WorldWideScience

Sample records for 3-d laser inscribing

  1. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications

    Directory of Open Access Journals (Sweden)

    Gross S.

    2015-11-01

    Full Text Available Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

  2. Ultrafast laser inscribed integrated photonics: material science to device development

    Directory of Open Access Journals (Sweden)

    Gross S.

    2013-11-01

    Full Text Available Detailed studies of intense light – material interactions has led to new insights into fs laser induced refractive index change in a range of glass types. This body of knowledge enables the development of advanced processing methodologies, resulting in novel planar and 3D guided wave devices. We will review the chemistry and morphology associated with fs laser induced refractive index change in multi-component glasses such as ZBLAN, phosphates and silicates, and discuss how these material changes inform our research programs developing a range of active and passive lightwave systems.

  3. High accuracy 3-D laser radar

    DEFF Research Database (Denmark)

    Busck, Jens; Heiselberg, Henning

    2004-01-01

    We have developed a mono-static staring 3-D laser radar based on gated viewing with range accuracy below 1 m at 10 m and 1 cm at 100. We use a high sensitivity, fast, intensified CCD camera, and a Nd:Yag passively Q-switched 32.4 kHz pulsed green laser at 532 nm. The CCD has 752x582 pixels. Camera...... shutter is controlled in steps of 100 ps. Camera delay is controlled in steps of 100 ps. Each laser pulse triggers the camera delay and shutter. A 3-D image is constructed from a sequence of 50-100 2-D reflectivity images, where each frame integrates about 700 laser pulses on the CCD. In 50 Hz video mode...... we record a 2-D sequence in a second and process a 3-D image in few seconds. We compare 3-D images with a system performance model....

  4. A femtosecond laser inscribed biochip for stem cell therapeutic applications

    Science.gov (United States)

    Choudhury, D.; Ramsay, W. T.; Brown, G.; Psaila, N. D.; Beecher, S.; Thomson, R. R.; Kiss, R.; Pells, S.; Willoughby, N. A.; Paterson, L.; Kar, A. K.

    2011-02-01

    A continuous flow microfluidic cell separation platform has been designed and fabricated using femtosecond laser inscription. The device is a scalable and non-invasive cell separation mechanism aimed at separating human embryonic stem cells from differentiated cells based on the dissimilarities in their cytoskeletal elasticity. Successful demonstration of the device has been achieved using human leukemia cells the elasticity of which is similar to that of human embryonic stem cells.

  5. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    Science.gov (United States)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  6. Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides

    Science.gov (United States)

    Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong

    2016-09-01

    We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator – waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3‧-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena.

  7. Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides.

    Science.gov (United States)

    Chandrahalim, Hengky; Rand, Stephen C; Fan, Xudong

    2016-01-01

    We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator - waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3'-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena. PMID:27600872

  8. Fusion of Renewable Ring Resonator Lasers and Ultrafast Laser Inscribed Photonic Waveguides

    Science.gov (United States)

    Chandrahalim, Hengky; Rand, Stephen C.; Fan, Xudong

    2016-09-01

    We demonstrated the monolithic integration of reusable and wavelength reconfigurable ring resonator lasers and waveguides of arbitrary shapes to out-couple and guide laser emission on the same fused-silica chip. The ring resonator hosts were patterned by a single-mask standard lithography, whereas the waveguides were inscribed in the proximity of the ring resonator by using 3-dimensional femtosecond laser inscription technology. Reusability of the integrated ring resonator - waveguide system was examined by depositing, removing, and re-depositing dye-doped SU-8 solid polymer, SU-8 liquid polymer, and liquid solvent (toluene). The wavelength reconfigurability was validated by employing Rhodamine 6G (R6G) and 3,3‧-Diethyloxacarbocyanine iodide (CY3) as exemplary gain media. In all above cases, the waveguide was able to couple out and guide the laser emission. This work opens a door to reconfigurable active and passive photonic devices for on-chip coherent light sources, optical signal processing, and the investigation of new optical phenomena.

  9. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  10. Femtosecond laser inscribed Bragg gratings in gold-coated fiber for space application

    Science.gov (United States)

    Wang, Qiaoni; Yang, Yuanhong; He, Jun; Wang, Yiping

    2015-09-01

    We reported a Bragg grating inscribed in gold-coated fiber (FBG) by NIR femtosecond laser (fs) for space application. Gold coating can shield the FBG from ultraviolet radiation and oxygen atom erosion. Cryogenic test, high temperature test, and gamma irradiation test were carried out. The reflectivity of the H2-free FBG remained stable at +/- 120 °C for 100 h or with 50.4 krad γ irradiation, and the central wavelength shifted within 5 pm and 1.6 pm respectively. Regeneration of the fs-FBG was observed in case the FBG was annealed at 800 °C for 5 h, and the remained 5% in reflectivity after 19 h. Such fs-FBGs inscribed in gold-coated fiber could be employed as high performance fiber sensors for space application.

  11. Laser 3D micro-manufacturing

    Science.gov (United States)

    Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.

    2016-06-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.

  12. Ultrafast laser inscription of 3D components for spatial multiplexing

    Science.gov (United States)

    Thomson, Robert R.

    2016-02-01

    The thirst for bandwidth in telecommunications networks is becoming ever larger due to bandwidth hungry applications such as video-on-demand. To further increase the bandwidth capacity, engineers are now seeking to imprint information on the last remaining degree of freedom of the lightwave carrier - space. This has given rise to the field of Space Division Multiplexing (SDM). In essence, the concept of SDM simple; we aim to use the different spatial modes of an optical fibre as multiplexed data transmission channels. These modes could either be in the form of separate singlemodes in a multicore optical fibre, individual spatial modes of a multimode fibre, or indeed the individual spatial modes of a multimode multicore optical fibre. Regardless of the particular "flavour" of SDM in question, it is clear that significant interfacing issues exist between the optical fibres used in SDM and the conventional single-mode planar lightwave circuits that are essential to process the light (e.g. arrayed waveguide gratings and splitters), and efficient interconnect technologies will be required. One fabrication technology that has emerged as a possible route to solve these interconnection issues is ultrafast laser inscription (ULI), which relies on the use of focused ultrashort laser pulses to directly inscribe three-dimensional waveguide structures inside a bulk dielectric. In this paper, I describe some of the work that has been conducted around the world to apply the unique waveguide fabrication capabilities of ULI to the development of 3D photonic components for applications in SDM.

  13. Fabrication of back contacts using laser writer and photolithography for inscribing textured solar cells

    Indian Academy of Sciences (India)

    Murugaiya Sridar Ilango; Vijay Monterio; Sheela K Ramasesha

    2015-02-01

    Semiconductor fabrication process begins with photolithography. Preparing a photo mask is the key process step in photolithography. The photo mask was fabricated by inscribing patterns directly onto a soda lime glass with the help of a laser beam, as it is easily controllable. Laser writer LW405-A was used for preparing the mask in this study. Exposure wavelength of 405 nm was used, with which 1.2 m feature size can be written in direct write-mode over the soda lime glass plate. The advantage of using the fabricated mask is that it can be used to design back contacts for thin film Photovoltaic (PV) solar cells. To investigate the process capability of LW405-A, same pattern with different line widths was written on soda lime glass samples at different writing speeds. The pattern was inscribed without proximity effect and stitching errors, which was characterized using optical microscope and field emission scanning electron microscope (FE-SEM). It was proven that writing speed of a mask-writer is decided according to the intended feature size and line width. As the writing speed increases, the edges of the patterns become rougher due to uneven scattering of the laser beam. From the fabricated mask, the solar cell can be developed embedding both the contacts at the bottom layer, to increase the absorption of solar radiation on the top surface effectively by increasing light absorption area.

  14. Laser scanner 3D terrestri e mobile

    Directory of Open Access Journals (Sweden)

    Mario Ciamba

    2013-08-01

    Full Text Available Recentemente si è svolto a Roma un evento dimostrativo per informare, professionisti e ricercatori del settore inerente il rilievo strumentale, sulle recenti innovazioni che riguardano i laser scanner 3d. Il mercato della strumentazione dedicata al rilevamento architettonico e dell'ambiente, offre molte possibilità di scelta. Oggi i principali marchi producono strumenti sempre più efficienti ed ideati per ambiti di applicazione specifici, permettendo ai professionisti, la giusta scelta in termini di prestazioni ed economia.A demonstration event was recently held in Rome with the aim to inform professionals and researchers on recent innovations on instrumental survey related to the 3d laser scanner. The market of instrumentation for architectural survey offers many possibilitiesof choice. Today the major brands produce instruments that are more efficient and designed for specific areas of application, allowing the right choice in terms of performance and economy.

  15. 3D laser microfabrication principles and applications

    CERN Document Server

    Misawa, Hiroaki

    2006-01-01

    A thorough introduction to 3D laser microfabrication technology, leading readers from the fundamentals and theory to its various potent applications, such as the generation of tiny objects or three-dimensional structures within the bulk of transparent materials. The book also presents new theoretical material on dielectric breakdown, allowing a better understanding of the differences between optical damage on surfaces and inside the bulk, as well as a look into the future.Chemists, physicists, materials scientists and engineers will find this a valuable source of interdisciplinary know

  16. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  17. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    Science.gov (United States)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  18. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  19. LASER CUTTING MACHINES FOR 3-D THIN SHEET PARTS

    Directory of Open Access Journals (Sweden)

    Miroslav RADOVANOVIC

    2012-11-01

    Full Text Available Laser cutting machines are used for precise contour cutting thin sheet. In industrial application nowadays various types and construction of laser cutting machines can be met. For contour cutting 3-D thin sheet parts laser cutting machines with rotation movements and laser robots are used. Laser generates the light beam, that presents a tool in working process. Application of laser cutting machines made possible good quality of products, flexibility of production and enlargement of economy

  20. Towards manipulating relativistic laser pulses with 3D printed materials

    OpenAIRE

    Ji, L. L.; Snyder, J.; Pukhov, A.; Freeman, R. R.; Akli, K. U.

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter i...

  1. 3D integrated hybrid silicon laser.

    Science.gov (United States)

    Song, Bowen; Stagarescu, Cristian; Ristic, Sasa; Behfar, Alex; Klamkin, Jonathan

    2016-05-16

    Lasers were realized on silicon by flip-chip bonding of indium phosphide (InP) devices containing total internal reflection turning mirrors for surface emission. Light is coupled to the silicon waveguides through surface grating couplers. With this technique, InP lasers were integrated on silicon. Laser cavities were also formed by coupling InP reflective semiconductor optical amplifiers to microring resonator filters and distributed Bragg reflector mirrors. Single-mode continuous wave lasing was demonstrated with a side mode suppression ratio of 30 dB. Up to 2 mW of optical power was coupled to the silicon waveguide. Thermal simulations were also performed to evaluate the low thermal impedance afforded by this architecture and potential for high wall-plug efficiency. PMID:27409867

  2. Terahertz Quantum Cascade Laser Based 3D Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — LongWave Photonics proposes a terahertz quantum-cascade laser based swept-source optical coherence tomography (THz SS-OCT) system for single-sided, 3D,...

  3. Laser profiling of 3D microturbine blades

    Science.gov (United States)

    Holmes, Andrew S.; Heaton, Mark E.; Hong, Guodong; Pullen, Keith R.; Rumsby, Phil T.

    2003-11-01

    We have used KrF excimer laser ablation in the fabrication of a novel MEMS power conversion device based on an axial-flow turbine with an integral axial-flux electromagnetic generator. The device has a sandwich structure, comprising a pair of silicon stators either side of an SU8 polymer rotor. The curved turbine rotor blades were fabricated by projection ablation of SU8 parts performed by conventional UV lithography. A variable aperture mask, implemented by stepping a moving aperture in front of a fixed one, was used to achieve the desired spatial variation in the ablated depth. An automatic process was set up on a commercial laser workstation, with the laser firing and mask motion being controlled by computer. High quality SU8 rotor parts with diameters of 13 mm and depths of 1 mm were produced at a fluence of 0.7 J/cm2, corresponding to a material removal rate of approximately 0.3 μm per pulse. A similar approach was used to form SU8 guide vane inserts for the stators.

  4. High Speed Laser 3D Measurement System

    Institute of Scientific and Technical Information of China (English)

    SONG Yuan-he; FAN Chang-zhou; GUO Ying; LI Hong-wei; ZHAO Hong

    2003-01-01

    Using the method of line structure light produced by a laser diode,three dimensional profile measurement is deeply researched.A hardware circuit developed is used to get the center position of light section for the improvement of the measurement speed.A double CCD compensation technology is used to improve the measurement precision. An easy and effective calibration method of the least squares to fit the parameter of system structure is used to get the relative coordinate relationship of objects and images of light section in the directions of height and axis. Sensor scanning segment by segment and layer by layer makes the measurement range expand greatly.

  5. Towards manipulating relativistic laser pulses with 3D printed materials

    CERN Document Server

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  6. Modeling 3D Objects for Navigation Purposes Using Laser Scanning

    Directory of Open Access Journals (Sweden)

    Cezary Specht

    2016-07-01

    Full Text Available The paper discusses the creation of 3d models and their applications in navigation. It contains a review of available methods and geometric data sources, focusing mostly on terrestrial laser scanning. It presents detailed description, from field survey to numerical elaboration, how to construct accurate model of a typical few storey building as a hypothetical reference in complex building navigation. Hence, the paper presents fields where 3d models are being used and their potential new applications.

  7. 3D Lasers Increase Efficiency, Safety of Moving Machines

    Science.gov (United States)

    2015-01-01

    Canadian company Neptec Design Group Ltd. developed its Laser Camera System, used by shuttles to render 3D maps of their hulls for assessing potential damage. Using NASA funding, the firm incorporated LiDAR technology and created the TriDAR 3D sensor. Its commercial arm, Neptec Technologies Corp., has sold the technology to Orbital Sciences, which uses it to guide its Cygnus spacecraft during rendezvous and dock operations at the International Space Station.

  8. Laser printing of cells into 3D scaffolds

    International Nuclear Information System (INIS)

    One of the most promising approaches in tissue engineering is the application of 3D scaffolds, which provide cell support and guidance in the initial tissue formation stage. The porosity of the scaffold and internal pore organization influence cell migration and play a major role in its biodegradation dynamics, nutrient diffusion and mechanical stability. In order to control cell migration and cellular interactions within the scaffold, novel technologies capable of producing 3D structures in accordance with predefined design are required. The two-photon polymerization (2PP) technique, used in this report for the fabrication of scaffolds, allows the realization of arbitrary 3D structures with submicron spatial resolution. Highly porous 3D scaffolds, produced by 2PP of acrylated poly(ethylene glycol), are seeded with cells by means of laser-induced forward transfer (LIFT). In this laser printing approach, a propulsive force, resulting from laser-induced shock wave, is used to propel individual cells or cell groups from a donor substrate towards the receiver substrate. We demonstrate that with this technique printing of multiple cell types into 3D scaffolds is possible. Combination of LIFT and 2PP provides a route for the realization of 3D multicellular tissue constructs and artificial ECM engineered on the microscale.

  9. Automated rock mass characterisation using 3-D terrestrial laser scanning

    NARCIS (Netherlands)

    Slob, S.

    2010-01-01

    The research investigates the possibility of using point cloud data from 3-D terrestrial laser scanning as a basis to characterise discontinuities in exposed rock massed in an automated way. Examples of discontinuities in rock are bedding planes, joints, fractures and schistocity. The characterisati

  10. 3d particle simulations on ultra short laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Nishihara, Katsunobu; Okamoto, Takashi; Yasui, Hidekazu [Osaka Univ., Suita (Japan). Inst. of Laser Engineering

    1998-03-01

    Two topics related to ultra short laser interaction with matter, linear and nonlinear high frequency conductivity of a solid density hydrogen plasma and anisotropic self-focusing of an intense laser in an overdense plasma, have been investigated with the use of 3-d particle codes. Frequency dependence of linear conductivity in a dense plasma is obtained, which shows anomalous conductivity near plasma frequency. Since nonlinear conductivity decreases with v{sub o}{sup -3}, where v{sub o} is a quivering velocity, an optimum amplitude exists leading to a maximum electron heating. Anisotropic self-focusing of a linear polarized intense laser is observed in an overdense plasma. (author)

  11. Measurement of Laser Weld Temperatures for 3D Model Input.

    Energy Technology Data Exchange (ETDEWEB)

    Dagel, Daryl; GROSSETETE, GRANT; Maccallum, Danny O.

    2016-10-01

    Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.

  12. Fiber optic coherent laser radar 3D vision system

    International Nuclear Information System (INIS)

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution

  13. Fiber optic coherent laser radar 3d vision system

    International Nuclear Information System (INIS)

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system

  14. Automatic inventory of components by laser 3D scanner; Inventario de automatico de componentes mediante laser escaner 3D

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, R.; Munoz Prieto, C.; Sarti Fernandez, F.

    2014-07-01

    One of the existing needs in nuclear decommissioning projects is to provide an inventory of components to be dismantled, which is available from its spatial location and elements that exist in your environment. The Laser scanner technology is a system of data acquisition that allows 3D models composed of millions of points, it's models with pinpoint accuracy and are available in a very short space of time. (Author)

  15. 3D sensor for indirect ranging with pulsed laser source

    Science.gov (United States)

    Bronzi, D.; Bellisai, S.; Villa, F.; Scarcella, C.; Bahgat Shehata, A.; Tosi, A.; Padovini, G.; Zappa, F.; Tisa, S.; Durini, D.; Weyers, S.; Brockherde, W.

    2012-10-01

    The growing interest for fast, compact and cost-effective 3D ranging imagers for automotive applications has prompted to explore many different techniques for 3D imaging and to develop new system for this propose. CMOS imagers that exploit phase-resolved techniques provide accurate 3D ranging with no complex optics and are rugged and costeffective. Phase-resolved techniques indirectly measure the round-trip return of the light emitted by a laser and backscattered from a distant target, computing the phase delay between the modulated light and the detected signal. Singlephoton detectors, with their high sensitivity, allow to actively illuminate the scene with a low power excitation (less than 10W with diffused daylight illumination). We report on a 4x4 array of CMOS SPAD (Single Photon Avalanche Diodes) designed in a high-voltage 0.35 μm CMOS technology, for pulsed modulation, in which each pixel computes the phase difference between the laser and the reflected pulse. Each pixel comprises a high-performance 30 μm diameter SPAD, an analog quenching circuit, two 9 bit up-down counters and memories to store data during the readout. The first counter counts the photons detected by the SPAD in a time window synchronous with the laser pulse and integrates the whole echoed signal. The second counter accumulates the number of photon detected in a window shifted with respect to the laser pulse, and acquires only a portion of the reflected signal. The array is readout with a global shutter architecture, using a 100 MHz clock; the maximal frame rate is 3 Mframe/s.

  16. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments.

    Science.gov (United States)

    Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-06-09

    To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution.

  17. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments

    Directory of Open Access Journals (Sweden)

    Katrine Heinsvig Kjaer

    2015-06-01

    Full Text Available To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed, using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution.

  18. Optical monitoring of scoliosis by 3D medical laser scanner

    Science.gov (United States)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  19. An omnidirectional 3D sensor with line laser scanning

    Science.gov (United States)

    Xu, Jing; Gao, Bingtuan; Liu, Chuande; Wang, Peng; Gao, Shuanglei

    2016-09-01

    An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.

  20. Hybrid femtosecond laser 3D microprocessing and application to biochip fabrication

    International Nuclear Information System (INIS)

    To fabricate highly functional biochips, we propose a novel technique termed hybrid femtosecond laser processing, in which femtosecond laser 3D glass micromachining (subtractive manufacturing) and two-photon polymerization (TPP) (additive manufacturing) are combined. In this process, 3D microfluidic structures are first formed inside the glass by femtosecond laser 3D glass micromachining, and functional micro and nano components are then integrated in the 3D microfluidics by TPP. We refer such glass microfluidics integrated with 3D polymer micro and nanostructures to as a ship-in-a-bottle biochip. (author)

  1. 3D laser scanning in plant and pipeline engineering; 3D-Laserscanning im Anlagen- und Rohrleitungsbau

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T. [Kaeser und Reiner, Ingenieurbuero fuer Vermessung und Geoinformation, Fellbach (Germany)

    2006-05-15

    3D laser scanning has been in use for a number of years now in the fields of surveying, building and factory planning. Laser scanning can, however, provide a highly supportive and helpful tool for the plant and piping designer, too. The benefits of this technology are relevant wherever the geometry of existing systems and subsystems needs to be registered and recorded. This may be the case in planning changes (basic and detail engineering), collision checks, documentation, plant relocations and visual?display projects. (orig.)

  2. Reconstructing 3D building models from laser scanning to calculate the heat demand

    Energy Technology Data Exchange (ETDEWEB)

    Neidhart, Hauke; Sester, Monika

    2008-09-15

    The objective of the project is to determine the heat demand of settlement areas using geospatial data, especially airborne laser scanning data. With airborne laser scanning it possible to record detailed 3D data for great areas. With this 3D data it is possible to reconstruct 3D building models. The geometry then can be used to derive information for the calculation of the heat demand

  3. 3D cavity detection technique and its application based on cavity auto scanning laser system

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ling; LI Xi-bing; LI Fa-ben; ZHAO Guo-yan; QIN Yu-hui

    2008-01-01

    Ground constructions and mines are severely threatened by underground cavities especially those unsafe or inaccessible ones. Safe and precise cavity detection is vital for reasonable cavity evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.

  4. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2015-05-01

    Full Text Available The Simultaneous Localization and Mapping (SLAM technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs: one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach.

  5. Laser induced forward transfer of interconnects for 3D integration

    NARCIS (Netherlands)

    Oosterhuis, G.; Prenen, A.; Huis in 't veld, A.J.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSVs) for chip stacking, but also for other interconnect steps like re-distribution layers and solder bumps. Especially in applications with a low number (<100 mm-2) of relatively large fea

  6. Inequalities for inscribed simplexes

    Institute of Scientific and Technical Information of China (English)

    YANG Shiguo

    2004-01-01

    The problem on the geometrc inequalities involving ann-dimensional simplex and its inscribed simplex is studied. An inequality is established, which reveals that the difference between the squared circumradius of then-dimensional simplex and the squared distance between its circumcenter and barycenter times the squared circumradius of its inscribed simplex is not less than the 2(n-1)th power ofnn times its squared inradius, and is equal to when the simplex is regular and its inscribed siplex is a tangent point one. Deduction from this inequality reaches a generalization ofn-dimensional Euler inequality indicating that the circumradius of the simplex is not less than then-fold inradius. Another inequality is derived to present the relationship between the circumradius of the n-dimensional simplex and the circumradius and inradius of its pedal simplex.

  7. Femtosecond laser 3D micromachining for microfluidic and optofluidic applications

    CERN Document Server

    Sugioka, Koji

    2013-01-01

    Femtosecond lasers opened up new avenue in materials processing due to its unique features of ultrashort pulse width and extremely high peak intensity. One of the most important features of femtosecond laser processing is that strong absorption can be induced even by materials which are transparent to the femtosecond laser beam due to nonlinear multiphoton absorption. The multiphoton absorption allows us to perform not only surface but also three-dimensionally internal microfabrication of transparent materials such as glass. This capability makes it possible to directly fabricate three-dimensi

  8. Omnidirectional Perception for Lightweight Uavs Using a Continuously Rotating 3d Laser Scanner

    Science.gov (United States)

    Droeschel, D.; Schreiber, M.; Behnke, S.

    2013-08-01

    Many popular unmanned aerial vehicles (UAV) are restricted in their size and weight, making the design of sensory systems for these robots challenging. We designed a small and lightweight continuously rotating 3D laser scanner - allowing for environment perception in a range of 30 m in almost all directions. This sensor it well suited for applications such as 3D obstacle detection, 6D motion estimation, localization, and mapping. We aggregate the distance measurements in a robot-centric grid-based map. To estimate the motion of our multicopter, we register 3D laser scans towards this local map. In experiments, we compare the laser-based ego-motion estimate with ground-truth from a motion capture system. Overall, we can build an accurate 3D obstacle map and can estimate the vehicle's trajectory by 3D scan registration.

  9. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer

    Science.gov (United States)

    Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.

    2015-03-01

    The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.

  10. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing.

    Science.gov (United States)

    Blasco, Eva; Müller, Jonathan; Müller, Patrick; Trouillet, Vanessa; Schön, Markus; Scherer, Torsten; Barner-Kowollik, Christopher; Wegener, Martin

    2016-05-01

    3D conductive microstructures containing gold are fabricated by simultaneous photopolymerization and photoreduction via direct laser writing. The photoresist employed consists of water-soluble polymers and a gold precursor. The fabricated microstructures show good conductivity and are successfully employed for 3D connections between gold pads. PMID:26953811

  11. Laser-Directed CVD 3D Printing of Refractory Metal Rocket Propulsion Hardware Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this project, Ultramet will develop a three-dimensional (3D) laser-directed chemical vapor deposition (CVD) additive manufacturing system to build free-form...

  12. Investigation Into the Utilization of 3D Printing in Laser Cooling Experiments

    Science.gov (United States)

    Hazlett, Eric; Nelson, Brandon; de Leon, Sam Diaz; Shaw, Jonah

    2016-05-01

    With the advancement of 3D printing new opportunities are abound in many different fields, but with the balance between the precisions of atomic physics experiments and the material properties of current 3D printers the benefit of 3D printing technology needs to be investigated. We report on the progress of two investigations of 3D printing of benefit to atomic physics experiments: laser feedback module and the other being an optical chopper. The first investigation looks into creation of a 3D printed laser diode feedback module. This 3D printed module would allow for the quick realization of an external cavity diode laser that would have an adjustable cavity distance. We will report on the first tests of this system, by looking at Rb spectroscopy and mode-hop free tuning range as well as possibilities of using these lasers for MOT generation. We will also discuss our investigation into a 3D-printed optical chopper that utilizes an Arduino and a computer hard drive motor. By implementing an additional Arduino we create a low cost way to quickly measure laser beam waists.

  13. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer.

    Science.gov (United States)

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-07-15

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop's shape is crucial for 3D printing and is discussed as a function of the laser energy.

