving differential game guidance law(DGL),a convex optimization theory is introduced and the solution method of DGL is designed by converting it into the process of solving Hamilton system.Through analyzing the gradient features of the cost function,the necessary and sufficient conditions that the game system exists anchor points is derived,and the solving method of the game system is deduced too.The result of is expected to solve the problem that the usual solving methods of DGL are not able to reflect the true process of air combat by simplifying models.%针对三维微分对策制导律(DGL)求解问题,引入凸优化理论,将DGL求解归结到Hamilton系统的求解,设计了DGL求解算法,通过对代价函数梯度特征的凸分析,推导出对策系统鞍点存在的充要条件和求解方法,解决了以往通过对微分对策模型简化求解导致的模型不能客观反映作战过程的问题.

  20. Haemostatic agents of the gelatin matrix for a large liver wound by percutaneous injection without pressure under the guidance of contrast-enhanced ultrasound

    Institute of Scientific and Technical Information of China (English)

    YU Teng-fei; L(U) Fa-qin; LI Zhi-yan; LIU Ling; LIU Qiang; LIU Ai-jun; HUANG Ya-qin; TANG Jie


    Background The non-operation treatment of intra-abdominal trauma guided contrast enhanced ultrasound (CEUS) is one of the hottest research topic. Gelatin/thrombin/calcium (GTC) was developed as a novel haemostatic agent for non-operable intra-abdominal trauma. We hypothesized that GTC can achieve haemostasis (without the use of pressure)within a short time in a large wound model by percutaneous injection under CEUS guidance.Methods Forty Wister rats received large liver injuries by haemostatic clamp and were randomly divided into four groups, according to the haemostatic agent used. These included normal saline (NS) group A, lyophilising thrombin powder (LTP) group B, GTC group C, and absorbable α-cyanoacrylate (ACNA) group D. Each injury site was treated with one of the above materials and total bleeding time was recorded. All liver wounds were evaluated using CEUS at three periods: pre-injury, injury and post-treatment. The liver wounds were also evaluated by histology 3, 6, and 9 days after injury and the extents of abdominal adhesions were recorded.Results The sensitivity of CEUS (100%) in detecting blunt traumatic liver lesions was significantly higher than conventional ultrasound (42.5%). Bleeding times at the injury site in the GTC group C ((129.3±14.0) seconds) and ACNA group D ((5.2±1.0) seconds) were significantly shorter than those in the NS group A ((369.5±48.8) seconds, P <0.01) and LTP group B ((324.7±52.22) seconds, P <0.01). The LTP group B showed no significant difference compared with the NS group A. Gross examination of liver tissue revealed that there were fewer intra-abdominal adhesions in the GTC group C (10%) than in the ACNA group D (100%). Histopathologic examination showed that GTC was completely absorbed after nine days.Conclusions GTC, delivered by percutaneous injection under CEUS, may achieve haemostasis (without the use of pressure) within a short time in a large wound model. GTC is absorbable and may prevent intra

  1. Intravascular ultrasound guidance of percutaneous coronary intervention in ostial chronic total occlusions: a description of the technique and procedural results. (United States)

    Ryan, Nicola; Gonzalo, Nieves; Dingli, Philip; Cruz, Oscar Vedia; Jiménez-Quevedo, Pilar; Nombela-Franco, Luis; Nuñez-Gil, Ivan; Trigo, María Del; Salinas, Pablo; Macaya, Carlos; Fernandez-Ortiz, Antonio; Escaned, Javier


    Inability to cross the lesion with a guidewire is the most common reason for failure in percutaneous revascularization (PCI) of chronic total occlusions (CTOs). An ostial or stumpless CTO is an acknowledged challenge for CTO recanalization due to difficulty in successful wiring. IVUS imaging provides the opportunity to visualize the occluded vessel and to aid guidewire advancement. We review the value of this technique in a single-centre experience of CTO PCI. This series involves 22 patients who underwent CTO-PCI using IVUS guidance for stumpless CTO wiring at our institution. CTO operators with extensive IVUS experience in non-CTO cases carried out all procedures. Procedural and outcome data was prospectively entered into the institutional database and a retrospective analysis of clinical, angiographic and technical data performed. 17 (77%) of the 22 procedures were successful. The mean age was 59.8 ± 11.5 years, and 90.9% were male. The most commonly attempted lesions were located in the left anterior descending 36.4% (Soon et al. in J Intervent Cardiol 20(5):359-366, 2007) and Circumflex artery (LCx) 31.8% (Mollet et al. in Am J Cardiol 95(2):240-243, 2005). Mean JCTO score was 3.09 ± 0.75 (3.06 ± 0.68, 3.17 ± 0.98 in the successful and failed groups respectively p = 0.35). The mean contrast volume was 378.7 ml ± 114.7 (389.9 ml ± 130.5, 349.2 ml ± 52.2 p = 0.3 in the successful and failed groups respectively). There was no death, coronary artery bypass grafting or myocardial infarction requiring intervention in this series. When the success rates were analyzed taking into account the date of adoption of this technique, the learning curve had no significant impact on CTO-PCI success. This series describes a good success rate in IVUS guided stumpless wiring of CTOs in consecutive patients with this complex anatomical scenario.

  2. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk


    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  3. Intraoral 3D scanner (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther


    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  4. Martian terrain - 3D (United States)


    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. 3D Printing an Octohedron


    Aboufadel, Edward F.


    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  6. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal


    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  7. Duplex ultrasound (United States)

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  8. Application of PICC with modified seldinger technique in the guidance of ultrasound%超声引导辅助改良塞丁格技术在PICC置管中的应用

    Institute of Scientific and Technical Information of China (English)

    黄蔚华; 阎冬丽; 黄中英; 覃惠英; 辛明珠


    目的 探讨在超声引导下辅助改良塞丁格技术在PICC置管中应用的效果.方法 选取2009年10月至2010年2月经我院PICC专科护士会诊后认为无法在直视下穿刺置入PICC管的60例患者,经Site-Rite 5超声引导下辅助改良塞丁格技术置入三向瓣膜PICC管,分析其置管效果.结果 60例患者均成功置入PICC管,成功率100%,无并发症发生.结论 经超声引导下配合改良塞丁格置入PICC管是一种实用、安全、成功率高的置管方法,对局部血管条件差的患者更突显其优势.%Objective To discuss the application of PICC with modified seldinger technique in the guidance of Site-Rite 5 ultrasound while PICC by direct puncture was not accessible.Methods From Oct.2009to Feb 2010,60 patients who were considered not accessible to PICC by direct puncture were implanted with PICC tubes with modified seldinger technique in the guidance of ultrasound.Results PICG tubes were successfully implanted in all 60 patients.No complication was observed.Conclusions PICC with modified Seldinger technique in the guidance of Site-Rite 5 ultrasound has the advantages of practicality,safety and high accuracy,especially for patients with poor local vascular condition.

  9. 彩超水囊引导下A型肉毒毒素治疗慢性偏头痛%Botulinum Toxin Type A Injection Under Color Ultrasound with Water Capsule Guidance for Treatment of Chronic Migraine

    Institute of Scientific and Technical Information of China (English)

    宋金辉; 丁旭东; 肖红琼; 黄瓅; 张贵斌


    目的:观察彩超水囊引导下A型肉毒毒素治疗慢性偏头痛的临床疗效和不良反应.方法:选取64例慢性偏头痛患者应用彩超水囊引导下A型肉毒毒素进行颅周肌肉注射治疗,记录患者治疗前后偏头痛发作频率、持续时间、严重程度、止痛药使用情况及恢复状况,并行VAS、MIDAS及SF-36评分.结果:所有患者经彩超水囊引导下A型肉毒毒素治疗后,慢性偏头痛发作频率、持续时间、严重程度均较治疗前明显下降(P<0.01),止痛药物的使用较治疗前减少(P<0.01),疗效可维持至少3月,且不良反应轻微.结论:彩超水囊引导下A型肉毒毒素颅周肌肉注射治疗慢性偏头痛发作临床疗效显著,不良反应轻微,值得临床推广.%Objective To observe the clinical efficacy and safety of local injection of botulinum toxin A( BTX-A) under color ultrasound with water capsule guidance in patients with chronic migraine(CM). Methods Sixty-four patients with CM were treated with BTX-A under color ultrasound and water capsule guidance. The frequency, duration and severity of CM, medication usage of painkiller as well as side effects in patients with CM were recorded by the use of questionnaire,and were compared before and 6 months after treatment. Results Compared with those before treatments,the frequency,duration and severity of CM in patients at 6 month after treatment of BTX-A under color ultrasound and water capsule guidance were reduced significantly(P <0.01) ,and so were the frequency of medication usage of painkiller and the side effects. The therapeutic effects could last for at least 3 months. Conclusion BTX-A under color ultrasound and water capsule guidance has therapeutic effects on CM with few side effects.

  10. In-office rapid volumetric ablation of uterine fibroids under ultrasound imaging guidance: Preclinical and early clinical experience with the Mirabilis transabdominal HIFU treatment system (United States)

    Leal, José G. Garza; León, Ivan Hernandez; Sáenz, Lorena Castillo; Aguirre, Juan M. Aguilar; Lagos, Joel J. Islas; Parsons, Jessica E.; Darlington, Gregory P.; Lau, Michael P. H.


    Mirabilis Medica, Inc. (Bothell, WA, USA) has developed a high-intensity focused ultrasound (HIFU) system for producing rapid transabdominal volumetric ablation of uterine fibroids in an office-based setting. The Mirabilis HIFU Treatment System utilizes integrated ultrasound imaging guidance and short treatment times under 15 minutes. Treatment with the Mirabilis system is generally well tolerated using only oral analgesia without anesthesia or sedation. This paper summarizes certain technical aspects of the Mirabilis HIFU technology, the preclinical development process, and the results of the first in-human clinical study using the Mirabilis system. During preclinical studies, an in vivo transcutaneous porcine lower extremity model was used in a total of 180 adult swine to develop the HIFU treatment regimen parameters. Additionally, 108 excised human uteri with fibroids obtained from scheduled hysterectomies were treated in an ex vivo experimental setup and evaluated. These preclinical activities resulted in a HIFU treatment technique referred to as Mirabilis Shell Ablation, which enables rapid volumetric fibroid ablation by directing the HIFU energy to the outer perimeter of the target volume (the `shell') without insonating its core. This method results in efficient fibroid treatment through a synergistic combination of direct tissue ablation, cooperative heating effects, and indirect ischemic necrosis in the interior of the volume. After refining this technique and performing safety testing in the in vivo porcine model, a clinical pilot study was conducted to assess the initial safety and performance of the Mirabilis HIFU Treatment System for transabdominal treatment of uterine fibroids in eligible women who were scheduled to undergo hysterectomy following treatment with the device. A total of 37 women meeting certain eligibility criteria were treated at two clinical sites in Mexico. Twenty-nine (29) of these 37 women received only prophylactic sublingual

  11. 超声引导自动组织学活检术临床应用%Clinical Applications of Automatic Biopsy Technique Under the Guidance of Ultrasound

    Institute of Scientific and Technical Information of China (English)

