Sample records for 3-d seismic survey

  1. Marine biota sightings during 3D marine seismic surveys

    Oliveira, Joao Luiz Martinez de; Uller, George A. [CGG do Brasil, Rio de Janeiro, RJ (Brazil); Derntl, Jose Renato; Ribeiro, Camila Castroviejo da Silva; Pereira, Edisio [GEOCOOP Cooperativa de Trabalho, Rio de Janeiro, RJ (Brazil); Miranda, Cristina Maschio de [Nautilus Cooperativa de Trabalho (Brazil); Ferraz, Alexandre Almeida; Costa, Leandro Damiao Soares da [Okeanos Consultoria e Meio Ambiente Ltda. (Brazil)


    This work intends to make a correlation between the presence of the marine biota and the seismic source activity (air guns) during seismic surveys, in Campos (BM-C-25 and BM-C-16) and Santos (BM-S-3) Basin, since July 2003 until March 2004. Environmental data were acquired onboard of the Seismic Vessel CGG Harmattan by a team of four oceanographers (environmental technicians), working on the highest place of the Vessel to record and identify the animals whenever was possible. The data were recorded in forms where fields about the biotic and environmental aspects were filled. In 212 days of observations, 2580,1 hours of sighting's effort were recorded; the air guns worked during 37,6% of the time of the effort. These efforts were made during the daylight reaching an average value of 11,35 hours/day. Sightings were divided into the suborders Odontocetes and Mysticetes, and others (fishes, turtles and non identified mammals). 175 sightings were recorded, being 54% when the air gun was off (24% Mysticetes, 56% Odontocetes, 20% others). Similarly, when the air gun was working, 46% of the records were made (24% Mysticetes, 61% Odontocetes, 6% others); the major concentration (58%) of individuals was inside the 1000 m radius around the ship, followed by 14% of the individuals occurring between 3001-4000 m radius away from the ship. The analysis of the data suggests a non-evasive behavior related to the working of the seismic source, corroborating the results reached by other publications using the data collected onboard CGG Vessels. (author)

  2. Near-surface 3D reflections seismic survey; Sanjigen senso hanshaho jishin tansa

    Nakahigashi, H.; Mitsui, H.; Nakano, O.; Kobayashi, T. [DIA Consultants Co. Ltd., Tokyo (Japan)


    Faults are being actively investigated across Japan since the Great Hanshin-Awaji Earthquake. Discussed in this report is the application of the 3D near-surface reflection seismic survey in big cities. Data from trenching and drilling is used for the geological interpretation of the surroundings of a fault, and the reflection seismic survey is used to identify the position, etc., of the fault. In this article, when the results obtained from the experimental field are examined, it is found that the conventional 2D imaging reflection survey betrays the limit of its capability when the geological structure is complicated, that the 3D reflection seismic survey, on the contrary, is capable of high-precision imaging and, when augmented by drilling, etc., becomes capable of a more detailed interpretation, and that it also contributes effectively to the improvement of local disaster prevention in big cities. Using as the model the Tachikawa fault that runs near JR Tachikawa Station, embodiment of the 3D reflection seismic survey is reviewed. For the acquisition of data excellent in quality in a 3D reflection seismic survey conducted utilizing the roads in the sector chosen for experiment in the urban area, the shock generating points and receiving points should be positioned by taking into account the parameters in the bin arranging process so that the mid-points will be regularly distributed on the surface. 3 refs., 11 figs., 1 tab.

  3. Case History of 3D Seismic Survey in Aershan Oil Field

    Lu Yousheng


    @@ Aershan Oil Field is located at the eastern end of the Manite depression .in the northeastern part of Erlian basin of North China (Fig. 1). Three oilfields -Anan, Abei and Hanan - were discovered in the Erlian basin in the early 1980s using 2D seismic survey with a very dense 0.5 km ×0.5 km grid. However. difficulties were encountered in structural delineation and lateral reservoir prediction.partly due to low signal to noise ratio and resolution of 2D section, partly due to extensive lateral variations. In order to solve these problems, large- area 3D seismic survey was conducted in the late 1980s. 3D survey area is 80 km2.This survey accurately identified the details of reservoir structures, as well as located low-relief structures. Good results were also obtained in predicting lateral reservoir variations and ascertaining oil/water contacts and oilbearing areas.

  4. Application of neural networks for identification of faults in a 3D seismic survey offshore Tunisia

    Mastouri, Raja; Marchant, Robin; Marillier, François; Jaboyedoff, Michel; Bouaziz, Samir


    The Kerkennah High area (offshore Tunisia) is dominated by series of horst and grabens resulting from multiple tectonic events and multiphase stress (extension, compression, translation). In order to decipher this complex structural history from a 3D seismic survey, a neural network is applied to extract a fault-cube from the amplitude data (which does not image faults directly). The neural network transforms seismic attributes into a new 3D data cube in which faults are highlighted. This technique comprises the following steps. First, we compute several seismic attributes (dip-steering similarity, curvature, frequency, ridge and fault enhancement filters…) that enhance different aspects of the seismic data related to faulting. In a second step, a number of points in the seismic data are selected as representative of either faults or areas devoid of faults. These points are tested by the artificial neural network to determine the range in which the different attributes are representative of faults or not. Based on this learning phase, the neural network is then applied to the entire 3D seismic cube to produce a fault-cube that contains only faults which contrast and continuity have been enhance.

  5. Faults survey by 3D reflection seismics; Sanjigen hanshaho jishin tansa ni yoru danso chosa

    Tsuchiya, T.; Ejiri, T.; Yamada, N.; Narita, N.; Aso, H.; Takano, H.; Matsumura, M. [Dia Consultants Company, Tokyo (Japan)


    This paper describes fault survey by 3D seismic reflection exploration. Survey has been conducted mainly at flat land area without pavement not in urban area in Japan. Subsurface structure is complicated with intersecting multiple faults. In this area, a lot of geological investigations have been done prior to the seismic reflection exploration. Fairly certain images of faults have been obtained. However, there were still unknown structures. Survey was conducted at an area of 170m{times}280m in the CDP range. Measurements were carried out by using 100 g of dynamite per seismic generation point combined with 40 Hz velocity geophones. Fixed distribution consisting of lattice points of 12{times}12 was adopted as an observation method. In and around the lattice, a great number of explosions were carried out. The CDP stacking method and the method of migration after stacking were used for the data processing. The 3D structures of six horizons and five faults could be interpreted. Interpreted horizons were well agreed with the logging results. 3 figs.

  6. Quantitative elastic migration. Applications to 3D borehole seismic surveys; Migration elastique quantitative. Applications a la sismique de puits 3D

    Clochard, V.


    3D VSP imaging is nowadays a strategic requirement by petroleum companies. It is used to precise in details the geology close to the well. Because of the lack of redundancy and limited coverage in the data. this kind of technology is more restrictive than surface seismic which allows an investigation at a higher scale. Our contribution was to develop an elastic quantitative imagine (GRT migration) which can be applied to 3 components borehole dataset. The method is similar to the Kirchhoff migration using sophistical weighting of the seismic amplitudes. In reality. GRT migration uses pre-calculated Green functions (travel time. amplitude. polarization). The maps are obtained by 3D ray tracing (wavefront construction) in the velocity model. The migration algorithm works with elementary and independent tasks. which is useful to process different kind of dataset (fixed or moving geophone antenna). The study has been followed with validations using asymptotic analytical solution. The ability of reconstruction in 3D borehole survey has been tested in the Overthrust synthetic model. The application to a real circular 3D VSP shows various problems like velocity model building, anisotropy factor and the preprocessing (deconvolution. wave mode separation) which can destroy seismic amplitudes. An isotropic 3 components preprocessing of the whole dataset allows a better lateral reconstruction. The choice of a big migration aperture can help the reconstruction of strong geological dip in spite of migration smiles. Finally, the methodology can be applied to PS converted waves. (author)

  7. Extending field life in offshore Gulf of Mexico using 3-D seismic survey

    Bulling, T.P.; Olsen, R.S. (ARCO Oil and Gas Co., Houston, TX (USA))


    Discovered by ARCO in 1967, the High Island 24L field (lower Miocene) is located in the Texas state waters of the Gulf of Mexico. By 1986, the field had produced 320 billion ft{sup 3} of gas and 3.0 million bbl of oil. An engineering field study completed in 1986 showed the field was declining and would be unprofitable within 3 yr. Study of reservoir maps revealed three basin problems: volumetric reserve calculations were less than reserves produced, hydrocarbon-water contacts were inconsistent between wells thought to be in communication, and ultimate recoveries could not be accurately calculated. Attempts to remap the field with the existing two-dimensional seismic data base and well data proved unsuccessful. In 1986, a three-dimensional seismic survey was acquired in an effort to evaluate the true present worth and potential of the field. Remapping of 30 reservoir horizons began in 1987. The integration of detailed well log correlations tied to the dense grid of quality three dimensional seismic data improved the reservoir maps. These maps helped resolve engineering problems by defining the configuration of the reservoirs more accurately. Reservoir maps now closely match volumetrics, fluid contacts within reservoir units are consistent, and a better definition of extension well opportunities exists. The authors study resulted in six additional wells. These wells along with engineering modifications and operations cost containment resulted in the extension of the economic life of the High Island 24-L field by at least 8 yr.

  8. 3D elastic full waveform inversion: case study from a land seismic survey

    Kormann, Jean; Marti, David; Rodriguez, Juan-Esteban; Marzan, Ignacio; Ferrer, Miguel; Gutierrez, Natalia; Farres, Albert; Hanzich, Mauricio; de la Puente, Josep; Carbonell, Ramon


    Full Waveform Inversion (FWI) is one of the most advanced processing methods that is recently reaching a mature state after years of solving theoretical and technical issues such as the non-uniqueness of the solution and harnessing the huge computational power required by realistic scenarios. BSIT (Barcelona Subsurface Imaging Tools, includes a FWI algorithm that can tackle with very complex problems involving large datasets. We present here the application of this system to a 3D dataset acquired to constrain the shallow subsurface. This is where the wavefield is the most complicated, because most of the wavefield conversions takes place in the shallow region and also because the media is much more laterally heterogeneous. With this in mind, at least isotropic elastic approximation would be suitable as kernel engine for FWI. The current study explores the possibilities to apply elastic isotropic FWI using only the vertical component of the recorded seismograms. The survey covers an area of 500×500 m2, and consists in a receivers grid of 10 m×20 m combined with a 250 kg accelerated weight-drop as source on a displaced grid of 20 m×20 m. One of the main challenges in this case study is the costly 3D modeling that includes topography and substantial free surface effects. FWI is applied to a data subset (shooting lines 4 to 12), and is performed for 3 frequencies ranging from 15 to 25 Hz. The starting models are obtained from travel-time tomography and the all computation is run on 75 nodes of Mare Nostrum supercomputer during 3 days. The resulting models provide a higher resolution of the subsurface structures, and show a good correlation with the available borehole measurements. FWI allows to extend in a reliable way this 1D knowledge (borehole) to 3D.

  9. Land 3D-Seismic Data: Preprocessing Quality Control Utilizing Survey Design Specifications, Noise Properties, Normal Moveout, First Breaks, and Offset

    Abdelmoneam Raef


    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, Justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from n CO2-flood monitoring survey is used for demonstrating QC dlagnostles. An Important by-product of the QC workflow is establishing the number of layers for n refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data.

  10. Land 3D-seismic data: Preprocessing quality control utilizing survey design specifications, noise properties, normal moveout, first breaks, and offset

    Raef, A.


    The recent proliferation of the 3D reflection seismic method into the near-surface area of geophysical applications, especially in response to the emergence of the need to comprehensively characterize and monitor near-surface carbon dioxide sequestration in shallow saline aquifers around the world, justifies the emphasis on cost-effective and robust quality control and assurance (QC/QA) workflow of 3D seismic data preprocessing that is suitable for near-surface applications. The main purpose of our seismic data preprocessing QC is to enable the use of appropriate header information, data that are free of noise-dominated traces, and/or flawed vertical stacking in subsequent processing steps. In this article, I provide an account of utilizing survey design specifications, noise properties, first breaks, and normal moveout for rapid and thorough graphical QC/QA diagnostics, which are easy to apply and efficient in the diagnosis of inconsistencies. A correlated vibroseis time-lapse 3D-seismic data set from a CO2-flood monitoring survey is used for demonstrating QC diagnostics. An important by-product of the QC workflow is establishing the number of layers for a refraction statics model in a data-driven graphical manner that capitalizes on the spatial coverage of the 3D seismic data. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  11. Application of 3D reflection seismic methods to mineral exploration

    Urosevic, Milovan


    Seismic exploration for mineral deposits is often tested by excessively complex structures, regolith heterogeneity, intrinsically low signal to noise ratio, ground relief and accessibility. In brown fields, where the majority of the seismic surveys have been conducted, existing infrastructure, old pits and tailings, heavy machinery in operation, mine drainage and other mine related activities are further challenging the application of seismic methods and furthermore increasing its cost. It is therefore not surprising that the mining industry has been reluctant to use seismic methods, particularly 3D for mineral exploration, primarily due to the high cost, but also because of variable performance, and in some cases ambiguous interpretation results. However, shallow mineral reserves are becoming depleted and exploration is moving towards deeper targets. Seismic methods will be more important for deeper investigations and may become the primary exploration tool in the near future. The big issue is if we have an appropriate seismic "strategy" for exploration of deep, complex mineral reserves. From the existing case histories worldwide we know that massive ore deposits (VMS, VHMS) constitute the best case scenario for the application of 3D seismic. Direct targeting of massive ore bodies from seismic has been documented in several case histories. Sediment hosted deposits could, in some cases, can also produce a detectable seismic signature. Other deposit types such as IOCG and skarn are much more challenging for the application of seismic methods. The complexity of these deposits requires new thinking. Several 3D surveys acquired over different deposit types will be presented and discussed.


    Marc T. Eckels; David H. Suek; Denise H. Harrison; Paul J. Harrison


    Wind River Resources Corporation (WRRC) received a DOE grant in support of its proposal to acquire, process and interpret fifteen square miles of high-quality 3-D seismic data on non-allotted trust lands of the Uintah and Ouray (Ute) Indian Reservation, northeastern Utah, in 2000. Subsequent to receiving notice that its proposal would be funded, WRRC was able to add ten square miles of adjacent state and federal mineral acreage underlying tribal surface lands by arrangement with the operator of the Flat Rock Field. The twenty-five square mile 3-D seismic survey was conducted during the fall of 2000. The data were processed through the winter of 2000-2001, and initial interpretation took place during the spring of 2001. The initial interpretation identified multiple attractive drilling prospects, two of which were staked and permitted during the summer of 2001. The two initial wells were drilled in September and October of 2001. A deeper test was drilled in June of 2002. Subsequently a ten-well deep drilling evaluation program was conducted from October of 2002 through March 2004. The present report discusses the background of the project; design and execution of the 3-D seismic survey; processing and interpretation of the data; and drilling, completion and production results of a sample of the wells drilled on the basis of the interpreted survey. Fifteen wells have been drilled to test targets identified on the North Hill Creek 3-D Seismic Survey. None of these wildcat exploratory wells has been a dry hole, and several are among the best gas producers in Utah. The quality of the data produced by this first significant exploratory 3-D survey in the Uinta Basin has encouraged other operators to employ this technology. At least two additional 3-D seismic surveys have been completed in the vicinity of the North Hill Creek Survey, and five additional surveys are being planned for the 2004 field season. This project was successful in finding commercial oil, natural gas

  13. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon


    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  14. 3D Seismic Reflection Experiment over the Galicia Deep Basin

    Sawyer, D. S.; Jordan, B.; Reston, T. J.; Minshull, T. A.; Klaeschen, D.; Ranero, C.; Shillington, D. J.; Morgan, J. K.


    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. The 3D seismic box covered a variety of geologic features. The Peridotite Ridge (PR), is associated with the exhumation of upper mantle rocks to the seafloor during the final stage of the continental separation between the Galicia Bank and the Grand Banks of Newfoundland. The S reflector is present below most of the continental blocks under the deep Galicia basin. S is interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre and syn-rift sediments. Initial observations from stacked 3D seismic data, and samples of 2D pre-stack time migrated (PSTM) 3D seismic data show that the PR is elevated above the present seafloor in the South and not exposed through the seafloor in the North. The relative smoothness of the PR surface for the entire 20 km N-S contrasts with the more complex, shorter wavelength, faulting of the continental crustal blocks to the east. The PR does not seem to show offsets or any apparent internal structure. The PSTM dip lines show substantial improvement for the structures in the deep sedimentary basin East of the PR. These seem to extend the S reflector somewhat farther to the West. The migrated data show a substantial network of

  15. Estimation of subsurface structures in a Minami Noshiro 3D seismic survey region by seismic-array observations of microtremors; Minami Noshiro sanjigen jishin tansa kuikinai no hyoso kozo ni tsuite. Bido no array kansoku ni yoru suitei

    Okada, H.; Ling, S.; Ishikawa, K. [Hokkaido University, Sapporo (Japan); Tsuburaya, Y.; Minegishi, M. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Japan National Oil Corporation Technology Research Center has carried out experiments on the three-dimensional seismic survey method which is regarded as an effective means for petroleum exploration. The experiments were conducted at the Minami Noshiro area in Akita Prefecture. Seismometer arrays were developed in radii of 30 to 300 m at seven points in the three-dimensional seismic exploration region to observe microtremors. The purpose is to estimate S-wave velocities from the ground surface to the foundation by using surface waves included in microtremors. Estimation of the surface bed structure is also included in the purpose since this is indispensable in seismic exploration using the reflection method. This paper reports results of the microtremor observations and the estimation on S-wave velocities (microtremor exploration). One or two kinds of arrays with different sizes composed of seven observation points per area were developed to observe microtremors independently. The important point in the result obtained in the present experiments is that a low velocity bed suggesting existence of faults was estimated. It will be necessary to repeat experiments and observations in the future to verify whether this microtremor exploration method has that much of exploration capability. For the time being, however, interest is addressed to considerations on comparison with the result of 3D experiments using the reflection method. 4 refs., 7 figs.

  16. Software product for inversion of 3D seismic data

    Bown, J.


    ISIS3D Seismic Inversion removes the effect of the wavelet from seismic data, and in so doing determines model for the subsurface variation of a real physical parameter, acoustic impedance. The displays based on the results produced by ISIS3D allow improved lithologic interpretation for reservoir delineation. ISIS3D assists the interpreter with respect to: Resolution of thin layers; Variations in lithology; Porosity variations within a reservoir; and Structural interpretation. The ISIS inversion process is divided into four fundamental steps: Calibration of the well logs and derivation of acoustic impedance and reflectivity logs; Determination of the optimal wavelet for the seismic inversion algorithm; Construction of a prior acoustic impedance model for use by the seismic inversion algorithm; and Globally optimised, multi-trace seismic inversion. (EG)

  17. Pseudo-random data acquisition geometry in 3D seismic survey; Sanjigen jishin tansa ni okeru giji random data shutoku reiauto ni tsuite

    Minegishi, M.; Tsuburaya, Y. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Influence of pseudo-random geometry on the imaging for 3D seismic exploration data acquisition has been investigate using a simple model by comparing with the regular geometry. When constituting wave front by the interference of elemental waves, pseudo-random geometry data did not always provide good results. In the case of a point diffractor, the imaging operation, where the constituted wave front was returned to the point diffractor by the interference of elemental waves for the spatial alias records, did not always give clear images. In the case of multi point diffractor, good images were obtained with less noise generation in spite of alias records. There are a lot of diffractors in the actual geological structures, which corresponds to the case of multi point diffractors. Finally, better images could be obtained by inputting records acquired using the pseudo-random geometry rather than by inputting spatial alias records acquired using the regular geometry. 7 refs., 6 figs.

  18. Lossless compression of 3D seismic data using a horizon displacement compensated 3D lifting scheme

    Meftah, Anis; Antonini, Marc; Ben Amar, Chokri


    In this paper we present a method to optimize the computation of the wavelet transform for the 3D seismic data while reducing the energy of coefficients to the minimum. This allow us to reduce the entropy of the signal and so increase the compression ratios. The proposed method exploits the geometrical information contained in the seismic 3D data to optimize the computation of the wavelet transform. Indeed, the classic filtering is replaced by a filtering following the horizons contained in the 3D seismic images. Applying this approach in two dimensions permits us to obtain wavelets coefficients with lowest energy. The experiments show that our method permits to save extra 8% of the size of the object compared to the classic wavelet transform.

  19. 3D Seismic Imaging over a Potential Collapse Structure

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil


    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  20. Frozen Gaussian approximation for 3-D seismic wave propagation

    Chai, Lihui; Tong, Ping; Yang, Xu


    We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in 3-D earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a 3-D seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3-D waveguide model and smoothed Marmousi model, respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3-D crust-over-mantle model.

  1. 3D porosity prediction from seismic inversion and neural networks

    Leite, Emilson Pereira; Vidal, Alexandre Campane


    In this work, we address the problem of transforming seismic reflection data into an intrinsic rock property model. Specifically, we present an application of a methodology that allows interpreters to obtain effective porosity 3D maps from post-stack 3D seismic amplitude data, using measured density and sonic well log data as constraints. In this methodology, a 3D acoustic impedance model is calculated from seismic reflection amplitudes by applying an L1-norm sparse-spike inversion algorithm in the time domain, followed by a recursive inversion performed in the frequency domain. A 3D low-frequency impedance model is estimated by kriging interpolation of impedance values calculated from well log data. This low-frequency model is added to the inversion result which otherwise provides only a relative numerical scale. To convert acoustic impedance into a single reservoir property, a feed-forward Neural Network (NN) is trained, validated and tested using gamma-ray and acoustic impedance values observed at the well log positions as input and effective porosity values as target. The trained NN is then applied for the whole reservoir volume in order to obtain a 3D effective porosity model. While the particular conclusions drawn from the results obtained in this work cannot be generalized, such results suggest that this workflow can be applied successfully as an aid in reservoir characterization, especially when there is a strong non-linear relationship between effective porosity and acoustic impedance.

  2. Viewing seismic velocity anomalies with 3-D continuous Gaussian wavelets

    Bergeron, Stephen Y.; Vincent, Alain P.; Yuen, David A.; Tranchant, Benoît J. S.; Tchong, Catherine

    Seismic velocity anomalies (SVA) have traditionally been viewed as spatial objects. We present a new method for looking at SVA, based on a 3-D continuous Gaussian wavelet transform. Local spectra of the seismic anomalies are calculated with the wavelet transforms. Two proxy quantities based on wavelets are used for viewing SVA. These proxy quantities are the 3-D spatial distributions of (1.) the local maxima of the L2-norm of the seismic anomalies, E-max, and (2.) the associated local horizontal wavenumber k-max. The P1200 tomographical model [Zhou 1996] has been used for this purpose. Geographical distributions of E-max and k-max yield information which are not obvious from direct visual inspection of SVA. Some examples are the depth extent of the tectonic boundaries and the inference of a plume-like object beneath the transition zone under Iceland.

  3. Imaging fault zones using 3D seismic image processing techniques

    Iacopini, David; Butler, Rob; Purves, Steve


    Significant advances in structural analysis of deep water structure, salt tectonic and extensional rift basin come from the descriptions of fault system geometries imaged in 3D seismic data. However, even where seismic data are excellent, in most cases the trajectory of thrust faults is highly conjectural and still significant uncertainty exists as to the patterns of deformation that develop between the main faults segments, and even of the fault architectures themselves. Moreover structural interpretations that conventionally define faults by breaks and apparent offsets of seismic reflectors are commonly conditioned by a narrow range of theoretical models of fault behavior. For example, almost all interpretations of thrust geometries on seismic data rely on theoretical "end-member" behaviors where concepts as strain localization or multilayer mechanics are simply avoided. Yet analogue outcrop studies confirm that such descriptions are commonly unsatisfactory and incomplete. In order to fill these gaps and improve the 3D visualization of deformation in the subsurface, seismic attribute methods are developed here in conjunction with conventional mapping of reflector amplitudes (Marfurt & Chopra, 2007)). These signal processing techniques recently developed and applied especially by the oil industry use variations in the amplitude and phase of the seismic wavelet. These seismic attributes improve the signal interpretation and are calculated and applied to the entire 3D seismic dataset. In this contribution we will show 3D seismic examples of fault structures from gravity-driven deep-water thrust structures and extensional basin systems to indicate how 3D seismic image processing methods can not only build better the geometrical interpretations of the faults but also begin to map both strain and damage through amplitude/phase properties of the seismic signal. This is done by quantifying and delineating the short-range anomalies on the intensity of reflector amplitudes

  4. 3D Modelling of Seismically Active Parts of Underground Faults via Seismic Data Mining

    Frantzeskakis, Theofanis; Konstantaras, Anthony


    During the last few years rapid steps have been taken towards drilling for oil in the western Mediterranean sea. Since most of the countries in the region benefit mainly from tourism and considering that the Mediterranean is a closed sea only replenishing its water once every ninety years careful measures are being taken to ensure safe drilling. In that concept this research work attempts to derive a three dimensional model of the seismically active parts of the underlying underground faults in areas of petroleum interest. For that purpose seismic spatio-temporal clustering has been applied to seismic data to identify potential distinct seismic regions in the area of interest. Results have been coalesced with two dimensional maps of underground faults from past surveys and seismic epicentres, having followed careful reallocation processing, have been used to provide information regarding the vertical extent of multiple underground faults in the region of interest. The end product is a three dimensional map of the possible underground location and extent of the seismically active parts of underground faults. Indexing terms: underground faults modelling, seismic data mining, 3D visualisation, active seismic source mapping, seismic hazard evaluation, dangerous phenomena modelling Acknowledgment This research work is supported by the ESPA Operational Programme, Education and Life Long Learning, Students Practical Placement Initiative. References [1] Alves, T.M., Kokinou, E. and Zodiatis, G.: 'A three-step model to assess shoreline and offshore susceptibility to oil spills: The South Aegean (Crete) as an analogue for confined marine basins', Marine Pollution Bulletin, In Press, 2014 [2] Ciappa, A., Costabile, S.: 'Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea)', Marine Pollution Bulletin, vol. 84 (1-2), pp. 44-55, 2014 [3] Ganas, A., Karastathis, V., Moshou, A., Valkaniotis, S., Mouzakiotis

  5. Pliocene paleoenvironment evolution as interpreted from 3D-seismic data in the southern North Sea, Dutch offshore sector

    Kuhlmann, G.; Wong, T.E.


    A high-resolution 3D-seismic survey from the Dutch offshore sector has been interpreted and subsequently correlated with existing regional seismo-stratigraphic concepts derived from conventional 2D-seismic data sets. The interpreted 13 seismic units have been related to a newly established chrono-st

  6. Advanced computational tools for 3-D seismic analysis

    Barhen, J.; Glover, C.W.; Protopopescu, V.A. [Oak Ridge National Lab., TN (United States)] [and others


    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  7. Seismic random noise attenuation via 3D block matching

    Amani, Sajjad; Gholami, Ali; Javaheri Niestanak, Alireza


    The lack of signal to noise ratio increases the final errors of seismic interpretation. In the present study, we apply a new non-local transform domain method called "3 Dimensional Block Matching (3DBM)" for seismic random noise attenuation. Basically, 3DBM uses the similarities through the data for retrieving the amplitude of signal in a specific point in the f-x domain, and because of this, it is able to preserve discontinuities in the data such as fractures and faults. 3DBM considers each seismic profile as an image and thus it can be applied to both pre-stack and post-stack seismic data. It uses the block matching clustering method to gather similar blocks contained in 2D data into 3D groups in order to enhance the level of correlation in each 3D array. By applying a 2D transform and 1D transform (instead of a 3D transform) on each array, we can effectively attenuate the noise by shrinkage of the transform coefficients. The subsequent inverse 2D transform and inverse 1D transform yield estimates of all matched blocks. Finally, the random noise attenuated data is computed using the weighted average of all block estimates. We applied 3DBM on both synthetic and real pre-stack and post-stack seismic data and compared it with a Curvelet transform based denoising method which is one of the most powerful methods in this area. The results show that 3DBM method eventuates in higher signal to noise ratio, lower execution time and higher visual quality.

  8. Recovering physical property information from subduction plate boundaries using 3D full-waveform seismic inversion

    Bell, R. E.; Morgan, J. V.; Warner, M.


    Our understanding of subduction margin seismogenesis has been revolutionised in the last couple of decades with the discovery that the size of the seismogenic zone may not be controlled simply by temperature and a broad spectrum of seismic behaviour exists from stick-slip to stable sliding. Laboratory and numerical experiments suggest that physical properties, particularly fluid pressure may play an important role in controlling the seismic behaviour of subduction margins. Although drilling can provide information on physical properties along subduction thrust faults at point locations at relatively shallow depths, correlations between physical properties and seismic velocity using rock physics relationships are required to resolve physical properties along the margin and down-dip. Therefore, high resolution seismic velocity models are key to recovering physical property information at subduction plate boundaries away from drill sites. 3D Full waveform inversion (FWI) is a technique pioneered by the oil industry to obtain high-resolution high-fidelity models of physical properties in the sub-surface. 3D FWI involves the inversion of low-frequency (>2 to noise and inverted the windowed transmitted arrivals only. We also ran a suite of resolution tests across the model. The results show that 3D FWI of conventionally collected 3D seismic data across the Muroto Basin would be capable of resolving variations in P-wave velocity along the décollement of the order of half the seismic wavelength at the plate boundary. This is a significant improvement on conventional travel-time tomography which resolves to the Fresnel width. In this presentation we will also postulate on the optimal 3D FWI experiment design for the next generation of 3D seismic surveys across subduction margins as a guide for those embarking on new data collection.

  9. Identifying High Potential Well Targets with 3D Seismic and Mineralogy

    Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Seismic reflection the primary tool used in petroleum exploration and production, but use in geothermal exploration is less standard, in part due to cost but also due to the challenges in identifying the highly-permeable zones essential for economic hydrothermal systems [e.g. Louie et al., 2011; Majer, 2003]. Newer technology, such as wireless sensors and low-cost high performance computing, has helped reduce the cost and effort needed to conduct 3D surveys. The second difficulty, identifying permeable zones, has been less tractable so far. Here we report on the use of seismic attributes from a 3D seismic survey to identify and map permeable zones in a hydrothermal area.

  10. Advancing New 3D Seismic Interpretation Methods for Exploration and Development of Fractured Tight Gas Reservoirs

    James Reeves


    In a study funded by the U.S. Department of Energy and GeoSpectrum, Inc., new P-wave 3D seismic interpretation methods to characterize fractured gas reservoirs are developed. A data driven exploratory approach is used to determine empirical relationships for reservoir properties. Fractures are predicted using seismic lineament mapping through a series of horizon and time slices in the reservoir zone. A seismic lineament is a linear feature seen in a slice through the seismic volume that has negligible vertical offset. We interpret that in regions of high seismic lineament density there is a greater likelihood of fractured reservoir. Seismic AVO attributes are developed to map brittle reservoir rock (low clay) and gas content. Brittle rocks are interpreted to be more fractured when seismic lineaments are present. The most important attribute developed in this study is the gas sensitive phase gradient (a new AVO attribute), as reservoir fractures may provide a plumbing system for both water and gas. Success is obtained when economic gas and oil discoveries are found. In a gas field previously plagued with poor drilling results, four new wells were spotted using the new methodology and recently drilled. The wells have estimated best of 12-months production indicators of 2106, 1652, 941, and 227 MCFGPD. The latter well was drilled in a region of swarming seismic lineaments but has poor gas sensitive phase gradient (AVO) and clay volume attributes. GeoSpectrum advised the unit operators that this location did not appear to have significant Lower Dakota gas before the well was drilled. The other three wells are considered good wells in this part of the basin and among the best wells in the area. These new drilling results have nearly doubled the gas production and the value of the field. The interpretation method is ready for commercialization and gas exploration and development. The new technology is adaptable to conventional lower cost 3D seismic surveys.

  11. Estimating the detectability of faults in 3D-seismic data - A valuable input to Induced Seismic Hazard Assessment (ISHA)

    Goertz, A.; Kraft, T.; Wiemer, S.; Spada, M.


    In the past several years, some geotechnical operations that inject fluid into the deep subsurface, such as oil and gas development, waste disposal, and geothermal energy development, have been found or suspected to cause small to moderate sized earthquakes. In several cases the largest events occurred on previously unmapped faults, within or in close vicinity to the operated reservoirs. The obvious conclusion drawn from this finding, also expressed in most recently published best practice guidelines and recommendations, is to avoid injecting into faults. Yet, how certain can we be that all faults relevant to induced seismic hazard have been identified, even around well studied sites? Here we present a probabilistic approach to assess the capability of detecting faults by means of 3D seismic imaging. First, we populate a model reservoir with seed faults of random orientation and slip direction. Drawing random samples from a Gutenberg-Richter distribution, each seed fault is assigned a magnitude and corresponding size using standard scaling relations based on a circular rupture model. We then compute the minimum resolution of a 3D seismic survey for given acquisition parameters and frequency bandwidth. Assuming a random distribution of medium properties and distribution of image frequencies, we obtain a probability that a fault of a given size is detected, or respectively overlooked, by the 3D seismic. Weighting the initial Gutenberg-Richter fault size distribution with the probability of imaging a fault, we obtain a modified fault size distribution in the imaged volume from which we can constrain the maximum magnitude to be considered in the seismic hazard assessment of the operation. We can further quantify the value of information associated with the seismic image by comparing the expected insured value loss between the image-weighted and the unweighted hazard estimates.




    Full Text Available Steganography is the science that involves communicating secret data in an appropriate multimedia carrier, eg., images, audio, and video files. The remarkable growth in computational power, increase in current security approaches and techniques are often used together to ensures security of the secret message. Steganography’s ultimate objectives, which are capacity and invisibility, are the main factors that separate it from related techniques. In this paper we focus on 3D models of steganography and conclude with some review analysis of high capacity data hiding and low-distortion 3D models.

  13. A 3D Seismic Case: Shooting around a CCS Drill Site

    Wang, C.


    The reduction of carbon dioxide emission to lessen the global warming has become an important international issue in recent years. The CCS technique (Carbon-dioxide Capture and Storage) is among the most recommended methods. The capture of CO2 during its manufacturing process in the electric power plant and storing in the adjacent area is considered to be an economical and feasible choice. This research uses the 2D and 3D high-resolution seismic reflection method to investigate possible CCS sites along the coast in Taiwan. The site is near an electric power plant and is planned to be a CCS experiment laboratory. The main objective is to detect the proper geologic structure and to prepare the baseline data for the future CO2 monitoring. The size of the high-resolution method applied in this study is much smaller than that used in the oil exploration. The obtained high quality and high resolution data can resolve very detailed structures. The survey parameters in 2D are 4m interval, 240 channels. The bin size in 3D seismic is 8m x 4m, 288 channels. Both 2D and 3D used the Minivibe as a source with 40Hz geophones, and having an average of 30 folds. The 3D seismic survey was conducted around the planned drill site. A surrounding type of 3D data acquisition was taken with sources at outside and receivers at the center. Such a deployment design is quite suitable for the drill site investigation. The structural layer as thin as 4m is able to be detected even under a depth of 3000m. Such a high resolution allows us not only to estimate the structure, but also able to monitor the migration of CO 2 after storage. The results of seismic survey after comparing with a nearby borehole data show that : 1) the caprock is Chinshui shale which is at a depth of 880m to 1000m with a thickness about 120m, 2) the Nanchuang formation and Kueichulin formation with high porosity can be proper reservoir layers which are located at the depth between 1000m to 1700m. In conclusion, this site

  14. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca


    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.




    3D seismic prospecting in mining areas of Xieqiao Colliery is a successfulmodel for an advancement from the resource prospecting to mining prospecting stagein coal fields. Its results have proved that faults with a throw of 5-10 m can be detected in an area with good seismogeologic conditions by using 3D seismic technique.Detection of underground tunnels for the first time utilizing 3D seismic data indicates that subsided columns, gotten and mine goaf can be detected using 3D seismic technique, so it has a broad applied prospect.

  16. A workflow for sub-/seismic structure and deformation quantification of 3-D reflection seismic data sets across different scales

    Krawczyk, C.M.; Lohr, T.; Oncken, O. [GFZ Potsdam (Germany); Tanner, D.C. [Goettingen Univ. (Germany). GZG; Endres, H. [RWTH Aachen (Germany)]|[TEEC, Isernhagen (Germany); Trappe, H.; Kukla, P. [TEEC, Isernhagen (Germany)


    The evolution of a sedimentary basin is mostly affected by deformation. Large-scale, subsurface deformation is typically identified by seismic data, sub-seismic small-scale fractures by well data. Between these two methods, we lack a deeper understanding of how deformation scales. We analysed a 3-D reflection seismic data set in the North German Basin, in order to determine the magnitude and distribution of deformation and its accumulation in space and time. A five-step approach is introduced for quantitative deformation and fracture prediction. An increased resolution of subtle tectonic lineaments is achieved by coherency processing, allowing to unravel the kinematics in the North German Basin from structural interpretation. Extensional events during basin initiation and later inversion are evident. 3-D retrodeformation shows major-strain magnitudes between 0-20% up to 1.3 km away from a fault trace, and variable deviations of associated extensional fractures. Good correlation of FMI data, strain distribution from retro-deformation and from geostatistic tools (see also Trappe et al., this volume) allows the validation of the results and makes the prediction of small-scale faults/fractures possible. The temporal component will be gained in the future by analogue models. The suggested workflow is applicable to reflection seismic surveys and yields in great detail both the tectonic history of a region as well as predictions for hydrocarbon plays or deep groundwater or geothermal reservoirs. (orig.)

  17. Initial Look at 3d Seismic Data Acquired Over the Galicia Margin

    Sawyer, D. S.; Reston, T. J.; Shillington, D. J.; Minshull, T. A.; Klaeschen, D.; Morgan, J. K.


    In June thru September, 2013, a 3D reflection and long offset seismic experiment was conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. The long offset seismic experiment included 72 short period OBS's deployed below the 3D reflection survey box. Most of the instruments recorded all the shots from the airgun array shots. A few of the instruments were deployed twice, once to densify the instruments on a single profile and then to be moved into the full array. Finally, 6 of the OBS's were deployed on a profile extending 90 km to the west of the 3D box, in order to use combined MCS and OBS data to locate the boundary between the oceanic crust and exhumed upper mantle. The 3D seismic box covered a variety of geologic features including the Peridotite Ridge (PR) associated with the exhumation of upper mantle rocks to the seafloor, the S reflector interpreted to be a low-angle detachment fault formed late in the rifting process, and a number of rotated fault block basins and ranges containing pre- and syn-rift sediments. Initial observations, based only on 2D seismic dip lines (albeit 400 m apart), show the along strike variation of the PR: ~1050 m higher than adjacent basement in the South of the 3D box and much increased in size, ~2200 m high in the North. Some cross-sections of the PR show apparent internal structure that may help identify the emplacement mechanism of the feature and its relationship with the boundary between rifted continental crust blocks and exhumed upper mantle rocks. To the immediate East and West of the PR there are strong negative

  18. Seismic surveying for coal mine planning

    Zhou, B. [CMTE/CSIRO Exploration and Mining, Kenmore, Qld. (Australia)


    More and more coal in Australia is extracted by underground mining methods especially by longwall mining. These methods can be particularly sensitive to relatively small-scale structural discontinuities and variations in roof and floor rock character. Traditionally, information on these features has been obtained through drilling. However, this is an expensive process and its relevance is limited to the immediate neighbourhood of the boreholes. Seismic surveying, especially by 3D seismic, is an alternative tool for geological structure delineation. It is one of the most effective geophysical methods available for identification of geological structures such as faults, folds, washouts, seam splits and thickness changes which are normally associated with potential mining hazards. Seismic data even can be used for stratigraphic identification. The information extracted from seismic data can be integrated into mine planning and design. In this paper, computer aided interpretation techniques for maximising the information from seismic data are demonstrated and the ability of seismic reflection methods to resolve localised geological features illustrated. Both synthetic and real seismic data obtained in recent 2D and 3D seismic surveys from Australian coal mines are used. 7 refs., 9 figs.

  19. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    Di, Haibin; Gao, Dengliang


    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  20. Application of 3 D seismic technology in Puesto Hernandez field, Neuquen Basin, Argentina

    Groba, C.; Mendoza, E.; Musri, D.; Quinteros, J.; Sosa, H.


    Puesto Hernandez field, in the Neuquen Basin, Argentina, provides an excellent opportunity to assess the effects of modern 3D Seismic technologies on mature field-development strategies. Perez Company S A is conducting a waterflood project in the Avile Member of the Agrio Formation. A 3D seismic survey conducted in late 1995 resulted in an improved geological model of the Avile Member. This model allowed a better definition of the reservoir limits and structure and explained the presence of water oil contacts where earlier interpretations failed to predict them. A seismic attribute analysis enhanced the areal distribution of h{theta} and helped to detect the location of a gas cap. Using this information an outpost well as driller which revealed a new oil production zone where two horizontal well are now in production. This geological model was input in a numerical simulation model that helped to characterize faults as sealing, partial sealing and channelling, which explained the existence of early breakthroughs and yielded improvements in the design of the injection patterns. (author)

  1. 3-D seismic velocity and attenuation structures in the geothermal field

    Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Syahputra, Ahmad [Geophyisical Engineering, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia); Fatkhan,; Sule, Rachmat [Applied Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jalan Ganesha No. 10 Bandung, 40132 (Indonesia)


    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  2. 3-D seismic velocity and attenuation structures in the geothermal field

    Nugraha, Andri Dian; Syahputra, Ahmad; Fatkhan, Sule, Rachmat


    We conducted delay time tomography to determine 3-D seismic velocity structures (Vp, Vs, and Vp/Vs ratio) using micro-seismic events in the geothermal field. The P-and S-wave arrival times of these micro-seismic events have been used as input for the tomographic inversion. Our preliminary seismic velocity results show that the subsurface condition of geothermal field can be fairly delineated the characteristic of reservoir. We then extended our understanding of the subsurface physical properties through determining of attenuation structures (Qp, Qs, and Qs/Qp ratio) using micro-seismic waveform. We combined seismic velocities and attenuation structures to get much better interpretation of the reservoir characteristic. Our preliminary attanuation structures results show reservoir characterization can be more clearly by using the 3-D attenuation model of Qp, Qs, and Qs/Qp ratio combined with 3-D seismic velocity model of Vp, Vs, and Vp/Vs ratio.

  3. Analysis of the repeatability of time-lapse 3d vsp multicomponent surveys, delhi field

    Carvalho, Mariana Fernandes de

    Delhi Field is a producing oil field located in northeastern Louisiana. In order to monitor the CO2 sweep efficiency, time-lapse 3D seismic data have been acquired in this area. Time-lapse studies are increasingly used to evaluate changes in the seismic response induced by the production of hydrocarbons or the injection of water, CO2 or steam into a reservoir. A 4D seismic signal is generated by a combination of production and injection effects within the reservoir as well as non-repeatability effects. In order to get reliable results from time-lapse seismic methods, it is important to distinguish the production and injection effects from the non-repeatability effects in the 4D seismic signal. Repeatability of 4D land seismic data is affected by several factors. The most significant of them are: source and receiver geometry inaccuracies, differences in seismic sources signatures, variations in the immediate near surface and ambient non-repeatable noise. In this project, two 3D multicomponent VSP surveys acquired in Delhi Field were used to quantify the relative contribution of each factor that can affect the repeatability in land seismic data. The factors analyzed in this study were: source and receiver geometry inaccura- cies, variations in the immediate near surface and ambient non-repeatable noise. This study showed that all these factors had a significant impact on the repeatability of the successive multicomponent VSP surveys in Delhi Field. This project also shows the advantages and disadvantages in the use of different repeata- bility metrics, normalized-root-mean-square (NRMS) difference and signal-to-distortion ratio (SDR) attribute, to evaluate the level of seismic repeatability between successive time-lapse seismic surveys. It is observed that NRMS difference is greatly influenced by time-shifts and that SDR attribute combined with the time-shift may give more distinct and representative repeatability information than the NRMS difference.

  4. 3D seismic interpretation-Norte de Paria, offshore Eastern Venezuela

    Ramirez de Arellano, R.; Bommel, L. van; Riart, F.; Gil, J. (Exxon, Caracas (Venezuela))


    During 1991 a 1600 km[sup 2] 3D seismic survey was acquired for the Cristobal Colon Project, a joint venture of Lagoven (33%), Shell (30%), Exxon (29%) and Mitsubishi (8%). The objective is to evaluate the volumes of gas in the Mejillones, Patao, Dragon, and Rio Caribe gas fields, located north of the Paria Peninsula in offshore eastern Venezuela, in order to establish the viability of an LNG project. This paper summarizes the methodology and results of the interpretation of the 3D survey and its implications for understanding the regional geology and the hydrocarbon accumulations. The depositional geometry and continuity of the reservoir units has been analyzed using the amplitude response of the gas-bearing reservoirs. In combination with sequence stratigraphic concepts, the depositional environment of specific reservoir units can be interpreted and placed within the contect of a geological basin model. The value of this approach for development planning will be discussed. In addition, the paper will summarize the use of various geophysical techniques to delineate reservoirs and to determine petrophysical properties within these complex fields. Seismic inversion, forward modeling, and AVO studies have been evaluated. The relative merits of each will be discussed.

  5. Assessing a 3D smoothed seismicity model of induced earthquakes

    Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan


    As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.

  6. A 3D Tetrahedral Mesh Generator for Seismic Problems

    Kononov, A.; Minisini, S.; Zhebel, E.; Mulder, W.A.


    Finite-element modelling of seismic wave propagation on tetrahedra requires meshes that accurately follow interfaces between impedance contrasts or surface topography and have element sizes proportional to the local velocity. We explain a mesh generation approach by example. Starting from a finite-d

  7. Deep 3-D seismic reflection imaging of Precambrian sills in the crystalline crust of Alberta, Canada

    Welford, Joanna Kim


    .1 s TWIT (approx. 15 km depth). Data sections outline a 3-D reflective sheet dipping to the southeast. From polarity comparisons from within the sedimentary sequence, the reflective signature of the deep body is inferred to result from higher density and higher velocity material than the surrounding host rocks, thus reinforcing the previous interpretation of the deep reflections as resulting from dolerite sills intruded into gneissic crystalline basement. Simple 1-D forward modelling results reveal that the thickness of the sheet is between 50 and 100 m throughout the survey region. From 3-D Kirchhoff forward modelling, the reflective sheet is detected between 11 and 16 km depth along the northwestern edge of the survey area. The absence of the Winagami reflections, and basement reflectivity in general, in the southeast of the survey region coincides with a positive aeromagnetic anomaly inferred to be caused by magmatic rocks. The presence of the magmatic rocks may have either influenced the geometry of the intrusion of the sills or overprinted their reflective signature, dependent upon the relative timing of emplacement of the two features. Both sill complexes appear to have been intruded horizontally into the crust from multiple injections of magma during a period of tectonic compression. The emplacement of these sills may have strengthened the crust and provided the rheological contrasts needed to initiate the formation of Paleozoic cratonic arches like the Peace River Arch of northwestern Alberta and the Montania Arch of southern Alberta. The results from this thesis represent the first opportunity in North America to examine upper-middle crustal structure to depths of approximately 20 km using industry-style 3-D seismic reflection techniques.

  8. Application Results of 3-D Seismic Exploration Technology in Coal Mines

    SUN Shenglin; WU Xizun


    This paper briefly introduces the development and present situation of China's coal seismic exploration. It focuses on analyzing the important functions of 3-D seismic exploration technology in the designing and production of coal mines, and also the results of its application.

  9. Assessing and improving seismic tomography models using 3-D numerical wave simulations. Geologica Ultraiectina (308)

    Bozdag, H.E.


    We have reached a stage in seismic tomography where further refinements with classical techniques become very difficult. Advances in numerical methods and computational facilities are providing new opportunities in seismic tomography to enhance the resolution of tomographic mantle images. 3-D numeri

  10. BGP Started Shooting Its Largest Oversea Seismic Survey


    @@ At 5 a.m. on November 1, 2005 of Beijing time, BGP (Bureau of Geophysical Prospecting)formally began shooting the S-51 3D seismic acquisition project in Saudi Arabia, its largest oversea seismic survey project to date. At the same time, the SRAK 2D seismic survey project was also started in the country. These two projects mark the construction of BGP's another large oversea production base.

  11. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon


    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  12. Application of Catastrophe Theory in 3D Seismic Data Interpretation of Coal Mine

    ZHAO Mu-hua; YANG Wen-qiang; CUI Hui-xia


    In order to detect fault exactly and quickly, cusp catastrophe theory is used to interpret 3D coal seismic data in this paper. By establishing a cusp model, seismic signal is transformed into standard form of cusp catastrophe and catastrophe parameters, including time-domain catastrophe potential, time-domain catastrophe time, frequency-domain catastrophe potential and frequency- domain degree, are calculated. Catastrophe theory is used in 3D seismic structural interpretation in coal mine. The results show that the position of abnormality of the catastrophe parameter profile or curve is related to the location of fault, and the cusp catastrophe theory is effective to automatically pick up geology information and improve the interpretation precision in 3D seismic data.

  13. "Intelligent design" of a 3D reflection survey for the SAFOD drill-hole site

    Alvarez, G.; Hole, J. A.; Klemperer, S. L.; Biondi, B.; Imhof, M.


    SAFOD seeks to better understand the earthquake process by drilling though the San Andreas fault (SAF) to sample an earthquake in situ. To capitalize fully on the opportunities presented by the 1D drill-hole into a complex fault zone we must characterize the surrounding 3D geology at a scale commensurate with the drilling observations, to provide the structural context to extrapolate 1D drilling results along the fault plane and into the surrounding 3D volume. Excellent active-2D and passive-3D seismic observations completed and underway lack the detailed 3D resolution required. Only an industry-quality 3D reflection survey can provide c. 25 m subsurface sample-spacing horizontally and vertically. A 3D reflection survey will provide subsurface structural and stratigraphic control at the 100-m level, mapping major geologic units, structural boundaries, and subsurface relationships between the many faults that make up the SAF fault system. A principal objective should be a reflection-image (horizon-slice through the 3D volume) of the near-vertical fault plane(s) to show variations in physical properties around the drill-hole. Without a 3D reflection image of the fault zone, we risk interpreting drilled anomalies as ubiquitous properties of the fault, or risk missing important anomalies altogether. Such a survey cannot be properly costed or technically designed without major planning. "Intelligent survey design" can minimize source and receiver effort without compromising data-quality at the fault target. Such optimization can in principal reduce the cost of a 3D seismic survey by a factor of two or three, utilizing the known surface logistic constraints, partially-known sub-surface velocity field, and the suite of scientific targets at SAFOD. Our methodology poses the selection of the survey parameters as an optimization process that allows the parameters to vary spatially in response to changes in the subsurface. The acquisition geometry is locally optimized for

  14. Analysis of Paleokarst Sinkholes in the Arkoma Basin using 3-D Seismic

    Kumbalek, Michael

    Paleokarst features are important to understand, both with regards to research geologists and to the petroleum industry. In terms of geology, understanding paleokarst features can yield more information about the depositional and surface environments of past times, and how diagenetic alteration affected the environment during the formation of karst features. In the petroleum industry, paleokarst features can have positive or negative consequence resulting in a potential reservoir with enhanced porosity due to the paleokarst features, or as a geo-hazard to prepare for or avoid when drilling. Inspired by issues faced when drilling in the Ft. Worth basin, this study utilizes multiple 3-D seismic surveys and subsurface well control to map paleokarsts within the Viola Limestone in the Arkoma Basin. Calculated seismic attribute volumes used to identify paleokarst sinkholes within the Viola Group include coherency and curvature attributes. ImageJ software was used to aid in counting and measuring paleokarst sinkholes identified using seismic mapping, coherency, and curvature attribute volumes. In addition to mapping, a cumulative distribution plot was produced from the diameters of the seismically mapped paleokarst sinkholes, allowing for an estimate to be made as to what the total amount of paleokarst sinkholes are within the study area. The methods detailed in this study proved to be effective in mapping and analyzing paleokarst sinkholes within the Viola Group. The paleokarst sinkholes mapped were determined to have been formed on the outer edge of the Southern Oklahoma aulacogen, as a result of the Sylvan/Viola unconformity. In addition to this, it has been determined that these paleokarst sinkholes are linked in formation to visually similar paleokarst sinkholes located in the Ellenburger Group in the Fort Worth Basin.

  15. Interpretation of a 3D Seismic-Reflection Volume in the Basin and Range, Hawthorne, Nevada

    Louie, J. N.; Kell, A. M.; Pullammanappallil, S.; Oldow, J. S.; Sabin, A.; Lazaro, M.