  14. The Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D

    Directory of Open Access Journals (Sweden)

    Lingli Zhu

    2014-04-01

    Full Text Available This paper presents methods for 3D modeling of railway environments from airborne laser scanning (ALS and mobile laser scanning (MLS. Conventionally, aerial data such as ALS and aerial images were utilized for 3D model reconstruction. However, 3D model reconstruction only from aerial-view datasets can not meet the requirement of advanced visualization (e.g., walk-through visualization. In this paper, objects in a railway environment such as the ground, railroads, buildings, high voltage powerlines, pylons and so on were reconstructed and visualized in real-life experiments in Kokemaki, Finland. Because of the complex terrain and scenes in railway environments, 3D modeling is challenging, especially for high resolution walk-through visualizations. However, MLS has flexible platforms and provides the possibility of acquiring data in a complex environment in high detail by combining with ALS data to produce complete 3D scene modeling. A procedure from point cloud classification to 3D reconstruction and 3D visualization is introduced, and new solutions are proposed for object extraction, 3D reconstruction, model simplification and final model 3D visualization. Image processing technology is used for the classification, 3D randomized Hough transformations (RHT are used for the planar detection, and a quadtree approach is used for the ground model simplification. The results are visually analyzed by a comparison with an orthophoto at a 20 cm ground resolution.

  15. Laser-assisted direct ink writing of planar and 3D metal architectures

    Science.gov (United States)

    Skylar-Scott, Mark A.; Gunasekaran, Suman; Lewis, Jennifer A.

    2016-05-01

    The ability to pattern planar and freestanding 3D metallic architectures at the microscale would enable myriad applications, including flexible electronics, displays, sensors, and electrically small antennas. A 3D printing method is introduced that combines direct ink writing with a focused laser that locally anneals printed metallic features “on-the-fly.” To optimize the nozzle-to-laser separation distance, the heat transfer along the printed silver wire is modeled as a function of printing speed, laser intensity, and pulse duration. Laser-assisted direct ink writing is used to pattern highly conductive, ductile metallic interconnects, springs, and freestanding spiral architectures on flexible and rigid substrates.

  16. Portable 3D laser-camera calibration system with color fusion for SLAM

    OpenAIRE

    Javier Navarrete; Diego Viejo; Miguel Cazorla

    2013-01-01

    Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used...

  17. Annular beam shaping system for advanced 3D laser brazing

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Kogel-Hollacher, Markus; Traub, Martin

    2012-10-01

    As laser brazing benefits from advantages such as smooth joints and small heat-affected zones, it has become established as a joining technology that is widely used in the automotive industry. With the processing of complex-shaped geometries, recent developed brazing heads suffer, however, from the need for continuous reorientation of the optical system and/or limited accessibility due to lateral wire feeding. This motivates the development of a laser brazing head with coaxial wire feeding and enhanced functionality. An optical system is designed that allows to generate an annular intensity distribution in the working zone. The utilization of complex optical components avoids obscuration of the optical path by the wire feeding. The new design overcomes the disadvantages of the state-of-the-art brazing heads with lateral wire feeding and benefits from the independence of direction while processing complex geometries. To increase the robustness of the brazing process, the beam path also includes a seam tracking system, leading to a more challenging design of the whole optical train. This paper mainly discusses the concept and the optical design of the coaxial brazing head, and also presents the results obtained with a prototype and selected application results.

  18. Flexible Calibration Method for 3D Laser Scanner System

    Institute of Scientific and Technical Information of China (English)

    杨中东; 王鹏; 李晓慧; 孙长库

    2014-01-01

    In this paper, a flexible high-precision calibration method suitable for industrial field was proposed. The complexity of the coordinate transformation was simplified by choosing the camera coordinate system as the unified reference coordinate system. A flexible planar calibration pattern was introduced to the calibration process, which can be arbitrarily placed and from which the known feature points can be extracted to construct other unknown feature points. With the known intrinsic parameters, the laser projector plane equation was fitted by the multi-noncollinear points, which were acquired through the principle of triangulation and the projective invariance of cross ratio. With this method, the strict alignment and multiple times of coordinate transformation can be avoided. Experimental results showed that the arithmetic mean of the root mean square (RMS) error of distance was 0.000 7 mm.

  19. Portable 3D laser-camera calibration system with color fusion for SLAM

    Directory of Open Access Journals (Sweden)

    Javier Navarrete

    2013-03-01

    Full Text Available Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM, in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.

  20. Progress in Tridimensional (3d) Laser Forming of Stainless Steel Sheets

    Science.gov (United States)

    Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco

    2015-09-01

    Achievement of complex shapes with high dimensional accuracy and precision by forming process is a demanding challenge for scientists and practitioners. Available technologies are numerous, with laser forming being progressively emerging because of limited springback, lack of molds and sophisticated auxiliary equipments. However, laser forming finds limited applications, especially when forming of tridimensional (3d) complex shapes is required. In this case, cost savings are often counterbalanced by the need for troublesome forming strategies. Therefore, traditional alternatives based on mechanical devices are usually preferred to laser systems. In the present work, 3d laser forming of stainless steel sheets by high power diode laser is investigated. In particular, the set of scanning patterns to form domes from flat blanks by simple and easy-to-manage radial paths alone was found. Numerous 3d items were also processed by diode laser to manufacture a number of complex shapes with high flexibility and limited efforts to modify the auxiliary forming equipment. Based on the experimental results and analytical data, the high power diode laser was found able to form arbitrary 3d shapes through the implementation of tailored laser scanning patterns and appropriate settings of the operational parameters.

  1. Radiological characterisation by means of 3D-laser modelling and positioning of measurements

    International Nuclear Information System (INIS)

    AB SVAFO is a nuclear waste technology and decommissioning company based in Sweden in the scenic surroundings of Studsvik on the Baltic coast. SVAFO is owned by the Swedish nuclear power industry. MultiInfo 3D Laser Scan Solution AB is a technical consult company focusing on the development and solution of 3D laser scanning techniques and its applications in different fields. For better viewing we are using a 3D-laser modelling of a building, national coordinates and using radiological measurements from a database. It is then possible to visualize the contamination situation in the whole building using a CAD-program. The results will be used for the upcoming R2-reactor decommissioning and for visualisation of dose rates and contamination levels in other nuclear buildings. For better documentation of radioactivity distribution of a decommissioned facility any object in a building can be accurately measured in 3D and visualized in 3D-laser image in a CAD program (e.g. AutoCAD), and then link to a database (e.g. SVALA), which have stored the measurements of radioactivity by other tools (e.g. RFID-tags). The position of any measured object can also be identified in 3D model and laser image, so the situation of contamination levels and distribution can be monitored and visualized in 3D. The results will be used for visualisation of dose rates and contamination levels in other nuclear buildings. AB SVAFO's main business is to take care of formerly state-owned spent nuclear waste at the site, including small amounts of nuclear fuel. Buildings are also included, mainly nuclear waste storage buildings and a research reactor. Some buildings have already been decommissioned with results of contamination shown in long and not very clear tables. With 3D-modelling the results are shown more clear. (authors)

  2. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    Science.gov (United States)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  3. Fabrication of 3D solenoid microcoils in silica glass by femtosecond laser wet etch and microsolidics

    Science.gov (United States)

    Meng, Xiangwei; Yang, Qing; Chen, Feng; Shan, Chao; Liu, Keyin; Li, Yanyang; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-02-01

    This paper reports a flexible fabrication method for 3D solenoid microcoils in silica glass. The method consists of femtosecond laser wet etching (FLWE) and microsolidics process. The 3D microchannel with high aspect ratio is fabricated by an improved FLWE method. In the microsolidics process, an alloy was chosen as the conductive metal. The microwires are achieved by injecting liquid alloy into the microchannel, and allowing the alloy to cool and solidify. The alloy microwires with high melting point can overcome the limitation of working temperature and improve the electrical property. The geometry, the height and diameter of microcoils were flexibly fabricated by the pre-designed laser writing path, the laser power and etching time. The 3D microcoils can provide uniform magnetic field and be widely integrated in many magnetic microsystems.

  4. Polyhedra inscribed in a quadric

    OpenAIRE

    Danciger, Jeffrey; Maloni, Sara; Schlenker, Jean-Marc

    2014-01-01

    We study convex polyhedra in three-space that are inscribed in a quadric surface. Up to projective transformations, there are three such surfaces: the sphere, the hyperboloid, and the cylinder. Our main result is that a planar graph $\\Gamma$ is realized as the $1$-skeleton of a polyhedron inscribed in the hyperboloid or cylinder if and only if $\\Gamma$ is realized as the $1$-skeleton of a polyhedron inscribed in the sphere and $\\Gamma$ admits a Hamiltonian cycle. Rivin characterized convex po...

  5. 3D printing of weft knitted textile based structures by selective laser sintering of nylon powder

    Science.gov (United States)

    Beecroft, M.

    2016-07-01

    3D printing is a form of additive manufacturing whereby the building up of layers of material creates objects. The selective laser sintering process (SLS) uses a laser beam to sinter powdered material to create objects. This paper builds upon previous research into 3D printed textile based material exploring the use of SLS using nylon powder to create flexible weft knitted structures. The results show the potential to print flexible textile based structures that exhibit the properties of traditional knitted textile structures along with the mechanical properties of the material used, whilst describing the challenges regarding fineness of printing resolution. The conclusion highlights the potential future development and application of such pieces.

  6. Generation of 3D Virtual Geographic Environment Based on Laser Scanning Technique

    Institute of Scientific and Technical Information of China (English)

    DU Jie; CHEN Xiaoyong; FumioYamazaki

    2003-01-01

    This paper demonstrates an experiment on the generation of 3D virtual geographic environment on the basis of experimental flight laser scanning data by a set of algorithms and methods that were developed to automatically interpret range images for extracting geo-spatial features and then to reconstruct geo-objects. The algorithms and methods for the interpretation and modeling of laser scanner data include triangulated-irregular-network (TIN)-based range image interpolation ; mathematical-morphology(MM)-based range image filtering,feature extraction and range image segmentation, feature generalization and optimization, 3D objects reconstruction and modeling; computergraphics (CG)-based visualization and animation of geographic virtual reality environment.

  7. Temperature distributions in the laser-heated diamond anvil cell from 3-D numerical modeling

    International Nuclear Information System (INIS)

    We present TempDAC, a 3-D numerical model for calculating the steady-state temperature distribution for continuous wave laser-heated experiments in the diamond anvil cell. TempDAC solves the steady heat conduction equation in three dimensions over the sample chamber, gasket, and diamond anvils and includes material-, temperature-, and direction-dependent thermal conductivity, while allowing for flexible sample geometries, laser beam intensity profile, and laser absorption properties. The model has been validated against an axisymmetric analytic solution for the temperature distribution within a laser-heated sample. Example calculations illustrate the importance of considering heat flow in three dimensions for the laser-heated diamond anvil cell. In particular, we show that a “flat top” input laser beam profile does not lead to a more uniform temperature distribution or flatter temperature gradients than a wide Gaussian laser beam

  8. LATIS3D The Gold Standard for Laser-Tissue-Interaction Modeling

    CERN Document Server

    London, R A; Gentile, N A; Kim, B M; Makarewicz, A M; Vincent, L; Yang, Y B

    2000-01-01

    The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.

  9. Thoracic Pedicle Screw Placement Guide Plate Produced by Three-Dimensional (3-D) Laser Printing.

    Science.gov (United States)

    Chen, Hongliang; Guo, Kaijing; Yang, Huilin; Wu, Dongying; Yuan, Feng

    2016-01-01

    BACKGROUND The aim of this study was to evaluate the accuracy and feasibility of an individualized thoracic pedicle screw placement guide plate produced by 3-D laser printing. MATERIAL AND METHODS Thoracic pedicle samples of 3 adult cadavers were randomly assigned for 3-D CT scans. The 3-D thoracic models were established by using medical Mimics software, and a screw path was designed with scanned data. Then the individualized thoracic pedicle screw placement guide plate models, matched to the backside of thoracic vertebral plates, were produced with a 3-D laser printer. Screws were placed with assistance of a guide plate. Then, the placement was assessed. RESULTS With the data provided by CT scans, 27 individualized guide plates were produced by 3-D printing. There was no significant difference in sex and relevant parameters of left and right sides among individuals (P>0.05). Screws were placed with assistance of guide plates, and all screws were in the correct positions without penetration of pedicles, under direct observation and anatomic evaluation post-operatively. CONCLUSIONS A thoracic pedicle screw placement guide plate can be produced by 3-D printing. With a high accuracy in placement and convenient operation, it provides a new method for accurate placement of thoracic pedicle screws. PMID:27194139

  10. Experimental investigation of 3D scanheads for laser micro-processing

    Science.gov (United States)

    Penchev, Pavel; Dimov, Stefan; Bhaduri, Debajyoti

    2016-07-01

    The broader use of laser micro-processing technology increases the demand for executing complex machining and joining operations on free-from (3D) workpieces. To satisfy these growing requirements it is necessary to utilise 3D scanheads that integrate beam deflectors (X and Y optical axes) and Z modules with high dynamics. The research presented in this communication proposes an experimental technique to quantify the dynamic capabilities of Z modules, also called Dynamic Focusing Modules (DFM), of such 3D scanheads that are essential for efficient, accurate and repeatable laser micro-processing of free form surfaces. The proposed experimental technique is validated on state-of-art laser micro-machining platform and the results show that the DFM dynamic capabilities are substantially inferior than those of X and Y beam deflectors, in particular the maximum speed of the Z module is less than 10% of the maximum speeds achievable with X and Y optical axes of the scanhead. Thus, the DFM dynamics deficiencies can become a major obstacle for the broader use of high frequency laser sources that necessitate high dynamics 3D scanheads for executing cost effectively free-form surface processing operations.

  11. Fusion of laser and image sensory data for 3-D modeling of the free navigation space

    Science.gov (United States)

    Mass, M.; Moghaddamzadeh, A.; Bourbakis, N.

    1994-01-01

    A fusion technique which combines two different types of sensory data for 3-D modeling of a navigation space is presented. The sensory data is generated by a vision camera and a laser scanner. The problem of different resolutions for these sensory data was solved by reduced image resolution, fusion of different data, and use of a fuzzy image segmentation technique.

  12. Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer

    NARCIS (Netherlands)

    Visser, Claas Willem; Pohl, Ralph; Sun, Chao; Römer, Gert-Willem; Huis in 't Veld, Bert; Lohse, Detlef

    2015-01-01

    3D printing of common metals is highly challenging because metals are generally solid at room conditions. Copper and gold pillars are manufactured with a resolution below 5 μm and a height up to 2 mm, using laser-induced forward transfer to create and eject liquid metal droplets. The solidified drop

  13. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yunsu Bok

    2014-11-01

    Full Text Available This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  14. Fusion of Terrestrial and Airborne Laser Data for 3D modeling Applications

    Science.gov (United States)

    Mohammed, Hani Mahmoud

    This thesis deals with the 3D modeling phase of the as-built large BIM projects. Among several means of BIM data capturing, such as photogrammetric or range tools, laser scanners have been one of the most efficient and practical tool for a long time. They can generate point clouds with high resolution for 3D models that meet nowadays' market demands. The current 3D modeling projects of as-built BIMs are mainly focused on using one type of laser scanner data, such as Airborne or Terrestrial. According to the literatures, no significant (few) efforts were made towards the fusion of heterogeneous laser scanner data despite its importance. The importance of the fusion of heterogeneous data arises from the fact that no single type of laser data can provide all the information about BIM, especially for large BIM projects that are existing on a large area, such as university buildings, or Heritage places. Terrestrial laser scanners are able to map facades of buildings and other terrestrial objects. However, they lack the ability to map roofs or higher parts in the BIM project. Airborne laser scanner on the other hand, can map roofs of the buildings efficiently and can map only small part of the facades. Short range laser scanners can map the interiors of the BIM projects, while long range scanners are used for mapping wide exterior areas in BIM projects. In this thesis the long range laser scanner data obtained in the Stop-and-Go mapping mode, the short range laser scanner data, obtained in a fully static mapping mode, and the airborne laser data are all fused together to bring a complete effective solution for a large BIM project. Working towards the 3D modeling of BIM projects, the thesis framework starts with the registration of the data, where a new fast automatic registration algorithm were developed. The next step is to recognize the different objects in the BIM project (classification), and obtain 3D models for the buildings. The last step is the development of an

  15. Inscription of 3D waveguides in diamond using an ultrafast laser

    CERN Document Server

    Courvoisier, Arnaud; Salter, Patrick S

    2016-01-01

    Three dimensional waveguides within the bulk of diamond are manufactured using ultrafast laser fabrication. High intensities within the focal volume of the laser cause breakdown of the diamond into a graphitic phase leading to a stress induced refractive index change in neighboring regions. Type II waveguiding is thus enabled between two adjacent graphitic tracks, but supporting just a single polarization state. We show that adaptive aberration correction during the laser processing allows the controlled fabrication of more complex structures beneath the surface of the diamond which can be used for 3D waveguide splitters and Type III waveguides which support both polarizations.

  16. 3D Modeling of Laser Propagation in Ionizing Gas and Plasma

    Science.gov (United States)

    Cooley, J.; Antonsen, T., Jr.; Huang, C.; Mori, W.

    2003-10-01

    The interaction of a high intensity laser with ionizing gas and plasmas is of current interest for both Laser Wakefield Accelerators and x-ray generation. We have developed a 3D fluid simulation code based on the same quasistatic approximation used in the 2D code WAKE [1]. The object oriented structure of the code also allows it to couple to the quickPIC particle code [2]. We will present 3D studies of the ionization scattering instability [3], which occurs when a laser pulse propagates in an ionizing gas. [1] P. Mora and T. Antonsen, Jr., Phys. Plasmas 4(1), January 1997 [2] J. Cooley, T. Antonsen, Jr., C. Huang, etal., Proceedings, Advanced Accelerator Concepts, 2002 [3] Z. Bian and T. Antonsen, Jr., Phys. Plasmas 8(7), July 2001 * work supported by NSF and DOE

  17. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-01-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible.

  18. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-01-01

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. PMID:24723320

  19. Relativistic Laser Pulse Intensification with 3D Printed Micro-Tube Plasma Target

    Science.gov (United States)

    Ji, Liangliang; Snyder, Joseph; Pukhov, Alexander; Akli, Kramer

    2015-11-01

    The potential and applications of laser-plasma interactions (LPI) are restricted by the parameter space of existing lasers and targets. Advancing the laser intensity to the extreme regime is motivated by the production of energetic particle beams and by the quest to explore the exotic regimes of light-matter interaction. Target density and dimensions can always be varied to optimize the outcome. Here, we propose to create another degree of freedom in the parameter space of LPI using recent advances in 3D printing of materials. Fine structures at nm scale with high repetition and accuracy can nowadays be manufactured, allowing for a full precise control of the target. We demonstrate, via particle-in-cell (PIC) simulations, that 3D-printed micro-tube plasma (MTP) targets yield an intensity enhancement factor of 2-5. The novel MTP targets not only act as a plasma optical device to reach the 1023W/cm2 threshold based on today's intensities, but can also boost the generation of secondary particle and radiation sources. This work demonstrates that the combination of high contrast high power lasers and nano-3D printing techniques opens new paths in the intensity frontier and LPI micro-engineering.

  20. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    Science.gov (United States)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  1. Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Woon; Yun, Sung Chul [Keimyung University, Daegu (Korea, Republic of)

    2015-07-15

    In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed.

  2. Novel Aerial 3D Mapping System Based on UAV Platforms and 2D Laser Scanners

    Directory of Open Access Journals (Sweden)

    David Roca

    2016-01-01

    Full Text Available The acquisition of 3D geometric data from an aerial view implies a high number of advantages with respect to terrestrial acquisition, the greatest being that aerial view allows the acquisition of information from areas with no or difficult accessibility, such as roofs and tops of trees. If the aerial platform is copter-type, other advantages are present, such as the capability of displacement at very low-speed, allowing for a more detailed acquisition. This paper presents a novel Aerial 3D Mapping System based on a copter-type platform, where a 2D laser scanner is integrated with a GNSS sensor and an IMU for the generation of georeferenced 3D point clouds. The accuracy and precision of the system are evaluated through the measurement of geometries in the point clouds generated by the system, as well as through the geolocation of target points for which the real global coordinates are known.

  3. Laser Welding Analysis for 3D Printed Thermoplastic and Poly-acetate Polymers

    International Nuclear Information System (INIS)

    In this study, experimental and computer simulation results are compared and analyzed. Three-dimensional (3D) fabricated matrices from an MJM 3D printer were joined with poly-acetate thermoplastic polymers using a diode laser. A power range of 5-7 W was used to irradiate the boundary of two polymers. The heated polymers flowed into the matrices of the 3D fabricated structure, and reliable mechanical joining was achieved. Computer simulation showed the temperature distribution in the polymers, and flow direction was estimated based on the flux and temperature information. It was found that the more than the minimum energy threshold was required to effectively join the polymers and that two scans at low-speed were more effective than four scans at high speed

  4. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    Science.gov (United States)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  5. Fine Surveying and 3D Modeling Approach for Wooden Ancient Architecture via Multiple Laser Scanner Integration

    Directory of Open Access Journals (Sweden)

    Qingwu Hu

    2016-03-01

    Full Text Available A multiple terrestrial laser scanner (TLS integration approach is proposed for the fine surveying and 3D modeling of ancient wooden architecture in an ancient building complex of Wudang Mountains, which is located in very steep surroundings making it difficult to access. Three-level TLS with a scalable measurement distance and accuracy is presented for data collection to compensate for data missed because of mutual sheltering and scanning view limitations. A multi-scale data fusion approach is proposed for data registration and filtering of the different scales and separated 3D data. A point projection algorithm together with point cloud slice tools is designed for fine surveying to generate all types of architecture maps, such as plan drawings, facade drawings, section drawings, and doors and windows drawings. The section drawings together with slicing point cloud are presented for the deformation analysis of the building structure. Along with fine drawings and laser scanning data, the 3D models of the ancient architecture components are built for digital management and visualization. Results show that the proposed approach can achieve fine surveying and 3D documentation of the ancient architecture within 3 mm accuracy. In addition, the defects of scanning view and mutual sheltering can overcome to obtain the complete and exact structure in detail.

  6. Angle extended linear MEMS scanning system for 3D laser vision sensor

    Science.gov (United States)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  7. 3D Photonic Nanostructures via Diffusion-Assisted Direct fs Laser Writing

    Directory of Open Access Journals (Sweden)

    Gabija Bickauskaite

    2012-01-01

    Full Text Available We present our research into the fabrication of fully three-dimensional metallic nanostructures using diffusion-assisted direct laser writing, a technique which employs quencher diffusion to fabricate structures with resolution beyond the diffraction limit. We have made dielectric 3D nanostructures by multiphoton polymerization using a metal-binding organic-inorganic hybrid material, and we covered them with silver using selective electroless plating. We have used this method to make spirals and woodpiles with 600 nm intralayer periodicity. The resulting photonic nanostructures have a smooth metallic surface and exhibit well-defined diffraction spectra, indicating good fabrication quality and internal periodicity. In addition, we have made dielectric woodpile structures decorated with gold nanoparticles. Our results show that diffusion-assisted direct laser writing and selective electroless plating can be combined to form a viable route for the fabrication of 3D dielectric and metallic photonic nanostructures.

  8. Combining laser scan and photogrammetry for 3D object modeling using a single digital camera

    Science.gov (United States)

    Xiong, Hanwei; Zhang, Hong; Zhang, Xiangwei

    2009-07-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Laser scan and photogrammetry are two main methods to be used. For laser scan, a video camera and a laser source are necessary, and for photogrammetry, a digital still camera with high resolution pixels is indispensable. In some 3D modeling tasks, two methods are often integrated to get satisfactory results. Although many research works have been done on how to combine the results of the two methods, no work has been reported to design an integrated device at low cost. In this paper, a new 3D scan system combining laser scan and photogrammetry using a single consumer digital camera is proposed. Nowadays there are many consumer digital cameras, such as Canon EOS 5D Mark II, they usually have features of more than 10M pixels still photo recording and full 1080p HD movie recording, so a integrated scan system can be designed using such a camera. A square plate glued with coded marks is used to place the 3d objects, and two straight wood rulers also glued with coded marks can be laid on the plate freely. In the photogrammetry module, the coded marks on the plate make up a world coordinate and can be used as control network to calibrate the camera, and the planes of two rulers can also be determined. The feature points of the object and the rough volume representation from the silhouettes can be obtained in this module. In the laser scan module, a hand-held line laser is used to scan the object, and the two straight rulers are used as reference planes to determine the position of the laser. The laser scan results in dense points cloud which can be aligned together automatically through calibrated camera parameters. The final complete digital model is obtained through a new a patchwise energy functional method by fusion of the feature points, rough volume and the dense points cloud. The design

  9. 3D printing of gas jet nozzles for laser-plasma accelerators.

    Science.gov (United States)

    Döpp, A; Guillaume, E; Thaury, C; Gautier, J; Ta Phuoc, K; Malka, V

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée. PMID:27475557

  10. 3D printing of gas jet nozzles for laser-plasma accelerators

    CERN Document Server

    Döpp, A; Thaury, C; Gautier, J; Phuoc, K Ta; Malka, V

    2016-01-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular it was reported that appropriate density tailoring can result in improved injection, acceleration and collimation of laser-accelerated electron beams. To achieve such profiles innovative target designs are required. For this purpose we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling (FDM) to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliqu\\'ee.

  11. 3D printing of gas jet nozzles for laser-plasma accelerators

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Ta Phuoc, K.; Malka, V.

    2016-07-01

    Recent results on laser wakefield acceleration in tailored plasma channels have underlined the importance of controlling the density profile of the gas target. In particular, it was reported that the appropriate density tailoring can result in improved injection, acceleration, and collimation of laser-accelerated electron beams. To achieve such profiles, innovative target designs are required. For this purpose, we have reviewed the usage of additive layer manufacturing, commonly known as 3D printing, in order to produce gas jet nozzles. Notably we have compared the performance of two industry standard techniques, namely, selective laser sintering (SLS) and stereolithography (SLA). Furthermore we have used the common fused deposition modeling to reproduce basic gas jet designs and used SLA and SLS for more sophisticated nozzle designs. The nozzles are characterized interferometrically and used for electron acceleration experiments with the Salle Jaune terawatt laser at Laboratoire d'Optique Appliquée.

  12. AN ADAPTIVE APPROACH FOR SEGMENTATION OF 3D LASER POINT CLOUD

    Directory of Open Access Journals (Sweden)

    Z. Lari

    2012-09-01

    Full Text Available Automatic processing and object extraction from 3D laser point cloud is one of the major research topics in the field of photogrammetry. Segmentation is an essential step in the processing of laser point cloud, and the quality of extracted objects from laser data is highly dependent on the validity of the segmentation results. This paper presents a new approach for reliable and efficient segmentation of planar patches from a 3D laser point cloud. In this method, the neighbourhood of each point is firstly established using an adaptive cylinder while considering the local point density and surface trend. This neighbourhood definition has a major effect on the computational accuracy of the segmentation attributes. In order to efficiently cluster planar surfaces and prevent introducing ambiguities, the coordinates of the origin's projection on each point's best fitted plane are used as the clustering attributes. Then, an octree space partitioning method is utilized to detect and extract peaks from the attribute space. Each detected peak represents a specific cluster of points which are located on a distinct planar surface in the object space. Experimental results show the potential and feasibility of applying this method for segmentation of both airborne and terrestrial laser data.