    张武; 冯麟增; 李志平; 吕国荣; 贾建文; 冉维强; 苗立英; 史旭东; 黄曼维; 赵蕊; 丁丽华


    本文报道110例颈、胸、腹部多种病变和肿瘤超声引导自动活检术(活检枪抢和18~20 G针)的成功经验,另将一组慢性肾病超声引导手动TRu Cut粗针(14 G)活检30例与30例自动活检组(Biopty 18 G)作对照研究.结果表明:1.自动活检装置可广泛应用于胸腹部多种内脏和前列腺、乳腺等小器官的病变和肿瘤的组织学穿刺活检,对于那些活检难度较大的脏器或病变尤为适用.2.本组100例取材成功率高达100%,而且活检标本量和质均提高,标本满意足以作出组织学诊断者达97.2%.3.慢性肾病自动活检成功率、标本长度均优于手动活检,且并发症明显减少(PO.9).但笔者认为;超声引导自动活检术简便、安全、准确、迅速,值得推广使用.%One hundred and ten biopsies of various lesions or tumors in the liver,gallbladder,kidney.prostate,lung,retroperitoneal space,intestine,etc.were performed with automatic biopsy gun under the guidance of ultrasound and 18G Or 20G needles Out of them.thirty cases of automatic renal biopsies (18G.Biopty)were prospectively compared with thirty cases of manual ones(14G,Tru-Cut)to assess the clinical effectiveness of this new method.Our results showed:1.Biopsy samples sufficient for histologic analysis were obtained in all of the 110 cases(100%),histo pathologic speciments With high quality ac-counted for 97.2%.2.Sampling success rate and the length of specimens obtaincd with automatic renalbiopsy technique(18G Biopty) had advantages over l4G Fru-Cut manual renal biopsy technique(P0.9).The authors concluded that US guided automatic biopsy is a simple,safe and valuable diagnostic tool,and could be recommended for further wide use clinically.

  12. 3D fascicle orientations in triceps surae. (United States)

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M


    The aim of this study was to determine the three-dimensional (3D) muscle fascicle architecture in human triceps surae muscles at different contraction levels and muscle lengths. Six male subjects were tested for three contraction levels (0, 30, and 60% of maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° of plantar flexion), and the muscles were imaged with B-mode ultrasound coupled to 3D position sensors. 3D fascicle orientations were represented in terms of pennation angle relative to the major axis of the muscle and azimuthal angle (a new architectural parameter introduced in this study representing the radial angle around the major axis). 3D orientations of the fascicles, and the sheets along which they lie, were regionalized in all the three muscles (medial and lateral gastrocnemius and the soleus) and changed significantly with contraction level and ankle angle. Changes in the azimuthal angle were of similar magnitude to the changes in pennation angle. The 3D information was used for an error analysis to determine the errors in predictions of pennation that would occur in purely two-dimensional studies. A comparison was made for assessing pennation in the same plane for different contraction levels, or for adjusting the scanning plane orientation for different contractions: there was no significant difference between the two simulated scanning conditions for the gastrocnemii; however, a significant difference of 4.5° was obtained for the soleus. Correct probe orientation is thus more critical during estimations of pennation for the soleus than the gastrocnemii due to its more complex fascicle arrangement.

  13. Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Wu [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8 (Canada); Yuchi Ming; Ding Mingyue [Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Tessier, David; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8 (Canada)


    Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions

  14. 3D Spectroscopy in Astronomy (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco


    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  15. Spherical 3D isotropic wavelets (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.


    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at

  16. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van


    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  17. 3D Elevation Program—Virtual USA in 3D (United States)

    Lukas, Vicki; Stoker, J.M.


    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  18. Tracking earthquake source evolution in 3-D (United States)

    Kennett, B. L. N.; Gorbatov, A.; Spiliopoulos, S.


    Starting from the hypocentre, the point of initiation of seismic energy, we seek to estimate the subsequent trajectory of the points of emission of high-frequency energy in 3-D, which we term the `evocentres'. We track these evocentres as a function of time by energy stacking for putative points on a 3-D grid around the hypocentre that is expanded as time progresses, selecting the location of maximum energy release as a function of time. The spatial resolution in the neighbourhood of a target point can be simply estimated by spatial mapping using the properties of isochrons from the stations. The mapping of a seismogram segment to space is by inverse slowness, and thus more distant stations have a broader spatial contribution. As in hypocentral estimation, the inclusion of a wide azimuthal distribution of stations significantly enhances 3-D capability. We illustrate this approach to tracking source evolution in 3-D by considering two major earthquakes, the 2007 Mw 8.1 Solomons islands event that ruptured across a plate boundary and the 2013 Mw 8.3 event 610 km beneath the Sea of Okhotsk. In each case we are able to provide estimates of the evolution of high-frequency energy that tally well with alternative schemes, but also to provide information on the 3-D characteristics that is not available from backprojection from distant networks. We are able to demonstrate that the major characteristics of event rupture can be captured using just a few azimuthally distributed stations, which opens the opportunity for the approach to be used in a rapid mode immediately after a major event to provide guidance for, for example tsunami warning for megathrust events.

  19. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech


    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  20. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus


    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  1. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus


    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  2. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason


    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  3. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery


    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  4. X线透视引导下应用三维定位器行软组织内异物取出术的疗效分析%Application 3D-locator to remove residual metallic foreign body in the soft tissue under the guidance of the X-ray

    Institute of Scientific and Technical Information of China (English)

    钱鹤翔; 郇金亮; 邢光富; 史常文; 秦贤举


    目的 探讨软组织内异物的治疗方法.方法 软组织内异物患者742例,均为外院手术失败来我院就诊者.均在C臂X线机透视引导下采用异物定位器定位经皮异物钳取出异物.结果 异物包括铁屑、断针、铁钉、钢丝等.位于颈部、胸腹部、盆部、四肢等软组织内.异物取出率100%.无出血、感染、神经损伤等并发症.平均手术时间5 min.结论 异物三维定位器和特制异物钳在X线透视引导下经皮异物钳取出术微创、安全、有效.%Objective To summarize clinical experience in removal of residual metallic foreign body in the soft tissue.Methods Clinical data of 742 cases with residual metallic foreign body in the soft tissue were analyzed.All the patients were forward from other hospitals with failed removal of the foreign body.Second surgery was performed in our hospital by grasping forceps using 3D-locator under the guidance of the C-shaped arm X-ray machine.Results Foreign body,such as scrap-iron,broken needle,nails,wine and so on located at different regions of soft tissues including neck,chest and abdomen,pelvis,and the four limbs were all successfully taken out.Removal rate of the foreign body was 100%.No complications such as bleeding,infection and nerve damage was occurred.The mean time of the procedures and radiation exposure for the removal surgery was 5 minutes.Conclusion Using 3D-locator and grasping forceps under the guidance of the X-ray,the residual metallic foreign bodies can be removed safely and efficiently.

  5. Computer-assisted surgical planning and intraoperative guidance in fetal surgery: a systematic review. (United States)

    Pratt, Rosalind; Deprest, Jan; Vercauteren, Tom; Ourselin, Sebastien; David, Anna L


    Fetal surgery has become a clinical reality, with interventions for twin-to-twin transfusion syndrome (TTTS) and spina bifida demonstrated to improve outcome. Fetal imaging is evolving, with the use of 3D ultrasound and fetal MRI becoming more common in clinical practise. Medical imaging analysis is also changing, with technology being developed to assist surgeons by creating 3D virtual models that improve understanding of complex anatomy, and prove powerful tools in surgical planning and intraoperative guidance. We introduce the concept of computer-assisted surgical planning, and present the results of a systematic review of image reconstruction for fetal surgical planning that identified six articles using such technology. Indications from other specialities suggest a benefit of surgical planning and guidance to improve outcomes. There is therefore an urgent need to develop fetal-specific technology in order to improve fetal surgical outcome.

  6. Pregnancy monitoring in dogs and cats using 3D and 4D ultrasonography. (United States)

    Hildebrandt, T B; Drews, B; Kurz, J; Hermes, R; Yang, S; Göritz, F


    Three-dimensional (3D)/four-dimensional (4D) volume ultrasound is an established method in human medicine that offers various options for analysing and presenting ultrasound volume data. However, the successful application of the different 3D/4D imaging modalities in pregnant dogs and cats has not yet been reported in the literature. The main reasons for this are: (1) the high costs of 3D/4D ultrasound systems, (2) operation difficulties due to high breathing frequency in non-sedated animals and (3) the missing specific knowledge in veterinary medicine concerning how to perform high-quality volume scans. Automatically acquired ultrasound volume data sets were generated with two different ultrasound systems: the portable Voluson i and the stationary Voluson Expert 730. Different 3D/4D imaging modalities were tested in regard of their practicability in pregnancy monitoring in dogs and cats. Nine different volume imaging modalities were applied using the saved files. For the presentation of the static 3D volume data sets, we used the multiplanar, niche, surface, transparency, glass body, inversion, volume calculation and tomographic ultrasound imaging modes. For the dynamic 4D data, the surface and glass body modes were applied. By changing the human standard settings to the requirements of small animal anatomy, it was found that 3D/4D ultrasound has great potential for the characterization of pregnancy in queens and bitches. The 3D/4D technology offered advanced information about pregnancy status and birth prediction and improved the diagnostic confidence. By using standardized examination protocols, 3D/4D ultrasound will allow a reduction in examination time by generating even more relevant information. These benefits, combined with possible future cost reduction of commercial ultrasound systems, might lead to frequent utilization in routine pregnancy diagnostic and birth management in small animal practice.

  7. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L


    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  8. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)


    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  9. 3D Printing for Bricks


    ECT Team, Purdue


    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  10. 3D vision system assessment (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad


    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  11. PLOT3D user's manual (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.


    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  12. 3D printing in dentistry. (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A


    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  13. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen


    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  14. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Michael P Chae


    Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.

  15. Emerging Applications of Bedside 3D Printing in Plastic Surgery. (United States)

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J


    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  16. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello


    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  17. Unassisted 3D camera calibration (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.


    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  18. Bioprinting of 3D hydrogels. (United States)

    Stanton, M M; Samitier, J; Sánchez, S


    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  19. Tuotekehitysprojekti: 3D-tulostin


    Pihlajamäki, Janne


    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  20. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter


    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  1. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)


    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  2. Exploration of 3D Printing


    Lin, Zeyu


    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  3. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.


    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  4. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi


    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  5. 3D Ultrasonic Wave Simulations for Structural Health Monitoring (United States)

    Campbell, Leckey Cara A/; Miler, Corey A.; Hinders, Mark K.


    Structural health monitoring (SHM) for the detection of damage in aerospace materials is an important area of research at NASA. Ultrasonic guided Lamb waves are a promising SHM damage detection technique since the waves can propagate long distances. For complicated flaw geometries experimental signals can be difficult to interpret. High performance computing can now handle full 3-dimensional (3D) simulations of elastic wave propagation in materials. We have developed and implemented parallel 3D elastodynamic finite integration technique (3D EFIT) code to investigate ultrasound scattering from flaws in materials. EFIT results have been compared to experimental data and the simulations provide unique insight into details of the wave behavior. This type of insight is useful for developing optimized experimental SHM techniques. 3D EFIT can also be expanded to model wave propagation and scattering in anisotropic composite materials.