    A collaborative effort by the Great Basin Center for Geothermal Energy at the University of Nevada, Reno, and Optim Inc. of Reno has interpreted a 3d seismic data set recorded by the U.S. Navy Geothermal Programs Office (GPO) at the Hawthorne Army Depot, Nevada. The 3d survey incorporated about 20 NNW-striking lines covering an area of approximately 3 by 10 km. The survey covered an alluvial area below the eastern flank of the Wassuk Range. In the reflection volume the most prominent events are interpreted to be the base of Quaternary alluvium, the Quaternary Wassuk Range-front normal fault zone, and sequences of intercalated Tertiary volcanic flows and sediments. Such a data set is rare in the Basin and Range. Our interpretation reveals structural and stratigraphic details that form a basis for rapid development of the geothermal-energy resources underlying the Depot. We interpret a map of the time-elevation of the Wassuk Range fault and its associated splays and basin-ward step faults. The range-front fault is the deepest, and its isochron map provides essentially a map of "economic basement" under the prospect area. There are three faults that are the most readily picked through vertical sections. The fault reflections show an uncertainty in the time-depth that we can interpret for them of 50 to 200 ms, due to the over-migrated appearance of the processing contractor’s prestack time-migrated data set. Proper assessment of velocities for mitigating the migration artifacts through prestack depth migration is not possible from this data set alone, as the offsets are not long enough for sufficiently deep velocity tomography. The three faults we interpreted appear as gradients in potential-field maps. In addition, the southern boundary of a major Tertiary graben may be seen within the volume as the northward termination of the strong reflections from older Tertiary volcanics. Using a transparent volume view across the survey gives a view of the volcanics in full

  16. Cerro Negro field, Venezuela: geological images from a high resolution 3-D survey

    Woller, Kevin L. [Mobil Technology Co. (WEC)


    Following a pilot 3-D survey, Petrolera Cerro Negro acquired and processed a 3-D dynamite survey over the Cerro Negro Field in Venezuela. We designed the survey to achieve high frequency imaging at the relatively shallow (< 1000 m) objectives in the Morichal formation. The data exhibits usable frequencies in the 10-120 Hz range after migration. The results of the survey have satisfied the original objective of imaging the faults and basement structure in the field. Use of continuity measurements on the data has resulted in a photographic quality image of the faults at the basement level. The pattern of the faults indicates an unexpected degree of complexity, indicating a richer structural history than originally thought. The continuity data also shows depositional details in the Morichal, which in accordance with geological history of the area. The operatorship is currently in the process of drilling many horizontal development wells. The patterns of the wells bores and variations in the rock types present a challenge to the usage of the 3-D seismic. The operatorship is working to raise the understanding and utility of the seismic data to another plateau. (author)

  17. Astor Pass Seismic Surveys Preliminary Report

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Faulds, James; Eisses, Amy; Kell, Annie; Frary, Roxanna; Kent, Graham


    In collaboration with the Pyramid Lake Paiute Tribe (PLPT), the University of Nevada, Reno (UNR) and Optim re-processed, or collected and processed, over 24 miles of 2d seismic-reflection data near the northwest corner of Pyramid Lake, Nevada. The network of 2d land surveys achieved a near-3d density at the Astor Pass geothermal prospect that the PLPT drilled during Nov. 2010 to Feb. 2011. The Bureau of Indian Affairs funded additional seismic work around the Lake, and an extensive, detailed single-channel marine survey producing more than 300 miles of section, imaging more than 120 ft below the Lake bottom. Optim’s land data collection utilized multiple heavy vibrators and recorded over 200 channels live, providing a state-of-the-art reflection-refraction data set. After advanced seismic analysis including first-arrival velocity optimization and prestack depth migration, the 2d sections show clear fault-plane reflections, in some areas as deep as 4000 ft, tying to distinct terminations of the mostly volcanic stratigraphy. Some lines achieved velocity control to 3000 ft depth; all lines show reflections and terminations to 5000 ft depth. Three separate sets of normal faults appear in an initial interpretation of fault reflections and stratigraphic terminations, after loading the data into the OpendTect 3d seismic visualization system. Each preliminary fault set includes a continuous trace more than 3000 ft long, and a swarm of short fault strands. The three preliminary normal-fault sets strike northerly with westward dip, northwesterly with northeast dip, and easterly with north dip. An intersection of all three fault systems documented in the seismic sections at the end of Phase I helped to locate the APS-2 and APS-3 slimholes. The seismic sections do not show the faults connected to the Astor Pass tufa spire, suggesting that we have imaged mostly Tertiary-aged faults. We hypothesize that the Recent, active faults that produced the tufa through hotspring

  18. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Bjorn N. P. Paulsson


    level receiver array can be used to obtain 3D 9C data. These 9C borehole seismic data provide both compressional wave and shear wave information that can be used for quantitative prediction of rock and pore fluid types. The 400-level borehole receiver array has been deployed successfully in a number of oil and gas wells during the course of this project, and each survey has resulted in marked improvements in imaging of geologic features that are critical for oil or gas production but were previously considered to be below the limits of seismic resolution. This added level of reservoir detail has resulted in improved well placement in the oil and gas fields that have been drilled using the Massive 3D VSP{reg_sign} images. In the future, the 400-level downhole seismic receiver array is expected to continue to improve reservoir characterization and drilling success in deep and complex oil and gas reservoirs.

  19. 3D P-wave velocity structure of the deep Galicia rifted margin: A first analysis of the Galicia 3D wide-angle seismic dataset

    Bayrakci, Gaye; Minshull, Timothy A.; Davy, Richard G.; Karplus, Marianne S.; Kaeschen, Dirk; Papenberg, Cord; Krabbenhoeft, Anne; Sawyer, Dale; Reston, Timothy J.; Shillington, Donna J.; Ranero, César R.


    Galicia 3D, a reflection-refraction and long offset seismic experiment was carried out from May through September 2013, at the Galicia rifted margin (in the northeast Atlantic Ocean, west of Spain) as a collaboration between US, UK, German and Spanish groups. The 3D multichannel seismic acquisition conducted by R/V Marcus Langseth covered a 64 km by 20 km (1280 km2) zone where the main geological features are the Peridotite Ridge (PR), composed of serpentinized peridotite and thought be upper mantle exhumed to the seafloor during rifting, and the S reflector which has been interpreted to be a low angle detachment fault overlain by fault bounded, rotated, continental crustal blocks. In the 3D box, two airgun arrays of 3300 were fired alternately (in flip-flop configuration) every 37.5 m. All shots are recorded by 44 short period four component ocean bottom seismometers (OBS) and 26 ocean bottom hydrophones (OBH) deployed and recovered by R/V Poseidon, as well as four 6 km hydrophone streamers with 12.5 m channel spacing towed by R/V Marcus Langseth. We present the preliminary results of the first arrival time tomography study which is carried out with a subset of the wide-angle dataset, in order to generate a 3D P-wave velocity volume for the entire depth sampled by the reflection data. After the relocation of OBSs and OBHs, an automatic first-arrival time picking approach is applied to a subset of the dataset, which comprises more than 5.5 million source-receiver pairs. Then, the first-arrival times are checked visually, in 3-dimensions. The a priori model used for the first-arrival time tomography is built up using information from previous seismic surveys carried out at the Galicia margin (e.g. ISE, 1997). The FAST algorithm of Zelt and Barton (1998) is used for the first-arrival time inversion. The 3D P-wave velocity volume can be used in interpreting the reflection dataset, as a starting point for migration, to quantify the thinning of the crustal layers

  20. Cross-Correlating 2D and 3D Galaxy Surveys

    Passaglia, Samuel [Chicago U., KICP; Manzotti, Alessandro [Chicago U., KICP; Dodelson, Scott [Fermilab


    Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors of ${\\sim}1.2$ to ${\\sim}1.8$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of ${\\sim}2$ to ${\\sim}12$ over internal photo-$z$ reconstructions.

  1. 3D seismic survey in Honjo, Akita. Problems and struggles in acquisition and processing; Akitaken Honjo koku ni okeru sanjigen jishin tansa. Genba sagyo to data shori ni okeru mondaiten

    Imahori, S.; Kotera, Y.; Nakanishi, T. [Japan Energy Development Co. Ltd., Tokyo (Japan)


    Honjo mining area where investigations are conducted is hilly and has a complicated terrain with gas pipes buried in the ground just under the access road disabling the proper positioning of shock-generating large excavators or vibrators. Auger`s shallow hole shooting method is used in this survey to execute blastings at 639 points. In this method using charge depths of 4m, different from the conventional method using deeper charge depths (20-25m), surface waves prevail in the shot records giving rise to a new problem of removing them in the stage of data processing. The 2D filter that is a powerful tool in 2D data processing is not available in a 3D-survey where the tracing intervals are irregular in the shot records. In the effort of this time, a window length as a parameter in the direction of time is specified, and the F-X dip filtering method is employed in which any event that linearly continues beyond a certain number of traces in the said window is eliminated as a linear noise. It is recommended that the weighting function be changed in the direction of space since surface wave velocities are different at different locations. 1 fig., 1 tab.

  2. Application of 3D Seismic Data Inversion to Coal Mining Prospecting


    Seismic inversion is one of the most important methods for lithological prospecting . Seismic data with low resolution is converted into impedance data of high resolution which can reflect the geological structure by inversion The inversion technique of 3D seismic data is discussed from both methodological and theoretical aspects, and the inversion test is also carried out using actual logging data. The result is identical with the measured data obtained from roadway of coal mine. The field tests and research results indicate that this method can provide more accurate data for identifying thin coal seam and minor faults.

  3. 3D seismic experiment in difficult area in Japan; Kokunai nanchiiki ni okeru sanjigen jishin tansa jikken

    Minegishi, M.; Nakagami, K.; Tanaka, H. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Difficult area in this context means an exploration-difficult area supposed to store oil/gas but retarded in exploration for the lack of knowledge about the geological structure due to poor quality of available seismic survey records. Discussed in this paper is a survey conducted into an area covering the southern part of Noshiro-shi, Akita-ken, and Yamamoto-cho, Yamamoto-gun, Akita-ken. An area size suitable for data collection at a target depth of 2500m is determined using an interpretation structure compiled on the basis of available well data and 2D seismic survey data. The plan for siting shock points and receiving points is modified case by case as restrictive factors come to the surface (resulting from the complicated hilly terrain, presence of pipes for agricultural water, etc.). The peculiarities of seismic waves in the terrain are studied through the interpretation of the available well data and 2D seismic survey data for the construction of a 3D velocity model for the confirmation of the appropriateness of the plan for siting shock points and receiving points. Efforts are exerted through enhanced coordination with the contractor to acquire data so that a technologically best design may be won within the limits of the budget. The quality of the data obtained from this experiment is in general better than those obtained from previous experiments, yet many problems remain to be settled in future studies about exploration-difficult areas. 4 refs., 4 figs., 1 tab.

  4. Seismic Activity Seen Through Evolution of the Hurst Exponent Model in 3D

    Patiño Ortiz, J.; Carreño Aguilera, R.; Balankin, A. S.; Patiño Ortiz, M.; Tovar Rodriguez, J. C.; Acevedo Mosqueda, M. A.; Martinez Cruz, M. A.; Yu, Wen


    The dynamics seismic activity occurred in the Cocos Plate—Mexico is analyzed through the evolution of Hurst exponent and 3D fractal dimension, under the mathematical fractal structure based on seismic activity time series, taking into account the magnitude (M) as the main parameter to be estimated. The seismic activity time series and, annual intervals are considered first for finding the Hurst exponent of each year since 1988 (the year in which the database is consistent) until 2012, and then the following years are accumulated describing the cumulative Hurst exponent. The seismic activity description is based on Cocos Plate data information; during a period conform from 1 January 1988 to 31 December 2012. Analyses were performed following methods, mainly considering that the Hurst exponent analysis provides the ability to find the seismicity behavior time-space, described by parameters obtained under the fractal dimension and complex systems.

  5. 3D-seismic observations of Late Pleistocene glacial dynamics on the central West Greenland margin

    Hofmann, Julia; Knutz, Paul; Cofaigh, Colm Ó.


    Fast-flowing ice streams and outlet glaciers exert a major control on glacial discharge from contemporary and palaeo ice sheets. Improving our understanding of the extent and dynamic behaviour of these palaeo-ice streams is therefore crucial for predictions of the response of ice sheets to present and future climate warming and the associated implications for global sea level. This poster presents results from two 3D-seismic surveys located on the shelf adjoining the Disko Bay trough-mouth fan (TMF), one of the largest glacial outlet systems in Greenland. Located at the seaward terminus of the c. 370 km long cross-shelf Disko Trough, the Disko Bay TMF was generated by highly efficient subglacial sediment delivery onto the continental slopes during repeated ice-stream advances. A variety of submarine glacial landform assemblages are recognised on the seabed reflecting past ice-stream activity presumably related to glacial-interglacial cycles. The 3D-seismic volumes cover the shallow banks located north and south of the Disko Trough. The focus of this study is the seabed and the uppermost stratigraphic interval associated with the Late Stage of TMF development, presumably covering the late Pleistocene (Hofmann et al., submitted). Seabed morphologies include multiple sets of ridges up to 20 m high that extend in NW-SE direction for c. 30 km, and cross-cutting curvilinear furrows with maximum lengths of c. 9 km and average depths of c. 4.5 m. Back-stepping, arcuate scarps facing NW define the shelf break on the northern survey, comprising average widths of c. 4.5 km and incision depths of c. 27.5 m. The large transverse ridge features on the southern survey are likely ice-marginal and are interpreted as terminal moraine ridges recording the existence of a shelf-edge terminating, grounded Late Weichselian ice sheet. The furrows, most prominent on the outer shelf adjoining the shallow banks and partly incising the moraine ridges, are interpreted as iceberg ploughmarks

  6. 3D Geotechnical Soil Model of Nice, France, Inferred from Seismic Noise Measurements, for Seismic Hazard Assessment.

    Bertrand, E.; Duval, A.; Castan, M.; Vidal, S.


    In seismic risk studies, the assessment of lithologic site effect is based on an accurate knowledge of mechanical properties and geometry of superficial geological formations. Therefore, we built a 3D subsurface model in the city of Nice, southeastern France, using not only geological and geotechnical data but also geophysical inputs. We used especially ambient vibration recordings to supply the lack of borehole data over the city. Nice spreads over 72 km2 and roughly 20% of the city is built upon recent alluvium deposits. Other parts of the city lie on Jurassic and Cretaceous rocks to the east and thick Pliocene conglomerates to the west. Nearly 450 boreholes located mainly in the alluvial valleys were used. Because they are essentially linked to previous planned constructions (such as road network or important building), their distribution is rather heterogeneous over the studied area. In the valleys moreover, less than 40% of the boreholes are reaching the rock basement. These boreholes have been analyzed and a representative soil column made of 9 sedimentary layers has been recognized. Shear wave velocity of these layers were obtained from Standard Penetration Test values using several empirical correlation law described in the literature. Because of its cost, an extended boring survey was not feasible to complete our data set. Traditional seismic profiling was also not intended, as it is not possible to use intensive explosive sources in town. Recent years have seen many studies using ambient vibration measurements for site effect estimation. Especially, the very simple H/V technique was proven to be suitable for microzoning studies although some limitation were pointed out when dealing with 2D or 3D structures. Nevertheless, this technique alone provides only the fundamental eigenfrequency of the site under investigation. But assuming the shear wave velocity in the sediment it can helps to constrain the depth of the bedrock thanks to the well known f0=VS/4H

  7. New insights into the North Taranaki Basin from New Zealand's first broadband 3D survey

    Uzcategui, Marjosbet; Francis, Malcolm; Kong, Wai Tin Vincent; Patenall, Richard; Fell, Dominic; Paxton, Andrea; Allen, Tristan


    The Taranaki Basin is the only hydrocarbon producing basin in New Zealand. The North Taranaki Basin has widespread two-dimensional (2D) seismic coverage and numerous wells that have not encountered commercial accumulations. This is attributed to the structural complexity in the central graben and the absence of necessary information to help understand the basin's evolution. An active petroleum system has been confirmed by hydrocarbon shows and non-commercial oil and gas discoveries (Karewa-1 and Kora-1). A broadband long offset three-dimensional (3D) seismic survey was acquired and processed by Schlumberger in 2013 to evaluate the hydrocarbon potential of the North Taranaki Basin. Innovative acquisition techniques were combined with advanced processing and imaging methods. Raypath distortions and depth uncertainty were significantly reduced by processing through tilted transverse isotropy (TTI) anisotropic Kirchhoff prestack depth migration with a geologically constrained velocity model. The survey provided the necessary information to understand the petroleum system and provide evidence for material hydrocarbon accumulations. In this investigation, we assessed the hydrocarbon potential of the North Taranaki Basin using the newly acquired data. 3D seismic interpretation and amplitude-versus-offset (AVO) analysis support the renewed potential of the basin and demonstrate effectiveness of these technologies that together can achieve encouraging results for hydrocarbon exploration.

  8. Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications

    Gao, Dengliang


    In 3D seismic interpretation, curvature is a popular attribute that depicts the geometry of seismic reflectors and has been widely used to detect faults in the subsurface; however, it provides only part of the solutions to subsurface structure analysis. This study extends the curvature algorithm to a new curvature gradient algorithm, and integrates both algorithms for fracture detection using a 3D seismic test data set over Teapot Dome (Wyoming). In fractured reservoirs at Teapot Dome known to be formed by tectonic folding and faulting, curvature helps define the crestal portion of the reservoirs that is associated with strong seismic amplitude and high oil productivity. In contrast, curvature gradient helps better define the regional northwest-trending and the cross-regional northeast-trending lineaments that are associated with weak seismic amplitude and low oil productivity. In concert with previous reports from image logs, cores, and outcrops, the current study based on an integrated seismic curvature and curvature gradient analysis suggests that curvature might help define areas of enhanced potential to form tensile fractures, whereas curvature gradient might help define zones of enhanced potential to develop shear fractures. In certain fractured reservoirs such as at Teapot Dome where faulting and fault-related folding contribute dominantly to the formation and evolution of fractures, curvature and curvature gradient attributes can be potentially applied to differentiate fracture mode, to predict fracture intensity and orientation, to detect fracture volume and connectivity, and to model fracture networks.

  9. On horizontal resolution for seismic acquisition geometries in complex 3D media

    Wei, Wei; Fu, Li-Yun


    Spatial sampling has a crucial influence on the horizontal resolution of seismic imaging, but how to quantify the influence is still controversial especially in complex media. Most of the studies on horizontal resolution focus on the measurement of wavelet widths for seismic migration, but neglect to evaluate the effect of side-lobe perturbations on spatial resolution. The side-lobe effect, as a migration noise, is important for seismic imaging in complex media. In this article, with focal beam analysis, we define two parameters to represent the horizontal resolution of an acquisition geometry: the width of the main lobe (WML) along the inline and crossline directions and the ratio of the main-lobe amplitude to the total amplitude (RMT) in a focal beam. We provide examples of typical acquisition geometries to show how spatial sampling affects the horizontal resolution, measured in terms of WML and RMT values. WML defines the horizontal resolution to image the target, whereas RMT describes the clarity of the imaging. Migration noise reduces with increasing RMT, indirectly improving both the vertical and horizontal resolutions of seismic imaging. Case studies of seismic migration with 3D seismic data from an oil field of China, demonstrate how the acquisition geometries with different WML and RMT values influence the performance of seismic imaging. Prior WML and RMT analyses to predict the quality of acquired datasets can optimize acquisition geometries before the implementation of seismic acquisition.

  10. 3-D imaging of seismic data from a physical model of a salt structure

    Roberts, P. M. (Peter M.); Huang, L. (Lianjie); House, L. S. (Leigh S.); Wiley, R. (Robert)


    Seismic data from a physical model of the SEG/EAGE salt structure were imaged to evaluate the quality of imaging of a complex structure and benchmark imaging codes. The physical model was constructed at the University of Houston. Two simulated marine surveys were collected from it: a conventional towed streamer survey, and a vertical receiver cable survey.

  11. Modeling and validation of a 3D velocity structure for the Santa Clara Valley, California, for seismic-wave simulations

    Hartzell, S.; Harmsen, S.; Williams, R.A.; Carver, D.; Frankel, A.; Choy, G.; Liu, P.-C.; Jachens, R.C.; Brocher, T.M.; Wentworth, C.M.


    A 3D seismic velocity and attenuation model is developed for Santa Clara Valley, California, and its surrounding uplands to predict ground motions from scenario earthquakes. The model is developed using a variety of geologic and geophysical data. Our starting point is a 3D geologic model developed primarily from geologic mapping and gravity and magnetic surveys. An initial velocity model is constructed by using seismic velocities from boreholes, reflection/refraction lines, and spatial autocorrelation microtremor surveys. This model is further refined and the seismic attenuation is estimated through waveform modeling of weak motions from small local events and strong-ground motion from the 1989 Loma Prieta earthquake. Waveforms are calculated to an upper frequency of 1 Hz using a parallelized finite-difference code that utilizes two regions with a factor of 3 difference in grid spacing to reduce memory requirements. Cenozoic basins trap and strongly amplify ground motions. This effect is particularly strong in the Evergreen Basin on the northeastern side of the Santa Clara Valley, where the steeply dipping Silver Creek fault forms the southwestern boundary of the basin. In comparison, the Cupertino Basin on the southwestern side of the valley has a more moderate response, which is attributed to a greater age and velocity of the Cenozoic fill. Surface waves play a major role in the ground motion of sedimentary basins, and they are seen to strongly develop along the western margins of the Santa Clara Valley for our simulation of the Loma Prieta earthquake.

  12. 3D Seismic Experimentation and Advanced Processing/Inversion Development for Investigations of the Shallow Subsurface

    Levander, Alan Richard [Rice Univ., Houston, TX (United States). Earth Science Department; Zelt, Colin A. [Rice Univ., Houston, TX (United States). Earth Science Department


    The work plan for this project was to develop and apply advanced seismic reflection and wide-angle processing and inversion techniques to high resolution seismic data for the shallow subsurface to seismically characterize the shallow subsurface at hazardous waste sites as an aid to containment and cleanup activities. We proposed to continue work on seismic data that we had already acquired under a previous DoE grant, as well as to acquire additional new datasets for analysis. The project successfully developed and/or implemented the use of 3D reflection seismology algorithms, waveform tomography and finite-frequency tomography using compressional and shear waves for high resolution characterization of the shallow subsurface at two waste sites. These two sites have markedly different near-surface structures, groundwater flow patterns, and hazardous waste problems. This is documented in the list of refereed documents, conference proceedings, and Rice graduate theses, listed below.

  13. ActiveSeismoPick3D - automatic first arrival determination for large active seismic arrays

    Paffrath, Marcel; Küperkoch, Ludger; Wehling-Benatelli, Sebastian; Friederich, Wolfgang


    We developed a tool for automatic determination of first arrivals in active seismic data based on an approach, that utilises higher order statistics (HOS) and the Akaike information criterion (AIC), commonly used in seismology, but not in active seismics. Automatic picking is highly desirable in active seismics as the number of data provided by large seismic arrays rapidly exceeds of what an analyst can evaluate in a reasonable amount of time. To bring the functionality of automatic phase picking into the context of active data, the software package ActiveSeismoPick3D was developed in Python. It uses a modified algorithm for the determination of first arrivals which searches for the HOS maximum in unfiltered data. Additionally, it offers tools for manual quality control and postprocessing, e.g. various visualisation and repicking functionalities. For flexibility, the tool also includes methods for the preparation of geometry information of large seismic arrays and improved interfaces to the Fast Marching Tomography Package (FMTOMO), which can be used for the prediction of travel times and inversion for subsurface properties. Output files are generated in the VTK format, allowing the 3D visualization of e.g. the inversion results. As a test case, a data set consisting of 9216 traces from 64 shots was gathered, recorded at 144 receivers deployed in a regular 2D array of a size of 100 x 100 m. ActiveSeismoPick3D automatically checks the determined first arrivals by a dynamic signal to noise ratio threshold. From the data a 3D model of the subsurface was generated using the export functionality of the package and FMTOMO.

  14. 3D Porosity Estimation of the Nankai Trough Sediments from Core-log-seismic Integration

    Park, J. O.


    The Nankai Trough off southwest Japan is one of the best subduction-zone to study megathrust earthquake fault. Historic, great megathrust earthquakes with a recurrence interval of 100-200 yr have generated strong motion and large tsunamis along the Nankai Trough subduction zone. At the Nankai Trough margin, the Philippine Sea Plate (PSP) is being subducted beneath the Eurasian Plate to the northwest at a convergence rate ~4 cm/yr. The Shikoku Basin, the northern part of the PSP, is estimated to have opened between 25 and 15 Ma by backarc spreading of the Izu-Bonin arc. The >100-km-wide Nankai accretionary wedge, which has developed landward of the trench since the Miocene, mainly consists of offscraped and underplated materials from the trough-fill turbidites and the Shikoku Basin hemipelagic sediments. Particularly, physical properties of the incoming hemipelagic sediments may be critical for seismogenic behavior of the megathrust fault. We have carried out core-log-seismic integration (CLSI) to estimate 3D acoustic impedance and porosity for the incoming sediments in the Nankai Trough. For the CLSI, we used 3D seismic reflection data, P-wave velocity and density data obtained during IODP (Integrated Ocean Drilling Program) Expeditions 322 and 333. We computed acoustic impedance depth profiles for the IODP drilling sites from P-wave velocity and density data. We constructed seismic convolution models with the acoustic impedance profiles and a source wavelet which is extracted from the seismic data, adjusting the seismic models to observed seismic traces with inversion method. As a result, we obtained 3D acoustic impedance volume and then converted it to 3D porosity volume. In general, the 3D porosities show decrease with depth. We found a porosity anomaly zone with alteration of high and low porosities seaward of the trough axis. In this talk, we will show detailed 3D porosity of the incoming sediments, and present implications of the porosity anomaly zone for the

  15. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Lestari, Titik, E-mail: [Meteorological Climatological and Geophysical Agency (MCGA), Jalan Angkasa I No.2 Kemayoran, Jakarta Pusat, 10720 (Indonesia); Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132 (Indonesia); Nugraha, Andri Dian, E-mail: [Global Geophysical Research Group, Faculty of Mining and Petroleum Engineering, Bandung Institute of Technology, Jalan Ganesa 10 Bandung 40132 (Indonesia)


    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  16. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    Lestari, Titik; Nugraha, Andri Dian


    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.


    Eric H. Johnson; Don E. French


    Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A

  18. Multi-hole seismic modeling in 3-D space and cross-hole seismic tomography analysis for boulder detection

    Cheng, Fei; Liu, Jiangping; Wang, Jing; Zong, Yuquan; Yu, Mingyu


    A boulder stone, a common geological feature in south China, is referred to the remnant of a granite body which has been unevenly weathered. Undetected boulders could adversely impact the schedule and safety of subway construction when using tunnel boring machine (TBM) method. Therefore, boulder detection has always been a key issue demanded to be solved before the construction. Nowadays, cross-hole seismic tomography is a high resolution technique capable of boulder detection, however, the method can only solve for velocity in a 2-D slice between two wells, and the size and central position of the boulder are generally difficult to be accurately obtained. In this paper, the authors conduct a multi-hole wave field simulation and characteristic analysis of a boulder model based on the 3-D elastic wave staggered-grid finite difference theory, and also a 2-D imaging analysis based on first arrival travel time. The results indicate that (1) full wave field records could be obtained from multi-hole seismic wave simulations. Simulation results describe that the seismic wave propagation pattern in cross-hole high-velocity spherical geological bodies is more detailed and can serve as a basis for the wave field analysis. (2) When a cross-hole seismic section cuts through the boulder, the proposed method provides satisfactory cross-hole tomography results; however, when the section is closely positioned to the boulder, such high-velocity object in the 3-D space would impact on the surrounding wave field. The received diffracted wave interferes with the primary wave and in consequence the picked first arrival travel time is not derived from the profile, which results in a false appearance of high-velocity geology features. Finally, the results of 2-D analysis in 3-D modeling space are comparatively analyzed with the physical model test vis-a-vis the effect of high velocity body on the seismic tomographic measurements.

  19. 3D Seismic Imaging of a Geological Storage of CO2 Site: Hontomín (Spain)

    Alcalde, Juan; Martí, David; Juhlin, Christopher; Malehmir, Alireza; Sopher, Daniel; Marzán, Ignacio; Calahorrano, Alcinoe; Ayarza, Puy; Pérez-Estaún, Andrés; Carbonell, Ramon


    A 3D seismic reflection survey was acquired in the summer of 2010 over the Hontomín CO2 storage site (Spain), with the aim of imaging its internal structure and to provide a 3D seismic baseline model prior to CO2 injection. The 36 km2 survey utilised 25 m source and receiver point spacing and 5000 shotpoints recorded with mixed source (Vibroseis and explosives). The target reservoir is a saline aquifer located at approximately 1450 m, within Lower Jurassic carbonates (Lias). The main seal is formed by inter-layered marls and marly limestones of Early to Middle Jurassic age (Dogger and Lias). The relatively complex geology and the rough topography strongly influenced the selection of parameters for the data processing. Static corrections and post stack migration were shown to be the most important processes affecting the quality of the final image. The match between the differing source wavelets is also studied here. The resulting 3D image provides information of all the relevant geological features of the storage site, including position and shape of the main underground formations. The target structure is an asymmetric dome. The steepest flank of the structure was selected as the optimum location for CO2 injection, where the updip migration of the plume is anticipated. A major strike slip fault (the South fault), crossing the study area W-E, has been mapped through the whole seismic volume. The injection position and the expected migration plume are located to the north of this main fault and away from its influence.

  20. Detection of coalbed fractures with P-wave azimuthal AVO in 3-D seismic exploration

    LI Guofa; PENG Suping; HE Bingshou; PENG Xiaobo; YUAN Chunfang; HU Chaoyuan


    The detection of fractures is important for production and safety in coal fields. Subsurface fractures result in azimuthal anisotropy of the seismic wave, and the amplitude of reflection wave varies with offset and azimuth.In case of weak anisotropy, the reflection coefficients of P-wave are concisely denoted as the analytic function of fracture parameters. For the purpose of predicting the coalbed fracture distribution through analyzing variation of the reflection amplitudes with offset and azimuth, 3-D seismic data with full-azimuth were acquired in a coal field in Huainan, Anhui Province. The careful analysis and process of seismic data showed that the reflection amplitude of the primary coaibed varied with azimuth in much consistent with the theoretical model. The conclusion was drawn that the coal-bed fracture in this coal field could be predicted through the method of the P-wave azimuthal AVO.

  1. Subtle traps prediction using sequence stratigraphy and 3D seismic technology: A case study from Qikou depression in Huanghua basin

    MAO Ning-bo; DAI Ta-gen; PENG Sheng-lin


    Forecasting subtle traps by sequence stratigraphy and 3D seismic data is a sensitive topic in hydrocarbon exploration. Research on subtle traps by geophysical data is the most popular and difficult. Based on the sufficiently drilling data, log data, core data and 3D seismic data, sediment sequence of Qikou depression, Huanghua basin was partitioned by using sequence stratigraphy theory. Each sediment sequence system mode was built. Sediment faces of subtle traps were pointed out. Dominating factors forming subtle traps were analyzed. Sandstone seismic rock physics and its response were studied in Tertiary System. Sandstone geophysical response and elastic modulus vary laws with pressure, temperature, porosity, depth were built. Experimental result and practice shows that it is possible using seismic information forecasting subtle traps. Integrated using geology, log, drilling data, special seismic processing technique, interpretation technique, high precision horizon calibration technique, 3D seismic visualizing interpretation, seismic coherence analysis, attribute analysis, logging-constrained inversion, time frequency analysis, subtle trapsobject is identified and interpreted. Finally, advantage object of subtle trap in this area was determined. Bottomland sand stratigraphic and lithologic reservoirs in Qinan slope zone have been founded by means of high resolution 3D seismic data field technique, high resolution 3D seismic data processing technique and seismic wave impendence inversion technique.

  2. Multi-dimensional Seismic Response Analysis of Base-Isolated Frame Structure with 3D Isolator

    Xiong Shishu; Huang Liting; Chen Jinfeng; Su Jingsu


    The three-dimensional lead-rubber dish-spring bearing (3DB) is proposed in this paper. The 3DB is composed of lead rubber bearing (LRB) and dish-spring bearing (DSB) with damper in series. The 3DB put forward in this paper is effective in the resolution of difficulties in strong vertical capacity and vertical damping of three-dimensional isolation bearings. It effectively suppresses rocking motions as well. The analytical model and motion equations of multi-dimensional seismic responses of 3D base-isolated frame structures are established. Taking a five-storey frame structure as an example, an extensive simulation analysis is carried out. The results show that the 3D base-isolated structure with the proposed 3DB is effective in 3D isolation; it can reduce seismic responses by 50 % compared to a non-isolated structure. Therefore, the 3D isolation problem in building can be solved easily and effectively with the 3DB proposed in this paper.

  3. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    Orme, H.; Bell, R. E.; Jackson, C. A. L.


    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  4. Complex Crustal Structure Beneath Western Turkey Revealed by 3D Seismic Full Waveform Inversion (FWI)

    Cubuk-Sabuncu, Yesim; Taymaz, Tuncay; Fichtner, Andreas


    We present a 3D radially anisotropic velocity model of the crust and uppermost mantle structure beneath the Sea of Marmara and surroundings based on the full waveform inversion method. The intense seismic activity and crustal deformation are observed in the Northwest Turkey due to transition tectonics between the strike-slip North Anatolian Fault (NAF) and the extensional Aegean region. We have selected and simulated complete waveforms of 62 earthquakes (Mw > 4.0) occurred during 2007-2015, and recorded at (Δ DAD). The spectral-element solver of the wave equation, SES3D algorithm, is used to simulate seismic wave propagation in 3D spherical coordinates (Fichtner, 2009). The Large Scale Seismic Inversion Framework (LASIF) workflow tool is also used to perform full seismic waveform inversion (Krischer et al., 2015). The initial 3D Earth model is implemented from the multi-scale seismic tomography study of Fichtner et al. (2013). Discrepancies between the observed and simulated synthetic waveforms are determined using the time-frequency misfits which allows a separation between phase and amplitude information (Fichtner et al., 2008). The conjugate gradient optimization method is used to iteratively update the initial Earth model when minimizing the misfit. The inversion is terminated after 19 iterations since no further advances are observed in updated models. Our analysis revealed shear wave velocity variations of the shallow and deeper crustal structure beneath western Turkey down to depths of ~35-40 km. Low shear wave velocity anomalies are observed in the upper and mid crustal depths beneath major fault zones located in the study region. Low velocity zones also tend to mark the outline of young volcanic areas. Our final 3D Earth model is tested using forward wave simulations of earthquakes (M ≥ 3.7) that were not used during the inversion process. The comparison of observed and synthetic seismograms, calculated by initial and final models, showed significant

  5. Training toward Advanced 3D Seismic Methods for CO2 Monitoring, Verification, and Accounting

    Christopher Liner


    The objective of our work is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2}, specifically better quantification and sensitivity for mapping of caprock integrity, fractures, and other potential leakage pathways. We utilize data and results developed through previous DOE-funded CO{sub 2} characterization project (DE-FG26-06NT42734) at the Dickman Field of Ness County, KS. Dickman is a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontinent to Indiana and Illinois. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. In a previous DOE-funded project, geological and seismic data were integrated to create a geological property model and a flow simulation grid. We believe that sequestration of CO{sub 2} will largely occur in areas of relatively flat geology and simple near surface, similar to Dickman. The challenge is not complex geology, but development of improved, lower-cost methods for detecting natural fractures and subtle faults. Our project used numerical simulation to test methods of gathering multicomponent, full azimuth data ideal for this purpose. Our specific objectives were to apply advanced seismic methods to aide in quantifying reservoir properties and lateral continuity of CO{sub 2} sequestration targets. The purpose of the current project is graduate and undergraduate student training related to improved 3D seismic technology that addresses key challenges related to monitoring movement and containment of CO{sub 2

  6. Fast 3D elastic micro-seismic source location using new GPU features

    Xue, Qingfeng; Wang, Yibo; Chang, Xu


    In this paper, we describe new GPU features and their applications in passive seismic - micro-seismic location. Locating micro-seismic events is quite important in seismic exploration, especially when searching for unconventional oil and gas resources. Different from the traditional ray-based methods, the wave equation method, such as the method we use in our paper, has a remarkable advantage in adapting to low signal-to-noise ratio conditions and does not need a person to select the data. However, because it has a conspicuous deficiency due to its computation cost, these methods are not widely used in industrial fields. To make the method useful, we implement imaging-like wave equation micro-seismic location in a 3D elastic media and use GPU to accelerate our algorithm. We also introduce some new GPU features into the implementation to solve the data transfer and GPU utilization problems. Numerical and field data experiments show that our method can achieve a more than 30% performance improvement in GPU implementation just by using these new features.

  7. New insights into the earliest Quaternary environments in the Central North Sea from 3D seismic

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.


    In the past the transition between an unconformable surface in the south to a conformable horizon towards the north has made identification and mapping the base-Quaternary in the central North Sea difficult (Sejrup et al 1991; Gatliff et al 1994). However recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) has allowed greater confidence in the correlation to the region 3D seismic datasets and thus has allowed the base-Quaternary to be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The revised base-Quaternary surface reaches a depth of 1248 ms TWT with an elongate basin shape which is significantly deeper than the traditionally mapped surface. Using RMS amplitudes and other seismic attributes the revised base-Quaternary has been investigated along the horizon and in time slice to interpret the environments of the earliest Quaternary prior to the onset of glaciation. Combined with analysis of aligned elongate furrows over 10 km long, 100 m wide and 100 m deep suggest a deep marine environment in an almost enclosed basin with persistent strong NW-SE bottom currents in the deepest parts. Pockmarks were formed by the escape of shallow gas on the sides of a small delta in the eastern part of the basin. The progradation of large deltas from both the north and south into the basin make up the majority of the deposition of sediment into the basin. Key Words: base-Quaternary; seismic interpretation; paleoenvironments References: Gatliff, R.W, Richards, P.C, Smith, K, Graham, C.C, McCormac, M, Smith, N.J.P, Long, D, Cameron, T.D.J, Evans, D, Stevenson, A.G, Bulat, J, Ritchie, J.D, (1994) 'United Kingdom offshore regional

  8. Survey of Robot 3D Path Planning Algorithms

    Liang Yang; Juntong Qi; Dalei Song; Jizhong Xiao; Jianda Han; Yong Xia


    Robot 3D (three-dimension) path planning targets for finding an optimal and collision-free path in a 3D workspace while taking into account kinematic constraints (including geometric, physical, and temporal constraints). The purpose of path planning, unlike motion planning which must be taken into consideration of dynamics, is to find a kinematically optimal path with the least time as well as model the environment completely. We discuss the fundamentals of these most successful robot 3D path...

  9. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    Miah, Khalid; Bellefleur, Gilles


    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to

  10. AxiSEM: broadband 3-D seismic wavefields in axisymmetric media

    T. Nissen-Meyer


    Full Text Available We present a methodology to compute 3-D global seismic wavefields for realistic earthquake sources in visco-elastic anisotropic media, covering applications across the observable seismic frequency band with moderate computational resources. This is accommodated by mandating axisymmetric background models which allow for a multipole expansion such that only a 2-D computational domain is needed, whereas the azimuthal third dimension is computed analytically on-the-fly. This dimensional collapse opens doors for storing space-time wavefields on disk which can be used to compute Fréchet sensitivity kernels for waveform tomography. We use the corresponding publicly available open-source spectral-element code AxiSEM (, demonstrate its excellent scalability on supercomputers, a diverse range of applications ranging from normal modes to small-scale lowermost mantle structures, tomographic models, comparison to observed data, and discuss further avenues to pursue with this methodology.

  11. Intriguing Success in 3D Seismic Acquisition in Ecologically Critical Lawachara National Park of Bangladesh

    Bakht, Delawar; Siddique, Mohammad; Masud, Mohammad


    In-depth environmental studies were conducted in 2008 by a multi-disciplinary team of international and national specialists of SMEC International for Chevron Bangladesh for obtaining Environmental Clearance for 3D seismic acquisition in Moulvibazar Gas Field. This included Lawachara National Park which was declared as an ecologically critical area in 1996. Exclusive monitoring of potential impact mitigation mechanism identified through EIA studies resulted in to completing the project with intriguing success. This has displayed a glaring example of sharing expertise leading to successful initiative in technology transfer in the developing country like Bangladesh currently in dire quest of harnessing natural gas.

  12. Complex patterns of faulting revealed by 3D seismic data at the West Galicia rifted margin

    Reston, Timothy; Cresswell, Derren; Sawyer, Dale; Ranero, Cesar; Shillington, Donna; Morgan, Julia; Lymer, Gael


    The west Galicia margin is characterised by crust thinning to less than 3 km, well-defined fault blocks, which overlie a bright reflection (the S reflector) generally interpreted as a tectonic Moho. The margin exhibits neither voluminous magmatism nor thick sediment piles to obscure the structures and the amount of extension. As such is represents an ideal location to study the process of continental breakup both through seismic imaging and potentially through drilling. Prestack depth migration of existing 2D profiles has strongly supported the interpretation of the S reflector as both a detachment and as the crust-mantle boundary; wide-angle seismic has also shown that the mantle beneath S is serpentinised. Despite the quality of the existing 2D seismic images, a number of competing models have been advanced to explain the formation of this margin, including sequential faulting, polyphase faulting, multiple detachments and the gravitational collapse of the margin over exhumed mantle. As these models, all developed for the Galicia margin, have been subsequently applied to other margins, distinguishing between them has implications not only for the structure of the Galicia margin but for the process of rifting through to breakup more generally. To address these issues in summer of 2013 we collected a 3D combined seismic reflection and wide-angle dataset over this margin. Here we present some of the results of ongoing processing of the 3D volume, focussing on the internal structure of some of the fault blocks that overlies the S detachment. 2D processing of the data shows a relatively simple series of tilted fault block, bound by west-dipping faults that detach downwards onto the bright S reflector. However, inspection of the 3D volume produced by 3D pre-stack time migration reveals that the fault blocks contain a complex set of sedimentary packages, with strata tilted to the east, west, north and south, each package bound by faults. Furthermore, the top of crustal

  13. Joint environmental assessment for Chevron USA, Inc. and Santa Fe Energy Resources, Inc.: Midway Valley 3D seismic project, Kern County, California



    The proposed Midway Valley 3D Geophysical Exploration Project covers approximately 31,444 aces of private lands, 6,880 acres of Department of Energy (DOE) Lands within Naval Petroleum Reserve 2 (NPR2) and 3,840 acres of lands administered by the Bureau of Land Management (BLM), in western Kern County, California. This environmental assessment (EA) presents an overview of the affected environment within the project area using results of a literature review of biological field surveys previously conducted within or adjacent to a proposed 3D seismic project. The purpose is to provide background information to identify potential and known locations of sensitive wildlife and special status plant species within the proposed seismic project area. Biological field surveys, following agency approved survey protocols, will be conducted during October through November 1996 to acquire current resources data to provide avoidance as the project is being implemented in the field.

  14. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland

    Grad, Marek; Polkowski, Marcin; Ostaficzuk, Stanisław R.


    In the area of Poland a contact between the Precambrian and Phanerozoic Europe and the Carpathians has a complicated structure and a complex P-wave velocity of the sedimentary cover, crystalline crust, Moho depth and the uppermost mantle. The geometry of the uppermost several kilometers of sediments is relatively well recognized from over 100,000 boreholes. The vertical seismic profiling (VSP) from 1188 boreholes provided detailed velocity data for regional tectonic units and for stratigraphic successions from Permian to the Tertiary and Quaternary deposits. These data, however, do not provide information about the velocity and basement depth in the central part of the Trans-European suture zone (TESZ) and in the Carpathians. So, the data set is supplemented by 2D velocity models from 32 deep seismic sounding refraction profiles which also provide information about the crust and uppermost mantle. Together with the results of other methods: vertical seismic profiling, magnetotelluric, allow for the creation of a detailed, high-resolution 3D model for the entire Earth's crust and the uppermost mantle down to a depth of 60 km. The thinnest sedimentary cover in the Mazury-Belarus anteclise is only 0.3 to 1 km thick, which increases to 7 to 8 km along the East European Craton (EEC) margin, and 9 to 12 km in the TESZ. The Variscan domain is characterized by a 1-4 km thick sedimentary cover, while the Carpathians are characterized by very thick sedimentary layers, up to about 20 km. The crystalline crust is differentiated and has a layered structure. The crust beneath the West European Platform (WEP; Variscan domain) is characterized by P-wave velocities of 5.8-6.6 km/s. The upper and middle crusts beneath the EEC are characterized by velocities of 6.1-6.6 km/s, and are underlain by a high velocity lower crust with a velocity of about 7 km/s. A general decrease in velocity is observed from the older to the younger tectonic domains. The TESZ is associated with a steep dip

  15. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    Han, Youmei; Yang, Bogang; Zhen, Yinan


    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  16. New results from a 3D seismic academic dataset across the west Galicia margin

    Lymer, Gaël; Cresswell, Derren; Reston, Tim; Stevenson, Carl; Sawyer, Dale


    The west Galicia margin (western Spain) is a magma-poor margin and has limited sedimentary cover, providing ideal conditions to study the processes of continental extension and break-up through seismic imaging. The margin is characterised by hyper-extended continental crust, well defined rotated faults blocks with associated syn-kinematic sedimentary wedges, and exhumed serpentinized continental mantle. Faulted blocks overlie a bright reflection, the S reflector, generally interpreted as both a detachment and the crust-mantle boundary. But open questions remain concerning the role of the S detachment in extension leading to breakup. To study further the S reflection and its role in continental breakup, a new 3D high-resolution multi-channel seismic dataset has been acquired over the Galicia margin during summer 2013. It consists in 800 inlines and 5000 crosslines distributed on a ~680 km2 areal. This 3D dataset is thus the largest academic one of its kind. It extends across the edge of the continental crust and captures the 3D nature of extension and break-up of the northern Atlantic continental margins. Here we present some results from our interpretations of the 3D volume, which allow various horizons, including the base of the post-rift sedimentary cover, the top basement and the S reflector, to be mapped out in 3D. These maps provide 3D views of the margin structure and also reveal the texture of each horizon. We also focus on the internal structure of some of the faulted blocks through interpretation of the crustal normal faults. The main normal faults are generally connected downward on the S reflector, revealing strong interactions between crustal thinning and the S. The half-grabens and the fault blocks are dominantly N-S oriented, but the crustal structures vary both along strike and cross strike. We particularly observe an intriguingly NW-SE trend, highlighted by a pronounced low within the crest of the fault blocks. We also observe this trend from

  17. SEISVIZ3D: Stereoscopic system for the representation of seismic data - Interpretation and Immersion

    von Hartmann, Hartwig; Rilling, Stefan; Bogen, Manfred; Thomas, Rüdiger


    The seismic method is a valuable tool for getting 3D-images from the subsurface. Seismic data acquisition today is not only a topic for oil and gas exploration but is used also for geothermal exploration, inspections of nuclear waste sites and for scientific investigations. The system presented in this contribution may also have an impact on the visualization of 3D-data of other geophysical methods. 3D-seismic data can be displayed in different ways to give a spatial impression of the subsurface.They are a combination of individual vertical cuts, possibly linked to a cubical portion of the data volume, and the stereoscopic view of the seismic data. By these methods, the spatial perception for the structures and thus of the processes in the subsurface should be increased. Stereoscopic techniques are e. g. implemented in the CAVE and the WALL, both of which require a lot of space and high technical effort. The aim of the interpretation system shown here is stereoscopic visualization of seismic data at the workplace, i.e. at the personal workstation and monitor. The system was developed with following criteria in mind: • Fast rendering of large amounts of data so that a continuous view of the data when changing the viewing angle and the data section is possible, • defining areas in stereoscopic view to translate the spatial impression directly into an interpretation, • the development of an appropriate user interface, including head-tracking, for handling the increased degrees of freedom, • the possibility of collaboration, i.e. teamwork and idea exchange with the simultaneous viewing of a scene at remote locations. The possibilities offered by the use of a stereoscopic system do not replace a conventional interpretation workflow. Rather they have to be implemented into it as an additional step. The amplitude distribution of the seismic data is a challenge for the stereoscopic display because the opacity level and the scaling and selection of the data have to

  18. Application of high-precision 3D seismic technology to shale gas exploration: A case study of the large Jiaoshiba shale gas field in the Sichuan Basin

    Zuqing Chen


    Full Text Available The accumulation pattern of the marine shale gas in South China is different from that in North America. The former has generally thin reservoirs and complex preservation conditions, so it is difficult to make a fine description of the structural features of shale formations and to reflect accurately the distribution pattern of high-quality shale by using the conventional 2D and 3D seismic exploration technology, which has an adverse effect on the successful deployment of horizontal wells. In view of this, high-precision 3D seismic prospecting focusing on lithological survey was implemented to make an accurate description of the distribution of shale gas sweet spots so that commercial shale gas production can be obtained. Therefore, due to the complex seismic geological condition of Jiaoshiba area in Fuling, SE Sichuan Basin, the observation system of high-precision 3D seismic acquisition should have such features as wide-azimuth angles, small trace intervals, high folds, uniform vertical and horizontal coverage and long spread to meet the needs of the shale gas exploration in terms of structural interpretation, lithological interpretation and fracture prediction. Based on this idea, the first implemented high-precision 3D seismic exploration project in Jiaoshiba area played an important role in the discovery of the large Jiaoshiba shale gas field. Considering that the high-quality marine shale in the Sichuan Basin shows the characteristics of multi-layer development from the Silurian system to the Cambrian system, the strategy of shale gas stereoscopic exploration should be implemented to fully obtain the oil and gas information of the shallow, medium and deep strata from the high-precision 3D seismic data, and ultimately to expand the prospecting achievements in an all-round way to balance the high upstream exploration cost, and to continue to push the efficient shale gas exploration and development process in China.

  19. 3D crustal seismic velocity model for the Gulf of Cadiz and adjacent areas (SW Iberia margin) based on seismic reflection and refraction profiles

    Lozano, Lucía; Cantavella, Juan Vicente; Barco, Jaime; Carranza, Marta; Burforn, Elisa


    The Atlantic margin of the SW Iberian Peninsula and northern Morocco has been subject of study during the last 30 years. Many seismic reflection and refraction profiles have been carried out offshore, providing detailed information about the crustal structure of the main seafloor tectonic domains in the region, from the South Portuguese Zone and the Gulf of Cadiz to the Abyssal Plains and the Josephine Seamount. The interest to obtain a detailed and realistic velocity model for this area, integrating the available data from these studies, is clear, mainly to improve real-time earthquake hypocentral location and for tsunami and earthquake early warning. Since currently real-time seismic location tools allow the implementation of 3D velocity models, we aim to generate a full 3D crustal model. For this purpose we have reviewed more than 50 profiles obtained in different seismic surveys, from 1980 to 2008. Data from the most relevant and reliable 2D seismic velocity published profiles were retrieved. We first generated a Moho depth map of the studied area (latitude 32°N - 41°N and longitude 15°W - 5°W) by extracting Moho depths along each digitized profile with a 10 km spacing, and then interpolating this dataset using ordinary kriging method and generating the contour isodepth map. Then, a 3D crustal velocity model has been obtained. Selected vertical sections at different distances along each profile were considered to retrieve P-wave velocity values at each interface in order to reproduce the geometry and the velocity gradient within each layer. A double linear interpolation, both in distance and depth, with sampling rates of 10 km and 1 km respectively, was carried out to generate a (latitude, longitude, depth, velocity) matrix. This database of all the profiles was interpolated to obtain the P-wave velocity distribution map every kilometer of depth. The new 3D velocity model has been integrated in NonLinLoc location program to relocate several representative

  20. 3D reflection seismic imaging at the 2.5 km deep COSC-1 scientific borehole, central Scandinavian Caledonides

    Hedin, Peter; Almqvist, Bjarne; Berthet, Théo; Juhlin, Christopher; Buske, Stefan; Simon, Helge; Giese, Rüdiger; Krauß, Felix; Rosberg, Jan-Erik; Alm, Per-Gunnar


    The 2.5 km deep scientific COSC-1 borehole (ICDP 5054-1-A) was successfully drilled with nearly complete core recovery during spring and summer of 2014. Downhole and on-core measurements through the targeted Lower Seve Nappe provide a comprehensive data set. An observed gradual increase in strain below 1700 m, with mica schists and intermittent mylonites increasing in frequency and thickness, is here interpreted as the basal thrust zone of the Lower Seve Nappe. This high strain zone was not fully penetrated at the total drilled depth and is thus greater than 800 m in thickness. To allow extrapolation of the results from downhole logging, core analysis and other experiments into the surrounding rock and to link these with the regional tectonic setting and evolution, three post-drilling high-resolution seismic experiments were conducted in and around the borehole. One of these, the first 3D seismic reflection land survey to target the nappe structures of the Scandinavian Caledonides, is presented here. It provides new information on the 3D geometry of structures both within the drilled Lower Seve Nappe and underlying rocks down to at least 9 km. The observed reflectivity correlates well with results from the core analysis and downhole logging, despite challenges in processing. Reflections from the uppermost part of the Lower Seve Nappe have limited lateral extent and varying dips, possibly related to mafic lenses or boudins of variable character within felsic rock. Reflections occurring within the high strain zone, however, are laterally continuous over distances of a kilometer or more and dip 10-15° towards the southeast. Reflections from structures beneath the high strain unit and the COSC-1 borehole can be followed through most of the seismic volume down to at least 9 km and have dips of varying degree, mainly in the east-west thrust direction of the orogen.


    Jorge O. Parra; C.L. Hackert; L. Wilson; H.A. Collier; J. Todd Thomas


    The goal of this project was to develop a method to exploit viscoelastic rock and fluid properties to greatly enhance the sensitivity of surface seismic measurements to the presence of hydrocarbon saturation. To reach the objective, Southwest Research Institute scientists used well log, lithology, production, and 3D seismic data from an oil reservoir located on the Waggoner Ranch in north central Texas. The project was organized in three phases. In the first phase, we applied modeling techniques to investigate seismic- and acoustic-frequency wave attenuation and its effect on observable wave attributes. We also gathered existing data and acquired new data from the Waggoner Ranch field, so that all needed information was in place for the second phase. During the second phase, we developed methods to extract attenuation from borehole acoustic and surface seismic data. These methods were tested on synthetic data constructed from realistic models and real data. In the third and final phase of the project, we applied this technology to a full data set from the Waggoner site. The results presented in this Final Report show that geological conditions at the site did not allow us to obtain interpretable results from the Q processing algorithm for 3D seismic data. However, the Q-log processing algorithm was successfully applied to full waveform sonic data from the Waggoner site. A significant part of this project was technology transfer. We have published several papers and conducted presentations at professional conferences. In particular, we presented the Q-log algorithm and applications at the Society of Exploration Geophysicists (SEG) Development and Production Forum in Austin, Texas, in May 2005. The presentation attracted significant interest from the attendees and, at the request of the SEG delegates, it was placed on the Southwest Research Institute Internet site. The presentation can be obtained from the following link:

  2. 3D elastic inversion of vertical seismic profiles in horizontally stratified media; Inversion elastique 3D de profils sismiques verticaux en milieux stratifies horizontalement

    Petit, J.L.


    This thesis is devoted to the inversion of VSP (vertical seismic profile) seismic data in order to determine the elastic properties of horizontally stratified media. The VSP records are computed using the full wave elastic modelling in isotropic and transversely isotropic media using Hankel transform, a finite difference scheme and an inverse Hankel transform algorithm, and the propagation equations are determined and numerically solved; the importance of considering a 3D wave propagation model instead of a 1 D one is emphasized. The theoretical VSP inverse problem is then considered, with the seismic waveform inversion set as a least-squares problem, consisting in recovering the distribution of physical parameters which minimize the misfit between calculated and observed VSP. The corresponding problem requires the knowledge of the source function

  3. Improving Geologic and Engineering Models of Midcontinent Fracture and Karst-Modified Reservoirs Using New 3-D Seismic Attributes

    Susan Nissen; Saibal Bhattacharya; W. Lynn Watney; John Doveton


    Our project goal was to develop innovative seismic-based workflows for the incremental recovery of oil from karst-modified reservoirs within the onshore continental United States. Specific project objectives were: (1) to calibrate new multi-trace seismic attributes (volumetric curvature, in particular) for improved imaging of karst-modified reservoirs, (2) to develop attribute-based, cost-effective workflows to better characterize karst-modified carbonate reservoirs and fracture systems, and (3) to improve accuracy and predictiveness of resulting geomodels and reservoir simulations. In order to develop our workflows and validate our techniques, we conducted integrated studies of five karst-modified reservoirs in west Texas, Colorado, and Kansas. Our studies show that 3-D seismic volumetric curvature attributes have the ability to re-veal previously unknown features or provide enhanced visibility of karst and fracture features compared with other seismic analysis methods. Using these attributes, we recognize collapse features, solution-enlarged fractures, and geomorphologies that appear to be related to mature, cockpit landscapes. In four of our reservoir studies, volumetric curvature attributes appear to delineate reservoir compartment boundaries that impact production. The presence of these compartment boundaries was corroborated by reservoir simulations in two of the study areas. Based on our study results, we conclude that volumetric curvature attributes are valuable tools for mapping compartment boundaries in fracture- and karst-modified reservoirs, and we propose a best practices workflow for incorporating these attributes into reservoir characterization. When properly calibrated with geological and production data, these attributes can be used to predict the locations and sizes of undrained reservoir compartments. Technology transfer of our project work has been accomplished through presentations at professional society meetings, peer-reviewed publications

  4. 3D seismic analysis of gravity-driven and basement influenced normal fault growth in the deepwater Otway Basin, Australia

    Robson, A. G.; King, R. C.; Holford, S. P.