  13. Estimation of line dimensions in 3D direct laser writing lithography

    Science.gov (United States)

    Guney, M. G.; Fedder, G. K.

    2016-10-01

    Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.

  14. Experimental Demonstration of 6-Mode Division Multiplexed NG-PON2: Cost Effective 40 Gbit/s/Spatial-Mode Access Based on 3D Laser Inscribed Photonic Lanterns

    DEFF Research Database (Denmark)

    Asif, Rameez; Hu, Hao; Mitchell, Paul;

    We report the first space-division-multiplexed based symmetric NG-PON2 network by effi- ciently transmitting 40 Gbit/s/spatial-mode. Error free transmission (BER of 10−9 ) is obtained for all the downstream and upstream data tributaries over 1-km 6-spatial-mode FMF without using MIMO DSP......We report the first space-division-multiplexed based symmetric NG-PON2 network by effi- ciently transmitting 40 Gbit/s/spatial-mode. Error free transmission (BER of 10−9 ) is obtained for all the downstream and upstream data tributaries over 1-km 6-spatial-mode FMF without using MIMO DSP...

  15. Laser processes and analytics for high power 3D battery materials

    Science.gov (United States)

    Pfleging, W.; Zheng, Y.; Mangang, M.; Bruns, M.; Smyrek, P.

    2016-03-01

    Laser processes for cutting, modification and structuring of energy storage materials such as electrodes, separator materials and current collectors have a great potential in order to minimize the fabrication costs and to increase the performance and operational lifetime of high power lithium-ion-batteries applicable for stand-alone electric energy storage devices and electric vehicles. Laser direct patterning of battery materials enable a rather new technical approach in order to adjust 3D surface architectures and porosity of composite electrode materials such as LiCoO2, LiMn2O4, LiFePO4, Li(NiMnCo)O2, and Silicon. The architecture design, the increase of active surface area, and the porosity of electrodes or separator layers can be controlled by laser processes and it was shown that a huge impact on electrolyte wetting, lithium-ion diffusion kinetics, cell life-time and cycling stability can be achieved. In general, the ultrafast laser processing can be used for precise surface texturing of battery materials. Nevertheless, regarding cost-efficient production also nanosecond laser material processing can be successfully applied for selected types of energy storage materials. A new concept for an advanced battery manufacturing including laser materials processing is presented. For developing an optimized 3D architecture for high power composite thick film electrodes electrochemical analytics and post mortem analytics using laser-induced breakdown spectroscopy were performed. Based on mapping of lithium in composite electrodes, an analytical approach for studying chemical degradation in structured and unstructured lithium-ion batteries will be presented.

  16. CO2 laser-inscribed low-cost, shortest-period long-period fibre grating in B–Ge co-doped fibre for high-sensitivity strain measurement

    Indian Academy of Sciences (India)

    Smita Chaubey; Sanjay Kher; Jai Kishore; S M Oak

    2014-02-01

    We have developed high sensitivity long-period fibre gratings (LPGs) in B–Ge codoped fibre for strain sensing application. These LPGs are shortest grating period (180 m) LPGs inscribed in B–Ge co-doped fibre using CO2 laser-based grating inscription set-up. Strain sensitivity of 1.77 dB/mε has been obtained for attenuation band corresponding to the turnaround point mode. TAP operation of LPG facilitates intensity-based detection using simple optical power meter instead of wavelength-based detection.

  17. Development of an algorithm to measure defect geometry using a 3D laser scanner

    Science.gov (United States)

    Kilambi, S.; Tipton, S. M.

    2012-08-01

    Current fatigue life prediction models for coiled tubing (CT) require accurate measurements of the defect geometry. Three-dimensional (3D) laser imaging has shown promise toward becoming a nondestructive, non-contacting method of surface defect characterization. Laser imaging provides a detailed photographic image of a flaw, in addition to a detailed 3D surface map from which its critical dimensions can be measured. This paper describes algorithms to determine defect characteristics, specifically depth, width, length and projected cross-sectional area. Curve-fitting methods were compared and implicit algebraic fits have higher probability of convergence compared to explicit geometric fits. Among the algebraic fits, the Taubin circle fit has the least error. The algorithm was able to extract the dimensions of the flaw geometry from the scanned data of CT to within a tolerance of about 0.127 mm, close to the tolerance specified for the laser scanner itself, compared to measurements made using traveling microscopes. The algorithm computes the projected surface area of the flaw, which could previously only be estimated from the dimension measurements and the assumptions made about cutter shape. Although shadows compromised the accuracy of the shape characterization, especially for deep and narrow flaws, the results indicate that the algorithm with laser scanner can be used for non-destructive evaluation of CT in the oil field industry. Further work is needed to improve accuracy, to eliminate shadow effects and to reduce radial deviation.

  18. Active optical system for advanced 3D surface structuring by laser remelting

    Science.gov (United States)

    Pütsch, O.; Temmler, A.; Stollenwerk, J.; Willenborg, E.; Loosen, P.

    2015-03-01

    Structuring by laser remelting enables completely new possibilities for designing surfaces since material is redistributed but not wasted. In addition to technological advantages, cost and time benefits yield from shortened process times, the avoidance of harmful chemicals and the elimination of subsequent finishing steps such as cleaning and polishing. The functional principle requires a completely new optical machine technology that maintains the spatial and temporal superposition and manipulation of three different laser beams emitted from two laser sources of different wavelength. The optical system has already been developed and demonstrated for the processing of flat samples of hot and cold working steel. However, since particularly the structuring of 3D-injection molds represents an application example of high innovation potential, the optical system has to take into account the elliptical beam geometry that occurs when the laser beams irradiate a curved surface. To take full advantage of structuring by remelting for the processing of 3D surfaces, additional optical functionality, called EPS (elliptical pre-shaping) has to be integrated into the existing set-up. The development of the beam shaping devices not only requires the analysis of the mechanisms of the beam projection but also a suitable optical design. Both aspects are discussed in this paper.

  19. Mapping Infrared Data on Terrestrial Laser Scanning 3D Models of Buildings

    Directory of Open Access Journals (Sweden)

    Mattia Previtali

    2011-08-01

    Full Text Available A new 3D acquisition and processing procedure to map RGB, thermal IR and near infrared images (NIR on a detailed 3D model of a building is presented. The combination and fusion of different data sources allows the generation of 3D thermal data useful for different purposes such as localization, visualization, and analysis of anomalies in contemporary architecture. The classic approach, which is currently used to map IR images on 3D models, is based on the direct registration of each single image by using space resection or homography. This approach is largely time consuming and in many cases suffers from poor object texture. To overcome these drawbacks, a “bi-camera” system coupling a thermal IR camera to a RGB camera has been setup. The second sensor is used to orient the “bi-camera” through a photogrammetric network also including free-handled camera stations to strengthen the block geometry. In many cases the bundle adjustment can be executed through a procedure for automatic extraction of tie points. Terrestrial laser scanning is adopted to retrieve the 3D model building. The integration of a low-cost NIR camera accumulates further radiometric information on the final 3D model. The use of such a sensor has not been exploited until now to assess the conservation state of buildings. Here some interesting findings from this kind of analysis are reported. The paper shows the methodology and its experimental application to a couple of buildings in the main Campus of Politecnico di Milano University, where IR thermography has previously been carried out for conservation and maintenance purposes.

  20. Adaptive laser beam forming for laser shock micro-forming for 3D MEMS devices fabrication

    Science.gov (United States)

    Zou, Ran; Wang, Shuliang; Wang, Mohan; Li, Shuo; Huang, Sheng; Lin, Yankun; Chen, Kevin P.

    2016-07-01

    Laser shock micro-forming is a non-thermal laser forming method that use laser-induced shockwave to modify surface properties and to adjust shapes and geometry of work pieces. In this paper, we present an adaptive optical technique to engineer spatial profiles of the laser beam to exert precision control on the laser shock forming process for free-standing MEMS structures. Using a spatial light modulator, on-target laser energy profiles are engineered to control shape, size, and deformation magnitude, which has led to significant improvement of the laser shock processing outcome at micrometer scales. The results presented in this paper show that the adaptive-optics laser beam forming is an effective method to improve both quality and throughput of the laser forming process at micrometer scales.

  1. Long-range laser scanning and 3D imaging for the Gneiss quarries survey

    Science.gov (United States)

    Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico

    2016-04-01

    In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same

  2. Computational ghost imaging versus imaging laser radar for 3D imaging

    CERN Document Server

    Hardy, Nicholas D

    2012-01-01

    Ghost imaging has been receiving increasing interest for possible use as a remote-sensing system. There has been little comparison, however, between ghost imaging and the imaging laser radars with which it would be competing. Toward that end, this paper presents a performance comparison between a pulsed, computational ghost imager and a pulsed, floodlight-illumination imaging laser radar. Both are considered for range-resolving (3D) imaging of a collection of rough-surfaced objects at standoff ranges in the presence of atmospheric turbulence. Their spatial resolutions and signal-to-noise ratios are evaluated as functions of the system parameters, and these results are used to assess each system's performance trade-offs. Scenarios in which a reflective ghost-imaging system has advantages over a laser radar are identified.

  3. Recent development of 3D imaging laser sensor in Mitsubishi Electric Corporation

    Science.gov (United States)

    Imaki, M.; Kotake, N.; Tsuji, H.; Hirai, A.; Kameyama, S.

    2013-09-01

    We have been developing 3-D imaging laser sensors for several years, because they can acquire the additional information of the scene, i.e. the range data. It enhances the potential to detect unwanted people and objects, the sensors can be utilized for applications such as safety control and security surveillance, and so forth. In this paper, we focus on two types of our sensors, which are high-frame-rate type and compact-type. To realize the high-frame-rate type system, we have developed two key devices: the linear array receiver which has 256 single InAlAs-APD detectors and the read-out IC (ROIC) array which is fabricated in SiGe-BiCMOS process, and they are connected electrically to each other. Each ROIC measures not only the intensity, but also the distance to the scene by high-speed analog signal processing. In addition, by scanning the mirror mechanically in perpendicular direction to the linear image receiver, we have realized the high speed operation, in which the frame rate is over 30 Hz and the number of pixels is 256 x 256. In the compact-type 3-D imaging laser sensor development, we have succeeded in downsizing the transmitter by scanning only the laser beam with a two-dimensional MEMS scanner. To obtain wide fieldof- view image, as well as the angle of the MEMS scanner, the receiving optical system and the large area receiver are needed. We have developed the large detecting area receiver that consists of 32 rectangular detectors, where the output signals of each detector are summed up. In this phase, our original circuit evaluates each signal level, removes the low-level signals, and sums them, in order to improve the signalto- noise ratio. In the following paper, we describe the system configurations and the recent experimental results of the two types of our 3-D imaging laser sensors.

  4. Laser 3-D measuring system and real-time visual feedback for teaching and correcting breathing

    Science.gov (United States)

    Povšič, Klemen; Fležar, Matjaž; Možina, Janez; Jezeršek, Matija

    2012-03-01

    We present a novel method for real-time 3-D body-shape measurement during breathing based on the laser multiple-line triangulation principle. The laser projector illuminates the measured surface with a pattern of 33 equally inclined light planes. Simultaneously, the camera records the distorted light pattern from a different viewpoint. The acquired images are transferred to a personal computer, where the 3-D surface reconstruction, shape analysis, and display are performed in real time. The measured surface displacements are displayed with a color palette, which enables visual feedback to the patient while breathing is being taught. The measuring range is approximately 400×600×500 mm in width, height, and depth, respectively, and the accuracy of the calibrated apparatus is +/-0.7 mm. The system was evaluated by means of its capability to distinguish between different breathing patterns. The accuracy of the measured volumes of chest-wall deformation during breathing was verified using standard methods of volume measurements. The results show that the presented 3-D measuring system with visual feedback has great potential as a diagnostic and training assistance tool when monitoring and evaluating the breathing pattern, because it offers a simple and effective method of graphical communication with the patient.

  5. Lorentz boosted frame simulation of Laser wakefield acceleration in quasi-3D geometry

    CERN Document Server

    Yu, Peicheng; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Meyers, Michael D; Tsung, Frank S; Decyk, Viktor K; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2015-01-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\\beta_b c$ towards the laser, which can lead to a computational speedup of $\\sim \\gamma_b^2=(1-\\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simul...

  6. Microcapsules and 3D customizable shelled microenvironments from laser direct-written microbeads.

    Science.gov (United States)

    Kingsley, David M; Dias, Andrew D; Corr, David T

    2016-10-01

    Microcapsules are shelled 3D microenvironments, with a liquid core. These core-shelled structures enable cell-cell contact, cellular proliferation and aggregation within the capsule, and can be utilized for controlled release of encapsulated contents. Traditional microcapsule fabrication methods provide limited control of capsule size, and are unable to control capsule placement. To overcome these limitations, we demonstrate size and spatial control of poly-l-lysine and chitosan microcapsules, using laser direct-write (LDW) printing, and subsequent processing, of alginate microbeads. Additionally, microbeads were used as volume pixels (voxels) to form continuous 3D hydrogel structures, which were processed like capsules, to form custom shelled aqueous-core 3D structures of prescribed geometry; such as strands, rings, and bifurcations. Heterogeneous structures were also created with controlled initial locations of different cell types, to demonstrate the ability to prescribe cell signaling (heterotypic and homotypic) in co-culture conditions. Herein, we demonstrate LDW's ability to fabricate intricate 3D structures, essentially with "printed macroporosity," and to precisely control structural composition by bottom-up fabrication in a bead-by-bead manner. The structural and compositional control afforded by this process enables the creation of a wide range of new constructs, with many potential applications in tissue engineering and regenerative medicine. Biotechnol. Bioeng. 2016;113: 2264-2274. © 2016 Wiley Periodicals, Inc. PMID:27070458

  7. Full Waveform Analysis for Long-Range 3D Imaging Laser Radar

    Directory of Open Access Journals (Sweden)

    Andrew M. Wallace

    2010-01-01

    Full Text Available The new generation of 3D imaging systems based on laser radar (ladar offers significant advantages in defense and security applications. In particular, it is possible to retrieve 3D shape information directly from the scene and separate a target from background or foreground clutter by extracting a narrow depth range from the field of view by range gating, either in the sensor or by postprocessing. We discuss and demonstrate the applicability of full-waveform ladar to produce multilayer 3D imagery, in which each pixel produces a complex temporal response that describes the scene structure. Such complexity caused by multiple and distributed reflection arises in many relevant scenarios, for example in viewing partially occluded targets, through semitransparent materials (e.g., windows and through distributed reflective media such as foliage. We demonstrate our methodology on 3D image data acquired by a scanning time-of-flight system, developed in our own laboratories, which uses the time-correlated single-photon counting technique.

  8. 3D Microporous Scaffolds Manufactured via Combination of Fused Filament Fabrication and Direct Laser Writing Ablation

    Directory of Open Access Journals (Sweden)

    Mangirdas Malinauskas

    2014-09-01

    Full Text Available A 3D printing fused filament fabrication (FFF approach has been implemented for the creation of microstructures having an internal 3D microstructure geometry. These objects were produced without any sacrificial structures or additional support materials, just by precisely tuning the nozzle heating, fan cooling and translation velocity parameters. The manufactured microporous structures out of polylactic acid (PLA had fully controllable porosity (20%–60% and consisted of desired volume pores (~0.056 μm3. The prepared scaffolds showed biocompatibility and were suitable for the primary stem cell growth. In addition, direct laser writing (DLW ablation was employed to modify the surfaces of the PLA structures, drill holes, as well as shape the outer geometries of the created objects. The proposed combination of FFF printing with DLW offers successful fabrication of 3D microporous structures with functionalization capabilities, such as the modification of surfaces, the generation of grooves and microholes and cutting out precisely shaped structures (micro-arrows, micro-gears. The produced structures could serve as biomedical templates for cell culturing, as well as biodegradable implants for tissue engineering. The additional micro-architecture is important in connection with the cell types used for the intention of cell growing. Moreover, we show that surface roughness can be modified at the nanoscale by immersion into an acetone bath, thus increasing the hydrophilicity. The approach is not limited to biomedical applications, it could be employed for the manufacturing of bioresorbable 3D microfluidic and micromechanic structures.

  9. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    Science.gov (United States)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  10. Development of scanning laser sensor for underwater 3D imaging with the coaxial optics

    Science.gov (United States)

    Ochimizu, Hideaki; Imaki, Masaharu; Kameyama, Shumpei; Saito, Takashi; Ishibashi, Shoujirou; Yoshida, Hiroshi

    2014-06-01

    We have developed the scanning laser sensor for underwater 3-D imaging which has the wide scanning angle of 120º (Horizontal) x 30º (Vertical) with the compact size of 25 cm diameter and 60 cm long. Our system has a dome lens and a coaxial optics to realize both the wide scanning angle and the compactness. The system also has the feature in the sensitivity time control (STC) circuit, in which the receiving gain is increased according to the time of flight. The STC circuit contributes to detect a small signal by suppressing the unwanted signals backscattered by marine snows. We demonstrated the system performance in the pool, and confirmed the 3-D imaging with the distance of 20 m. Furthermore, the system was mounted on the autonomous underwater vehicle (AUV), and demonstrated the seafloor mapping at the depth of 100 m in the ocean.

  11. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-07-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications.

  12. Robust Locally Weighted Regression For Ground Surface Extraction In Mobile Laser Scanning 3D Data

    Science.gov (United States)

    Nurunnabi, A.; West, G.; Belton, D.

    2013-10-01

    A new robust way for ground surface extraction from mobile laser scanning 3D point cloud data is proposed in this paper. Fitting polynomials along 2D/3D points is one of the well-known methods for filtering ground points, but it is evident that unorganized point clouds consist of multiple complex structures by nature so it is not suitable for fitting a parametric global model. The aim of this research is to develop and implement an algorithm to classify ground and non-ground points based on statistically robust locally weighted regression which fits a regression surface (line in 2D) by fitting without any predefined global functional relation among the variables of interest. Afterwards, the z (elevation)-values are robustly down weighted based on the residuals for the fitted points. The new set of down weighted z-values along with x (or y) values are used to get a new fit of the (lower) surface (line). The process of fitting and down-weighting continues until the difference between two consecutive fits is insignificant. Then the final fit represents the ground level of the given point cloud and the ground surface points can be extracted. The performance of the new method has been demonstrated through vehicle based mobile laser scanning 3D point cloud data from urban areas which include different problematic objects such as short walls, large buildings, electric poles, sign posts and cars. The method has potential in areas like building/construction footprint determination, 3D city modelling, corridor mapping and asset management.

  13. Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces

    Science.gov (United States)

    Wang, Yutao; Feng, Hsi-Yung

    2016-06-01

    Inspecting objects with reflective surfaces using 3D laser scanning is a demanded but challenging part inspection task due to undesirable specular reflections, which produce extensive outliers in the scanned point cloud. These outliers need to be removed in order to alleviate subsequent data processing issues. Many existing automatic outlier removal methods do not detect outliers according to the outlier formation properties. As a result, these methods only offer limited capabilities in removing extensive and complex outliers from scanning objects with reflective surfaces. This paper reports an empirical study which experimentally investigates the outlier formation characteristics in relation to the scanning orientation of the laser probe. The objective is to characterize the scanning orientation effects on outlier formation in order to facilitate the development of an effective outlier detection and removal method. Such an experimental investigation was hardly done before. It has been found in this work that scanning orientation can directly affect outlier extensity and occurrence in 3D laser scanning. A general guidance on proper scan path planning can then be provided with an aim to reduce the occurrence of outliers. Further, the observed dependency of outlier formation on scanning orientation can be exploited to facilitate effective and automatic outlier detection and removal.

  14. Automatic Reconstruction of 3D Building Models from Terrestrial Laser Scanner Data

    Science.gov (United States)

    El Meouche, R.; Rezoug, M.; Hijazi, I.; Maes, D.

    2013-11-01

    With modern 3D laser scanners we can acquire a large amount of 3D data in only a few minutes. This technology results in a growing number of applications ranging from the digitalization of historical artifacts to facial authentication. The modeling process demands a lot of time and work (Tim Volodine, 2007). In comparison with the other two stages, the acquisition and the registration, the degree of automation of the modeling stage is almost zero. In this paper, we propose a new surface reconstruction technique for buildings to process the data obtained by a 3D laser scanner. These data are called a point cloud which is a collection of points sampled from the surface of a 3D object. Such a point cloud can consist of millions of points. In order to work more efficiently, we worked with simplified models which contain less points and so less details than a point cloud obtained in situ. The goal of this study was to facilitate the modeling process of a building starting from 3D laser scanner data. In order to do this, we wrote two scripts for Rhinoceros 5.0 based on intelligent algorithms. The first script finds the exterior outline of a building. With a minimum of human interaction, there is a thin box drawn around the surface of a wall. This box is able to rotate 360° around an axis in a corner of the wall in search for the points of other walls. In this way we can eliminate noise points. These are unwanted or irrelevant points. If there is an angled roof, the box can also turn around the edge of the wall and the roof. With the different positions of the box we can calculate the exterior outline. The second script draws the interior outline in a surface of a building. By interior outline we mean the outline of the openings like windows or doors. This script is based on the distances between the points and vector characteristics. Two consecutive points with a relative big distance will form the outline of an opening. Once those points are found, the interior outline

  15. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    CERN Document Server

    Zelenogorskii, V V; Gacheva, E I; Gelikonov, G V; Krasilnikov, M; Mart'yanov, M A; Mironov, S Yu; Potemkin, A K; Syresin, E M; Stephan, F; Khazanov, E A

    2014-01-01

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s(-1) and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 mu s in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained.The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector.

  16. Real time 3D pattern recognition using laser scanning and a pipeline processor

    International Nuclear Information System (INIS)

    Real time recognition of three dimensional surfaces in scenes where objects are partially occluded and in harsh environments is a challenging problem for advanced 3D vision systems. Active laser ranging sensors measure surface depth directly and therefore avoid the extensive computation required for reconstruction of an approximate depth map from multiple camera views. Active scanners have also proven to be effective for recognizing objects in low contrast scenes. The capability for real time object recognition is introduced through the use of a pipeline processor for rapid extraction of three dimensional features. This paper describes a prototype active laser scanner and pipeline processor developed at the Environmental Research Institute of Michigan which is currently being refined for use in advanced sensor based robot applications. Examples of three dimensional imagery and the results of applying surface measurement algorithms with the Cytocomputer will be shown

  17. Preliminary study of surface modification of 3D Poly (ɛ - caprolactone) scaffolds by ultrashort laser irradiation

    Science.gov (United States)

    Daskalova, A.; Bliznakova, I.; Iordanova, E.; Yankov, G.; Grozeva, M.; Ostrowska, B.

    2016-02-01

    Three - dimensional poly (e- caprolactone) (PCL) scaffolds as suitable biocompatible material for manufacturing tissue replacements are utilized for tissue engineering purposes. The porous structures are fabricated by rapid prototyping method (Bioscaffolder) based on hypodermic dispensing process. The consecution of experiments demonstrated the possibility on creation of surface micro formations, applying different laser fluences, at 1 kHz repetition rate for fixed time of exposure 1 sec at 800 nm central wavelength. The combination of both methods offers possibilities for successful production of 3D matrices with modified surfaces. The obtained results of laser - induced surface modifications of PCL demonstrate the potential of the method to microprocess this kind of material for possible applications in regenerative medicine.

  18. Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications

    Science.gov (United States)

    Budzan, Sebastian; Kasprzyk, Jerzy

    2016-02-01

    The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.

  19. Laser-Micro/Nanofabricated 3D Polymers for Tissue Engineering Applications

    Science.gov (United States)

    Danilevičius, P.; Žukauskas, A.; Bičkauskaitė, G.; Purlys, V.; Rutkauskas, M.; Gertus, T.; Paipulas, D.; Matukaitė, J.; Baltriukienė, D.; Malinauskas, M.

    2011-01-01

    A multi-photon polymerization system has been designed based on a pulsed irradiation light source (diode-pumped solid state femtosecond laser Yb:KGW, 300 fs, 1030 nm, 1-200 kHz) in combination with large working area and high precision linear motor driven stages (100×100×50 mm3). The system is intended for high resolution and throughput 3D micro- and nanofabrication and enables manufacturing the polymeric templates up to 1 cm2 areas with sub-micrometer resolution. These can be used for producing 3D artificial polymeric scaffolds to be applied for growing cells, specifically, in the tissue engineering. The bio-compatibility of different acrylate, hybrid organic-inorganic and biodegradable polymeric materials is evaluated experimentally in vitro. Variously sized and shaped polymeric scaffolds of biocompatible photopolymers with intricate 3D geometry were successfully fabricated. Proliferation tests for adult rabbit myogenic stem cells have shown the applicability of artificial scaffolds in biomedicine practice.

  20. Numerical Simulation for Three-Dimensional (3D) Unsteady State Temperature Field in Circumferential Laser Oxygen Cutting of Pipes

    Institute of Scientific and Technical Information of China (English)

    Kaijin HUANG; Dawen ZENG; Changsheng XIE; Desheng XU

    2003-01-01

    A 3D unsteady state numerical model of heat transfer in the circumferential laser oxygen cutting of pipes wasdeveloped. In order to minimize the computing time required for solving the finite difference equations as much aspossible, the alternating direct

  1. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    Science.gov (United States)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3

  2. Documentation and Instructions for Running Two Python Scripts that Aid in Setting up 3D Measurements using the Polytec 3D Scanning Laser Doppler Vibrometer.

    Energy Technology Data Exchange (ETDEWEB)

    Rohe, Daniel Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-24

    Sandia National Laboratories has recently purchased a Polytec 3D Scanning Laser Doppler Vibrometer for vibration measurement. This device has proven to be a very nice tool for making vibration measurements, and has a number of advantages over traditional sensors such as accelerometers. The non-contact nature of the laser vibrometer means there is no mass loading due to measuring the response. Additionally, the laser scanning heads can position the laser spot much more quickly and accurately than placing an accelerometer or performing a roving hammer impact. The disadvantage of the system is that a significant amount of time must be invested to align the lasers with each other and the part so that the laser spots can be accurately positioned. The Polytec software includes a number of nice tools to aid in this procedure; however, certain portions are still tedious. Luckily, the Polytec software is readily extensible by programming macros for the system, so tedious portions of the procedure can be made easier by automating the process. The Polytec Software includes a WinWrap (similar to Visual Basic) editor and interface to run macros written in that programming language. The author, however, is much more proficient in Python, and the latter also has a much larger set of libraries that can be used to create very complex macros, while taking advantage of Python’s inherent readability and maintainability.