  6. Treatment of renal calculi with percutaneous nephrolithotomy under the guidance of ultrasound and local infiltration anesthesia%局部浸润麻醉超声引导下经皮肾镜取石术

    Institute of Scientific and Technical Information of China (English)

    杨秀书; 罗光恒; 刘军; 单刚; 宋大龙


    目的 探讨局部浸润麻醉下超声引导经皮肾穿刺取石术( PCNL) 治疗肾结石或输尿管上段结石的方法及效果.方法 该组42例肾结石或输尿管上段结石均采用超声引导, 局部浸润麻醉下行经皮肾穿刺取石术.结果 42例均一期穿刺造瘘成功,39例一期成功PCNL, 3例患者因脓肾改行二期PCNL, 一期手术结石清除率为83.8%.手术时间为15~80 min, 平均55 min, 无严重并发症.结论 局麻下超声引导PCNL治疗多发性肾结石或输尿管上段结石具有操作简单、创伤小、并发症少、恢复快、结石清除率高等优点, 可作为部分简单肾结石或输尿管上段结石的治疗方法.%Objective To evaluate the feasibility and availability of percutaneous nephrolithotomy(PCNL) under the guidance of ultrasound and local infiltration anesthesia on renal calculi or ureteral calculus. Methods We retrospectively investigated 42 patients with renal calculi or ureteral calculus who underwent PCNL. All the 42 cases underwent PCNL with local infiltration anesthesia under the guidance of ultrasound. Results Among 42 cases, 39 cases were stone free after one stage PCNL, 3 cases stone free after two stages PCNL for renal pyonephrosis. The total stone free rate was 83.8%. The operative duration was 55 min (15-80 min). No severe complications were observed. Conclusions PCNL under the guidance of ultrasound and local infiltration anesthesia offers advantages with respect to easy operation, less invasion, less complications, high stone free rate. It is a minimally invasive way in treatment of simple renal and ureteral calculus.

  7. 超声介入技术联合胆管镜在胰周脓肿的应用及探讨%Application of the associating debridement by choledochoscope with the ultrasound guidance technique in peripancreatic abscess treatment

    Institute of Scientific and Technical Information of China (English)

    闫勇; 汪涛; 汤礼军; 张炳印; 戴睿武; 叶明辉; 张生


    目的 探讨超声介入技术在胰周脓肿治疗中的应用.提高急性胰腺炎治愈率.方法 超声介入穿刺置管于脓肿内,采用Cook筋膜扩张器运级扩张窦道至24F,通过胆管镜在直视下清除坏死组织、脓苔、反复冲洗至脓肿治愈.结果 75例胰周脓肿经超声介入穿刺联合胆管镜清创,68例治愈,治愈率90.6%,并发出血2例,肠外瘘3例,死亡2例.结论 超声介入技术联合胆管镜清创治疗胰周脓肿改变了过去胰周脓肿一旦确诊需手术引流的观点,减少患者创伤,降低并发症和死亡率.此方法操作简单,安全可靠,并发症少,治愈率高.应用价值较大.%Objective To explore the application of the ultrasound guidance technique in peripancreatic abscess treatment, improve the recovery rate of acute pancreatitis. Methods The patients had experienced percutaneous puncture and placed drainage tube under the ultrasound guidance first, then expanded the sinus tract gradually to 24F perimeter by Cook's fascia expender, and last removed the necrotic tissue and pyogenic membrane repeatedly by choledochoscope. Results The recovery rate is 90. 6% with 68 in all 75 cases. The complications happened in 6 cases( hemorrage :2 cases, external intestinal fistula:3 cases,and fatal MOF:2case). Conclusion The viewpoint which parapancreatic abscess only can be cured by drainage operation was changed by associating debridement by choledochoscope with the ultrasound guidance technique. is a simple, safe and effective method, decreases the patients' damage, complication and mortality, and it own great value .

  8. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K


    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  9. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle


    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...


    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  11. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    Medical ultrasound has been a widely used imaging modality in healthcare platforms for examination, diagnostic purposes, and for real-time guidance during surgery. However, despite the recent advances, medical ultrasound remains the most operator-dependent imaging modality, as it heavily relies...... on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  12. MPML3D: Scripting Agents for the 3D Internet. (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru


    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  13. 3D reconstruction of tensors and vectors

    Energy Technology Data Exchange (ETDEWEB)

    Defrise, Michel; Gullberg, Grant T.


    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  14. How 3D immersive visualization is changing medical diagnostics (United States)

    Koning, Anton H. J.


    Originally the only way to look inside the human body without opening it up was by means of two dimensional (2D) images obtained using X-ray equipment. The fact that human anatomy is inherently three dimensional leads to ambiguities in interpretation and problems of occlusion. Three dimensional (3D) imaging modalities such as CT, MRI and 3D ultrasound remove these drawbacks and are now part of routine medical care. While most hospitals 'have gone digital', meaning that the images are no longer printed on film, they are still being viewed on 2D screens. However, this way valuable depth information is lost, and some interactions become unnecessarily complex or even unfeasible. Using a virtual reality (VR) system to present volumetric data means that depth information is presented to the viewer and 3D interaction is made possible. At the Erasmus MC we have developed V-Scope, an immersive volume visualization system for visualizing a variety of (bio-)medical volumetric datasets, ranging from 3D ultrasound, via CT and MRI, to confocal microscopy, OPT and 3D electron-microscopy data. In this talk we will address the advantages of such a system for both medical diagnostics as well as for (bio)medical research.

  15. From 3D view to 3D print (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.


    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  16. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta


    Hiltula, Tytti


    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  17. Measuring 3D Velocity Vectors using the Transverse Oscillation Method

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes; Jensen, Jørgen Arendt


    Experimentally obtained estimates of threedimensional (3D) velocity vectors using the 3D Transverse Oscillation (TO) method are presented. The method employs a 2D transducer and synthesizes two double-oscillating fields in receive to obtain the axial, transverse, and elevation velocity components...... simultaneously. Experimental data are acquired using the ultrasound research scanner SARUS. The double-oscillating TO fields are investigated in an experimental scanning tank setup. The results demonstrate that the created fields only oscillate in the axial plus either the transverse or the elevation direction...

  18. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic


    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  19. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos


    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet ( The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  20. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede


    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  1. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos


    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  2. Speaking Volumes About 3-D (United States)


    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  3. Modification of 3D milling machine to 3D printer


    Halamíček, Lukáš


    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  4. Aspects of defects in 3d-3d correspondence (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito


    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  5. Obstetrical Ultrasound (United States)

    ... Physician Resources Professions Site Index A-Z Obstetric Ultrasound Obstetric ultrasound uses sound waves to produce pictures ... limitations of Obstetrical Ultrasound Imaging? What is Obstetrical Ultrasound Imaging? Ultrasound is safe and painless, and produces ...

  6. Prostate Ultrasound (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Prostate Ultrasound of the prostate uses sound waves ... the limitations of Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and ...

  7. Musculoskeletal Ultrasound (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Musculoskeletal Ultrasound imaging uses sound waves to produce ... Ultrasound Imaging of the Musculoskeletal System? What is Ultrasound Imaging of the Musculoskeletal System? Ultrasound is safe ...

  8. Ultrasound - Scrotum (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Scrotum Ultrasound imaging of the scrotum uses sound ... of Ultrasound Imaging of the Scrotum? What is Ultrasound Imaging of the Scrotum? Ultrasound imaging of the ...

  9. Ultrasound -- Vascular (United States)

    ... News Physician Resources Professions Site Index A-Z Ultrasound - Vascular Vascular ultrasound uses sound waves to evaluate ... the limitations of Vascular Ultrasound? What is Vascular Ultrasound? Ultrasound is safe and painless, and produces pictures ...

  10. Hip Ultrasound (United States)

    ... Physician Resources Professions Site Index A-Z Hip Ultrasound Hip ultrasound uses sound waves to produce pictures ... of Ultrasound Imaging of the Hip? What is Ultrasound Imaging of the Hip? Ultrasound images of the ...

  11. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  12. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich


    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  13. 3D Printed Bionic Nanodevices. (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C


    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  14. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar


    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  15. Augmented Reality Image Guidance in Minimally Invasive Prostatectomy (United States)

    Cohen, Daniel; Mayer, Erik; Chen, Dongbin; Anstee, Ann; Vale, Justin; Yang, Guang-Zhong; Darzi, Ara; Edwards, Philip'eddie'

    This paper presents our work aimed at providing augmented reality (AR) guidance of robot-assisted laparoscopic surgery (RALP) using the da Vinci system. There is a good clinical case for guidance due to the significant rate of complications and steep learning curve for this procedure. Patients who were due to undergo robotic prostatectomy for organ-confined prostate cancer underwent preoperative 3T MRI scans of the pelvis. These were segmented and reconstructed to form 3D images of pelvic anatomy. The reconstructed image was successfully overlaid onto screenshots of the recorded surgery post-procedure. Surgeons who perform minimally-invasive prostatectomy took part in a user-needs analysis to determine the potential benefits of an image guidance system after viewing the overlaid images. All surgeons stated that the development would be useful at key stages of the surgery and could help to improve the learning curve of the procedure and improve functional and oncological outcomes. Establishing the clinical need in this way is a vital early step in development of an AR guidance system. We have also identified relevant anatomy from preoperative MRI. Further work will be aimed at automated registration to account for tissue deformation during the procedure, using a combination of transrectal ultrasound and stereoendoscopic video.