    We use three-dimensional (3D) seismic reflection data to analyse the structural style and growth of a normal fault array located at the present-day shelf-edge break and into the deepwater province of the Otway Basin, southern Australia. The Otway Basin is a Late Jurassic to Cenozoic, rift-to-passive margin basin. The seismic reflection data images a NW-SE (128-308) striking, normal fault array, located within Upper Cretaceous clastic sediments and which consists of ten fault segments. The fault array contains two hard-linked fault assemblages, separated by only 2 km in the dip direction. The gravity-driven, down-dip fault assemblage is entirely contained within the 3D seismic survey, is located over a basement plateau and displays growth commencing and terminating during the Campanian-Maastrichtian, with up to 1.45 km of accumulated throw (vertical displacement). The up-dip normal fault assemblage penetrates deeper than the base of the seismic survey, but is interpreted to be partially linked along strike at depth to major basement-involved normal faults that can be observed on regional 2D seismic lines. This fault assemblage displays growth initiating in the Turonian-Santonian and has accumulated up to 1.74 km of throw. Our detailed analysis of the 3D seismic data constraints post-Cenomanian fault growth of both fault assemblages into four evolutionary stages: [1] Turonian-Santonian basement reactivation during crustal extension between Australia and Antarctica. This either caused the upward propagation of basement-involved normal faults or the nucleation of a vertically isolated normal fault array in shallow cover sediments directly above the reactivated basement-involved faults; [2] continued Campanian-Maastrichtian crustal extension and sediment loading eventually created gravitational instability on the basement plateau, nucleating a second, vertically isolated normal fault array in the cover sediments; [3] eventual hard-linkage of fault segments in both fault

  5. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris


    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to

  6. Development of seismic anisotropy during subduction-induced 3D mantle flow

    Faccenda, M.; capitanio, F. A.


    Subduction zones are convergent margins where the rigid lithosphere sinks into the Earth's mantle inducing complex 3D flow patterns. Seismic anisotropy generated by strain-induced lattice/crystal preferred orientation (LPO/CPO) of intrinsically anisotropic minerals is commonly used to study flow in the mantle and its relations with plate motions. As the development of seismic anisotropy due to upper and lower plate motions occurs at depths and timescales such that it is not directly observable, numerical modelling provides a useful tool to investigate these processes. We computed the seismic anisotropy of dry olivine-enstatite aggregates due to strain-induced LPO in 3D mechanical models of dynamic subduction by using, respectively, D-Rex and Underworld. Subsequently, FSTRACK was used to compute seismogram synthetics and SKS splitting patterns. We found that for relatively narrow subducting plates, retreat motions are maximized producing strong subslab trench-parallel anisotropy. Here, synthetic data reproduce quite well the observations in analogous subduction systems like Calabria and South Sandwich, where the fast azimuths orients parallel to the trench in the forearc and follow the toroidal flow patterns on the slab edges. Furthermore, we found that the amount of anisotropy is proportional to the amount of subduction, while it does not depend on the rate at which the plate subducts. On the other hand, larger subducting plates subducts mainly by plate advance, favoring poloidal motions and trench-perpendicular anisotropy. Additional Earth-like plate geometries involving along-trench variation of the subducting plate age that induces differential slab retreat motions are considered. We also tested different olivine fabrics (A, B, C, E type), yielding distinct SKS splitting patterns that may help to constrain the composition of the upper mantle. Although more sophisticated numerical modelling taking into account temperature-dependent mantle rock rheologies and P

  7. Survey of Robot 3D Path Planning Algorithms

    Liang Yang


    Full Text Available Robot 3D (three-dimension path planning targets for finding an optimal and collision-free path in a 3D workspace while taking into account kinematic constraints (including geometric, physical, and temporal constraints. The purpose of path planning, unlike motion planning which must be taken into consideration of dynamics, is to find a kinematically optimal path with the least time as well as model the environment completely. We discuss the fundamentals of these most successful robot 3D path planning algorithms which have been developed in recent years and concentrate on universally applicable algorithms which can be implemented in aerial robots, ground robots, and underwater robots. This paper classifies all the methods into five categories based on their exploring mechanisms and proposes a category, called multifusion based algorithms. For all these algorithms, they are analyzed from a time efficiency and implementable area perspective. Furthermore a comprehensive applicable analysis for each kind of method is presented after considering their merits and weaknesses.

  8. An optimal transport approach for seismic tomography: application to 3D full waveform inversion

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.


    the L 2 distance, in 2D and 3D contexts.


    John Beecherl; Bob A. Hardage


    The objective of this study was to compare the relative merits of shear-wave (S-wave) seismic data acquired with nine-component (9-C) technology and with three-component (3-C) technology. The original proposal was written as if the investigation would be restricted to a single 9-C seismic survey in southwest Kansas (the Ashland survey), on the basis of the assumption that both 9-C and 3-C S-wave images could be created from that one data set. The Ashland survey was designed as a 9-C seismic program. We found that although the acquisition geometry was adequate for 9-C data analysis, the source-receiver geometry did not allow 3-C data to be extracted on an equitable and competitive basis with 9-C data. To do a fair assessment of the relative value of 9-C and 3-C seismic S-wave data, we expanded the study beyond the Ashland survey and included multicomponent seismic data from surveys done in a variety of basins. These additional data were made available through the Bureau of Economic Geology, our research subcontractor. Bureau scientists have added theoretical analyses to this report that provide valuable insights into several key distinctions between 9-C and 3-C seismic data. These theoretical considerations about distinctions between 3-C and 9-C S-wave data are presented first, followed by a discussion of differences between processing 9-C common-midpoint data and 3-C common-conversion-point data. Examples of 9-C and 3-C data are illustrated and discussed in the last part of the report. The key findings of this study are that each S-wave mode (SH-SH, SV-SV, or PSV) involves a different subsurface illumination pattern and a different reflectivity behavior and that each mode senses a different Earth fabric along its propagation path because of the unique orientation of its particle-displacement vector. As a result of the distinct orientation of each mode's particle-displacement vector, one mode may react to a critical geologic condition in a more optimal way than

  10. Modeling the Coast Mountains Batholith, British Columbia, Canada with 3D Seismic Tomography

    Quinonez, S. M.; Olaya, J. C.; Miller, K. C.; Romero, R.; Velasco, A. A.; Harder, S. H.; Cerda, I.


    The Coast Mountains Batholith on the west coast of British Columbia, Canada comprises a series of granitic to tonalitic plutons; where felsic continental crust is generated from the subduction of mafic oceanic crust by partial melting and fractionation, leaving ultra-mafic roots. In July of 2009, a large controlled-source experiment was conducted along a 400km east - west transect from Bella Bella into central British Columbia. Student volunteers from multiple universities deployed 1,800 one-component and 200 three-component geophones plus 2400 Texan data recorders with 200-m spacing intervals and shot spacing at 30-km. The 18-point sources ranged from 160 to 1,000 kg of high explosive. The geoscience component of the NSF-funded Cyber-ShARE project at UTEP focuses on fusing models developed from different data sets to develop 3-D Earth models. Created in 2007, the Cyber-ShARE Center brings together experts in computer science, computational mathematics, education, earth science, and environmental science. We leverage the Cyber-ShARE work to implement an enhanced 3-D finite difference tomography approach for P-wave delays times (Hole, 1992) with a graphical user interface and visualization framework. In particular, to account for model sensitivity to picked P-wave arrival times, we use a model fusion approach (Ochoa et al., 2010) to generate a model with the lowest RMS residual that a combination of a set of Monte Carlo sample models. In order to make the seismic tomography process more interactive at many points, visualizations of model perturbation at each iteration will help to troubleshoot when a model is not converging to highlight where the RMS residual values are the highest to pinpoint where changes need to be made to achieve model convergence. Finally, a model of the upper mantle using 3-D P-wave tomography will be made to determine the location of these ultra-mafic roots.

  11. Toward an Archaeological Approach to 3d Surveying and Modeling

    Giorgio Baratti


    Full Text Available Negli ultimi anni, grazie ai nuovi sensori e alle nuove tecniche di rilevamento tridimensionale sono stati avviati importanti progetti di rilevamento e restituzione di Beni culturali in forma digitale; in ambito archeologico sono però emerse alcune criticità nella definizione di scopi e precisi obiettivi. L’articolo si concentra su alcuni problemi emersi nell’applicazione delle tecnologie 3D in contesti archeologici e in generale sul ruolo dell’archeologia nel rilevamento e nella modellazione tridimensionale. Sono presentati anche alcuni spunti per un approccio metodologico alla descrizione semantica di elementi archeologici, basati sia su riflessioni teoriche che su esperienze dirette.

  12. Refining the 3D seismic velocity and attenuation models for Katmai National Park, Alaska

    Murphy, R. A.; Thurber, C. H.; Prejean, S. G.


    We invert data from approximately 4,000 local earthquakes occurring between September 2004 and August 2009 to determine the 3D P-wave velocity and P-wave attenuation structures in the Katmai volcanic region. Arrival information and waveforms for the study come from the Alaska Volcano Observatory’s permanent network of 20 seismometers in the area, which are predominantly single-component, short period instruments. The absolute and relative arrival times are used in a double-difference seismic tomography inversion to solve for an improved velocity model for the main volcanic centers. We use the resulting 3D velocity model to relocate all catalog earthquakes in Katmai between January 1996 and August 2009. Inversions for the quality factor Q are completed using a spectral decay approach to determine source parameters, t*, and site response with a nonlinear inversion. Using the final 3D velocity model to define the ray paths, t* values are then inverted to determine frequency-independent Q models. The final models developed through these inversions reveal a low velocity and low Q zone from the surface to ~7 km depth centered on the volcanic axis and extending ~25 km between Martin and Katmai volcanoes. The relocated hypocenters provide insight into the geometry of seismogenic structures in the area, revealing clustering of events into four distinct zones associated with Martin, Mageik, Trident, and Katmai. While the Martin, Mageik, and Katmai clusters are all at 3-4 km depth, the Trident cluster is slightly deeper at 4-6 km. Many new features are apparent within these clusters, including a strand of earthquakes trending NE-SW between the main Martin and Mageik clusters. Smaller linear features are also visible in the Katmai cluster along with a small migrating swarm which occurred NW of the Katmai caldera during mid-2006. Data from an array of 11 three-component broadband instruments currently deployed in the area between Mageik volcano and Katmai caldera will be

  13. 3D seismic expression of fluid migration and mud remobilization on the Gjallar Ridge, offshore mid-Norway

    Hansen, J.P.V.; Cartwright, J.A.; Huuse, M.;


    This paper presents a three-dimensional (3D) seismic analysis of sediment remobilization and fluid migration in a 2000-km2 area above the Gjallar Ridge located in the Vøring Basin, offshore Norway. Three distinct types of mounded structures have been identified as resulting from focused fluid/gas...... on the Norwegian Margin and associated with igneous sill intrusion during North Atlantic breakup. This study highlights the utility of 3D seismic data for mapping of fluid and sediment mobilization through time over large basinal areas.......This paper presents a three-dimensional (3D) seismic analysis of sediment remobilization and fluid migration in a 2000-km2 area above the Gjallar Ridge located in the Vøring Basin, offshore Norway. Three distinct types of mounded structures have been identified as resulting from focused fluid...

  14. Microseismic monitoring of soft-rock landslide: contribution of a 3D velocity model for the location of seismic sources.

    Floriane, Provost; Jean-Philippe, Malet; Cécile, Doubre; Julien, Gance; Alessia, Maggi; Agnès, Helmstetter


    Characterizing the micro-seismic activity of landslides is an important parameter for a better understanding of the physical processes controlling landslide behaviour. However, the location of the seismic sources on landslides is a challenging task mostly because of (a) the recording system geometry, (b) the lack of clear P-wave arrivals and clear wave differentiation, (c) the heterogeneous velocities of the ground. The objective of this work is therefore to test whether the integration of a 3D velocity model in probabilistic seismic source location codes improves the quality of the determination especially in depth. We studied the clay-rich landslide of Super-Sauze (French Alps). Most of the seismic events (rockfalls, slidequakes, tremors...) are generated in the upper part of the landslide near the main scarp. The seismic recording system is composed of two antennas with four vertical seismometers each located on the east and west sides of the seismically active part of the landslide. A refraction seismic campaign was conducted in August 2014 and a 3D P-wave model has been estimated using the Quasi-Newton tomography inversion algorithm. The shots of the seismic campaign are used as calibration shots to test the performance of the different location methods and to further update the 3D velocity model. Natural seismic events are detected with a semi-automatic technique using a frequency threshold. The first arrivals are picked using a kurtosis-based method and compared to the manual picking. Several location methods were finally tested. We compared a non-linear probabilistic method coupled with the 3D P-wave model and a beam-forming method inverted for an apparent velocity. We found that the Quasi-Newton tomography inversion algorithm provides results coherent with the original underlaying topography. The velocity ranges from 500 m.s-1 at the surface to 3000 m.s-1 in the bedrock. For the majority of the calibration shots, the use of a 3D velocity model

  15. 3D modelling of an aero-gravity and -magnetic survey as an first exploration step in a frontier basin

    Köther, Nils; Eckard, Marcel; Götze, Hans-Jürgen


    The West African Taoudeni basin covers a desert area of about 1.8 million km² and is one of the last frontier basins worldwide. Here Wintershall Holding AG holds acreage of about 68000 km². During 2005-2007 geological surveys and an aero-gravity and -magnetic survey were conducted in this area. The potential field modelling should contribute first insight about the subsurface to plan an economic seismic survey. 2D models lead to poor results. 2008 the results of an internship (NK) were 3D subsurface models, which were enhanced during the following diploma thesis (Köther, 2009). Complex igneous rocks and sparsely distributed constraints lead to an ambiguous interpretation. Therefore, several simple 3D models were compiled with the in-house software IGMAS+, which base on geological ideas of the underground and fit well the measured data. These basic models allow a geophysical evaluation of different geological theories about the subsurface. Also, for a thorough interpretation field transformations (Euler, Curvature, and Derivatives) were calculated. These results led to new constraints for further interpretation of the basin structures and therefore they are important contributions for future exploration e.g. the planning of seismic surveys.

  16. 3D multicomponent seismic characterization of a clastic reservoir in the Middle Magdalena Valley Basin, Colombia

    Velasquez-Espejo, Antonio Jose

    The main goal of this research is to characterize the combined structural-stratigraphic trap of the Tenerife Field in the Middle Magdalena Valley Basin (MMVB), Colombia. For the first time in Colombia the structural and quantitative interpretation of modern three-dimensional multicomponent (3D-3C) seismic imaging enables a geometric description, a kinematic interpretation of the structural styles, and the facies distribution of the reservoir. A seismic petrophysics work-flow to better achieve the seismic well-tie. Edited and check-shot calibrated P-wave sonic logs were obtained and coefficients of the Gardner and Castagna equations were calibrated to match the density and shear-wave velocity depth trends for the basin. Seismic modeling was performed to evaluate the PP and PS seismic response of the reservoir interval (Mugrosa Formation). The structural interpretation methodology involves a 3D fault-correlation and horizon picking for both PP- and PS-PSTM data volumes. Geometric attributes such as coherence and curvature were used to enhance the structural discontinuities. The main unconformity of the Middle Eocene (MEU) was interpreted, and an attribute-assisted interpretation of the reservoir was conducted in detail. While P-wave data provided most of the structural interpretation, converted-wave data provide a better understanding of the faults. Traditionally, compressive thrust-propagation folds and tectonic inversion have been considered as the main mechanisms controlling the deformation in the MMVB. However, the new interpretation shown in this work provides a different structural concept that involves two major structural styles: 1. Under the MEU the Late Cretaceous and Early Paleocene deformation, dominated by east-verging thrust and partially inverted Mesozoic normal faults, is preserved. Associated folds exhibit a north-south strike, and their structural development is controlled by a long-lived structural element that dominates the area (the Infantas

  17. 3-D seismic results in the discovery of significant reserves bypassed for 55 years in the Chocolate Bayou Field

    Pennington, A.; Plant, C.; Davis, C. [Texas Meridian Resources Corp., Houston, TX (United States)


    The Chocolate Bayou Field is located 25 miles south of Houston, in Southeast Brazoria County, Texas. Discovered in 1938, the field has produced over 2 trillion cubic feet of natural gas and 65 million barrels of oil from approximately 30 sands and 300 wellbores. The majority of the production is from the sands of the upper and middle Frio (Oligocene) section. Accumulation is found on structural highs on both the downthrown and upthrown side of a major basinward growth fault. A 3-D seismic survey was conducted over the field in 1988 in an effort to locate bypassed reserves. Interpretation of the data revealed and unexpected paleo structure associated with a buried and previously undetected counter-regional fault located almost 3 miles south of the structural crest at the Upper Frio level. Detailed structural and isochron mapping with adequate depth conversions indicated that the structure was prospective for trapping of the Lower Frio Sand which were well developed but wet under the Upper Frio structural crest. Although the feature was located on the absolute edge of the survey, the data were adequate to locate two wells which have now been completed in the Lower Frio (RA{sub 4}) section. The sands ranged in thickness from 65 to 115 feet of net pay with porosities from 27 to 30% with sustained production rates in excess of 10,000 million cubic feet of gas and 140 barrels of oil per day per completion.

  18. Coupling the 3D hydro-morphodynamic model Telemac-3D-sisyphe and seismic measurements to estimate bedload transport rates in a small gravel-bed river.

    Hostache, Renaud; Krein, Andreas; Barrière, Julien


    Coupling the 3D hydro-morphodynamic model Telemac-3D-sisyphe and seismic measurements to estimate bedload transport rates in a small gravel-bed river. Renaud Hostache, Andreas Krein, Julien Barrière During flood events, amounts of river bed material are transported via bedload. This causes problems, like the silting of reservoirs or the disturbance of biological habitats. Some current bedload measuring techniques have limited possibilities for studies in high temporal resolutions. Optical systems are usually not applicable because of high turbidity due to concentrated suspended sediment transported. Sediment traps or bedload samplers yield only summative information on bedload transport with low temporal resolution. An alternative bedload measuring technique is the use of seismological systems installed next to the rivers. The potential advantages are observations in real time and under undisturbed conditions. The study area is a 120 m long reach of River Colpach (21.5 km2), a small gravel bed river in Northern Luxembourg. A combined approach of hydro-climatological observations, hydraulic measurements, sediment sampling, and seismological measurements is used in order to investigate bedload transport phenomena. Information derived from seismic measurements and results from a 3-dimensional hydro-morphodynamic model are exemplarily discussed for a November 2013 flood event. The 3-dimensional hydro-morphodynamic model is based on the Telemac hydroinformatic system. This allows for dynamically coupling a 3D hydrodynamic model (Telemac-3D) and a morphodynamic model (Sisyphe). The coupling is dynamic as these models exchange their information during simulations. This is a main advantage as it allows for taking into account the effects of the morphologic changes of the riverbed on the water hydrodynamic and the bedload processes. The coupled model has been calibrated using time series of gauged water depths and time series of bed material collected sequentially (after

  19. Estimating regional pore pressure distribution using 3D seismic velocities in the Dutch Central North Sea Graben

    Winthaegen, P.L.A.; Verweij, J.M.


    The application of the empirical Eaton method to calibrated sonic well information and 3D seismic interval velocity data in the southeastern part of the Central North Sea Graben, using the Japsen (Glob. Planet. Change 24 (2000) 189) normal velocitydepth trend, resulted in the identification of an un

  20. Capabilities of 3-D wavelet transforms to detect plume-like structures from seismic tomography

    Bergeron, Stephen Y.; Yuen, David A.; Vincent, Alain P.


    The wavelet transform methods have been applied to viewing 3-D seismic tomography by casting the transformed quantities into two proxy distributions, E-max, the maximum of the magnitude of the local spectra about a local point and the associated local wavenumber, k-max. Using a stochastic background noise, we test the capability of this procedure in picking up the coherent structures of upper-mantle plumes. Plumes with a Gaussian shape and a characteristic width up to 2250 km have been tested for various amounts of the signal-to-noise ratios (SNR). We have found that plumes can be picked out for SNR as low as 0.08 db and that the optimal plume width for detection is around 1500 km. For plume width ranging between 700 km and 2000 km, the SNR can be lower than 1 db. This length-scale falls within the range for plume-detection based on the signal-to-noise levels associated with the current global tomographical models.

  1. 3D Seismic Reflection Data: Has the Geological Hubble Retained Its Focus?

    Jackson, Christopher


    In their seminal paper in 2002, Joe Cartwright and Mads Huuse referred to 3D seismic reflection data as the 'Geological Hubble', illustrating how these data had the potential to revolutionise our understanding of the genesis and evolution of sedimentary basins. 14 years on, I will here outline just some of the key recent advances made in our understanding of basin structure and stratigraphy, focusing on: (i) the intrusion and extrusion of igneous rocks; (ii) salt tectonics, with particular emphasis on intrasalt structure and the kinematics and mechanics of diapirism; (iii) the geometry and growth of normal faults; and (iv) the structure and emplacement of mass-transport complexes (MTCs). I will stress that future advances at least partly relies on hydrocarbon exploration companies and government agencies continuing to make their data freely available via easy-to-access data portals. I will issue a clarion call to academics, stressing that 'geodynamicists', sedimentologists, structural geologists and geomorphologists, amongst others, can benefit from utilising what I believe are currently an underused data type.

  2. Automatic Reconstruction of Fault Networks from Seismicity Catalogs: 3D Optimal Anisotropic Dynamic Clustering

    Ouillon, G; Sornette, D; Ouillon, Guy; Ducorbier, Caroline; Sornette, Didier


    We propose a new pattern recognition method that is able to reconstruct the 3D structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering method, that originally partitions a set of datapoints into clusters, using a global minimization criterion over the spatial inertia of those clusters. The new method improves on it by taking into account the full spatial inertia tensor of each cluster, in order to partition the dataset into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size and orientation. The main tunable parameter is the accuracy of the earthquake localizations, which fixes the resolution, i.e. the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog, the better...

  3. Effect of 3-D viscoelastic structure on post-seismic relaxation from the 2004 M = 9.2 Sumatra earthquake

    Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.


    The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.

  4. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher


    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  5. Report from SG 1.2: use of 3-D seismic data in exploration, production and underground storage



    The objective of this study was to investigate the experience gained from using 3D and 4D techniques in exploration, production and underground storage. The use of 3D seismic data is increasing and considerable progress in the application of such data has been achieved in recent years. 3D is now in extensive use in exploration, field and storage development planning and reservoir management. By using 4D (or time-lapse) seismic data from a given producing area, it is also possible to monitor gas movement as a function of time in a gas field or storage. This emerging technique is therefore very useful in reservoir management, in order to obtain increased recovery, higher production, and to reduce the risk of infill wells. These techniques can also be used for monitoring underground gas storage. The study gives recommendations on the use of 3D and 4D seismic in the gas industry. For this purpose, three specific questionnaires were proposed: the first one dedicated to exploration, development and production of gas fields (Production questionnaire), the second one dedicated to gas storages (Storage questionnaire) and the third one dedicated to the servicing companies. The main results are: - The benefit from 3D is clear for both producing and storage operators in improving structural shape, fault pattern and reservoir knowledge. The method usually saves wells and improve gas volume management. - 4D seismic is an emerging technique with high potential benefits for producers. Research in 4D must focus on the integration of seismic methodology and interpretation of results with production measurements in reservoir models. (author)

  6. 3D Seismic Attributes for Structural Analysis in Compressional Context:A Case Study from Western Sichuan Basin

    Bo Xu; Ancheng Xiao; Lei Wu; Liguang Mao; Youpu Dong; Lijun Zhou


    Compressional region usually forms complex thrust faults system, which is difficult to identify using traditional migration profiles. The successful application of three-dimensional (3D) seismic attributes analysis greatly reduces the difficulty, and improves the accuracy and efficiency of seismic interpretation and structural analysis. In this paper, we took Qiongxi area in the compression-al region of western Sichuan as an example, using two 3D seismic attributes, coherence and instanta-neous phase, to identify fault assemblages and variations both vertically and laterally. The results show that the study area mainly consists of NS-, NE- and NEE-trending faults. The NS-trending faults are the largest and have a component of sinistral slip controlling the formation of NEE-trending faults, while the NE-trending faults are intermediate in scale, formed earlier and were cut by the NS-trending faults. Our results demonstrate that using seismic attributes for structural analysis have the following advantages: (1) more details of major fault zones, (2) highlighting minor faults which are hardly traced in seismic migration cube, and (3) easier acquisition of accurate fault systems. The application of seismic attributes provides a new idea for deciphering fine and complicated structures, and will sig-nificantly contribute to the development of objective and precise geological interpretation in the fu-ture.

  7. 3D spectroscopic surveys: Exploring galaxy evolution mechanisms

    Epinat, Benoît


    I review the major surveys of high redshift galaxies observed using integral field spectroscopy techniques in the visible and in the infrared. The comparison of various samples has to be done with care since they have different properties linked to their parent samples, their selection criteria and the methods used to study them. I present the various kinematic types of galaxies that are identified within these samples (rotators, mergers, etc.) and summarize the discussions on the mass assembly processes at various redshifts deduced from these classifications: at intermediate redshift (z~0.6) merger may be the main mass assembly process whereas the role of cold gas accretion along cosmic web filaments may increase with redshift. The baryonic Tully-Fisher relation is also discussed. This relation seems to be already in place 3 Gyr after the Big-Bang and is then evolving until the present day. This evolution is interpreted as an increase of the stellar mass content of dark matter haloes of a given mass. The dis...

  8. Seafloor surface processes and subsurface paleo-channel unconformities mapped using multi-channel seismic and multi-beam sonar data from the Galicia 3D seismic experiment.

    Gibson, J. C.; Shillington, D. J.; Sawyer, D. S.; Jordan, B.; Morgan, J. K.; Ranero, C.; Reston, T. J.


    In this study we use geophysical methods, stratigraphic relationships, and coring/drilling leg results to assess possible controls on deep-sea channel formation in order to further constrain paleo-channel (PC) and associated unconformity timing/source processes. A series of cut and fill PC are mapped in 3D multi-channel seismic (MCS) data and compared with multi-beam (MB) sonar bathymetry/backscatter data collected during the Galicia 3D survey with the R/V Marcus G. Langseth (2013). The MCS data were collected using four 6 km streamers spaced at 200 m resulting in 25 m x 25 m common mid-point bins within the ~67 km x 20 km 3D volume. The MB data were collected at an average depth of ~4900 m with a constrained swath width of 4.5 km resulting in 11.25x overlap while enabling 25-m bathymetry and 10-m backscatter grids. The PC lie below the mouth of a submarine canyon at the edge of the Galicia abyssal plain and cut pre/syn-rift sediments; they are bound by a rift block to the north and paleo-levees to the south (maximum height of ~180m). From drilling results, the most recent PC is late Miocene in age. In this study, four PC are traced into the basin as unconformities. Several of the PC/unconformities are tentatively correlated with previously interpreted Pyrenean orogeny/compressional Miocene/Oligocene tectonic events. However, one PC/unconformity within this interval has not been previously interpreted. In order test the hypothesis that the unconformities are the result of a significant change in base level indicated by a low shale/sand (SS) ratio, we use seismic surface attributes to calculate the SS ratio and trace the horizontal extent of the unconformities. Additionally, the MB/MCS seafloor morphology reveals sedimentary waves outboard of the canyon mouth. We use backscatter data to compare the extent of recent processes (e.g., Pleistocene glaciation/de-glaciation) with the unconformities by mapping the surface/shallow subsurface SS ratio (volume scattering).

  9. Evaluation of Jumping and Creeping Regularization Approaches Applied to 3D Seismic Tomography

    Liu, M.; Ramachandran, K.


    are evaluated on a synthetic 3-D true model obtained from a large scale experiment. The evaluation is performed for jumping and creeping approaches for various levels of smoothing constraints, and initial models. The final models are compared against the true models to compute residual distance between the models. Horizontal and vertical roughness in the final models are computed and compared with the true model roughness. Correlation between the true and final models is computed to evaluate the similarities of spatial patterns in the models. The study is also used to show that average 1-D models derived from the final models are very close, indicating that this will be an optimal approach to construct 1-D starting models.

  10. Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys

    Loke, M. H.; Dahlin, Torleif; Rucker, D. F.


    Three-dimensional resistivity surveys and their associated inversion models are required to accurately resolve structures exhibiting very complex geology. In the same light, 3D resistivity surveys collected at multiple times are required to resolve temporally varying conditions. In this work we present 3D data sets, both synthetic and real, collected at different times. The large spatio-temporal data sets are then inverted simultaneously using a least-squares methodology that incorporates rou...

  11. Well log analysis to assist the interpretation of 3-D seismic data at Milne Point, north slope of Alaska

    Lee, Myung W.


    In order to assess the resource potential of gas hydrate deposits in the North Slope of Alaska, 3-D seismic and well data at Milne Point were obtained from BP Exploration (Alaska), Inc. The well-log analysis has three primary purposes: (1) Estimate gas hydrate or gas saturations from the well logs; (2) predict P-wave velocity where there is no measured P-wave velocity in order to generate synthetic seismograms; and (3) edit P-wave velocities where degraded borehole conditions, such as washouts, affected the P-wave measurement significantly. Edited/predicted P-wave velocities were needed to map the gas-hydrate-bearing horizons in the complexly faulted upper part of 3-D seismic volume. The estimated gas-hydrate/gas saturations from the well logs were used to relate to seismic attributes in order to map regional distribution of gas hydrate inside the 3-D seismic grid. The P-wave velocities were predicted using the modified Biot-Gassmann theory, herein referred to as BGTL, with gas-hydrate saturations estimated from the resistivity logs, porosity, and clay volume content. The effect of gas on velocities was modeled using the classical Biot-Gassman theory (BGT) with parameters estimated from BGTL.

  12. Next-generation seismic experiments - II: wide-angle, multi-azimuth, 3-D, full-waveform inversion of sparse field data

    Morgan, Joanna; Warner, Michael; Arnoux, Gillean; Hooft, Emilie; Toomey, Douglas; VanderBeek, Brandon; Wilcock, William


    3-D full-waveform inversion (FWI) is an advanced seismic imaging technique that has been widely adopted by the oil and gas industry to obtain high-fidelity models of P-wave velocity that lead to improvements in migrated images of the reservoir. Most industrial applications of 3-D FWI model the acoustic wavefield, often account for the kinematic effect of anisotropy, and focus on matching the low-frequency component of the early arriving refractions that are most sensitive to P-wave velocity structure. Here, we have adopted the same approach in an application of 3-D acoustic, anisotropic FWI to an ocean-bottom-seismometer (OBS) field data set acquired across the Endeavour oceanic spreading centre in the northeastern Pacific. Starting models for P-wave velocity and anisotropy were obtained from traveltime tomography; during FWI, velocity is updated whereas anisotropy is kept fixed. We demonstrate that, for the Endeavour field data set, 3-D FWI is able to recover fine-scale velocity structure with a resolution that is 2-4 times better than conventional traveltime tomography. Quality assurance procedures have been employed to monitor each step of the workflow; these are time consuming but critical to the development of a successful inversion strategy. Finally, a suite of checkerboard tests has been performed which shows that the full potential resolution of FWI can be obtained if we acquire a 3-D survey with a slightly denser shot and receiver spacing than is usual for an academic experiment. We anticipate that this exciting development will encourage future seismic investigations of earth science targets that would benefit from the superior resolution offered by 3-D FWI.

  13. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan


    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  14. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.


    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  15. Mapping the North Sea base-Quaternary: using 3D seismic to fill a gap in the geological record

    Lamb, Rachel; Huuse, Mads; Stewart, Margaret; Brocklehurst, Simon H.


    The identification and mapping of the base-Quaternary boundary in the central parts of the North Sea is problematic due to the change from an unconformable transition between Pliocene and Pleistocene deltaic deposits in the southern North Sea to a conformable one further north (Sejrup et al 1991; Gatliff et al 1994). The best estimates of the transition use seismic reflection data to identify a 'crenulated reflector' (Buckley 2012), or rely on correlating sparse biostratigraphy (Cameron et al 1987). Recent integration of biostratigraphy, pollen analysis, paleomagnetism and amino acid analysis in the Dutch and Danish sectors (Rasmussen et al 2005; Kuhlmann et al 2006) allows greater confidence in the correlation to a regional 3D seismic dataset and show that the base-Quaternary can be mapped across the entire basin. The base-Quaternary has been mapped using the PGS MegaSurvey dataset from wells in the Danish Sector along the initially unconformable horizon and down the delta front into the more conformable basin giving a high degree of confidence in the horizon pick. The mapped horizon is presented here alongside the difference between this new interpretation and the previously interpreted base-Quaternary (Buckley 2012). The revised base-Quaternary surface reaches a depth of 1248 ms TWT or approximately 1120 m (assuming average velocity of 1800 m/s) showing an elongate basin shape that follows the underlying structure of the Central Graben. The difference between the revised base-Quaternary and the traditional base-Quaternary reaches a maximum of over 600 ms TWT or approximately 540 m in the south-west with over 300 ms TWT or approximately 270 m at the Josephine well (56° 36.11'N, 2° 27.09'E) in the centre of the basin. Mapping this new base-Quaternary allows for the interpretation of the paleo-envionrment during the earliest Quaternary. Seismic attribute analysis indicates a deep water basin with sediment deposition from multiple deltas and redistribution by deep

  16. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.


    collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.

  17. The role of 3-D interactive visualization in blind surveys of HI in galaxies

    Punzo, D; Roerdink, J B T M; Oosterloo, T A; Ramatsoku, M; Verheijen, M A W


    Upcoming HI surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize HI objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the sourc...

  18. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin


    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  19. Seismic moment tensor inversion using 3D velocity model and its application to the 2013 Lushan earthquake sequence

    Zhu, Lupei; Zhou, Xiaofeng


    Source inversion of small-magnitude events such as aftershocks or mine collapses requires use of relatively high frequency seismic waveforms which are strongly affected by small-scale heterogeneities in the crust. In this study, we developed a new inversion method called gCAP3D for determining general moment tensor of a seismic source using Green's functions of 3D models. It inherits the advantageous features of the "Cut-and-Paste" (CAP) method to break a full seismogram into the Pnl and surface-wave segments and to allow time shift between observed and predicted waveforms. It uses grid search for 5 source parameters (relative strengths of the isotropic and compensated-linear-vector-dipole components and the strike, dip, and rake of the double-couple component) that minimize the waveform misfit. The scalar moment is estimated using the ratio of L2 norms of the data and synthetics. Focal depth can also be determined by repeating the inversion at different depths. We applied gCAP3D to the 2013 Ms 7.0 Lushan earthquake and its aftershocks using a 3D crustal-upper mantle velocity model derived from ambient noise tomography in the region. We first relocated the events using the double-difference method. We then used the finite-differences method and reciprocity principle to calculate Green's functions of the 3D model for 20 permanent broadband seismic stations within 200 km from the source region. We obtained moment tensors of the mainshock and 74 aftershocks ranging from Mw 5.2 to 3.4. The results show that the Lushan earthquake is a reverse faulting at a depth of 13-15 km on a plane dipping 40-47° to N46° W. Most of the aftershocks occurred off the main rupture plane and have similar focal mechanisms to the mainshock's, except in the proximity of the mainshock where the aftershocks' focal mechanisms display some variations.

  20. An open-source Matlab code package for improved rank-reduction 3D seismic data denoising and reconstruction

    Chen, Yangkang; Huang, Weilin; Zhang, Dong; Chen, Wei


    Simultaneous seismic data denoising and reconstruction is a currently popular research subject in modern reflection seismology. Traditional rank-reduction based 3D seismic data denoising and reconstruction algorithm will cause strong residual noise in the reconstructed data and thus affect the following processing and interpretation tasks. In this paper, we propose an improved rank-reduction method by modifying the truncated singular value decomposition (TSVD) formula used in the traditional method. The proposed approach can help us obtain nearly perfect reconstruction performance even in the case of low signal-to-noise ratio (SNR). The proposed algorithm is tested via one synthetic and field data examples. Considering that seismic data interpolation and denoising source packages are seldom in the public domain, we also provide a program template for the rank-reduction based simultaneous denoising and reconstruction algorithm by providing an open-source Matlab package.

  1. Network level pavement evaluation with 1 mm 3D survey system

    Kelvin C.P. Wang


    Full Text Available The latest iteration of PaveVision3D Ultra can obtain true 1 mm resolution 3D data at full-lane coverage in all 3 directions at highway speed up to 60 mph. This paper introduces the PaveVision3D Ultra technology for rapid network level pavement survey on approximately 1280 center miles of Oklahoma interstate highways. With sophisticated automated distress analyzer (ADA software interface, the collected 1 mm 3D data provide Oklahoma Department of Transportation (ODOT with comprehensive solutions for automated evaluation of pavement surface including longitudinal profile for roughness, transverse profile for rutting, predicted hydroplaning speed for safety analysis, and cracking and various surface defects for distresses. The pruned exact linear time (PELT method, an optimal partitioning algorithm, is implemented to identify change points and dynamically determine homogeneous segments so as to assist ODOT effectively using the available 1 mm 3D pavement surface condition data for decision-making. The application of 1 mm 3D laser imaging technology for network survey is unprecedented. This innovative technology allows highway agencies to access its options in using the 1 mm 3D system for its design and management purposes, particularly to meet the data needs for pavement management system (PMS, pavement ME design and highway performance monitoring system (HPMS.

  2. 3D joint inversion using seismic data and marine controlled-source electromagnetic data for evaluating gas hydrate concentrations

    Kim, B.; Byun, J.; Seol, S. J.; Jeong, S.; Chung, Y.; Kwon, T.


    For many decades, gas hydrates have been received great attention as a potential source of natural gas. Therefore, the detailed information of structures of buried gas hydrates and their concentrations are prerequisite for the production for the gas hydrate as a reliable source of alternate energy. Recently, for this reason, a lot of gas hydrate assessment methods have been proposed by many researchers. However, it is still necessary to establish as new method for the further improvement of the accuracy of the 3D gas hydrate distribution. In this study, we present a 3D joint inversion method that provides superior quantitative information of gas hydrate distributions using 3D seismic data obtained by ocean-bottom cable (OBC) and marine controlled-source electromagnetic (CSEM) data. To verify our inversion method, we first built the general 3D gas hydrate model containing vertical methane-flow pathways. With the described model, we generated synthetic 3D OBC data and marine CSEM data using finite element modeling algorithms, respectively. In the joint inversion process, to obtain the high-resolution volumetric P-wave velocity structure, we applied the 3D full waveform inversion algorithm to the acquired OBC data. After that, the obtained P-wave velocity model is used as the structure constraint to compute cross-gradients with the updated resistivity model in the EM inversion process. Finally, petrophysical relations were applied to estimate volumetric gas hydrate concentrations. The proposed joint inversion process makes possible to obtain more precise quantitative gas hydrate assessment than inversion processes using only seismic or EM data. This technique can be helpful for accurate decision-making in gas hydrate development as well as in their production monitoring.

  3. Crustal density structure in northwestern South America derived from analysis and 3-D modeling of gravity and seismicity data

    Sanchez-Rojas, J.; Palma, M.


    This paper presents a three-dimensional (3-D) interpretation of new gravity and seismicity datasets for northern South America. A 3-D forward density model was constructed on the basis of deep wide-angle seismic refraction sections, Moho depth from receiver functions, and surface geology. Density values were estimated from published borehole data for sediments by using empirical velocity-density functions and considering mineralogical-chemical composition variations under typical pressure-temperature conditions for upper and lower crustal rocks. The modeled 3-D density structure was kept as simple as possible. The continental and oceanic plates were formed by two sedimentary bodies, one crustal body, and one mantle lithosphere body overlying a sub-lithospheric mantle. The Caribbean plate was modeled with an atypical crustal thickness of ~ 18 km (including sediments). The geometry of the Caribbean plate was modeled using a combination of gravity modeling and analyses of the seismicity and focal-mechanism solutions. Intermediate seismicity and the orientation of the T-axes appeared aligned along the predicted position of the slab. As a result, the estimated slab dip angle under Maracaibo and the Mérida Andes was ~ 15° and increases up to ~ 20° after 100 km depth. The model shows two orientations in the slab strike: ~ N150°E ± 5 in western Colombia and southward underneath the Maracaibo block. The modeling results suggest that the northern South American upper and lower crusts are relatively light and the density of the Caribbean crust is typical for an oceanic crust.

  4. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression

    Lindstrom, Peter; Chen, Po; Lee, En-Jui


    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  5. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales


    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  6. A web-based platform for simulating seismic wave propagation in 3D shallow Earth models with DEM surface topography

    Luo, Cong; Friederich, Wolfgang


    Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.

  7. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.


    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  8. On the spatial distribution of seismicity and the 3D tectonic stress field in western Greece

    Kassaras, Ioannis; Kapetanidis, Vasilis; Karakonstantis, Andreas


    We analyzed a large number of focal mechanisms and relocated earthquake hypocenters to investigate the geodynamics of western Greece, the most seismically active part of the Aegean plate-boundary zone. This region was seismically activated multiple times during the last decade, providing a large amount of enhanced quality new information that was obtained by the Hellenic Unified Seismological Network (HUSN). Relocated seismicity using a double-difference method appears to be concentrated above ∼35 km depth, exhibiting spatial continuity along the convergence boundary and being clustered elsewhere. Earthquakes are confined within the accreted sediments escarpment of the down-going African plate against the un-deformed Eurasian hinterland. The data arrangement shows that Pindos constitutes a seismic boundary along which large stress heterogeneities occur. In Cephalonia no seismicity is found to be related with the offshore Cephalonia Transform Fault (CTF). Onshore, Nsbnd S crustal extension dominates, while in central and south Peloponnesus the stress field appears rotated by 90°. Shearing-stress obliquity by 30° is indicated along the major strike-slip faults, consistent with clockwise crustal rotation. Within the lower crust, the stress field appears affected by plate kinematics and distributed deformation of the lower crust and upper mantle, which guide the regional geodynamics.

  9. Automated fault extraction and classification using 3-D seismic data for the Ekofisk field development

    Signer, C.; Nickel, M.; Randen, T.; Saeter, T.; Soenneland, H.H.


    Mapping of fractures is important for the prediction of fluid flow in many reservoir types. The fluid flow depends mainly on the efficiency of the reservoir seals. Improved spatial mapping of the open and closed fracture systems will allow a better prediction of the fluid flow pattern. The primary objectives of this paper is to present fracture characterization at the reservoir scale combined with seismic facies mapping. The complexity of the giant Ekofisk field on the Norwegian continental shelf provides an ideal framework for testing the validity and the applicability of an automated seismic fault and fracture detection and mapping tool. The mapping of the faults can be based on seismic attribute grids, which means that attribute-responses related to faults are extracted along key horizons which were interpreted in the reservoir interval. 3 refs., 3 figs.

  10. Investigation into 3D earth structure and sources using full seismic waveforms

    Covellone, Brian M.

    Seismograms are the result of the complex interactions between a seismic source, a propagation medium and the seismograph's response. Through the use of 3-dimensional modeling and full seismic waveform data, we quantify and minimize errors associated with the source and propagation medium within our data sets. We compile a new and unique earthquake catalog for the Middle East that is openly available to the public. We quantify the benefits of using a 3-dimensional model relative to a 1-dimensional model to minimizing error in earthquake moment tensors and identify where in the waveform 3-dimensional models outperform 1-dimensional models. Two new and unique 3-dimensional seismic wave speed models are computed for the Ontong Java plateau and eastern North American margin.Both models are significant improvements to the resolution of wave speed structures in the crust and upper mantle and provide new information for the evaluation of tectonic features.

  11. 3-D seismic acquisition geometry design and analysis: Investigation of the requirements to include illumination from all multiples

    Kumar, A.


    A seismic survey should be designed such that imaging of the acquired data leads to a sufficiently accurate subsurface image. For that purpose, methods for acquisition geometry analysis and design are available. These methods are used to judge whether an acquisition geometry is suited for the specif

  12. 3D Seismic Reflection Images of An Off-Axis Melt Lens And Its Associated Upper Crust Around 9°39'N, East Pacific Rise

    Han, S.; Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimović, M. R.


    During the 3D multi-channel seismic (MCS) survey MGL0812 aboard the R/V Langseth, several mid-crust reflectors were discovered off axis on both flanks of the East Pacific Rise from 9°35.6-57.0'N. The reversed polarity of these off-axis reflections with respect to the seafloor and Moho reflections and the high attenuation of the crust detected beneath two of them in the north suggest that they arise from melts residing at the mid-crust level outside the axial low velocity zone (Canales et al. 2010). These off-axis melt lenses (OAML) are probable sites of off-axis volcanism and potential heat sources for localized hydrothermal circulation on the ridge flanks. We focus here on a prominent OAML discovered on the eastern flank around 9°39'N. Results from 1D travel time modeling and 2D streamer tomography of downward continued shot gathers show the presence of a thinner seismic layer 2A above the center of the OAML compared with its surrounding crust. We attribute this thinning to the effects of alteration associated with localized off-axis hydrothermal circulation driven by the OAML, where precipitation of secondary minerals infills pore space within the lower basalt section, leading to increased seismic velocities and thereby converting the lowermost seismic layer 2A into seismic layer 2B. To further constrain the respective 3D geometries of the OAML and the AMC, their spatial relations, and the spatial extent and shape of the region of altered upper crust associated with the OAML, we conduct 3D processing of a small MCS grid that encompasses most of this OAML, aimed at imaging both on- and off-axis melt lens events and the base of seismic layer 2A. This grid covers an ~4 km x 24 km area centered on the ridge crest between ˜9°37.5'-40'N and extending on both flanks, within which a third order ridge axis discontinuity and two high temperature hydrothermal vents identified during Alvin dives in 1991 and 1994 are present. The data were recorded by four 468-channel

  13. Record of Subducting Topography revealed in 3D Seismic Imaging of Pleistocene unconformities, offshore Southern Costa Rica

    Edwards, J. H.; Kluesner, J. W.; Silver, E. A.


    3D seismic reflection data (CRISP) collected across the southern Costa Rica forearc reveals broad, survey-wide erosional events in the upper ~1 km of slope sediments in the mid-slope to outer shelf. The upper 0-280 m of continuous, weakly deformed sediments, designated by IODP Expedition 344 as structural domain I, is bounded by a major erosional event, (CRISP-U1, dated near 1 Ma), suggesting wave-plain erosion from the present shelf break out to 25 km seaward, to a present-day water depth of 900-1300 m. The eastern toe of its surface is characterized by a large drainage system, likely including submarine channels that eroded to depths >1500 m below present-day water depth. CRISP-U1 is variably uplifted by a series of fault propagation folds and cut by an intersecting array of normal faults. Another, major erosional event, (CRISP-M1, approximately 2 Ma) extended from the outer shelf to the mid slope and removed 500-1000 m of material. Overlying CRISP-M1 is up to 1 km of sediments that are more deformed by fault propagation folds, back thrusts, and intersecting arrays of normal faults. Unconformities with smaller areal extent are variably found in these overlying sediments across the mid-slope to outer shelf, at present-day water depths >220 m. Below CRISP-M1, sediments are more densely deformed and also contain major unconformities that extend survey-wide. Both unconformities, CRISP-U1 and CRISP-M1, are encountered in well U1413 and are demarcated by major benthic foraminifera assemblage changes at 149 mbsf and ~504 mbsf (Harris et al., 2013, Proceeding of the IODP, Volume 344).CRISP-M1 is likely correlative to the major sediment facies and benthic foraminifera assemblage change found in U1379 at ~880 mbsf (Vannuchi et al., 2013). The unconformities and intersecting array of normal faults may demarcate the passing of topography on the downgoing Cocos plate, episodically lifting and then subsiding the Costa Rica margin, with amplitudes up to about 1 km.

  14. Seismic attribute analysis for 3-D structural interpretation of the offshore South Marsh Island, Gulf of Mexico

    Horozal, Senay; Lee, Gwang Hoon; Cukur, Deniz; Pigott, John D.


    Structural and seismic attribute analyses of 3-D seismic reflection data from southwest offshore South Marsh Island, Louisiana, Gulf of Mexico, reveal complex structures affected by salt tectonics triggered by interaction between salt, faults and rapid deltaic sedimentation on the shallow continental shelf. Salt exercises the main control on the sedimentary processes in the study area to move, to divert sediment, to create instability, and to block sediment transport pathways. The depths of salt range about 4,300 m (14,000 ft) to 6,500 m (21,600 ft). Salt is very deep and forms a thin sheet in the southwestern part of the area, whereas it rises to shallow depths, forming a dome in the central part. Salt is seen at relatively shallow stratigraphic levels in the northwest and south where it forms thin salt rollers. The margins of Miocene strata are deformed by salt movement and faulting in the study area. The study area is riddled by numerous normal faults which are mostly E-trending and some N- and NW-trending with southward gradual increase in growth factors. Eight main normal faults were interpreted from seismic data which are mostly E-trending S-dipping, and are accompanied by smaller secondary faults. Three of E-trending down-to-the-basin growth faults cut across the study area separating the area into four blocks. These faults form a stair-stepping structure in the south direction. Two conjugate-crossing normal faults are located over the central salt dome which may indicate active salt doming. Seismic attribute analysis was applied as output of seismic volumes, and horizon and time-slice maps in order to identify the structure of study area. These attribute volumes together with time- and horizon-slices gave amplitude anomalies at discontinuities (faults) and lithological changes (sand to shale, salt). Faults interpreted and mapped from seismic profiles and those identified by seismic attribute slices are compatible, therefore, seismic attribute analysis can

  15. 2D and 3D imaging of the metamorphic carbonates at Omalos plateau/polje, Crete, Greece by employing independent and joint inversion on resistivity and seismic data

    Pangratis Pangratis


    Full Text Available A geophysical survey carried out at Omalos plateau in Chania, Western Crete, Greece employed seismic as well as electrical tomography methods in order to image karstic structures and the metamorphic carbonates (Tripali unit and Plattenkalk group which are covered by post-Mesozoic deposits (terra rossa, clays, sands and gravels. The geoelectrical sections image the metamorphic carbonates which exhibit a highly irregular relief. At the central part of the plateau the thickness of post-Mesozoic deposits (terra rossa, clays, sands and gravels ranges from 40-130 m. A 3D resistivity image was generated by inverting resistivity data collected on a grid to the south west at the Omalos plateau. The 3D resistivity image delineated a karstic structure at a depth of 25 to 55 m. On the same grid the depth to the top of the karstified carbonates ranges from 25-70 m. This is also verified on the resistivity sections and seismic velocity sections along lines 5 and 7 of the above mentioned grid which are derived from the cross-gradients joint inversion.

  16. A Robust MEMS Based Multi-Component Sensor for 3D Borehole Seismic Arrays

    Paulsson Geophysical Services


    The objective of this project was to develop, prototype and test a robust multi-component sensor that combines both Fiber Optic and MEMS technology for use in a borehole seismic array. The use such FOMEMS based sensors allows a dramatic increase in the number of sensors that can be deployed simultaneously in a borehole seismic array. Therefore, denser sampling of the seismic wave field can be afforded, which in turn allows us to efficiently and adequately sample P-wave as well as S-wave for high-resolution imaging purposes. Design, packaging and integration of the multi-component sensors and deployment system will target maximum operating temperature of 350-400 F and a maximum pressure of 15000-25000 psi, thus allowing operation under conditions encountered in deep gas reservoirs. This project aimed at using existing pieces of deployment technology as well as MEMS and fiber-optic technology. A sensor design and analysis study has been carried out and a laboratory prototype of an interrogator for a robust borehole seismic array system has been assembled and validated.

  17. 3D seismic modeling and reverse‐time migration with the parallel Fourier method using non‐blocking collective communications

    Chu, Chunlei


    The major performance bottleneck of the parallel Fourier method on distributed memory systems is the network communication cost. In this study, we investigate the potential of using non‐blocking all‐to‐all communications to solve this problem by overlapping computation and communication. We present the runtime comparison of a 3D seismic modeling problem with the Fourier method using non‐blocking and blocking calls, respectively, on a Linux cluster. The data demonstrate that a performance improvement of up to 40% can be achieved by simply changing blocking all‐to‐all communication calls to non‐blocking ones to introduce the overlapping capability. A 3D reverse‐time migration result is also presented as an extension to the modeling work based on non‐blocking collective communications.

  18. 3D crustal velocity structure beneath the broadband seismic array in the Gyeongju area of Korea by receiver function analyses

    Lee, Dong Hun; Lee, Jung Mo; Cho, Hyun-Moo; Kang, Tae-Seob


    A temporary seismic array was in operation between October 2010 and March 2013 in the Gyeongju area of Korea. Teleseismic records of the seismic array appropriate for receiver function analysis were collected, and selected seismograms were split into five groups based on epicenters-the Banda-Molucca, Sumatra, Iran, Aleutian, and Vanuatu groups. 1D velocity structures beneath each seismic station were estimated by inverting the stacked receiver functions for possible groups. The inversion was done by applying a genetic algorithm, whereas surface wave dispersion data were used as constraints to avoid non-uniqueness in the inversion. The composite velocity structure was constructed by averaging the velocity structures weighted by the number of receiver functions used in stacking. The uncertainty analysis for the velocity structures showed that the average of 95% confidence intervals was ± 0.1 km/s. The 3D velocity structure was modeled through interpolation of 1D composite velocity structures. Moho depths were determined in each composite velocity structure based on the AK135-F S-wave velocity model, and the depths were similar to the H-κ analysis results. The deepest Moho depth in the study area was found to be 31.9 km, and the shallowest, was 25.9 km. The Moho discontinuity dips in a southwestward direction beneath the area. A low velocity layer was also detected between 4 and 14 km depth. Adakitic intrusions and/or a high geothermal gradient appear to be the causes of this low velocity layer. The 3D velocity structure can be used to reliably assess seismic hazards in this area.