  3. The development of laser-plasma interaction program LAP3D on thousands of processors

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaoyan, E-mail: hu-xiaoyan@iapcm.ac.cn; Hao, Liang; Liu, Zhanjun; Zheng, Chunyang; Li, Bin, E-mail: li.bin@iapcm.ac.cn; Guo, Hong [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

    2015-08-15

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  4. The development of laser-plasma interaction program LAP3D on thousands of processors

    Directory of Open Access Journals (Sweden)

    Xiaoyan Hu

    2015-08-01

    Full Text Available Modeling laser-plasma interaction (LPI processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS, stimulated Raman backscattering (SRS, non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors.

  5. Electromagnetic induction sounding and 3D laser imaging in support of a Mars methane analogue mission

    Science.gov (United States)

    Boivin, A.; Lai, P.; Samson, C.; Cloutis, E.; Holladay, S.; Monteiro Santos, F. A.

    2013-07-01

    The Mars Methane Analogue Mission simulates a micro-rover mission whose purpose is to detect, analyze, and determine the source of methane emissions on the planet's surface. As part of this project, both an electromagnetic induction sounder (EMIS) and a high-resolution triangulation-based 3D laser scanner were tested at the Jeffrey open-pit asbestos mine to identify and characterize geological environments favourable to the occurrence of methane. The presence of serpentinite in the form of chrysotile (asbestos), magnesium carbonate, and iron oxyhydroxides make the mine a likely location for methane production. The EMIS clearly delineated the contacts between the two geological units found at the mine, peridotite and slate, which are separated by a shear zone. Both the peridotite and slate units have low and uniform apparent electrical conductivity and magnetic susceptibility, while the shear zone has much higher conductivity and susceptibility, with greater variability. The EMIS data were inverted and the resulting model captured lateral conductivity variations through the different bedrock geological units buried beneath a gravel road. The 3D point cloud data acquired by the laser scanner were fitted with triangular meshes where steeply dipping triangles were plotted in dark grey to accentuate discontinuities. The resulting images were further processed using Sobel edge detection to highlight networks of fractures which are potential pathways for methane seepage.

  6. Laser 3D micro/nanofabrication of polymers for tissue engineering applications

    Science.gov (United States)

    Danilevičius, P.; Rekštytė, S.; Balčiūnas, E.; Kraniauskas, A.; Širmenis, R.; Baltriukienė, D.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.; Malinauskas, M.

    2013-02-01

    In this work, we applied a constructed multi-photon polymerization system based on diode-pumped solid state femtosecond Yb:KGW laser used as pulsed irradiation light source (300 fs, 1030 nm, 200 kHz) in combination with large area high sample translation velocity (up to 300 mm/s) linear motor-driven stages (100×100×50 mm3) designed for high resolution and throughput 3D micro/nanofabrication. It enables rapid prototyping out of most polymers up to cm in scale with sub-micrometer spatial resolution. This can be used for production of three-dimensional artificial polymeric scaffolds applied for cell growth and expansion experiments as well as tissue engineering. Biocompatibilities of different acrylate, hybrid organic-inorganic and biodegradable polymeric materials were evaluated experimentally in vitro. Various in size and form scaffolds of biocompatible photopolymers were successfully fabricated having intricate 3D geometry, thus demonstrating the potential of the applied method. Adult rabbit myogenic stem cell proliferation tests show artificial scaffolds to be applicable for biomedical practice. Additionally, a micromolding technique was used for a rapid multiplication of adequate laser manufactured structures.

  7. Mapping Nearby Terrain in 3D by Use of a Grid of Laser Spots

    Science.gov (United States)

    Padgett, Curtis; Liebe, Carl; Chang, Johnny; Brown, Kenneth

    2007-01-01

    A proposed optoelectronic system, to be mounted aboard an exploratory robotic vehicle, would be used to generate a three-dimensional (3D) map of nearby terrain and obstacles for purposes of navigating the vehicle across the terrain and avoiding the obstacles. The difference between this system and the other systems would lie in the details of implementation. In this system, the illumination would be provided by a laser. The beam from the laser would pass through a two-dimensional diffraction grating, which would divide the beam into multiple beams propagating in different, fixed, known directions. These beams would form a grid of bright spots on the nearby terrain and obstacles. The centroid of each bright spot in the image would be computed. For each such spot, the combination of (1) the centroid, (2) the known direction of the light beam that produced the spot, and (3) the known baseline would constitute sufficient information for calculating the 3D position of the spot.

  8. The development of laser-plasma interaction program LAP3D on thousands of processors

    International Nuclear Information System (INIS)

    Modeling laser-plasma interaction (LPI) processes in real-size experiments scale is recognized as a challenging task. For explorering the influence of various instabilities in LPI processes, a three-dimensional laser and plasma code (LAP3D) has been developed, which includes filamentation, stimulated Brillouin backscattering (SBS), stimulated Raman backscattering (SRS), non-local heat transport and plasmas flow computation modules. In this program, a second-order upwind scheme is applied to solve the plasma equations which are represented by an Euler fluid model. Operator splitting method is used for solving the equations of the light wave propagation, where the Fast Fourier translation (FFT) is applied to compute the diffraction operator and the coordinate translations is used to solve the acoustic wave equation. The coupled terms of the different physics processes are computed by the second-order interpolations algorithm. In order to simulate the LPI processes in massively parallel computers well, several parallel techniques are used, such as the coupled parallel algorithm of FFT and fluid numerical computation, the load balance algorithm, and the data transfer algorithm. Now the phenomena of filamentation, SBS and SRS have been studied in low-density plasma successfully with LAP3D. Scalability of the program is demonstrated with a parallel efficiency above 50% on about ten thousand of processors

  9. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs.

    Science.gov (United States)

    Xiong, Ruitong; Zhang, Zhengyi; Chai, Wenxuan; Huang, Yong; Chrisey, Douglas B

    2015-12-22

    Laser printing is an orifice-free printing approach and has been investigated for the printing of two-dimensional patterns and simple three-dimensional (3D) constructs. To demonstrate the potential of laser printing as an effective bioprinting technique, both straight and Y-shaped tubes have been freeform printed using two different bioinks: 8% alginate solution and 2% alginate-based mouse fibroblast suspension. It has been demonstrated that 3D cellular tubes, including constructs with bifurcated overhang structures, can be adequately fabricated under optimal printing conditions. The post-printing cell viabilities immediately after printing as well as after 24 h incubation are above 60% for printed straight and Y-shaped fibroblast tubes. During fabrication, overhang and spanning structures can be printed using a dual-purpose crosslinking solution, which also functions as a support material. The advancement distance of gelation reaction front after a cycle time of the receiving platform downward motion should be estimated for experimental planning. The optimal downward movement step size of receiving platform should be chosen to be equal to the height of ungelled portion of a previously printed layer.

  10. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    Science.gov (United States)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  11. Discovering the Inscribed Angle Theorem

    Science.gov (United States)

    Roscoe, Matt B.

    2012-01-01

    Learning to play tennis is difficult. It takes practice, but it also helps to have a coach--someone who gives tips and pointers but allows the freedom to play the game on one's own. Learning to act like a mathematician is a similar process. Students report that the process of proving the inscribed angle theorem is challenging and, at times,…

  12. 3D MHD Simulations of Laser Plasma Guiding in Curved Magnetic Field

    Science.gov (United States)

    Roupassov, S.; Rankin, R.; Tsui, Y.; Capjack, C.; Fedosejevs, R.

    1999-11-01

    The guiding and confinement of laser produced plasma in a curved magnetic field has been investigated numerically. These studies were motivated by experiments on pulsed laser deposition of diamond-like films [1] in which a 1kG magnetic field in a curved solenoid geometry was utilized to steer a carbon plasma around a curved trajectory and thus to separate it from unwanted macroparticles produced by the laser ablation. The purpose of the modeling was to characterize the plasma dynamics during the propagation through the magnetic guide field and to investigate the effect of different magnetic field configurations. A 3D curvilinear ADI code developed on the basis of an existing Cartesian code [2] was employed to simulate the underlying resistive one-fluid MHD model. Issues such as large regions of low background density and nonreflective boundary conditions were addressed. Results of the simulations in a curved guide field will be presented and compared to experimental results. [1] Y.Y. Tsui, D. Vick and R. Fedosejevs, Appl. Phys. Lett. 70 (15), pp. 1953-57, 1997. [2] R. Rankin, and I. Voronkov, in "High Performance Computing Systems and Applications", pp. 59-69, Kluwer AP, 1998.

  13. X-ray imaging of laser produced plasmas by a compound 3D x-ray lens

    International Nuclear Information System (INIS)

    Pilot scheme for the study of plasma under extreme condition is implemented using a compound 3D X-ray lens. Hard X-ray image of laser plasma produced by irradiating of copper foil by intense laser pulse was recorded using this lens

  14. 3D Imaging of Nanoparticle Distribution in Biological Tissue by Laser-Induced Breakdown Spectroscopy

    Science.gov (United States)

    Gimenez, Y.; Busser, B.; Trichard, F.; Kulesza, A.; Laurent, J. M.; Zaun, V.; Lux, F.; Benoit, J. M.; Panczer, G.; Dugourd, P.; Tillement, O.; Pelascini, F.; Sancey, L.; Motto-Ros, V.

    2016-01-01

    Nanomaterials represent a rapidly expanding area of research with huge potential for future medical applications. Nanotechnology indeed promises to revolutionize diagnostics, drug delivery, gene therapy, and many other areas of research. For any biological investigation involving nanomaterials, it is crucial to study the behavior of such nano-objects within tissues to evaluate both their efficacy and their toxicity. Here, we provide the first account of 3D label-free nanoparticle imaging at the entire-organ scale. The technology used is known as laser-induced breakdown spectroscopy (LIBS) and possesses several advantages such as speed of operation, ease of use and full compatibility with optical microscopy. We then used two different but complementary approaches to achieve 3D elemental imaging with LIBS: a volume reconstruction of a sliced organ and in-depth analysis. This proof-of-concept study demonstrates the quantitative imaging of both endogenous and exogenous elements within entire organs and paves the way for innumerable applications. PMID:27435424

  15. Fast Compact Laser Shutter Using a Direct Current Motor and 3D Printing

    CERN Document Server

    Zhang, Grace H; Kawasaki, Akio; Vuletić, Vladan

    2015-01-01

    We present a mechanical laser shutter design that utilizes a DC electric motor to rotate a blade which blocks and unblocks a light beam. The blade and the main body of the shutter are modeled with computer aided design (CAD) and are produced by 3D printing. Rubber flaps are used to limit the blade's range of motion, reducing vibrations and preventing undesirable blade oscillations. At its nominal operating voltage, the shutter achieves a switching speed of (1.22 $\\pm$ 0.02) m/s with 1 ms activation delay and 10 $\\mu$s jitter in its timing performance. The shutter design is simple, easy to replicate, and highly reliable, showing no failure or degradation in performance over more than $10^8$ cycles.

  16. Low-level laser therapy in 3D cell culture model using gingival fibroblasts.

    Science.gov (United States)

    Basso, Fernanda G; Soares, Diana G; de Souza Costa, Carlos Alberto; Hebling, Josimeri

    2016-07-01

    Besides extensive data about the effects of low-level laser therapy (LLLT) on different cell types, so far, these results were obtained from monolayer cell culture models, which have limitations in terms of cell morphology and phenotype expression. Therefore, for better in vitro evaluation of the effects of LLLT, this study was performed with a 3D cell culture model, where gingival fibroblasts were seeded in collagen matrix. Cells isolated from a healthy patient were seeded in wells of 24-well plates with culture medium (DMEM) supplemented with 10 % fetal bovine serum and collagen type I solution. After 5 days, a serum-free DMEM was added to the matrices with cells that were subjected or not to three consecutive irradiations of LLLT by means of the LaserTABLE diode device (780 nm, 25 mW) at 0.5, 1.5, and 3 J/cm(2). Twenty-four hours after the last irradiation, cell viability and morphology as well as gene expression of growth factors were assessed. Histological evaluation of matrices demonstrated uniform distribution and morphology of gingival fibroblasts within the collagen matrix. LLLT at 3 J/cm(2) increased gingival fibroblast viability. Enhanced gene expression of hCOL-I and hEGF was observed for 0.5 J/cm(2), while no significant changes were detected for the other irradiation densities tested. In conclusion, LLLT promoted biostimulation of gingival fibroblasts seeded in a 3D cell culture model, demonstrating that this model can be applied for phototherapy studies and that LLLT could penetrate the collagen matrix to increase cell functions related to tissue repair. PMID:27126408

  17. High-resolution laser radar for 3D imaging in artwork cataloging, reproduction, and restoration

    Science.gov (United States)

    Ricci, Roberto; Fantoni, Roberta; Ferri de Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Massimiliano; Poggi, Claudio

    2003-10-01

    A high resolution Amplitude Modulated Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform, enabling to obtain respectively linear and cylindrical range maps. Both amplitude and phase shift of the modulating wave of back-scattered light are collected and processed, providing respectively a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image. The resolution of range measurements depends mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW (current best performances are ~100 μm). The complete object surface can be reconstructed from the sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloys, bones), with relevant applications in different fields, ranging from industrial machining to medical diagnostics, to vision in hostile environments. Examples of artwork reconstructed models (pottery, marble statues) are presented and the relevance of this technology for reverse engineering applied to cultural heritage conservation and restoration are discussed. Final 3D models can be passed to numeric control machines for rapid-prototyping, exported in standard formats for CAD/CAM purposes and made available on the Internet by adopting a virtual museum paradigm, thus possibly enabling specialists to perform remote inspections on high resolution digital reproductions of hardly accessible masterpieces.

  18. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.

    Science.gov (United States)

    Yuan, Liang Leon; Herman, Peter R

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  19. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    Science.gov (United States)

    Yuan, Liang (Leon); Herman, Peter R.

    2016-02-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  20. Direct laser writing of 3D scaffolds for neural tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Melissinaki, V; Vamvakaki, M; Ranella, A; Fotakis, C; Farsari, M [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion, Crete (Greece); Gill, A A; Ortega, I; Haycock, J W; Claeyssens, F, E-mail: M.Farsari@iesl.forth.gr, E-mail: F.Claeyssens@sheffield.ac.uk [Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield, S3 7HQ (United Kingdom)

    2011-12-15

    This study reports on the production of high-resolution 3D structures of polylactide-based materials via multi-photon polymerization and explores their use as neural tissue engineering scaffolds. To achieve this, a liquid polylactide resin was synthesized in house and rendered photocurable via attaching methacrylate groups to the hydroxyl end groups of the small molecular weight prepolymer. This resin cures easily under UV irradiation, using a mercury lamp, and under femtosecond IR irradiation. The results showed that the photocurable polylactide (PLA) resin can be readily structured via direct laser write (DLW) with a femtosecond Ti:sapphire laser and submicrometer structures can be produced. The maximum resolution achieved is 800 nm. Neuroblastoma cells were grown on thin films of the cured PLA material, and cell viability and proliferation assays revealed good biocompatibility of the material. Additionally, PC12 and NG108-15 neuroblastoma growth on bespoke scaffolds was studied in more detail to assess potential applications for neuronal implants of this material.

  1. Optical 3D laser measurement system for navigation of autonomous mobile robot

    Science.gov (United States)

    Básaca-Preciado, Luis C.; Sergiyenko, Oleg Yu.; Rodríguez-Quinonez, Julio C.; García, Xochitl; Tyrsa, Vera V.; Rivas-Lopez, Moises; Hernandez-Balbuena, Daniel; Mercorelli, Paolo; Podrygalo, Mikhail; Gurko, Alexander; Tabakova, Irina; Starostenko, Oleg

    2014-03-01

    In our current research, we are developing a practical autonomous mobile robot navigation system which is capable of performing obstacle avoiding task on an unknown environment. Therefore, in this paper, we propose a robot navigation system which works using a high accuracy localization scheme by dynamic triangulation. Our two main ideas are (1) integration of two principal systems, 3D laser scanning technical vision system (TVS) and mobile robot (MR) navigation system. (2) Novel MR navigation scheme, which allows benefiting from all advantages of precise triangulation localization of the obstacles, mostly over known camera oriented vision systems. For practical use, mobile robots are required to continue their tasks with safety and high accuracy on temporary occlusion condition. Presented in this work, prototype II of TVS is significantly improved over prototype I of our previous publications in the aspects of laser rays alignment, parasitic torque decrease and friction reduction of moving parts. The kinematic model of the MR used in this work is designed considering the optimal data acquisition from the TVS with the main goal of obtaining in real time, the necessary values for the kinematic model of the MR immediately during the calculation of obstacles based on the TVS data.

  2. Technology of Vehicle 3D Laser Scanning System Integration%车载3D 激光扫描系统集成技术

    Institute of Scientific and Technical Information of China (English)

    王力; 李广云; 李森; 杨凡; 李明磊

    2014-01-01

    移动激光扫描技术是从上世纪90年代初逐步发展起来的一门测绘技术,也是当今测绘界最为前沿的技术之一,可用于工程测量和制图等诸多领域。地面3D激光扫描仪具有测量速度快,精度高等优点。本文以奥地利RIEGL公司的地面三维激光扫描仪VZ400为例,研究将其作为移动测量系统的主要传感器所涉及的关键技术,包括联机控制、时间基准统一和空间基准统一三个方面:解析了激光扫描仪的接口定义,并结合联机控制的开发库---RiVLIB实现的仪器的联机控与数据通信;给出了基于GPS秒脉冲信号的时间同步原理,实现了系统时间基准的传递与统一;分析了移动测量系统中的坐标系,并根据地面三维激光扫描仪的实际情况,构建了单站的参数标定模型。通过本文的研究与实验,使测量系统实现常见移动测量的二维帧扫描模式以及针对重点区域的三维全景扫描模式,同时,当它闲置时还可将激光扫描仪拆卸进行静态的扫描,丰富了系统的测量方式,提高了系统的适应性与使用效率。%Mobile laser scanning technology was gradually developed as a surveying and mapping technology from the early 1990s ,and its also one of the most cutting-edge technologies in the today's field of surveying and mapping ,which can be applied for engineering surveying and mapping ,and many other fields .Terrestrial 3D laser scanner has advantages of high speed of measurement ,high precision and etc .This paper takes Austria 's Company RIEGL's terrestrial 3D laser scanner VZ400 as example ,and study the key technology it involves as the primary sensor of mobile measurement system ,including three aspects of online control ,unity of time reference and unity of spatial reference :parsing the interface definition of laser scanner ,and achieving online control and data communications of instruments with the online

  3. Technical Note: Reliability of Suchey-Brooks and Buckberry-Chamberlain methods on 3D visualizations from CT and laser scans

    DEFF Research Database (Denmark)

    Villa, Chiara; Buckberry, Jo; Cattaneo, Cristina;

    2013-01-01

    -Brooks and the Buckberry-Chamberlain methods on 3D visualizations based on CT-scans and, for the first time, on 3D visualizations from laser scans. We examined how the bone features can be evaluated on 3D visualizations and whether the different modalities (direct observations of bones, 3D visualization from CT......-scan and from laser scans) are alike to different observers. We found the best inter-observer agreement for the bones versus 3D visualizations, with the highest values for the auricular surface. Between the 3D modalities, less variability was obtained for the 3D laser visualizations. Fair inter....... In conclusion, these methods were developed for dry bones, where they perform best. The Suchey-Brooks method can be applied on 3D visualizations from CT or laser, but with less accuracy than on dry bone. The Buckberry-Chamberlain method should be modified before application on 3D visualizations. Future...

  4. 3-D nuclear analysis of the final optics of a laser driven fusion power plant

    International Nuclear Information System (INIS)

    In the High Average Power Laser (HAPL) program, power plant designs are assessed with 350 MJ yield targets driven by 40 KrF laser beams. The final optics system that focuses the laser onto the target includes a grazing incidence metallic mirror (GIMM) located at 24 m from the target with 85 angle of incidence. The GIMM is in direct line of sight of the target and has a 50 microns thick aluminum coating. Several options were considered for the substrate material. We performed three-dimensional (3-D) neutronics calculations to assess the impact of the GIMM design options on the nuclear environment at the dielectric focusing and turning mirrors. We used the recently developed MCNPX-CGM Monte Carlo code that allows performing the neutronics calculations directly in the exact CAD model. The most recent continuous energy fusion evaluated nuclear data library (FENDL-2.1) was used. One of the 40 beamlines was modeled with surrounding reflective boundaries. We considered beam duct configuration modifications such as utilizing neutron traps behind the mirrors to reduce radiation streaming. Several variance reduction techniques were utilized to reduce the statistical uncertainties. The results indicate that material choice and thickness for the GIMM impact the nuclear environment at all mirrors. The neutron flux and nuclear heating at the dielectric mirrors are a factor of ∝1.6 higher when AlBeMet is used instead of SiC as substrate in the GIMM. The fast neutron flux decreases by about two orders of magnitude as one moves from the GIMM to the focusing mirror with an additional two orders of magnitude attenuation at the turning mirror accompanied with significant spectrum softening. In this paper, the details of the analysis and results will be presented and the expected optics lifetime will be assessed. (orig.)

  5. Optimization of 3D laser scanning speed by use of combined variable step

    Science.gov (United States)

    Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.

    2014-03-01

    The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.

  6. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    Directory of Open Access Journals (Sweden)

    Stefan Paulus

    2014-07-01

    Full Text Available Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0:99 for the leaf area and R2 = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored.

  7. Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping.

    Science.gov (United States)

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-01-01

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R(2) = 0:99 for the leaf area and R(2) = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283

  8. Reliability of 3D laser-based anthropometry and comparison with classical anthropometry.

    Science.gov (United States)

    Kuehnapfel, Andreas; Ahnert, Peter; Loeffler, Markus; Broda, Anja; Scholz, Markus

    2016-01-01

    Anthropometric quantities are widely used in epidemiologic research as possible confounders, risk factors, or outcomes. 3D laser-based body scans (BS) allow evaluation of dozens of quantities in short time with minimal physical contact between observers and probands. The aim of this study was to compare BS with classical manual anthropometric (CA) assessments with respect to feasibility, reliability, and validity. We performed a study on 108 individuals with multiple measurements of BS and CA to estimate intra- and inter-rater reliabilities for both. We suggested BS equivalents of CA measurements and determined validity of BS considering CA the gold standard. Throughout the study, the overall concordance correlation coefficient (OCCC) was chosen as indicator of agreement. BS was slightly more time consuming but better accepted than CA. For CA, OCCCs for intra- and inter-rater reliability were greater than 0.8 for all nine quantities studied. For BS, 9 of 154 quantities showed reliabilities below 0.7. BS proxies for CA measurements showed good agreement (minimum OCCC > 0.77) after offset correction. Thigh length showed higher reliability in BS while upper arm length showed higher reliability in CA. Except for these issues, reliabilities of CA measurements and their BS equivalents were comparable. PMID:27225483

  9. 3D PIC simulations of electron beams created via reflection of intense laser light from a water target

    CERN Document Server

    Ngirmang, Gregory K; Feister, Scott; Morrison, John T; Chowdhury, Enam A; Frische, Kyle; Roquemore, W M

    2015-01-01

    We present 3D Particle-in-Cell (PIC) modeling of an ultra-intense laser experiment by the Extreme Light group at the Air Force Research Laboratory (AFRL) using the PIC code LSP. This is the first time PIC simulations have been performed in 3D for this experiment which involves an ultra-intense, short-pulse (30 fs) laser interacting with a water jet target at normal incidence. These 3D PIC simulation results are compared to results from 2D(3$v$) PIC simulations for both $5.4\\cdot10^{17}$ W cm$^{-2}$ and $3\\cdot10^{18}$ W cm$^{-2}$ intensities. Comparing the 2D(3$v$) and 3D simulation results, the laser-energy-to-ejected-electron-energy conversion efficiencies were comparable, but the angular distribution of ejected electrons show interesting differences with qualitative differences at higher intensity. An analytic plane-wave model is provided that provides some explanation for the angular distribution and energies of ejected electrons in the 2D(3$v$) simulations. We also performed a 3D simulation with circular...

  10. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription

    OpenAIRE

    Weijie Nie; Yuechen Jia; Vázquez de Aldana, Javier R.; Feng Chen

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 ×...

  11. Mapping Infrared Data on Terrestrial Laser Scanning 3D Models of Buildings

    OpenAIRE

    Mattia Previtali; Elisabetta Rosina; Marco Scaioni; Luigi Barazzetti; Mario Ivan Alba

    2011-01-01

    A new 3D acquisition and processing procedure to map RGB, thermal IR and near infrared images (NIR) on a detailed 3D model of a building is presented. The combination and fusion of different data sources allows the generation of 3D thermal data useful for different purposes such as localization, visualization, and analysis of anomalies in contemporary architecture. The classic approach, which is currently used to map IR images on 3D models, is based on the direct registration of each single i...