  16. Prenatal Evaluation of the Position of the Conus Medullaris in Nomal Fetuses and Fetuses with Spina Bifida Occulta Using 3D Ultrasound%正常与隐性脊柱裂胎儿脊髓圆锥位置的三维超声评估

    Institute of Scientific and Technical Information of China (English)

    雷婷; 谢红宁; 汪南; 杜柳; 朱云晓; 彭软


    目的 探讨三维超声定位胎儿脊髓圆锥辅助诊断隐性脊柱裂的价值.方法 三维超声分别检测102例孕中晚期正常胎儿(正常组)及11例隐性脊柱裂胎儿(异常组)脊髓圆锥所对应椎体水平;检验三维超声法定位脊髓圆锥的组间、组内一致性;建立正常组脊髓圆锥位置与孕周的回归模型;比较两组脊髓圆锥位置的差异.结果 三维超声脊髓圆锥定位的操作者一致性检验加权Kappa值分别为1.0和0.788;正常组脊髓圆锥位置均位于L3或L3水平以上;异常组1例脊髓圆锥位置位于L3水平,10例低于L3水平.结论 三维超声可准确标记胎儿脊髓圆锥位置;隐性脊柱裂胎儿脊髓圆锥水平明显低于正常;脊髓圆锥定位是发现和诊断胎儿隐性脊柱裂的重要声像标志.%Objective To investigate the application value of positioning fetal conus medullaris using three dimensional ultrasound in diagnosis of spina bifida occulta.Methods One hundred and two normal fetuses in second and third trimester (normal group) and 11 cases of spina bifida occulta (abnormal group) were included.Intra and interobserver agreement of two different operators for 3D ultrasound were assessed.Linear regression analysis was used to determine the correlation between the gestational weeks and the level of the conus medullaris.The position of conus medullaris in two groups was compared.Results The Weighted Kappa value for intra-and inter observer agreement were 1.0 and 0.788.In normal group,the conus medullaris all positioned at L3 or above L3,whereas in abnormal group the conus medullaris positioned at L3 in one case and below L3 in 10 cases.Conclusions 3D ultrasound may be accurately used to evaluate fetal conus medullaris position; The conus medullaris position of fetuses with spina bifida occulta is lower than that of normal fetus.Position of the conus medullaris is an important imaging marker for detecting and diagnosing fetal spina bifida

  17. Making Inexpensive 3-D Models (United States)

    Manos, Harry


    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  18. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu


    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  19. 3D Printing: Exploring Capabilities (United States)

    Samuels, Kyle; Flowers, Jim


    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  20. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)


    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  1. 3D curvature of muscle fascicles in triceps surae. (United States)

    Rana, Manku; Hamarneh, Ghassan; Wakeling, James M


    Muscle fascicles curve along their length, with the curvatures occurring around regions of high intramuscular pressure, and are necessary for mechanical stability. Fascicles are typically considered to lie in fascicle planes that are the planes visualized during dissection or two-dimensional (2D) ultrasound scans. However, it has previously been predicted that fascicles must curve in three-dimensional (3D) and thus the fascicle planes may actually exist as 3D sheets. 3D fascicle curvatures have not been explored in human musculature. Furthermore, if the fascicles do not lie in 2D planes, then this has implications for architectural measures that are derived from 2D ultrasound scans. The purpose of this study was to quantify the 3D curvatures of the muscle fascicles and fascicle sheets within the triceps surae muscles and to test whether these curvatures varied among different contraction levels, muscle length, and regions within the muscle. Six male subjects were tested for three torque levels (0, 30, and 60% maximal voluntary contraction) and four ankle angles (-15, 0, 15, and 30° plantar flexion), and fascicles were imaged using 3D ultrasound techniques. The fascicle curvatures significantly increased at higher ankle torques and shorter muscle lengths. The fascicle sheet curvatures were of similar magnitude to the fascicle curvatures but did not vary between contractions. Fascicle curvatures were regionalized within each muscle with the curvature facing the deeper aponeuroses, and this indicates a greater intramuscular pressure in the deeper layers of muscles. Muscle architectural measures may be in error when using 2D images for complex geometries such as the soleus.

  2. Ultrasound guidance for brachial plexus block decreases the incidence of complete hemi-diaphragmatic paresis or vascular punctures and improves success rate of brachial plexus nerve block compared with peripheral nerve stimulator in adults

    Institute of Scientific and Technical Information of China (English)

    YUAN Jia-min; YANG Xiao-hu; FU Shu-kun; YUAN Chao-qun; CHEN Kai; LI Jia-yi; LI Quan


    Background The use of traditional techniques (such as landmark techniques,paresthesia and peripheral nerve stimulator) for upper-limb anesthesia has often been restricted to the expert or enthusiast,which was blind.Recently,ultrasound (US) has been applied to differ blood vessel,pleura and nerve,thus may reduce the risk of complications while have a high rate of success.The aim of this study was to determine if the use of ultrasound guidance (vs.peripheral nerve stimulator,(PNS)) decreases risk of vascular puncture,risk of hemi-diaphragmatic paresis and risk of Horner syndrome and improves the success rate of nerve block.Methods A search strategy was developed to identify randomized control trials (RCTs) reporting on complications of US and PNS guidance for upper-extremity peripheral nerve blocks (brachial plexus) in adults available through PubMed databases,the Cochrane Central Register of Controlled Trials,Embase databases,SinoMed databases and Wanfang data (date up to 2011-12-20).Two independent reviewers appraised eligible studies and extracted data.Risk ratios (OR)were calculated for each outcome and presented with 95% confidence intervals (CI) with the software of ReviewManager 5.1.0 System (Cochrane Library).Results Sixteen trials involving 1321 adults met our criteria were included for analysis.Blocks performed using US guidance were more likely to be successful (risk ratio (RR) for block success 0.36,95% CI 0.23-0.56,P <0.00001),decreased incidence of vascular puncture during block performance (RR 0.13,95% CI 0.06-0.27,P <0.00001),decreased the risk of complete hemi-diaphragmatic paresis (RR 0.09,95% CI 0.03-0.52,,P=0.0001).Conclusions US decreases risks of complete hemi-diaphragmatic paresis or vascular puncture and improves success rate of brachial plexus nerve block compared with techniques that utilize PNS for nerve localization.Larger studies are needed to determine whether or not the use of US can decrease risk of neurologic complications.

  3. 3-D Ultrasound Vascularity Assessment for Breast Cancer Diagnosis (United States)


    echocardiography ) that are required for more successful measurement of scan distances at normal scan rates. D. Digital ductography development Software...information. IEEE Trans Med Imaging 1997; 16(2):187-98 25. Kim B, Boes JL, Frey KA, Meyer CR. Mutual information for automated unwarping of rat brain

  4. Optimizing ultrasound detection for sensitive 3D photoacoustic breast tomography

    NARCIS (Netherlands)

    Xia, Wenfeng


    The standard modality for breast cancer detection is X-ray imaging. Diagnosis is performed after the triple assessment of X-ray mammography assisted by ultrasonog- raphy and biopsy. Magnetic resonance imaging (MRI) is sometimes used in specific problem solving such as contradictory results are obtai

  5. Priprava 3D modelov za 3D tisk



    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  6. Post processing of 3D models for 3D printing



    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  7. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)



    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  8. 3D Printed Robotic Hand (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.


    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  9. 3D Printable Graphene Composite. (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong


    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  10. Medical 3D thermography system




    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  11. 2D-3D image registration in diagnostic and interventional X-Ray imaging

    NARCIS (Netherlands)

    Bom, I.M.J. van der


    Clinical procedures that are conventionally guided by 2D x-ray imaging, may benefit from the additional spatial information provided by 3D image data. For instance, guidance of minimally invasive procedures with CT or MRI data provides 3D spatial information and visualization of structures that are

  12. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail:; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)


    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  13. Laser printing of cells into 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Ovsianikov, A; Gruene, M; Koch, L; Maiorana, F; Chichkov, B [Nanotechnology Department, Laser Zentrum Hannover eV, Hollerithallee 8, 30419 Hannover (Germany); Pflaum, M; Wilhelmi, M; Haverich, A, E-mail: a.ovsianikov@lzh.d [Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover (Germany)


    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  14. Clinical Study on Drainage of Tunnel with High Anal Abscess by Ultrasound Guidance%超声引导下高位肛门脓肿隧道拖线引流术的临床研究

    Institute of Scientific and Technical Information of China (English)

    吴彬; 丁敏; 徐伟; 应光耀


    目的: 通过多中心、 随机、 对照方法, 研究超声引导下高位肛门脓肿隧道拖线引流术的临床疗效. 方法: 120例高位肛门脓肿患者, 随机分为治疗组和对照组, 治疗组采用超声引导下高位肛门脓肿隧道拖线引流术,对照组采用常规隧道拖线引流术. 对两组的治愈率、 术后疼痛评分、 尿潴留、 出血发生率、 肛门形态、 肛门功能、复发率、 术后不良反应、 满意度、 住院时间、 住院费用等指标进行比较. 结果: 两组在治愈率、 术后出血、 肛门形态、 肛门功能、 术后不良反应、 病人满意度方面差异无显著性; 治疗组复发率显著低于对照组; 治疗组在降低术后疼痛、 尿潴留方面优于对照组; 治疗组在住院时间及费用的经济学指标方面, 明显优于对照组. 结论: 超声引导下高位肛门脓肿隧道拖线引流术可以减少术后疼痛、 尿潴留的发生率, 降低术后复发率, 缩短病程, 降低住院费用. 是临床治疗高位肛门脓肿的有效、 安全、 微创的新方法.%Objective:to study the curative effect of drainage of tunnel with high anal abscess by ultrasound guidance through mul-ticenter, random and contrast methods. Methods: 120 cases with high anal abscess were randomly divided into treatment group and control group, the former treated with the drainage of tunnel with high anal abscess by ultrasound guidance while the latter with the common drainage of tunnel. Compare their recovery rate, postoperative pain score, urinary retention, bleeding incidence, anal form, anal function, recurrence rate, postoperative adverse reaction, degree of satisfaction, length of stay, cost of hospitalization, etc. Re-sults:There was no significant difference between the indexes such as recovery rate, postoperative bleeding, anal form, anal function, postoperative adverse reaction and degree of satisfaction;the recurrence rate of treatment group was

  15. Clinical observation of PICC placement under ultrasound guidance with modified Seldinger technique%超声引导下使用改良 Seldinger 技术置入PICC 导管的临床观察

    Institute of Scientific and Technical Information of China (English)

    张云; 吴志娟; 徐文藻


    Objective To evaluate the operation methods of PICC placement under ultra-sound guidance with modified Seldinger technique.Methods 140 PICC patients with cancer chemotherapy from were randomly divided into seldinger group and control group.In the seldinger group,83 patients were treated with modified seldinger technique to place PICC under ultrasound guidance.In the control group,57 patients were treated with conventional PICC.Success rate of PICC,puncture site bleeding,retention time,extubation reason,and incidence rate of complica-tion were detected.Results The retention time was higher in the seldinger group than that in the control group and the complication rate was lower in the seldinger group than that in the control group.The results revealed that the difference was statistically significant(P 0.05).Conclusion PICC placement under ultrasound guidance with modi-fied Seldinger technique is a secure and reliable method.It could overcome the difficulties of the poor condition of the blood vessels,improve the patient comfort,reduce the incidence of complica-tions,increase PICC retention time and improve the quality of life of cancer patients.%目的:探讨经超声引导下使用改良 Seldinger 技术置入 PICC 导管的规范操作方法,以减少 PICC 置管并发症发生。方法将行 PICC 置管的140例肿瘤化疗患者随机分成2组,采用超声引导下使用改良 Seldinger 技术置入 PICC 导管83例患者设为实验组,常规行 PICC 置管的57例患者设为对照组,比较2组患者1次 PICC 置管成功率、穿刺点出血情况、留置时间、拔管原因、并发症发生率。结果实验组留置时间长于对照组、并发症发生率低于对照组,2组比较差异具有统计学意义(P <0.05)。在拔管原因方面,实验组虽低于对照组,但2组差异无统计学意义(P >0.05)。结论超声引导下使用改良Seldinger 技术置入 PICC 导管是肿瘤患者化疗较安全可靠的给

  16. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)



    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  17. Interactive 3D Mars Visualization (United States)

    Powell, Mark W.


    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  18. Ultrasound - Breast (United States)

    ... Physician Resources Professions Site Index A-Z Ultrasound - Breast Ultrasound imaging of the breast uses sound waves ... the Breast? What is Ultrasound Imaging of the Breast? Ultrasound is safe and painless, and produces pictures ...

  19. Prostate Ultrasound

    Medline Plus

    Full Text Available ... Prostate Ultrasound Imaging? What is Ultrasound Imaging of the Prostate? Ultrasound is safe and painless, and produces ... of page What are some common uses of the procedure? A transrectal ultrasound of the prostate gland ...