  19. Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration

    Qingwu Hu


    Full Text Available A multiple terrestrial laser scanner (TLS integration approach is proposed for the fine surveying and 3D modeling of ancient wooden architecture in an ancient building complex of Wudang Mountains, which is located in very steep surroundings making it difficult to access. Three-level TLS with a scalable measurement distance and accuracy is presented for data collection to compensate for data missed because of mutual sheltering and scanning view limitations. A multi-scale data fusion approach is proposed for data registration and filtering of the different scales and separated 3D data. A point projection algorithm together with point cloud slice tools is designed for fine surveying to generate all types of architecture maps, such as plan drawings, facade drawings, section drawings, and doors and windows drawings. The section drawings together with slicing point cloud are presented for the deformation analysis of the building structure. Along with fine drawings and laser scanning data, the 3D models of the ancient architecture components are built for digital management and visualization. Results show that the proposed approach can achieve fine surveying and 3D documentation of the ancient architecture within 3 mm accuracy. In addition, the defects of scanning view and mutual sheltering can overcome to obtain the complete and exact structure in detail.

  20. 3-D Seismic Methods for Geothermal Reservoir Exploration and Assessment--Summary

    Majer, E.L.


    A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the challenge has been to separate the ''background'' natural complexity and heterogeneity of the matrix from the fracture/fault heterogeneity controlling the fluid flow. Ideally one not only wants to find the fractures, but the fractures that are controlling the flow of the fluids. Evaluated in this work is current state-of-the-art surface (seismic reflection) and borehole seismic methods (Vertical Seismic Profiling (VSP), Crosswell and Single Well) to locate and quantify geothermal reservoir characteristics. The focus is on active methods; the assumption being that accuracy is needed for successful well siting. Passive methods are useful for exploration and detailed monitoring for in-fill drilling, but in general the passive methods lack the precision and accuracy for well siting in new or step out areas. In addition, MEQ activity is usually associated with production, after the field has been taken to a mature state, thus in most cases it is assumed that there is not enough MEQ activity in unproduced areas to accurately find the permeable pathways. The premise of this review is that there may new developments in theory and modeling, as well as in data acquisition and processing, which could make it possible to image the subsurface in much more detail than 15 years ago. New understanding of

  1. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    Gao, J.; Zhang, H.


    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  2. A Layer-Stripping Method for 3D Near-Surface Velocity Model Building Using Seismic First-Arrival Times

    Taikun Shi; Jianzhong Zhang; Zhonglai Huang; Changkun Jin


    In order to improve the efficiency of 3D near-surface velocity model building, we develop a layer-stripping method using seismic first-arrival times. The velocity model within a Common Mid-Point (CMP) gather is assumed to be stratified into thin layers, and the velocity of each layer var-ies linearly with depth. The thickness and velocity of the top layer are estimated using minimum-offset first-arrival data in a CMP gather. Then the top layer is stripped and the second layer becomes a new top layer. After removing the effect of the top layer from the former first-arrival data, the new first-arrival data are obtained and then used to estimate the parameters of the second layer. In this manner, the velocity model, being regarded as that at a CMP location, is built layer-by-layer from the top to the bottom. A 3D near-surface velocity model is then formed using the velocity models at all CMP locations. The tests on synthetic and observed seismic data show that the layer-stripping method can be used to build good near-surface velocity models for static correction, and its computation speed is ap-proximately hundred times faster than that of grid tomography.

  3. Rock formation characterization for carbon dioxide geosequestration: 3D seismic amplitude and coherency anomalies, and seismic petrophysical facies classification, Wellington and Anson-Bates Fields, Kansas, USA

    Ohl, Derek; Raef, Abdelmoneam


    Higher resolution rock formation characterization is of paramount priority, amid growing interest in injecting carbon dioxide, CO2, into subsurface rock formations of depeleting/depleted hydrocarbon reservoirs or saline aquifers in order to reduce emissions of greenhouse gases. In this paper, we present a case study for a Mississippian carbonate characterization integrating post-stack seismic attributes, well log porosities, and seismic petrophysical facies classification. We evaluated changes in petrophysical lithofacies and reveal structural facies-controls in the study area. Three cross-plot clusters in a plot of well log porosity and acoustic impedance corroborated a Neural Network petrophysical facies classification, which was based on training and validation utilizing three petrophysically-different wells and three volume seismic attributes, extracted from a time window including the wavelet of the reservoir-top reflection. Reworked lithofacies along small-throw faults has been revealed based on comparing coherency and seismic petrophysical facies. The main objective of this study is to put an emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2 carbon geosequestration in a depleting reservoir and also in the deeper saline aquifer of the Arbuckle Group, south central Kansas. The 3D seismic coherency attribute, we calculated from a window embracing the Mississippian top reflection event, indicated anomalous features that can be interpreted as a change in lithofacies or faulting effect. An Artificial Neural Network (ANN) lithofacies modeling has been used to better understand these subtle features, and also provide petrophysical classes, which will benefit flow-simulation modeling and/or time-lapse seismic monitoring feasibility analysis. This paper emphasizes the need of paying greater attention to small-scale features when embarking upon characterization of a reservoir or saline-aquifer for CO2

  4. Subsurface fault geometries in Southern California illuminated through Full-3D Seismic Waveform Tomography (F3DT)

    Lee, En-Jui; Chen, Po


    More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.

  5. Advanced Reservoir Characterization and Development through High-Resolution 3C3D Seismic and Horizontal Drilling: Eva South Marrow Sand Unit, Texas County, Oklahoma

    Wheeler,David M.; Miller, William A.; Wilson, Travis C.


    The Eva South Morrow Sand Unit is located in western Texas County, Oklahoma. The field produces from an upper Morrow sandstone, termed the Eva sandstone, deposited in a transgressive valley-fill sequence. The field is defined as a combination structural stratigraphic trap; the reservoir lies in a convex up -dip bend in the valley and is truncated on the west side by the Teepee Creek fault. Although the field has been a successful waterflood since 1993, reservoir heterogeneity and compartmentalization has impeded overall sweep efficiency. A 4.25 square mile high-resolution, three component three-dimensional (3C3D) seismic survey was acquired in order to improve reservoir characterization and pinpoint the optimal location of a new horizontal producing well, the ESU 13-H.


    E. Fratus de Balestrini; Guerra, F.


    3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation) to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historic...

  7. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne


    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  8. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.


    are an improved subsurface image of the seismic data (model), a porosity prediction for the reservoir, a reservoir quality map and also a fault map. The result shows a complex geologic model which may contribute to the economic potential of the field. For better understanding, 3D seismic survey, uncertainty and attributes analysis are necessary.

  9. 3D Subsoil Model of the San Biagio `Salinelle' Mud Volcanoes (Belpasso, Sicily) derived from Geophysical Surveys

    Imposa, S.; Grassi, S.; De Guidi, G.; Battaglia, F.; Lanaia, G.; Scudero, S.


    Mud volcanoes are common in active mountain fronts. At Mt. Etna, located just between the Apennine front in Sicily and its foredeep, there are some manifestations of mud volcanism in the lower border of the volcanic edifice. The activity of these mud volcanoes is characterized by persistent emission of muddy water mixed with salts, which rises to the surface due to the gas pressure in the subsoil. The San Biagio Salinelle is one of the three mud volcano fields located around the Paternò eruptive monogenic apparatus; this old volcanic structure was one of the first subaerial volcanic manifestations that formed in the pre-Etnean phase. It is not fully clear whether and how the activity of the mud fields is connected with the volcanic activity of Mt. Etna. Noninvasive geophysical surveys were carried out in the area of the active cone of the San Biagio Salinelle, in order to identify the probable ascent path of the emitted products. Seismic ambient noise records were collected at the nodes of a specially designed grid and, subsequently, the V s values were obtained from an active seismic survey. A digital elevation model (DEM) of the area was obtained by a topographic survey, carried out with the GNSS technique (global navigation satellite system), in real-time kinematic mode. The DEM and the topographic benchmark installed will represent the reference surface for future periodic monitoring of the ongoing deformation in the area. Our results provide an accurate and detailed 3D subsurface model showing the shallower feeding system of the investigated mud volcano.

  10. Delivery mechanisms of 3D geological models - a perspective from the British Geological Survey

    Terrington, Ricky; Myers, Antony; Wood, Ben; Arora, Baneet


    The past decade has seen the British Geological Survey (BGS) construct over one hundred 3D geological models using software such as GOCAD®, GSI3D, EarthVision and Petrel across the United Kingdom and overseas. These models have been produced for different purposes and at different scales and resolutions in the shallow and deep subsurface. Alongside the construction of these models, the BGS and its collaborators have developed several options for disseminating these 3D geological models to external partners and the public. Initially, the standard formats for disseminating these 3D geological models by the BGS comprised of 2D images of cross-sections, GIS raster data and specialised visualisation software such as the LithoFrame Viewer. The LithoFrame Viewer is a thick-client software that allows the user to explore the 3D geometries of the geological units using a 3D interface, and generate synthetic cross-sections and boreholes on the fly. Despite the increased functionality of the LithoFrame Viewer over the other formats, the most popular data formats distributed remained 2D images of cross-sections, CAD based formats (e.g. DWG and DXF) and GIS raster data of surfaces and thicknesses, as these were the types of data that the external partners were most used too. Since 2009 software for delivering 3D geological models has advanced and types of data available have increased. Feature Manipulation Engine (FME) has been used to increase the number of outputs from 3D geological models. These include: • 3D PDFs (Adobe Acrobat) • KMZ/KML (GoogleEarth) • 3D shapefiles (ESRI) Alongside these later outputs, the BGS has developed other software such as GroundhogTM and Geovisionary (in collaboration with Virtalis). Groundhog is fully a web based application that allows the user to generate synthetic cross-sections, boreholes and horizontal slices from 3D geological models on the fly. Geovisionary provides some of the most advanced visualisation of 3D geological models in

  11. The Role of Faulting on the Growth of a Carbonate Platform: Evidence from 3D Seismic Analysis and Section Restoration

    Nur Fathiyah Jamaludin, Siti; Pubellier, Manuel; Prasad Ghosh, Deva; Menier, David; Pierson, Bernard


    Tectonics in addition to other environmental factors impacts the growth of carbonate platforms and plays an important role in shaping the internal architecture of the platforms. Detailed of faults and fractures development and healing in carbonate environment have not been explored sufficiently. Using 3D seismic and well data, we attempt to reconstruct the structural evolution of a Miocene carbonate platform in Central Luconia Province, offshore Malaysia. Luconia Province is located in the NW coast of Borneo and has become one of the largest carbonate factories in SE Asia. Seismic interpretations including seismic attribute analysis are applied to the carbonate platform to discern its sedimentology and structural details. Detailed seismic interpretations highlight the relationships of carbonate deposition with syn-depositional faulting. Branching conjugate faults are common in this carbonate platform and have become a template for reef growth, attesting lateral facies changes within the carbonate environments. Structural restoration was then appropriately performed on the interpreted seismic sections based on sequential restoration techniques, and provided images different from those of horizon flattening methods. This permits us to compensate faults' displacement, remove recent sediment layers and finally restore the older rock units prior to the fault motions. It allows prediction of platform evolution as a response to faulting before and after carbonate deposition and also enhances the pitfalls of interpretation. Once updated, the reconstructions allow unravelling of the un-seen geological features underneath the carbonate platform, such as paleo-structures and paleo-topography which in turn reflects the paleo-environment before deformations took place. Interestingly, sections balancing and restoration revealed the late-phase (Late Oligocene-Early Miocene) rifting of South China Sea, otherwise difficult to visualize on seismic sections. Later it is shown that


    E. Fratus de Balestrini


    Full Text Available 3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting, acquisition tools (digital cameras and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings

  13. New Instruments for Survey: on Line Softwares for 3d Recontruction from Images

    Fratus de Balestrini, E.; Guerra, F.


    3d scanning technologies had a significant development and have been widely used in documentation of cultural, architectural and archeological heritages. Modern methods of three-dimensional acquiring and modeling allow to represent an object through a digital model that combines visual potentialities of images (normally used for documentation) to the accuracy of the survey, becoming at the same time support for the visualization that for metric evaluation of any artefact that have an historical or artistic interest, opening up new possibilities for cultural heritage's fruition, cataloging and study. Despite this development, because of the small catchment area and the 3D laser scanner's sophisticated technologies, the cost of these instruments is very high and beyond the reach of most operators in the field of cultural heritages. This is the reason why they have appeared low-cost technologies or even free, allowing anyone to approach the issues of acquisition and 3D modeling, providing tools that allow to create three-dimensional models in a simple and economical way. The research, conducted by the Laboratory of Photogrammetry of the University IUAV of Venice, of which we present here some results, is intended to figure out whether, with Arc3D, it is possible to obtain results that can be somehow comparable, in therms of overall quality, to those of the laser scanner, and/or whether it is possible to integrate them. They were carried out a series of tests on certain types of objects, models made with Arc3D, from raster images, were compared with those obtained using the point clouds from laser scanner. We have also analyzed the conditions for an optimal use of Arc3D: environmental conditions (lighting), acquisition tools (digital cameras) and type and size of objects. After performing the tests described above, we analyzed the patterns generated by Arc3D to check what other graphic representations can be obtained from them: orthophotos and drawings. The research

  14. A Study on the Compatibility of 3-D Seismic Velocity Structures with Gravity Data of Taiwan

    Horng-Yuan Yen and Hsien-Hsiang Hsieh


    Full Text Available The Bouguer anomaly of Taiwan has been revised in this study based on more accurate terrain data provided by the Taiwanese Digital Terrain Model compiled by the Taiwan Forestry Bureau. Three seismic velocity models, those determined by Rau and Wu (1995, Kim et al. (2005, and Wu et al. (2007 respectively, were selected for our study. We converted their velocity models to density models using the relationship between P-wave velocity and rock density proposed by Ludwig et al. (1970 and Barton (1986, and then calculated their corresponding gravity anomalies. According to the correlation coefficient between the Bouguer anomalies calculated from the velocity models and the revised Bouguer anomalies, the Kim et al. model was more compatible with gravity data than the other two velocity models. The differences between the revised gravity anomaly and the calculated gravity anomalies trend toward positive values at elevations higher than 2000 m. This indicates that the velocities at the shallower depths beneath the mountainous area of the three models are overdetermined, i.e., higher than the real velocities. This ratiocination implies that the crustal thickness beneath the Central Range is less than 55 km which was obtained from the velocity models.

  15. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art

    Diego González-Aguilera


    Full Text Available 3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, “Las Caldas” and “Peña de Candamo”, have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1 a basic level based on the accurate and metric support provided by the laser scanner; and (2 a advanced level using the range and image-based modelling.

  16. Investigation of data acquisition parameters for Minami Noshiro 3D experiment using 3D seismic modeling; Sanjigen hado denpa modeling wo riyoshita Minami Noshiro sanjigen jishin tansa data shutoku parameter no kento

    Tanaka, H.; Nakagami, K.; Minegishi, M. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Kano, R. [Teikoku Oil Co. Ltd., Tokyo (Japan)


    This paper describes how to grasp the characteristics of reflected waves which means how the reflected wave can be received in its magnitude depending on the complicated subsurface structure. Data acquisition parameters were also investigated, as to offset distance distribution and mute setting during the HMO correction. A velocity structure model was prepared for an area of 9km{times}8km including the given 3D seismic exploration area at Minami Noshiro, Akita Prefecture. For the geological sequence used for the velocity structure model, three formations, i.e., Katsurane Formation, Funakawa Formation, and Onagawa Formation, were inputted in an order from the shallower depth on the basis of the depth structure profile obtained from the previous data. Ray tracing was calculated by means of the two-dot dashed line tracing method. For this method, amplitude as well as travel time of waves can be calculated at the same time. This was effective for grasping the magnitude of reflected wave on simulating the traced data. For the velocity structure model used in this study, existing data inputted were old, which limited the quantity of information. However, this model would sufficiently contribute to the verification of survey design and the determination of optimal layout. 1 ref., 3 figs.

  17. Full 3D Microwave Tomography enhanced GPR surveys: a case study

    Catapano, Ilaria; Soldovieri, Francesco; Affinito, Antonio; Hugenschmidt, Johannes


    Ground Penetrating Radar (GPR) systems are well assessed non-invasive diagnostic tools capable of providing high resolution images of the inner structure of the probed spatial region. Owing to this capability, GPR systems are nowadays more and more considered in the frame of civil engineering surveys since they may give information on constructive details as well as on the aging and risk factors affecting the healthiness of an infrastructure. In this frame, accurate, reliable and easily interpretable images of the probed scenarios are mandatory in order to support the management of maintenance works and assure the safety of structures. Such a requirement motivates the use of different and sophisticated data processing approaches in order to compare more than one image of the same scene, thus improving the reliability and objectiveness of the GPR survey results. Among GPR data processing procedures, Microwave Tomography approaches based on the Born approximation face the imaging as the solution of a linear inverse problem, which is solved by using the Truncated Singular Value Decomposition as a regularized inversion scheme [1]. So far, an approach exploiting a 2D scalar model of the scattering phenomenon have been adopted to process GPR data gathered along a single scan. In this case, 3D images are obtained by interpolating 2D reconstructions (this is referred commonly as pseudo 3D imaging). Such an imaging approach have provided valuable results in several real cases dealing with not only surveys for civil engineering but also archeological prospection, subservice monitoring, security surveys and so on [1-4]. These encouraging results have motivated the development of a full 3D Microwave Tomography approach capable of accounting for the vectorial nature of the wave propagation. The reconstruction capabilities of this novel approach have been assessed mainly against experimental data collected in laboratory controlled conditions. The obtained results corroborate

  18. Long-range laser scanning and 3D imaging for the Gneiss quarries survey

    Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico


    In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same

  19. Investigation of drilling failure of Well A1, E-Field, onshore Niger Delta, Nigeria, using 3-D seismic data

    Akinmosin, A.; Oladele, S.; Oriade, O. F.


    This study aimed at investigating reasons for failure of Well A1 that is surrounded by hydrocarbon discoveries in onshore Niger delta with a view to propose optimal location for a new well through interpretation of new 3-D seismic data. Sands encountered by Well A1 were delineated and tied to seismic. Structural closure was mapped and reservoirs at various depths were stacked and sectioned. Porosity, Net to Gross, and Gross Rock Volume of the reservoirs were computed. Well A1 was correlated to a nearby Well K4 and a good correlation was observed. A fault assisted multi reservoirs Prospect-E with south-westerly shift with depth was delineated on the hanging wall of structure building E-Fault whose closing contours is expected to trap hydrocarbon. Petrophysical properties of the reservoirs range from fair to good. Well A1 either perforated prospect-E beneath the oil water contact, completely missed prospect-E or punctured the wet foot wall of E-fault. Consequently, Well A1 could not impact the objective sands and only able to produce water. Well A1 failed because of wrong surface positioning which unsuccessfully targeted the shifting reservoirs. A successful exploratory well in E-Field would be a gently south-westerly deviated well whose vertical section would encounter the shallower sands and deviated section targeting the deeper sands with surface location at about 1 km southeast of Well A1.

  20. Volume estimation of rift-related magmatic features using seismic interpretation and 3D inversion of gravity data on the Guinea Plateau, West Africa

    Kardell, Dominik A.

    The two end-member concept of mantle plume-driven versus far field stress-driven continental rifting anticipates high volumes of magma emplaced close to the rift-initiating plume, whereas relatively low magmatic volumes are predicted at large distances from the plume where the rifting is thought to be driven by far field stresses. We test this concept at the Guinea Plateau, which represents the last area of separation between Africa and South America, by investigating for rift-related volumes of magmatism using borehole, 3D seismic, and gravity data to run structural 3D inversions in two different data areas. Despite our interpretation of igneous rocks spanning large areas of continental shelf covered by the available seismic surveys, the calculated volumes in the Guinea Plateau barely match the magmatic volumes of other magma-poor margins and thus endorse the aforementioned concept. While the volcanic units on the shelf seem to be characterized more dominantly by horizontally deposited extrusive volcanic flows distributed over larger areas, numerous paleo-seamounts pierce complexly deformed pre and syn-rift sedimentary units on the slope. As non-uniqueness is an omnipresent issue when using potential field data to model geologic features, our method faced some challenges in the areas exhibiting complicated geology. In this situation less rigid constraints were applied in the modeling process. The misfit issues were successfully addressed by filtering the frequency content of the gravity data according to the depth of the investigated geology. In this work, we classify and compare our volume estimates for rift-related magmatism between the Guinea Fracture Zone (FZ) and the Saint Paul's FZ while presenting the refinements applied to our modeling technique.

  1. 3D-HST: A wide-field grism spectroscopic survey with the Hubble Space Telescope

    Brammer, Gabriel; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn; Fan, Xiaohui; Schreiber, Natascha Förster; Illingworth, Garth; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles; Tal, Tomer; Wake, David; Whitaker, Katherine; Williams, Anna


    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the processes that shape galaxies in the distant Universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 13D-HST will cover 3/4 (625 sq.arcmin) of the CANDELS survey area with two orbits of primary WFC3/G141 grism coverage and two to four parallel orbits with the ACS/G800L grism. In the IR these exposure times yield a continuum signal-to-noise of ~5 per resolution element at H~23.1 and a 5sigma emission line sensitivity of 5x10-17 erg/s/cm2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1-1.6 um at a spatial resolution...

  2. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    Frary, R.; Louie, J. [UNR; Pullammanappallil, S. [Optim; Eisses, A.


    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  3. Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region

    Nugroho, Hendro; Widiyantoro, Sri; Nugraha, Andri Dian


    Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

  4. Hypocenter relocation using a fast grid search method and a 3-D seismic velocity model for the Sumatra region

    Nugroho, Hendro [Study Program of Earth Sciences, Faculty of Earth Sciences and Technology, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132, Indonesia and Meteorological, Climatological, and Geophysical Agency, Jl. Angkasa 1 No. 2, Kemayoran, Jakar (Indonesia); Widiyantoro, Sri [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia); Nugraha, Andri Dian [Global Geophysics Research Group, Faculty of Mining and Petroleum Engineering, Institute of Technologyc Bandung, Jl. Ganesha No. 10, Bandung 40132 (Indonesia)


    Determination of earthquake hypocenter in Indonesia conducted by the Meteorological, Climatological, and Geophysical Agency (MCGA) has still used a 1-D seismic velocity model. In this research, we have applied a Fast Grid Search (FGM) method and a 3-D velocity model resulting from tomographic imaging to relocate earthquakes in the Sumatran region. The data were taken from the MCGA data catalog from 2009 to 2011 comprising of subduction zone and on land fault earthquakes with magnitude greater than 4 Mw. Our preliminary results show some significant changes in the depths of the relocated earthquakes which are in general deeper than the depths of hypocenters from the MCGA data catalog. The residual times resulting from the relocation process are smaller than those prior to the relocation. Encouraged by these results, we will continue to conduct hypocenter relocation for all events from the MCGA data catalog periodically in order to produce a new data catalog with good quality. We hope that the new data catalog will be useful for further studies.

  5. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    Eppelbaum, Lev; Meirova, Tatiana


    It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of Δg (Bouguer, free-air or observed value anomalies), ΔZ, ΔX, ΔY , ΔT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4

  6. Seismic methods for the characterisation of reservoirs in developing old natural gas fields in Germany; 3D Seismische Verfahren zur Reservoircharakterisierung bei der Entwicklung alter Erdoelfelder in Deutschland

    Krajewski, P.; Stahl, E.; Bischoff, R. [Preussag Energie GmbH, Lingen (Germany); Guderian, K.; Hasse, G.; Schmiermann, I. [BEB Erdoel und Erdgas GmbH, Hannover (Germany); Groot, P. de [De Groot-Bril Earth Sciences BV, Enschede (Netherlands)


    Two examples are chosen to describe the possiblities and limitations of using 3D seismic data for the interpretation of structures and the seismic characterisation of reservoirs. New techniques of seismic classification offer a great deal of possibilities, especially if - as in the case of Ruehme - there is a sufficiency of data from many borehole locations which enables the training of algorithms.(orig.) [Deutsch] Anhand zweier Beispiele wurden die Moeglichkeiten aber auch die Grenzen des Einsatzes 3D seismischer Daten bei der strukturellen Interpretation und der seismischen Reservoircharakterisierung aufgezeigt. Neuartige Techniken der seismischen Klassifizierung erweitern die Moeglichkeiten dabei betraechtlich, insbesondere, wenn - wie beim Beispiel Ruehme - durch die vielen Bohrlokationen ausreichend Daten zum Trainieren der Algorithmen zur Verfuegung stehen. (orig.)

  7. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.


    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  8. Fault and dyke detectability in high resolution seismic surveys for coal: a view from numerical modelling*

    Zhou, Binzhong 13Hatherly, Peter


    Modern underground coal mining requires certainty about geological faults, dykes and other structural features. Faults with throws of even just a few metres can create safety issues and lead to costly delays in mine production. In this paper, we use numerical modelling in an ideal, noise-free environment with homogeneous layering to investigate the detectability of small faults by seismic reflection surveying. If the layering is horizontal, faults with throws of 1/8 of the wavelength should be detectable in a 2D survey. In a coal mining setting where the seismic velocity of the overburden ranges from 3000 m/s to 4000 m/s and the dominant seismic frequency is ~100 Hz, this corresponds to a fault with a throw of 4-5 m. However, if the layers are dipping or folded, the faults may be more difficult to detect, especially when their throws oppose the trend of the background structure. In the case of 3D seismic surveying we suggest that faults with throws as small as 1/16 of wavelength (2-2.5 m) can be detectable because of the benefits offered by computer-aided horizon identification and the improved spatial coherence in 3D seismic surveys. With dykes, we find that Berkhout's definition of the Fresnel zone is more consistent with actual experience. At a depth of 500 m, which is typically encountered in coal mining, and a 100 Hz dominant seismic frequency, dykes less than 8 m in width are undetectable, even after migration.

  9. New High-Resolution 3D Seismic Imagery of Deformation and Fault Architecture Along Newport-Inglewood/Rose Canyon Fault in the Inner California Borderlands

    Holmes, J. J.; Bormann, J. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Wesnousky, S. G.


    The tectonic deformation and geomorphology of the Inner California Borderlands (ICB) records the transition from a convergent plate margin to a predominantly dextral strike-slip system. Geodetic measurements of plate boundary deformation onshore indicate that approximately 15%, or 6-8 mm/yr, of the total Pacific-North American relative plate motion is accommodated by faults offshore. The largest near-shore fault system, the Newport-Inglewood/Rose Canyon (NI/RC) fault complex, has a Holocene slip rate estimate of 1.5-2.0 mm/yr, according to onshore trenching, and current models suggest the potential to produce an Mw 7.0+ earthquake. The fault zone extends approximately 120 km, initiating from the south near downtown San Diego and striking northwards with a constraining bend north of Mt. Soledad in La Jolla and continuing northwestward along the continental shelf, eventually stepping onshore at Newport Beach, California. In late 2013, we completed the first high-resolution 3D seismic survey (3.125 m bins) of the NI/RC fault offshore of San Onofre as part of the Southern California Regional Fault Mapping project. We present new constraints on fault geometry and segmentation of the fault system that may play a role in limiting the extent of future earthquake ruptures. In addition, slip rate estimates using piercing points such as offset channels will be explored. These new observations will allow us to investigate recent deformation and strain transfer along the NI/RC fault system.

  10. Stellar Populations And Star-formation Histories Of Early-type Galaxies From The Atlas3d Survey

    McDermid, Richard; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Davies, R. L.; Davis, T.; de Zeeuw, T.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Young, L.


    Atlas3D is a new survey based on integral-field spectroscopy for a complete, volume-limited sample of 260 early-type galaxies observed within the local 40 Mpc volume - the largest survey of its kind. This K-band selected sample spans a range in mass from 10e10 to 10e12 solar masses, and probes two o

  11. Geomorphology of Late Quaternary Mass Movement Deposits using a Decimetre-Resolution 3D Seismic Volume: Case Studies from Windermere, UK, and Trondheimsfjorden, Norway

    Vardy, M. E.; Dix, J. K.; Henstock, T.; Bull, J. M.; Pinson, L.; L'Heureux, J.; Longva, O.; Hansen, L.; Chand, S.; Gutowski, M.


    We present results from decimetre resolution 3D seismic volumes acquired over Late Quaternary mass movement deposits in both Lake Windermere, UK, and the Trondheim Harbour area, central Norway. Both deposits were imaged using the 3D Chirp sub-bottom profiler, which combines the known, highly repeatable source waveform of Chirp profilers with the coherent processing and interpretation afforded by true 3D seismic volumes. Reflector morphology from these two volumes are used to identify and map structure on scales of 10s cm to 100s metres. This shows the applicability of the method for the interpretation of failure mechanism, flow morphology and depositional style in these two environments. In Windermere, Younger Dryas deposits have been substantially reworked by the episodic redistribution of sediment from the steep lakesides into the basin. Within the 100 x 400 m 3D seismic volume we identify two small debris flow deposits (1500 m3 and 60,000 m3) and one large (500,000 m3) erosive mass flow deposit. These two depositional mechanisms are distinct. The debris flows have high amplitude, chaotic internal reflections, with a high amplitude reflector representing a lower erosional boundary, discontinuous low amplitude top reflector, and thin out rapidly with distance from the lake margin. The thicker mass flow unit lacks internal structure, and has high amplitude top and base reflectors,. In the Trondheim Harbour we image the down-slope extent of three large slide blocks (which have a net volume > 1 x 106 m3), mobilised by a landslide in 1990, in the 100 x 450 m 3D seismic volume. The morphology of these mass movement deposits is distinct again; demonstrating translational failure along a clear slip plane, leaving well defined slide scars, and forming prominent compressional/extensional structures.

  12. Techniques for Surveying Urban Active Faults by Seismic Methods

    Xu Mingcai; Gao Jinghua; Liu Jianxun; Rong Lixin


    Using the seismic method to detect active faults directly below cities is an irreplaceable prospecting technique. The seismic method can precisely determine the fault position. Seismic method itself can hardly determine the geological age of fault. However, by considering in connection with the borehole data and the standard geological cross-section of the surveyed area, the geological age of reflected wave group can be qualitatively (or semi-quantitatively)determined from the seismic depth profile. To determine the upper terminal point of active faults directly below city, it is necessary to use the high-resolution seismic reflection technique.To effectively determine the geometric feature of deep faults, especially to determine the relation between deep and shallow fracture structures, the seismic reflection method is better than the seismic refraction method.

  13. Efficient big data assimilation through sparse representation: A 3D benchmark case study in seismic history matching

    Luo, Xiaodong; Jakobsen, Morten; Nævdal, Geir


    In a previous work \\citep{luo2016sparse2d_spej}, the authors proposed an ensemble-based 4D seismic history matching (SHM) framework, which has some relatively new ingredients, in terms of the type of seismic data in choice, the way to handle big seismic data and related data noise estimation, and the use of a recently developed iterative ensemble history matching algorithm. In seismic history matching, it is customary to use inverted seismic attributes, such as acoustic impedance, as the observed data. In doing so, extra uncertainties may arise during the inversion processes. The proposed SHM framework avoids such intermediate inversion processes by adopting amplitude versus angle (AVA) data. In addition, SHM typically involves assimilating a large amount of observed seismic attributes into reservoir models. To handle the big-data problem in SHM, the proposed framework adopts the following wavelet-based sparse representation procedure: First, a discrete wavelet transform is applied to observed seismic attribu...


    Canciani, M.; Saccone, M.


    The research illustrated below describes the integrated survey method as applied to the Church of St. Thomas of Villanova in Castel Gandolfo, the work of G. L. Bernini. In particular, integration of the various survey methods with 3D modelling to reconstruct all the elements with complex and/or hard to measure geometries has made it possible to obtain an accurate survey model. Comparison of this model with Bernini's original project, based on the analysis of several drawings, has given a clea...

  15. The ATLAS3D project - XVIII. CARMA CO imaging survey of early-type galaxies

    Alatalo, Katherine; Bureau, Martin; Young, Lisa M; Blitz, Leo; Crocker, Alison F; Bayet, Estelle; Bois, Maxime; Bournaud, Frédéric; Cappellari, Michele; Davies, Roger L; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; McDermid, Richard M; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie


    We present the Combined Array for Research in Millimeter Astronomy (CARMA) ATLAS3D molecular gas imaging survey, a systematic study of the distribution and kinematics of molecular gas in CO-rich early-type galaxies. Our full sample of 40 galaxies (30 newly mapped and 10 taken from the literature) is complete to a 12CO(1-0) integrated flux of 18.5 Jy km/s, and it represents the largest, best-studied sample of its type to date. A comparison of the CO distribution of each galaxy to the g-r color image (representing dust) shows that the molecular gas and dust distributions are in good agreement and trace the same underlying interstellar medium. The galaxies exhibit a variety of CO morphologies, including discs (50%), rings (15%), bars+rings (10%), spiral arms (5%), and mildly (12.5%) and strongly (7.5%) disrupted morphologies. There appear to be weak trends between galaxy mass and CO morphology, whereby the most massive galaxies in the sample tend to have molecular gas in a disc morphology. We derive a lower limi...

  16. 3D Survey and instability’s analysis of Romena parish

    Stefano Bertocci


    Full Text Available The Romanesque parish church San Pietro a Romena is located in the municipal district of Pratovecchio, in the Casentino valley. It was built, due to a inscription chiselled on a capital, in 1152 d.C. probably wanted byMatilde di Canossa, who has promoted the construction of a lot of churches in this area. We don’t have many informations about the first church, probably destroyed by an earthquake, event that frequently has hit the valley. We based our research on what the DM 01/2008 requests, so our analysis was made following some steps of knowledge: firstly an accurated research in the archive of the Fiesole diocese, to suppose how the buildinghas evolved during the ages, then a 3D laser scanner survey. Thanks to the accurate point cluod we could draw our sections of the church, integrating the material analysis, the orthophotos and the degradation analysis. In parallel has been developed the stratigraphic analysisof the building, which is useful to understand how it has been costructed and how it has grown, so that a coherent restoration project can be efficiently designed.

  17. The application of high-resolution 3D seismic data to model the distribution of mechanical and hydrogeological properties of a potential host rock for the deep storage of radioactive waste in France

    Mari, Jean-Luc


    In the context of a deep geological repository of high-level radioactive wastes, the French National Radioactive Waste Management Agency (Andra) has conducted an extensive characterization of the Callovo-Oxfordian argillaceous rock and surrounding formations in the Eastern Paris Basin. As part of this project, an accurate 3D seismic derived geological model is needed. The paper shows the procedure used for building the 3D seismic constrained geological model in depth by combining time-to-depth conversion of seismic horizons, consistent seismic velocity model and elastic impedance in time. It also shows how the 3D model is used for mechanical and hydrogeological studies. The 3D seismic field data example illustrates the potential of the proposed depth conversion procedure for estimating density and velocity distributions, which are consistent with the depth conversion of seismic horizons using the Bayesian Kriging method. The geological model shows good agreement with well log data obtained from a reference we...


    Bob Hardage; M.M. Backus; M.V. DeAngelo; R.J. Graebner; S.E. Laubach; Paul Murray


    Fractures within the producing reservoirs at McElroy Field could not be studied with the industry-provided 3C3D seismic data used as a cost-sharing contribution in this study. The signal-to-noise character of the converted-SV data across the targeted reservoirs in these contributed data was not adequate for interpreting azimuth-dependent data effects. After illustrating the low signal quality of the converted-SV data at McElroy Field, the seismic portion of this report abandons the McElroy study site and defers to 3C3D seismic data acquired across a different fractured carbonate reservoir system to illustrate how 3C3D seismic data can provide useful information about fracture systems. Using these latter data, we illustrate how fast-S and slow-S data effects can be analyzed in the prestack domain to recognize fracture azimuth, and then demonstrate how fast-S and slow-S data volumes can be analyzed in the poststack domain to estimate fracture intensity. In the geologic portion of the report, we analyze published regional stress data near McElroy Field and numerous formation multi-imager (FMI) logs acquired across McElroy to develop possible fracture models for the McElroy system. Regional stress data imply a fracture orientation different from the orientations observed in most of the FMI logs. This report culminates Phase 2 of the study, ''Combining a New 3-D Seismic S-Wave Propagation Analysis for Remote Fracture Detection with a Robust Subsurface Microfracture-Based Verification Technique''. Phase 3 will not be initiated because wells were to be drilled in Phase 3 of the project to verify the validity of fracture-orientation maps and fracture-intensity maps produced in Phase 2. Such maps cannot be made across McElroy Field because of the limitations of the available 3C3D seismic data at the depth level of the reservoir target.

  19. Fluid Substitution Modeling to Determine Sensitivity of 3D Vertical Seismic Profile Data to Injected CO­2­ at an active Carbon Capture, Utilization and Storage Project, Farnsworth field, TX.

    Haar, K. K.; Balch, R. S.


    The Southwest Regional Partnership on Carbon Sequestration monitors a CO2 capture, utilization and storage project at Farnsworth field, TX. The reservoir interval is a Morrowan age fluvial sand deposited in an incised valley. The sands are between 10 to 25m thick and located about 2800m below the surface. Primary oil recovery began in 1958 and by the late 1960's secondary recovery through waterflooding was underway. In 2009, Chaparral Energy began tertiary recovery using 100% anthropogenic CO2 sourced from an ethanol and a fertilizer plant. This constitutes carbon sequestration and fulfills the DOE's initiative to determine the best approach to permanent carbon storage. One purpose of the study is to understand CO­2 migration from injection wells. CO2­ plume spatial distribution for this project is analyzed with the use of time-lapse 3D vertical seismic profiles centered on CO2 injection wells. They monitor raypaths traveling in a single direction compared to surface seismic surveys with raypaths traveling in both directions. 3D VSP surveys can image up to 1.5km away from the well of interest, exceeding regulatory requirements for maximum plume extent by a factor of two. To optimize the timing of repeat VSP acquisition, the sensitivity of the 3D VSP surveys to CO2 injection was analyzed to determine at what injection volumes a seismic response to the injected CO­2 will be observable. Static geologic models were generated for pre-CO2 and post-CO2 reservoir states through construction of fine scale seismic based geologic models, which were then history matched via flow simulations. These generated static states of the model, where CO2­ replaces oil and brine in pore spaces, allow for generation of impedance volumes which when convolved with a representative wavelet generate synthetic seismic volumes used in the sensitivity analysis. Funding for the project is provided by DOE's National Energy Technology Laboratory (NETL) under Award No. DE-FC26-05NT42591.

  20. 3D seismic analysis of the Collyhurst Sandstone: implications for CO2 sequestration in the East Irish Sea Basin

    Gamboa, Davide; Williams, John; Kirk, Karen; Gent, Christopher; Bentham, Michelle; Fellgett, Mark; Schofield, David


    Carbon Capture and Storage (CCS) is a vital technology towards low-carbon energy resources and the mitigation of global warming trends induced by rising CO2 levels in the atmosphere. The East Irish Sea Basin (EISB) is a key area for CCS in the western UK, having high CO2 storage potentials in explored hydrocarbon fields and in saline aquifers within the Permo-Triassic Sherwood Sandstone Formation. However, the theoretical storage potential of the EISB could be poorly estimated as the reservoir-prone Lower Permian formations are not considered in detail by current estimations. This work aims to fill this gap, focusing on the characterisation of the Lower Permian Collyhurst Sandstone Formation as a viable storage unit. The potential for CO2 storage is estimated as the total volume/area of suitable closures that are isolated by structural traps, occurring at depths suitable for CO2 injection and containment (>800m). Detailed structural and stratigraphic interpretations were made using 3D seismic data to assess the storage potential of the Collyhurst Sandstone Formation in the southern EISB. The basin strata is compartmentalised by numerous N-S trending faults. A higher degree of compartmentalisation occurs within regional anticlines where elongated tilted blocks are observed, bound by predominantly west-dipping faults that induce a variable offset of the Collyhurst Sandstone strata. Contrastingly, higher lateral continuity of this formation is observed within graben basins were faults are less frequent and with minor offset, thus potentially creating larger storage closures. Fault dip orientation in the grabens is variable, with west and east dipping faults occurring as a function of large east-dipping listric faults. This study was complemented by the stress modelling of the interpreted faults in order to assess the risk of CO2 leakage. Analysis of borehole breakouts observed in four approximately vertical wells in the EISB suggest a maximum horizontal stress

  1. Numerical dispersion, stability, and phase-speed for 3D time-domain finite-difference seismic wave propagation algorithms

    Haney, M. M.; Aldridge, D. F.; Symons, N. P.


    Numerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) methods entails approximating temporal and spatial derivatives by discrete function differences. Thus, the solution of the difference equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if temporal and spatial gridding intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled system of difference equations) under examination. A dispersion relation appropriate for FD solution of the 3D velocity-stress system of isotropic elastodynamics, on staggered temporal and spatial grids, is developed. The relation applies to either compressional or shear wave propagation, and reduces to the proper form for acoustic propagation in the limit of vanishing shear modulus. A stability condition and a plane-wave phase-speed formula follow as consequences of the dispersion relation. The mathematical procedure utilized for the derivation is a modern variant of classical von Neumann analysis, and involves a 4D discrete space/time Fourier transform of the nine, coupled, FD updating formulae for particle velocity vector and stress tensor components. The method is generalized to seismic wave propagation within anelastic and poroelastic media, as well as sound wave propagation within a uniformly-moving atmosphere. A significant extension of the approach yields a stability condition for wave propagation across an interface between dissimilar media with strong material contrast (e.g., the earth's surface, the seabed

  2. The geological implications of some 3-D 'Fishnet' seismic images of Guelph pinnacle reefs in Ontario : a different perspective on their growth, destruction and complexity

    Bailey, S.M.B. [Bailey Geological Services Ltd., London, ON (Canada)


    Exploration of underground oil and gas reservoirs has been enhanced since the development of 3-D seismic technology, which provides the ability to view structural anomalies, salt domes or lithologic buildups. 3-D seismic images were used to view the true geometry of carbonate structures within Silurian Guelph reefs in southwestern Ontario. The images provided a better understanding of how they grew, plus when and how they were destroyed by post-depositional weathering processes. 3-D seismic images allow oil and gas companies to explore and develop a series of wells through tight and porous segments of a reservoir with extreme precision. The Guelph reefs of Ontario are Middle Silurian in age and are part of an entire complex of reefs, banks, barriers and associated facies which grew in a circular fashion around a structural basement sag known as the Michigan Basin. The author explains how two reefs of the same physical height can be so evidently different in physical appearance. He presents his interpretation of how the Bentpath East Pinnacle Reef and the Tipperary Pinnacle reef underwent completely different histories of weathering, destruction, and construction. 16 refs., 1 tab., 33 figs.

  3. Estimation of gas-hydrate distribution from 3-D seismic data in a small area of the Ulleung Basin, East Sea

    Yi, Bo-Yeon; Kang, Nyeon-Keon; Yoo, Dong-Geun; Lee, Gwang-Hoon


    We estimated the gas-hydrate resource in a small (5 km x 5 km) area of the Ulleung Basin, East Sea from 3-D seismic and well-log data together with core measurement data, using seismic inversion and multi-attribute transform techniques. Multi-attribute transform technique finds the relationship between measured logs and the combination of the seismic attributes and various post-stack and pre-stack attributes computed from inversion. First, the gas-hydrate saturation and S-wave velocity at the wells were estimated from the simplified three-phase Biot-type equation (STPBE). The core X-ray diffraction data were used to compute the elastic properties of solid components of sediment, which are the key input parameters to the STPBE. Next, simultaneous pre-stack inversion was carried out to obtain P-wave impedance, S-wave impedance, density and lambda-mu-rho attributes. Then, the porosity and gas-hydrate saturation of 3-D seismic volume were predicted from multi-attribute transform. Finally, the gas-hydrate resource was computed by the multiplication of the porosity and gas-hydrate saturation volumes.

  4. Kinematic finite fault and 3D seismic wave propagation of the 24 August, 2016, Mw 6.0 central Italy earthquake

    Federica Magnoni


    Full Text Available The magnitude Mw 6.0 earthquake of 24th August 2016 caused severe damages and nearly 300 fatalities in the central Italy region. Initial reports revealed an asymmetrical distribution of damage and coseismic effects, suggesting a major role of heterogeneities, both in the rupture history and in the geological structure of the region. Near realtime availability of seismological data afforded a timely determination of a finite fault model (Tinti et al., 2016. Here we test this source model by performing a 3D simulation of seismic wave propagation within a 3D structural model containing the major geological features of the region. Agreement between modeled seismograms and observed seismograms suggests that some complexities in the waveforms, such as high amplification in the region of the Mt. Vettore fault system, can be accounted for by complexities in the fault rupture and 3D structural models. Finally, the consistency of the hypothesis of two distinct events has been analyzed.

  5. 3D Surveying, Modeling and Geo-Information System of the New Campus of ITB-Indonesia

    Suwardhi, D.; Trisyanti, S. W.; Ainiyah, N.; Fajri, M. N.; Hanan, H.; Virtriana, R.; Edmarani, A. A.


    The new campus of ITB-Indonesia, which is located at Jatinangor, requires good facilities and infrastructures to supporting all of campus activities. Those can not be separated from procurement and maintenance activities. Technology for procurement and maintenance of facilities and infrastructures -based computer (information system)- has been known as Building Information Modeling (BIM). Nowadays, that technology is more affordable with some of free software that easy to use and tailored to user needs. BIM has some disadvantages and it requires other technologies to complete it, namely Geographic Information System (GIS). BIM and GIS require surveying data to visualized landscape and buildings on Jatinangor ITB campus. This paper presents the on-going of an internal service program conducted by the researcher, academic staff and students for the university. The program including 3D surveying to support the data requirements for 3D modeling of buildings in CityGML and Industry Foundation Classes (IFC) data model. The entire 3D surveying will produce point clouds that can be used to make 3D model. The 3D modeling is divided into low and high levels of detail modeling. The low levels model is stored in 3D CityGML database, and the high levels model including interiors is stored in BIM Server. 3D model can be used to visualized the building and site of Jatinangor ITB campus. For facility management of campus, an geo-information system is developed that can be used for planning, constructing, and maintaining Jatinangor ITB's facilities and infrastructures. The system uses openMAINT, an open source solution for the Property & Facility Management.

  6. Galicia3D seismic volume: Connections between the western termination of the S reflector and eastern termination of the Peridotite Ridge

    Sawyer, Dale; Jordan, Brian; Morgan, Julia; Shillington, Donna; Reston, Timothy; Ranero, Cesar


    In June thru September, 2013, a 3D reflection and a long offset seismic experiment were conducted at the Galicia rifted margin by investigators from the US, UK, Germany, and Spain. The 3D multichannel experiment covered 64 km by 20 km (1280 km2), using the RV Marcus Langseth. Four streamers 6 km long were deployed at 12.5 m hydrophone channel spacing. The streamers were 200 m apart. Two airgun arrays, each 3300 cu in, were fired alternately every 37.5 m, to collectively yield a 400 m wide sail line consisting of 8 CMP lines at 50 m spacing. We draw attention to the region from the Peridotite Ridge, PR, (on the west) and the western terminus of the S reflector (on the east). The S reflector is generally thought to separate continental crust and pre- and syn-rift sediment above, and serpentinized upper mantle below. In 2D and 3D seismic reflection data, the S reflector is very bright, generally horizontal, and is terminated very abruptly at the western end. The latter is particularly clear in the 3D volume. It is about 10-15 km wide between the end of the S reflector and the midpoint of the PR. In this interval, there appear to be fault bounded blocks that may be either continental crust or pre- or syn-rift sediments. The PR is a virtually straight, N-S ridge, without apparent fault offsets. The crest of the PR is at about 4800 mbsl at the S extent and is at 6070 mbsl at the N extent of the 3D volume. The crest is approximately linear in map view or N-S extent. Both sides, East and West of the PR, appear to show landslides and other mass wasting during the late stage of the syn-rifting interval. The PR rarely shows internal seismic structure in 2D and 3D. Most importantly, under the basin to the east of the PR there are substantially more recognizable structures connecting the S reflector and the PR. These were much less interpretable in previous 2D seismic profiles.

  7. The Representation of Cultural Heritage from Traditional Drawing to 3d Survey: the Case Study of Casamary's Abbey

    Canciani, M.; Saccone, M.


    In 3D survey the aspects most discussed in the scientific community are those related to the acquisition of data from integrated survey (laser scanner, photogrammetric, topographic and traditional direct), rather than those relating to the interpretation of the data. Yet in the methods of traditional representation, the data interpretation, such as that of the philological reconstruction, constitutes the most important aspect. It is therefore essential in modern systems of survey and representation, filter the information acquired. In the system, based on the integrated survey that we have adopted, the 3D object, characterized by a cloud of georeferenced points, defined but their color values, defines the core of the elaboration. It allows to carry out targeted analysis, using section planes as a tool of selection and filtering data, comparable with those of traditional drawings. In the case study of the Abbey of Casamari (Veroli), one of the most important Cistercian Settlement in Italy, the survey made for an Agreement with the Ministry of Cultural Heritage and Activities and Tourism (MiBACT) and University of RomaTre, within the project "Accessment of the sismic safety of the state museum", the reference 3D model, consisting of the superposition and geo-references data from various surveys, is the tool with which yo develop representative models comparable to traditional ones. It provides the necessary spatial environment for drawing up plans and sections with a definition such as to develop thematic analysis related to phases of construction, state of deterioration and structural features.

  8. Determination of porosity and facies trends in a complex carbonate reservoir, by using 3-D seismic, borehole tools, and outcrop geology

    Zacharakis, T.G. Jr.; Comet, J.N.; Murillo, A.A. [Respol Exploracion, S.A., Madrid (Spain)] [and others


    Mesozoic carbonate reservoirs are found in the Mediterranean Sea, off the east coast of Spain. A wide variation of porosities are found in the core samples and logs: vuggy, breccia, fractures, and cavern porosity. In addition, complex Tertiary carbonate geometries include olistostromes, breccia bodies, and reef buildups, which are found on top of Mesozoic carbonates. Predicting the porosity trends within these oil productive reservoirs requires an understanding of how primary porosity was further enhanced by secondary processes, including fractures, karstification, and dolomitization in burial conditions. Through an extensive investigation of field histories, outcrop geology, and seismic data, a series of basic reservoir styles have been identified and characterized by well log signature and seismic response. The distribution pattern of the different reservoirs styles is highly heterogeneous, but by integrating subsurface data and outcrop analogs, it is possible to distinguish field-scale and local patterns of both vertical and local variations in reservoir properties. Finally, it is important to quantify these reservoir properties through the study of seismic attributes, such as amplitude variations, and log responses at the reservoir interval. By incorporating 3-D seismic data, through the use of seismic inversion, it is possible to predict porosity trends. Further, the use of geostatistics can lead to the prediction of reservoir development within the carbonate facies.

  9. New seismic source `BLASTER` for seismic survey; Hasaiyaku wo shingen to shite mochiita danseiha tansa

    Koike, G.; Yoshikuni, Y. [OYO Corp., Tokyo (Japan)


    Built-up weight and vacuole have been conceived as seismic sources without using explosive. There have been problems that they have smaller energy to generate elastic wave than explosive, and that they have inferior working performance. Concrete crushing explosive is tried to use as a new seismic source. It is considered to possess rather large seismic generating energy, and it is easy to handle from the viewpoint of safety. Performance as seismic source and applicability to exploration works of this crushing explosive were compared with four kinds of seismic sources using dynamite, dropping weight, shot-pipe utilizing shot vacuole, and impact by wooden maul. When considered by the velocity amplitude, the seismic generating energy of the crushing explosive of 120 g is about one-fifth of dynamite of 100 g. Elastic wave generated includes less high frequency component than that by dynamite, and similar to that using seismic source without explosive, such as the weight dropping. The maximum seismic receiving distance obtained by the seismic generation was about 100 m. This was effective for the slope survey with the exploration depth between 20 m and 30 m. 1 ref., 9 figs., 2 tabs.

  10. Comment on 'The role of 3-D interactive visualization in blind surveys of HI in galaxies'

    Taylor, Rhys


    Punzo et al. (2015) recently reported on the state of the art for visualisation of H I data cubes. I here briefly describe another program, FRELLED, specifically designed for dealing with H I data. Unlike many 3D viewers, FRELLED can handle astronomical world coordinates, easily and interactively mask and label specific volumes within the data, overlay optical data from the SDSS, generate contour plots and renzograms, make basic spectral profile measurements via an interface with MIRIAD, and can switch between viewing the data in 3D and 2D. The code is open source and can potentially be extended to include any astronomical function possible with Python, displaying the result in an interactive 3D environment.

  11. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    Polkowski, Marcin


    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.


    M. Canciani


    Full Text Available The research illustrated below describes the integrated survey method as applied to the Church of St. Thomas of Villanova in Castel Gandolfo, the work of G. L. Bernini. In particular, integration of the various survey methods with 3D modelling to reconstruct all the elements with complex and/or hard to measure geometries has made it possible to obtain an accurate survey model. Comparison of this model with Bernini's original project, based on the analysis of several drawings, has given a clearer view of certain aspects of the design and of Bernini's planning methods.

  13. Historical Buildings Models and Their Handling via 3d Survey: from Points Clouds to User-Oriented Hbim

    Chiabrando, F.; Sammartano, G.; Spanò, A.