  12. Permanent 3D laser scanning system for an active landslide in Gresten (Austria)

    Science.gov (United States)

    Canli, Ekrem; Höfle, Bernhard; Hämmerle, Martin; Benni, Thiebes; Glade, Thomas

    2015-04-01

    Terrestrial laser scanners (TLS) have widely been used for high spatial resolution data acquisition of topographic features and geomorphic analyses. Existing applications encompass different landslides including rockfall, translational or rotational landslides, debris flow, but also coastal cliff erosion, braided river evolution or river bank erosion. The main advantages of TLS are (a) the high spatial sampling density of XYZ-measurements (e.g. 1 point every 2-3 mm at 10 m distance), particularly in comparison with the low data density monitoring techniques such as GNSS or total stations, (b) the millimeter accuracy and precision of the range measurement to centimeter accuracy of the final DEM, and (c) the highly dense area-wide scanning that enables to look through vegetation and to measure bare ground. One of its main constraints is the temporal resolution of acquired data due to labor costs and time requirements for field campaigns. Thus, repetition measurements are generally performed only episodically. However, for an increased scientific understanding of the processes as well as for early warning purposes, we present a novel permanent 3D monitoring setup to increase the temporal resolution of TLS measurements. This accounts for different potential monitoring deliverables such as volumetric calculations, spatio-temporal movement patterns, predictions and even alerting. This system was installed at the active Salcher landslide in Gresten (Austria) that is situated in the transition zone of the Gresten Klippenbelt (Helvetic) and the Flyschzone (Penninic). The characteristic lithofacies are the Gresten Beds of Early Jurassic age that are covered by a sequence of marly and silty beds with intercalated sandy limestones. Permanent data acquisition can be implemented into our workflow with any long-range TLS system offering fully automated capturing. We utilize an Optech ILRIS-3D scanner. The time interval between two scans is currently set to 24 hours, but can be

  13. 3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction

    Science.gov (United States)

    Zhu, Xi; Wang, Tiejun; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Niemann, K. Olaf

    2015-12-01

    Leaf water content (LWC) plays an important role in agriculture and forestry management. It can be used to assess drought conditions and wildfire susceptibility. Terrestrial laser scanner (TLS) data have been widely used in forested environments for retrieving geometrically-based biophysical parameters. Recent studies have also shown the potential of using radiometric information (backscatter intensity) for estimating LWC. However, the usefulness of backscatter intensity data has been limited by leaf surface characteristics, and incidence angle effects. To explore the idea of using LiDAR intensity data to assess LWC we normalized (for both angular effects and leaf surface properties) shortwave infrared TLS data (1550 nm). A reflectance model describing both diffuse and specular reflectance was applied to remove strong specular backscatter intensity at a perpendicular angle. Leaves with different surface properties were collected from eight broadleaf plant species for modeling the relationship between LWC and backscatter intensity. Reference reflectors (Spectralon from Labsphere, Inc.) were used to build a look-up table to compensate for incidence angle effects. Results showed that before removing the specular influences, there was no significant correlation (R2 = 0.01, P > 0.05) between the backscatter intensity at a perpendicular angle and LWC. After the removal of the specular influences, a significant correlation emerged (R2 = 0.74, P incidence angle effect. We show that it is possible to use TLS to estimate LWC for selected broadleaved plants with an R2 of 0.76 (significance level α = 0.05) at leaf level. Further investigations of leaf surface and internal structure will likely result in improvements of 3D LWC mapping for studying physiology and ecology in vegetation.

  14. Multiple Reflections and Fresnel Absorption of Gaussian Laser Beam in an Actual 3D Keyhole during Deep-Penetration Laser Welding

    OpenAIRE

    Yufeng Zou; Honggui Zhang; Yuanyong Cheng; Licheng Zeng; Xiangzhong Jin

    2012-01-01

    In deep penetration laser welding, a keyhole is formed in the material. Based on an experimentally obtained bending keyhole from low- and medium-speed laser penetration welding of glass, the keyhole profiles in both the symmetric plane are determined by polynomial fitting. Then, a 3D bending keyhole is reconstructed under the assumption of circular cross-section of the keyhole at each keyhole depth. In this paper, the behavior of focused Gaussian laser beam in the keyhole is analyzed by traci...

  15. 3D digitization methods based on laser excitation and active triangulation: a comparison

    Science.gov (United States)

    Aubreton, Olivier; Mériaudeau, Fabrice; Truchetet, Frédéric

    2016-04-01

    3D reconstruction of surfaces is an important topic in computer vision and corresponds to a large field of applications: industrial inspection, reverse engineering, object recognition, biometry, archeology… Because of the large varieties of applications, one can find in the literature a lot of approaches which can be classified into two families: passive and active [1]. Certainly because of their reliability, active approaches, using imaging system with an additional controlled light source, seem to be the most commonly used in the industrial field. In this domain, the 3D digitization approach based on active 3D triangulation has had important developments during the last ten years [2] and seems to be mature today if considering the important number of systems proposed by manufacturers. Unfortunately, the performances of active 3D scanners depend on the optical properties of the surface to digitize. As an example, on Fig 1.a, a 3D shape with a diffuse surface has been digitized with Comet V scanner (Steinbichler). The 3D reconstruction is presented on Fig 1.b. The same experiment was carried out on a similar object (same shape) but presenting a specular surface (Fig 1.c and Fig 1.d) ; it can clearly be observed, that the specularity influences of the performance of the digitization.

  16. Thermal effects in the 2D and 3D laser material marking and coloring

    Science.gov (United States)

    Sterian, P.; Mocanu, E.

    2008-06-01

    The objective of this paper is to analyze two marking laser systems and to discuss the possible industrial applications of laser techniques; the first uses a diode pumped Ytterbium fiber laser and the second a pumped flash light Nd:YAG. Starting from the phenomena of heating due to laser irradiation and the spatial profile of deposited energy we try to explain the marking technique, including the laser-assisted coloring by studying the dynamics and the evolution of the parameters involved in this process. Also we emphasize the industrial importance of the laser possibilities compared to classical methods.

  17. Development, Calibration and Evaluation of a Portable and Direct Georeferenced Laser Scanning System for Kinematic 3D Mapping

    Science.gov (United States)

    Heinz, Erik; Eling, Christian; Wieland, Markus; Klingbeil, Lasse; Kuhlmann, Heiner

    2015-12-01

    In recent years, kinematic laser scanning has become increasingly popular because it offers many benefits compared to static laser scanning. The advantages include both saving of time in the georeferencing and a more favorable scanning geometry. Often mobile laser scanning systems are installed on wheeled platforms, which may not reach all parts of the object. Hence, there is an interest in the development of portable systems, which remain operational even in inaccessible areas. The development of such a portable laser scanning system is presented in this paper. It consists of a lightweight direct georeferencing unit for the position and attitude determination and a small low-cost 2D laser scanner. This setup provides advantages over existing portable systems that employ heavy and expensive 3D laser scanners in a profiling mode. A special emphasis is placed on the system calibration, i. e. the determination of the transformation between the coordinate frames of the direct georeferencing unit and the 2D laser scanner. To this end, a calibration field is used, which consists of differently orientated georeferenced planar surfaces, leading to estimates for the lever arms and boresight angles with an accuracy of mm and one-tenth of a degree. Finally, point clouds of the mobile laser scanning system are compared with georeferenced point clouds of a high-precision 3D laser scanner. Accordingly, the accuracy of the system is in the order of cm to dm. This is in good agreement with the expected accuracy, which has been derived from the error propagation of previously estimated variance components.

  18. The effect of porosity on cell ingrowth into accurately defined, laser-made, polylactide-based 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Danilevicius, Paulius; Georgiadi, Leoni [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Pateman, Christopher J.; Claeyssens, Frederik [Kroto Research Institute, Department of Materials Science and Engineering, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chatzinikolaidou, Maria, E-mail: mchatzin@materials.uoc.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece); Department of Materials Science and Technology, University of Crete, PO Box 2208, 71303 Heraklion (Greece); Farsari, Maria, E-mail: mfarsari@iesl.forth.gr [Foundation for Research and Technology Hellas (FORTH), Institute of Electronic Structure and Laser (IESL), N Plastira 100, 70013 Heraklion (Greece)

    2015-05-01

    Highlights: • We studied the porosity of laser-made 3D scaffolds on MC3T3-E1 pre-osteoblastic cells. • We made polylactide 3D scaffolds with pores 25–110 μm. - Abstract: The aim of this study is to demonstrate the accuracy required for the investigation of the role of solid scaffolds’ porosity in cell proliferation. We therefore present a qualitative investigation into the effect of porosity on MC3T3-E1 pre-osteoblastic cell ingrowth of three-dimensional (3D) scaffolds fabricated by direct femtosecond laser writing. The material we used is a purpose made photosensitive pre-polymer based on polylactide. We designed and fabricated complex, geometry-controlled 3D scaffolds with pore sizes ranging from 25 to 110 μm, representing porosities 70%, 82%, 86%, and 90%. The 70% porosity scaffolds did not support cell growth initially and in the long term. For the other porosities, we found a strong adhesion of the pre-osteoblastic cells from the first hours after seeding and a remarkable proliferation increase after 3 weeks and up to 8 weeks. The 86% porosity scaffolds exhibited a higher efficiency compared to 82% and 90%. In addition, bulk material degradation studies showed that the employed, highly-acrylated polylactide is degradable. These findings support the potential use of the proposed material and the scaffold fabrication technique in bone tissue engineering.

  19. Application of 3D laser scanning technology in historical building preservation: a case study of a Chinese temple

    Science.gov (United States)

    Chang, Yu Min; Lu, Nien Hua; Wu, Tsung Chiang

    2005-06-01

    This study applies 3D Laser scanning technology to develop a high-precision measuring system for digital survey of historical building. It outperformed other methods in obtaining abundant high-precision measuring points and computing data instantly. In this study, the Pei-tien Temple, a Chinese Taoism temple in southern Taiwan famous for its highly intricate architecture and more than 300-year history, was adopted as the target to proof the high accuracy and efficiency of this system. By using French made MENSI GS-100 Laser Scanner, numerous measuring points were precisely plotted to present the plane map, vertical map and 3D map of the property. Accuracies of 0.1-1 mm in the digital data have consistently been achieved for the historical heritage measurement.

  20. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    Science.gov (United States)

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured.

  1. Simultaneous acquisition of 3D shape and deformation by combination of interferometric and correlation-based laser speckle metrology.

    Science.gov (United States)

    Dekiff, Markus; Berssenbrügge, Philipp; Kemper, Björn; Denz, Cornelia; Dirksen, Dieter

    2015-12-01

    A metrology system combining three laser speckle measurement techniques for simultaneous determination of 3D shape and micro- and macroscopic deformations is presented. While microscopic deformations are determined by a combination of Digital Holographic Interferometry (DHI) and Digital Speckle Photography (DSP), macroscopic 3D shape, position and deformation are retrieved by photogrammetry based on digital image correlation of a projected laser speckle pattern. The photogrammetrically obtained data extend the measurement range of the DHI-DSP system and also increase the accuracy of the calculation of the sensitivity vector. Furthermore, a precise assignment of microscopic displacements to the object's macroscopic shape for enhanced visualization is achieved. The approach allows for fast measurements with a simple setup. Key parameters of the system are optimized, and its precision and measurement range are demonstrated. As application examples, the deformation of a mandible model and the shrinkage of dental impression material are measured. PMID:26713197

  2. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: Comparisons with schizophrenia

    OpenAIRE

    Hennessy, Robin J.; Baldwin, Patrizia A; Browne, David J.; Kinsella, Anthony; Waddington, John L.

    2010-01-01

    Any developmental relationship between bipolar disorder and schizophrenia engenders continuing debate. As the brain and face emerge in embryological intimacy, brain dysmorphogenesis is accompanied by facial dysmorphogenesis. 3D laser surface imaging was used to capture the facial surface of 13 male and 14 female patients with bipolar disorder in comparison with 61 male and 75 female control subjects and with 37 male and 32 female patients with schizophrenia. Surface images were analysed using...

  3. Integration of an optical fiber taper with an optical microresonator fabricated in glass by femtosecond laser 3D micromachining

    CERN Document Server

    Song, Jiangxin; Tang, Jialei; Qiao, Lingling; Cheng, Ya

    2014-01-01

    We report on fabrication of a microtoroid resonator of a high-quality factor (i. e., Q-factor of ~3.24x10^6 measured under the critical coupling condition) using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber taper to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21x10^5 as measured in air.

  4. Experimental investigation and 3D-simulation of the ablated morphology of titanium surface using femtosecond laser pulses

    Science.gov (United States)

    Liu, Dong; Chen, Chuansong; Man, Baoyuan; Meng, Xue; Sun, Yanna; Li, Feifei

    2015-12-01

    The femtosecond laser ablated morphology on titanium surface is investigated theoretically and experimentally. A three dimensional two temperature model (3D-TTM) is used to simulate the surface morphology of titanium sample which is irradiated by femtosecond laser pulses. The electron heat capacity and electron-phonon coupling coefficient of titanium (transition metal) are complex temperature dependent, so the two parameters are corrected based on the theory of electron density of states (DOS). The model is solved by the finite difference time domain (FDTD) method. The 3D temperature field near the target surface is achieved. The radius and depth of the ablated crater are obtained based on the temperature field. The evolutions of the crate's radius and depth with laser fluence are discussed and compared with the experimental results. It is found that the back-flow of the molten material and the deposition of the material vapor should be responsible for the little discrepancy between the simulated and experimental results. The present work makes a better understanding of the thermodynamic process of femtosecond laser ablating metal and meanwhile provides an effective method tool to predict the micro manufacturing process on metals with femtosecond laser.

  5. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    Science.gov (United States)

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2016-07-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γSUB>/bSUB>2 = (1 -space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  6. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    Science.gov (United States)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  7. The Building 3D modeling method Based on 3D Laser Scanning Technology%基于三维激光扫描技术的建筑物三维建模方法

    Institute of Scientific and Technical Information of China (English)

    吕翠华; 陈秀萍; 张东明

    2012-01-01

    Taking TOPCON GLS1500 scanner as an experimental equipment, 3D building modeling method using 3D laser scanning technology is discussed from data acquisition, point cloud processing, 3D modeling and texture mapping etc.%以拓普康GLLS1500扫描仪作为实验设备,从数据采集、点云处理、三维模型建立和纹理映射等方面探讨了利用三维激光扫描技术进行建筑物三维建模的方法.

  8. Laser printing and femtosecond laser structuring of electrode materials for the manufacturing of 3D lithium-ion micro-batteries

    Science.gov (United States)

    Smyrek, P.; Kim, H.; Zheng, Y.; Seifert, H. J.; Piqué, A.; Pfleging, W.

    2016-04-01

    Recently, three-dimensional (3D) electrode architectures have attracted great interest for the development of lithium-ion micro-batteries applicable for Micro-Electro-Mechanical Systems (MEMS), sensors, and hearing aids. Since commercial available micro-batteries are mainly limited in overall cell capacity by their electrode footprint, new processing strategies for increasing both capacity and electrochemical performance have to be developed. In case of such standard microbatteries, two-dimensional (2D) electrode arrangements are applied with thicknesses up to 200 μm. These electrode layers are composed of active material, conductive agent, graphite, and polymeric binder. Nevertheless, with respect to the type of active material, the active material to conductive agent ratio, and the film thickness, such thick-films suffer from low ionic and electronic conductivities, poor electrolyte accessibility, and finally, limited electrochemical performance under challenging conditions. In order to overcome these drawbacks, 3D electrode arrangements are under intense investigation since they allow the reduction of lithium-ion diffusion pathways in between inter-digitated electrodes, even for electrodes with enhanced mass loadings. In this paper, we present how to combine laser-printing and femtosecond laser-structuring for the development of advanced 3D electrodes composed of Li(Ni1/3Mn1/3Co1/3)O2 (NMC). In a first step, NMC thick-films were laser-printed and calendered to achieve film thicknesses in the range of 50 μm - 80 μm. In a second step, femtosecond laser-structuring was carried out in order to generate 3D architectures directly into thick-films. Finally, electrochemical cycling of laser-processed films was performed in order to evaluate the most promising 3D electrode designs suitable for application in long life-time 3D micro-batteries.

  9. Multi sensor fusion of camera and 3D laser range finder for object recognition

    OpenAIRE

    Klimentjew, Denis; Hendrich, Norman; Zhang, jianwei

    2010-01-01

    This paper proposes multi sensor fusion based on an effective calibration method for a perception system designed for mobile robots and intended for later object recognition. The perception system consists of a camera and a three-dimensional laser range finder. The three-dimensional laser range finder is based on a two-dimensional laser scanner and a pan-tilt unit as a moving platform. The calibration permits the coalescence of the two most important sensors for three-dim...

  10. Multiple reflections and Fresnel absorption in an actual 3D keyhole during deep penetration laser welding

    International Nuclear Information System (INIS)

    In laser welding experiments of glass, keyhole shapes are observed by two high-speed cameras from two perpendicular directions. From the obtained keyhole pictures, it can be seen that in medium- and low-speed laser penetration welding, the main distortion of the keyhole is not the section metamorphosis from rotational symmetry, but the bending of its centre line. Based on such a keyhole photograph, the keyhole profiles and its centre line are determined by the method of polynomial fitting. Then, under the assumption of a circular cross section at each depth of the keyhole, the behaviour of the laser beam in the keyhole is analysed by tracing a ray of light using geometrical optics theory; the Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. The absorbed laser intensity is not distributed uniformly on the keyhole wall. The keyhole wall absorbs laser intensity mainly on the half-part of the keyhole wall near the front wall. Because of the high absorptivity of the glass, Fresnel absorption from the first incidence of a laser beam plays a dominant role in the final laser intensity distribution on the keyhole wall, multiple reflections have some minor effects on the intensity distribution on the bottom part of the keyhole

  11. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    Science.gov (United States)

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  12. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel

    Directory of Open Access Journals (Sweden)

    Emmanuel Moisan

    2015-12-01

    Full Text Available In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part and sonar (for its underwater part scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  13. Analysis of thin baked-on silicone layers by FTIR and 3D-Laser Scanning Microscopy.

    Science.gov (United States)

    Funke, Stefanie; Matilainen, Julia; Nalenz, Heiko; Bechtold-Peters, Karoline; Mahler, Hanns-Christian; Friess, Wolfgang

    2015-10-01

    Pre-filled syringes (PFS) and auto-injection devices with cartridges are increasingly used for parenteral administration. To assure functionality, silicone oil is applied to the inner surface of the glass barrel. Silicone oil migration into the product can be minimized by applying a thin but sufficient layer of silicone oil emulsion followed by thermal bake-on versus spraying-on silicone oil. Silicone layers thicker than 100nm resulting from regular spray-on siliconization can be characterized using interferometric profilometers. However, the analysis of thin silicone layers generated by bake-on siliconization is more challenging. In this paper, we have evaluated Fourier transform infrared (FTIR) spectroscopy after solvent extraction and a new 3D-Laser Scanning Microscopy (3D-LSM) to overcome this challenge. A multi-step solvent extraction and subsequent FTIR spectroscopy enabled to quantify baked-on silicone levels as low as 21-325μg per 5mL cartridge. 3D-LSM was successfully established to visualize and measure baked-on silicone layers as thin as 10nm. 3D-LSM was additionally used to analyze the silicone oil distribution within cartridges at such low levels. Both methods provided new, highly valuable insights to characterize the siliconization after processing, in order to achieve functionality.

  14. 3D modelling of Mt. Talaga Bodas Crater (Indonesia) by using terrestrial laser scanner for volcano hazard mitigation

    Science.gov (United States)

    Gumilar, Irwan; Abidin, Hasanuddin Z.; Putra, Andreas D.; Haerani, Nia

    2015-04-01

    Indonesia is a country with many volcanoes. Each volcano in Indonesia typically has its own crater characteristics. One of them is the Mt.Talaga Bodas, located in Garut, West Java. Researches regarding the crater characteristics are necessary for volcanic disaster mitigation process. One of them is the modelling of the shape of the crater. One of the methods that can be used to model the volcanic crater is using Terrestrial Laser Scanner (TLS). This research aims to create a 3 dimensional (3D) model of the crater of the Mt. Talaga Bodas, that hopefully can be utilized for volcanic disaster mitigation. The methodology used in this research is by obtaining the scanning data using TLS and GPS measurements to obtain the coordinates of the reference points. The data processing methods consist of several steps, namely target to target registration, filterization, georeference, meshing point cloud, surface making, drawing, and 3D modelling. These steps were done using the Cyclone 7 software, and also using 3DS MAX for 3D modelling. The result of this data processing is a 3D model of the crater of the Mt. Talaga Bodas which is similar with the real shape. The calculation result shows that the height of the crater is 62.522 m, the diameter of the crater is 467.231 m, and the total area is 2961054.652 m2. The main obstacle in this research is the dense vegetation which becomes the noise and affects the crater model.

  15. Laser Fabrication of 3D Gelatin Scaffolds for the Generation of Bioartificial Tissues

    Directory of Open Access Journals (Sweden)

    Mathias Wilhelmi

    2011-01-01

    Full Text Available In the present work, the two-photon polymerization (2PP technique was applied to develop precisely defined biodegradable 3D tissue engineering scaffolds. The scaffolds were fabricated via photopolymerization of gelatin modified with methacrylamide moieties. The results indicate that the gelatin derivative (GelMod preserves its enzymatic degradation capability after photopolymerization. In addition, the developed scaffolds using 2PP support primary adipose-derived stem cell (ASC adhesion, proliferation and differentiation into the anticipated lineage.

  16. Development of a low cost, 3-DOF desktop laser cutter using 3D printer hardware

    Science.gov (United States)

    Jivraj, Jamil; Huang, Yize; Wong, Ronnie; Lu, Yi; Vuong, Barry; Ramjist, Joel; Gu, Xijia; Yang, Victor X. D.

    2015-03-01

    This paper presents the development of a compact, desktop laser-cutting system capable of cutting materials such as wood, metal and plastic. A re-commissioned beheaded MakerBot® Replicator 2X is turned into a 3-DOF laser cutter by way of integration with 800W (peak power) fiber laser. Special attention is paid to tear-down, modification and integration of the objective lens in place of the print head. Example cuts in wood and metal will be presented, as well as design of an exhaust system.

  17. 3D nano-architecture in glass materials with a femtosecond laser

    International Nuclear Information System (INIS)

    The nonlinear interaction between glasses of transparent materials and a femtosecond laser called non-linear multiphoton effect was studied. The various nano- or microstructure changes caused by this effect have provided the internal modification inside glass materials, such as densification, valence reduction of active ions, new crystal precipitation, atom diffusion and so on. Such an ultrashort pulse laser effect of transparent materials was useful for fabrication of photonic devices such as optical waveguides and so on. In view of our findings, the advantage of a femtosecond laser combined with liquid crystal modulator was also introduced to make three-dimensional nano-architecture in materials. (author)

  18. 3D transient thermal modelling of laser microchannel fabrication in lime-soda glass

    OpenAIRE

    Issa, Ahmad,; Brabazon, Dermot; Hashmi, Saleem

    2008-01-01

    Laser-fabricated microchannels in glass offer a wide range of bioengineering and telecommunication applications. A 1.5 kW CO2 laser with 10.6 μm wavelength was used in this study to fabricate micorchannels on the surface of soda-lime glass sheets. A thermal model of the process was developed based on transient heat conduction due to a pulsed heat input. The resulting equation predicted the temperature distribution in the regions surrounding the laser focus. Temperature – time curves were draw...

  19. Suspect Height Estimation Using the Faro Focus(3D) Laser Scanner.

    Science.gov (United States)

    Johnson, Monique; Liscio, Eugene

    2015-11-01

    At present, very little research has been devoted to investigating the ability of laser scanning technology to accurately measure height from surveillance video. The goal of this study was to test the accuracy of one particular laser scanner to estimate suspect height from video footage. The known heights of 10 individuals were measured using an anthropometer. The individuals were then recorded on video walking along a predetermined path in a simulated crime scene environment both with and without headwear. The difference between the known heights and the estimated heights obtained from the laser scanner software were compared using a one-way t-test. The height estimates obtained from the software were not significantly different from the known heights whether individuals were wearing headwear (p = 0.186) or not (p = 0.707). Thus, laser scanning is one technique that could potentially be used by investigators to determine suspect height from video footage.

  20. Frequency-Stable Offset-Locked Lasers for ASCENDS and 3D Winds Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the potential to develop significant improvements to size, weight, and prime power requirements of front-end cw lasers and associated frequency...

  1. Rapid manufacturing by laser sintering and laser cladding; Rapid Manufacturing durch Lasersintern und 3D-Laserstrahl-Auftragschweissen

    Energy Technology Data Exchange (ETDEWEB)

    Haferkamp, H. [Laser Zentrum Hannover e.V. (Germany); Alvensleben, F. von [Laser Zentrum Hannover e.V. (Germany); Gerken, J. [Laser Zentrum Hannover e.V. (Germany)

    1995-06-01

    Among the technologies which are under development for the direct production of metal components, the laser-supported techniques laser sintering and laser cladding offer positive expectations for industrial use. Founded on extensive work in the field of laser cladding of functional layers [1,2], results have been gathered at the Laser Zentrum Hannover (LZH) concerning the direct manufacturing of metal parts by laser supported techniques [3,4]. The different processes and first results concerning the build-up of metal parts mainly by laser sintering are described in this paper. During the investigation, the suitability of metals such as copper, nickel, aluminium and aluminium-bronze alloy for laser sintering without binders was tested. In addition, metal parts produced by laser cladding and a possibility of process monitoring are shown. For more details see 5 Extended Abstract. (orig.)

  2. A segmentation method for 3D visualization of neurons imaged with a confocal laser scanning microscope

    Science.gov (United States)

    Anderson, Jeffrey R.; Barrett, Steven F.; Wilcox, Michael J.

    2005-04-01

    Our understanding of the world around us is based primarily on three-dimensional information because of the environment in which we live and interact. Medical or biological image information is often collected in the form of two-dimensional, serial section images. As such, it is difficult for the observer to mentally reconstruct the three dimensional features of each object. Although many image rendering software packages allow for 3D views of the serial sections, they lack the ability to segment, or isolate different objects in the data set. Segmentation is the key to creating 3D renderings of distinct objects from serial slice images, like separate pieces to a puzzle. This paper describes a segmentation method for objects recorded with serial section images. The user defines threshold levels and object labels on a single image of the data set that are subsequently used to automatically segment each object in the remaining images of the same data set, while maintaining boundaries between contacting objects. The performance of the algorithm is verified using mathematically defined shapes. It is then applied to the visual neurons of the housefly, Musca domestica. Knowledge of the fly"s visual system may lead to improved machine visions systems. This effort has provided the impetus to develop this segmentation algorithm. The described segmentation method can be applied to any high contrast serial slice data set that is well aligned and registered. The medical field alone has many applications for rapid generation of 3D segmented models from MRI and other medical imaging modalities.