  20. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)



    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  1. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison


    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  2. Different optical spectral characteristics in a necrotic transmissible venereal tumor and a cystic lesion in the same canine prostate observed by triple-band trans-rectal optical tomography under trans-rectal ultrasound guidance (United States)

    Jiang, Zhen; Holyoak, G. Reed; Ritchey, Jerry W.; Bartels, Kenneth E.; Rock, Kendra; Ownby, Charlotte L.; Slobodov, Gennady; Bunting, Charles F.; Piao, Daqing


    Different optical spectral characteristics were observed in a necrotic transmissible venereal tumor (TVT) and a cystic lesion in the same canine prostate by triple-wavelength trans-rectal optical tomography under trans-rectal ultrasound (TRUS) guidance. The NIR imager acquiring at 705nm, 785nm and 808nm was used to quantify both the total hemoglobin concentration (HbT) and oxygen saturation (StO2) in the prostate. The TVT tumor in the canine prostate as a model of prostate cancer was induced in a 7-year old, 27 kg dog. A 2 mL suspension of 2.5x106 cells/mL of homogenized TVT cells recovered from an in vivo subcutaneously propagated TVT tumor in an NOD/SCID mouse were injected in the cranial aspect of the right lobe of the canine prostate. The left lobe of the prostate had a cystic lesion present before TVT inoculation. After the TVT homogenate injection, the prostate was monitored weekly over a 9-week period, using trans-rectal NIR and TRUS in grey-scale and Doppler. A TVT mass within the right lobe developed a necrotic center during the later stages of this study, as the mass presented with substantially increased [HbT] in the periphery, with an area of reduced StO2 less than the area of the mass itself shown on ultrasonography. Conversely, the cystic lesion presented with slightly increased [HbT] in the periphery of the lesion shown on ultrasound with oxygen-reduction inside and in the periphery of the lesion. There was no detectable change of blood flow on Doppler US in the periphery of the cystic lesion. The slightly increased [HbT] in the periphery of the cystic lesion was correlated with intra-lesional hemorrhage upon histopathologic examination.

  3. Safe and easy method with little modification in technique is useful for successful internal jugular vein cannulation on the same side even after intra-arterial puncture without using ultrasound guidance in adult cardiac patients

    Directory of Open Access Journals (Sweden)

    Rajesh Thosani


    Full Text Available Background: The modification in technique is useful for successful right-sided internal jugular vein (IJV cannulation on the same side even after intra-arterial puncture without using ultrasound guidance in adult patients. Materials and Methods: This study was carried out in total 160 adult patient from American Society of Anesthesiologists Grade II to III patients male (n = 95 and female (n = 65 who underwent cardiac surgery where cannulation was done on right sided by triple lumen catheter (7 French using Seldinger technique. Results: Majority of patients were cannulated successfully by Seldinger technique with single or double attempt except for five patients in which arterial puncture occurred. All five patients were cannulated successfully on the same side with this modified technique without any significant major complications. They were managed by application of blocker at the end of arterial needle puncture without removing it. In our routine practice, we were used to removing this needle and applying compression for few minutes to prevent hematoma formation after an arterial puncture. In this study, cannula was used as a marker or guideline for the relocation of IJV on the same side and recannulation was performed by changing the direction of needle on same side lateral to the previous one and without going towards the same direction to prevent the arterial puncture again. Conclusion: Most simple and useful modified technique for institutes where the complications are most common with trainee doctors and in hospitals where there is no advanced facility like ultrasound-guided cannulation available. By this modification, it will be time saving, very comfortable, and user-friendly technique with high success rate.

  4. Modified seldinger technique applied in peripherally inserted central catheters under vascular ultrasound guidance%超声引导下微插管鞘技术在中心静脉置管中的应用与探讨

    Institute of Scientific and Technical Information of China (English)

    蔡昌兰; 黄叶莉; 谭敬华; 李琼; 张俊莉; 王红; 康伟


    OBJECTIVE To sum up our experience of modified seldinger technique (MST) in advanced cancer patients, and evaluate the superiority of MST. METHODS A total of 40 patients were divided into two groups with 20 cases in each group ,observational group used MST and vascular ultrasound guidance system, Contrast group use traditional method. RESULTS The intubation success rate was 95%, no postoperative complications were observed. MST not only increased the comfortable degree of the patients, but also improved the working efficiency. CONCLUSION Modified Seldinger technique under guidance of ultrasound has a feasible effect, it can be widely promoted in clinics.%目的 通过对超声引导下结合微插管鞘技术(MST)的中心静脉置管(PICC)在肿瘤患者中的应用效果进行观察,探讨其优越性.方法 选择需行PICC的患者40例,分为试验组20例与对照组20例;试验组患者采用血管超声引导系统评估血管,利用MST技术行上臂PICC穿刺;对照组患者在肉眼下穿刺血管行PICC.结果 试验组置管一次成功率为95%、术后只有1例发生穿刺点出血,无其他并发症,提高了患者的舒适度和护士的工作效率;对照组置管一次成功率80%,术后发生穿刺点出血6例、静脉炎3例、导管移位2例.结论 超声引导下结合MST用于PICC具有切实可行的效果,值得在临床广泛推广.

  5. 3D medical thermography device (United States)

    Moghadam, Peyman


    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  6. 3D Printable Graphene Composite (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong


    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  7. 3D printed bionic ears. (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C


    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  8. Three-dimensional assessment of scoliosis based on ultrasound data (United States)

    Zhang, Junhua; Li, Hongjian; Yu, Bo


    In this study, an approach was proposed to assess the 3D scoliotic deformity based on ultrasound data. The 3D spine model was reconstructed by using a freehand 3D ultrasound imaging system. The geometric torsion was then calculated from the reconstructed spine model. A thoracic spine phantom set at a given pose was used in the experiment. The geometric torsion of the spine phantom calculated from the freehand ultrasound imaging system was 0.041 mm-1 which was close to that calculated from the biplanar radiographs (0.025 mm-1). Therefore, ultrasound is a promising technique for the 3D assessment of scoliosis.

  9. 3D multimodality roadmapping in neuroangiography (United States)

    Ruijters, Daniel; Babic, Drazenko; Homan, Robert; Mielekamp, Peter; ter Haar Romeny, Bart M.; Suetens, Paul


    In this paper we describe a novel approach to using morphological datasets (such as CT or MR) in the minimally invasive image guidance of intra-arterial and intra-venous endovascular devices in neuroangiography interventions. Minimally invasive X-ray angiography procedures rely on the navigation of endovascular devices, such as guide wires and catheters, through human vessels, using C-arm fluoroscopy. While the bone structure may be visible, and the injection of iodine contrast medium allows to guide endovascular devices through the vasculature, the soft-tissue structures remain invisible in the fluoroscopic images. We intend to present a method for the combined visualization of morphological data, a 3D rotational angiography (3DRA) reconstruction and the live fluoroscopy data stream in a single image. The combination of the fluoroscopic image with the 3DRA vessel tree offers the advantage that endovascular devices can be located with respect to the vasculature, without additional contrast injection, while the position of the C-arm geometry can be altered freely. The additional visualization of the morphological data, adds contextual information to the position of endovascular devices. This article addresses the clinical applications, the real-time aspects of the registration algorithms and fast fused visualization of the proposed method.

  10. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David


    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  11. 3D Printing of Graphene Aerogels. (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong


    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  12. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus


    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  13. Supernova Remnant in 3-D (United States)


    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  14. 彩色超声引导联合聚桂醇灌注治疗小儿单纯性肾囊肿%Color ultrasound guidance sclerotherapy with polidocanol for children with simple renal cysts

    Institute of Scientific and Technical Information of China (English)

    崔西春; 范应中; 李泸平; 刘婷婷; 杜昆峰; 姚浩宇; 王家祥


    Objective To explore the efficacy and safety of color ultrasound guidance sclerotherapy with polidocanol for children with simple renal cysts.Methods A total of 43 children with simple renal cysts were analyzed.The diagnosis was confirmed by computed tomography urography (CTU) and color Doppler ultrasound.Sclerotherapy was performed with ethanol in 23/51cases (45%) and polidocanol in 28/51 (55%).Contrast complications and efficacies were compared after 1 year.Results Color ultrasound guidance sclerotherapy was performed.Follow-ups of color ultrasound were conducted at 3,6 and 12 months respectively.The successful outcome ratio of the polidocanol group was significantly higher than that of the ethanol group (P<0.05).The curative rates were 85.7% vs 60.9% and effective rates 92.9% vs 65.2% respectively.Abnormal crying and facial flushing were less frequent in the polidocanol group than the control group.The polidocanol group had no macroscopic hematuria.In the control group,6 post-therapeutic cases of macroscopic hematuria recovered after a dosing of hemostatic drugs within 3 days.And the difference was statistically significant (P<0.05).Only 1 case of fever was reported in the polidocanol group while 9 cases were feverish in the control group.And the difference was statistically significant (P<0.05).Puncture point errhysis and vomiting were less frequent in the polidocanol group than those in the control group.And the difference had statistical significance (P < 0.05).Conclusions Color ultrasound guidance sclerotherapy with polidocanol is both safe and effective for children simple renal cysts.And it should be a preferred option.%目的 探讨彩色超声引导联合聚桂醇灌注治疗小儿单纯性肾囊肿临床疗效,寻找小儿单纯性肾囊肿有效的治疗方法及合适的应用药物.方法 回顾2011年5月至2014年10月我院经彩色超声、CTU明确诊断为单纯性肾囊肿患儿51例,其中28例为聚桂醇治疗组,采用

  15. 超声引导在小儿外周静脉穿刺困难者中的应用研究%Application of Ultrasound Guidance in Children with Difficulties in Peripheral Venous Puncture

    Institute of Scientific and Technical Information of China (English)

    陈琼; 郑铠军; 朱惠欢; 李亚洁; 卢贤秀; 黎艳超; 钟林堃


    目的:探讨超声引导在小儿外周静脉穿刺困难者中应用的效果。方法选择3个月至3岁血管条件差的患儿100例,随机分为试验组、对照组各50例。对照组给予传统盲穿法进行外周静脉穿刺,试验组在超声引导下进行外周静脉穿刺。记录两组穿刺针数、一次穿刺成功率、总成功率和并发症发生率。结果试验组和对照组穿刺针数分别为(1.2±0.4)次和(3.02±2.34)次(P<0.05);一次穿刺成功率分别为90%和34%,差异有统计学意义(P<0.05);总成功率分别为100%和95%,差异有统计学意义(P<0.05);置针后24h内静脉渗漏发生率分别为0和10%,差异有统计学意义(P<0.05)。结论超声引导在小儿外周静脉穿刺困难者中应用,可以显著提高一次穿刺成功率和总穿刺成功率,明显减少穿刺次数,降低并发症的发生。%Objective To investigate the effect of ultrasound guided in children with difficulties in peripheral venous punc-ture. Methods In 3 months to 3 years old children with poor vascular conditions,100 cases were randomly divided into two groups:experimental group,control group of 50 cases each. The control group was given the traditional blind puncture method,and the experi-mental group was given the peripheral vein puncture under the guidance of ultrasound. The number of puncture needles,the success rate,the total success rate and the complication rate of the two groups were recorded. Results The number of puncture needles in the experimental group and the control group were respectively(1. 2 ±0. 4)times and(3. 02 ± 2. 34)times(P<0. 05). A successful rate of puncture were respectively 90% and 34%(P<0. 05). The total success rate were respectively 100% and 95%(P<0. 05). And the incidence of venous leakage after 24h were respectively 0 and 10%(P<0. 05). Conclusion The application of ultrasound guid-ance in children with difficulties in peripheral venous puncture could

  16. 3D multiplexed immunoplasmonics microscopy (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel


    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  17. Kuvaus 3D-tulostamisesta hammastekniikassa


    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko


    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  18. Crowdsourcing Based 3d Modeling (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.