    This paper retraces some research activities and application of 3D survey techniques and Building Information Modelling (BIM) in the environment of Cultural Heritage. It describes the diffusion of as-built BIM approach in the last years in Heritage Assets management, the so-called Built Heritage Information Modelling/Management (BHIMM or HBIM), that is nowadays an important and sustainable perspective in documentation and administration of historic buildings and structures. The work focuses the documentation derived from 3D survey techniques that can be understood like a significant and unavoidable knowledge base for the BIM conception and modelling, in the perspective of a coherent and complete management and valorisation of CH. It deepens potentialities, offered by 3D integrated survey techniques, to acquire productively and quite easilymany 3D information, not only geometrical but also radiometric attributes, helping the recognition, interpretation and characterization of state of conservation and degradation of architectural elements. From these data, they provide more and more high descriptive models corresponding to the geometrical complexity of buildings or aggregates in the well-known 5D (3D + time and cost dimensions). Points clouds derived from 3D survey acquisition (aerial and terrestrial photogrammetry, LiDAR and their integration) are reality-based models that can be use in a semi-automatic way to manage, interpret, and moderately simplify geometrical shapes of historical buildings that are examples, as is well known, of non-regular and complex geometry, instead of modern constructions with simple and regular ones. In the paper, some of these issues are addressed and analyzed through some experiences regarding the creation and the managing of HBIMprojects on historical heritage at different scales, using different platforms and various workflow. The paper focuses on LiDAR data handling with the aim to manage and extract geometrical information; on

  14. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    Wang, Jin; Huang, Xing; Qian, Wei


    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  15. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-Cable™ seismic data along the Hosgri Fault, offshore California

    Kluesner, Jared; Brothers, Daniel


    Poststack data conditioning and neural-network seismic attribute workflows are used to detect and visualize faulting and fluid migration pathways within a 13.7 km2 13.7 km2 3D P-Cable™ seismic volume located along the Hosgri Fault Zone offshore central California. The high-resolution 3D volume used in this study was collected in 2012 as part of Pacific Gas and Electric’s Central California Seismic Imaging Project. Three-dimensional seismic reflection data were acquired using a triple-plate boomer source (1.75 kJ) and a short-offset, 14-streamer, P-Cable system. The high-resolution seismic data were processed into a prestack time-migrated 3D volume and publically released in 2014. Postprocessing, we employed dip-steering (dip and azimuth) and structural filtering to enhance laterally continuous events and remove random noise and acquisition artifacts. In addition, the structural filtering was used to enhance laterally continuous edges, such as faults. Following data conditioning, neural-network based meta-attribute workflows were used to detect and visualize faults and probable fluid-migration pathways within the 3D seismic volume. The workflow used in this study clearly illustrates the utility of advanced attribute analysis applied to high-resolution 3D P-Cable data. For example, results from the fault attribute workflow reveal a network of splayed and convergent fault strands within an approximately 1.3 km wide shear zone that is characterized by distinctive sections of transpressional and transtensional dominance. Neural-network chimney attribute calculations indicate that fluids are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones. These results provide high-resolution, 3D constraints on the relationships between strike-slip fault mechanics, substrate deformation, and fluid migration along an active

  16. An interactive, comparative and quantitative 3D visualization system for large-scale spectral-cube surveys using CAVE2

    Vohl, Dany; Hassan, Amr H; Barnes, David G


    As the quantity and resolution of spectral-cubes from optical/infrared and radio surveys increase, desktop-based visualization and analysis solutions must adapt and evolve. Novel immersive 3D environments such as the CAVE2 at Monash University can overcome personal computer's visualization limitations. CAVE2 is part advanced 2D/3D visualization space (80 stereo-capable screens providing a total of 84 million pixels) and part supercomputer ($\\sim100$ TFLOPS of integrated GPU-based processing power). We present a novel visualization system enabling simultaneous 3D comparative visualization of $\\sim100$ spectral-cubes. With CAVE2 augmented by our newly developed web-based controller interface, astronomers can easily organise spectral-cubes on the different display panels, apply real-time transforms to one or many spectral cubes, and request quantitative information about the displayed data. We also discuss how such a solution can help accelerate the discovery rate in varied research scenarios.

  17. Vision-Based Long-Range 3D Tracking, applied to Underground Surveying Tasks

    Mossel, Annette; Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes; Chmelina, Klaus


    To address the need of highly automated positioning systems in underground construction, we present a long-range 3D tracking system based on infrared optical markers. It provides continuous 3D position estimation of static or kinematic targets with low latency over a tracking volume of 12 m x 8 m x 70 m (width x height x depth). Over the entire volume, relative 3D point accuracy with a maximal deviation ≤ 22 mm is ensured with possible target rotations of yaw, pitch = 0 - 45° and roll = 0 - 360°. No preliminary sighting of target(s) is necessary since the system automatically locks onto a target without user intervention and autonomously starts tracking as soon as a target is within the view of the system. The proposed system needs a minimal hardware setup, consisting of two machine vision cameras and a standard workstation for data processing. This allows for quick installation with minimal disturbance of construction work. The data processing pipeline ensures camera calibration and tracking during on-going underground activities. Tests in real underground scenarios prove the system's capabilities to act as 3D position measurement platform for multiple underground tasks that require long range, low latency and high accuracy. Those tasks include simultaneously tracking of personnel, machines or robots.


    M. Canciani


    Full Text Available The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets and shareware software (in the case presented “Augment” it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic, are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image

  19. Evaluating integration of inland bathymetry in the U.S. Geological Survey 3D Elevation Program, 2014

    Miller-Corbett, Cynthia


    Inland bathymetry survey collections, survey data types, features, sources, availability, and the effort required to integrate inland bathymetric data into the U.S. Geological Survey 3D Elevation Program are assessed to help determine the feasibility of integrating three-dimensional water feature elevation data into The National Map. Available data from wading, acoustic, light detection and ranging, and combined technique surveys are provided by the U.S. Geological Survey, National Oceanic and Atmospheric Administration, U.S. Army Corps of Engineers, and other sources. Inland bathymetric data accessed through Web-hosted resources or contacts provide useful baseline parameters for evaluating survey types and techniques used for collection and processing, and serve as a basis for comparing survey methods and the quality of results. Historically, boat-mounted acoustic surveys have provided most inland bathymetry data. Light detection and ranging techniques that are beneficial in areas hard to reach by boat, that can collect dense data in shallow water to provide comprehensive coverage, and that can be cost effective for surveying large areas with good water clarity are becoming more common; however, optimal conditions and techniques for collecting and processing light detection and ranging inland bathymetry surveys are not yet well defined.Assessment of site condition parameters important for understanding inland bathymetry survey issues and results, and an evaluation of existing inland bathymetry survey coverage are proposed as steps to develop criteria for implementing a useful and successful inland bathymetry survey plan in the 3D Elevation Program. These survey parameters would also serve as input for an inland bathymetry survey data baseline. Integration and interpolation techniques are important factors to consider in developing a robust plan; however, available survey data are usually in a triangulated irregular network format or other format compatible with

  20. 3D modelling of the active normal fault network in the Apulian Ridge (Eastern Mediterranean Sea): Integration of seismic and bathymetric data with implicit surface methods

    Bistacchi, Andrea; Pellegrini, Caludio; Savini, Alessandra; Marchese, Fabio


    The Apulian ridge (North-eastern Ionian Sea, Mediterranean), interposed between the facing Apennines and Hellenides subduction zones (to the west and east respectively), is characterized by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a penetrative network of NNW-SSE normal faults. These are exposed onshore in Puglia, and are well represented offshore in a dataset composed of 2D seismics and wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, recent very high resolution seismics (VHRS - Sparker and Chirp-sonar data), multibeam echosounder bathymetry, and sedimentological and geo-chronological analyses of sediment samples collected on the seabed. Faults are evident in 2D seismics at all scales, and their along-strike geometry and continuity can be characterized with multibeam bathymetric data, which show continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides). Fault scarps also reveal the finite displacement accumulated in the Holocene-Pleistocene. We reconstructed a 3D model of the fault network and suitable geological boundaries (mainly unconformities due to the discontinuous distribution of quaternary and tertiary sediments) with implicit surface methods implemented in SKUA/GOCAD. This approach can be considered very effective and allowed reconstructing in details complex structures, like the frequent relay zones that are particularly well imaged by seafloor geomorphology. Mutual cross-cutting relationships have been recognized between fault scarps and submarine mass-wasting deposits (Holocene-Pleistocene), indicating that, at least in places, these features are coeval, hence the fault network should be considered active. At the regional scale, the 3D model allowed measuring the horizontal WSW-ENE stretching, which can be associated to the bending moment applied to the Apulian Plate by the combined effect

  1. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)


    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  2. 3D seismic velocity structure in the rupture area of the 2014 M8.2 Iquique earthquake in Northern Chile

    Woollam, Jack; Fuenzallida, Amaya; Garth, Tom; Rietbrock, Andreas; Ruiz, Sergio; Tavera, Hernando


    Seismic velocity tomography is one of the key tools in Earth sciences to image the physical properties of the subsurface. In recent years significant advances have been made to image the Chilean subductions zone, especially in the area of the 2010 M8.8 Maule earthquake (e.g. Hicks et al., 2014), providing much needed physical constraints for earthquakes source inversions and rupture models. In 2014 the M8.2 Iquique earthquake struck the northern part of the Chilean subduction zone in close proximity to the Peruvian boarder. The pre- and aftershock sequence of this major earthquake was recorded by a densified seismological network in Northern Chile and Southern Peru, which provides an excellent data set to study in depth the 3D velocity structure along the subduction megathrust. Based on an automatic event catalogue of nearly 10,000 events spanning the time period March to May 2014 we selected approximately 450 events for a staggered 3D inversion approach. Events are selected to guarantee an even ray coverage through the inversion volume. We only select events with a minimum GAP of 200 to improve depth estimates and therefore increase resolution in the marine forearc. Additionally, we investigate secondary arrivals between the P- and S-wave arrival to improve depth location. Up to now we have processed about 450 events, from which about 150 with at least 30 P- and S-wave observations have been selected for the subsequent 3D tomography. Overall the data quality is very high, which allows arrival time estimates better than 0.05s on average. We will show results from the 1D, 2D, and preliminary 3D inversions and discuss the results together with the obtained seismicity distribution.

  3. 3D Printed Unibody Lab-on-a-Chip: Features Survey and Check-Valves Integration

    Germán Comina


    Full Text Available The unibody lab-on-a-chip (ULOC concept entails a fast and affordable micro-prototyping system built around a single monolithic 3D printed element (unibody. A consumer-grade stereo lithography (SL 3D printer can configure ULOCs with different forms of sample delivery, transport, handling and readout, while minimizing material costs and fabrication time. ULOC centralizes all complex fabrication procedures and replaces the need for clean room resources, delivering prototypes for less than 1 US$, which can be printed in 10 min and ready for testing in less than 30 min. Recent examples of ULOC integration of transport, chemical sensing for optical readout and flow mixing capabilities are discussed, as well as the integration of the first check-valves for ULOC devices. ULOC valves are strictly unidirectional up to 100 psi, show an exponential forward flow behavior up to 70 psi and can be entirely fabricated with the ULOC approach.


    Costa-Jover, A.; J. Lluis i Ginovart; Coll-Pla, S.; López Piquer, M.; A. Samper-Sosa; Moreno García, D.; Solís Lorenzo, A. M.


    The development of massive data captures techniques (MDC) in recent years, such as the Terrestrial laser Scanner (TLS), raises the possibility of developing new assessment procedures for architectural heritage. The 3D models that it is able to obtain is a great potential tool, both for conservation purposes and for historical and architectural studies. The paper proposes a simple, non-invasive methodology for the assessment of masonry vaults from point clouds which makes it possible to obtain...

  5. Using swath bathymetry as an a priori constraint in a 3D full wavefield tomographic inversion of seismic data across oceanic crust

    Morgan, J. V.; Christeson, G. L.; Warner, M.


    structure in the upper crust and across the 2A/2B boundary. However, the sea-bed is topographically rough and individual shot gathers occasionally contain more than one sea-bed reflection, and it is not clear which reflections are from directly below the seismic profile and which are offline. Hence, we are concerned that these offline sea-bed reflections may be incorrectly mapped into 2D velocity structure in the upper oceanic crust. To address this, we use 3D swath bathymetry data as an a priori constraint in a newly-developed 3D full wavefield code. First, we forward model the sea-bed reflection using the 3D bathymetry, for a suite of 2D seismic profiles that are spaced 500 m apart. We use these data to distinguish between the online and offline sea-bed reflections, and we explore the effects of keeping the sea-bed fixed in our 2D inversions. Our results will be used to guide a 3D full wavefield tomographic inversion of these data.

  6. Dynamic Response of Wind Turbines to Theoretical 3D Seismic Motions Taking into Account the Rotational Component

    Hermanns, Lutz Karl Heinz; Santoyo, M.A.; Quiros, L.E.; Vega Domínguez, Jaime; Gaspar Escribano, Jorge M.; Benito Oterino, Belen


    We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turb...

  7. 3d Surveying and modelling of the Archaeological Area of Paestum, Italy

    Fausta Fiorillo


    La antigua ciudad de Paestum, Patrimonio Mundial desde 1998, es uno de los yacimientos históricos más importantes de Italia, ya que conserva vestigios de las épocas griega y romana, entre ellos tres templos dóricos. La toma de datos se ha realizado a través de técnicas de fotogrametría y láser escáner terrestre (TLS, con el objetivo de aprovechar plenamente las ventajas intrínsecas de las técnicas de levantamiento en 3D basadas en objetos reales.

  8. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue.

    Azaripour, Adriano; Lagerweij, Tonny; Scharfbillig, Christina; Jadczak, Anna Elisabeth; Willershausen, Brita; Van Noorden, Cornelis J F


    For 3-dimensional (3D) imaging of a tissue, 3 methodological steps are essential and their successful application depends on specific characteristics of the type of tissue. The steps are 1° clearing of the opaque tissue to render it transparent for microscopy, 2° fluorescence labeling of the tissues and 3° 3D imaging. In the past decades, new methodologies were introduced for the clearing steps with their specific advantages and disadvantages. Most clearing techniques have been applied to the central nervous system and other organs that contain relatively low amounts of connective tissue including extracellular matrix. However, tissues that contain large amounts of extracellular matrix such as dermis in skin or gingiva are difficult to clear. The present survey lists methodologies that are available for clearing of tissues for 3D imaging. We report here that the BABB method using a mixture of benzyl alcohol and benzyl benzoate and iDISCO using dibenzylether (DBE) are the most successful methods for clearing connective tissue-rich gingiva and dermis of skin for 3D histochemistry and imaging of fluorescence using light-sheet microscopy.

  9. Photo Scanner 3D Survey for Monitoring Historical Monuments. the Case History of Porta Praetoria in Aosta

    Paolo Salonia


    Full Text Available Accessibility to cultural heritage is one of the most important factors in cultural heritage preservation, as it assures knowledge, monitoring, Public Administration management and a wide interest on cultural heritage sites. Nowdays 3D surveys give the geometric basis for an effective artefact reconstruction but most of the times 3D data are not completely and deeply investigated to extract other useful information on historical monuments for their conservation and safeguard. The Cultural Heritage Superintendence of Aosta decided to run a time continual project of monitoring of the Praetorian Roman Gate with the collaboration of the ITABC, CNR of Italy. The Praetorian Roman Gate in Aosta, Italy, of Augustus ages, is one of the most well-known roman monumental gates, it is a double gate with three arches each side, 12 meters high, 20 meters wide, made of pudding stone ashlars, Badoglio, travertine, marble blocks and other stone insertion due to restorations between 1600 and 1950. In years 2000 a final restoration intervention brought the gate at the present state of art, within the frame of a restoration and conservation building site with the purpose of treat the different decay pathologies and conditions. A complete 3D geometric survey campaign has been the first step for the monitoring of the gate morphologic changes and decay progress in time. The main purpose is to collect both quantitative data, related to the geometry of the gate, and the qualitative data, related to the chromatic change on the surface due to the stone decay. The geometric data with colour information permits to associate materials and stone pathologies to chemical or mechanical actions and to understand and analyse superficial decay kinetics. The colours survey will also permit to directly locate on the 3D model areas of different stratigraphic units. The project aims to build a rigorous quantitative-qualitative database so to be uploaded into a GIS. The GIS will become

  10. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    Środa, Piotr; Dec, Monika


    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  11. Visible calculation of mining index based on stope 3D surveying and block modeling

    Liu Xiaoming; Luo Zhouquan; Yang Biao; Lu Guang; Cao Shengxiang; Jiang Xinjian


    Aimed at the CMS laser scanning theory and characteristic,a combined actual situation of stope N4-5 of Fankou Lead-Zinc Mine and complementary monitoring of the stope were carried out by carefully choosing two measuring points.The cavity 3D visible model was created by large-scale mining industry software Surpac after changing the measured data.The stope mine design model,bottom structural model and backfill model of the south and north sides of the stope N4-5 were established according to the stope design data.On this basis,the stope block model was established,and then block attribute was estimated.The amount the ore remains,mullock,backfill and total mined ore were calculated through the solid model restrains.Finally,the stope mining dilution rate and loss rate reached 8.2%and 1.47%,respectively.The practice indicates that the mining index visible calculation method based on cavity 3D monitoring and stope block modeling can make up the deficiency of adopting the solid model to directly carry out the Boolean operation.The stope mining indexes obtained by this method are accurate and reliable,and can be used to guide the actual production management and estimate the mining quality.

  12. Geomorphologic characteristics of debris flows in the Ulleung Basin, East Sea (Japan Sea) interpreted from 3-D seismic data and their implications

    MO, C.; Park, G.; Lee, G.; Yi, B.; Yoo, D.


    We processed and analyzed the 3-D seismic data from the southern central part of the Ulleung Basin, East Sea (Japan Sea) to investigate the geomorphologic characteristics of the debris flows. The data processing included dip moveout, post-stack migration, and acquisition footprint removal. The curvature attributes of the seafloor show numerous bubble- or dot-like features that form a N-S to NNE-SSW trending narrow (ca. 2 km wide) zone in the western part of the area. The bubble-like features correspond to the irregular seafloor in the seismic profiles. At least nine debris flows, which advanced largely north and northeastward, were identified from the seafloor to the sub-seafloor depth of about 300 m. The debris flows are lens- or wedge-shaped in cross section, characterized by structureless or transparent to chaotic internal reflections, and elongate or lobate in plan view. The largest debris flow exceeds the 3D seismic data coverage (16 km by 25 km) and its thickness reaches about 60 m. Some debris flows are very thin and amalgamated or coalesced, making it difficult to interpret the individual flows. The similarity and curvature attributes of the basal contact of some debris flows show numerous long grooves, erosional scars, and bubble- or dot-like features similar to those seen in the seafloor. The grooves, interpreted to be caused by large clasts imbedded at the base of the debris flows, diverge and become slightly wider (decrease in the number of the bubble-like features away from the axis of the debris flows probably suggest decreasing pore fluid pressure toward the edge of the debris flows.


    G. Tucci


    Then, it describes the new survey campaign, illustrating the approach followed in the planning, data acquisition and data elaboration phases; finally, it gives examples of some interpretations of the structure stemming from the new acquisitions.

  14. The Galicia 3D experiment: an Introduction.

    Reston, Timothy; Martinez Loriente, Sara; Holroyd, Luke; Merry, Tobias; Sawyer, Dale; Morgan, Julia; Jordan, Brian; Tesi Sanjurjo, Mari; Alexanian, Ara; Shillington, Donna; Gibson, James; Minshull, Tim; Karplus, Marianne; Bayracki, Gaye; Davy, Richard; Klaeschen, Dirk; Papenberg, Cord; Ranero, Cesar; Perez-Gussinye, Marta; Martinez, Miguel


    In June and July 2013, scientists from 8 institutions took part in the Galicia 3D seismic experiment, the first ever crustal -scale academic 3D MCS survey over a rifted margin. The aim was to determine the 3D structure of a critical portion of the west Galicia rifted margin. At this margin, well-defined tilted fault blocks, bound by west-dipping faults and capped by synrift sediments are underlain by a bright reflection, undulating on time sections, termed the S reflector and thought to represent a major detachment fault of some kind. Moving west, the crust thins to zero thickness and mantle is unroofed, as evidence by the "Peridotite Ridge" first reported at this margin, but since observed at many other magma-poor margins. By imaging such a margin in detail, the experiment aimed to resolve the processes controlling crustal thinning and mantle unroofing at a type example magma poor margin. The experiment set out to collect several key datasets: a 3D seismic reflection volume measuring ~20x64km and extending down to ~14s TWT, a 3D ocean bottom seismometer dataset suitable for full wavefield inversion (the recording of the complete 3D seismic shots by 70 ocean bottom instruments), the "mirror imaging" of the crust using the same grid of OBS, a single 2D combined reflection/refraction profile extending to the west to determine the transition from unroofed mantle to true oceanic crust, and the seismic imaging of the water column, calibrated by regular deployment of XBTs to measure the temperature structure of the water column. We collected 1280 km2 of seismic reflection data, consisting of 136533 shots recorded on 1920 channels, producing 260 million seismic traces, each ~ 14s long. This adds up to ~ 8 terabytes of data, representing, we believe, the largest ever academic 3D MCS survey in terms of both the area covered and the volume of data. The OBS deployment was the largest ever within an academic 3D survey.

  15. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    Pollitz, F.F.


    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  16. 3D Seismic Imaging through Reverse-Time Migration on Homogeneous and Heterogeneous Multi-Core Processors

    Mauricio Araya-Polo


    Full Text Available Reverse-Time Migration (RTM is a state-of-the-art technique in seismic acoustic imaging, because of the quality and integrity of the images it provides. Oil and gas companies trust RTM with crucial decisions on multi-million-dollar drilling investments. But RTM requires vastly more computational power than its predecessor techniques, and this has somewhat hindered its practical success. On the other hand, despite multi-core architectures promise to deliver unprecedented computational power, little attention has been devoted to mapping efficiently RTM to multi-cores. In this paper, we present a mapping of the RTM computational kernel to the IBM Cell/B.E. processor that reaches close-to-optimal performance. The kernel proves to be memory-bound and it achieves a 98% utilization of the peak memory bandwidth. Our Cell/B.E. implementation outperforms a traditional processor (PowerPC 970MP in terms of performance (with an 15.0× speedup and energy-efficiency (with a 10.0× increase in the GFlops/W delivered. Also, it is the fastest RTM implementation available to the best of our knowledge. These results increase the practical usability of RTM. Also, the RTM-Cell/B.E. combination proves to be a strong competitor in the seismic arena.


    A. Costa-Jover


    Full Text Available The development of massive data captures techniques (MDC in recent years, such as the Terrestrial laser Scanner (TLS, raises the possibility of developing new assessment procedures for architectural heritage. The 3D models that it is able to obtain is a great potential tool, both for conservation purposes and for historical and architectural studies. The paper proposes a simple, non-invasive methodology for the assessment of masonry vaults from point clouds which makes it possible to obtain relevant data about the formal anomalies. The methodology is tested in Tortosa’s Gothic Cathedral’s vaults, where the geometrical differences between vaults, a priori equal, are identified and related with the partially known construction phases. The procedure can be easily used on any other vaulted construction of any kind, but is especially useful to deal with the complex geometry of Gothic masonry vaults.

  18. The Florence Baptistery: 3-D Survey as a Knowledge Tool for Historical and Structural Investigations

    Tucci, G.; Bonora, V.; Fiorini, L.; Conti, A.


    The Baptistery of San Giovanni is one of the most important pieces of architecture in Florence. It is an octagonal building, encrusted with marble both internally and externally (including the pyramidal roof) and covered inside by a magnificent dome with sparkling gold mosaics. During Dante's time, it appeared much older than the other monuments, so its origins were considered as hailing straight from Florence's most remote and mythical history. Even though we have much more data now, scholars still disagree over the interpretations on the origin and construction sequence of the monument. Survey has always been considered a main instrument for understanding historical architecture, mostly from constructional and structural points of view. During the last century, the Baptistery was surveyed using both traditional techniques and the most up-to-date instruments available at the time, such as topography, close-range photogrammetry and laser scanning. So, a review of those early applications, even if partial or isolated, can significantly attest to the state of the art and evolution of survey techniques. During recent years, the Opera di Santa Maria del Fiore promoted new research and a wide range of diagnostic investigations aimed at acquiring greater knowledge of the monument in anticipation of the cleaning and restoration of the outer wall surfaces during 2015. Among this research, GeCo Lab carried out a new systematic and complete laser scanner survey of the whole Baptistery, acquiring data for the more inaccessible parts that were given little attention during other survey campaigns. First of all, the paper analyses recent contributions given by instrumental surveys in advancing knowledge of the building, with references to the cutting-edge techniques and measurement tools used at the time. Then, it describes the new survey campaign, illustrating the approach followed in the planning, data acquisition and data elaboration phases; finally, it gives examples of some

  19. Seismic monitoring at Deception Island volcano (Antarctica): the 2010-2011 survey

    Martín, R.; Carmona, E.; Almendros, J.; Serrano, I.; Villaseñor, A.; Galeano, J.


    As an example of the recent advances introduced in seismic monitoring of Deception Island volcano (Antarctica) during recent years, we describe the instrumental network deployed during the 2010-2011 survey by the Instituto Andaluz de Geofísica of University of Granada, Spain (IAG-UGR). The period of operation extended from December 19, 2010 to March 5, 2011. We deployed a wireless seismic network composed by four three-component seismic stations. These stations are based on 24-bit SL04 SARA dataloggers sampling at 100 sps. They use a PC with embedded linux and SEISLOG data acquisition software. We use two types of three-component seismometers: short-period Mark L4C with natural frequency of 1 Hz and medium-period Lennartz3D/5s with natural frequency of 0.2 Hz. The network was designed for an optimum spatial coverage of the northern half of Deception, where a magma chamber has been reported. Station locations include the vicinity of the Spanish base "Gabriel de Castilla" (GdC), Obsidianas Beach, a zone near the craters from the 1970 eruptions, and the Chilean Shelter located south of Pendulum Cove. Continuous data from the local seismic network are received in real-time in the base by wifi transmission. We used Ubiquiti Networks Nanostation2 antennas with 2.4 GHz, dual-polarity, 10 dBi gain, and 54 Mbps transmission rate. They have shown a great robustness and speed for real-time applications. To prioritize data acquisition when the battery level is low, we have designed a circuit that allows independent power management for the seismic station and wireless transmission system. The reception antenna located at GdC is connected to a computer running SEISCOMP. This software supports several transmission protocols and manages the visualization and recording of seismic data, including the generation of summary plots to show the seismic activity. These twelve data channels are stored in miniseed format and displayed in real time, which allows for a rapid evaluation of

  20. Mid-Infrared Observations of Planetary Nebulae detected in the GLIMPSE 3D Survey

    J. A. Quino-Mendoza


    Full Text Available Presentamos mapas, perfiles y fotometría de 24 nebulosas planetarias (NPs detectadas en el estudio del plano galáctico en el infrarrojo medio (MIR de GLIMPSE 3D. Las NPs muestran muchas de las propiedades observadas en estudios previos de estas fuentes, incluyendo la evidencia de emisión a mayores longitudes de onda afuera de las zonas ionizadas, una consecuencia probable de la emisión de hidrocarburos aromáticos policíclicos (PAHs dentro de las regiones de fotodisociación (PDRs. Notamos también variaciones en los cocientes de flujo 5.8 µm/4.5 µm y 8.0 µm/4.5 µm con respecto a la distancia del núcleo; presentamos evidencia de un aumento en la emisión MIR en los halos de las fuentes y encontramos evidencia de variaciones en color respecto de la evolución nebular.

  1. OCT Segmentation Survey and Summary Reviews and a Novel 3D Segmentation Algorithm and a Proof of Concept Implementation

    Mokhov, Serguei A


    We overview the existing OCT work, especially the practical aspects of it. We create a novel algorithm for 3D OCT segmentation with the goals of speed and/or accuracy while remaining flexible in the design and implementation for future extensions and improvements. The document at this point is a running draft being iteratively "developed" as a progress report as the work and survey advance. It contains the review and summarization of select OCT works, the design and implementation of the OCTMARF experimentation application and some results.

  2. Near-Infrared Galaxy Surveys in 2D, 3D & 4D

    Mamon, G A


    The completeness and reliability of the DENIS IJK survey and the EDSGC (derived from the COSMOS scans of USKT plates) are obtained by detailed cross-identifications and systematic visual inspections of conflictual classifications. The DENIS galaxy extraction turns out to be over 95% complete and reliable out to I -38 deg), which has just begun. The DENIS-HI and 6dF peculiar velocity samples will have the strong advantage of covering entire regions of the southern sky, and combined, will multiply by 10 and 4 respectively the projected and space number densities of objects in the Southern sky. These two surveys should thus provide considerably more accurate estimates of the bulk flow, Omega_matter^{0.6}/bias, Omega_matter itself, and the primordial density fluctuation spectrum.

  3. 3D modeling of the Buhi debris avalanche deposit of Iriga Volcano, Philippines by integrating shallow-seismic reflection and geological data

    Minimo, Likha G.; Lagmay, Alfredo Mahar Francisco A.


    Numerical models for simulating volcanic debris avalanches commonly lack a critical initiation parameter, the source volume, which is difficult to estimate without data on the deposit thickness. This, in turn, limits how rheology can be characterized for simulating flow. Leapfrog Geo, a 3D geological modeling software, was used to integrate shallow-seismic reflection profiles with field and borehole data to determine the volume of the Buhi debris avalanche and the pre-collapse structure of Iriga Volcano. Volumes of the deposit calculated in this way are 34-71% larger than previous estimates. This technique may improve models of debris avalanches elsewhere in the world, and more precisely depict landslide runout and lateral extent, thus improving disaster prevention and mitigation for the many cities located near volcanoes.

  4. Seismicity Surveying in Central and North Mexico Regions

    Nieto-Samaniego, A.; Gomez-Gonzalez, J. M.; Guzman-Speziale, M.; Zuniga, R.; Alaniz-Alvarez, S.; Barboza, R.; Davalos, O.


    The seismic nature of Central Mexico is poorly understood due to insufficient sampling. We carried out a seismic survey in part of the TransMexican Volcanic Belt (TMVB) and the Central Altiplano. These regions are characterized by a very low deformation rates. Seismic activity is variable and ranges from microseismicity to large earthquakes, but no large historic earthquake has been instrumentally recorded. Only few direct observations such as intensity reconstructions and recent paleoseismic studies (e.g. the Acambay-Tixmadej earthquake of 1912) are available. Large earthquakes have occurred but their recurrence period is unknown; structural studies show this recurrence could range from hundreds to thousands of years. In order to understand the regional seismic behavior, we installed a temporal network. This network consists of 3-5 short period instruments, consisting of 16-bits triaxial digital velocity recorders (0.01-4.5 Hz). We registered several seismic sequences over a period of several months. One of them took place in Guanajuato within a graben structure in the TMVB and lasted for 2 weeks. Another sequence occurred at the northern limit of the TMVB in the Sierra Gorda. Over five weeks, several micro-earthquakes M Sierra Gorda, the event distribution is aligned along a small valley, but perpendicular to the main structural grain imposed by the Sierra Madre Oriental range. In no instances have surface ruptures been observed; those seismogenic structures could be blind ones. A challenge is to locate this structures which are may be too old to be still active. Increased seismotectonic knowledge of this region will yield further insight into the details of the interaction between surface structures driven by the regional stress field. Our results provide evidence that the region requires more intensive seismic surveying, and in some cases that some structures have been reactivated recently.

  5. Seismicity surveying in central and north mexico region

    Gómez, J. M.; Guzmán, M.; Nieto, A.; Zúñiga, R.; Alaniz, S.; Barboza, R.


    The seismic nature of Central Mexico is poorly understood due to insufficient sampling. This region is characterized by a very low deformation rate. The seismic activity is variable and ranges from microseismicity to large earthquakes. Some large earthquakes have occurred with an unknown returning period; structural studies show this recurrence could range from hundreds to thousands of years. Some authors argue that there is not connection between ancient and recent activity. We carried out several seismic surveys in part of the TransMexican Volcanic Belt (TMVB) and the Altiplano Central. We installed a temporal network, in order to record spatial seismic distribution. This network consists of 3-5 short period instruments, consisting of triaxial digital velocity recorders (0.01-4.5 Hz). We registered several swarms; one took place in Guanajuato and lasted for 2 weeks. Another crisis occurred at the northern limit of the TMVB at Sierra Gorda. Over five weeks several micro-earthquakes M < 2 were felt with anomaously high intensity. Relocated seismicity shows very shallow (< 10km) activity. The regional crust conditions appear to be roughly uniform even though the seismicity varies significantly. In some cases like seismic swarms, several microearthquakes are aligned, and seem to be quasi-parallel to the direction of the fault strike, some other times they are perpendicular. However, surface ruptures associated to earthquakes are not observed to confirm this. Then, a challenge is to locate the seismogenic structures, basically because of the surface structures are too old to be still active. Increased seismotectonic knowledge of this region may give further insight into the details of the interaction between surface structures driven by the regional stress field.

  6. Ice-sheet dynamics through the Quaternary on the mid-Norwegian continental margin inferred from 3D seismic data.

    Montelli, A; Dowdeswell, J A; Ottesen, D; Johansen, S E


    Reconstructing the evolution of ice sheets is critical to our understanding of the global environmental system, but most detailed palaeo-glaciological reconstructions have hitherto focused on the very recent history of ice sheets. Here, we present a three-dimensional (3D) reconstruction of the changing nature of ice-sheet derived sedimentary architecture through the Quaternary Ice Age of almost 3 Ma. An extensive geophysical record documents a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the mid-Norwegian shelf since the beginning of the Quaternary. Spatial and temporal variability of the FIS is illustrated by the gradual development of fast-flowing ice streams and associated intensification of focused glacial erosion and sedimentation since that time. Buried subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and basal thermal regime. Lack of major subglacial meltwater channels suggests a largely distributed drainage system beneath the marine-terminating part of the FIS. This palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  7. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid.

    Tam, Gary K L; Cheng, Zhi-Quan; Lai, Yu-Kun; Langbein, Frank C; Liu, Yonghuai; Marshall, David; Martin, Ralph R; Sun, Xian-Fang; Rosin, Paul L


    Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends.

  8. Assessment of a Static Multibeam Sonar Scanner for 3d Surveying in Confined Subaquatic Environments

    Moisan, E.; Charbonnier, P.; Foucher, P.; Grussenmeyer, P.; Guillemin, S.; Samat, O.; Pagès, C.


    Mechanical Scanning Sonar (MSS) is a promising technology for surveying underwater environments. Such devices are comprised of a multibeam echosounder attached to a pan & tilt positioner, that allows sweeping the scene in a similar way as Terrestrial Laser Scanners (TLS). In this paper, we report on the experimental assessment of a recent MSS, namely, the BlueView BV5000, in a confined environment: lock number 50 on the Marne-Rhin canal (France). To this aim, we hung the system upside-down to scan the lock chamber from the surface, which allows surveying the scanning positions, up to an horizontal orientation. We propose a geometric method to estimate the remaining angle and register the scans in a coordinate system attached to the site. After reviewing the different errors that impair sonar data, we compare the resulting point cloud to a TLS model that was acquired the day before, while the lock was completely empty for maintenance. While the results exhibit a bias that can be partly explained by an imperfect setup, the maximum difference is less than 15 cm, and the standard deviation is about 3.5 cm. Visual inspection shows that coarse defects of the masonry, such as stone lacks or cavities, can be detected in the MSS point cloud, while smaller details, e.g. damaged joints, are harder to notice.

  9. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters.

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele


    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments' performance and survey accuracy.

  10. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris


    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (water content in the soils below. These results are important as the point to potential water stresses with planned increased afforestation which may be compounded by climate change projections of decreasing precipitation during the growing season.

  11. Automated Kinematic Modelling of Warped Galaxy Discs in Large Hi Surveys: 3D Tilted Ring Fitting of HI Emission Cubes

    Kamphuis, P; Oh, S- H; Spekkens, K; Urbancic, N; Serra, P; Koribalski, B S; Dettmar, R -J


    Kinematical parameterisations of disc galaxies, employing emission line observations, are indispensable tools for studying the formation and evolution of galaxies. Future large-scale HI surveys will resolve the discs of many thousands of galaxies, allowing a statistical analysis of their disc and halo kinematics, mass distribution and dark matter content. Here we present an automated procedure which fits tilted-ring models to Hi data cubes of individual, well-resolved galaxies. The method builds on the 3D Tilted Ring Fitting Code (TiRiFiC) and is called FAT (Fully Automated TiRiFiC). To assess the accuracy of the code we apply it to a set of 52 artificial galaxies and 25 real galaxies from the Local Volume HI Survey (LVHIS). Using LVHIS data, we compare our 3D modelling to the 2D modelling methods DiskFit and rotcur. A conservative result is that FAT accurately models the kinematics and the morphologies of galaxies with an extent of eight beams across the major axis in the inclination range 20$^{\\circ}$-90$^{...

  12. Compilation of a recent seismicity data base of the greater Alpine region from several seismological networks and preliminary 3D tomographic results

    M. Granet


    Full Text Available Local earthquake data collected by seven national and regional seismic networks have been compiled into a travel time catalog of 32341 earthquakes for the period 1980 to 1995 in South-Central Europe. As a prerequisite, a complete and corrected station list (master station list has been prepared according to updated information provided by every network. By simultaneous inversion of some 600 well-locatable events we obtained one-dimensional (1D velocity propagation models for each network. Consequently, these velocity models with appropriate station corrections have been used to obtain high-quality hypocenter locations for events inside and among the station networks. For better control, merging of phase data from several networks was performed as an iterative process where at each iteration two data sets of neighbouring networks or groups of networks were merged. Particular care was taken to detect and correctly identify phase data from events common to data sets from two different networks. In case of reports of the same phase data from more than one network, the phase data from the network owning and servicing the station were used according to the master station list. The merging yielded a data set of 278007 P and 191074 S-wave travel time observations from 32341 events in the greater Alpine region. Restrictive selection (number of P-wave observations >7; gap <160 degrees yielded a data set of about 10000 events with a total of more than 128000 P and 87000 S-wave observations well suited for local earthquake seismic tomography study. Preliminary tomographic results for South-Central Europe clearly show the topography of the crust-mantle boundary in the greater Alpine region and outline the 3D structure of the seismic Ivrea body.

  13. Do fault-related folds follow the same scaling law as their associated faults? A study using 3D seismic reflection data

    Pitcher, Eleanor; Imber, Jonathan


    Fractal distributions are largely agreed to follow a power-law distribution. Power-law scaling relationships describe the size distribution of fault lengths or displacements. Being able to identify these scaling properties provides a powerful tool for predicting the numbers of geological structures, such as small-scale faults in sedimentary basins that are below the resolution of seismic reflection data. The aim of this study is to determine whether fault-related folds follow the same power law scaling properties, or if they follow a different scaling law. We use TrapTester to interpret a 3D seismic volume from the Gulf of Mexico to construct fault planes and cut-off lines along selected horizons in the vicinity of fault upper tip lines. Fault-related folds are particularly well developed above steeply plunging tip lines, but are discontinuous along the strike of the fault plane. Folding is less well developed on horizons that intersect, or lie close to, the locus of maximum throw (bullseye) of the fault plane. We then measured fold amplitudes and fault throws across these same horizons using a one-dimensional multi-line sampling approach. Graphs of fault throw and fold amplitude vs. distance parallel to fault strike show that folds occur where there is no resolvable fault throw, and that fault throw and fold amplitudes show an approximately inverse relationship. Close to the locus of maximum throw, there is largely just faulting, whilst at the upper tip line folding predominates. By plotting cumulative frequency against throw for the fault and fold data we can investigate whether the data follow a power law, log normal or exponential distribution. Plotting the data on log vs. log (power law), linear vs. log (log normal) and log vs. linear (exponential) axes allow us to establish which displays the best "straight-line fit". We observed that the fault throw data satisfied a straight-line on a log vs. log graph - implying a power law distribution - and also returned

  14. Ross Ice Shelf Seismic Survey and Future Drilling Recommendation

    van Haastrecht, Laurine; Ohneiser, Christian; Gorman, Andrew; Hulbe, Christina


    The Ross Ice Shelf (RIS) is one of three gateways through which change in the ocean can be propagated into the interior of West Antarctica. Both the geologic record and ice sheet models indicate that it has experienced widespread retreat under past warm climates. But inland of the continental shelf, there are limited data available to validate the models. Understanding what controls the rate at which the ice shelf will respond to future climate change is central to making useful climate projections. Determining the retreat rate at the end of the last glacial maximum is one part of this challenge. In November 2015, four lines of multi-channel seismic data, totalling over 45 km, were collected on the Ross Ice Shelf, approximately 300 km south of Ross Island using a thumper seismic source and a 96 channel snow streamer. The seismic survey was undertaken under the New Zealand Antarctic Research Institute (NZARI) funded Aotearoa New Zealand Ross Ice Shelf Programme to resolve bathymetric details and to image sea floor sediments under a proposed drilling site on the ice shelf, at about 80.7 S and 174 E. The thumper, a purpose-built, trailer mounted, weight-drop seismic source was towed behind a Hägglund tracked vehicle to image the bathymetry and sediments underneath the RIS. Seismic data collection on an ice shelf has unique challenges, in particular strong attenuation of the seismic energy by snow and firn, and complex multiple ray paths. The thumper, which consists of a heavy weight (250kg) that is dropped on a large, ski mounted steel plate, produced a consistent, repeatable higher energy signal when compared to sledge hammer source and allowed for a greater geographic coverage and lower environmental impact than an explosive source survey. Our survey revealed that the seafloor is smooth and that there may be up to 100 m of layered sediments beneath the seafloor and possibly deeper, more complex structures. A multiple generated by internally reflected seismic energy

  15. Sea Level History in 3D: Early results of an ultra-high resolution MCS survey across IODP Expedition 313 drillsites

    Mountain, G. S.; Kucuk, H. M.; Nedimovic, M. R.; Austin, J. A., Jr.; Fulthorpe, C.; Newton, A.; Baldwin, K.; Johnson, C.; Stanley, J. N.; Bhatnagar, T.


    Although globally averaged sea level is rising at roughly 3 mm/yr (and is accelerating), rates of local sea-level change measured at coastlines may differ from this number by a factor of two or more; at some locations, sea level may even be falling. This is due to local processes that can match or even reverse the global trend, making it clear that reliable predictions of future impacts of sea-level rise require a firm understanding of processes at the local level. The history of local sea-level change and shoreline response is contained in the geologic record of shallow-water sediments. We report on a continuing study of sea-level history in sediments at the New Jersey continental margin, where compaction and glacial isostatic adjustment are currently adding 2 mm/yr to the globally averaged rise. We collected 570 sq km of ultra-high resolution 3D MCS data aboard the R/V Langseth in June-July 2015; innovative recording and preliminary results are described by Nedimovic et al. in this same session. The goal was to provide regional context to coring and logging at IODP Exp 313 sites 27-29 that were drilled 750 m into the New Jersey shelf in 2009. These sites recovered a nearly continuous record of post-Eocene sediments from non-marine soils, estuaries, shoreface, delta front, pro-delta and open marine settings. Existing seismic data are good but are 2D high-resolution profiles at line spacings too wide to enable mapping of key nearshore features. The Langseth 3D survey used shallow towing of a tuned air gun array to preserve high frequencies, and twenty-four 50-m PCables each 12.5 apart provided 6.25 x 3.125 m common-midpoint bins along seventy-seven 50-km sail lines. With this especially dense spatial resolution of a pre-stack time migrated volume we expect to map rivers, incised valleys, barrier islands, inlets and bays, pro-delta clinoforms, tidal deltas, sequence boundaries, debris flow aprons, and more. Seismic attributes linked to sedimentary facies and

  16. Sea level history in 3D: Data acquisition and processing for an ultra-high resolution MCS survey across IODP Expedition 313 drillsite

    Nedimovic, M. R.; Mountain, G. S.; Austin, J. A., Jr.; Fulthorpe, C.; Aali, M.; Baldwin, K.; Bhatnagar, T.; Johnson, C.; Küçük, H. M.; Newton, A.; Stanley, J.


    In June-July 2015, we acquired the first 3D/2D hybrid (short/long streamer) multichannel seismic (MCS) reflection dataset. These data were collected simultaneously across IODP Exp. 313 drillsites, off New Jersey, using R/V Langsethand cover ~95% of the planned 12x50 km box. Despite the large survey area, the lateral and vertical resolution for the 3D dataset is almost a magnitude of order higher than for data gathered for standard petroleum exploration. Such high-resolution was made possible by collection of common midpoint (CMP) lines whose combined length is ~3 times the Earth's circumference (~120,000 profile km) and a source rich in high-frequencies. We present details on the data acquisition, ongoing data analysis, and preliminary results. The science driving this project is presented by Mountain et al. The 3D component of this innovative survey used an athwartship cross cable, extended laterally by 2 barovanes roughly 357.5 m apart and trailed by 24 50-m P-Cables spaced ~12.5 m with near-trace offset of 53 m. Each P-Cable had 8 single hydrophone groups spaced at 6.25 m for a total of 192 channels. Record length was 4 s and sample rate 0.5 ms, with no low cut and an 824 Hz high cut filter. We ran 77 sail lines spaced ~150 m. Receiver locations were determined using 2 GPS receivers mounted on floats and 2 compasses and depth sensors per streamer. Streamer depths varied from 2.1 to 3.7 m. The 2D component used a single 3 km streamer, with 240 9-hydrophone groups spaced at 12.5 m, towed astern with near-trace offset of 229 m. The record length was 4 s and sample rate 0.5 ms, with low cut filter at 2 Hz and high cut at 412 Hz. Receiver locations were recorded using GPS at the head float and tail buoy, combined with 12 bird compasses spaced ~300 m. Nominal streamer depth was 4.5 m. The source for both systems was a 700 in3 linear array of 4 Bolt air guns suspended at 4.5 m towing depth, 271.5 m behind the ship's stern. Shot spacing was 12.5 m. Data analysis to

  17. RRS "Charles Darwin" Cruise 178, 14 Mar - 11 Apr 2006. 3D seismic acquisition over mud volcanoes in the Gulf of Cadiz and submarine landslides in the Eivissa Channel, western Mediterranean Sea

    Masson, D. G.; C. Berndt


    The major aims of Charles Darwin Cruise 178 were to obtain (i) 3D seismic imagery, video transects and swath bathymetry maps of mud volcanoes in the southern Gulf of Cadiz, (ii) video transects across suspected cold water coral reefs in the Alboran Sea and (iii) 3D seismic imagery of submarine landslides in the Eivissa Channel, immediately east of the Balearic Islands in the western Mediterranean Sea. The cruise was in support of the EU Framework 6 ‘HERMES’ project (Hotspot Ecosystem Research...

  18. 基于Unity3D引擎的三维可视化技术在煤炭地震勘探中的应用%Application of 3D Visualization Technology Based on Unity3D Engine in Coal Seismic Prospecting



    To meet the seismic prospecting report 3D visualization requirements, taking the Unity3D engine as the development plat-form, using GIS 3D analysis and 3ds Max 3D modeling, study the application of 3D visualization technology in coal seismic prospect-ing, realize 3D geological data volume, geological horizon (including fault surface) and complex geological model 3D visualization. Then realize 3D geological model translation, rotating, zooming and various integrated stereo displays. Finally establish 3D environment walk-through and 3D visualized interaction platform shown in animation form, forming a flexible and user-friendly visualization system.%为满足地震勘探报告三维可视化的需要,以Unity3D引擎为开发平台,利用GIS 3D分析及3DS max三维建模,研究应用煤炭地震勘探三维可视化技术,实现三维地质数据体、地质层位(包括断层面)以及复杂地质模型等的三维可视化,实现对三维地质模型的平移、旋转、缩放,以及各种综合立体显示,建立三维环境漫游和三维可视化交互平台,并以动画形式表现出来,形成具有灵活方便使用的可视化系统。

  19. Fluvial response to active extension: evidence from 3D seismic data from the Frio Formation (Oligo-Miocene) of the Texas Gulf of Mexico Coast, USA

    J.R. Maynard [ExxonMobil Upstream Research Company, Houston, TX (United States)


    Tectonic deformation of the land surface is known to influence the gradient, water and sediment discharge and the grain-size of modern fluvial systems. Any change in these variables alters the equilibrium of a fluvial system, potentially causing a change in channel morphology. 3D seismic data from the Tertiary (Miocene) age, Upper Frio Formation, Kelsey Field, South Texas, in the US are used to examine changing fluvial channel morphology through time during a period of active growth of a rollover anticline in the hanging wall of a normal fault (the Vicksburg Fault). The studied interval varies between 22 and 47 m thick, and spans several hundred thousand years. It consists of an alternation of fluvial sandstones, overbank mudstones and coal. Seismic extractions show the evolution of sinuous fluvial channels during a phase of growth fault activity. Prior to growth, a single sinuous channel is imaged. During growth, the fluvial system became decapitated by a developing rollover anticline, and a highly sinuous drainage network formed, with frequent avulsion events, headward propagation of streams and related stream capture. Increased channel sinuosity was spatially associated with increased avulsion frequency in the area down dip to the east of the rollover anticline, more than 10 km from the active fault. More than 25 m of relative accommodation developed on the flank of the growing rollover anticline compared with on the crest. The increased channel sinuosity is interpreted as reflecting an increase in longitudinal valley slope analogous to observations made in flume experiments and modern river systems. The increase in avulsion frequency is attributed to increased aggradation as the rivers adjusted back to equilibrium grade following the increase in slope.

  20. Quantifying uncertainties on the solution model of seismic tomography; Quelle confiance accorder au modele solution de la tomographie de reflexion 3D?

    Duffet, C.


    Reflection tomography allows the determination of a velocity model that fits the travel time data associated with reflections of seismic waves propagating in the subsurface. A least-square formulation is used to compare the observed travel times and the travel times computed by the forward operator based on a ray tracing. This non-linear optimization problem is solved classically by a Gauss-Newton method based on successive linearization of the forward operator. The obtained solution is only one among many possible models. Indeed, the uncertainties on the observed travel times (resulting from an interpretative event picking on seismic records) and more generally the under-determination of the inverse problem lead to uncertainties on the solution. An a posteriori uncertainty analysis is then crucial to delimit the range of possible solutions that fit, with the expected accuracy, the data and the a priori information. A linearized a posteriori analysis is possible by an analysis of the a posteriori covariance matrix, inverse of the Gauss-Newton approximation of the matrix. The computation of this matrix is generally expensive (the matrix is huge for 3D problems) and the physical interpretation of the results is difficult. Then we propose a formalism which allows to compute uncertainties on relevant geological quantities for a reduced computational time. Nevertheless, this approach is only valid in the vicinity of the solution model (linearized framework) and complex cases may require a non-linear approach. An experimental approach consists in solving the inverse problem under constraints to test different geological scenarios. (author)

  1. Tomography 3D models of S wave from cross-correlation of seismic noise to explore irregularities of subsoil under the artificial lake of Chapultepec Park

    Cárdenas-Soto, M.; Valdes, J. E.; Escobedo-Zenil, D.


    In June 2006, the base of the artificial lake in Chapultepec Park collapsed. 20 thousand liters of water were filtered to the ground through a crack increasing the dimensions of initial gap. Studies indicated that the collapse was due to saturated material associated with a sudden and massive water filtration process. Geological studies indicates that all the area of this section the subsoil is composed of vulcano-sedimentary materials that were economically exploited in the mid-20th century, leaving a series of underground mines that were rehabilitated for the construction of the Park. Currently, the Lake is rehabilitated and running for recreational activities. In this study we have applied two methods of seismic noise correlation; seismic interferometry (SI) in time domain and the Spatial Power Auto Correlation (SPAC) in frequency domain, in order to explore the 3D subsoil velocity structure. The aim is to highlight major variations in velocity that can be associated with irregularities in the subsoil that may pose a risk to the stability of the Lake. For this purpose we use 96 vertical geophones of 4.5 Hz with 5-m spacing that conform a semi-circular array that provide a length of 480 m around the lake zone. For both correlation methods, we extract the phase velocity associated with the dispersion characteristics between each pair of stations in the frequency range from 4 to 12 Hz. In the SPAC method the process was through the dispersion curve, and in SI method we use the time delay of the maximum amplitude in the correlation pulse, which was previously filtered in multiple frequency bands. The results of both processes were captured in 3D velocity volumes (in the case SI a process of traveltime tomography was applied). We observed that in the frequency range from 6 to 8 Hz, appear irregular structures, with high velocity contrast in relation with the shear wave velocity of surface layer (ten thick m of saturated sediments). One of these anomalies is related

  2. Gas in Place Resource Assessment for Concentrated Hydrate Deposits in the Kumano Forearc Basin, Offshore Japan, from NanTroSEIZE and 3D Seismic Data

    Taladay, K.; Boston, B.


    Natural gas hydrates (NGHs) are crystalline inclusion compounds that form within the pore spaces of marine sediments along continental margins worldwide. It has been proposed that these NGH deposits are the largest dynamic reservoir of organic carbon on this planet, yet global estimates for the amount of gas in place (GIP) range across several orders of magnitude. Thus there is a tremendous need for climate scientists and countries seeking energy security to better constrain the amount of GIP locked up in NGHs through the development of rigorous exploration strategies and standardized reservoir characterization methods. This research utilizes NanTroSEIZE drilling data from International Ocean Drilling Program (IODP) Sites C0002 and C0009 to constrain 3D seismic interpretations of the gas hydrate petroleum system in the Kumano Forearc Basin. We investigate the gas source, fluid migration mechanisms and pathways, and the 3D distribution of prospective HCZs. There is empirical and interpretive evidence that deeply sourced fluids charge concentrated NGH deposits just above the base of gas hydrate stability (BGHS) appearing in the seismic data as continuous bottoms simulating reflections (BSRs). These HCZs cover an area of 11 by 18 km, range in thickness between 10 - 80 m with an average thickness of 40 m, and are analogous to the confirmed HCZs at Daini Atsumi Knoll in the eastern Nankai Trough where the first offshore NGH production trial was conducted in 2013. For consistency, we calculated a volumetric GIP estimate using the same method employed by Japan Oil, Gas and Metals National Corporation (JOGMEC) to estimate GIP in the eastern Nankai Trough. Double BSRs are also common throughout the basin, and BGHS modeling along with drilling indicators for gas hydrates beneath the primary BSRs provides compelling evidence that the double BSRs reflect a BGHS for structure-II methane-ethane hydrates beneath a structure-I methane hydrate phase boundary. Additional drilling

  3. Structure Segmentation and Transfer Faults in the Marcellus Shale, Clearfield County, Pennsylvania: Implications for Gas Recovery Efficiency and Risk Assessment Using 3D Seismic Attribute Analysis

    Roberts, Emily D.