  3. Ultra-compact on-chip LED collimation optics by 3D femtosecond direct laser writing.

    Science.gov (United States)

    Thiele, Simon; Gissibl, Timo; Giessen, Harald; Herkommer, Alois M

    2016-07-01

    By using two-photon lithographic 3D printing, we demonstrate additive manufacturing of a dielectric concentrator directly on a LED chip. With a size of below 200 μm in diameter and length, light output is increased by a factor of 6.2 in collimation direction, while the emission half-angle is reduced by 50%. We measure excellent form fidelity and irradiance patterns close to simulation. Additionally, a more complex shape design is presented, which exhibits a nonconventional triangular illumination pattern. The introduced method features exceptional design freedoms which can be used to tailor high-quality miniature illumination optics for specific lighting tasks, for example, endoscopy. PMID:27367093

  4. ROMY - The First Large 3D Ring Laser Structure for Seismology and Geodesy

    Science.gov (United States)

    Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Lin, Chin-Jen; Gebauer, André; Wells, Jon-Paul

    2016-04-01

    Large ring laser gyroscopes have matured to the point that they can routinely observe rotational motions from geophysical processes that can be used in geodesy and seismology. The ring lasers used for this purpose enclose areas between 16 and 800 square meters and have in common that they can only measure rotations around the vertical axis because the structures are horizontally placed on the floor. With the ROMY project we have embarked on the construction of a full 3-dimensional rotation sensor. The actual apparatus consists of four individual triangular ring lasers arranged in the shape of a tetrahedron with 12 m of length on each side. At each corner of the tetrahedron three of the ring lasers are rigidly tied together to the same mechanical reference. The overall size of the installation provides a promising compromise between sensor stability on one side and sensor resolution on the other side. This talk introduces the technical concept of the ROMY ring laser installation and will also briefly outline the requirements for applications in space geodesy.

  5. Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage

    Directory of Open Access Journals (Sweden)

    Petr Olivka

    2016-01-01

    Full Text Available The laser range finder is one of the most essential sensors in the field of robotics. The laser range finder provides an accurate range measurement with high angular resolution. However, the short range scanners require an additional calibration to achieve the abovementioned accuracy. The calibration procedure described in this work provides an estimation of the internal parameters of the laser range finder without requiring any special three-dimensional targets. This work presents the use of a short range URG-04LX scanner for mapping purposes and describes its calibration. The precision of the calibration was checked in an environment with known ground truth values and the results were statistically evaluated. The benefits of the calibration are also demonstrated in the practical applications involving the segmentation of the environment. The proposed calibration method is complex and detects all major manufacturing inaccuracies. The procedure is suitable for easy integration into the current manufacturing process.

  6. Development of 3D control of a tiny dew droplet by scattered laser light

    Science.gov (United States)

    Matsumoto, Shigeaki

    2009-06-01

    In order to study dropwise condensation on a metal plate, the method for controlling a tiny dew droplet deposited on a copper plate has been developed by using scattered laser light. The method employed the proportional control combined with shifting movement by an integrator to control the intensity of the scattered laser light constantly. Also, the control simulation of the method has been developed to confirm the usefulness of the method and the simulated three-dimensional shape of controlled dew droplet was obtained with the control action. A tiny thin dew droplet, of which the diameter was of handreds micrometers and the mass was about 10-7 g, was controlled in the atmosphere at room temperature for 60 minutes at the preset level of the intensity of scattered laser light and the three-dimensional shape of the controlled dew droplet was shown from the interference fringes.

  7. 3D plasmonic transducer based on gold nanoparticles produced by laser ablation on silica nanowires

    Science.gov (United States)

    Gontad, F.; Caricato, A. P.; Manera, M. G.; Colombelli, A.; Resta, V.; Taurino, A.; Cesaria, M.; Leo, C.; Convertino, A.; Klini, A.; Perrone, A.; Rella, R.; Martino, M.

    2016-05-01

    Silica two-dimensional substrates and nanowires (NWs) forests have been successfully decorated with Au nanoparticles (NPs) through laser ablation by using a pulsed ArF excimer laser, for sensor applications. A uniform coverage of both substrate surfaces with NPs has been achieved controlling the number of laser pulses. The annealing of the as-deposited particles resulted in a uniform well-defined distribution of spherical NPs with an increased average diameter up to 25 nm. The deposited samples on silica NWs forest present a very good plasmonic resonance which resulted to be very sensitive to the changes of the environment (ethanol/water solutions with increasing concentration of ethanol) allowing the detection of changes on the second decimal digit of the refractive index, demonstrating its potentiality for further biosensing functionalities.

  8. Multiwavelength laser treatment of the central serous chorioretinopathy by 3 D-OCT guidance%3 D-OCT引导下多波长激光治疗CSCR的疗效观察

    Institute of Scientific and Technical Information of China (English)

    张伟; 毕大光; 谷树严

    2014-01-01

    AIM:To introduce a new method of guiding by using 3D-OCT to treatment central serous chorioretinopathy ( CSCR) with multiwavelength laser. METHODS:Twenty-three cases ( 23 eyes ) typicality central serous chorioretinopathy were collected in July 2010 to July 2013 in Changchun Aier Eye Hospital, using 3D-OCT model locate central serous chorioretinopathy leakage point and photocoagulation treatment with multiwavelength laser. Postoperative follow-up of 24wk, the postoperative vision and macular area retina neuroepithelial layer detachment height were observed.RESULTS: Twenty-three cases ( 23 eyes ) of central serous chorioretinopathy patients by the 3D-OCT guided multiwavelength laser treatment vision after 24wk of follow-up compared with before treatment. there was statistically significant ( P CONCLUSION: 3D- OCT guided by multiwavelength laser treatment of central serous chorioretinopathy and under the guidance of FFA in the central serous chorioretinopathy laser treatment have the same curative ratio, has certain clinical value.%目的:观察3 D-OCT引导下多波长激光治疗中心性浆液性脉络膜视网膜病变( central serous chorioretinopathy,CSCR)的疗效。  方法:收集2010-07/2013-07在长春爱尔眼科医院的典型性中心性浆液性脉络膜视网膜病变患者23例23眼,利用3 D-OCT模式定位中心性浆液性脉络膜视网膜病变渗漏点行多波长激光光凝治疗。术后随访24wk,观察术后视力、黄斑区神经上皮层浆液性脱离高度。  结果:中心性浆液性脉络膜视网膜病变患者23例23眼经3D-OCT引导下多波长激光治疗后随访24wk,治疗后视力与治疗前相比较,有统计学意义(P  结论:3 D-OCT引导下多波长激光治疗中心性浆液性脉络膜视网膜病变与FFA指导下激光治疗中心性浆液性脉络膜视网膜病变效果相当,有一定的临床应用价值。

  9. Femtosecond laser 3D fabrication of whispering-gallery- mode microcavities

    Institute of Scientific and Technical Information of China (English)

    XU HuaiLiang; SUN HongBo

    2015-01-01

    Whispering-gallery-mode (WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM mi- cro-cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse dura- tion, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femto- second laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional (3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs mi- crocavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-micro- cavity device. Lastly, a summary of this dynamic field with a future perspective is given.

  10. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    Science.gov (United States)

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  11. Design and Fabrication of a Breadboard, Fully Conductively Cooled, 2-Micron, Pulsed Laser for the 3-D Winds Decadal Survey Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Design and fabricate a space-qualifiable, fully conductively cooled, 2-micron pulsed laser breadboard meeting the projected 3-D Winds mission requirements. Utilize...

  12. Use of 3D laser radar for navigation of unmanned aerial and ground vehicles in urban and indoor environments

    Science.gov (United States)

    Uijt de Haag, Maarten; Venable, Don; Smearcheck, Mark

    2007-04-01

    This paper discusses the integration of Inertial measurements with measurements from a three-dimensional (3D) imaging sensor for position and attitude determination of unmanned aerial vehicles (UAV) and autonomous ground vehicles (AGV) in urban or indoor environments. To enable operation of UAVs and AGVs at any time in any environment a Precision Navigation, Attitude, and Time (PNAT) capability is required that is robust and not solely dependent on the Global Positioning System (GPS). In urban and indoor environments a GPS position capability may not only be unavailable due to shadowing, significant signal attenuation or multipath, but also due to intentional denial or deception. Although deep integration of GPS and Inertial Measurement Unit (IMU) data may prove to be a viable solution an alternative method is being discussed in this paper. The alternative solution is based on 3D imaging sensor technologies such as Flash Ladar (Laser Radar). Flash Ladar technology consists of a modulated laser emitter coupled with a focal plane array detector and the required optics. Like a conventional camera this sensor creates an "image" of the environment, but producing a 2D image where each pixel has associated intensity vales the flash Ladar generates an image where each pixel has an associated range and intensity value. Integration of flash Ladar with the attitude from the IMU allows creation of a 3-D scene. Current low-cost Flash Ladar technology is capable of greater than 100 x 100 pixel resolution with 5 mm depth resolution at a 30 Hz frame rate. The proposed algorithm first converts the 3D imaging sensor measurements to a point cloud of the 3D, next, significant environmental features such as planar features (walls), line features or point features (corners) are extracted and associated from one 3D imaging sensor frame to the next. Finally, characteristics of these features such as the normal or direction vectors are used to compute the platform position and attitude

  13. Estimation of regeneration coverage in a temperate forest by 3D segmentation using airborne laser scanning data

    Science.gov (United States)

    Amiri, Nina; Yao, Wei; Heurich, Marco; Krzystek, Peter; Skidmore, Andrew K.

    2016-10-01

    Forest understory and regeneration are important factors in sustainable forest management. However, understanding their spatial distribution in multilayered forests requires accurate and continuously updated field data, which are difficult and time-consuming to obtain. Therefore, cost-efficient inventory methods are required, and airborne laser scanning (ALS) is a promising tool for obtaining such information. In this study, we examine a clustering-based 3D segmentation in combination with ALS data for regeneration coverage estimation in a multilayered temperate forest. The core of our method is a two-tiered segmentation of the 3D point clouds into segments associated with regeneration trees. First, small parts of trees (super-voxels) are constructed through mean shift clustering, a nonparametric procedure for finding the local maxima of a density function. In the second step, we form a graph based on the mean shift clusters and merge them into larger segments using the normalized cut algorithm. These segments are used to obtain regeneration coverage of the target plot. Results show that, based on validation data from field inventory and terrestrial laser scanning (TLS), our approach correctly estimates up to 70% of regeneration coverage across the plots with different properties, such as tree height and tree species. The proposed method is negatively impacted by the density of the overstory because of decreasing ground point density. In addition, the estimated coverage has a strong relationship with the overstory tree species composition.

  14. 3-D laser images of splash-form tektites and their use in aerodynamic numerical simulations of tektite formation

    Science.gov (United States)

    Samson, C.; Butler, S.; Fry, C.; McCausland, P. J. A.; Herd, R. K.; Sharomi, O.; Spiteri, R. J.; Ralchenko, M.

    2014-05-01

    Ten splash-form tektites from the Australasian strewn field, with masses ranging from 21.20 to 175.00 g and exhibiting a variety of shapes (teardrop, ellipsoid, dumbbell, disk), have been imaged using a high-resolution laser digitizer. Despite challenges due to the samples' rounded shapes and pitted surfaces, the images were combined to create 3-D tektite models, which captured surface features with a high fidelity (≈30 voxel mm-2) and from which volume could be measured noninvasively. The laser-derived density for the tektites averaged 2.41 ± 0.11 g cm-3. Corresponding densities obtained via the Archimedean bead method averaged 2.36 ± 0.05 g cm-3. In addition to their curational value, the 3-D models can be used to calculate the tektites' moments of inertia and rotation periods while in flight, as a probe of their formation environment. Typical tektite rotation periods are estimated to be on the order of 1 s. Numerical simulations of air flow around the models at Reynolds numbers ranging from 1 to 106 suggest that the relative velocity of the tektites with respect to the air must have been <10 m s-1 during viscous deformation. This low relative velocity is consistent with tektite material being carried along by expanding gases in the early time following the impact.

  15. Physical properties and microstructures of nanocrystals reinforced ice laser 3D print layer

    Science.gov (United States)

    Li, Jia-Ning; Liu, Ke-Gao; Gong, Shui-Li; Zhang, Yuan-Bin; Liu, Peng

    2015-02-01

    Rapid prototyping based on laser alloying by the pre-placed mixed powders has been used to produce the nanocrystals reinforced three-dimensional layer in this study. Such a layer was fabricated on a TC17 titanium alloy by laser rapid prototyping (LRP) of the Co-Sb-TiB2 mixed powders in ice. Scanning electron microscope (SEM) and high resolution transmission electron microscopy (HRTEM) test results indicated that the ice addition was able to decrease the maximum temperature of molten pool during the LRP process, favoring the formation of nanocrystals; growth of such nanocrystals was retarded by the surrounded amorphous in a certain extent, favoring the formations of ultrafine nanoparticles (UN), and the twin crystals and the high-angle grain boundaries were also observed; differential thermal analysis (DTA) test was used to explain the physical properties and formation mechanism of amorphous-nanocrystals, and also the relationship between the amorphous and nanocrystalline phases in such a LRP layer.

  16. Laser scanner data processing and 3D modeling using a free and open source software

    International Nuclear Information System (INIS)

    The laser scanning is a technology that allows in a short time to run the relief geometric objects with a high level of detail and completeness, based on the signal emitted by the laser and the corresponding return signal. When the incident laser radiation hits the object to detect, then the radiation is reflected. The purpose is to build a three-dimensional digital model that allows to reconstruct the reality of the object and to conduct studies regarding the design, restoration and/or conservation. When the laser scanner is equipped with a digital camera, the result of the measurement process is a set of points in XYZ coordinates showing a high density and accuracy with radiometric and RGB tones. In this case, the set of measured points is called “point cloud” and allows the reconstruction of the Digital Surface Model. Even the post-processing is usually performed by closed source software, which is characterized by Copyright restricting the free use, free and open source software can increase the performance by far. Indeed, this latter can be freely used providing the possibility to display and even custom the source code. The experience started at the Faculty of Engineering in Catania is aimed at finding a valuable free and open source tool, MeshLab (Italian Software for data processing), to be compared with a reference closed source software for data processing, i.e. RapidForm. In this work, we compare the results obtained with MeshLab and Rapidform through the planning of the survey and the acquisition of the point cloud of a morphologically complex statue

  17. PRECISE LASER-BASED OPTICAL 3D MEASUREMENT OF WELDING SEAMS UNDER WATER

    OpenAIRE

    Ekkel, T.; J. Schmik; T. Luhmann; H. Hastedt

    2015-01-01

    This paper deals with the development of a measuring procedure and an experimental set-up (stereo camera system in combination with a projecting line laser and a positioning unit) which are intended to detect the surface topography, particularly of welds, with high accuracy in underwater environments. The system concept makes provision for the fact that the device can be positioned in space and manipulated by hand. The development, optimization and testing of the system components fo...

  18. Laser scanner data processing and 3D modeling using a free and open source software

    Energy Technology Data Exchange (ETDEWEB)

    Gabriele, Fatuzzo [Dept. of Industrial and Mechanical Engineering, University of Catania (Italy); Michele, Mangiameli, E-mail: amichele.mangiameli@dica.unict.it; Giuseppe, Mussumeci; Salvatore, Zito [Dept. of Civil Engineering and Architecture, University of Catania (Italy)

    2015-03-10

    The laser scanning is a technology that allows in a short time to run the relief geometric objects with a high level of detail and completeness, based on the signal emitted by the laser and the corresponding return signal. When the incident laser radiation hits the object to detect, then the radiation is reflected. The purpose is to build a three-dimensional digital model that allows to reconstruct the reality of the object and to conduct studies regarding the design, restoration and/or conservation. When the laser scanner is equipped with a digital camera, the result of the measurement process is a set of points in XYZ coordinates showing a high density and accuracy with radiometric and RGB tones. In this case, the set of measured points is called “point cloud” and allows the reconstruction of the Digital Surface Model. Even the post-processing is usually performed by closed source software, which is characterized by Copyright restricting the free use, free and open source software can increase the performance by far. Indeed, this latter can be freely used providing the possibility to display and even custom the source code. The experience started at the Faculty of Engineering in Catania is aimed at finding a valuable free and open source tool, MeshLab (Italian Software for data processing), to be compared with a reference closed source software for data processing, i.e. RapidForm. In this work, we compare the results obtained with MeshLab and Rapidform through the planning of the survey and the acquisition of the point cloud of a morphologically complex statue.

  19. Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime

    CERN Document Server

    Lu, W; Joshi, C; Mori, W B; Silva, L O; Tsung, F S; Tzoufras, M; Vieira, J

    2006-01-01

    The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than in current accelerators has been well documented. We develop a phenomenological framework for Laser WakeField Acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. Our theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). We demonstrate our results by presenting a sample Particle-In-Cell (PIC) simulation of a 30f sec, 200T W laser interacting with a 0.75cm long plasma with density 1.5*10^18 cm^-3 to produce an ultra-short (10f s) mono-energetic bunch of self-injected electrons at 1.5 GeV with 0.3nC of cha...

  20. Constructing 3D CAD models of complex structured environments using a scanning laser camera

    International Nuclear Information System (INIS)

    The nature of the plant operated by British Nuclear Fuels Plc. (BNFL) dictates that most of the maintenance and decommissioning has to be performed robotically. In order to perform tasks robotically in an efficient and safe manner an accurate three dimensional volumetric model of the operating environment is required. There are several measurement systems available, employing different techniques, discussed later, that could be employed to map an environment. Following a review of these options, BNFL Engineers concluded that these would be unsuitable for the envisaged operations. Consequently, British Nuclear Fuels initiated a joint project with UK Robotics, formerly Advanced Robotic Research Ltd (ARRL), to investigate the technology and techniques that would be required to construct 3D CAD models of plant environments. The project delivered a prototype modelling system known as AEMS, Advanced Engineering Modelling System. This is being further refined by UK Robotics into a product called Architect to be launched in 1996. This paper describes the techniques and technologies developed during the project and experience gained using the system on plant at Sellafield. (UK)

  1. Constructing 3D CAD models of complex structured environments using a scanning laser camera

    International Nuclear Information System (INIS)

    The nature of the plant operated by British Nuclear Fuel Plc. (BNFL) dictates that most of the maintenance and decommissioning has to be performed robotically. In order to perform tasks robotically in an efficient and safe manner an accurate three dimensional volumetric model of the operating environment is required. There are several measurement systems available, employing different techniques, discussed later, that could be employed to map an environment. Following a review of these options, BNFL Engineers concluded that these would be unsuitable for the envisaged operations. Consequently, British Nuclear Fuels initiated a joint project with UK Robotics, formerly Advanced Robotic Research Ltd (ARRL), to investigate the technology and techniques that would be required to construct 3D CAD models of plant environments. The project delivered a prototype modelling system known as AEMS, Advanced Engineering Modelling System. This is being further refined by UK Robotics into a product called Architect to be launched in 1996. This paper describes the techniques and technologies developed during the project and experience gained using the system on plant at Sellafield. (UK)

  2. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    Science.gov (United States)

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-01-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications. PMID:27698476

  3. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    Science.gov (United States)

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-10-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  4. Differential axial contrast of optical sections: laser microtomography and quantitative 3D reconstruction

    Science.gov (United States)

    Pogorelova, M. A.; Golichenkov, V. A.; Pogorelov, A. G.

    2014-03-01

    Specific features of the quantitative laser microtomography of biological samples are discussed. The method exhibits the main advantages of a confocal microscope (rapid measurement of a stack of parallel optical cross sections and accurate displacement of an object along the optical axis). A relatively high contrast is reached owing to the superposition of pairwise complementary images on neighboring cross sections. A simple and convenient algorithm for image processing does not require additional software and can be computerized using a conventional graphic editor. The applicability of the method is illustrated using volume measurements of a single cell of an early mouse embryo.

  5. Multiple Reflections and Fresnel Absorption of Gaussian Laser Beam in an Actual 3D Keyhole during Deep-Penetration Laser Welding

    Directory of Open Access Journals (Sweden)

    Xiangzhong Jin

    2012-01-01

    Full Text Available In deep penetration laser welding, a keyhole is formed in the material. Based on an experimentally obtained bending keyhole from low- and medium-speed laser penetration welding of glass, the keyhole profiles in both the symmetric plane are determined by polynomial fitting. Then, a 3D bending keyhole is reconstructed under the assumption of circular cross-section of the keyhole at each keyhole depth. In this paper, the behavior of focused Gaussian laser beam in the keyhole is analyzed by tracing a ray of light using Gaussian optics theory, the Fresnel absorption and multiple reflections in the keyhole are systematically studied, and the laser intensities absorbed on the keyhole walls are calculated. Finally, the formation mechanism of the keyhole is deduced.

  6. Physical properties and microstructure performance of ultrafine nanocrystals reinforced laser 3D print microlaminates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianing, E-mail: jn2369@163.com [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Xia, Chunzhi [Provincial Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Liu, Peng; Pan, Guanghui; Wang, Congwei [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China)

    2015-10-05

    Highlights: • Ultrafine nanocrystals, nanorods and amorphous phases were produced in such LRP microlaminates. • The amorphous/nanocrystalline interface owned a high bonding energy. • Amorphous/nanocrystalline interface may retard growth of nanocrystals in a certain extent. • Due to production of amorphous, lots of microscale ASNPs were produced. • Ultrafine nanocrystals had the high interface energy, which became the driving force of the atomic motions. - Abstract: Rapid prototyping based on laser alloying was used to produce ultrafine nanocrystals (UN) reinforced three-dimensional microlaminates. Such microlaminates were fabricated on a TA1 alloy by laser rapid prototyping (LRP) of Stellite 20–TiN–B{sub 4}C mixed powders to produce a bottom layer; then Stellite 20–TiN–B{sub 4}C–Sb powders were deposited on such bottom-layer in order to form an upper-layer. There is an excellent metallurgical combination between such two layer; the upper-layer shows a better wear resistance than that of the bottom layer. The Sb addition promoted lots of UN to be produced, and lots of the nanorods were also produced in such microlaminates, their growth was retarded by agglomeration of UN in a certain extent. Such UN had the high interface energy, which became the driving force of atomic motions, favoring formation of a compact fine structure.

  7. Physical properties and microstructure performance of ultrafine nanocrystals reinforced laser 3D print microlaminates

    International Nuclear Information System (INIS)

    Highlights: • Ultrafine nanocrystals, nanorods and amorphous phases were produced in such LRP microlaminates. • The amorphous/nanocrystalline interface owned a high bonding energy. • Amorphous/nanocrystalline interface may retard growth of nanocrystals in a certain extent. • Due to production of amorphous, lots of microscale ASNPs were produced. • Ultrafine nanocrystals had the high interface energy, which became the driving force of the atomic motions. - Abstract: Rapid prototyping based on laser alloying was used to produce ultrafine nanocrystals (UN) reinforced three-dimensional microlaminates. Such microlaminates were fabricated on a TA1 alloy by laser rapid prototyping (LRP) of Stellite 20–TiN–B4C mixed powders to produce a bottom layer; then Stellite 20–TiN–B4C–Sb powders were deposited on such bottom-layer in order to form an upper-layer. There is an excellent metallurgical combination between such two layer; the upper-layer shows a better wear resistance than that of the bottom layer. The Sb addition promoted lots of UN to be produced, and lots of the nanorods were also produced in such microlaminates, their growth was retarded by agglomeration of UN in a certain extent. Such UN had the high interface energy, which became the driving force of atomic motions, favoring formation of a compact fine structure

  8. Precise Laser-Based Optical 3d Measurement of Welding Seams Under Water

    Science.gov (United States)

    Ekkel, T.; Schmik, J.; Luhmann, T.; Hastedt, H.

    2015-04-01

    This paper deals with the development of a measuring procedure and an experimental set-up (stereo camera system in combination with a projecting line laser and a positioning unit) which are intended to detect the surface topography, particularly of welds, with high accuracy in underwater environments. The system concept makes provision for the fact that the device can be positioned in space and manipulated by hand. The development, optimization and testing of the system components for surface measurements as well as calibration and accuracy evaluations are the main objectives within this research project. Testing procedures and probes are constructed and evaluated to verify the results. First results will be shown, where the test objects are underwater. The development considers conditions for a future adaption to underwater use.

  9. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    CERN Document Server

    Crua, Cyril

    2015-01-01

    In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently f...

  10. Development of an auto-welding system for CRD nozzle repair welds using a 3D laser vision sensor

    International Nuclear Information System (INIS)

    A control rod device (CRD) nozzle attaches to the hemispherical surface of a reactor head with J-groove welding. Primary water stress corrosion cracking (PWSCC) causes degradation in these welds, which requires that these defect areas be repaired. To perform this repair welding automatically on a complicated weld groove shape, an auto-welding system was developed incorporating a laser vision sensor that measures the 3-dimensional (3D) shape of the groove and a weld-path creation program that calculates the weld-path parameters. Welding trials with a J-groove workpiece were performed to establish a basis for developing this auto-welding system. Because the reactor head is placed on a lay down support, the outer-most region of the CRD nozzle has restricted access. Due to this tight space, several parameters of the design, such as size, weight and movement of the auto-welding system, had to be carefully considered. The cross section of the J-groove weld is basically an oval shape where the included angle of the J-groove ranges from 0 to 57 degrees. To measure the complex shape, we used double lasers coupled to a single charge coupled device (CCD) camera. We then developed a program to generate the weld-path parameters using the measured 3D shape as a basis. The program has the ability to determine the first and final welding positions and to calculate all weld-path parameters. An optimized image-processing algorithm was applied to resolve noise interference and diffused reflection of the joint surfaces. The auto-welding system is composed of a 4-axis manipulator, gas tungsten arc welding (GTAW) power supply, an optimized designed and manufactured GTAW torch and a 3D laser vision sensor. Through welding trials with 0 and 38-degree included-angle workpieces with both J-groove and U-groove weld, the performance of this auto-welding system was qualified for field application

  11. Laser-plasma interaction in ignition relevant plasmas: benchmarking our 3D modelling capabilities versus recent experiments

    Energy Technology Data Exchange (ETDEWEB)

    Divol, L; Froula, D H; Meezan, N; Berger, R; London, R A; Michel, P; Glenzer, S H

    2007-09-27

    We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA [1]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d [2]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, fluid LPI theory reproduces the SBS thresholds and absolute reflectivity values and the absence of measurable SRS. This good agreement was made possible by the recent increase in computing power routinely available for such simulations.

  12. 3D digitizing path planning for part inspection with laser scanning

    Science.gov (United States)

    Mahmud, Mussa; Joannic, David; Fontaine, Jean-François

    2007-01-01

    If the first work relating to the automation of the digitalization of machine elements goes back to approximately 25 years, the process of digitalization of parts with non-contact sensor remains nevertheless complex. It is not completely solved today, in particular from a metrological point of view. In this article, we consider the determination of the trajectory planning within the framework of the control of dimensional and geometrical specifications. The sensor used in this application is a laser planner scanner with CCD camera oriented and moved by a CMM. For this purpose, we have focused on the methodology used to determine the best possible viewpoints which will satisfy the digitizing of a mechanical part. The developed method is based on the concept of visibility: for each facet of a part CAD Model (STL) a set of orientations, called real visibility chart, is calculated under condition of measurement uncertainties. By application of several optimisation criteria, the real visibility chart is reduced to create a viewpoint set from which the path planning is built.