    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  19. 3D printing from MRI Data: Harnessing strengths and minimizing weaknesses. (United States)

    Ripley, Beth; Levin, Dmitry; Kelil, Tatiana; Hermsen, Joshua L; Kim, Sooah; Maki, Jeffrey H; Wilson, Gregory J


    3D printing facilitates the creation of accurate physical models of patient-specific anatomy from medical imaging datasets. While the majority of models to date are created from computed tomography (CT) data, there is increasing interest in creating models from other datasets, such as ultrasound and magnetic resonance imaging (MRI). MRI, in particular, holds great potential for 3D printing, given its excellent tissue characterization and lack of ionizing radiation. There are, however, challenges to 3D printing from MRI data as well. Here we review the basics of 3D printing, explore the current strengths and weaknesses of printing from MRI data as they pertain to model accuracy, and discuss considerations in the design of MRI sequences for 3D printing. Finally, we explore the future of 3D printing and MRI, including creative applications and new materials.

  20. NIHmagic: 3D visualization, registration, and segmentation tool (United States)

    Freidlin, Raisa Z.; Ohazama, Chikai J.; Arai, Andrew E.; McGarry, Delia P.; Panza, Julio A.; Trus, Benes L.


    Interactive visualization of multi-dimensional biological images has revolutionized diagnostic and therapy planning. Extracting complementary anatomical and functional information from different imaging modalities provides a synergistic analysis capability for quantitative and qualitative evaluation of the objects under examination. We have been developing NIHmagic, a visualization tool for research and clinical use, on the SGI OnyxII Infinite Reality platform. Images are reconstructed into a 3D volume by volume rendering, a display technique that employs 3D texture mapping to provide a translucent appearance to the object. A stack of slices is rendered into a volume by an opacity mapping function, where the opacity is determined by the intensity of the voxel and its distance from the viewer. NIHmagic incorporates 3D visualization of time-sequenced images, manual registration of 2D slices, segmentation of anatomical structures, and color-coded re-mapping of intensities. Visualization of MIR, PET, CT, Ultrasound, and 3D reconstructed electron microscopy images has been accomplished using NIHmagic.

  1. 3D-EAUS and MRI in the Activity of Anal Fistulas in Crohn's Disease


    Maria Eleonora Alabiso; Francesca Iasiello; Gianluca Pellino; Aniello Iacomino; Luca Roberto; Antonio Pinto; Gabriele Riegler; Francesco Selvaggi; Alfonso Reginelli


    Aim. This study aspires to assess the role of 3D-Endoanal Ultrasound (3D-EAUS) and Magnetic Resonance Imaging (MRI) in preoperative evaluation of the primary tract and internal opening of perianal fistulas, of secondary extensions and abscess. Methods. During 2014, 51 Crohn's disease patients suspected for perianal fistula were enrolled. All patients underwent physical examination with both the methods and subsequent surgery. Results. In the evaluation of CD perianal fistulas, there are no si...

  2. 3D Flash LIDAR Space Laser Project (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  3. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge


    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  4. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van


    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  5. An interactive multiview 3D display system (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui


    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  6. Sliding Adjustment for 3D Video Representation

    Directory of Open Access Journals (Sweden)

    Galpin Franck


    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  7. Forward ramp in 3D (United States)


    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Laser Based 3D Volumetric Display System (United States)


    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  9. 3D Printing and Its Urologic Applications. (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil


    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  10. Beowulf 3D: a case study (United States)

    Engle, Rob


    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  11. 3D Printing and Its Urologic Applications (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil


    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  12. Expanding Geometry Understanding with 3D Printing (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi


    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  13. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... three types of pelvic ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently ... pelvic ultrasound: abdominal ( transabdominal ) vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam ...

  14. Intravascular ultrasound (United States)

    IVUS; Ultrasound - coronary artery; Endovascular ultrasound; Intravascular echocardiography ... A tiny ultrasound wand is attached to the top of a thin tube. This tube is called a catheter. The catheter ...

  15. Prostate Ultrasound

    Medline Plus

    Full Text Available ... gel. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging uses no ionizing radiation. Ultrasound scanning ...

  16. Investigating Mobile Stereoscopic 3D Touchscreen Interaction


    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret


    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  17. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael


    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  18. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue


    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  19. 3D scene reconstruction: why, when, and how? (United States)

    McBride, Jonah C.; Snorrason, Magnus S.; Goodsell, Thomas R.; Eaton, Ross S.; Stevens, Mark R.


    Mobile robot designers frequently look to computer vision to solve navigation, obstacle avoidance, and object detection problems. Potential solutions using low-cost video cameras are particularly alluring. Recent results in 3D scene reconstruction from a single moving camera seem particularly relevant, but robot designers who attempt to use such 3D techniques have uncovered a variety of practical concerns. We present lessons-learned from developing a single-camera 3D scene reconstruction system that provides both a real-time camera motion estimate and a rough model of major 3D structures in the robot"s vicinity. Our objective is to use the motion estimate to supplement GPS (indoors in particular) and to use the model to provide guidance for further vision processing (look for signs on walls, obstacles on the ground, etc.). The computational geometry involved is closely related to traditional two-camera stereo, however a number of degenerate cases exist. We also demonstrate how SFM can use used to improve the performance of two specific robot navigation tasks.

  20. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke


    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  1. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion (United States)

    Handy Turner, Tara


    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  2. 3D laptop for defense applications (United States)

    Edmondson, Richard; Chenault, David


    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  3. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard


    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  4. The clinical study of percutaneous renal biopsy by automatic gun under real time color doppler ultrasound guidance%彩色多普勒超声引导下经皮肾活检术的临床应用

    Institute of Scientific and Technical Information of China (English)

    席春生; 李亚妹; 王谨涵; 关怀; 李芸; 高健; 刘冬梅; 张萌


    目的探讨彩色多普勒超声引导下斜角进针经皮肾穿刺活检术的安全性和成功率及其影响因素。方法回顾分析了兰州军区兰州总医院226例经临床诊断的慢性肾脏病患者在彩色多普勒超声引导下用美国BARD MAGNUM自动活检枪斜角进针行经皮肾穿刺活检术,对影响穿刺成功率的有关因素进行分析,并与普通超声引导下经皮肾活检术对比。结果穿刺成功222例,成功率为98.4%,有4例未取得足够病理诊断的肾组织标本,活检标本长度为(10.5±4.5)mm,获取肾小球数目为(16.7±6.3)个。本研究中所有病例均未发现严重并发症。肉眼血尿发生率为0.4%(1/226),肾周血肿发生率0.9%(2/226)。在获取肾小球数目和穿刺成功率与文献报道一致,而术后并发症方面,明显低于文献报道。结论彩色多普勒超声引导下斜角进针经皮肾活检术成功率高,并发症少,值得进一步观察和推广。%Objective To investigate the safety and efficacy of color doppler ultrasound-guided renal biopsy using an automated biopsy gun, analysis the related risk factor. Methods The retrospective analysis method were used. Two hundred twenty-six patients with proveded chronic kidney diseases admited Lanzhou General Hospital were performed renal biopsy using an automated BARD biopsy gun made in America. The successful rate and complications were analyzed, and compared with common ultrasound guidance. Results Adequate renal tissue for histologic diagnosis was obtained by BARD MAGNUM biopsy gun was 98.4% of the patients, the average length of renal tissue sample was(10.5±4.5) milimeter, the average number of glomeruli was(16.7±6.3), the rate of gross hematuria was 0.4%. The total of complication was 0.9%(2/226). Conclusion Ultrasound guided percutanous renal biopsy with BARD MAGNUM automated biopsy gun is a kind of safe and accurate method of performing renal biopsy for kidney disease.

  5. B超引导下改良塞丁格技术在PICC置管术中的临床应用%Modified Seldinger technique under ultrasound guidance in PICC catheterization

    Institute of Scientific and Technical Information of China (English)



    Objective To evaluate the effect of modified Seldinger technique under ultrasound guidance in PICC catheterization.Methods 200 patients undergoing PICC catheterization were randomly divided into a control group and an observation group,100 cases for each group.The conventional catheter puncture method under naked eyes was used in the control group and modified Seldinger technique under ultrasound guidance in the observation group.The catheterization success rate,the bleeding rate of puncture point,the pain rate of puncture point,the comfort score,and the mechanical phlebitis rate were compared between the two groups.Results The one-time catheterization success rates of the observation group and the control group were 89.0% (89/100) and 75.0% (75/100),respectively,with a statistical difference (P<0.05).The bleeding rate ofpuncture point,the pain rate of puncture point,and the comfort score of the observation group were 31.0% (31/100),4.0% (4/100),and (27.9±2.4);and those of the control group were 48.0% (48/100),12.0% (12/100),and (20.5±3.0);with statistical differences (P<0.05).The mechanical phlebitis rate of the observation group was significantly lower than that of the control group (2.0% vs.27.0%),with a statistical difference was ly significant (P<0.05).Conclusions Using modified Seldinger technique under ultrasound guidance in PICC catheterization can improve the success rate of catheterization and reduce adverse reactions and mechanical phlebitis and in worth being clinically generalized.%目的 探讨B超引导下改良塞丁格技术在PICC置管中的应用及效果.方法 选取200例拟行PICC患者,随机分为观察组和对照组,每组100例.对照组给予传统盲穿置管法,观察组给予B超引导下改良塞丁格技术置管法.比较两组患者置管成功率、穿刺点渗血率、穿刺点疼痛率、舒适度评分、机械性静脉炎发生率.结果 观察组和对照组一次置管成功率分别为89.0%(89

  6. Interobserver variation in measurements of Cesarean scar defect and myometrium with 3D ultrasonography

    DEFF Research Database (Denmark)

    Madsen, Lene Duch; Glavind, Julie; Uldbjerg, Niels;

    -16 months after their first Cesarean section with 2D transvaginal sonography and had 3D volumes recorded. Two observers independently evaluated “off-line” each of the 3D volumes stored. Residual myometrial thickness (RMT) and Cesarean scar defect depth (D) was measured in the sagittal plane with an interval...... of Cesarean section scar size and residual myometrium needs further investigation.......Objectives: To evaluate the Cesarean scar defect depth and the residual myometrial thickness with 3-dimensional (3D) sonography concerning interobserver variation. Methods: Ten women were randomly selected from a larger cohort of Cesarean scar ultrasound evaluations. All women were examined 6...