    The Marcellus Shale has become an important unconventional gas reservoir in the oil and gas industry. Fractures within this organic-rich black shale serve as an important component of porosity and permeability useful in enhancing production. Horizontal drilling is the primary approach for extracting hydrocarbons in the Marcellus Shale. Typically, wells are drilled perpendicular to natural fractures in an attempt to intersect fractures for effective hydraulic stimulation. If the fractures are contained within the shale, then hydraulic fracturing can enhance permeability by further breaking the already weakened rock. However, natural fractures can affect hydraulic stimulations by absorbing and/or redirecting the energy away from the wellbore, causing a decreased efficiency in gas recovery, as has been the case for the Clearfield County, Pennsylvania study area. Estimating appropriate distances away from faults and fractures, which may limit hydrocarbon recovery, is essential to reducing the risk of injection fluid migration along these faults. In an attempt to mitigate the negative influences of natural fractures on hydrocarbon extraction within the Marcellus Shale, fractures were analyzed through the aid of both traditional and advanced seismic attributes including variance, curvature, ant tracking, and waveform model regression. Through the integration of well log interpretations and seismic data, a detailed assessment of structural discontinuities that may decrease the recovery efficiency of hydrocarbons was conducted. High-quality 3D seismic data in Central Pennsylvania show regional folds and thrusts above the major detachment interval of the Salina Salt. In addition to the regional detachment folds and thrusts, cross-regional, northwest-trending lineaments were mapped. These lineaments may pose a threat to hydrocarbon productivity and recovery efficiency due to faults and fractures acting as paths of least resistance for induced hydraulic stimulation fluids

  4. Halpha Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass

    Fumagalli, Mattia; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B; Skelton, Rosalind E; Whitaker, Katherine E; Labbe, Ivo; Nelson, Erica


    We investigate the evolution of the Halpha equivalent width, EW(Halpha), with redshift and its dependence on stellar mass, taking advantage of the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope WFC3. Combining our Halpha measurements of 854 galaxies at 0.8surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Halpha) distribution from z=0 to z=2.2. We find that at all masses the characteristic EW(Halpha) is decreasing towards the present epoch, and that at each redshift the EW(Halpha) is lower for high-mass galaxies. We measure a slope of EW(Halpha) ~ (1+z)^(1.8) with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star forming galaxies with redshift. A quantitative conversion of EW(Halpha) to sSFR is very model dependent, because of differential reddening corrections between the continuum SED and the Balmer line...

  5. Seismic Site Survey for New Regional Seismic Array Station in Morocco


    Moroccan seismic array followed this process. I Morocco Noise Survey Report Pre-Survey Studies The initial step in selecting candidate sites was to gather...32’W 5ŗU’W rn 4 Figre13 Hghresluio tporapicma o sme re, it crcl a te ppoxiat lcaioof~~~~ th0rooe ary Mooco oseSuve eprt1 5൰’W 5•35’W 5൦’W ,d...cooperative from the main Moroccan power grid, and that the power was reliable. 21 Morocco Noise Survey Report Land Owner. The land is state-owned. i’ý5oIW 5 45

  6. CBM in 3-D: coalbed methane multicomponent 3-D reservoir characterisation study, Cedar Hill Field, San Juan Basin, New Mexico

    Davis, T.; Shuck, E.; Benson, R. [Colorado School of Mines, Golden, CO (United States). Dept. of Geophysics


    The article explains how 3-D multicomponent seismic surveys could substantially improve the production and development of fractured coalbed methane reservoirs. The technique has been used by Northern Geophysical for the detection of geological faults and zones of enhanced fracture permeability proximal to the fault in the western side of the Cedar Hill field in San Juan Basin, NM, USA. 3 figs.

  7. Deformation above mobile substrates, salt rheology and spatial distribution of salt structures: A 3D seismic study of the Permian southern North Sea

    Hernandez, Karina; Mitchell, Neil; Huuse, Mads


    At ~255 Ma, cycles of evaporation of seawater led to deposition of evaporites including halite (rock salt) in the North Sea Basin. After later burial by denser sediments, the salt beds rose as pillows and diapirs. Assuming mobilization is due to Rayleigh-Taylor gravitational instability of heavy fluid (sediments) overlying light fluid (salts), theory suggests that the spacing between diapirs should be proportional to the original thickness of the salt layer. For example, a description of the theory in Turcotte and Schubert (1982) predicts structure wavelength to be 2.6 times the salt thickness. Previous research has explored mobilization of salt deposits assuming they have uniform rheology. However, this is not justified as halite rheology varies with temperature, grain size and pore brine content. Furthermore, evaporitic sequences contain various minerals besides halite (e.g., anhydrite, gypsum), which have different rheological properties. 3D seismic and well data reveal the internal structure of salt beds. The data have allowed characterization of structure wavelengths and salt thickness, so that the impact of internal composition and other properties on halokinetic behaviour can be assessed.

  8. Seismic site characterization of an urban dedimentary basin, Livermore Valley, California: Site tesponse, basin-edge-induced surface waves, and 3D simulations

    Hartzell, Stephen; Leeds, Alena L.; Ramirez-Guzman, Leonardo; Allen, James P.; Schmitt, Robert G.


    Thirty‐two accelerometers were deployed in the Livermore Valley, California, for approximately one year to study sedimentary basin effects. Many local and near‐regional earthquakes were recorded, including the 24 August 2014 Mw 6.0 Napa, California, earthquake. The resulting ground‐motion data set is used to quantify the seismic response of the Livermore basin, a major structural depression in the California Coast Range Province bounded by active faults. Site response is calculated by two methods: the reference‐site spectral ratio method and a source‐site spectral inversion method. Longer‐period (≥1  s) amplification factors follow the same general pattern as Bouguer gravity anomaly contours. Site response spectra are inverted for shallow shear‐wave velocity profiles, which are consistent with independent information. Frequency–wavenumber analysis is used to analyze plane‐wave propagation across the Livermore Valley and to identify basin‐edge‐induced surface waves with back azimuths different from the source back azimuth. Finite‐element simulations in a 3D velocity model of the region illustrate the generation of basin‐edge‐induced surface waves and point out strips of elevated ground velocities along the margins of the basin.

  9. Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea

    Tvedt, Anette B. M.; Rotevatn, Atle; Jackson, Christopher A.-L.


    Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.

  10. Reconstructing the retreat dynamics of the Bjørnøyrenna Ice Stream based on new 3D seismic data from the central Barents Sea

    Piasecka, Emilia D.; Winsborrow, Monica C. M.; Andreassen, Karin; Stokes, Chris R.


    The stability of contemporary ice sheets is influenced by the discharge from ice streams - corridors of fast-flowing ice bounded by ice flowing an order of magnitude slower. Reconstructions of palaeo-ice stream dynamics contribute to our understanding of ice stream sensitivity to the ocean-climate system and can aid in the numerical modelling and prediction of future changes in contemporary ice sheets. Here we use 3D seismic data, covering 13,000 km2 in the central Bjørnøyrenna (Bear Island Trough), Barents Sea, to investigate the record of ice streaming preserved on the seafloor and on a buried palaeo-seafloor surface. The unusually broad coverage and high resolution of the dataset, as well as its location in the central area of the trough, enables improved reconstruction of dynamics of the former Bjørnøyrenna Ice Stream in terms of number of streaming events, their trajectory, and their relative age sequence during deglaciation. Our results reveal major changes in the configuration and flow dynamics of the ice stream, with up to 10 flow-switching events identified. For the first time, we also document ice streaming sourced from the eastern Barents Sea around the time of the LGM. This high degree of flow variability is suggested to have resulted from climate-driven changes in ice sheet geometry (and ice divide migration), and variations in topography that influenced calving at the ice stream terminus.

  11. 3D modeling of stratigraphic units and simulation of seismic facies in the Lion gulf margin; Modelisation 3D des unites stratigraphiques et simulation des facies sismiques dans la marge du golfe du Lion

    Chihi, H.


    This work aims at providing a contribution to the studies carried out on reservoir characterization by use of seismic data. The study mainly consisted in the use of geostatistical methods in order to model the geometry of stratigraphic units of the Golfe du Lion margin and to simulate the seismic facies from high resolution seismic data. We propose, for the geometric modelling, a methodology based on the estimation of the surfaces and calculation afterwards of the thicknesses, if the modelling of the depth is possible. On the other hand the method consists in estimating the thickness variable directly and in deducing the boundary surfaces afterwards. In order to simulate the distribution of seismic facies within the units of the western domain, we used the truncated Gaussian method. The used approach gave a satisfactory results, when the seismic facies present slightly dipping reflectors with respect to the reference level. Otherwise the method reaches its limits because of the problems of definition of a reference level which allows to follow the clino-forms. In spite of these difficulties, this simulation allows us to estimate the distribution of seismic facies within the units and then to deduce their probable extension. (author) 150 refs.

  12. 3D seismic structure of the Zhenbei-Huangyan seamount chain in the East sub-basin of the South China Sea and its mechanism of formation

    Zhao, M.; Wang, J.; Qiu, X.; Sibuet, J. C.; He, E.; Zhang, J.


    The post-spreading volcanic ridge (PSVR) is oriented approximately E-W in its western part called the Zhenbei-Huangyan seamount chain. Where is the extinct spreading ridge (ESR) of the East Sub-basin located? beneath the PSVR (Li et al., 2014)? Or intersecting with the PSVR by N055° orientation (Sibuet et al., submitted)? A three-dimensional Ocean Bottom Seismometer (OBS) survey covered both the central extinct spreading ridge and the Zhenbei-Huangyan seamount chain, the IODP Site U1431 (Li et al., 2014) being located just north of the chain. The results of this experiment will provide the essential information to understand the emplacement of the PSVR within the previously formed oceanic crust. The comprehensive seismic record sections of 39 OBSs are of high quality and show clear and reliable P-wave seismic phases, such as Pg, Pn and PmP. These seismic arrivals provide strong constrains for modeling the detailed three-dimensional velocity structure. We will show that the crust is oceanic on each side of the Zhenbei-Huangyan seamount chain, where is the location of the ESR and what is the genetic relationship between the magma chambers and the overlying Zhenbei-Huangyan seamount chain. We suggest that the large thickness of the upper crust is possibly due to volcanic extrusions and the thickened lower crust to magmatic underplating. Combining previous geochemical study of PSVR outcropping samples, the formation mechanism of the seamount chain might be explained by a buoyancy decompression melting mechanism (Castillo et al., 2010). This research was granted by the Natural Science Foundation of China (91028002, 91428204, 41176053). ReferencesSibuet J.-C., Yeh Y.-C. and Lee C.-S., 2015 submitted. Geodynamics of the South China Sea: A review with emphasis on solved and unsolved questions. Tectonophysics. Li, C. F., et al. 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry

  13. Earthquake Activity - SEISMIC_DATA_IN: Seismic Refraction Data for Indiana (Indiana Geological Survey, Point Shapefile)

    NSGIC GIS Inventory (aka Ramona) — SEISMIC_DATA_IN is a point shapefile created from a shapefile named SEISMIC_DATA, which was derived from a Microsoft Excel spreadsheet named SEISMIC_DECODED. The...

  14. The Radial Distribution of Star Formation in Galaxies at z~1 from the 3D-HST Survey

    Nelson, Erica June; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind; Whitaker, Katherine; Da Cunha, Elisabete; Schreiber, Natascha Forster; Franx, Marijn; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Patel, Shannon; Rix, Hans-Walter; Schmidt, Kasper; van der Wel, Arjen; Wuyts, Stijn


    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on HST it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of Halpha emission for a sample of 54 strongly star-forming galaxies at z~1 in the 3D-HST Treasury survey. By stacking the Halpha emission we find that star formation occurred in approximately exponential distributions at z~1, with median Sersic index of n=1.0+-0.2. The stacks are elongated with median axis ratios of b/a=0.58+-0.09 in Halpha, consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination-corrected velocities of 90 to 330 km/s. The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z~1 generally occurred in disks. The disks appear to be "scaled-up" versions of nearby spiral...

  15. Large-Scale Star Formation-Driven Outflows at 13D-HST Survey

    Lundgren, Britt F; van Dokkum, Pieter; Bezanson, Rachel; Franx, Marijn; Fumagalli, Mattia; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E; Wake, David; Whitaker, Katherine; da Cunha, Elizabete; Erb, Dawn K; Fan, Xiaohui; Kriek, Mariska; Labbe, Ivo; Marchesini, Danilo; Patel, Shannon; Rix, Hans Walter; Schmidt, Kasper; van der Wel, Arjen


    We present evidence of large-scale outflows from three low-mass (log(M/M_sun)~9.75) star-forming (SFR >4 M_sun/yr) galaxies observed at z=1.24, z=1.35 and z=1.75 in the 3D-HST Survey. Each of these galaxies is located within a projected physical distance of 60 kpc around the sight line to the quasar SDSS J123622.93+621526.6, which exhibits well-separated strong (W_r>0.8A) Mg II absorption systems matching precisely to the redshifts of the three galaxies. We derive the star formation surface densities from the H-alpha emission in the WFC3 G141 grism observations for the galaxies and find that in each case the star formation surface density well-exceeds 0.1 M_sun/yr/kpc^2, the typical threshold for starburst galaxies in the local Universe. From a small but complete parallel census of the 0.650.8A Mg II covering fraction of star-forming galaxies at 10.4A Mg II absorbing gas around star-forming galaxies may evolve from z~2 to the present, consistent with recent observations of an increasing collimation of star fo...

  16. Critical Analysis and Digital Reconstructions of Alberti's Architectures by the Use of 3d Morphometric Integrated Survey Database

    Ferrari, F.; Medici, M.


    Since 2005, DIAPReM Centre of the Department of Architecture of the University of Ferrara, in collaboration with the "Centro Studi Leon Battista Alberti" Foundation and the Consorzio Futuro in Ricerca, is carrying out a research project for the creation of 3D databases that could allow the development of a critical interpretation of Alberti's architectural work. The project is primarily based on a common three-dimensional integrated survey methodology for the creation of a navigable multilayered database. The research allows the possibility of reiterative metrical analysis, thanks to the use of a coherent data in order to check and validate hypothesis by researchers, art historians and scholars on Alberti's architectural work. Coherently with this methodological framework, indeed, two case studies are explained in this paper: the church of San Sebastiano in Matua and The Church of the Santissima Annunziata in Florence. Furthermore, thanks to a brief introduction of further developments of the project, a short graphical analysis of preliminary results on Tempio Malatestiano in Rimini opens new perspectives of research.

  17. The Radial Distribution of Star Formation in Galaxies at z1 From The 3D-HST Survey

    Nelson, Erica June; Dokkum, Pieter G. Van; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Tease, Katherine Whitaker; Cunha, Elisabete Da; Schreiber, Natascha Forster; Franx, Marijn; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Patel, Shannon; Rix, Hans-Walter; Schmidt, Kasper B.; Wel, Arjen Van Der; Wuyts, Stijn


    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time.Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond thelocal Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming-galaxies at z1 in the 3D-HST Treasury survey. By stacking the Halpha emission, we find that star formation occurredin approximately exponential distributions at z1, with a median Sersic index of n=1.0 plus or minus 0.2. The stacks areelongated with median axis ratios of b/a 0.58 plus or minus 0.09 in Halpha consistent with (possibly thick) disks at randomorientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, withinclination corrected velocities of 90-330 km per second. The most straightforward interpretation of our results is that starformation in strongly star-forming galaxies at z1 generally occurred in disks. The disks appear to be scaled-upversions of nearby spiral galaxies: they have EW(Halpha)100 Angstroms out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  18. The Radial Distribution of Star Formation in Galaxies at Z approximately 1 from the 3D-HST Survey

    Nelson, Erica June; vanDokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabriel; Lundgren, Britt; Skelton, Rosalind E.; Whitaker, Katherine E.; DaCunha, Elisabete; Schreiber, Natascha Foerster; Franx, Marijn; Fumagalli, Mattia; Kriek, Mariska; Labbe, Ivo; Leja, Joel; Patel, Shannon; Rix, Hans-Walter; Schmidt, Kasper B.; vanderWel, Argen; Wuyts, Stijn


    The assembly of galaxies can be described by the distribution of their star formation as a function of cosmic time. Thanks to the WFC3 grism on the Hubble Space Telescope (HST) it is now possible to measure this beyond the local Universe. Here we present the spatial distribution of H emission for a sample of 54 strongly star-forming galaxies at z 1 in the 3D-HST Treasury survey. By stacking the H emission, we find that star formation occurred in approximately exponential distributions at z approximately 1, with a median Sersic index of n = 1.0 +/- 0.2. The stacks are elongated with median axis ratios of b/a = 0.58 +/- 0.09 in H consistent with (possibly thick) disks at random orientation angles. Keck spectra obtained for a subset of eight of the galaxies show clear evidence for rotation, with inclination corrected velocities of 90.330 km s(exp 1-). The most straightforward interpretation of our results is that star formation in strongly star-forming galaxies at z approximately 1 generally occurred in disks. The disks appear to be scaled-up versions of nearby spiral galaxies: they have EW(H alpha) at approximately 100 A out to the solar orbit and they have star formation surface densities above the threshold for driving galactic scale winds.

  19. An Application for Cultural Heritage in Erasmus Placement. Surveys and 3d Cataloging Archaeological Finds in MÉRIDA (spain)

    Barba, S.; Fiorillo, F.; Ortiz Coder, P.; D'Auria, S.; De Feo, E.


    Man has always had the need to live with his past, with its places and its artefacts. The reconstructions, the economical changes, the urbanization and its speculations have devastated whole cities, changed the faces of their historical centers, changed the relationship between the new and the old. Also the millenarian 'rest' of the archaeological findings, and therefore the respect towards those ancient civilizations, has been troubled. Our continent is rich in masterpieces that the modern man are not able to protect and pass on to the future, it is commonplace to observe that the modern `civilization' has cemented and suffocated the ancient city of Pompeii, or even worse, failed to protected it. Walking in the archaeological area of Paestum it can be noticed how just sixty years ago, no one had the slightest concern of fencing the amphitheatre and the Roman forum, or entire houses and shops, to lay a carpet of tar or simple to build constructions completely inferior compared to those majestic Greek temples. The engineers and the architects should be held responsible for this as based on their scientific and humanistic sensibility; they should bring together the man with his surroundings in the complete respects of the historical heritage. The interest in ancient began to change nearly three decades ago since it was realized that the "Cultural Heritage" is a major tourist attraction and, if properly managed and used, it can be an economical cornerstone. Today, thanks to survey and the 3D graphics, which provide powerful new tools, we are witnessing a new and real need for the conservation, cataloguing and enhancement as a way to revive our archaeological sites. As part of a major laboratory project, artefacts from the Roman period (I and II century b.C.), found in the Spanish city of Mérida, declared World Heritage by UNESCO in 1993, were acquired with a 3D laser scanner VIVID 910, and then catalogued. Based on these brief comments we wanted to direct the work


    S. Barba


    Full Text Available Man has always had the need to live with his past, with its places and its artefacts. The reconstructions, the economical changes, the urbanization and its speculations have devastated whole cities, changed the faces of their historical centers, changed the relationship between the new and the old. Also the millenarian 'rest' of the archaeological findings, and therefore the respect towards those ancient civilizations, has been troubled. Our continent is rich in masterpieces that the modern man are not able to protect and pass on to the future, it is commonplace to observe that the modern ‘civilization’ has cemented and suffocated the ancient city of Pompeii, or even worse, failed to protected it. Walking in the archaeological area of Paestum it can be noticed how just sixty years ago, no one had the slightest concern of fencing the amphitheatre and the Roman forum, or entire houses and shops, to lay a carpet of tar or simple to build constructions completely inferior compared to those majestic Greek temples. The engineers and the architects should be held responsible for this as based on their scientific and humanistic sensibility; they should bring together the man with his surroundings in the complete respects of the historical heritage. The interest in ancient began to change nearly three decades ago since it was realized that the "Cultural Heritage" is a major tourist attraction and, if properly managed and used, it can be an economical cornerstone. Today, thanks to survey and the 3D graphics, which provide powerful new tools, we are witnessing a new and real need for the conservation, cataloguing and enhancement as a way to revive our archaeological sites. As part of a major laboratory project, artefacts from the Roman period (I and II century b.C., found in the Spanish city of Mérida, declared World Heritage by UNESCO in 1993, were acquired with a 3D laser scanner VIVID 910, and then catalogued. Based on these brief comments we

  1. Numerical simulation of seismic survey in coal mine roadway

    Zhu, G.; Li, G.; Cheng, J. [Chang' an University, Xi' an (China). College of Geological Engineering and Geomatics


    With the staggered-grid high order finite difference wave field simulation method, the elastic wave field caused by explosives with a point source in a coal mine roadway was simulated and different type of waves in the wave field were distinguished. Comparing all three spatial components of the propagation of the waves caused by explosives on or under the roadway at different depths, this indicates that: on the roadway base, the reverberation caused by the top and bottom of the roadway (multiple reflection on the top and bottom of the roadway) is the main disturbing wave in the roadway seismic survey which will seriously disturb the reflection of the deep place coal bed underneath the roadway; at a depth of several metres under the roadway basal bottom boundary, the reverberation disturbing wave is greatly reduced and the reflection caused by deeper coal bed can be clearly detected; high signal-to-noise ratio data can be found with the Y component detector because of the propagation of SH waves; high resolution of seismic data is possible in a roadway. In the model, a cavity 3 metres high and 4 metres wide can be detected underneath the roadway. 5 refs., 7 figs.

  2. ISO land administration domain model and LandXML, in the development of digital survey plan lodgement for 3D cadastre in Australia

    Karki, S.; Thompson, R.J.; McDougall, K.; Cumerford, N.; Van Oosterom, P.J.M.


    The aim of this paper is to explore the implementation issues of 3D Cadastre in Queensland, Australia, which is presently moving towards a full digital lodgement of surveying information, with a focus on validation rules. In Queensland the Electronic Access for Registry Lodgement (EARL) project has

  3. Integrated Tsunami Database: simulation and identification of seismic tsunami sources, 3D visualization and post-disaster assessment on the shore

    Krivorot'ko, Olga; Kabanikhin, Sergey; Marinin, Igor; Karas, Adel; Khidasheli, David


    One of the most important problems of tsunami investigation is the problem of seismic tsunami source reconstruction. Non-profit organization WAPMERR ( has provided a historical database of alleged tsunami sources around the world that obtained with the help of information about seaquakes. WAPMERR also has a database of observations of the tsunami waves in coastal areas. The main idea of presentation consists of determining of the tsunami source parameters using seismic data and observations of the tsunami waves on the shore, and the expansion and refinement of the database of presupposed tsunami sources for operative and accurate prediction of hazards and assessment of risks and consequences. Also we present 3D visualization of real-time tsunami wave propagation and loss assessment, characterizing the nature of the building stock in cities at risk, and monitoring by satellite images using modern GIS technology ITRIS (Integrated Tsunami Research and Information System) developed by WAPMERR and Informap Ltd. The special scientific plug-in components are embedded in a specially developed GIS-type graphic shell for easy data retrieval, visualization and processing. The most suitable physical models related to simulation of tsunamis are based on shallow water equations. We consider the initial-boundary value problem in Ω := {(x,y) ?R2 : x ?(0,Lx ), y ?(0,Ly ), Lx,Ly > 0} for the well-known linear shallow water equations in the Cartesian coordinate system in terms of the liquid flow components in dimensional form Here ?(x,y,t) defines the free water surface vertical displacement, i.e. amplitude of a tsunami wave, q(x,y) is the initial amplitude of a tsunami wave. The lateral boundary is assumed to be a non-reflecting boundary of the domain, that is, it allows the free passage of the propagating waves. Assume that the free surface oscillation data at points (xm, ym) are given as a measured output data from tsunami records: fm(t) := ? (xm, ym,t), (xm

  4. on-Seismic Surveying on Steep High Structural Zones: An Example of Hetianhe Gas Field

    HeZhanxiang; LiuYunxiang; HeYi; LiuZebing; YangLunkai


    Mashan is a typical area, complex on the surface,steep of the formations and complicated with the structures. It is very difficult to carry out seismic surveying. The preliminary result of the seismic prospecting indicated that only monoclines exist in the area. Drilling discovered Hetianhe gas field. After integrating non-seismic (gravity, magnetic and electromagnetic) prospecting, it was revealed that there exist two rows of structural highs, which were proved by the later seismic surveying. The paper analyzed all the data in the area and recognized that the integrated prospecting to be carried out in a complicated area is effective and necessary.

  5. Shallow Seismic Reflection Survey at Garner Valley Digital Array

    Lawrence, Z. S.; Brackman, T. B.; Bodin, P.; Stephenson, W. J.; Steidl, J. H.; Gomberg, J.


    The Garner Valley Digital Array (GVDA) site is a NEES-sponsored facility in a small, sediment-filled, intermountain valley in Southern California, established for the purpose of investigating ground motion site response and soil-structure interaction, in situ. The site has been well-characterized geotechnically, and is thoroughly instrumented with both surface and downhole instrumentation of various types. Nevertheless, a borehole recently drilled into lake bed sediments and deeply weathered granitic rocks that comprise the valley fill at GVDA encountered hard, unweathered bedrock at an unexpected depth, suggesting an apparent 38 meter offset in the unweathered bedrock between two wells 40 meters apart. The apparent offset can be most easily explained either by faulting, or as a buried erosional surface. The Hot Springs fault, a strand of the San Jacinto fault zone, runs through Garner Valley, although its inferred location is several hundred meters east of GVDA. To better characterize the subsurface strata, particularly the existence and configuration of faulting that may disturb them; we conducted a 120-meter long, 12-fold shallow seismic reflection common midpoint (CMP) survey at GVDA using a 24-channel seismograph, vertical 4.5 Hz geophones at 2-meter intervals and a sledgehammer seismic source. Preliminary processing reveals strong refractors and surface waves that may mask reflections, although reflections are visible in some raw shot records. Semi-continuous reflections seen in the CMP section from a shallow reflector may coincide with the water table. There are also deeper, discontinuous reflectors obscured by bands of coherent noise. We plan to present a fully migrated and interpreted CMP record section.

  6. 全数字高密度煤矿采区三维地震技术研究与实践%All Digital High Density Coalmine Winning District 3D Seismic Prospecting Technology Research and Practices



    通过分析常规煤矿采区三维地震勘探存在的问题及技术瓶颈,提出了全数字高密度煤矿采区三维地震勘探的主要技术框架,即:数字检波器、单点接收、更小的接收道距与线距、更小的激发点距与线距、单炮超多道数、小面元、全方位、高覆盖次数观测,真实记录全波场海量数据的采集技术,及其与之相配套的高精度地震成像处理和精细综合地震解释技术。与以往的常规三维地震勘探相比,全数字高密度煤矿采区三维地震勘探技术在断层方位、小断层识别、陷落柱探测、下组煤层探测、高陡构造勘探等多个方面都有明显优势。%After summarization of technical bottlenecks and problems in conventional coalmine winning district 3D seismic prospecting, put forward all digital high density coalmine winning district 3D seismic prospecting main technical framework. That is: digital geo-phone, single-point receiving, smaller receiving group interval and line spacing, smaller shot point interval and line spacing, single-shot super multi trace number, small surface element, all dimensions, high coverage observation, actually recorded full wave field mass data acquisition technology, and matching high precision seismic imaging processing and fine comprehensive seismic interpretation technology. In contrast with bygone conventional 3D seismic prospecting, the all digital high density coalmine winning district 3D seis-mic prospecting has obvious predominance on multiple aspects of fault orientation, minor fault identification, subsided column detec-tion, lower group coal seams exploration, high dip angle structure exploration etc.

  7. Review of the Effects of Offshore Seismic Surveys in Cetaceans: Are Mass Strandings a Possibility?

    Castellote, Manuel; Llorens, Carlos


    Displacement of cetaceans is commonly reported during offshore seismic surveys. Speculation concerning possible links between seismic survey noise and cetacean strandings is available for a dozen events but without convincing causal evidence. This lack of evidence should not be considered conclusive but rather as reflecting the absence of a comprehensive analysis of the circumstances. Current mitigation guidelines are inadequate for long-range effects such as displacements and the potential for strandings. This review presents the available information for ten documented strandings that were possibly linked to seismic surveys and recommends initial measures and actions to further evaluate this potential link.

  8. Identification of an impact structure in the Upper Cretaceous of the Santos Basin in 3D seismic reflection data; Identificacao de uma estrutura de impacto no Cretaceo Superior da Bacia de Santos em sismica de reflexao 3D

    Correia, Gustavo Alberto [PETROBRAS, Santos, SP (Brazil). Exploracao e Producao. Interpretacao e Avaliacao das Bacias da Costa Sul Polo Sul]. E-mail:; Menezes, Jorge Rui Correa de; Bueno, Gilmar Vital


    This work presents the unpublished Praia Grande impact structure, located in the Santos basin, approximately 200 km southeast from the coastline of Sao Paulo State, Brazil. The identification of this structure is based on the interpretation of three-dimensional seismic data, acquired and processed in 2004 for petroleum exploration in a PETROBRAS concession block in the Santos Basin. The main morphological elements imposed on Upper Cretaceous rocks are a structural high in the center of the crater, an adjacent ring syncline, and, externally, several concentric circular listric normal faults. The structure is apparently well preserved from erosion, measures around 20 km in diameter, is buried by 4 km of rocks and occurred in the Santonian (85,8-83,5 Ma). (author)

  9. The Use of 3d Scanning and Photogrammetry Techniques in the Case Study of the Roman Theatre of Nikopolis. Surveying, Virtual Reconstruction and Restoration Study.

    Bilis, T.; Kouimtzoglou, T.; Magnisali, M.; Tokmakidis, P.


    The aim of this paper is to present the specific methods by which 3D scanning and photogrammetric techniques were incorporated into the architectural study, the documentation and the graphic restoration study of the monument of the ancient theatre of Nikopolis. Traditional methods of surveying were enhanced by the use of 3D scanning and image-based 3D reconstruction and 3D remodelling and renderings. For this reason, a team of specialists from different scientific fields has been organized. This presented the opportunity to observe every change of the restoration design process, not only by the use of common elevations and ground plans, but also in 3D space. It has been also very liberating to know how the monument will look like in this unique site after the restoration, so as to obtain at the study stage the best intervention decisions possible. Moreover, these modern work tools helped of course to convince the authorities for the accuracy of the restoration actions and finally to make the proposal clear to the public.

  10. Cetacean behavioral responses to noise exposure generated by seismic surveys: how to mitigate better?

    Clara Monaco


    Full Text Available Cetaceans use sound in many contexts, such as in social interactions, as well as to forage and to react in dangerous situations. Little information exists to describe how they respond physically and behaviorally to intense and long-term noise levels. Effects on cetaceans from seismic survey activities need to be understood in order to determine detailed acoustic exposure guidelines and to apply appropriated mitigation measures. This study examines direct behavioral responses of cetaceans in the southern Mediterranean Sea during seismic surveys with large airgun arrays (volume up to 5200 ci used in the TOMO-ETNA active seismic experiment of summer 2014. Wide Angle Seismic and Multi-Channel Seismic surveys had carried out with refraction and reflection seismic methods, producing about 25,800 air-gun shots. Visual monitoring undertaken in the 26 daylights of seismic exploration adopted the protocol of the Joint Nature Conservation Committee. Data recorded were analyzed to examine effects on cetaceans. Sighting rates, distance and orientation from the airguns were compared for different volume categories of the airgun arrays. Results show that cetaceans can be disturbed by seismic survey activities, especially during particularly events. Here we propose many integrated actions to further mitigate this exposure and implications for management.

  11. Seismically induced landslides: current research by the US Geological Survey.

    Harp, E.L.; Wilson, R.C.; Keefer, D.K.; Wieczorek, G.F.


    We have produced a regional seismic slope-stability map and a probabilistic prediction of landslide distribution from a postulated earthquake. For liquefaction-induced landslides, in situ measurements of seismically induced pore-water pressures have been used to establish an elastic model of pore pressure generation. -from Authors

  12. Time-lapse seismic within reservoir engineering

    Oldenziel, T.


    Time-lapse 3D seismic is a fairly new technology allowing dynamic reservoir characterisation in a true volumetric sense. By investigating the differences between multiple seismic surveys, valuable information about changes in the oil/gas reservoir state can be captured. Its interpretation involves d

  13. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.


    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  14. Comment on '3-D frequency-domain seismic wave modelling in heterogeneous, anisotropic media using a Gaussian quadrature grid approach' by Bing Zhou and S. A. Greenhalgh

    de Basabe, Jonás D.


    Zhou & Greenhalgh have recently presented an application of the Gaussian quadrature grid to seismic modelling in which the authors propose a meshing scheme that partitions the domain independently of the discontinuities in the media parameters. This comment aims to clarify the implications that this strategy has on the accuracy.

  15. The application of large volume airgun sources to the onshore-offshore seismic surveys: implication of the experimental results in northern South China Sea

    QIU XueLin; CHEN Yong; ZHU RiXiang; XU HuiLong; SHI XiaoBin; YE ChunMing; ZHAO MingHui; XIA ShaoHong


    Onshore-offshore seismic experiments were carried out for the first time in northern South China Sea using large volume airgun sources at sea and seismic stations on land. The experimental results indicate that seismic signals from the new airgun array of R/V Shiyan 2 can be detected as far as 255 km. The signal effective area reaches nearly 50000 km2, which covers Hong Kong and Pearl River Delta. Compared with the old airgun array, the signal amplitude, propagation distance and effective area of the new airgun array have been increased notably, which demonstrates that the upgrade of the airgun source was successful. Comparisons with previous experimental results in other regions show that the shooting effect of the new airgun array is similar to those best airgun sources in the world. Especially, it is a new breakthrough in using the permanent seismic stations onshore to record long distance airgun signals offshore, which has great significance to the realization of the "seismic radar" concept and the 3D seismic surveys of crustal structure in coastal areas.

  16. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.


    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  17. 3D laser scanner application in topographic survey%三维激光扫描仪在地形测量中的应用

    李子坡; 李晓静


    三维激光扫描仪与全球定位系统(GPS)的结合是数字测图的又一次创新和进步,其具有简捷、高效、高清晰的数据获取能力,与传统测绘相比具有劳动强度低、时间短、测图的灵活性强,智能化、兼容性强等优势。本文介绍了三维激光扫描仪应用的现状,并与传统数据采集方式进行了比较,并结合实例将三维激光扫描技术应用于大比例尺地形测量中,结果表明了三维激光扫描技术方案能够很好的取代传统测量方式,保证测绘数据质量,能够提高作业效率。%The 3D laser scanner and a global positioning system (GPS) is combined with another innovation and progress in digital mapping, which is a simple, efficient, high resolution data acquisition capacity, compared with the traditional mapping has the advantages of low labor intensity, time is short, mapping flexibility, intelligent, strong compatibility and other advantages. This paper introduces the present situation of the application of 3D laser scanner, and compared with the traditional data acquisition methods, combined with the example, the application of 3D laser scanning technology in large scale topographic survey, results show that the 3D laser scanning technology to replace the traditional measurement methods are good, ensure the quality of Surveying and mapping data, can improve the efficiency of.

  18. Pen Branch fault program: Interim report on the High Resolution, Shallow Seismic Reflection surveys

    Stieve, A.L. [Westinghouse Savannah River Co., Aiken, SC (United States)


    The Pen Branch fault was identified in the subsurface at the Savannah River Site in 1989 based upon the interpretation of earlier seismic reflection surveys and other geologic investigations. A program was initiated at that time to further define the fault in terms of its capability to release seismic energy. The High-Resolution, Shallow Seismic Reflection survey recently completed at SRS was initiated to determine the shallowest extent of the fault and to demonstrate the presence of flat-lying sediments in the top 300 feet of sediments. Conclusions at this time are based upon this shallow seismic survey and the Conoco deep seismic survey (1988--1989). Deformation related to the Pen Branch fault is at least 200 milliseconds beneath the surface in the Conoco data and at least 150 milliseconds in the shallow seismic reflection data. This corresponds to approximately 300 feet below the surface. Sediments at that depth are lower Tertiary (Danian stage) or over 60 million years old. This indicates that the fault is not capable.

  19. Application of the Common Offset Seismic Reflection Method to Urban Active Fault Surveys

    Liu Baojin; Ji Jifa; Xu Zhaofan; Yuan Hongke; Liao Xu; Bai Yun; Wan Bo


    The method and principle of common offset seismic surveys as well as the field data gathering and processing technique were introduced briefly. Through two urban active fault survey examples in Fuzhou and Shenyang, the efficiency and limitation of using the common offset seismic reflection technique to carry out urban active fault surveys were probed. The results show that this technique has the properties of high resolving power, better reconstruction of subsurface structures, and real-time analyzing and interpretation of investigation results on site. This method can be used to quickly locate objects under investigation accurately in the areas with thinner Quaternary overburdens and strong bedrock interface fluctuations.

  20. L- and Corner-arryas for 3D electric resistivity tomography: An alternative for geophysical surveys in urban zones

    Chavez Segura, R. E.; Tejero-Andrade, A.; Delgado-Solorzano, C.; Cifuentes-Nava, G.; Hernández-Quintero, E.


    3D Electric Resitivity Tomography methods carried out on heavily urbanized areas become a difficult task, since buildings, houses or other type of obstacles do not allow parallel ERT arrays to be deployed. Therefore, insufficient information from the subsoil could be obtained. The present paper presents two new techniques, which allow acquiring information beneath a construction by simply surrounding the building or buildings to be studied by a series of ERT profiles. Apparent resistivities are obtained from L-shaped profiles, where alternations between current and potential electrodes along this array are carried out in an automatic way. Four L-arrays and four Corner-arrays are needed to cover the subsurface beneath the studied area. A field test was carried out on a small University of Mexico main Campus garden, where trees and other anthropogenic structures were the so called 'obstacles'. Geophysical work was performed employing parallel arrays (traditional methodology) and compared with this new method presented. Results show that the new method has a poor resolution towards the central portion of the area, mainly from anomalies produced by shallow structures as compared with the traditional grid method. However, the L- and Corner- arrays are more sensitive to anomalies produced by deeper objects, which cannot be observed in the traditional method. The final goal is to apply this method to study habitational complexes built on top of the ancient lake of Mexico City, where buildings are in constant risk due to fracturing and subsidence.

  1. Aspects of the Quaternary evolution of the Southern Kattegat and the central North Sea based on interpretation of 2D and 3D marine reflection seismic profiles

    Bendixen, Carina

    knows as the Dana River. This took place simultaneously with the occurrence and drainage of the Ancylus Lake through the Great Belt. The drainage of the Ancylus Lake was interpreted as non-catastrophic water flow as seismic data shows no evidence of major erosion or delta deposition, which would...... indicate a catastrophic drainage event. With a continuous Holocene sea-level rise back-stepping (landwards retreat) of the coastal systems occurred, followed by flooding of the northern Great Belt threshold and major erosion took place. Rapid sea-level rise preserved the sea floor morphology which...

  2. Optimization of Shooting Parameters in High-Resolution 3D Seismic Exploration in Coalmine Winning District%煤田采区高分辨三维地震勘探激发参数的优选

    蔺国华; 倪新辉; 杨文强


    The 3D seismic exploration is one of most accurate exploration methods in coalfield, which has been widely used in coal and gas exploration. One of the most important processes in 3D seismic exploration is the choice of parameters which include shooting well-depth and shooting dose. The choice of the explosion parameters whether reasonable or not will has direct impact on accuracy. With the improvement of seismic exploration technique, quantitative definition is required in the choice of parameters in field work. Double-well micro-logging is an efficient method which can easily quantitatively fix the location of the explosion site. Besides, it can easily be applied. Based on this technique, combined with spectrum analysis and a large number of theoretical and experimental analyses, we have acquired an efficient way to select the best shooting well-depth and shooting dose. Moreover, this technique can give rise to high-frequency seismic wave, and then to achieve the goal of high-quality seismic data acquisition and economic cost savings.%三维地震勘探取得可靠数据的前提是获得最佳的的激发参数,即激发井深和激发药量.双井微测井是一种行之有效的确定激发参数的方法.以某区25m双井微测井为例,介绍了通过不同激发井深的接收排列图及频谱分析图确定潜水面位置及最佳激发深度的方法;在确定的最佳激发层位上进行不同药量试验,结合目的层有效波时窗频谱图,综合考虑有效信号、地震子波频谱及信噪比等因素选择最佳激发药量.通过双井微测井工作,最终确定潜水面位置为6m,最佳激发深度为11m,激发药量为2kg.

  3. 3D model of the Bernese Part of the Swiss Molasse Basin: visualization of uncertainties in a 3D model

    Mock, Samuel; Allenbach, Robin; Reynolds, Lance; Wehrens, Philip; Kurmann-Matzenauer, Eva; Kuhn, Pascal; Michael, Salomè; Di Tommaso, Gennaro; Herwegh, Marco


    The Swiss Molasse Basin comprises the western and central part of the North Alpine Foreland Basin. In recent years it has come under closer scrutiny due to its promising geopotentials such as geothermal energy and CO2 sequestration. In order to adress these topics good knowledge of the subsurface is a key prerequisite. For that matter, geological 3D models serve as valuable tools. In collaboration with the Swiss Geological Survey (swisstopo) and as part of the project GeoMol CH, a geological 3D model of the Swiss Molasse Basin in the Canton of Bern has been built. The model covers an area of 1810 km2and reaches depth of up to 6.7 km. It comprises 10 major Cenozoic and Mesozoic units and numerous faults. The 3D model is mainly based on 2D seismic data complemented by information from few deep wells. Additionally, data from geological maps and profiles were used for refinement at shallow depths. In total, 1163 km of reflection seismic data, along 77 seismic lines, have been interpreted by different authors with respect to stratigraphy and structures. Both, horizons and faults, have been interpreted in 2D and modelled in 3D using IHS's Kingdom Suite and Midland Valley's MOVE software packages, respectively. Given the variable degree of subsurface information available, each 3D model is subject of uncertainty. With the primary input data coming from interpretation of reflection seismic data, a variety of uncertainties comes into play. Some of them are difficult to address (e.g. author's style of interpretation) while others can be quantified (e.g. mis-tie correction, well-tie). An important source of uncertainties is the quality of seismic data; this affects the traceability and lateral continuation of seismic reflectors. By defining quality classes we can semi-quantify this source of uncertainty. In order to visualize the quality and density of the input data in a meaningful way, we introduce quality-weighted data density maps. In combination with the geological 3D

  4. Background briefing paper for a workshop on seismic survey operations : impacts on fish, fisheries, fishers and aquaculture

    Peterson, D.L.


    Offshore seismic surveys are a vital tool for oil and gas exploration that help to identify the character of oil-bearing strata below the ocean floor. This paper examined some of the issues regarding offshore seismic testing and its impact on fish, fisheries, fishers, and aquaculture. The findings are based on recent research reports from Canada, Norway, the United States, the United Kingdom and Australia. Many elements of seismic testing are common to most areas, but different approaches have been used to plan and conduct surveys and to mitigate and monitor the environmental impacts. The paper explained why and how seismic testing is performed. It also looked at how seismic activity creates local jobs, with particular reference to seismic surveys conducted in offshore British Columbia. The technology of seismic testing has become more sophisticated in recent years, providing richer data results. The noise generated by seismic testing differs from other types of noise to which fish are subjected. The distance and speed that the noise of seismic testing travels under water was described, along with the unique features of British Columbia's geography that might affect impacts of seismic activities. The variables in seismic survey processes that can reduce the impacts on fish and fisheries were also discussed, along with mitigative measures that have been developed to deal with seismic impacts on fish and fisheries. 36 refs.

  5. Seismic survey in southeastern Socorro Island: Background noise measurements, seismic events, and T phases

    Valenzuela, Raul W [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Galindo, Marta [Comprehensive Nuclear-Test-Ban Treaty Organization, IMS, Vienna (Austria); Pacheco, Javier F; Iglesias, Arturo; Teran, Luis F [Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, D.F. (Mexico); Barreda, Jose L; Coba, Carlos [Facultad de Ingenieria, Benemerita Universidad Autonoma de Puebla, Puebla (Mexico)


    We carried out a seismic survey and installed five portable, broadband seismometers in the southeastern corner of Socorro Island during June 1999. Power spectral densities for all five sites were relatively noisy when compared to reference curves around the world. Power spectral densities remain constant regardless of the time of day, or the day of the week. Cultural noise at the island is very small. Quiet and noisy sites were identified to determine the best location of the T phase station to be installed jointly by the Universidad Nacional Autonoma de Mexico and the Comprehensive Nuclear-Test-Ban Treaty Organization. During the survey six earthquakes were recorded at epicentral distances between 42 km and 2202 km, with magnitudes between 2.8 and 7.0. Two small earthquakes (M{sub c} = 2.8 and 3.3) occurred on the Clarion Fracture Zone. The four largest and more distant earthquakes produced T waves. One T wave from an epicenter near the coast of Guatemala had a duration of about 100 s and a frequency content between 2 and 8 Hz, with maximum amplitude at about 4.75 Hz. The Tehuacan earthquake of June 15, 1999 (M{sub w} = 7.0) produced arrivals of P {yields} T and S {yields} T waves, with energy between 2 Hz and 3.75 Hz. The earthquake occurred inland within the subducted Cocos plate at a depth of 60 km; a significant portion of the path was continental. Seismic P and S waves probably propagated upward in the subducted slab, and were converted to acoustic energy at the continental slope. Total duration of the T phase is close to 500 s and reaches its maximum amplitude about 200 s after the P {yields} T arrival. The T wave contains energy at frequencies between 2 and 10 Hz and reaches its maximum amplitude at about 2.5 Hz. T phases were also recorded from two earthquakes in Guerrero, Mexico and in the Rivera Fracture Zone. [Spanish] En junio de 1999 instalamos cinco sismometros portatiles de banda ancha en el sureste de la Isla Socorro. Se encontro que las densidades

  6. Seismic surveys negatively affect humpback whale singing activity off northern Angola.

    Cerchio, Salvatore; Strindberg, Samantha; Collins, Tim; Bennett, Chanda; Rosenbaum, Howard


    Passive acoustic monitoring was used to document the presence of singing humpback whales off the coast of Northern Angola, and opportunistically test for the effect of seismic survey activity in the vicinity on the number of singing whales. Two Marine Autonomous Recording Units (MARUs) were deployed between March and December 2008 in the offshore environment. Song was first heard in mid June and continued through the remaining duration of the study. Seismic survey activity was heard regularly during two separate periods, consistently throughout July and intermittently in mid-October/November. Numbers of singers were counted during the first ten minutes of every hour for the period from 24 May to 1 December, and Generalized Additive Mixed Models (GAMMs) were used to assess the effect of survey day (seasonality), hour (diel variation), moon phase and received levels of seismic survey pulses (measured from a single pulse during each ten-minute sampled period) on singer number. Application of GAMMs indicated significant seasonal variation, which was the most pronounced effect when assessing the full dataset across the entire season (p<0.001); however seasonality almost entirely dropped out of top-ranked models when applied to a reduced dataset during the July period of seismic survey activity. Diel variation was significant in both the full and reduced datasets (from p<0.01 to p<0.05) and often included in the top-ranked models. The number of singers significantly decreased with increasing received level of seismic survey pulses (from p<0.01 to p<0.05); this explanatory variable was included among the top ranked models for one MARU in the full dataset and both MARUs in the reduced dataset. This suggests that the breeding display of humpback whales is disrupted by seismic survey activity, and thus merits further attention and study, and potentially conservation action in the case of sensitive breeding populations.


    Wisnioski, E.; Förster Schreiber, N. M.; Wuyts, S.; Wuyts, E.; Bandara, K.; Genzel, R.; Bender, R.; Davies, R.; Lang, P.; Mendel, J. T.; Beifiori, A.; Chan, J.; Fabricius, M.; Fudamoto, Y.; Kulkarni, S.; Kurk, J.; Lutz, D. [Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstr. 1, D-85748 Garching (Germany); Wilman, D.; Fossati, M. [Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Scheinerstrasse 1, D-81679 München (Germany); Brammer, G., E-mail: [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others


    We present the KMOS{sup 3D} survey, a new integral field survey of over 600 galaxies at 0.7 < z < 2.7 using KMOS at the Very Large Telescope. The KMOS{sup 3D} survey utilizes synergies with multi-wavelength ground- and space-based surveys to trace the evolution of spatially resolved kinematics and star formation from a homogeneous sample over 5 Gyr of cosmic history. Targets, drawn from a mass-selected parent sample from the 3D-HST survey, cover the star formation-stellar mass (M {sub *}) and rest-frame (U – V) – M {sub *} planes uniformly. We describe the selection of targets, the observations, and the data reduction. In the first-year of data we detect Hα emission in 191 M {sub *} = 3 × 10{sup 9}-7 × 10{sup 11} M {sub ☉} galaxies at z = 0.7-1.1 and z = 1.9-2.7. In the current sample 83% of the resolved galaxies are rotation dominated, determined from a continuous velocity gradient and v {sub rot}/σ{sub 0} > 1, implying that the star-forming ''main sequence'' is primarily composed of rotating galaxies at both redshift regimes. When considering additional stricter criteria, the Hα kinematic maps indicate that at least ∼70% of the resolved galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated velocity dispersions reported in previous integral field spectroscopy studies at z ≳ 0.7. For rotation-dominated disks, the average intrinsic velocity dispersion decreases by a factor of two from 50 km s{sup –1}at z ∼ 2.3 to 25 km s{sup –1}at z ∼ 0.9. Combined with existing results spanning z ∼ 0-3, we show that disk velocity dispersions follow an evolution that is consistent with the dependence of velocity dispersion on gas fractions predicted by marginally stable disk theory.

  8. Spherical 3D isotropic wavelets

    Lanusse, F.; Rassat, A.; Starck, J.-L.


    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at

  9. Seismic texture and amplitude analysis of large scale fluid escape pipes using time lapses seismic surveys: examples from the Loyal Field (Scotland, UK)

    Maestrelli, Daniele; Jihad, Ali; Iacopini, David; Bond, Clare


    Fluid escape pipes are key features of primary interest for the analysis of vertical fluid flow and secondary hydrocarbon migration in sedimentary basin. Identified worldwide (Løset et al., 2009), they acquired more and more importance as they represent critical pathways for supply of methane and potential structure for leakage into the storage reservoir (Cartwright & Santamarina, 2015). Therefore, understanding their genesis, internal characteristics and seismic expression, is of great significance for the exploration industry. Here we propose a detailed characterization of the internal seismic texture of some seal bypass system (e.g fluid escape pipes) from a 4D seismic survey (released by the BP) recently acquired in the Loyal Field. The seal by pass structure are characterized by big-scale fluid escape pipes affecting the Upper Paleogene/Neogene stratigraphic succession in the Loyal Field, Scotland (UK). The Loyal field, is located on the edge of the Faroe-Shetland Channel slope, about 130 km west of Shetland (Quadrants 204/205 of the UKCS) and has been recently re-appraised and re developed by a consortium led by BP. The 3D detailed mapping analysis of the full and partial stack survey (processed using amplitude preservation workflows) shows a complex system of fluid pipe structure rooted in the pre Lista formation and developed across the paleogene and Neogene Units. Geometrical analysis show that pipes got diameter varying between 100-300 m and a length of 500 m to 2 km. Most pipes seem to terminate abruptly at discrete subsurface horizons or in diffuse termination suggesting multiple overpressured events and lateral fluid migration (through Darcy flows) across the overburden units. The internal texture analysis of the large pipes, (across both the root and main conduit zones), using near, medium and far offset stack dataset (processed through an amplitude preserved PSTM workflow) shows a tendency of up-bending of reflection (rather than pulls up artefacts

  10. High Resolution Seismic Survey off the Pacific Shore of Costa Rica - Detailed Imaging of Deformational Patterns, Fluid Venting and Carbonate Mounds

    Fekete, N.; Spiess, V.; Heidersdorf, F.; v. Lom, H.; Zuehlsdorff, L.; Denil, D.; Huguen, C.; Schnabel, M.


    R/V METEOR Research Cruise M54/1 in summer 2002 from Balboa (Panama) to Caldera (Costa Rica) aimed at imaging the near sea floor sedimentary structures of both the continental and oceanic plates of the Costa Rican Subduction Zone with the high resolution seismic method. The cruise evolved from a cooperation of the Marine Seismics Group of the University of Bremen with the DFG funded Special Research Project 574 - Fluids and Volatiles in Subduction Zones - and is intended to supplement the marine geophysical, geological and geochemical as well as oceanographic data collected during R/V SONNE cruises in the area, as well as subsequent R/V METEOR cruises M54/2 and /3. The objectives of SFB 574 are the investigation of shallow and deep processes in subduction zones through near surface sampling of fluid vent sites and gas hydrate occurrences, as well as through detailed seismic and acoustic imaging of related structures. The main objectives of the cruise were to study 1) the volatile and material input into the sedimentary system on the oceanic plate, 2) the distribution of gas hydrates within the sediments, and 3) possible pathways and resulting structures of fluid/gas escape. Several working areas were selected, which had been identified as highly fractured sediment packages above subducting seamounts (Jaco Scar, Parrita Scar, Rio Bongo, Hongo area), areas of pronounced decollement reflection, major slump masses (Nicoya slide), regions of major fracturing of the oceanic crust, or carbonate mounds (Hongo area, Mound Culebra) during previous cruises. For calibration of seismic data, survey lines were also shot in the vicinity of ODP Leg 170 drill sites. Several seismic examples from various survey sites will be shown. Closely spaced profiles, allowing the acquisition of 3D and 2.5D seismic data in the Hongo area and near Mound Culebra, respectively, reveal the complex internal structure of fluid pathways, the distribution of gas hydrates, and the tectonic framework of

  11. 2.5-D forward and inverse modelling of full-waveform elastic seismic survey

    Xiong, J. L.; Lin, Y.; Abubakar, A.; Habashy, T. M.


    We present a two-and-half-dimensional (2.5-D) forward and inversion algorithm for the interpretation of surface seismic elastic full-waveform data. The 2-D modelling approach for elastic waves might not be sufficiently accurate because of its line-source assumption. On the other hand, a full 3-D modelling of elastic waves is still computationally very expensive for seismic exploration applications. By employing the 2.5-D modelling approach, we assume that the elastic medium is 2-D while the source is a 3-D point source. We solve the 2.5-D problem by first transforming the elastic wave equation in the spatial domain into the wavenumber domain. Then, for each wavenumber we solve a 2-D problem using the finite difference method with staggered grids. After that an inverse wavenumber transform is performed to compute the 3-D field distribution. To handle the inverse transform, we develop an efficient numerical integration scheme by subdividing the integration domain and applying different integration rules to each subinterval. We show that this approach works well for surface seismic applications. The 2.5-D approach offers a more realistic modelling of the elastic wave data, hence it produces more accurate inversion results than the 2-D inversion approach. Finally, we validate this approach by using a numerical test. In this test we used our 2.5-D full-waveform inversion algorithm to invert the synthetic data generated by a 3-D finite-difference time-domain simulation.


    A. Pérez Ramos


    Full Text Available Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.

  13. Only Image Based for the 3d Metric Survey of Gothic Structures by Using Frame Cameras and Panoramic Cameras

    Pérez Ramos, A.; Robleda Prieto, G.