  13. Automatic target recognition on land using three dimensional (3D laser radar and artificial neural networks

    Directory of Open Access Journals (Sweden)

    Göztepe, K.

    2013-05-01

    Full Text Available During combat, measuring the dimensions of targets is extremely important for knowing when to fire on the enemy. The importance of identifying a known target on land emphasizes the importance of techniques devoted to automatic target recognition. Although a number of object-recognition techniques have been developed in the past, none of them have provided the desired specifics for unidentified target recognition. Studies on target recognition are largely based on images that assume that images of a known target can be readily viewed under any circumstance. But this is not true for military operations conducted on various terrains under specific circumstances. Usually it is not possible to capture images of unidentified objects because of weather, inadequate equipment, or concealment. In this study, a new approach that integrates neural networks and laser radar has been developed for automatic target recognition in order to reduce the above-mentioned problems. Unlike current studies, the proposed model uses the geometric dimensions of unidentified targets in order to detect and recognise them under severe weather conditions.

  14. Algorithm of geometry correction for airborne 3D scanning laser radar

    Science.gov (United States)

    Liu, Yuan; Chen, Siying; Zhang, Yinchao; Ni, Guoqiang

    2009-11-01

    Airborne three-dimensional scanning laser radar is used for wholesale scanning exploration to the target realm, then three-dimensional model can be established and target features can be identified with the characteristics of echo signals. So it is used widely and have bright prospect in the modern military, scientific research, agriculture and industry. At present, most researchers are focus on higher precision, more reliability scanning system. As the scanning platform is fixed on the aircraft, the plane cannot keep horizontal for a long time, also impossibly for a long time fly in the route without deviation. Data acquisition and the subsequence calibration rely on different equipments. These equipments bring errors both in time and space. Accurate geometry correction can amend the errors created by the process of assembly. But for the errors caused by the plane during the flight, whole imaging process should be analyzed. Take the side-roll as an example; scanning direction is inclined, so that the scanning point deviates from the original place. New direction and coordinate is the aim to us. In this paper, errors caused by the side-roll, pitch, yaw and assembly are analyzed and the algorithm routine is designed.

  15. Comparative analysis of algorithms for projected laser line identification and recognition for 3d scanning devices

    OpenAIRE

    Andrushchak, N.; Vasylyshyn, В.; Chornenkyy, V.

    2015-01-01

    Проведено порівняльний аналіз алгоритмів визначення та розпізнавання лінії лазерного випромінювання, описано принцип дії, негативні і позитивні сторони кожного методу, а також показано можливості їхнього застосування для пристроїв 3D-сканування. Тестування алгоритмів проведено на експериментальній установці з використанням засобів С++ і бібліотеки OpenCV. Показано, що залежно від розмірів зображення та деталізації вхідного зображення слід рекомендувати той чи інший алгоритм. This paper is dev...

  16. Guidelines in the experimental validation of a 3D heat and fluid flow model of keyhole laser welding

    Science.gov (United States)

    Courtois, Mickael; Carin, Muriel; Le Masson, Philippe; Gaied, Sadok; Balabane, Mikhaël

    2016-04-01

    During the past few years, numerous sophisticated models have been proposed to predict in a self-consistent way the dynamics of the keyhole, together with the melt pool and vapor jet. However, these models are only partially compared to experimental data, so the reliability of these models is questionable. The present paper aims to propose a more complete experimental set-up in order to validate the most relevant results calculated by these models. A complete heat transfer and fluid flow three-dimensional (3D) model is first proposed in order to describe laser welding in keyhole regimes. The interface is tracked with a level set method and fluid flows are calculated in liquid and gas. The mechanisms of recoil pressure and keyhole creation are highlighted in a fusion line configuration chosen as a reference. Moreover, a complete validation of the model is proposed with guidelines on the variables to observe. Numerous comparisons with dedicated experiments (thermocouples, pyrometry, high-speed camera) are proposed to estimate the validity of the model. In addition to traditional geometric measurements, the main variables calculated, temperatures, and velocities in the melt pool are at the center of this work. The goal is to propose a reference validation for complex 3D models proposed over the last few years.

  17. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: comparisons with schizophrenia.

    LENUS (Irish Health Repository)

    Hennessy, Robin J

    2010-09-01

    Any developmental relationship between bipolar disorder and schizophrenia engenders continuing debate. As the brain and face emerge in embryological intimacy, brain dysmorphogenesis is accompanied by facial dysmorphogenesis. 3D laser surface imaging was used to capture the facial surface of 13 male and 14 female patients with bipolar disorder in comparison with 61 male and 75 female control subjects and with 37 male and 32 female patients with schizophrenia. Surface images were analysed using geometric morphometrics and 3D visualisations to identify domains of facial shape that distinguish bipolar patients from controls and bipolar patients from those with schizophrenia. Both male and female bipolar patients evidenced significant facial dysmorphology: common to male and female patients was overall facial widening, increased width of nose, narrowing of mouth and upward displacement of the chin; dysmorphology differed between male and female patients for nose length, lip thickness and tragion height. There were few morphological differences in comparison with schizophrenia patients. That dysmorphology of the frontonasal prominences and related facial regions in bipolar disorder is more similar to than different from that found in schizophrenia indicates some common dysmorphogenesis. Bipolar disorder and schizophrenia might reflect similar insult(s) acting over slightly differing time-frames or slightly differing insult(s) acting over a similar time-frame.

  18. Power scale-up and propagation evolution of structured laser beams concentrated on 3D Lissajous parametric surfaces

    International Nuclear Information System (INIS)

    We systematically explore the power scale-up and propagation evolution of Lissajous structured beams in a lowly Nd-doped YVO4 laser with the off-axis pumping scheme. We experimentally found that the average output power can be up to 1.0 W for the output transmission in the range of 1.8–10% at an incident pump power of 6.2 W. It is also found that when the output transmission is greater than 5%, the spatial coherence is considerably reduced to lead to a feature of broken Lissajous figures in transverse patterns. Moreover, transverse patterns varying with propagation direction are remarkably measured to manifest the 3D characteristics of Lissajous structured beams. We also employ the formula of coherent states to make a comparison with experimental observations and to reveal the transverse momentum density varying with propagation direction. (letter)

  19. Hardness and microstructural inhomogeneity at the epitaxial interface of laser 3D-printed Ni-based superalloy

    Science.gov (United States)

    Qian, Dan; Zhang, Anfeng; Zhu, Jianxue; Li, Yao; Zhu, Wenxin; Qi, Baolu; Tamura, Nobumichi; Li, Dichen; Song, Zhongxiao; Chen, Kai

    2016-09-01

    In this letter, microstructural and mechanical inhomogeneities, a great concern for single crystal Ni-based superalloys repaired by laser assisted 3D printing, have been probed near the epitaxial interface. Nanoindentation tests show the hardness to be uniformly lower in the bulk of the substrate and constantly higher in the epitaxial cladding layer. A gradient of hardness through the heat affected zone is also observed, resulting from an increase in dislocation density, as indicated by the broadening of the synchrotron X-ray Laue microdiffraction reflections. The hardening mechanism of the cladding region, on the other hand, is shown to originate not only from high dislocation density but also and more importantly from the fine γ/γ' microstructure.

  20. Coupled simulation of chemical lasers based on intracavity partially coherent light model and 3D CFD model.

    Science.gov (United States)

    Wu, Kenan; Huai, Ying; Jia, Shuqin; Jin, Yuqi

    2011-12-19

    Coupled simulation based on intracavity partially coherent light model and 3D CFD model is firstly achieved in this paper. The dynamic equation of partially coherent intracavity field is derived based on partially coherent light theory. A numerical scheme for the coupled simulation as well as a method for computing the intracavity partially coherent field is given. The presented model explains the formation of the sugar scooping phenomenon, and enables studies on the dependence of the spatial mode spectrum on physical parameters of laser cavity and gain medium. Computational results show that as the flow rate of iodine increases, higher order mode components dominate in the partially coherent field. Results obtained by the proposed model are in good agreement with experimental results. PMID:22274214

  1. Writing of 3D optical integrated circuits with ultrashort laser pulses in the presence of strong spherical aberration

    Science.gov (United States)

    Bukharin, M. A.; Skryabin, N. N.; Khudyakov, D. V.; Vartapetov, S. K.

    2016-09-01

    A novel technique was proposed for 3D femtosecond writing of waveguides and optical integrated circuits in the presence of strong spherical aberration, caused by inscription at significantly different depth under the surface of optical glasses and crystals. Strong negative effect of spherical aberration and related asymmetry of created structures was reduced due to transition to the cumulative thermal regime of femtosecond interaction with the material. The differences in the influence of spherical aberration effect in a broad depth range (larger than 200 µm) was compensated by dynamic adjustment of laser pulse energy during the process of waveguides recording. The presented approach has been experimentally implemented in fused silica. Obtained results can be used in production of a broad class of femtosecond written three-dimensional integrated optical systems, inscripted at non-optimal (for focusing lens) optical depth or in significantly extended range of depths.

  2. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    Science.gov (United States)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  3. Development of Kinematic 3D Laser Scanning System for Indoor Mapping and As-Built BIM Using Constrained SLAM

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2015-10-01

    Full Text Available The growing interest and use of indoor mapping is driving a demand for improved data-acquisition facility, efficiency and productivity in the era of the Building Information Model (BIM. The conventional static laser scanning method suffers from some limitations on its operability in complex indoor environments, due to the presence of occlusions. Full scanning of indoor spaces without loss of information requires that surveyors change the scanner position many times, which incurs extra work for registration of each scanned point cloud. Alternatively, a kinematic 3D laser scanning system, proposed herein, uses line-feature-based Simultaneous Localization and Mapping (SLAM technique for continuous mapping. Moreover, to reduce the uncertainty of line-feature extraction, we incorporated constrained adjustment based on an assumption made with respect to typical indoor environments: that the main structures are formed of parallel or orthogonal line features. The superiority of the proposed constrained adjustment is its reduction for uncertainties of the adjusted lines, leading to successful data association process. In the present study, kinematic scanning with and without constrained adjustment were comparatively evaluated in two test sites, and the results confirmed the effectiveness of the proposed system. The accuracy of the 3D mapping result was additionally evaluated by comparison with the reference points acquired by a total station: the Euclidean average distance error was 0.034 m for the seminar room and 0.043 m for the corridor, which satisfied the error tolerance for point cloud acquisition (0.051 m according to the guidelines of the General Services Administration for BIM accuracy.

  4. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  5. Terrestrial and aerial laser scanning data integration using wavelet analysis for the purpose of 3D building modeling.

    Science.gov (United States)

    Kedzierski, Michal; Fryskowska, Anna

    2014-01-01

    Visualization techniques have been greatly developed in the past few years. Three-dimensional models based on satellite and aerial imagery are now being enhanced by models generated using Aerial Laser Scanning (ALS) data. The most modern of such scanning systems have the ability to acquire over 50 points per square meter and to register a multiple echo, which allows the reconstruction of the terrain together with the terrain cover. However, ALS data accuracy is less than 10 cm and the data is often incomplete: there is no information about ground level (in most scanning systems), and often around the facade or structures which have been covered by other structures. However, Terrestrial Laser Scanning (TLS) not only acquires higher accuracy data (1-5 cm) but is also capable of registering those elements which are incomplete or not visible using ALS methods (facades, complicated structures, interiors, etc.). Therefore, to generate a complete 3D model of a building in high Level of Details, integration of TLS and ALS data is necessary. This paper presents the wavelet-based method of processing and integrating data from ALS and TLS. Methods of choosing tie points to combine point clouds in different datum will be analyzed.

  6. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    Science.gov (United States)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-01-01

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions. PMID:26924255

  7. Efficient Second Harmonic Generation in 3D Nonlinear Optical-Lattice-Like Cladding Waveguide Splitters by Femtosecond Laser Inscription.

    Science.gov (United States)

    Nie, Weijie; Jia, Yuechen; Vázquez de Aldana, Javier R; Chen, Feng

    2016-02-29

    Integrated photonic devices with beam splitting function are intriguing for a broad range of photonic applications. Through optical-lattice-like cladding waveguide structures fabricated by direct femtosecond laser writing, the light propagation can be engineered via the track-confined refractive index profiles, achieving tailored output beam distributions. In this work, we report on the fabrication of 3D laser-written optical-lattice-like structures in a nonlinear KTP crystal to implement 1 × 4 beam splitting. Second harmonic generation (SHG) of green light through these nonlinear waveguide beam splitter structures provides the capability for the compact visible laser emitting devices. With Type II phase matching of the fundamental wavelength (@ 1064 nm) to second harmonic waves (@ 532 nm), the frequency doubling has been achieved through this three-dimensional beam splitter. Under 1064-nm continuous-wave fundamental-wavelength pump beam, guided-wave SHG at 532 nm are measured with the maximum power of 0.65 mW and 0.48 mW for waveguide splitters (0.67 mW and 0.51 mW for corresponding straight channel waveguides), corresponding to a SH conversion efficiency of approximately ~14.3%/W and 13.9%/W (11.2%/W, 11.3%/W for corresponding straight channel waveguides), respectively. This work paves a way to fabricate compact integrated nonlinear photonic devices in a single chip with beam dividing functions.

  8. FOREST INVENTORY ATTRIBUTE ESTIMATION USING AIRBORNE LASER SCANNING, AERIAL STEREO IMAGERY, RADARGRAMMETRY AND INTERFEROMETRY–FINNISH EXPERIENCES OF THE 3D TECHNIQUES

    OpenAIRE

    M. Holopainen; M. Vastaranta; Karjalainen, M.; K. Karila; Kaasalainen, S.; Honkavaara, E; J. Hyyppä

    2015-01-01

    Three-dimensional (3D) remote sensing has enabled detailed mapping of terrain and vegetation heights. Consequently, forest inventory attributes are estimated more and more using point clouds and normalized surface models. In practical applications, mainly airborne laser scanning (ALS) has been used in forest resource mapping. The current status is that ALS-based forest inventories are widespread, and the popularity of ALS has also raised interest toward alternative 3D techniques, inc...

  9. Positional precision evaluation of 3 D laser scanner based on 3 D control field%基于三维控制场的三维激光扫描仪点位精度评定

    Institute of Scientific and Technical Information of China (English)

    史波; 郑敏

    2015-01-01

    为评定三维激光扫描仪的精度,设计了一个基于室内三维控制场的RIEGL VZ-400点位精度评定方案。通过实测得到其在距离10 m左右的外部、内部符合精度分别为±1.675 mm和±0.48 mm。详细介绍了室内全景三维控制场的布设、数据采集以及点位精度的评定方法。研究结果可为地面三维激光扫描仪的工程应用提供精度依据。%For evaluating the precision of a 3D laser scanner, we designed a positional precision evaluation solution for RIEGL VZ-400 on the basis of the 3D indoor panoramic control field. Through the evaluation, the precision of external and internal po-sition at distance of 10 m is ± 1. 675mm and ± 0. 48mm respectively. The layout, data collection way and the positional preci-sion evaluation method are introduced. The results could provide experiences and references for the application of ground 3D laser scanners.

  10. Application of 3D laser scanner in ore volume measurement%三维激光扫描仪在测算矿方量中的应用

    Institute of Scientific and Technical Information of China (English)

    黄有; 郑坤; 刘修国; 王红平; 阮进成

    2012-01-01

    Recently, with the rapid development of 3D laser scanning technique, 3D laser scanners have been extensively applied in many fields. The paper mainly described the application of 3D laser scanner in ore volume measure. The volume of ore hea Pwas calculated after it was scanned by the Riegl VZ-400 3D laser scanner. The precision was confirmed by the comparison of the control points' geodetic coordinates measured by GPS and scanner coordinates. The result of experiment showed that the precision of 3D laser scanner could satisfy the requirements of ore volume measurement. In conclusion, the paper summarized the advantage of the usage of 3D laser scanning technology in ore volume measurement.%本文通过使用Riegl VZ-400型号的三维激光扫描仪对某矿堆进行了扫描,对扫描数据进行三维建模后测算矿堆的矿方量.采用GPS测量一定数量控制点的大地坐标与扫描仪测量的坐标进行比较来验证扫描数据的精度,得到平面坐标的差值绝对值最大为0 018m,而高程的差值绝对值最大为0.028m,实验结果表明三维激光扫描仪满足测算矿方量的精度.

  11. Real-time microstructure imaging by Laue microdiffraction: A sample application in laser 3D printed Ni-based superalloys

    Science.gov (United States)

    Zhou, Guangni; Zhu, Wenxin; Shen, Hao; Li, Yao; Zhang, Anfeng; Tamura, Nobumichi; Chen, Kai

    2016-06-01

    Synchrotron-based Laue microdiffraction has been widely applied to characterize the local crystal structure, orientation, and defects of inhomogeneous polycrystalline solids by raster scanning them under a micro/nano focused polychromatic X-ray probe. In a typical experiment, a large number of Laue diffraction patterns are collected, requiring novel data reduction and analysis approaches, especially for researchers who do not have access to fast parallel computing capabilities. In this article, a novel approach is developed by plotting the distributions of the average recorded intensity and the average filtered intensity of the Laue patterns. Visualization of the characteristic microstructural features is realized in real time during data collection. As an example, this method is applied to image key features such as microcracks, carbides, heat affected zone, and dendrites in a laser assisted 3D printed Ni-based superalloy, at a speed much faster than data collection. Such analytical approach remains valid for a wide range of crystalline solids, and therefore extends the application range of the Laue microdiffraction technique to problems where real-time decision-making during experiment is crucial (for instance time-resolved non-reversible experiments).

  12. Growth Mechanism and Characterization of ZnO 3D Nanocrystals by Laser Irradiation & Coaxially Transporting O2

    Institute of Scientific and Technical Information of China (English)

    LUO Kaiyu; LI Boquan; ZHANG Huanyan

    2008-01-01

    Different three-dimension (3D) nanotetrapods,containing club-like nanocrystals,nanotetrapods and four-foot-like nanocrystals were synthesized from Zinc sheet via CO2 laser irradiation and coaxially transporting O2.Different nanoproducts were fabricated by changing the content of oxygen in the experiment.The morphologies,components,phase structures and optical properties of the products were investigated by a field-emission scanning electron microscopy,an X-ray diffraction,an energy dispersed X-ray spectrometer and a photoluminescence spectroscope.The X-ray diffraction spectra were obtained on a Rigaku D/max 2500PC diffractometer.The experimental results reveal that high quality ZnO nanotetrapods can be fabricated on the special parameters,and growth of ZnO nanotetrapods depends on Vapour-Liquid-Solid(VLS) model,and the content of oxygen in the gas,namely,oxygen partial pressure is one of main factors to control morphologies and optical properties of ZnO nanotetrapods;these advantages above are important for realization of optoelectronic devices.

  13. Definition of the fundamentals for the automatic generation of digitalization processes with a 3D laser sensor

    Science.gov (United States)

    Davillerd, Stephane; Sidot, Benoit; Bernard, Alain; Ris, Gabriel

    1998-12-01

    This paper introduces the first results of a research work carried out on the automation of digitizing process of complex part using a precision 3D laser senor. Indeed, most of the operations are generally still manual to perform digitization. In fact, redundancies, lacks or forgettings in point acquisition are possible. Moreover, digitalization time of a part, i.e. immobilization of the machine, is thus not optimized overall. After introducing the context in which evolves the reverse engineering, we quickly present non-contact sensors and machines usable to digitalize a part. Considered environment of digitization is also modeled, but in a general way in order to preserve an upgrading capability to the system. Machine and sensor actually used are then presented and their integration exposed. Current process of digitization is then detailed, after what a critical analysis from the considered point of view is carried out and some solutions are suggested. The paper concludes on the laid down prospects and the next projected developments.

  14. Guided-wave-based damage detection in a composite T-joint using 3D scanning laser Doppler vibrometer

    Science.gov (United States)

    Kolappan Geetha, Ganesh; Roy Mahapatra, D.; Srinivasan, Gopalakrishnan

    2012-04-01

    Composite T-joints are commonly used in modern composite airframe, pressure vessels and piping structures, mainly to increase the bending strength of the joint and prevents buckling of plates and shells, and in multi-cell thin-walled structures. Here we report a detailed study on the propagation of guided ultrasonic wave modes in a composite T-joint and their interactions with delamination in the co-cured co-bonded flange. A well designed guiding path is employed wherein the waves undergo a two step mode conversion process, one is due to the web and joint filler on the back face of the flange and the other is due to the delamination edges close to underneath the accessible surface of the flange. A 3D Laser Doppler Vibrometer is used to obtain the three components of surface displacements/velocities of the accessible face of the flange of the T-joint. The waves are launched by a piezo ceramic wafer bonded on to the back surface of the flange. What is novel in the proposed method is that the location of any change in material/geometric properties can be traced by computing a frequency domain power flow along a scan line. The scan line can be chosen over a grid either during scan or during post-processing of the scan data off-line. The proposed technique eliminates the necessity of baseline data and disassembly of structure for structural interrogation.

  15. Laser Nanosoldering of Golden and Magnetite Particles and its Possible Application in 3D Printing Devices and Four-Valued Non-Volatile Memories

    Directory of Open Access Journals (Sweden)

    Jaworski Jacek

    2015-12-01

    Full Text Available In recent years the 3D printing methods have been developing rapidly. This article presents researches about a new composite consisted of golden and magnetite nanoparticles which could be used for this technique. Preparation of golden nanoparticles by laser ablation and their soldering by laser green light irradiation proceeded in water environment. Magnetite was obtained on chemical way. During experiments it was tested a change of a size of nanoparticles during laser irradiation, surface plasmon resonance, zeta potential. The obtained golden - magnetite composite material was magnetic after laser irradiation. On the end there was considered the application it for 3D printing devices, water filters and four-valued non-volatile memories.

  16. Creating A 3D urban model by terrestrial laser scanners and photogrammetry techniques: a case study on the historical peninsula of Istanbul

    Science.gov (United States)

    Ergun, Bahadir

    2007-07-01

    Today, terrestrial laser scanning has been a frequently used methodology for the documentation of historical buildings and cultural heritages. The historical peninsula region is the documentation of historical buildings and cover approximately 1500 ha. Terrestrial laser scanning and close range image photogrammetry techniques are integrated to each other to create a 3D urban model of Istanbul including the most important landmarks and the buildings reflecting the most brilliant areas of Byzantine and Ottoman Empires.

  17. Evaluation of the use of laser scanning to create key models for 3D printing separate from and augmenting visible light sensing

    Science.gov (United States)

    Straub, Jeremy; Kerlin, Scott

    2016-05-01

    The illicit creation of 3D printed keys is problematic as it can allow intruders nearly undetectable access to secure facilities. Prior work has discussed how keys can be created using visible light sensing. This paper builds on this work by evaluating the utility of keys produced with laser scanning. The quality of the model produced using a structured laser scanning approach is compared to the quality of a model produced using a similarly robust visible light sensing approach.

  18. RECONSTRUCTION, QUANTIFICATION, AND VISUALIZATION OF FOREST CANOPY BASED ON 3D TRIANGULATIONS OF AIRBORNE LASER SCANNING POINT DATA

    Directory of Open Access Journals (Sweden)

    J. Vauhkonen

    2015-03-01

    Full Text Available Reconstruction of three-dimensional (3D forest canopy is described and quantified using airborne laser scanning (ALS data with densities of 0.6–0.8 points m-2 and field measurements aggregated at resolutions of 400–900 m2. The reconstruction was based on computational geometry, topological connectivity, and numerical optimization. More precisely, triangulations and their filtrations, i.e. ordered sets of simplices belonging to the triangulations, based on the point data were analyzed. Triangulating the ALS point data corresponds to subdividing the underlying space of the points into weighted simplicial complexes with weights quantifying the (empty space delimited by the points. Reconstructing the canopy volume populated by biomass will thus likely require filtering to exclude that volume from canopy voids. The approaches applied for this purpose were (i to optimize the degree of filtration with respect to the field measurements, and (ii to predict this degree by means of analyzing the persistent homology of the obtained triangulations, which is applied for the first time for vegetation point clouds. When derived from optimized filtrations, the total tetrahedral volume had a high degree of determination (R2 with the stem volume considered, both alone (R2=0.65 and together with other predictors (R2=0.78. When derived by analyzing the topological persistence of the point data and without any field input, the R2 were lower, but the predictions still showed a correlation with the field-measured stem volumes. Finally, producing realistic visualizations of a forested landscape using the persistent homology approach is demonstrated.

  19. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    Science.gov (United States)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  20. Study on Detection of 3D Laser Scanner Positional Accuracy%三维激光扫描仪点位精度检测研究

    Institute of Scientific and Technical Information of China (English)

    王鸣霄; 戴相喜; 王正强

    2013-01-01

    3D laser scanner is a new fast mean to acquire 3d coordinates of ground objects ,has many increasing in-comparable advantages than traditional measuring means and has wide application prospect .Aim to obtain the actual ac-curacy of its scanning data ,so as to confirm its range of application;this paper designed an experiment ,detection accuracy through surveying the same area using both 3 d laser scanner and total station instrument ,finally get the general accuracy information of 3 d laser scanner ,offer data support to confirm its application range .%三维激光扫描仪扫描作为一种新型的地物三维坐标快速获取手段,具有传统测量手段很多无法比拟的优势,具有广阔的应用前景。为了解其扫描所得点的实际精度,以便确定其适用领域,本文设计实验,采用三维激光扫描仪和全站仪重复测量的方法对其进行检测,得到三维激光扫描仪精度的基本情况,为确定其适用范围提供数据支持。

  1. Axial-Stereo 3-D Optical Metrology for Inner Profile of Pipes Using a Scanning Laser Endoscope

    Science.gov (United States)

    Gong, Yuanzheng; Johnston, Richard S.; Melville, C. David; Seibel, Eric J.

    2015-07-01

    As the rapid progress in the development of optoelectronic components and computational power, 3-D optical metrology becomes more and more popular in manufacturing and quality control due to its flexibility and high speed. However, most of the optical metrology methods are limited to external surfaces. This article proposed a new approach to measure tiny internal 3-D surfaces with a scanning fiber endoscope and axial-stereo vision algorithm. A dense, accurate point cloud of internally machined threads was generated to compare with its corresponding X-ray 3-D data as ground truth, and the quantification was analyzed by Iterative Closest Points algorithm.

  2. Uav-Based Acquisition of 3d Point Cloud - a Comparison of a Low-Cost Laser Scanner and Sfm-Tools

    Science.gov (United States)

    Mader, D.; Blaskow, R.; Westfeld, P.; Maas, H.-G.