  7. 超声造影引导肝脾创伤介入性治疗的实验研究%Interventional treatment of hepatic or splenic trauma under the guidance of contrast-enhanced ultrasound:an animal experiment

    Institute of Scientific and Technical Information of China (English)

    吕发勤; 唐杰; 李文秀; 张惠琴; 罗渝昆; 李俊来; 安力春


    Objective To determine whether hemostatic agents directly injected into injury sites under the guidance of contrast-enhanced ultrasound(CEUS)can effectively control hemorrhage from hepatic or splenic trauma. Methods Healthy adult dogs were impacted by a impactor to create hepatic or splenic trauma. Among 32 dogs,28 had hepatic or splenic injury of grade Ⅲ~Ⅳ according to Injury Scale of the American Association for the Surgery of Trauma(AAST),which were divided into two groups,the treatment group and the control. In the treatment group,hemocoagulase and α-cyanoacrylate were injected respectively into the injury site and transected micro-vessel tinder the guidance of CEUS,while in the control group,normal saline was injected. Results All animals of the two groups survived after the injection. CEUS demonstrated that active hemorrhage disappeared in treatment group but still existed in the control group.In the treatment group,laparotomy showed that hepatic or splenic injury had been covered and adhered with clot and glue membrane of hemostatic agents and free intraperitoneal blood volume was significantly less than that in the control group(P=0.000),while in the control group injury bleeding did not stop after injection. Conclusions Hemostatic agents injected under the guidance of CEUS can effectively control hemorrhage from hepatic or splenic trauma of grade Ⅲ~Ⅳ. This therapy was simple,convenient and effective. It may be performed immediately after hepatic or splenic injury was diagnosed.%目的 探讨超声造影引导局部注射治疗闭合性肝、脾创伤出血的价值.方法 使用健康成年杂种犬.用自制的小型生物撞击器建立肝和脾闭合性外伤模型.符合美国创伤外科协会分级(AAST)的Ⅲ~Ⅳ级的28只犬纳入实验,并随机分为治疗组与对照组,治疗组采用超声造影引导病灶内注射蛇毒凝血酶和α-氰基丙烯酸酯黏合胶,对照组于病灶局部注射等量的生理盐水.结果 两

  8. Bedside gallbladder ultrasound for the primary care physician. (United States)

    Tollefson, Brian J; Hoda, Nicholas E; Fromang, Graves; Stone, Mary


    Modern ultrasound machines are relatively inexpensive to own and simple to operate. Basic ultrasound exams can be easily learned and mastered. As with any clinical exam skill, practice makes perfect. Providers interested in learning ultrasound should seek hands-on guidance from an expert in the field. There are several quality hands-on ultrasound courses (http:// as well as free online videos (http:// emergency ultrasound The emergency ultrasound team at UMMC will be offering a hands-on ultrasound training course in the spring of 2015. Please contact Dr Brian Tollefson for specific dates and times of the course (


    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi


    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  10. 3D change detection - Approaches and applications (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter


    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  11. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)


    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  12. 3D-tulostus : case Printrbot


    Arvekari, Lassi


    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  13. Stability Criteria of 3D Inviscid Shears

    CERN Document Server

    Li, Y Charles


    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  14. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad


    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  15. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan


    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  16. Reconhecimento de faces 3D com Kinect


    Cardia Neto, João Baptista [UNESP


    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  17. Ultrasound applications in electrodiagnosis. (United States)

    Boon, Andrea J; Smith, Jay; Harper, C Michel


    This review article discusses the current scope of high-resolution diagnostic ultrasound in the diagnosis of neuromuscular disease, both as a complementary tool to electrodiagnosis and in some cases as a stand-alone imaging modality. Indications, limitations, potential for research, and training and credentialing are discussed. Indications include needle guidance for nerve conduction studies and needle electromyography, diagnosis of nerve entrapment, diagnostic muscle imaging via grayscale analysis, and dynamic real-time imaging, including sonopalpation, to provide additional diagnostic information. The role of neuromuscular ultrasound in research is discussed, including the need to evaluate the sensitivity, specificity, positive and negative predictive value, and cost-effectiveness of these techniques when they are used alone or in combination. Training and credentialing are reviewed, specifically noting the challenge of the lack of formal training programs and the relatively long, flat learning curve of diagnostic ultrasound.

  18. Topology Dictionary for 3D Video Understanding



    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  19. Illustrating Mathematics using 3D Printers


    Knill, Oliver; Slavkovsky, Elizabeth


    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  20. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)


    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  1. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam


    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  2. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)



    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  3. Ekologinen 3D-tulostettava asuste


    Paulasaari, Laura


    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  4. Experience of Radiofrequency Ablation Treatment of Thyroid Papillary Micro-carcinoma Under Ultrasound Guidance%超声引导下射频消融治疗甲状腺微小乳头状癌的临床体会

    Institute of Scientific and Technical Information of China (English)

    刘晓岭; 黄靖; 孙德胜; 韦伟


    Objective To summarize the clinical experience of radiofrequency ablation ( RFA) treatment of thyroid papillary micro -carcinoma under ultrasound guidance .Methods (1)9 patients, with 11 lesions, were recruited with ultrasonography diagnosis of thyroid micro-carcinoma (less than 10 mm in diameter), who were anxious about the mass but non -acceptance of surgery.(2)Core needle his-tological biopsy was done before RFA;then the lesions were treated by RFA under ultrasound guidance .All the patients were followed up by ultrasound scan.Results (1)All patients recovered with no FRA related complications .(2)Seven lesions was pathologically diagnosed as thyroid papillary carcinoma , and in four lesions tumor cells weren′t pathologically found .( 3 ) All cases were followed up from 12 to 18 months.Post ablated lesions became smaller and smaller during follow -up, and diminished within 6 months.There was no abnormal ima-ging which was considered recurrence in both thyroid and lymph nodes .Conclusion (1)RFA could be considered as a safe and effective method in treating papillary micro -carcinoma of thyroid.(2)Due to the advantages of safety and minimally invasion of RFA , thyroid le-sions, which were highly suspected malignant, was one of the indications of RFA, even if there was no pathological confirmation.(3)Long time follow-up are needed to observe the effect and side -effect of FRA.%目的:总结超声引导下射频消融治疗甲状腺微小乳头状癌的临床经验和体会。方法(1)病例选择:超声检查疑为甲状腺微小乳头状癌(病灶最大直径小于10 mm),且患者希望首选非手术治疗者。共选取9例患者,11个病灶。(2)方法:治疗前先行病灶的组织学穿刺活检,之后在超声引导下进行甲状腺病灶的射频消融治疗,射频消融治疗后应用超声造影进行定期随访。结果(1)所有病例治疗后恢复顺利,未出现并发症;(2)11个病灶的病理诊断中,7

  5. [Ultrasound guided percutaneous nephrolithotripsy]. (United States)

    Guliev, B G


    The study was aimed to the evaluation of the effectiveness and results of ultrasound guided percutaneous nephrolithotripsy (PNL) for the treatment of patients with large stones in renal pelvis. The results of PNL in 138 patients who underwent surgery for kidney stones from 2011 to 2013 were analyzed. Seventy patients (Group 1) underwent surgery with combined ultrasound and radiological guidance, and 68 patients (Group 2)--only with ultrasound guidance. The study included patients with large renal pelvic stones larger than 2.2 cm, requiring the formation of a single laparoscopic approach. Using the comparative analysis, the timing of surgery, the number of intra- and postoperative complications, blood loss and length of stay were evaluated. Percutaneous access was successfully performed in all patients. Postoperative complications (exacerbation of chronic pyelonephritis, gross hematuria) were observed in 14.3% of patients in Group 1 and in 14.7% of patients in Group 2. Bleeding requiring blood transfusion, and injuries of adjacent organs were not registered. Efficacy of PNL in the Group 1 was 95.7%; 3 (4.3%) patients required additional interventions. In Group 2, the effectiveness of PNL was 94.1%, 4 (5.9%) patients additionally underwent extracorporeal lithotripsy. There were no significant differences in the effectiveness of PNL, the volume of blood loss and duration of hospitalization. Ultrasound guided PNL can be performed in large pelvic stones and sufficient expansion of renal cavities, thus reducing radiation exposure of patients and medical staff.

  6. Effect of Two TCM Nursing on Pain Relief in PICC Catheter under Ultrasound Guidance%耳穴贴压腕神门穴按揉干预超声引导下PICC所致疼痛的效果观察

    Institute of Scientific and Technical Information of China (English)

    梅思娟; 孙龙


    Objective To investigate the effect of two kinds of traditional Chinese medicine (TCM) nursing interventions on relieving pain caused by PICC catheter under ultrasound-guidance. Methods Ninety cases of patients with PICC catheter were divided into control group (n=30), auricular acupressure group (n=30) and acupoint massage group (n=30). The PICC catheter was placed by conventional ultrasound-guided method. The degree of pain of PICC catheter of three groups was compared. Results The degree of pain of PICC catheter in auricular acupressure group and acupoint massage group was significant lower than that in control group and the difference was statistically significant (P0.05)。结论耳穴贴压和神门穴按揉均可减轻超声引导下PICC所致疼痛,提高患者置管过程中的舒适度。

  7. 超声引导下经皮肾镜钬激光碎石术治疗孤立肾上尿路结石%Percutaneous Nephrolithotripsy with Holmium Laser Under Ultrasound Guidance for 23 Patients with Upper Urinary Tract Lithiasis of Solitary kidney

    Institute of Scientific and Technical Information of China (English)

    柳懿鹏; 章传华; 袁敬东


    [Objective]To explore the efficacy of percutaneous nephrolithotripsy with holmium laser under ultrasound guidance for the treatment of upper urinary tract lithiasis of solitary kidney.[Methods]From Aug.2010 to Nov.2012,a total of 23 patients with upper urinary tract lithiasis of solitary kidney underwent percutaneous nephrolithotripsy with holmium laser under ultrasound guidance.[Results]Among 23 patients,20 patients(87%) were stone-free after operation.Mean hospital stay was 7.1 days(ranging from 4 to 16 days).Of 16 patients with kidney insufficiency,renal function of 14 patients recovered the normal after operation.Compared with before operation,serum creatinine of 2 patients obviously decreased.No hemorrhea occurred.[Conclusion] Percutaneous nephrolithotripsy with holmium laser under ultrasound guidance for the treatment of upper urinary tract lithiasis of solitary kidney is effective and safe.%[目的]探讨超声引导下经皮肾镜碎石术治疗孤立肾上尿路结石的疗效.[方法]2010年8月至2012年11月,对23例孤立肾上尿路结石患者采用在超声引导下经皮肾镜钬激光碎石术治疗.[结果]23例患者中有20例术后复查无结石残留,平均住院时间7.1(4~16)d,16例肾功能不全患者中,术后14例肾功能恢复正常,2例血肌酐较术前明显下降,无大出血发生.[结论]超声引导下经皮肾镜钬激光碎石术治疗孤立肾上尿路结石安全有效.