    Indoor Gothic apse provides a complex environment for virtualization using imaging techniques due to its light conditions and architecture. Light entering throw large windows in combination with the apse shape makes difficult to find proper conditions to photo capture for reconstruction purposes. Thus, documentation techniques based on images are usually replaced by scanning techniques inside churches. Nevertheless, the need to use Terrestrial Laser Scanning (TLS) for indoor virtualization means a significant increase in the final surveying cost. So, in most cases, scanning techniques are used to generate dense point clouds. However, many Terrestrial Laser Scanner (TLS) internal cameras are not able to provide colour images or cannot reach the image quality that can be obtained using an external camera. Therefore, external quality images are often used to build high resolution textures of these models. This paper aims to solve the problem posted by virtualizing indoor Gothic churches, making that task more affordable using exclusively techniques base on images. It reviews a previous proposed methodology using a DSRL camera with 18-135 lens commonly used for close range photogrammetry and add another one using a HDR 360° camera with four lenses that makes the task easier and faster in comparison with the previous one. Fieldwork and office-work are simplified. The proposed methodology provides photographs in such a good conditions for building point clouds and textured meshes. Furthermore, the same imaging resources can be used to generate more deliverables without extra time consuming in the field, for instance, immersive virtual tours. In order to verify the usefulness of the method, it has been decided to apply it to the apse since it is considered one of the most complex elements of Gothic churches and it could be extended to the whole building.

  14. Seismic reflection survey at Llancanelo region (Mendoza, Argentina) and preliminary interpretation of Neogene stratigraphic features

    Osella, A.; Onnis, L.; de la Vega, M.; Tassone, A.; Violante, R. A.; Lippai, H.; López, E.; Rovere, E. I.


    A shallow multichannel seismic survey reaching depths of 700/800 m was performed for the first time in the Llancanelo Lake region (Southern Mendoza Province, Argentina), in order to depict the major Neogene sedimentary-volcanic sequences that form the final infilling of the tectonic-volcanic basin where the lake is located. The seismic survey advances on the results of previous geoelectric and electromagnetic surveys carried out at early stages of the research that reached the uppermost 80-100 m of the sequences (Quaternary), and therefore they go deeper in the subsoil. All the surveys were supported by surface and subsoil geological observations. After explaining the details of the performed seismic methodology, the obtained results are discussed, which indicate the presence of three major sedimentary units with increasing volcanic (basaltic layers) intercalations with depth, that accommodate to the geometry of the depocenter. The entire sequence encompasses most of the Neogene. This research sets the methodological basis for future, more detailed shallow seismic surveys in the region.

  15. 3D Nonlinear Damage Analysis of Metro-station Structures Under Strong Seismic Loading%强震作用下地铁车站结构损伤破坏的三维非线性动力分析

    还毅; 方秦; 陈力; 柳锦春


    In order to investigate the dynamic response and the failure mechanism of metro-station structures under strong seismic loading, a two-dimensional (2D) and a three-dimensional (3D) nonlinear finite element models of the Daikai subway station during Kobe earthquake were established based on damaged plasticity model for concrete, extended Drucker-Prager model for soil, soil-underground structure interaction theory and artificial boundary theory. The 3 D nonlinear responses of the Daikai subway station with isolators fixed at the column ends subjected to seismic loading were also analyzed. The results show that: ( 1 ) the finite element models established in this paper can describe the dynamic properties of the reinforced concrete structure and the dynamic interaction of soil-underground structure properly; (2) the 3D numerical results agree well with the in situ observations by comparison of the numerical results of the 2D and 3D models, and the failure mode of the column in the metrostation structure under seismic loading can not be predicted precisely by the 2D analysis; (3) the 3D shock isolator, composed of dish spring and lead rubber beading, has a rather large vertical stiffness and good resistance to lateral deformation, and consequently can markedly reduce the deformation and damage of the column when fixed at the ends of the column.%为了研究地铁车站结构在强震作用下的动力响应及破坏机理,基于混凝土损伤塑性模型、岩土扩展的Drucker-Prager模型、土-结构相互作用以及人工边界等相关理论,利用ABAQUS软件建立了强震作用下地铁车站的动态响应与损伤破坏的二维、三维精细化非线性有限元分析模型,并对柱端设置隔震器的地铁车站结构进行了三维非线性动力分析.分析结果表明:所建立的有限元分析模型能较好地反映强震荷载作用下钢筋混凝土结构的动力特性以及土-地下结构之间相互作用,适用于地下结构抗震分

  16. 3D Animation Essentials

    Beane, Andy


    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  17. 3D video

    Lucas, Laurent; Loscos, Céline


    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  18. TB级海量地震数据三维显示系统的设计与实现%Designing and realizing a 3D display system of the mass seismic data with a TB level

    郭林; 周东红; 沈东义; 胡元凌


    With the continuous hydrocarbon exploration and development in Bohai water, the seismic data volume is expanding continuously and may be up to a level of several hundred GB or even TB. However, the existing softwares cannot call and display the mass seismic data from various work areas and softwares. A 3D display system of the mass seismic data with a TB level has been independently researched and developed, in which the multiple existing databases of special software and the seismic data from multiple work areas are allo- cated in a unified way by creating the service of network data, in order to form a huge data set and provide a unified data access interface, to achieve a real-time and high-speed access to the mass seismic data at a client end and finally to display the seismic data and their related figures in various ways (section, slice and triaxiality). Its applications have shown that this system is powerful in functions and easy and fast in exploitation, and can not only call seismic data up to a TB level from several work areas at a workstation, but also view quickly the seismic bodies with data up to several ten GB at a PC. Therefore, the system may provide powerful supports for studying regional geology in Bohai water.%随着渤海海域油气勘探开发的不断发展,地震数据体的数据量在不断增加,可达到几百GB甚至TB级,而现有软件无法完成跨工区、跨软件的海量地震数据调用和显示.自主研发了TB级海量地震数据三维显示系统,通过建立网络数据服务对多个现有专业软件数据库、多个工区的地震数据统一调配,以形成一个庞大的数据集并提供统一的数据访问接口,最终在客户端实现海量地震数据的实时高速读取,并以各种方式(剖面、切片、三维体)显示地震数据及相关成果图.应用效果表明,该系统功能强大、方便快捷,不仅可以在工作站上调入总量达到TB级的多个地震工区数据,

  19. 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3)

    Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba-Montiel, Francisco; Iglesias, Arturo


    This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group traveltimes are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.

  20. Guided modes in coal seams and their application to underground seismic surveying

    Lagasse, P.E.; Mason, I.M.


    Underground seismic surveying of coal seams can be performed using the channel waves guided by the low velocity coal layer. The roadway modes, i.e. the modes guided by the free face of the coal seam, are analysed. The knowledge of channel modes and roadway modes are shown to be fundamental to the interpretation of any survey data. Detailed calculations of the channel modes and the pulse propagation in a particular coal seam are presented.

  1. Spherical 3D Isotropic Wavelets

    Lanusse, F; Starck, J -L


    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  2. 基于三维多重机构模型的土石坝地震反应分析%Seismic Response Analysis of Rockfill Dam Based on 3D Multi-mechanism Model

    高原; 方火浪


    The 3D multi-mechanism model based on the Hardin-Drnevich model and generalized Masing rule can take into account the nonlinearity and stress-induced anisotropy in stress-strain relationship for granular materials.Based on the platform of the finite element software ABAQUS,the subroutine of the 3D multi-mechanism model is implemented and then the seismic response analysis of a rockfill dam is possible by using this model.The seismic response analyses of the asphalt-concrete-faced rockfill dam are carried out by using the 3D multi-mechanism model and the equivalent viscoelastic model under a strong earthquake.The dynamic response characteristics of the dam and the effect of constitutive models on its response are investigated.The result shows that there exist some differences in the dynamic responses of the dam computed by using the two constitutive models.The 3D multi-mechanism model can accurately simulate the complex stress-strain relationships of rockfill materials under earthquake loading and the result obtained by it can reasonably reveal the nonlinear seismic response characteristics of the dam.%以Hardin-Drnevich模型和广义Masing准则为基础的三维多重机构模型,可以考虑颗粒材料的非线性和应力诱导各向异性.在有限元软件ABAQUS的平台上,开发了三维多重机构模型的UMAT子程序,实现了利用该模型进行土石坝地震反应分析的可能.利用三维多重机构模型和等价粘弹性模型,对某沥青混凝土面板堆石坝进行了地震反应分析,探讨了该坝在强震作用下的动力反应特性和本构模型对坝体动力反应的影响.结果表明,用三维多重机构模型与等价粘弹性模型计算得到的坝体动力反应有一定程度的差异,三维多重机构模型能够比较准确地模拟堆石料在地震荷载作用下的复杂应力应变关系,其计算结果可以更合理地揭示坝体的非线性地震反应特性.

  3. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 grism spectra, redshifts, and emission line measurements for $\\sim 100,000$ galaxies

    Momcheva, Ivelina G; van Dokkum, Pieter G; Skelton, Rosalind E; Whitaker, Katherine E; Nelson, Erica J; Fumagalli, Mattia; Maseda, Michael V; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Schreiber, Natascha M Förster; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Lange, Johannes Ulf; Lundgren, Britt F; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G; Price, Sedona; Tal, Tomer; Wake, David A; van der Wel, Arjen; Wuyts, Stijn


    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 $H_{140}$ imaging, parallel ACS G800L spectroscopy, and parallel $I_{814}$ imaging. In a previous paper (Skelton et al. 2014) we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N. The data analysis is complicated by the fact that no slits are used: all objects in the WFC3 field are dispersed, and many spectra overlap. We developed software to automatically and optimally extract interlaced 2D and 1D spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxie...

  4. Seismic refraction surveys in Bernburg, Germany: an application of the generalized reciprocal and phantoming method

    Horrent, Catherine; Brouyère, Serge; Demanet, Donat; Michiels, Thierry; Jongmans, Denis


    The paper presents a case study of a seismic refraction survey in Bernburg, Germany. The interpretation was made using the GRM method and phantoming concept. The aim of the survey was to map the depth of the bed-rock over a distance of 2 km. The survey was divided into five linear profiles ranging from 150 to 640 metres in length. The resulting interpreted sections show substantial variations in velocity (1300 to 4500 m/s) and depth (5 to 18 m) of bed-rock. Correlation with existing boreholes...

  5. Combined microbial, seismic surveys predict oil and gas occurrences in Bolivia

    Lopez, J.P. (Yacimientos Petroliferos Fiscales Bolivianos, Santa Cruz (Bolivia)); Hitzman, D.; Tucker, J. (Geo-Microbial Technologies Inc., Ochelata, OK (United States))


    Microbial and geophysical surveys in the jungles of Bolivia's extensive Sub-Andean region have combined for three successful predictions of deep oil and gas reserves in as many tries. Hydrocarbon microseepage measured by microbial soil samples predicted the Carrasco, Katari, and Surubi structures of Bolivia's Chapare region in 1991--92, detecting traps with reserves at depths exceeding 4,500 m. Approximately 800 km of seismic lines covering 3,500 sq km was completed by Yacimientos Petroliferos Fiscales Bolivianos (YPFB) for evaluation of the YPFB reserve block. For 1 month each year at the end of the field season, seismic lines were quickly traversed by several microbial sampling teams. Using hand augers or shovels, the teams collected more than 3,200 samples approximately 20 cm (8 in.) deep at intervals of 250 m next to staked seismic locations. Microbial results were directly compared with seismic profiles for identification and ranking of traps and structures. The paper discusses the survey predictions and the microbial approach.

  6. Data quality of a low fold seismic survey employing a buried multi-component array at Ketzin

    Meekes, J.A.C.; Vandeweijer, V.P.; Arts, R.J.


    To monitor the migration of the injected CO2 in the Ketzin project (Germany) a permanently buried multi-component seismic array has been installed in August 2009. Besides passive seismic recordings, this monitoring system was used to record data for an active survey carried out in 2009, resulting in

  7. Integrated Methodologies for the 3D Survey and the Structural Monitoring of Industrial Archaeology: The Case of the Casalecchio di Reno Sluice, Italy

    Gabriele Bitelli


    Full Text Available The paper presents an example of integrated surveying and monitoring activities for the control of an ancient structure, the Casalecchio di Reno sluice, located near Bologna, Italy. Several geomatic techniques were applied (classical topography, high-precision spirit levelling, terrestrial laser scanning, digital close-range photogrammetry, and thermal imagery. All these measurements were put together in a unique reference system and used in order to study the stability and the movements of the structure over the period of time observed. Moreover, the metrical investigations allowed the creation of a 3D model of the structure, and the comparison between two situations, before and after the serious damages suffered by the sluice during the winter season 2008-2009. Along with the detailed investigations performed on individual portions of the structure, an analysis of the whole sluice, carried out at a regional scale, was done via the use of aerial photogrammetry, using both recently acquired images and historical photogrammetric coverage. The measurements were carried out as part of a major consolidation and restoration activity, carried out by the “Consorzio della Chiusa di Casalecchio e del Canale di Reno”.

  8. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z~2

    Whitaker, Katherine E; Brammer, Gabriel; Momcheva, Ivelina G; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F; Nelson, Erica J; Patel, Shannon G; Rix, Hans-Walter


    Quiescent galaxies at z~2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically-quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hbeta (4861A), we unambiguously identify metal absorption lines in the stacked spectrum, including the G-band (4304A), Mg I (5175A), and Na I (5894A). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^0.1_0.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: th...

  9. Deformation Study of Papandayan Volcano using GPS Survey Method and Its Correlation with Seismic Data Observation

    Dina A. Sarsito


    Full Text Available Papandayan volcano located in the southern part of Garut regency, around 70 km away from Bandung city, West Java. Many methods carried out to monitoring the activities of volcano, both continuously or periodically, one of the monitoring method is periodically GPS survey. Basically those surveys are carried out to understand the pattern and velocity of displacement which occurred in the volcano body, both horizontally and vertically, and also others deformation elements such as; translation, rotation and dilatation. The Mogi modeling was also used to determine the location and volume of the pressure source which caused deformation of volcano body. By comparing seismic activity and the deformation reveal from GPS measurement, before, during and after eruption, it could be understood there is a correlation between the seismicity and its deformation. These studies is hoping that GPS measurement in Papandayan volcano could be one of supported method to determine the volcano activities, at least in Papandayan volcano.

  10. Seismic imaging and evaluation of channels modeled by boolean approach

    Spinola, M.; Aggio, A. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas


    The seismic method attempt to image the subsurface architecture and has been able to significantly contribute to detect areal and vertical changes in rock properties. This work presents a seismic imaging study of channel objects generated using the boolean technique. Three channels having different thicknesses were simulated, using the same width, sinuosity and direction. A velocity model was constructed in order to allow seismic contrasts between the interior of channels and the embedding rock. To examine the seismic response for different channel thicknesses, a 3D ray tracing with a normal incident point survey was performed. The three channels were resolved and the way the seismic could image them was studied. (author)


    Brdnik, Lovro


    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  12. Advances in Rotational Seismic Measurements

    Pierson, Robert [Applied Technology Associates, Albuquerque, NM (United States); Laughlin, Darren [Applied Technology Associates, Albuquerque, NM (United States); Brune, Robert [Applied Technology Associates, Albuquerque, NM (United States)


    Rotational motion is increasingly understood to be a significant part of seismic wave motion. Rotations can be important in earthquake strong motion and in Induced Seismicity Monitoring. Rotational seismic data can also enable shear selectivity and improve wavefield sampling for vertical geophones in 3D surveys, among other applications. However, sensor technology has been a limiting factor to date. The US Department of Energy (DOE) and Applied Technology Associates (ATA) are funding a multi-year project that is now entering Phase 2 to develop and deploy a new generation of rotational sensors for validation of rotational seismic applications. Initial focus is on induced seismicity monitoring, particularly for Enhanced Geothermal Systems (EGS) with fracturing. The sensors employ Magnetohydrodynamic (MHD) principles with broadband response, improved noise floors, robustness, and repeatability. This paper presents a summary of Phase 1 results and Phase 2 status.

  13. TRT地震波三维成像技术在隧道施工地质超前预报中的应用%TRT Seismic Wave 3D Imaging Technology Application in Advance Geological Forecast in Tunnel Construction

    刘兆勇; 杨威; 王羿磊


    Tunnel geological prediction plays a key role in the tunnel construction, and is also a major technical problem in the field of engineering geophysics. In this paper,through the introduction of trt6000 tunnel geological predic-tion system principle and successful application examples that TRT 3-D seismic imaging technology in Tunnel Advance Geological Forecast in the advanced and effective,explore the in tunnel advanced detection application prospects.%隧道地质超前预报在隧道施工开挖中起着关键性作用,同时也是工程地球物理学界所面临的一大技术难题。本文通过介绍TRT6000隧道地质超前预报系统的方法原理以及成功应用实例,说明TRT地震波三维成像技术在隧道超前地质预报中的先进性和有效性,探讨其在隧道超前探测中的应用前景。

  14. 3 D seismic exploration technology in deep mining area under complicated ground surface%复杂地表深部采区三维地震勘探技术∗

    孙希杰; 王静; 李淅龙; 叶树刚


    恒源煤矿深部采区进行三维地震勘探的主要难点为地表及地质构造复杂、煤层埋藏深且较薄、信噪比和分辨率低。针对以上难点,采取了优化观测系统、Klseis 软件实时监测的设计措施,深井、小药量激发,村庄内检波点实测铺设的采集措施保证了覆盖次数的均匀合理。经精细处理及综合动态解释,取得了较显著的地质成果。%The complicated ground surface and geologic structure,deep and thin coal seam, low signal to noise ratio and resolution ratio were the main difficulties of 3D seismic exploration in deep mining area of Hengyuan Coal Mine��Aiming at above difficulties,observing system opti-mization and real-time monitoring by Klseis software were adopted as designing measures,drill-ing and small dosage stimulating and actual measurement of detection points in the villages were adopted as data collection methods to ensure the uniform and reasonable of coverage times��By precise processing and comprehensive dynamic interpretation,remarkable geology results were a-chieved.

  15. Refraction seismic surveys in the investigation trench TK3 area in Olkiluoto, Eurajoki 2004

    Ihalainen, M. [Suomen Malmi Oy, Espoo (Finland)


    Posiva Oy submitted an application for the Decision in Principle to the Finnish Government in May 1999. A positive decision was made at the end of 2000 by the Government. The Finnish Parliament ratified the Decision in Principle on the final disposal facility for spent nuclear fuel at Olkiluoto, Eurajoki in May 2001. The decision makes it possible for Posiva to focus the confirming bedrock investigations at Olkiluoto, where in the next few years an underground rock characterisation facility, the ONKALO, will be constructed. As a part of the investigations Suomen Malmi Oy (Smoy) conducted refraction seismic surveys at Olkiluoto site in Eurajoki. The work was ordered by Posiva Oy. The field work was carried out during May and June 2004. On five profiles S70-S74 totally 1002.5 m was surveyed. The purpose of the work was to determine the overburden thickness and to study bedrock properties, e.g. eventual fractured zones. The work consisted of staking, levelling, seismic measurements, interpretation and reporting. Fieldwork and interpretation were concluded by May and June 2004. Previously in 2000 and 2002 Smoy has carried out 33.0 km of seismic surveys in the area. (orig.)

  16. Crustal structure of the western Yamato Basin, Japan Sea, revealed from seismic survey

    No, T.; Sato, T.; Kodaira, S.; Miura, S.; Ishiyama, T.; Sato, H.


    The Yamato Basin is the second largest basin of the Japan Sea. This basin is important to clarify its formation process. Some studies of crustal structure had been carried out in the Yamato Basin (e.g. Ludwig et al., 1975; Katao, 1988; Hirata et al., 1989; Sato et al., 2006). However, the relationship between formation process and crustal structure is not very clear, because the amount of seismic exploration data is very limited. In addition, since there is ODP Leg 127 site 797 (Tamaki et al., 1990) directly beneath our seismic survey line, we contributed to the study on the formation of the Yamato Basin by examining the relation between the ODP results and our results. During July-August 2014, we conducted a multi-channel seismic (MCS) survey and ocean bottom seismometer (OBS) survey to study the crustal structure of the western Yamato Basin. We present an outline of the data acquisition and results of the data processing and preliminary interpretations from this study. As a result of our study, the crust, which is about 12 km thick, is thicker than standard oceanic crust (e.g., Spudich and Orcutt, 1980; White et al., 1992) revealed from P-wave velocity structure by OBS survey. A clear reflector estimated to be the Moho can be identified by MCS profiles. The characteristics of the sedimentary layer are common within the survey area. For example, a strong coherent reflector that is estimated to be an opal-A/opal-CT BSR (bottom simulating reflector) (Kuramoto et al., 1992) was confirmed in the sediment of all survey lines. On the other hand, a coherent reflector in the crust was confirmed in some lines. It is identified as this reflector corresponding with the deformation structure in the sediment and basement.

  17. 3D and Education

    Meulien Ohlmann, Odile


    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. The Monitoring of Urban Environments and Built-Up Structures in a Seismic Area: Web-Based GIS Mapping and 3D Visualization Tools for the Assessment of the Urban Resources

    Montuori, Antonio; Costanzo, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Pannaccione Apa, Maria Ilaria; Gervasi, Anna; Falcone, Sergio; La Piana, Carmelo; Minasi, Mario; Stramondo, Salvatore; Buongiorno, Maria Fabrizia; Doumaz, Fawzi; Musacchio, Massimo; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Bianchi, Maria Giovanna; Guerra, Ignazio; Porco, Giacinto; Compagnone, Letizia; Cuomo, Massimo; De Marco, Michele


    In this paper, a non-invasive infrastructural system called MASSIMO is presented for the monitoring and the seismic vulnerability mitigation of cultural heritages. It integrates ground-based, airborne and space-borne remote sensing tools with geophysical and in situ surveys to provide a multi-spatial (regional, urban and building scales) and multi-temporal (long- term, short-term and near-real-time scales) monitoring of test areas and buildings. The measurements are integrated through web-based Geographic Information System (GIS) and 3-dimensional visual platforms to support decision-making stakeholders involved in urban and structural requalification planning. An application of this system is presented over the Calabria region for the town of Cosenza and a test historical complex.

  19. Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM

    Echim, Marius M.; Moldovan, Iren; Voiculescu, Mirela; Balasis, George; Lichtenberger, Janos; Heilig, Balazs; Kovacs, Peter


    We present a project devoted to the scientific exploitation of SWARM multi-point measurements of the magnetic and electric field, of the electron temperature and density in the ionosphere. These data provide unique opportunities to study in-situ and remotely the electromagnetic and plasma variability due to ionospheric forcing from above and below. The project "Electric, Magnetic and Ionospheric Survey of Seismically Active Regions with SWARM (EMISSARS)" focus on coordinated studies between SWARM and ground based observatories to survey electromagnetic and ionospheric variability at medium latitudes and look for possible correlations with the seismic activity in central Europe. The project is coordinated by the Institute for Space Sciences (INFLPR-ISS) and the National Institute for Earth Physics (INFP) in Bucharest, Romania. In addition to SWARM data the project benefits from support of dedicated ground based measurements provided by the MEMFIS network coordinated by INFP, the MM100 network of magnetic observatories coordinated by the Geological and Geophysical Institute of Hungary (MFGI) in Budapest. Seismic data are provided by INFP and the European Mediterranean Seismological Center. The mission of the project is to monitor from space and from ground the ionospheric and electromagnetic variability during time intervals prior, during and after seismic activity in (i) the seismic active regions of the central Europe and (ii) in regions unaffected by the seismic activity. The latter will provide reference measurements, free from possible seismogenic signals. The scientific objectives of the project are: (1) Observation of electric, magnetic and ionospheric (electron temperature, density) variability in the ionosphere above or in the close vicinity of seismic active regions, in conjunction with ground based observations from dedicated networks; (2) Investigation of the coupling between the litosphere - atmosphere - ionosphere, during Earthquakes; (3) Quantitative

  20. Application of disturbance theory to assess impacts associated with a three-dimensional seismic survey in a freshwater marsh in southwest Louisiana

    Bass, Aaron Stuard

    This study examined various practical and theoretical aspects of disturbance in a coastal wetland marsh in southern Louisiana. A literature review approached disturbance ecology from both practical and theoretical perspectives and assessed its applicability to developing broad predictive models. However, specific knowledge of environmental variables, competitive relationships, and the interactive effects of multiple disturbances are required for meaningful usage of these models. The Lacassine National Wildlife Refuge (LNWR) proved to be an ideal laboratory to test various aspects of ecological disturbance theory. I found that the primary disturbances affecting the LNWR have been hurricanes, droughts, water-level manipulations, prescribed burning, oil and gas recovery activities, grazing by Myocastor coypus (nutria), and managed cattle grazing. The 1990's application of three-dimensional (3-D) seismic technology used in the oil and gas recovery business challenged landowners, government regulators, and industry to develop ways to recover these resources without damaging surface features. I developed a conservative estimate that an area exceeding 2.5 times the area of Louisiana's coastal wetlands was covered by overlapping seismic surveys in southern Louisiana from 1997 through 2002, equal to 22.5 km2/year. I provided a general overview of 3-D seismic survey programs, potential adverse impacts, and management and restoration strategies. I also conducted a field study at the LNWR on vegetation in control and treatment transects before, and for two years after, a 3-D survey. I found vegetative cover and the amount of dead plant biomass were significantly lower in treatment plots, but live biomass was not different in treatment and control plots. Species richness was higher in treatment plots compared to control plots, but the live biomass and cover of the dominant species ( Panicum hemitomon) was lower. The live biomass and cover of Eleocharis spp., a colonizing

  1. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys

    Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.


    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400

  2. 3D seismic data processing technique for loess tableland area in Fuxian, North Shanxi Province%陕北富县黄土塬区三维地震资料处理技术

    李敏杰; 刘玉增; 孟祥顺; 王锡文; 王献杰


    At erosive loess tableland area in Fuxian, Shanxi Province, the surface is covered by huge loess with vertically and horizontally d istributed ravines and gullies. Meanwhile, the surface elevation varies seriously. Complex near-surface structure, serious high-frequency absorption and kinds of interference lead to low signal-to-noise ratio for the seismic data after conventional processing methods, which cannot satisfy the requirements of seismic imaging and reservoir prediction. As for the complex surface static correction problem in loess area, a new static correction idea of "low-frequency first, middle/high-frequency second and successive approximation" is generated and we achieved good results. Aiming at the characteristics of various kinds and broad distribution ranges of noise, cascaded noise attenuation technique of ' multi-domains u-nion, from strong to weak' is applied to carry out pre-stack high fidelity noise attenuation. The difference of amplitude and frequencies of seismic data is eliminated and the quality of data was unified by making use of amplitude consistency reservation. With 3D surface consistent deconvolution and post stack resolution enhancement processing methods realization, the effective band of seismic signal is expanded and resolution is improved. The processing results show that the signal-tcrnoise ratio, resolution and fidelity are effectively enhanced.%陕北富县黄土塬侵蚀地貌区地表巨厚的黄土盖层沟壑纵横,高程变化剧烈,复杂的近地表结构、严重的高频吸收衰减和多种类型的干扰波,导致常规处理方法获得的地震资料信噪比和分辨率较低,无法满足后续地震成像处理和储层预测的需求.针对黄土塬区复杂地表静校正难题,提出了“先低频、后中高频,逐步逼近”的静校正思路并取得了明显效果;针对该区噪声类型多、分布范围广的特点,采用“多域联合,先强后弱”的串联去噪配套技术进行叠前高保


    Kolar, Nataša


    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  4. A Study on Coalmine Winning District 3D Seismic Prestack Time Migration Processing Technology%煤矿采区三维地震叠前时间偏移处理技术研究



    依据Kirchhoff积分法叠前时间偏移处技术的基本原理,探讨了该技术的实现方法及技术特点,并对其叠前去噪、振幅补偿、反褶积、多次波衰减、均方根速度场求取与优化、偏移孔径选取等关键技术的使用条件进行了系统分析.通过实际资料处理结果对比可知,Kirchhoff积分法叠前时间偏移比叠后时间偏移处理结果包含的地震信息更加丰富,复杂构造区成像更好,断层及断点空间位置更准确.应用效果表明,在地层横向速度变化不大的情况下,三维地震叠前偏移技术是解决煤矿采区陡倾角复杂构造成像问题的有效方法.%Based on basic principle of the Kirchhoff integral prestack time migration processing technology, discussed realization way and technical characteristics of the technology and systematically analyzed operating conditions of key technologies including prestack denoising, amplitude compensation, deconvolution, multiple wave attenuation, root-mean-square velocity field extraction, optimization and aperture selection etc. Through actual data processed results comparison can see, seismic information in prestack time migration processed result is more abundant than that of poststack time migration processed result, better imaging in complicated structure areas, more accurate fault spatial locations. The application effects have demonstrated that, in condition of strata transverse velocity variation is moderate, the 3D seismic prestack time migration technology is an effective method to solve coalmine winning district steep dip angle complicated structure imaging issue.

  5. Design and Fabrication of a Breadboard, Fully Conductively Cooled, 2-Micron, Pulsed Laser for the 3-D Winds Decadal Survey Mission Project

    National Aeronautics and Space Administration — Design and fabricate a space-qualifiable, fully conductively cooled, 2-micron pulsed laser breadboard meeting the projected 3-D Winds mission requirements. Utilize...

  6. 3D virtuel udstilling

    Tournay, Bruno; Rüdiger, Bjarne


    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  7. 3D Gravity Modeling of Complex Salt Features in the Southern Gulf of Mexico

    Mauricio Nava-Flores


    Full Text Available We present a three-dimensional (3D gravity modeling and inversion approach and its application to complex geological settings characterized by several allochthonous salt bodies embedded in terrigenous sediments. Synthetic gravity data were computed for 3D forward modeling of salt bodies interpreted from Prestack Depth Migration (PSDM seismic images. Density contrasts for the salt bodies surrounded by sedimentary units are derived from density-compaction curves for the northern Gulf of Mexico’s oil exploration surveys. By integrating results from different shape- and depth-source estimation algorithms, we built an initial model for the gravity anomaly inversion. We then applied a numerically optimized 3D simulated annealing gravity inversion method. The inverted 3D density model successfully retrieves the synthetic salt body ensemble. Results highlight the significance of integrating high-resolution potential field data for salt and subsalt imaging in oil exploration.

  8. GLOBE 3D : an new 3D toolset for Geoscience data processing

    Sinquin, Jean-Marc; Sorribas, Jordi; Diviacco, Paolo; Baeye, Matthias; Quemener, Gael


    Within EUROFLEETS project, and linked to EMODNET and GEOSEAS european projects, GLOBE (GLobal Oceanographic Bathymetry Explorer) is an innovative and generic software combining all necessary functionalities for cruise preparation, for collection, linking, processing and display of scientific data acquired during sea cruises, and for export of data and information to the main marine data centres and networks. The first version was delivered by the end of 2012 and was dedicated to MBES (Multi Beam Echo Sounder) data processing, but is designed to accept further functionalities such as image and video. It can be used onboard during the survey to get a quick view of acquired data, or later, to re-process data with accurate environmental data. Technically, the concept of the software relies on Eclipse RCP for the hosted client, Java and Nasa World Wind for the 3D views. The version shown at EGU will present several key items : - 3D vizualisation : DTM multi-layers from EmodNET, WaterColumn echogram, Seismic lines, ... - Bathymetry Plug-In : manual and automatic data cleaning, - Photo/Video Plug-In - Navigation - WMS/WFS interfaces.

  9. Blender 3D cookbook

    Valenza, Enrico


    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  10. 4-D seismic in a complex fluvial reservoir: the Snorre feasibility study

    Smith, P.; Berg, J.I.; Eidsvig, S.; Magnus, I.; Verhelst, F.J.P.C.M.G.; Helgesen, J.


    The saga petroleum, discoverer of Snorre Field, describe's how 3-D seismic surveys are used to determine the value of time-lapse seismic data for field management. Careful examination of the repeatability of the time-lapse data sets, before interpretation stark, establishes a framework defining the

  11. Geopressure and Trap Integrity Predictions from 3-D Seismic Data: Case Study of the Greater Ughelli Depobelt, Niger Delta Pressions de pores et prévisions de l’intégrité des couvertures à partir de données sismiques 3D : le cas du grand sous-bassin d’Ughelli, Delta du Niger

    Opara A.I.


    Full Text Available The deep drilling campaign in the Niger Delta has demonstrated the need for a detailed geopressure and trap integrity (drilling margin analysis as an integral and required step in prospect appraisal. Pre-drill pore pressure prediction from 3-D seismic data was carried out in the Greater Ughelli depobelt, Niger Delta basin to predict subsurface pressure regimes and further applied in the determination of hydrocarbon column height, reservoir continuity, fault seal and trap integrity. Results revealed that geopressured sedimentary formations are common within the more prolific deeper hydrocarbon reserves in the Niger Delta basin. The depth to top of mild geopressure (0.60 psi/ft ranges from about 10 000 ftss to over 30 000 ftss. The distribution of geopressures shows a well defined trend with depth to top of geopressures increasing towards the central part of the basin. This variation in the depth of top of geopressures in the area is believed to be related to faulting and shale diapirism, with top of geopressures becoming shallow with shale diapirism and deep with sedimentation. Post-depositional faulting is believed to have controlled the configuration of the geopressure surface and has played later roles in modifying the present day depth to top of geopressures. In general, geopressure in this area is often associated with simple rollover structures bounded by growth faults, especially at the hanging walls, while hydrostatic pressures were observed in areas with k-faults and collapsed crested structures. Les campagnes de forages profonds dans le delta du Niger ont démontré la nécessité d’une analyse détaillée des surpressions et de l’intégrité des structures pour évaluer correctement les prospects. La prédiction des pressions interstitielles a pu être réalisée ici avant forage à partir de données sismiques 3-D du grand sous-bassin d’Ughelli, dans le delta du Niger. Ce travail a permis de prévoir les régimes de pression du

  12. Seismic Survey Report for Central Nevada Test Area, Subsurface, Correction Action Unit 443, Revision 1



    The seismic survey was successful in imaging the water table and underlying structures at the site. The configuration of the water table reflector confirms the general southeast horizontal flow direction in the alluvial aquifer. Offsets in the water table reflector, both at known faults that reach the surface and at subsurface faults not previously recognized, indicate that both extension and blast-related faults are barriers to lateral groundwater flow. The results from this study have been used to optimally locate two new wells designed to monitor head levels and possible contaminant migration in the alluvial aquifer at CTNA.

  13. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina

    Berkman, E. (Emerald Exploration Consultants, Inc., Austin, TX (United States))


    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  14. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina. Final report

    Berkman, E. [Emerald Exploration Consultants, Inc., Austin, TX (United States)


    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  15. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  16. Professional Papervision3D

    Lively, Michael


    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  17. AE3D


    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  18. National Archive of Marine Seismic Surveys (NAMSS): U.S. Geological Survey Program to Provide new Access to Proprietary Data

    Childs, J. R.; Hart, P. E.


    Marine seismic reflection profile data originally acquired for purposes of offshore oil and gas exploration and development within the United States Exclusive Economic Zone represent a national scientific resource of inestimable value. Although the commercial value of these data has diminished due to technological advances and offshore development moratoria, the value to current and future scientific endeavors continues to be very high. Recently, commercial owners (including WesternGeco and ChevronTexaco) of large data holdings offshore the eastern, western, and Alaskan coasts of the United States have offered to transfer over 200,000 line kilometers of two-dimensional data (vintage 1970 to 1985) to the public domain. Recognizing the value of these data, the U.S. Geological Survey in co-operation with the Institute for Crustal Studies at UCSB, the Incorporated Research Institutions for Seismology, and the American Geological Institute) is promoting efforts to safeguard on behalf of the research community and the nation any data that may otherwise be lost, and to ensure free and open access to that data. To achieve these goals, the USGS has developed a National Archive of Marine Seismic Surveys (NAMSS). Work is underway to organize and reformat digital data currently stored on obsolete media, primarily nine-track tapes. The NAMSS web site below has further information on the project, including trackline maps of surveys that will soon be publicly available. The ultimate objective is the establishment of a data repository accessible through an on-line database, with graphical and text-based search and retrieval interface.

  19. From "sapienza" to "sapienza, State Archives in Rome". a Looping Effect Bringing Back to the Original Source Comunication and Culture by Innovative and Low Cost 3d Surveying, Imaging Systems and GIS Applications

    Paolini, P.; Forti, G.; Catalani, G.; Lucchetti, S.; Menghini, A.; Mirandola, A.; Pistacchio, S.; Porzia, U.; Roberti, M.


    High Quality survey models, realized by multiple Low Cost methods and technologies, as a container to sharing Cultural and Archival Heritage, this is the aim guiding our research, here described in its primary applications. The SAPIENZA building, a XVI century masterpiece that represented the first unified headquarters of University in Rome, plays since year 1936, when the University moved to its newly edified campus, the role of the main venue for the State Archives. By the collaboration of a group of students of the Architecture Faculty, some integrated survey methods were applied on the monument with success. The beginning was the topographic survey, creating a reference on ground and along the monument for the upcoming applications, a GNNS RTK survey followed georeferencing points on the internal courtyard. Dense stereo matching photogrammetry is nowadays an accepted method for generating 3D survey models, accurate and scalable; it often substitutes 3D laser scanning for its low cost, so that it became our choice. Some 360° shots were planned for creating panoramic views of the double portico from the courtyard, plus additional single shots of some lateral spans and of pillars facing the court, as a single operation with a double finality: to create linked panotours with hotspots to web-linked databases, and 3D textured and georeferenced surface models, allowing to study the harmonic proportions of the classical architectural order. The use of free web Gis platforms, to load the work in Google Earth and the realization of low cost 3D prototypes of some representative parts, has been even performed.

  20. Assessing Acoustic Sound Levels Associated with Active Source Seismic Surveys in Shallow Marine Environments

    Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.


    The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California

  1. 三维地震资料在赵庄煤矿构造解释中的应用%Application of 3D Seismic Information to Explain Structure of Zhaozhuang Mine

    何灵芳; 闫涛滔; 刘大锰; 姚艳斌


    Zhaozhuang Mine was a new developed coal mine with rich coal bed methane,a developed mine structure and an uncertain exploration development outlook of the coal bed methane.In order to verify the mine structure development features in the region,the Landmark software was applied to detail explain the 3D seismic information.With the detail explanation on the seismic section structures,there were 4 faults and 23 sink holes explained on the sections.The coherence cube technology was applied to directly observe the distributions of the faults and the sink holes in the region.The correction was made to the explanation of the sections.The geological structure control theory was applied to the analysis on the rich concentration of the coal bed methane and the results showed that coal bed methane would be mainly concentrated in the syncline and anticlinal axis part,the footwall of the reversed fault and the deep depth area.The sink holes were developed largely in pieces and zones along the reversed fault and the middle and the south-east corner of the region and had obvious uneven distribution features.Thus the sink holes had caused a poor continuity to the seams and would not be favorable to the rich concentration and storage of coal bed methane.%基于赵庄煤矿为新开采的富含煤层气矿,矿区构造发育,煤层气的勘探开发前景不明确,为进一步查明本区构造发育特征,利用Landmark软件对赵庄煤矿的三维地震资料进行了精细解释。经地震剖面的构造精细解释,在剖面上共解释了4条断层,23个陷落柱并运用相干体技术直观地观察到该区域内断层和陷落柱的分布,对剖面解释进行了校正;运用地质构造控制理论煤层气富集规律分析结果表明,煤层气主要在向斜及背斜轴部、逆掩断层下降盘及埋深较大的区域富集,而陷落柱则沿逆掩断层、测区中部及西南角大量成片成带发育特征,且具有明显的分布不均特征

  2. Radiochromic 3D Detectors

    Oldham, Mark


    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  3. 3D Spectroscopic Instrumentation

    Bershady, Matthew A


    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  4. 3D Projection Installations

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle


    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  5. First results of a high resolution reflection seismic survey of the Central Northern Venezuelan Shelf

    Avila, J.; van Welden, A.; Audemard, F.; de Batist, M.; Beck, C.; Scientific Party, G.


    In September - November 2007 the first high resolution marine seismic campaign on the North-Central coast of Venezuela was carried out between Cabo Codera and Golfo Triste. The principal aim of this work was to characterize the active San Sebastian Fault (SSF) and to analyze Cenozoic sedimentation on the Venezuela shelf focusing on: i) effects of active tectonics and ii) coastal landslides/flashflood deposits related to 1999 Vargas catastrophic event or to similar phenomena. Data were acquired onboard R/V GUAIQUERI II from the Oceanographic Institute of the Oriente University. The seismic source was a "CENTIPEDE" sparker (RCGM) operated between 300 and 600 J, 1.3 kHz main frequency. We used a single-channel streamer with 10 hydrophones. In total, 49 seismic profiles were collected, with a cumulative length of 1000 km approximately. In these seismic profiles we identified and separated the deposits into three main units. Unit (U1) comprises low energy reflectors mainly dipping in southward direction (i.e. toward the coast bounded by the San Sebastian Fault). This unit also includes a number of isolated acoustic anomalies, which we tentatively interpret as coral reefs. Its top is defined as Basal Erosional Discontinuity (BED) onto which Unit 2 (U2) deposits are onlapping. U2 is acoustically well-stratified, with strong reflectors. Gradual variations in thickness and a wavy configuration allow us to interpret U2 as probably Quaternary current-related deposits. Last Unit (U3) was defined on the Venezuela shelf and corresponds to prograding sequences probably related to the terrigenous input of the Tuy River. Impact of eustatic fluctuations on these deposits are discussed. The data were also used to construct a simplified bathymetry of the studied area. The lateral transition from the western Cariaco-Tuy pull-apart basin to the (single) SSF was clearly imaged (mostly folds and gravity faults). The survey also displayed prograding sediments bodies in La Tortuga Shelf

  6. Study of damage mechanism and FLAC3D simulation of the seismic dynamic response of Shiguan gate in Diaoyucheng ruins%钓鱼城遗址始关门破坏机制研究与FLAC3D地震动力响应模拟

    刘积魁; 方云; 刘智; 刘建辉; 王晓东


    The ancient ruins.Shiguan gate attached to rock and soil mass, is a part of rock and soil mass; so geotechnical analysis is used to study of its damage mechanism.In the "5.12" Wenchuan earthquake, local cracking and dislocation phenomena occurred in Shiguan gate of Diaoyucheng ancient battlefield ruins in Hechuan of Chongqing.Geological survey shows that the Shiguan gate is under complicated geological conditions like landslides, cracks etc.,so geological model of Shiguan gate is sampled and the fast Lagrangian analysis of continua in 3D (FLAC3D) is used to make 3D simulation of the seismic dynamic response and analyze damage mechanism of Shiguan gate.Simulation results show that the stress concentration obviously occurs in Shiguan gate and displacements appear obviously under the conditions of seismic waves.The damage of Shiguan gate results from various geological factors."5.12" Wenchuan earthquake is induced factor, geological structure like landslides, cracks etc., is the main reason; the reduction of its own intensity is the intemal reason.The reliable scientific basis of repair and design of Shiguan gate is provided by the the simulation results.It has certain study significance and promotion value.%古遗址赋存于岩土体之中,是岩土体的一部分,故尝试采用岩土工程分析手段对其破坏机制进行研究.在"5.12"汶川地震中,重庆合川钓鱼城古战场遗址的始关门出现了局部开裂、错位等变形破坏现象.地质勘察表明,始关门赋存于滑坡、裂隙等复杂地质环境中.故抽取了始关门的地质模型,采用有限差分软件FLAC3D对其进行了三维地震动力响应模拟,分析其变形破坏机制.结果表明,始关门应力集中明显,并在地震波作用下有明显位移出现.始关门破坏是各种地质因素综合作用的结果."5.12"汶川地震是诱导因素,滑坡、陡崖裂隙等地质结构是主要原因,古城门自身强度减小是发生破坏的内因.模拟结果为始

  7. Interaktiv 3D design

    Villaume, René Domine; Ørstrup, Finn Rude


    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  8. Accretion and Subduction of Oceanic Lithosphere: 2D and 3D Seismic Studies of Off-Axis Magma Lenses at East Pacific Rise 9°37-40'N Area and Downgoing Juan de Fuca Plate at Cascadia Subduction Zone

    Han, Shuoshuo

    Two thirds of the Earth's lithosphere is covered by the ocean. The oceanic lithosphere is formed at mid-ocean ridges, evolves and interacts with the overlying ocean for millions of years, and is eventually consumed at subduction zones. In this thesis, I use 2D and 3D multichannel seismic (MCS) data to investigate the accretionary and hydrothermal process on the ridge flank of the fast-spreading East Pacific Rise (EPR) at 9°37-40'N and the structure of the downgoing Juan de Fuca plate at the Cascadia subduction zone offshore Oregon and Washington. Using 3D multichannel seismic (MCS) data, I image a series of off-axis magma lenses (OAML) in the middle or lower crust, 2-10 km from the ridge axis at EPR 9°37-40'N. The large OAMLs are associated with Moho travel time anomalies and local volcanic edifices above them, indicating off-axis magmatism contributes to crustal accretion though both intrusion and eruption (Chapter 1). To assess the effect of OAMLs on the upper crustal structure, I conduct 2-D travel time tomography on downward continued MCS data along two across-axis lines above a prominent OAML in our study area. I find higher upper crustal velocity in a region ~ 2 km wide above this OAML compared with the surrounding crust. I attribute these local anomalies to enhanced precipitation of alteration minerals in the pore space of upper crust associated with high-temperature off-axis hydrothermal circulation driven by the OAML (Chapter 2). At Cascadia, a young and hot end-member of the global subduction system, the state of hydration of the downgoing Juan de Fuca (JdF) plate is important to a number of subduction processes, yet is poorly known. As local zones of higher porosity and permeability, faults constitute primary conduits for seawater to enter the crust and potentially uppermost mantle. From pre-stack time migrated MCS images, I observe pervasive faulting in the sediment section up to 200 km from the deformation front. Yet faults with large throw and

  9. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis


    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  10. Shaping 3-D boxes

    Stenholt, Rasmus; Madsen, Claus B.


    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  11. 3D Wire 2015

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  12. A High-resolution Seismic Reflection Survey at the Hanford Nuclear Site Using a Land Streamer

    Hyde, E. R.; Speece, M. A.; Link, C. A.; Repasky, T.; Thompson, M.; Miller, S.; Cummins, G.


    From the 1940s through the mid 1990s, radioactively and chemically contaminated effluent waste was released into the ground at the Hanford Nuclear Site. Currently, Hanford is the site of a large-scale and ongoing environmental cleanup effort which includes the remediation of contaminated ground water. Identifying preferential pathways of groundwater contaminant flow is critical for the groundwater cleanup effort. During the summer of 2009, Montana Tech, in collaboration with the Confederated Tribes of the Umatilla Indian Reservation, collected a high resolution shallow seismic survey on the Hanford Central Plateau near the Gable Gap area of the Hanford Nuclear site. The goal of the survey was to demonstrate the feasibility of using a land streamer/gimbaled geophone acquisition approach to image the basalt bedrock topography. The survey objective is to improve the understanding of the subsurface water flow by identifying the topography of the basement basalt and possible erosional channels created during the Missoula flood events. Data was collected for a total of eight 2D lines with a combined length of about 11 km with a coverage area of approximately 6 The profiles were aligned in north-south and east-west intersecting lines with a total of 5 profile intersections. The survey used a 227 kg accelerated weight drop and a 96-channel land streamer. The land streamer used gimbaled geophones with 2 m spacing. Source spacing was also 2 m for a nominal fold of 48. The rapid deployment land streamer, compared to conventional spiked geophones, significantly increased production in this off-road application. Typically, between 45 and 55 stations could be shot per hour in a pull and shoot approach. Deployment of the land streamer required about 45 minutes and about 30 minutes was required to shut down the survey. The survey successfully imaged the top of the basalt and demonstrated that a land streamer can produce quality seismic data in this area. The basalt bedrock

  13. 3D photoacoustic imaging

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.


    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  14. Electrical Resistivity and Seismic Surveys at the Nevada Test Site, Nevada, April 2007

    Seth S. Haines; Bethany L. Burton; Donald S. Sweetkind; Theodore H. Asch


    In April 2007, the USGS collected direct-current (DC) electrical resistivity data and shear- (S) and compressional- (P) wave seismic data to provide new detail of previously mapped, overlapping fault splays at two administrative areas in the Nevada Test Site (NTS). In NTS Area 7, we collected two-dimensional DC resistivity data along a transect crossing the Yucca Fault parallel to, and between, two transects along which resistivity data were collected in a previous study in 2006. In addition, we collected three-dimensional DC resistivity data in a grid that overlies part of the 2007 transect. The DC resistivity data show that the fault has a footwall that is more conductive than the hanging wall and an along-strike progression of the fault in a location where overlapping splays are present. Co-located with the northernmost of the two 2006 DC resistivity transects, we acquired S- and P-wave seismic data for both reflection and refraction processing. The S-wave data are corrupted by large amounts of converted (P-wave) energy likely due to the abundance of fractured caliche in the shallow subsurface. The P-wave data show minimal reflected energy, but they show clear refracted first arrivals. We have inverted these first arrival times to determine P-wave seismic velocity models. The seismic model for the transect in Area 7 shows low velocities extending to the base of the model at the location of the Yucca Fault, as well as low velocities at the eastern end of the transect, in the vicinity of the adjacent crater. These new surveys provide further detail about the geometry of the Yucca Fault in this location where it shows two overlapping splays. We collected P- and S-wave seismic data along a transect in the southern part of NTS Area 2, corresponding with the location of a 2006 DC resistivity transect that targeted a set of small faults identified with field mapping. Again, the S-wave data are difficult to interpret. The P-wave data show clear first arrivals that we

  15. Wide-angle seismic survey in the trench-outer rise region of the central Japan Trench

    Fujie, G.; Kodaira, S.; Iwamaru, H.; Shirai, T.; Dannowski, A.; Thorwart, M.; Grevemeyer, I.; Morgan, J. P.


    Dehydration process within the subducting oceanic plate and expelled water from there affect various subduction-zone processes, including arc volcanism and generation of earthquakes. This implies that the degree of hydration within the incoming oceanic plate just prior to subduction might be a key control factor on the regional variations in subduction zone processes like interplate earthquakes and arc volcanism. Recent advances in seismic structure studies in the trench-outer rise region of the Japan Trench have revealed that seismic velocities within the incoming oceanic plate become lower owing to the plate bending-related faulting, suggesting the hydration of the oceanic plate. If the degree of the oceanic plate hydration is one of key factors controlling the regional variations of the interplate earthquakes, the degree of the oceanic plate hydration just prior to subduction is expected to show the along-trench variation because the interplate seismicity in the forearc region of the Japan Trench show along-trench variations. However, we cannot discuss the along-trench variation of the incoming plate structure because seismic structure studies have been confined only to the northern Japan Trench so far.In 2014 and 2015, JAMSTEC and GEOMAR conducted wide-angle seismic surveys in the trench-outer rise region of the central Japan Trench to reveal the detailed seismic structure of the incoming oceanic plate. The western extension of our survey line corresponds to the epicenter of the 2011 M9 Tohoku earthquakes. We deployed 88 Ocean Bottom Seismometers (OBSs) at intervals of 6 km and shot a tuned air-gun array of R/V Kairei at 200 m spacing. In this presentation, we will show the overview of our seismic survey and present seismic structure models obtained by the data of mainly 2014 seismic survey together with the several OBS data from 2015 survey. The preliminary results show P-wave velocity (Vp) within the oceanic crust and mantle decreases toward the trench axis

  16. Seismic site survey investigations in urban environments: The case of the underground metro project in Copenhagen, Denmark.

    Martínez, K.; Mendoza, J. A.; Colberg-Larsen, J.; Ploug, C.


    Near surface geophysics applications are gaining more widespread use in geotechnical and engineering projects. The development of data acquisition, processing tools and interpretation methods have optimized survey time, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of wide-scale geophysical methods under urban environments continues to face great challenges due to multiple noise sources and obstacles inherent to cities. A seismic pre-investigation was conducted to investigate the feasibility of using seismic methods to obtain information about the subsurface layer locations and media properties in Copenhagen. Such information is needed for hydrological, geotechnical and groundwater modeling related to the Cityringen underground metro project. The pre-investigation objectives were to validate methods in an urban environment and optimize field survey procedures, processing and interpretation methods in urban settings in the event of further seismic investigations. The geological setting at the survey site is characterized by several interlaced layers of clay, till and sand. These layers are found unevenly distributed throughout the city and present varying thickness, overlaying several different unit types of limestone at shallow depths. Specific results objectives were to map the bedrock surface, ascertain a structural geological framework and investigate bedrock media properties relevant to the construction design. The seismic test consisted of a combined seismic reflection and refraction analyses of a profile line conducted along an approximately 1400 m section in the northern part of Copenhagen, along the projected metro city line. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 10 m spacing. Complementarily, six vertical seismic profiles (VSP) were performed at boreholes located along the line. The reflection

  17. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    Vordermark, Dirk [Univ. of Wuerzburg (DE). Dept. of Radiation Oncology] (and others)


    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 {mu}g/l in 3-DC boost patients and 8.1 {mu}g/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles.

  18. Modeling and Accuracy Assessment for 3D-VIRTUAL Reconstruction in Cultural Heritage Using Low-Cost Photogrammetry: Surveying of the "santa MARÍA Azogue" Church's Front

    Robleda Prieto, G.; Pérez Ramos, A.


    Sometimes it could be difficult to represent "on paper" an architectural idea, a solution, a detail or a newly created element, depending on the complexity what it want be conveyed through its graphical representation but it may be even harder to represent the existing reality. (a building, a detail,...), at least with an acceptable degree of definition and accuracy. As a solution to this hypothetical problem, this paper try to show a methodology to collect measure data by combining different methods or techniques, to obtain the characteristic geometry of architectonic elements, especially in those highly decorated and/or complex geometry, as well as to assess the accuracy of the results obtained, but in an accuracy level enough and not very expensive costs. In addition, we can obtain a 3D recovery model that allows us a strong support, beyond point clouds obtained through another more expensive methods as using laser scanner, to obtain orthoimages. This methodology was used in the study case of the 3D-virtual reconstruction of a main medieval church façade because of the geometrical complexity in many elements as the existing main doorway with archivolts and many details, as well as the rose window located above it so it's inaccessible due to the height.

  19. Information system evolution at the French National Network of Seismic Survey (BCSF-RENASS)

    Engels, F.; Grunberg, M.


    The aging information system of the French National Network of Seismic Survey (BCSF-RENASS), located in Strasbourg (EOST), needed to be updated to satisfy new practices from Computer science world. The latter means to evolve our system at different levels : development method, datamining solutions, system administration. The new system had to provide more agility for incoming projects. The main difficulty was to maintain old system and the new one in parallel the time to validate new solutions with a restricted team. Solutions adopted here are coming from standards used by the seismological community and inspired by the state of the art of devops community. The new system is easier to maintain and take advantage of large community to find support. This poster introduces the new system and choosen solutions like Puppet, Fabric, MongoDB and FDSN Webservices.

  20. High resolution, shallow seismic reflection survey of the Pen Branch fault

    Stieve, A.


    The purpose of this project, at the Savannah River River Site (SRS) was to acquire, process, and interpret 28 km (17.4 miles) of high resolution seismic reflection data taken across the trace of the Pen Branch fault and other suspected, intersecting north-south trending faults. The survey was optimized for the upper 300 ft of geologic strata in order to demonstrate the existence of very shallow, flat lying horizons, and to determine the depth of the fault or to sediments deformed by the fault. Field acquisition and processing parameters were selected to define small scale spatial variability and structural features in the vicinity of the Pen Branch fault leading to the definition and the location of the Pen Branch fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. Associated geophysical, borehole, and geologic data were incorporated into the investigation to assist in the determination of optimal parameters and aid in the interpretation.

  1. Historical centers rehabilitation: documentation, survey and communication achieving sustainable development and seismic protection

    Giuseppe Amoruso


    Full Text Available Italian conservation areas are recognized as the result of a generative process that shaped their form and created a complex system of layers and local languages trough centuries. Enhance the role of traditions allows to develop a sustainable built environment, to densify towns, to make strategies for social services and to make an efficient use of conservation areas for commercial purposes. The design coding address integrated actions and the interventions in conservation areas; for this purpose it is necessary to implement a correct workflow: field survey, measured drawings, pattern books, design codes and graphic building regulations. In the contemporary practice the market of sustainability and seismic protection is addressing just technology based solutions forgetting to solve the actual issues of urban design, the social and cultural growth of communities.

  2. Unoriented 3d TFTs

    Bhardwaj, Lakshya


    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  3. The Local Universe: Galaxies in 3D

    Koribalski, B S


    Here I present results from individual galaxy studies and galaxy surveys in the Local Universe with particular emphasis on the spatially resolved properties of neutral hydrogen gas. The 3D nature of the data allows detailed studies of the galaxy morphology and kinematics, their relation to local and global star formation as well as galaxy environments. I use new 3D visualisation tools to present multi-wavelength data, aided by tilted-ring models of the warped galaxy disks. Many of the algorithms and tools currently under development are essential for the exploration of upcoming large survey data, but are also highly beneficial for the analysis of current galaxy surveys.

  4. 利用3S技术及三维激光扫描仪进行耕地损毁勘测%3 S Technology and 3 D Laser Scanner is used to Survey Cultivated Land Damaged



    3S technology is used to find cultivated land damaged,network RTK survey the range and area of cultivated land damaged, GIS extract the land area and grade before cultivated land damaged,and Maptek I-Site8810 3D laser scanner is used to recreate 3D model of cultivated land damaged with network RTK.%利用RS技术发现耕地损毁,网络RTK测量耕地损毁范围及面积,GIS提取耕地被损毁前的分类面积和等别,以及利用网络RTK配合Maptek I-Site8810三维激光扫描仪重构损毁耕地三维模型。

  5. The Application of 3D Laser Scanning in the Survey and Measuring of Guyue Bridge of Song Dynasty in Yiwu City

    Lu, N.; Wang, Q.; Wang, S.; Zhang, R.


    It is believed that folding-arch is the transitional form from beam to curved arch. Guyue Bridge, built in JiaDing 6year (A.D 1213) of Southern Song Dynasty, located in Yiwu City, Zhejiang Province in China, is one of typical objective examples for this transition. It possesses high historical, scientific, artistic, cultural and social values. Facing severe environmental problems and deteriorated heritage situation, our conservation team selected 3D laser scanning as basic recording method, then acquired the precise threedimensional model. Measured the fundamental dimension and components' sizes, we analysed its stable state. Moreover, combined with historic documents, we reasonably speculated and calculated the original sizes and important scales at the building time. These findings have significant research values as well as evidential meanings for future conservation.

  6. Method for Metal Mine Surveying Based on 3D Laser Scanning Technique%基于3D激光扫描的金属矿测量方法研究

    姚吉利; 刘科利; 张磊; 刘守忠


    There are many characteristics in 3D laser technology, such as rapid, non-contact, real-time, dynamic,initiative, high-density, high-precision, digital, automation, and so on, so it can be applied in the surface and underground surveying of open-pit. Based on the data of 3 D laser scanner, a high accuracy 3 D model is set up to provide the information for the mine design, mine production and dynamic data management. In addition ,3D laser scan technology can be used to the underground tunnel survey with tunnel models created rapidly. Its spatial relations among tunnels are obtained through the model, providing the comprehensive and high-precision spatial data for digital mine. Lastly, the method for improving the accuracy and the principle of coordinate correction are presented.%激光扫描技术具有快速性,不接触性,实时、动态、主动性,高密度、高精度,数字化、自动化等特性,正好适用于露天矿的地面和地下测量.用露天矿的激光扫描数据,建立了露天采区三维高精度模型,为矿山设计、矿山生产及数据动态管理提供可靠信息,另外把激光扫描技术用于地下巷道进行测量,迅速建立好巷道模型,直观地获取了各巷道之间的空间关系,为"数字矿山"提供全面、高精度数据.提出了提高坐标纠正精度的方法和月采矿量的测量原理.

  7. Reflection seismic survey across a fault zone in the Leinetal Graben, Germany, using P- and SH-waves

    Musmann, P.; Polom, U.; Buness, H.; Thomas, R.


    Fault systems are considered as a valuable hydro-geothermal reservoir for heat and energy extraction, as permeability may be enhanced compared to the surrounding host rock. Seismic measurements are a well established tool to reveal their structure at depth. Apart from structural parameters like dip, extent and throw, they allow us to derive lithologic parameters, e.g. seismic velocities and impedance. Usually, only compressional waves have been used so far. In the context of the "gebo" Collaborative Research Program, seismic methods are revised to image and characterize geological fault zones in order to minimize the geological and technical risk for geothermal projects. In doing so, we evaluate and develop seismic acquisition, processing and interpretation techniques both for compressional and shear wave surveys to estimate the geothermal potential of fault zones. Here, we present results from high-resolution P- and SH-wave reflection seismic surveys along one and the same profile. They were carried out across the eastern border of the Leinetal Graben, Lower Saxony, Germany. At this survey site, primarily Triassic units crop out that are disrupted by major fault system probably extending down into Permian Zechstein. The seismic P-wave measurements (2.5 m CDP spacing, 20 - 180 Hz sweep sent out by a small vibrator) imaged the structure of the subsurface and its fault inventory with high resolution. Imaging ranges from approximately 50 m (base Keuper) to approximately 1.8 km (within Zechstein) depth. The profiles reveal that the area has undergone multiphase tectonics. This becomes manifest in a complex seismic reflection pattern. In addition the P-wave velocity model shows several features that can be related to folding and faulting. Preliminary results of the SH-wave measurements (0.5 m CDP spacing, 10 - 100 Hz sweep) show that the complex structural geological settings in the subsurface, as imaged by the P-wave survey, can also be imaged by a reflection shear

  8. 3D and beyond

    Fung, Y. C.


    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  9. Assessing risk of baleen whale hearing loss from seismic surveys: The effect of uncertainty and individual variation.

    Gedamke, Jason; Gales, Nick; Frydman, Sascha


    The potential for seismic airgun "shots" to cause acoustic trauma in marine mammals is poorly understood. There are just two empirical measurements of temporary threshold shift (TTS) onset levels from airgun-like sounds in odontocetes. Considering these limited data, a model was developed examining the impact of individual variability and uncertainty on risk assessment of baleen whale TTS from seismic surveys. In each of 100 simulations: 10000 "whales" are assigned TTS onset levels accounting for: inter-individual variation; uncertainty over the population's mean; and uncertainty over weighting of odontocete data to obtain baleen whale onset levels. Randomly distributed whales are exposed to one seismic survey passage with cumulative exposure level calculated. In the base scenario, 29% of whales (5th/95th percentiles of 10%/62%) approached to 1-1.2 km range were exposed to levels sufficient for TTS onset. By comparison, no whales are at risk outside 0.6 km when uncertainty and variability are not considered. Potentially "exposure altering" parameters (movement, avoidance, surfacing, and effective quiet) were also simulated. Until more research refines model inputs, the results suggest a reasonable likelihood that whales at a kilometer or more from seismic surveys could potentially be susceptible to TTS and demonstrate that the large impact uncertainty and variability can have on risk assessment.

  10. Site study plan for EDBH (Engineering Design Boreholes) seismic surveys, Deaf Smith County site, Texas: Revision 1

    Hume, H.


    This site study plan describes seismic reflection surveys to run north-south and east-west across the Deaf Smith County site, and intersecting near the Engineering Design Boreholes (EDBH). Both conventional and shallow high-resolution surveys will be run. The field program has been designed to acquire subsurface geologic and stratigraphic data to address information/data needs resulting from Federal and State regulations and Repository program requirements. The data acquired by the conventional surveys will be common-depth- point, seismic reflection data optimized for reflection events that indicate geologic structure near the repository horizon. The data will also resolve the basement structure and shallow reflection events up to about the top of the evaporite sequence. Field acquisition includes a testing phase to check/select parameters and a production phase. The field data will be subjected immediately to conventional data processing and interpretation to determine if there are any anamolous structural for stratigraphic conditions that could affect the choice of the EDBH sites. After the EDBH's have been drilled and logged, including vertical seismic profiling, the data will be reprocessed and reinterpreted for detailed structural and stratigraphic information to guide shaft development. The shallow high-resulition seismic reflection lines will be run along the same alignments, but the lines will be shorter and limited to immediate vicinity of the EDBH sites. These lines are planned to detect faults or thick channel sands that may be present at the EDBH sites. 23 refs. , 7 figs., 5 tabs.

  11. Computer Modelling of 3D Geological Surface

    Kodge, B G


    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  12. Regional geothermal 3D modelling in Denmark

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.


    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  13. 3D Imaging of Dead Sea Area Using Weighted Multipath Summation: A Case Study

    Shemer Keydar


    Full Text Available The formation of sinkholes along the Dead Sea is caused by the rapid decline of the Dead Sea level, as a possible result of human extensive activity. According to one of the geological models, the sinkholes in several sites are clustered along a narrow coastal strip developing along lineaments representing faults in NNW direction. In order to understand the relationship between a developing sinkhole and its tectonic environment, a high-resolution (HR three-dimensional (3D seismic reflection survey was carried out at the western shoreline of the Dead Sea. A recently developed 3D imaging approach was applied to this 3D dataset. Imaging of subsurface is performed by a spatial summation of seismic waves along time surfaces using recently proposed multipath summation with proper weights. The multipath summation is performed by stacking the target waves along all possible time surfaces having a common apex at the given point. This approach does not require any explicit information on parameters since the involved multipath summation is performed for all possible parameters values within a wide specified range. The results from processed 3D time volume show subhorizontal coherent reflectors at approximate depth of 50–80 m which incline on closer location to the exposed sinkhole and suggest a possible linkage between revealed fault and the sinkholes.

  14. Seismic refraction surveys for coal exploration in the Homehills, Hawkdun and Roxburgh areas of Central Otago

    Broadbent, M.


    Seismic refraction surveys were made during 1979 and 1980 in the Homehills, Hawkdun, and Roxburgh basins formed in the Mesozoic and Paleozoic rocks of Central Otago. They were made to help define the extent of Tertiary coal deposits by determining thicknesses of Cenozoic rocks. The extent of the surveys in the three basins were 12.1, 8.8, and 8.2 line kilometres distributed over 9, 6 and 7 lines respectively. The seismic observations and sonic logs from drill holes were used to derive vertical sections showing distributions of compressional wave velocity with depth. Velocities detected in the Homehills and Hawkdun basins of below 0.5 k/s were usually associated with soil layers, those from 1.0 to 1.5 km/s with Quaternary sediments which are not water saturated, from 1.6 to 1.9 km/s with Tertiary lacustrine or littoral sediments, those from 2.1 to 2.6 km/s with late Tertiary or Quarternary gravels, and those exceedings 3.2 km/s with Mesozoic basement rocks. No overall one-to-one relationship between velocities detected in the range 2.6 to 3.2 km/s and rock types was evident. Velocities encountered at Roxburgh included those between 0.5 and 1.5 km/s which were associated with non-saturated Cenozoic sediments, those between 1.5 and 2.3 km/s representing saturated Cenozoic sediments, those over 3.0 km/s representing Paleozoic schist, and those between 2.3 and 3.0 km/s for which a clear relationship with rock type was not established. Survey results indicate that most of the western boundary of the Homehills basin is unlikely to be associated with a major fault, but the north-east boundary of the basin is associated with a reverse fault having a throw of between 160 and 170 metres. A fault of throw exceeding 300 m has been detected separating the Cenozoic filled Homehills basin, with its base at about 500 m above sea level, from the much deeper Ida Valley basin. The maximum thickness of Cenozoic sediments in the Homehills basin is about 250 m. (16 refs.)

  15. 3D Surgical Simulation

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael


    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308


    Ms. Swapnali R. Ghadge


    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  17. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    Lanusse, F.; Rassat, A.; Starck, J.-L.


    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  18. MT3D-USGS version 1: A U.S. Geological Survey release of MT3DMS updated with new and expanded transport capabilities for use with MODFLOW

    Bedekar, Vivek; Morway, Eric D.; Langevin, Christian D.; Tonkin, Matthew J.


    MT3D-USGS, a U.S. Geological Survey updated release of the groundwater solute transport code MT3DMS, includes new transport modeling capabilities to accommodate flow terms calculated by MODFLOW packages that were previously unsupported by MT3DMS and to provide greater flexibility in the simulation of solute transport and reactive solute transport. Unsaturated-zone transport and transport within streams and lakes, including solute exchange with connected groundwater, are among the new capabilities included in the MT3D-USGS code. MT3D-USGS also includes the capability to route a solute through dry cells that may occur in the Newton-Raphson formulation of MODFLOW (that is, MODFLOW-NWT). New chemical reaction Package options include the ability to simulate inter-species reactions and parent-daughter chain reactions. A new pump-and-treat recirculation package enables the simulation of dynamic recirculation with or without treatment for combinations of wells that are represented in the flow model, mimicking the above-ground treatment of extracted water. A reformulation of the treatment of transient mass storage improves conservation of mass and yields solutions for better agreement with analytical benchmarks. Several additional features of MT3D-USGS are (1) the separate specification of the partitioning coefficient (Kd) within mobile and immobile domains; (2) the capability to assign prescribed concentrations to the top-most active layer; (3) the change in mass storage owing to the change in water volume now appears as its own budget item in the global mass balance summary; (4) the ability to ignore cross-dispersion terms; (5) the definition of Hydrocarbon Spill-Source Package (HSS) mass loading zones using regular and irregular polygons, in addition to the currently supported circular zones; and (6) the ability to specify an absolute minimum thickness rather than the default percent minimum thickness in dry-cell circumstances.Benchmark problems that implement the new

  19. A Novel 3D Viscoelastic Acoustic Wave Equation Based Update Method for Reservoir History Matching

    Katterbauer, Klemens


    The oil and gas industry has been revolutionized within the last decade, with horizontal drilling and hydraulic fracturing enabling the extraction of huge amounts of shale gas in areas previously considered impossible and the recovering of hydrocarbons in harsh environments like the arctic or in previously unimaginable depths like the off-shore exploration in the South China sea and Gulf of Mexico. With the development of 4D seismic, engineers and scientists have been enabled to map the evolution of fluid fronts within the reservoir and determine the displacement caused by the injected fluids. This in turn has led to enhanced production strategies, cost reduction and increased profits. Conventional approaches to incorporate seismic data into the history matching process have been to invert these data for constraints that are subsequently employed in the history matching process. This approach makes the incorporation computationally expensive and requires a lot of manual processing for obtaining the correct interpretation due to the potential artifacts that are generated by the generally ill-conditioned inversion problems. I have presented here a novel approach via including the time-lapse cross-well seismic survey data directly into the history matching process. The generated time-lapse seismic data are obtained from the full wave 3D viscoelastic acoustic wave equation. Furthermore an extensive analysis has been performed showing the robustness of the method and enhanced forecastability of the critical reservoir parameters, reducing uncertainties and exhibiting the benefits of a full wave 3D seismic approach. Finally, the improved performance has been statistically confirmed. The improvements illustrate the significant improvements in forecasting that are obtained via readily available seismic data without the need for inversion. This further optimizes oil production in addition to increasing return-on-investment on oil & gas field development projects, especially

  20. Application of 3D Visualization Remote Sensing Interpretation Technology in Geological Survey of Xiang- Pu Railway Long Tunnels%长大隧道三维可视化遥感地质解译技术应用



    研究目的:向莆铁路长大隧道众多,在地面地质调查中存在地形高差大、地质构造复杂、植被发育、基岩露头少、勘察周期短、大面积地质测绘难等问题,难以快速准确地获取大比例尺区域工程地质信息.研究结论:基于研究多源地质资料信息化集成、三维可视化遥感影像建模和三维可视化遥感解译方法,建立了向莆铁路戴云山一高盖山段的线路、地貌、地质等三维场景,进行地貌特征、断裂构造和不良地质的定量解译.解译成果可有效指导地质调查,减少外业工作量,保证长大隧道大比例尺地质调查精度.%Research purposes: Ground geological survey of Xiang - Pu Railway long tunnels face the problems of terrain level difference large, geological structure complexity, vegetation thick, bedrock outcrops lack, surveying cycle short, large area geological surveying and mapping difficulty, and it is difficult to quickly and accurately for large scale region engineering geological information.Research conclusions:Based on the study of muti -geological information integration, 3D visualization remote sensing image modeling and 3D visualization remote sensing image interpretation method to establish route, physiognomy and geology 3D scene of DaiYun -shan to Gao Gai -shan Zone for qualitative interpretation of the morphological characteristics, fault structures and bad geology. Interpretation results can effectively guide geological survey, reduce the workload, ensure tunnel large scale geological survey precision.

  1. Tomographic inversion of near-surface Q factor by combining surface and cross-hole seismic surveys

    Li, Guo-Fa; Zheng, Hao; Zhu, Wen-Liang; Wang, Ming-Chao; Zhai, Tong-Li


    The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer. We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation. In this study, we drilled number of receiver holes around the source hole, each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys. We also propose a novel tomographic inversion of the Q factor without the effect of the source signature, and examine its stability and reliability using synthetic data. We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield. The results show that seismic absorption in the near-surface layer is much greater than that in the subsurface strata. Thus, it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption. In addition, we derive different Q factors from two frequency bands, which can be treated, to some extent, as evidence of a frequency-dependent Q.

  2. High-resolution gravity and seismic-refraction surveys of the Smoke Tree Wash area, Joshua Tree National Park, California

    Langenheim, Victoria E.; Rymer, Michael J.; Catchings, Rufus D.; Goldman, Mark R.; Watt, Janet T.; Powell, Robert E.; Matti, Jonathan C.


    We describe high-resolution gravity and seismic refraction surveys acquired to determine the thickness of valley-fill deposits and to delineate geologic structures that might influence groundwater flow beneath the Smoke Tree Wash area in Joshua Tree National Park. These surveys identified a sedimentary basin that is fault-controlled. A profile across the Smoke Tree Wash fault zone reveals low gravity values and seismic velocities that coincide with a mapped strand of the Smoke Tree Wash fault. Modeling of the gravity data reveals a basin about 2–2.5 km long and 1 km wide that is roughly centered on this mapped strand, and bounded by inferred faults. According to the gravity model the deepest part of the basin is about 270 m, but this area coincides with low velocities that are not characteristic of typical basement complex rocks. Most likely, the density contrast assumed in the inversion is too high or the uncharacteristically low velocities represent highly fractured or weathered basement rocks, or both. A longer seismic profile extending onto basement outcrops would help differentiate which scenario is more accurate. The seismic velocities also determine the depth to water table along the profile to be about 40–60 m, consistent with water levels measured in water wells near the northern end of the profile.


    Carlos Torres-Verdin; Mrinal K. Sen


    The present report summarizes the work carried out between September 30, 2002 and August 30, 2003 under DOE research contract No. DE-FC26-00BC15305. During the third year of work for this project we focused primarily on improving the efficiency of inversion algorithms and on developing algorithms for direct estimation of petrophysical parameters. The full waveform inversion algorithm for elastic property estimation was tested rigorously on a personal computer cluster. For sixteen nodes on the cluster the parallel algorithm was found to be scalable with a near linear speedup. This enabled us to invert a 2D seismic line in less than five hours of CPU time. We were invited to write a paper on our results that was subsequently accepted for publication. We also carried out a rigorous study to examine the sensitivity and resolution of seismic data to petrophysical parameters. In other words, we developed a full waveform inversion algorithm that estimates petrophysical parameters such as porosity and saturation from pre-stack seismic waveform data. First we used a modified Biot-Gassmann equation to relate petrophysical parameters to elastic parameters. The transformation was validated with a suite of well logs acquired in the deepwater Gulf of Mexico. As a part of this study, we carried out a sensitivity analysis and found that the porosity is very well resolved while the fluid saturation remains insensitive to seismic wave amplitudes. Finally we conducted a joint inversion of pre-stack seismic waveform and production history data. To overcome the computational difficulties we used a simpler waveform modeling algorithm together with an efficient subspace approach. The algorithm was tested on a realistic synthetic data set. We observed that the use of pre-stack seismic data helps tremendously to improve horizontal resolution of porosity maps. Finally, we submitted four publications to refereed technical journals, two refereed extended abstracts to technical conferences

  4. Crustal transects across the Rif domains in North Morocco, from the RIFSIS seismic survey

    Gil de la Iglesia, A.; Gallart, J.; Diaz Cusi, J.; Carbonell, R.; Levander, A.; Palomeras, I.; Harnafi, M.


    In October 2011, two 300 km-long NS and EW wide-angle seismic transects were carried out in N Morocco, across main domains of Rif cordillera, in a joint effort from Spanish-Moroccan-USA scientists. Main goal of the RIFSIS survey was to achieve, for the first time, detailed crustal velocity-depth models on the southern flank of the Gibraltar Arc System. This asymmetric, arcuated system surrounding the Alboran Sea and composed by the Betic ranges on the N and the Rif cordillera on the S has undergone a complex tectonic evolution since Miocene times. Different types of evolutionary models have been proposed in the last decades, poorly constrained by the available geophysical results, specially on the southern flank, where crustal depths around 30 km have been proposed from inversion modeling of potential field datasets, in contrast with greater values up to 40 km depths and significant lateral variations from RF analysis. In the RIFSIS survey, almost 1000 Texans stations were deployed along the two profiles and 3 shots of 1 T were detonated along each one. The NS transect was extended northwards in Spain by a 75 km long segment in the Betics, and southwards it connects with an analogous profile recorded in 2010 across the Atlas Mountains (SIMA project), hence providing a 700 km long continuous seismic transect sampling the different tectonic domains. The high density of recording stations allows building up of vertical seismic sections focused on the Moho PmP reflections that reveal important variations along this transect. An extensive analysis based on travel time forward modeling has also been performed and main results are presented here. The interpreted crustal structure differentiates two sedimentary layers on top of the basement, inferred from the observed first arrivals at short offsets, followed by upper, mid and lower crustal levels constrained by reflected phases visible in the record sections. The bottom of the crust is well defined from PmP phases

  5. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio


    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  6. 3D printing for dummies

    Hausman, Kalani Kirk


    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for


    M. Skamantzari


    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  8. Intraoral 3D scanner

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther


    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  9. Martian terrain - 3D


    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. Seismic Imaging in Three Dimensions on the East Pacific Rise

    Mutter, John C.; Carbotte, Suzanne; Nedimovic, Mladen; Canales, Juan Pablo; Carton, Hélène


    The U.S. R/V Marcus G. Langseth (operated by the Lamont-Doherty Earth Observatory of Columbia University) sailed in late June 2008 from Manzanillo, Mexico, to the 9°50'N area of the East Pacific Rise (EPR), a site of vigorous hydrothermal venting (Figure 1). The cruise, MGL0812, the first research deployment of the Langseth's advanced three-dimensional (3-D) seismic imaging capability, had as its objective obtaining high-resolution images of crustal structure beneath the ridge crest and adjacent regions. The benefits of 3-D seismic imaging had been outlined in a U.S. National Science Foundation (NSF)-sponsored workshop in 2005 [Mutter and Moore, 2005]. Short courses on techniques of 3-D survey planning were given at AGU Fall Meetings in 2007 and 2008. This brief report describes experiences during the cruise, with the objective of aiding future researchers in planning cruises using Langseth's unique imaging capability for 3-D.

  11. Geothermal Potential of the Siǧacik Gulf (Seferihisar) and Preliminary investigations with Seismic and Magnetic Surveys

    Bakak, Özde; Özel, Erdeniz; Ergün, Mustafa


    The Aegean region, including both W. Turkey and Central Greece, is one of the world's most rapidly-deforming regions of continental crust and has a seismic rate is exceptional on a world scale. SW Turkey is one of the most rapidly extending regions in the world where the extension appears to have commenced in middle or late Miocene time. Paleomagnetic work in W Turkey and Aegean islands has revealed the horizontal rotation of some crustal blocks. In W Turkey clockwise rotation on Karaburun peninsula west of Izmir by 44° in the last few Ma is detected, and anticlockwise rotation of 37° for the Seferihisar region. The area of W Turkey and the Aegean islands has very strong geothermal gradient in the world scale. Sığacık Gulf is located on south of Karaburun Peninsula, and it is restricted by two important ridges as Karaburun and Seferihisar Ridges. Recent geological and geophysical studies suggested that this area is both E-W trending normal and NE-SW trending strike-slip faulting caused deformation. The Seferihisar earthquake series were occurred here during 17-20 October 2005. For investigation of geothermal potential and hot water outlets on the seafloor, shallow seismic and magnetic surveys are preferred, which were carried out onboard Dokuz Eylül-1 vessel belongs to Dokuz Eylül University, in 2011. Approximately 250km seismic reflection data was collected along 27 lines. During seismic method used Sparker system which has 1 channel and 12 hydrophone with 17 m long streamer, as a seismic source used SIG Seismic Marine ELC 80 (4 kV & 3.2 KV DC). Seismic data processing (band pass filter, bottom mute, top mute, true amplitude recovery, time migration) was made using Promax program in the Seismic Laboratory in the Institute of Marine Science and Technology. The basement topography map was prepared using Kingdom Suite program drawing seabed line on these sections. Sea floor topography changes between 30-120 m, and this increases towards Ikaria Basin

  12. High resolution 3D nonlinear integrated inversion

    Li Yong; Wang Xuben; Li Zhirong; Li Qiong; Li Zhengwen


    The high resolution 3D nonlinear integrated inversion method is based on nonlinear theory. Under layer control, the log data from several wells (or all wells) in the study area and seismic trace data adjacent to the wells are input to a network with multiple inputs and outputs and are integratedly trained to obtain an adaptive weight function of the entire study area. Integrated nonlinear mapping relationships are built and updated by the lateral and vertical geologic variations of the reservoirs. Therefore, the inversion process and its inversion results can be constrained and controlled and a stable seismic inversion section with high resolution with velocity inversion, impedance inversion, and density inversion sections, can be gained. Good geologic effects have been obtained in model computation tests and real data processing, which verified that this method has high precision, good practicality, and can be used for quantitative reservoir analysis.

  13. Application of 3D Laser Scanner in Road Final Survey and Precisicion Analysis%三维激光扫描仪在道路竣工测量中的应用



    The three-dimensional laser scanner in road final survey application compared with the conventional mode of operation greatly improves the operation efficiency, reduce the amount and intensity of labor and industry. Due to the three-dimensional laser scanner can quickly collect a large amount of point cloud data, virtual reproduction of the surveyed area terrain, compared with the traditional operation method, it has incomparable advantages. It briefly introduces the working principle of 3D laser scanning technology, introduces in detail the 3D laser scanning technology in road final survey in indoor and field work method, and the testing of the accuracy, of three laser scanning technology in he related engineering application provides a very good reference.%三维激光扫描仪在道路竣工测量中的应用相对于常规作业方式极大地提高了作业效率,降低了外业劳动量和劳动强度。由于三维激光扫描仪能够迅速采集大量的点云数据,实景再现了测区的地形地势,相对于传统的作业方法具有无法比拟的优势。全文概略介绍了三维激光扫描技术的工作原理,详细介绍了三维激光扫描技术在道路竣工测量中的内外业作业方法,同时进行了多方面的精度检验,为三维激光扫描技术在其他相关工程中应用的提供了很好的借鉴作用。

  14. 3D Printing an Octohedron

    Aboufadel, Edward F.


    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  15. Salient Local 3D Features for 3D Shape Retrieval

    Godil, Afzal


    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  16. Correction of OBS Position and Recent Advances of 3D Seismic Exploration in the Central Sub-Basin of South China Sea%南海中央次海盆OBS位置校正及三维地震探测新进展

    张莉; 赵明辉; 王建; 贺恩远; 敖威; 丘学林; 徐辉龙; 卫小冬; 张佳政


    南海中央次海盆首次开展的三维海底地震仪(ocean bottom seismometer,OBS)探测试验,对于全面认识南海扩张脊处速度展布特征及海底扩张历史有着重要意义.海底地震仪的位置是研究三维地震结构的关键参数之一,高精度的三维OBS数据处理,决定着后期地震结构反演模型的分辨率与准确性.利用直达水波走时信息,综合最小二乘法反演原理,并采用蒙特卡罗法模拟OBS降落海底的过程,完成了南海中央次海盆试验区39台OBS数据格式转换与位置校正工作;同时探讨了蒙特卡罗法应用于位置校正的精度问题.处理后OBS综合记录剖面中展示了多组清晰可靠、来自珍贝-黄岩火山链下深部结构中的P波震相,如Pg、PmP和Pn震相,为下一步南海中央次海盆的三维层析成像奠定了坚实数据基础.%A three-dimensional (3D) Ocean Bottom Seismometer (OBS) seismic exploration is implemented for the first time in the central sub-basin of South China Sea (SCS). The velocity distribution in 3D high spatial variability is significant to understand the history of expansion and evolution of SCS. However, high-precision 3D data processing determines the resolution and accuracy for the further seismic structure, where OBS position is one of the key parameters in seismic structural study. We use the travel time data of direct water waves to simulate the process of OBS landing on seafloor employing the least squares method and Monte Carlo method. Finally the corrections of OBS positions have been achieved for a total of 39 OBSs in the central sub-basin of SCS experiment. Meanwhile the accuracy of Monte Carlo method for relocation has been discussed. A few clear and reliable P-wave seismic phases, such as Pg, PmP and Pn, were discovered in the OBS seismic record sections, which come from deep crust or upper mantle beneath the Zhenbei-Huangyan volcanic chains. These abundant seismic phases provide a strong data

  17. 牙列缺损模型三维数字化观测线的确立%The identification of electronic surveying lines on 3-D digital models of dentition defects

    吴琳; 吕培军; 王勇; 艾红军; 韩军


    Objectives To develop a mathematical algorithm and a software package for the process of electronically surveying a scanned point cloud cast. To provide a principal premise to the subsequent computer aided design and computer aided manufacture (CAD/CAM) of removable partial denture framework, and to provide a method to improve quality control in the dental laboratory. Methods Point cloud data of a partially edentulous cast, a mandibular Kennedy Class Ⅱ Modification 2 arch, was captured using an optical scanning system with projective grating and high-resolution digital camera. Using commercial CAD/CAM software system (Geomagic Studio 6), this point cloud data was processed and the 3-D digital model of partially edentulous cast was reconstructed. From a suggested surveying angle the contour points of height were identified, and then the digital surveying lines were traced using Projection and Contour Extraction software package. The depth of undercut was measured and defined to determine the clasp termination of retainer. Results Electronic surveying line of 3-D digital dentition defect model was achieved. Digital surveying line defined the cast into undercut and non-undercut areas. Different virtualized paths of insertion could be automatically suggested when the cast was surveyed and analyzed from different angles. The depth of undercut was automatically measured and the retentive clasp termination was determined. Conclusions The mathematical algorithm and the software package in this study can be used to survey and analyze 3-D digital models of dentition defects, and to identify an electronic surveying line.%目的 探索一种基于三维点云模型获取三维数字化观测线的计算方法,开发自动提取三维数字化观测线的软件,为提高模型观测的客观性和精确度、实现应用计算机辅助设计(CAD)与计算机辅助制作(CAM)技术完成可摘局部义齿修复奠定基础.方法以Kennedy第二类第二亚类牙列缺损为

  18. Faulting mechanism of the Campania–Lucania 1980 earthquake, Italy, from high-resolution, 3D velocity structure, aftershock relocation, fault-plane solutions, and post-seismic deformation modeling

    Roberto Scarpa


    Full Text Available

    This study performs a detailed reconstruction of the rupture mechanism of the 1980 Campania–Lucania (southern Italy earthquake. This is achieved by relocation of the main event through computation of fault-plane solutions of the aftershocks, P-wave velocity inversion, and analysis of post-seismic ground deformation, which provide an overall picture of the faulting mechanism. All of these data are in favor of a complex rupture mechanism, as already identified by many studies, which consists of three separate events. The present study defines a graben-like rupture, with the first event rupturing a (>20-km-long segment of a large, high-angle, NE-dipping, SE-NW-striking, normal fault. The two successive ruptures occurred separately, the first along the southern segment, and the second along the northern segment, of a complementary SW-dipping, normal fault. This mechanism is well evidenced by the revised location of the hypocenter of the main event, and the location of the aftershocks and their fault-plane solutions, as well as by the underlying three-dimensional P-wave velocity structure. The model proposed by Amoruso et al. [2005a] that was based on the inversion of co-seismic vertical displacement data is confirmed by the present analyses, as it satisfies all of the available experimental observations, and better constrains the location and fault-plane solutions of the aftershocks, the velocity discontinuities, and the rupture observations at the surface. This conclusion is also supported by analyses of the post-seismic data.

  19. Evidencing a prominent Moho topography beneath the Iberian-Western Mediterranean Region, compiled from controlled-source and natural seismic surveys

    Diaz, Jordi; Gallart, Josep; Carbonell, Ramon


    arising from more recent deployments. We have now included also the sparse results in the region previously published, with the aim of checking the consistency of the results, hence giving more strength to the retained features. Combining the Moho depth values coming from controlled source and natural seismicity experiments has finally allowed us to build up a high quality grid of the region at crustal scale, which is completed in the non-sampled areas by the wide-scale CRUST1.0 model. The final picture evidences the geodynamic diversity of the area, including crustal imbrication in the Pyrenean range, a large and relatively undisturbed Variscan Massif in the center of Iberia and a probable delamination process beneath the Gibraltar Arc. Crustal thicknesses range from values around 15 km in continental margins (Cantabrian margin and Valencia Trough) to depths exceeding 50 km beneath the Pyrenees and the Rif Cordillera. A new 3D model of those variations is presented here to illustrate and summarize such large variations

  20. Surveying Topographic Map Quickly Based on 3D Laser Scanner in Hilly Region%基于地面三维激光扫描仪的丘陵地区地形快速测量

    李婷峰; 杨润萍


    以 Riegl VZ -400地面三维激光扫描仪对丘陵地区地形测绘为例,探讨了此技术应用于地形测绘的方法及作业流程,最后通过实测的地形数据,分析了地面激光扫描仪在地形测绘应用中的可行性及有待于解决的一些问题。%By means of the application and practice of Riegl VZ-400 on the project of topographic surveying in the hilly region,the paper discusses the methods and processes for this technique used in topographic surveying.Through the measured terrain data,the application of the ground 3D laser scanner on topographic surveying is feasible and some of the issues to be resolved are pointed out in the end.

  1. Assessing the deep drilling potential of Lago de Tota, Colombia, with a seismic survey

    Bird, B. W.; Wattrus, N. J.; Fonseca, H.; Velasco, F.; Escobar, J.


    Reconciling orbital-scale patterns of inter-hemispheric South American climate during the Quaternary requires continuous, high-resolution paleoclimate records that span multiple glacial cycles from both hemispheres. Southern Andean Quaternary climates are represented by multi-proxy results from Lake Titicaca (Peru-Bolivia) spanning the last 400 ka and by pending results from the Lago Junin Drilling Project (Peru). Although Northern Andean sediment records spanning the last few million years have been retrieved from the Bogota and Fúquene Basins in the Eastern Cordillera of the Colombian Andes, climatic reconstructions based on these cores have thus far been limited to pollen-based investigations. When viewed together with the Southern Hemisphere results, these records suggest an anti-phased hemispheric climatic response during glacial cycles. In order to better assess orbital-scale climate responses, however, independent temperature and hydroclimate proxies from the Northern Hemisphere are needed in addition to vegetation histories. As part of this objective, an effort is underway to develop a paleoclimate record from Lago de Tota (3030 m asl), the largest lake in Colombia and the third largest lake in the Andes. One of 17 highland tectonic basins in Eastern Cordillera, Lago de Tota formed during Tertiary uplift that deformed pre-foreland megasequences, synrift and back-arc megasequences. The precise age and thickness of sediments in the Lago de Tota basin has not previously been established. Here, we present results from a recent single-channel seismic reflection survey collected with a small (5 cubic inch) air gun and high-resolution CHIRP sub-bottom data. With these data, we examine the depositional history and sequence stratigraphy of Lago de Tota and assess its potential as a deep drilling target.

  2. Accelerating 3D Staggered-grid Finite-difference Seismic Wave Modeling on GPU cluster%三维交错网格有限差分地震波模拟的GPU集群实现

    龙桂华; 赵宇波; 李小凡; 高琴; 王周


    有限差分实现简单、速度快,作为地震波场模拟一种有效数值方法,被广泛用于正演计算密集的波形反演和逆时偏移中.三维地震波正演模拟计算量大,一直以来制约着三维叠前逆时偏移和反演的工业化应用,GPU通用计算技术的产生及其内在的数据并行性有望改变这一现状.本文通过分析三维交错网格有限差分方法在GPU上的实施,利用片内共享存储器实现了三维地震波数值模拟的高效算法,取得了较单核CPU快79x~108x的加速比;通过区域分解技术将单GPU上不能计算的地质体模型沿Z轴方向进行粗粒度分解,采用消息传递接口交换边界数据,运用MPI+CUDA的方式实现了大尺度三维地震波场模拟,并着重分析了影响GPU并行计算效率的一些关键因素.大尺度三维地震波场模拟的加速实现,为促进叠前逆时偏移和波形反演技术的工业化转化提供了可能,因此具有重要的研究意义.%As an efficient numerical method for seismic modeling, finite difference has been widely used in computation-intensive waveform inversion and reverse-time migration. Although simple and fast, it is still hard to alleviate giant computation cost in three-dimensional seismic modeling that greatly restricts the industrial application of pre-stack reverse-time migration and inversion. The GPU general-purpose computation technology that is well known for its inherent data parallelism is expected to break through this limitation and makes large-scale three-dimensional reverse-time migration and inversion possible in application. In this paper, we present a method to configure the discrete grids on GPU thread blocks that optimally maps the global memory address on global video memory into inner shared memory to achieve maximum efficiency. The tests applied in different scale models show that we can achieve 79x~108x speedup ratio when compared to traditional single-core CPU. By virtue of domain

  3. 五号桩地区滩浅海高精度三维地震采集技术%3D high-precision seismic acquisition techniques in Wuhaozhuang beach and shallow sea area

    邸志欣; 丁伟; 吕公河; 刘怀山; 段卫星; 刘斌


    Wuhaozhuang area is the key and old oil area of Shengli Oilfield for oil-gas exploration in beach and shallow sea. It has great potential on increase in oil reserve and production, but the energy in middle-deep layer of the existing seismic data is weak, and its signal-to-noise ratio is low, so it is hard to meet the requirements for further detailed structure interpretation and reservoir description. Aimed at the characteristics and difficulties of the complex surface and underground conditions, based on complex structure modeling and prestack imaging result analysis, we designed and proved high-precision geometries for seismic acquisition suitable for the beach and shallow sea in Wuhaozhuang area, which ensured seamless data acquisition in the land-beach-shallow-sea area. By studying 'high-efficient dynamite source and using the shooting techniques based on near-surface lithology layering and modeling, the shooting effect of intertidal zone was improved. By studying and testing air gun array parameters, we optimized airgun array mode and shooting depth with good wavelet characteristics and strong energy. The platelike long-tail cone geophone coupler was adopted to improve the seismic wave receiving effect in intertidal zone as well. Besides, the repositioning technology and counter measurements were utilized to improve the positioning accuracy of underwater hydrophone. By jointly using all the techniques and methods, we achieved high-quality seismic data and obvious geological effect in Wuhaozhuang area.%五号桩地区是胜利油田滩浅海油气勘探的重点老区,增储上产的潜力巨大,但以往地震资料中深层能量弱,信噪比较低,无法满足进一步精细构造解释和油藏描述要求.针对该区复杂的地表和地下特点及难点,基于复杂构造模型正演和叠前成像效果分析,设计论证了适合于该区滩浅海高精度地震采集的观测系统形式,确保了全区陆-滩-海资料的无缝连接采集;通过

  4. Seismic structure of the main geological provinces off the SW Iberian margin: first results from the NEAREST-SEIS wide-angle seismic survey

    Sallarès, Valentí; Martínez-Loriente, Sara; Gailler, Audrey; Bartolomé, Rafael; Gutscher, Marc-André; Graindorge, David; Lia Grácia, Eulà; Díaz, Jordi


    The region offshore the SW Iberian margin hosts the present-day NW-SE plate convergence between the European and African Plates at a rate of 4.5 mm/yr, fact that causes continuous seismic activity of moderate magnitude. In autumn 2008 a Spanish-French team carried out a refraction and wide-angle reflection seismic survey in the area (NEAREST-SEIS cruise), in the framework of the EU, FP6-funded NEAREST project. During the survey two long seismic profiles were acquired using a pool of 36 Ocean Bottom Seismometers (OBS), with the objectives of providing information about the geometry of the crust-mantle boundary and the physical properties of the crust, revealing the deep geometry of the main fault interfaces, and identifying the nature of the basement and the limits of the different geological provinces in the region. A total of 30 OBS were deployed along profile P1, which is 356 km long and trends NW-SE from the Tagus abyssal plain (TAP), crossing the Gorringe bank (GB), the Horseshoe abyssal plain (HAP) and the Coral Patch Ridge (CPR), up to the thrust-and-fold belt of the Seine abyssal plain (SAP). The acquired data were modeled by joint refraction and reflection travel time inversion, following a layer-stripping strategy. The inverted model show four well-differentiated domains in terms of its seismic structure: In the TAP a 3-4 km-thick, low velocity sedimentary layer covers the basement, which shows a remarkably high velocity (>7 km/s), similar to that of the basement outcropping in the Gorringe bank. In the HAP the sedimentary cover is thicker, showing an upper unit with low velocity corresponding to the Horseshoe gravitational unit, on top of a higher velocity lower unit, which may represent the highly consolidated Mesozoic sedimentary sequence. The thickness of the two units together exceeds 5 km. The basement shows the same velocity distribution as in TAP and GB, suggesting a common nature and origin. According to its seismic structure, and considering that

  5. Tracking earthquake source evolution in 3-D

    Kennett, B. L. N.; Gorbatov, A.; Spiliopoulos, S.


    Starting from the hypocentre, the point of initiation of seismic energy, we seek to estimate the subsequent trajectory of the points of emission of high-frequency energy in 3-D, which we term the `evocentres'. We track these evocentres as a function of time by energy stacking for putative points on a 3-D grid around the hypocentre that is expanded as time progresses, selecting the location of maximum energy release as a function of time. The spatial resolution in the neighbourhood of a target point can be simply estimated by spatial mapping using the properties of isochrons from the stations. The mapping of a seismogram segment to space is by inverse slowness, and thus more distant stations have a broader spatial contribution. As in hypocentral estimation, the inclusion of a wide azimuthal distribution of stations significantly enhances 3-D capability. We illustrate this approach to tracking source evolution in 3-D by considering two major earthquakes, the 2007 Mw 8.1 Solomons islands event that ruptured across a plate boundary and the 2013 Mw 8.3 event 610 km beneath the Sea of Okhotsk. In each case we are able to provide estimates of the evolution of high-frequency energy that tally well with alternative schemes, but also to provide information on the 3-D characteristics that is not available from backprojection from distant networks. We are able to demonstrate that the major characteristics of event rupture can be captured using just a few azimuthally distributed stations, which opens the opportunity for the approach to be used in a rapid mode immediately after a major event to provide guidance for, for example tsunami warning for megathrust events.

  6. The Application of 3-D Visible Technology to Reservoir Management

    Yu Long; LIU Tao


    The paper deals with the application of 3 -D visible technology to reservoir management. Making use of this method for expanding - spread data point in reservoir management, can discard the false and retain the true during data recording. As a result, The quality of data recording is ensured. In reservoir description, the reservoir characteristics, such as space distribution,physical change and fluid distribution may be identified by restoring palaeostructures, building - up 3-D facics tract model and 3-D fracture system model. Seismic interpretation, geologic modeling and numerical simulation are well integrated so that they can be promote reservoir performance management to develop into the intensive management pattern.

  7. 3D Spectroscopy in Astronomy

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco


    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  8. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    Telea, Alexandru; Wijk, Jarke J. van


    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  9. A Hybrid 3D Indoor Space Model

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel


    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  10. A Hybrid 3D Indoor Space Model

    A. Jamali


    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  11. Interactive 3D multimedia content

    Cellary, Wojciech


    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  12. A 3-D Contextual Classifier

    Larsen, Rasmus


    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  13. 3D Bayesian contextual classifiers

    Larsen, Rasmus


    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  14. 3-D printers for libraries

    Griffey, Jason


    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  15. 3D for Graphic Designers

    Connell, Ellery


    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  16. The ancient harbour system of Terracina (Latium, Italy) obtained by gravity and seismic surveys.

    di Nezza, Maria; di Filippo, Michele


    Historical research has shown that Terracina (Latina, Latium) played a fundamental role in the maritime and land traffic since before the foundation of the colony. The settlement was established where the organized system of maritime, land, coastal, and fluvial transport had the most ideal conditions to constitute an important commercial crossroads, apparently since the beginning of recorded history. In order to reconstruction the buried archaeological structures attributed to the ancient Roman port, traditionally attributed to Traiano, in the current area of the harbour of Terracina, it was carried out a gravity survey, more than 380 gravity stations. The gravity method enables to recognize the cavity and the structures of the buildings underground through the results of variations density in the subsoil. Seismic tomography treats the problem of identifying a buried structure as a wave propagation process by inverting the linearized wave equation to compute the spatial distribution of the slowness of the velocity. The purpose of our tomographic study is to further test the method and to guide archaeologists in their future excavations by locating and identifying buried structures. In the residual gravity anomaly map a series of positive anomalies are visible which confirm the round structures and the pier of the buried foundations of the Imperial harbour. Unfortunately, little remains of the functioning facilities of the harbour's activities. The modern construction of the harbour, in fact, has to be developed around the new inhabitable commercial area, know today as Terracina Bassa or Borgo alla Marina. It had to be developed with a modern infrastructure of a harbor area, as in the construction of the rooms for storage of goods, warehouses, as well as for the thermal baths, hotels and amphitheatre. Furthermore, there are always the positive anomalies that characterize the area to the north-east of "Montone" hill where archaeological remains are easily visible

  17. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

    Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.


    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.

  18. Vel-IO 3D: A tool for 3D velocity model construction, optimization and time-depth conversion in 3D geological modeling workflow

    Maesano, Francesco E.; D'Ambrogi, Chiara


    We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.

  19. Crustal nature and seismic structure of the geological provinces offshore the SW Iberia: Highlights of the NEAREST-SEIS wide-angle seismic survey

    Martínez-Loriente, S.; Sallares, V.; Gailler, A.; Bartolome, R.; Gracia, E.; Gutscher, M.; Diaz, J.


    The SW Iberian margin hosts the present day NW-SE plate convergence between the European and African Plates at a rate of 4.5 mm/yr causing seismic activity of moderate magnitude. During fall 2008 and in the frame of the EU-funded NEAREST project, was carried out a wide-angle seismic survey (NEAREST-SEIS cruise) consisting in 2 profiles. The main objectives of the survey were to gather information about the geometry of the crust-mantle boundary, identify the nature of the different geological provinces, obtain the physical properties of the crust, and unveil the deep geometry of the interfaces between main faults. A total of 30 OBS were deployed along profile P1, which is 356 km long and trends NW-SE running from the Tagus Abyssal Plain (TAP), Gorringe Bank (GB), Horseshoe Abyssal Plain (HAP), Coral Patch Ridge (CPR), and finally reaching the thrust-and-fold belt of the Seine Abyssal Plain (SAP). The inverted model shows four well-differentiated domains in terms of seismic structure. In the TAP there is a 3-4 km-thick sediment layer with low velocity, lying above a basement showing a remarkably high velocity (< 7 km/s), similar to that of the basement outcropping in the GB. In the HAP the sedimentary cover is thicker, showing an uppermost unit with very low velocity corresponding to the Upper Miocene Horseshoe Gravitational Unit, on top of a higher velocity lower unit, which corresponds to the Mesozoic sedimentary sequence, with a total thickness of 5 km. The basement shows the same velocity distribution as in TAP and GB, suggesting a common nature and origin. According to its seismic structure, we interpret this basement as very serpentinized, exhumed upper mantle. In contrast, the CPR and SAP show evidence for the presence of a well-developed, 6-7 km-thick oceanic crust, underlying the 2-3 km thick Mesozoic and Neogene sedimentary sequence. Profile P2 is 256 km long and trends N-S, across the Iberian margin shelf, Portimao Bank, Gulf of Cadiz imbricated wedge and

  20. Improvement of 3D Scanner


    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  1. 3D Printing for Bricks

    ECT Team, Purdue


    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  2. 3D vision system assessment

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad


    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  3. PLOT3D user's manual

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.


    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  4. 3D printing in dentistry.

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A


    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  5. Using 3D in Visualization

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen


    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  6. Testing long-period ground-motion simulations of scenario earthquakes using the Mw 7.2 El Mayor-Cucapah mainshock: Evaluation of finite-fault rupture characterization and 3D seismic velocity models

    Graves, Robert W.; Aagaard, Brad T.


    Using a suite of five hypothetical finite-fault rupture models, we test the ability of long-period (T>2.0 s) ground-motion simulations of scenario earthquakes to produce waveforms throughout southern California consistent with those recorded during the 4 April 2010 Mw 7.2 El Mayor-Cucapah earthquake. The hypothetical ruptures are generated using the methodology proposed by Graves and Pitarka (2010) and require, as inputs, only a general description of the fault location and geometry, event magnitude, and hypocenter, as would be done for a scenario event. For each rupture model, two Southern California Earthquake Center three-dimensional community seismic velocity models (CVM-4m and CVM-H62) are used, resulting in a total of 10 ground-motion simulations, which we compare with recorded ground motions. While the details of the motions vary across the simulations, the median levels match the observed peak ground velocities reasonably well, with the standard deviation of the residuals generally within 50% of the median. Simulations with the CVM-4m model yield somewhat lower variance than those with the CVM-H62 model. Both models tend to overpredict motions in the San Diego region and underpredict motions in the Mojave desert. Within the greater Los Angeles basin, the CVM-4m model generally matches the level of observed motions, whereas the CVM-H62 model tends to overpredict the motions, particularly in the southern portion of the basin. The variance in the peak velocity residuals is lowest for a rupture that has significant shallow slip (models may need improvement.

  7. 3-D acquisition geometry analysis: Incorporating information from multiples

    Kumar, A.; Blacquiere, G.; Verschuur, D.J.


    Recent advances in survey design have led to conventional common-midpoint-based analysis being replaced by the subsurface-based seismic acquisition analysis and design, with the emphasis on advance techniques of illumination analysis. Amongst them are wave-equation-based seismic illumination analyse

  8. Laser scanner 3D terrestri e mobile

    Mario Ciamba


    Full Text Available Recentemente si è svolto a Roma un evento dimostrativo per informare, professionisti e ricercatori del settore inerente il rilievo strumentale, sulle recenti innovazioni che riguardano i laser scanner 3d. Il mercato della strumentazione dedicata al rilevamento architettonico e dell'ambiente, offre molte possibilità di scelta. Oggi i principali marchi producono strumenti sempre più efficienti ed ideati per ambiti di applicazione specifici, permettendo ai professionisti, la giusta scelta in termini di prestazioni ed economia.A demonstration event was recently held in Rome with the aim to inform professionals and researchers on recent innovations on instrumental survey related to the 3d laser scanner. The market of instrumentation for architectural survey offers many possibilitiesof choice. Today the major brands produce instruments that are more efficient and designed for specific areas of application, allowing the right choice in terms of performance and economy.

  9. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew


    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  10. Local Ambient Seismic Noise Survey in Dixie Valley, NV for Engineered Geothermal System Favorability Assessment

    Tibuleac, I. M.; Iovenitti, J. L.; von Seggern, D. H.; Sainsbury, J.


    The primary objective of this study is to develop and test the seismic component of a calibrated exploration method that integrated geological, geophysical, and geochemical data to identify potential drilling targets for Engineered Geothermal Systems (EGS). In exploring for EGS sites, the selection criteria identified by the AltaRock Energy, Inc. (AltaRock) and University of Nevada, Reno teams are, in order of importance, (1) temperature greater than 200C at 1.5 km depth, (2) rock type at the depth of interest (porous rocks at 1-3 km); and (3) favorable stress regime (tensional environment). To improve spatial resolution, a dense seismic array (21 three-component, broadband sensors, with an overall array aperture of 45km) was installed in two deployments in Dixie Valley, NV, each deployment having a three-month duration Ambient seismic noise and signal were used to retrieve inter-station and same-station Green's Functions (GFs), to be used for subsurface imaging. We used ambient seismic noise interferometry to extract GFs from crosscorrelation of continuous records. An innovative aspect of the seismic work was estimating the receiver functions beneath the stations using noise auto-correlation which was used to image the substructure. We report results of applying the technique to estimate a P/S velocity model from the GF surface wave components and from the GF body-wave reflection component, retrieved from ambient noise and signal cross-correlation and auto-correlation beams. We interpret our results in terms of temperature, pressure and rock composition. The estimated seismic velocity model capability to infer temperature is statistically assessed, in combination with other geophysical technique results.

  11. Three-dimensional seismic survey planning based on the newest data acquisition design technique; Saishin no data shutoku design ni motozuku sanjigen jishin tansa keikaku

    Minehara, M.; Nakagami, K.; Tanaka, H. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center


    Theory of parameter setting for data acquisition is arranged, mainly as to the seismic generating and receiving geometry. This paper also int