  8. 3D-EAUS and MRI in the Activity of Anal Fistulas in Crohn's Disease. (United States)

    Alabiso, Maria Eleonora; Iasiello, Francesca; Pellino, Gianluca; Iacomino, Aniello; Roberto, Luca; Pinto, Antonio; Riegler, Gabriele; Selvaggi, Francesco; Reginelli, Alfonso


    Aim. This study aspires to assess the role of 3D-Endoanal Ultrasound (3D-EAUS) and Magnetic Resonance Imaging (MRI) in preoperative evaluation of the primary tract and internal opening of perianal fistulas, of secondary extensions and abscess. Methods. During 2014, 51 Crohn's disease patients suspected for perianal fistula were enrolled. All patients underwent physical examination with both the methods and subsequent surgery. Results. In the evaluation of CD perianal fistulas, there are no significant differences between 3D-EAUS and MRI in the identification of abscess and secondary extension. Considering the location, 3D-EAUS was more accurate than MRI in the detection of intersphincteric fistulas (p value = 10(-6)); conversely, MRI was more accurate than 3D-EAUS in the detection of suprasphincteric fistulas (p value = 0.0327) and extrasphincteric fistulas (p  value = 4 ⊕ 10(-6)); there was no significant difference between MRI and 3D-EAUS in the detection of transsphincteric fistulas. Conclusions. Both 3D-EAUS and MRI have a crucial role in the evaluation and detection of CD perianal fistulas. 3D-EAUS was preferable to MRI in the detection of intersphincteric fistulas; conversely, in the evaluation of suprasphincteric and extrasphincteric fistulas the MRI was preferable to 3D-EAUS.

  9. An aerial 3D printing test mission (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy


    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  10. Integration of real-time 3D image acquisition and multiview 3D display (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun


    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  11. 3D Printed Block Copolymer Nanostructures (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.


    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  12. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van


    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  13. 3D elastic control for mobile devices. (United States)

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal


    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  14. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.


    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  15. 3D, or Not to Be? (United States)

    Norbury, Keith


    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  16. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno


    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  17. 3D Printing of Molecular Models (United States)

    Gardner, Adam; Olson, Arthur


    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  18. 3D Printing. What's the Harm? (United States)

    Love, Tyler S.; Roy, Ken


    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  19. Topology dictionary for 3D video understanding. (United States)

    Tung, Tony; Matsuyama, Takashi


    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  20. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.


    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  1. RELAP5-3D Developer Guidelines and Programming Practices

    Energy Technology Data Exchange (ETDEWEB)

    Dr. George L Mesina


    Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It

  2. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu


    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  3. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt


    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...

  4. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.


    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  5. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles


    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  6. 2D/3D switchable displays (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.


    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  7. 6D Interpretation of 3D Gravity (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos


    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  8. Brandenburg 3D - a comprehensive 3D Subsurface Model, Conception of an Infrastructure Node and a Web Application (United States)

    Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim


    application enables an intuitive navigation through all available information and allows the visualization of geological maps (2D), seismic transects (2D/3D), wells (2D/3D), and the 3D-model. These achievements will alleviate spatial and geological data management within the German State Geological Offices and foster the interoperability of heterogeneous systems. It will provide guidance to a systematic subsurface management across system, domain and administrative boundaries on the basis of a federated spatial data infrastructure, and include the public in the decision processes (e-Governance). Yet, the interoperability of the systems has to be strongly propelled forward through agreements on standards that need to be decided upon in responsible committees. The project B3D is funded with resources from the European Fund for Regional Development (EFRE).

  9. 3D Visualization Development of SIUE Campus (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  10. The psychology of the 3D experience (United States)

    Janicke, Sophie H.; Ellis, Andrew


    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  11. 2D-3D rigid registration to compensate for prostate motion during 3D TRUS-guided biopsy (United States)

    De Silva, Tharindu; Fenster, Aaron; Bax, Jeffrey; Gardi, Lori; Romagnoli, Cesare; Samarabandu, Jagath; Ward, Aaron D.


    Prostate biopsy is the clinical standard for prostate cancer diagnosis. To improve the accuracy of targeting suspicious locations, systems have been developed that can plan and record biopsy locations in a 3D TRUS image acquired at the beginning of the procedure. Some systems are designed for maximum compatibility with existing ultrasound equipment and are thus designed around the use of a conventional 2D TRUS probe, using controlled axial rotation of this probe to acquire a 3D TRUS reference image at the start of the biopsy procedure. Prostate motion during the biopsy procedure causes misalignments between the prostate in the live 2D TRUS images and the pre-acquired 3D TRUS image. We present an image-based rigid registration technique that aligns live 2D TRUS images, acquired immediately prior to biopsy needle insertion, with the pre-acquired 3D TRUS image to compensate for this motion. Our method was validated using 33 manually identified intrinsic fiducials in eight subjects and the target registration error was found to be 1.89 mm. We analysed the suitability of two image similarity metrics (normalized cross correlation and mutual information) for this task by plotting these metrics as a function of varying parameters in the six degree-of-freedom transformation space, with the ground truth plane obtained from registration as the starting point for the parameter exploration. We observed a generally convex behaviour of the similarity metrics. This encourages their use for this registration problem, and could assist in the design of a tool for the detection of misalignment, which could trigger the execution of a non-real-time registration, when needed during the procedure.

  12. 3D imaging in forensic odontology. (United States)

    Evans, Sam; Jones, Carl; Plassmann, Peter


    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  13. Medical 3D Printing for the Radiologist. (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J


    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  14. Digital relief generation from 3D models (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian


    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  15. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼


    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  16. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.


    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  17. Biopsies prostatiques sous guidage \\'echographique 3D et temps r\\'eel (4D) sur fant\\^ome. Etude comparative versus guidage 2D

    CERN Document Server

    Long, Jean-Alexandre; Moreau-Gaudry, Alexandre; Troccaz, Jocelyne; Rambeaud, Jean-Jacques; Descotes, Jean-Luc


    This paper analyzes the impact of using 2D or 3D ultrasound on the efficiency of prostate biopsies. The evaluation is performed on home-made phantoms. The study shows that the accuracy is significantly improved.

  18. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter


    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  19. FIT3D: Fitting optical spectra (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.


    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  20. 3D Immersive Visualization with Astrophysical Data (United States)

    Kent, Brian R.


    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  1. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro


    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  2. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco


    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  3. A high capacity 3D steganography algorithm. (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee


    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  4. RHOCUBE: 3D density distributions modeling code (United States)

    Nikutta, Robert; Agliozzo, Claudia


    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  5. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G


    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  6. FUN3D Manual: 12.8 (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  7. FUN3D Manual: 12.6 (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  8. FUN3D Manual: 12.5 (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  9. FUN3D Manual: 13.1 (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  10. FUN3D Manual: 12.4 (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  11. FUN3D Manual: 12.7 (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  12. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas


    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  13. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune


    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  14. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)


    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  15. Technologies of image guidance and the development of advanced linear accelerator systems for radiotherapy. (United States)

    Wu, Vincent W C; Law, Maria Y Y; Star-Lack, Josh; Cheung, Fion W K; Ling, C Clifton


    As advanced radiotherapy approaches for targeting the tumor and sparing the normal tissues have been developed, the image guidance of therapy has become essential to directing and confirming treatment accuracy. To approach these goals, image guidance devices now include kV on-board imagers, kV/MV cone-beam CT systems, CT-on-rails, and mobile and in-room radiographic/fluoroscopic systems. Nonionizing sources, such as ultrasound and optical systems, and electromagnetic devices have been introduced to monitor or track the patient and/or tumor positions during treatment. In addition, devices have been designed specifically for monitoring and/or controlling respiratory motion. Optimally, image-guided radiation therapy systems should possess 3 essential elements: (1) 3D imaging of soft tissues and tumors, (2) efficient acquisition and comparison of the 3D images, and (3) an efficacious process for clinically meaningful intervention. Understanding and using these tools effectively is central to current radiotherapy practice. The implementation and integration of these devices continue to carry practical challenges, which emphasize the need for further development of the technologies and their clinical applications.

  16. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.


    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  17. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    NARCIS (Netherlands)

    Bronkhorst, A.W.


    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  18. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... time to the procedure. If a Doppler ultrasound study is performed, you may actually hear pulse-like ...

  19. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... needles are used to extract a sample of cells from organs for laboratory testing. Doppler ultrasound images ... ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of ...

  20. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal / endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  1. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... ultrasound: abdominal, vaginal (for women), and rectal (for men). These exams are frequently used to evaluate the ... vaginal ( transvaginal , endovaginal ) for women rectal ( transrectal ) for men A Doppler ultrasound exam may be part of ...

  2. Prostate Ultrasound

    Medline Plus

    Full Text Available ... as detailed as with the transrectal probe. An MRI of the pelvis may be obtained as an ... Benign Prostatic Hyperplasia (BPH) Prostate Cancer Ultrasound- and MRI-Guided Prostate Biopsy Images related to Ultrasound - Prostate ...

  3. Endoscopic ultrasound (United States)

    ... page: // Endoscopic ultrasound To use the sharing features on this page, please enable JavaScript. Endoscopic ultrasound is a type of imaging test. It is ...

  4. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... insertion. top of page How does the procedure work? Ultrasound imaging is based on the same principles ... to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not ...

  5. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... the procedure? In women, a pelvic ultrasound is most often performed to evaluate the: uterus cervix ovaries ... page How is the procedure performed? Transabdominal: For most ultrasound exams, you will be positioned lying face- ...

  6. Ultrasound -- Pelvis

    Medline Plus

    Full Text Available ... of page What are some common uses of the procedure? In women, a pelvic ultrasound is most ... child's favorite channel. top of page What does the equipment look like? Ultrasound scanners consist of a ...

  7. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)


    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  8. Two Accelerating Techniques for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘世霞; 胡事民; 孙家广


    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  9. 3D-FPA Hybridization Improvements Project (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  10. The 3-d view of planetary nebulae

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz


    Full Text Available Considerando las nebulosas planetarias (PNe de manera tridimensional (3-D, demonstramos que se pueden reducir las grandes incertidumbres asociadas con los m etodos cl asicos de modelar y observar PNe para obtener sus estructuras 3-D y distancias. Usando espectrofotometr a de ranura larga o empleando un Integral Field Unit para restringir los modelos de fotoionizaci on 3-D de PNe y as eliminar dicha incertidumbre de la densidad y de la fracci on del volumen que emite radiaci on ( lling factor, determinamos las detalladas estructuras 3-D, los par ametros de las estrellas centrales y las distancias con una precisi on de 10-20%. Los m etodos cl asicos t picamente daban estos par ametros con una incertidumbre de un factor 3 o m as.

  11. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)


    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  12. Designing Biomaterials for 3D Printing. (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim


    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  13. DNA biosensing with 3D printing technology. (United States)

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin


    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  14. Cubical Cohomology Ring of 3D Photographs

    CERN Document Server

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271


    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  15. 3D scanning particle tracking velocimetry (United States)

    Hoyer, Klaus; Holzner, Markus; Lüthi, Beat; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang


    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.

  16. Lightning fast animation in Element 3D

    CERN Document Server

    Audronis, Ty


    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  17. Advanced 3D Object Identification System Project (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  18. 3D Biomaterial Microarrays for Regenerative Medicine