    2015-08-01

    The Project ADFEX (Adaptive Federative 3D Exploration of Multi Robot System) pursues the goal to develop a time- and cost-efficient system for exploration and monitoring task of unknown areas or buildings. A fleet of unmanned aerial vehicles equipped with appropriate sensors (laser scanner, RGB camera, near infrared camera, thermal camera) were designed and built. A typical operational scenario may include the exploration of the object or area of investigation by an UAV equipped with a laser scanning range finder to generate a rough point cloud in real time to provide an overview of the object on a ground station as well as an obstacle map. The data about the object enables the path planning for the robot fleet. Subsequently, the object will be captured by a RGB camera mounted on the second flying robot for the generation of a dense and accurate 3D point cloud by using of structure from motion techniques. In addition, the detailed image data serves as basis for a visual damage detection on the investigated building. This paper focuses on our experience with use of a low-cost light-weight Hokuyo laser scanner onboard an UAV. The hardware components for laser scanner based 3D point cloud acquisition are discussed, problems are demonstrated and analyzed, and a quantitative analysis of the accuracy potential is shown as well as in comparison with structure from motion-tools presented.

  3. Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2-(5s4d)3D2 transition

    Science.gov (United States)

    Mickelson, P. G.; Martinez de Escobar, Y. N.; Anzel, P.; De Salvo, B. J.; Nagel, S. B.; Traverso, A. J.; Yan, M.; Killian, T. C.

    2009-12-01

    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p)3P2-(5s4d)3D2 transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p)3P2 dark state are repumped back into the (5s2)1S0 ground state. Spectroscopy of 84Sr, 86Sr, 87Sr and 88Sr improves the value of the (5s5p)3P2-(5s4d)3D2 transition frequency and determines the isotope shifts for the transition accurately enough to guide laser-cooling experiments with less abundant isotopes.

  4. Microstructure of crown dental hard tissue of premolars observed by 3D laser scanning microscope%3D 激光扫描显微镜下前磨牙牙冠硬组织的微结构

    Institute of Scientific and Technical Information of China (English)

    许立侠; 徐红梅; 郭红延; 郭红梅; 孙丽梅

    2016-01-01

    目的:运用3D 激光扫描显微镜(3DLSM)观察分析前磨牙牙冠部釉质、牙本质及釉牙本质界(DEJ)处结构与功能的关系。方法:收集10个因正畸拔出的新鲜前磨牙,随机分为横剖面组(A 组)和纵剖面组(B 组),分别在3DLSM下进行激光彩色及3D 图像观察。结果:釉质的激光彩色图中,A 组釉柱晶体排列紧密呈鱼鳞状,釉柱间隙清晰可见,釉柱鞘弧形边界连续。B 组釉柱晶体排列紧密呈条索状,釉柱鞘连续清晰。牙本质的激光彩色图中,A 组牙本质小管开口管腔明显,管壁边缘为管周牙本质,其余为管间牙本质。B 组牙本质小管呈条索状贯穿牙本质全层,沿途可见许多分支。DEJ 的激光彩色图中,A、B 两组均呈贝壳状,但 A 组凹凸形态较明显。3D 图像则更清晰显示了 A、B 两组的立体结构形貌。结论:3D 激光扫描显微镜下观察到的牙冠硬组织结构与其功能密切相关。%AIM:To investigate the microstructure of enamel,dentin and dentin -enamel junction (DEJ), and to analyze the relationship between the microstructure and the function of premolars by 3D laser scanning micro-scope(3DLSM).METHODS:10 freshly extracted human premolars were divided into transverse section group(group A,n =5)and longitudinal section group (group B,n =5)and were examined under 3D LSM.RESULTS:In group A enamel surface morphology showed that the crystals of enamel rods were closely aligned,enamel rod sheath gap was clearly visible and curved boundary was continuous.While in group B,the crystals of enamel rods were closely ar-ranged,enamel rod sheath was clear and continuous.For dentin surface morphology,many openings of dentin tubule could be found,lumen was clear and tube wall was surrounded with peritubular dentin and the other parts were surroun-ded with intertubular dentin in group A.Whereas in group B,dentin tubule was streakily arranged throughout the dentin

  5. UAV-BASED ACQUISITION OF 3D POINT CLOUD – A COMPARISON OF A LOW-COST LASER SCANNER AND SFM-TOOLS

    OpenAIRE

    Mader, D.; R. Blaskow; Westfeld, P.; Maas, H.-G.

    2015-01-01

    The Project ADFEX (Adaptive Federative 3D Exploration of Multi Robot System) pursues the goal to develop a time- and cost-efficient system for exploration and monitoring task of unknown areas or buildings. A fleet of unmanned aerial vehicles equipped with appropriate sensors (laser scanner, RGB camera, near infrared camera, thermal camera) were designed and built. A typical operational scenario may include the exploration of the object or area of investigation by an UAV equipped with...

  6. 3D laser scanner application in topographic survey%三维激光扫描仪在地形测量中的应用

    Institute of Scientific and Technical Information of China (English)

    李子坡; 李晓静

    2013-01-01

    三维激光扫描仪与全球定位系统(GPS)的结合是数字测图的又一次创新和进步,其具有简捷、高效、高清晰的数据获取能力,与传统测绘相比具有劳动强度低、时间短、测图的灵活性强,智能化、兼容性强等优势。本文介绍了三维激光扫描仪应用的现状,并与传统数据采集方式进行了比较,并结合实例将三维激光扫描技术应用于大比例尺地形测量中,结果表明了三维激光扫描技术方案能够很好的取代传统测量方式,保证测绘数据质量,能够提高作业效率。%The 3D laser scanner and a global positioning system (GPS) is combined with another innovation and progress in digital mapping, which is a simple, efficient, high resolution data acquisition capacity, compared with the traditional mapping has the advantages of low labor intensity, time is short, mapping flexibility, intelligent, strong compatibility and other advantages. This paper introduces the present situation of the application of 3D laser scanner, and compared with the traditional data acquisition methods, combined with the example, the application of 3D laser scanning technology in large scale topographic survey, results show that the 3D laser scanning technology to replace the traditional measurement methods are good, ensure the quality of Surveying and mapping data, can improve the efficiency of.

  7. Rapidly solidified microstructure of 3D parts fabricated by selective laser melting (SLM) - Examples of stainless steel 316L and titanium Ti-6Al-4V

    OpenAIRE

    Contrepois, Quentin; LECOMTE-BECKERS, Jacqueline

    2011-01-01

    Laser additive manufacturing process capable of producing fully dense metallic parts direct from 3D CAD know a fast development. Major concerns are made to achieve the best accuracy of the final geometry and the reduction of the residual stresses but metallurgical aspects are also essential. The process can be described as a succession of very small welds. A key in the optimization of the mechanical properties is the understanding of the specific solidification mechanisms. Microstructures of ...

  8. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. 三维激光扫描技术在数字城市中的应用%Application of 3D Laser Scanning Technology to Digital City

    Institute of Scientific and Technical Information of China (English)

    李杰; 周兴华; 唐秋华; 李君益; 厉峰

    2011-01-01

    三维激光扫描技术具有精度高、速度快、真实感强、数据量大、作业安全等众多优点,应用领域日益广泛。通过三维激光扫描仪对建筑物进行扫描作业和数据处理,建立建筑物的三维模型,并以Leica的ScanStation2地面三维激光扫描仪为例,讨论激光扫描仪在数字城市中的应用。%The 3D laser scanning technology has become widely used in various fields for its advantages such as high precision,high speed,better truthfulness,huge data volume and its safty assurance in application.In this paper,the scanning of buildings and data processing are carried out to establish the 3D models for the buildings.Then Leica-ScanStation2 3D laser scanner is taken as an example to discuss the application of laser scanners to the digital city construction.

  10. 三维激光扫描仪精度测试及应用%Accuracy testing and application of 3D laser scanner

    Institute of Scientific and Technical Information of China (English)

    张铁军; 沈家海; 申文永

    2015-01-01

    The basic principle of 3D laser scanner, and the test methods of its positional accuracy in pile surveying were introduced in this paper. According to engineering requirements, we arranged control points, chose columns under the viaduct in land as observation target, measured the center coordinates respectively using 3D laser scanner and total station, analyzed the measuring accuracy of 3D laser scanner based on total station measuring results, and explored its application in engineering surveying.%介绍了三维激光扫描仪的基本原理及其应用于桩基测量精度分析的测试方法。按照工程需求,布置控制点,选择陆地高架桥下的圆柱作为观测目标,分别用三维激光扫描仪和全站仪测量出圆心坐标,以全站仪测量成果为基准,分析三维激光扫描仪的测量精度,探索其在工程测量中的应用。

  11. Large-scale 3D laser scanning techniques and their applications%大尺度3D激光扫描技术及其应用

    Institute of Scientific and Technical Information of China (English)

    封全宏; 魏彪; 崔大庆

    2004-01-01

    针对大物体3D原型及测量的3D激光扫描技术近年来得到了飞速的发展.与其他3D测量技术相比,大尺度3D激光扫描技术可以在中、大距离内快速捕获大物体全区域的数字原型,特别是考虑时间和成本,大尺度3D激光扫描技术在不同环境和地点中捕获复杂物体的3D数据是十分奏效的.在详细介绍大尺度3D激光扫描技术原理的基础上,给出了在建筑结构、隧道工程等方面的一些应用实例.实际应用结果表明,大尺度3D激光扫描技术是各种反求工程对称应用的一种独特的工具或方法.%3D laser scanning techniques are in a great development recent years for the 3D measuring and modeling of large objects. Comparing to other 3D measuring techniques, a large-scale 3D scanner can quickly capture a full-coverage digital model of a large object within a range of the middle to large distances. Especially, it is quite effective, in respect to both time and cost, to apply such techniques to capture 3D digital data of complicated objects in different environments and situations. In this paper, the large-scale 3D laser scanning techniques are introduced, and some application examples in 3D modeling in reverse engineering, 3D mapping and documentation for architecture and tunneling, are presented.

  12. Initial progress in the recording of crime scene simulations using 3D laser structured light imagery techniques for law enforcement and forensic applications

    Science.gov (United States)

    Altschuler, Bruce R.; Monson, Keith L.

    1998-03-01

    Representation of crime scenes as virtual reality 3D computer displays promises to become a useful and important tool for law enforcement evaluation and analysis, forensic identification and pathological study and archival presentation during court proceedings. Use of these methods for assessment of evidentiary materials demands complete accuracy of reproduction of the original scene, both in data collection and in its eventual virtual reality representation. The recording of spatially accurate information as soon as possible after first arrival of law enforcement personnel is advantageous for unstable or hazardous crime scenes and reduces the possibility that either inadvertent measurement error or deliberate falsification may occur or be alleged concerning processing of a scene. Detailed measurements and multimedia archiving of critical surface topographical details in a calibrated, uniform, consistent and standardized quantitative 3D coordinate method are needed. These methods would afford professional personnel in initial contact with a crime scene the means for remote, non-contacting, immediate, thorough and unequivocal documentation of the contents of the scene. Measurements of the relative and absolute global positions of object sand victims, and their dispositions within the scene before their relocation and detailed examination, could be made. Resolution must be sufficient to map both small and large objects. Equipment must be able to map regions at varied resolution as collected from different perspectives. Progress is presented in devising methods for collecting and archiving 3D spatial numerical data from crime scenes, sufficient for law enforcement needs, by remote laser structured light and video imagery. Two types of simulation studies were done. One study evaluated the potential of 3D topographic mapping and 3D telepresence using a robotic platform for explosive ordnance disassembly. The second study involved using the laser mapping system on a

  13. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    Science.gov (United States)

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-01

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.

  14. Analysis of Spot Error Sources of 3D Laser Scanning%三维激光扫描点位误差源分析

    Institute of Scientific and Technical Information of China (English)

    王林

    2014-01-01

    目前对三维激光扫描的分析主要停留在误差模型的建立上,没有对三维激光扫描仪的特点及其所受的误差进行分析,而三维激光扫描仪的系统误差和偶然误差都将会对整个误差模型的建立产生影响,点位误差源的准确分析是点位准确建立点位误差模型的基础。基于此,本文对三维激光扫描仪的点位误差源进行了分析,得到了不同误差源的误差模型,并给出了不同条件可能对激光扫描仪误差影响的大小。%At present, the analysis of 3D laser scanning mainly stays in the construction of error model, but not on the characteristics of 3D laser scanner and its error analysis. The system error and random error can even affect the con-struction of the entire error model. The accurate analysis of the spot error sources is the basis to establish an accurate spot error model. On this basis, this article analyzes the spot error sources of 3D laser scanner, obtains the error model of different error sources and gives the size of the influence of the laser scanner under different conditions.

  15. A Robotic Indoor 3D Mapping System Using a 2D Laser Range Finder Mounted on a Rotating Four-Bar Linkage of a Mobile Platform

    Directory of Open Access Journals (Sweden)

    Yu-Shin Chou

    2013-01-01

    Full Text Available This paper describes our work in developing a 3D robotic mapping system composed by an experimental mobile platform equipped with a rotating laser range finder (LRF. For the purpose of obtaining more complete 3D scans of the environment, we design, construct and calibrate a crank‐rocker four‐bar linkage so that a LRF mounted on it could undergo repetitive rotational motion between two extreme positions, allowing both horizontal and vertical scans. To reduce the complexity of map representation suitable for optimization later, the local map from the LRF is a grid map represented by a distance‐transformed (DT matrix. We compare the DT‐transformed maps and find the transformation matrix of a robot pose by a linear simplex‐based map optimization method restricted to a local region allows efficient alignment of maps in scan matching. Several indoor 2D and 3D mapping experiments are presented to demonstrate the consistency, efficiency and accuracy of the 3D mapping system for a mobile robot that is stationary or in motion.

  16. A Novel 3D Laser Ball Bar and Its Application%三维激光球杆测量装置及其应用

    Institute of Scientific and Technical Information of China (English)

    赵俊伟; 徐振高; 范光照; 李柱

    2001-01-01

    研制了一种三维激光球杆装置,能方便地测量机床主轴或刀具的空间运动位置.介绍了装置的组成、误差分析和精度校正过程.该装置用于并联机床主轴空间运动位置的测量,实验和测量结果表明具有较高的测量精度和广泛的应用前景.%A novel 3D laser ball bar (3D LBB) has been developed to determine the shaft or tool point positions rapidly and easily. The design of this instrument is discussed and the error contributors are sought to determine its accuracy. As one kind of applications, the 3D LBB is used to test the volumetric error of a parallel type machine tool. The satisfactory experiments and results show the LBB is capable of 3D tool path measurements with high precision.

  17. Discovering new methods of data fusion, visualization, and analysis in 3D immersive environments for hyperspectral and laser altimetry data

    Science.gov (United States)

    Moore, C. A.; Gertman, V.; Olsoy, P.; Mitchell, J.; Glenn, N. F.; Joshi, A.; Norpchen, D.; Shrestha, R.; Pernice, M.; Spaete, L.; Grover, S.; Whiting, E.; Lee, R.

    2011-12-01

    Immersive virtual reality environments such as the IQ-Station or CAVE° (Cave Automated Virtual Environment) offer new and exciting ways to visualize and explore scientific data and are powerful research and educational tools. Combining remote sensing data from a range of sensor platforms in immersive 3D environments can enhance the spectral, textural, spatial, and temporal attributes of the data, which enables scientists to interact and analyze the data in ways never before possible. Visualization and analysis of large remote sensing datasets in immersive environments requires software customization for integrating LiDAR point cloud data with hyperspectral raster imagery, the generation of quantitative tools for multidimensional analysis, and the development of methods to capture 3D visualizations for stereographic playback. This study uses hyperspectral and LiDAR data acquired over the China Hat geologic study area near Soda Springs, Idaho, USA. The data are fused into a 3D image cube for interactive data exploration and several methods of recording and playback are investigated that include: 1) creating and implementing a Virtual Reality User Interface (VRUI) patch configuration file to enable recording and playback of VRUI interactive sessions within the CAVE and 2) using the LiDAR and hyperspectral remote sensing data and GIS data to create an ArcScene 3D animated flyover, where left- and right-eye visuals are captured from two independent monitors for playback in a stereoscopic player. These visualizations can be used as outreach tools to demonstrate how integrated data and geotechnology techniques can help scientists see, explore, and more adequately comprehend scientific phenomena, both real and abstract.

  18. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  19. Non-invasive 3d magnetic resonance thermal mapping: determination of the lesion size during laser-therapy in ex vivo tissues

    International Nuclear Information System (INIS)

    Developments in open magnetic resonance imaging (MRI) magnets have made possible the use of reproducible thermosensitive sequences to determine temperature distribution inside biological tissue. This study aimed to compare MR thermal mapping during laser-induced interstitial thermal therapy (LITT) with macroscopically observed thermal lesions in order to estimate the 3D size of the coagulative necrosis. Laser irradiation was performed ex vivo with a 980-nm laser in pig liver in an open low-magnetic field (0.2 T) scanner. Laser light was transmitted through a 1,040/600 μm (outer/core diameter) bare-tipped silica fiber. Laser energy was applied in a pulsed mode (10 s laser-on, 10 s laser-off) for 12 min, power 6 W, energy 2,160 J. Gradient-echo images acquired during laser irradiation were used for real-time temperature mapping by the MR-T1 method. The method was then validated by a comparison between calculated 60 C isotherm and macroscopic lesion size. Temperature accuracy was 2.2 C, temporal resolution was 20 s. and spatial resolution was 2.5 x 2.5 x 2.5 mm3 (0.8% of the mean volume of coagulative necrosis). The mean lesion volume was 1830 mm3 ± 189 (standard error), σ (standard deviation) = 499 and range (min = 1281; max = 2591) mm3. Volumes calculated from MRI isotherms were correlated (correlation coefficient r 2 = 0.70) significantly (P = 0.08) to lesion size determined from macroscopic measurements. Using fast gradient-echo sequence, laser monitoring is achieved efficiently with fast temperature mapping. T1-weighted images appear promising in monitoring lesion size evolution in future low magnetic field in vivo studies. (orig.)

  20. Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p)3P2 - (5s4d)3D2 transition

    CERN Document Server

    Mickelson, P G; Anzel, P; DeSalvo, B J; Nagel, S B; Traverso, A J; Yan, M; Killian, T C

    2009-01-01

    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p)3P2 - (5s4d)3D2 transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p)3P2 dark state are repumped back into the (5s2)1S0 ground state. Spectroscopy of 84Sr, 86Sr, 87Sr, and 88Sr improves the value of the (5s5p)3P2 - (5s4d)3D2 transition frequency for 88Sr and determines the isotope shifts for the transition.

  1. Mineralized self-assembled peptides on 3D laser-made scaffolds: a new route toward ‘scaffold on scaffold’ hard tissue engineering

    International Nuclear Information System (INIS)

    In this study, we propose a new approach to hard tissue regeneration based on the mineralization of 3D scaffolds made using lasers. To this end, we report the rational design of aspartate-containing self-assembling peptides targeted for calcium binding. We further investigate the suitability of these peptides to support cell attachment and proliferation when coupled on a hybrid organic–inorganic structurable material, and evaluate the response of pre-osteoblastic cells on functionalized 3D scaffolds and material surfaces. Our results show that the mineralized peptide, when immobilized on a hybrid photo-structurable material strongly supports cell adhesion, a proliferation increase after three and seven days in culture, and exhibits a statistically significant increase of biomineralization. We propose this strategy as a ‘scaffold on scaffold’ approach for hard tissue regeneration. (paper)

  2. A statistical sampling approach for measurement of fracture toughness parameters in a 4330 steel by 3-D femtosecond laser-based tomography

    International Nuclear Information System (INIS)

    A new approach using statistically random material volume sampling has been developed to model the variability of fracture toughnesses in steels. A recently developed femtosecond laser-based serial sectioning (FSLSS) technique was utilized to collect 3-D datasets showing the distribution of titanium nitride (TiN) phases in a 4330 high strength steel. Random volumes were sampled from widely spaced regions within the bulk steel specimen. Plastic zone sized volumes were sampled from the 3-D reconstructions to produce statistically representative volume elements containing TiN particles. Fracture toughness was calculated for 48 different plastic zone sized volumes using two different toughness models. Weibull analysis was performed to relate the modeled fracture toughness to the probability of occurrence. Variability in the fracture toughness gave a Weibull modulus of m = 1.4–1.5, similar to the variability measured in 22 bulk sample specimens analyzed by Ruggieri et al. for a similar steel

  3. Performance assessment of simulated 3D laser images using Geiger-mode avalanche photo-diode: tests on simple synthetic scenarios

    Science.gov (United States)

    Coyac, Antoine; Hespel, Laurent; Riviere, Nicolas; Briottet, Xavier

    2015-10-01

    In the past few decades, laser imaging has demonstrated its potential in delivering accurate range images of objects or scenes, even at long range or under bad weather conditions (rain, fog, day and night vision). We note great improvements in the conception and development of single and multi infrared sensors, concerning embedability, circuitry reading capacity, or pixel resolution and sensitivity, allowing a wide diversity of applications (i.e. enhanced vision, long distance target detection and reconnaissance, 3D DSM generation). Unfortunately, it is often difficult to dispose of all the instruments to compare their performance for a given application. Laser imaging simulation has shown to be an interesting alternative to acquire real data, offering a higher flexibility to perform this sensors comparison, plus being time and cost efficient. In this paper, we present a 3D laser imaging end-to-end simulator using a focal plane array with Geiger mode detection, named LANGDOC. This work aims to highlight the interest and capability of this new generation of photo-diodes arrays, especially for airborne mapping and surveillance of high risk areas.

  4. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    International Nuclear Information System (INIS)

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  5. 3D mapping of geological contacts by coupling Aerial Laser Scanning, Gigapixel photography and open access pictures

    Science.gov (United States)

    Nguyen, Liliane; Guerin, Antoine; Abellán, Antonio; Carrea, Dario; Derron, Marc-Henri; Jaboyedoff, Michel

    2015-04-01

    Multiple sources of geological data exist nowadays, most of them are in 2D (e.g. geological maps, geological panoramic sketch), and only a few are in 3D (e.g. block diagram). One of the current challenges in geological mapping consists not only in providing a more consistent 3D data, but also in pursuing a gathering and a harmonisation of the geological information in order to obtain a more consistent interpretations of the 3D geological models. New remote sensing techniques have significantly improved the representation of three-dimensional surfaces during the last decade, especially for steep and inaccessible rockcliffs. Therefore, we present an exploratory study aiming to find a reliable method for carrying out a three-dimensional mapping of geological contacts using a High Resolution Digital Elevation Model (HRDEM) with a 1 meter cell size. To this end, we selected the "Scex Rouge Mountain" as pilot study area. This outcrop, which is located in the Diablerets Massif (Vaud, Swiss Alps), has the particularity to present very distinguishable folded geological boundaries on its Southern face. The Southern slope belongs to the Wildhorn nappe, which is mainly composed of sedimentary rocks. The top-layer is composed of siliceous limestones, the well-visible fold layer is the "Pygurus layer" and consist of sandy limestone. Finally the bottom-layer includes marly schist and clayey limestones. At first, different sources of information has been draped on the HRDEM of the Scex Rouge Mountain, including not only classical geological maps (1:25 000) but also different sources of imagery (e.g. gigapixel panoramas, open access images, etc.). In a second step, several three-dimensional polylines have been drawn following the geological limit on each drapped HRDEM. Then we investigated the accuracy of 2D classical geological maps by comparing these geological limits with the drawn 3D polylines. Furthermore, in order to evaluate the accuracy of the method, a ground truth needs

  6. Study of hybrid laser / MAG welding process: characterization of the geometry and the hydrodynamics of the melt pool and development of a 3D thermal model

    International Nuclear Information System (INIS)

    Hybrid laser/MIG-MAG welding shows high advantages compared to laser welding or GMAW arc welding used separately. Thanks to this process, higher productivity can be gained through higher welding speed, higher squeeze tolerance moreover possible improvement of the metallurgical properties of the weld seam can be obtained. However, many operating parameters have to be set up in order to achieve optimal process. The complex physical phenomena, which govern welding process, have to be understood in order to use efficiently this technique in mass production. Understanding of these phenomena is also necessary to program numerical simulations which fit to this process. In the first step, experimental studies have been carried out with GMAW, laser and hybrid welding on samples of S355 steel. Influence of operating parameters has been analyzed through films performed with speed camera and macro-graphies of weld seam cross section. Surface deformations of the melt pool, induced by the arc pressure, weld pool length, droplet detachment and welding speed, have been analyzed precisely from images of the surface melt pool. In a second step, a numerical model was developed using the COMSOL Multiphysics software for MAG, laser and hybrid laser/MAG welding processes. A 3D quasi-stationary model has been calculated from the temperature field within the metal. The originality of the MAG and hybrid model lies in the prediction of the melt pool surface profile used to determine the 3D geometry, by taking into account the material input. The influence of different parameters such as arc power and speed welding on the efficiency as well as the distribution radius of the arc power and the arc pressure are analyzed through validations with different experimental results and different calculation configurations. (author)

  7. Polish Experience with Advanced Digital Heritage Recording Methodology, including 3D Laser Scanning, CAD, and GIS Application, as the Most Accurate and Flexible Response for Archaeology and Conservation Needs at Jan III Sobieski's Residence in Wilanów

    Science.gov (United States)

    Baranowski, P.; Czajkowski, K.; Gładki, M.; Morysiński, T.; Szambelan, R.; Rzonca, A.

    Review of recent critical points for introduction of laser technology into the field of heritage documentation, management, conservation, and archaeology will be discussed. The relationship of benefit versus cost of 3D laser scanning technique for complex multitask heritage recording project at Wilanow is presented. Definition of basic criteria for the successful use of such heritage detailed record as laser scanning is given.

  8. Numerical 2D And 3D Simulations of a Spherical Fabry–Pérot Resonator for Application as a Reference Cavity for Laser Frequency Stabilisation

    Directory of Open Access Journals (Sweden)

    Nitiss E.

    2015-06-01

    Full Text Available We report on the results of a numerical study of deformations of a spherical Fabry-Pérot cavity that can be used for laser frequency stabilisation. It is demonstrated that for a precise simulation of the cavity deformations a 3D model has to be used instead of a simpler 2D model, which employs simulation on the symmetry plane of the cavity. To lower the sensitivity to environmental perturbations, it is suggested to use a material with a low density and a high Young’s modulus. We also show that the mechanical resonance frequencies of the cavity are mainly determined by the size of the cavity.

  9. 地面三维激光扫描仪的测量误差分析%The Measurement Error Analysis of a Terrestrial 3D Laser Scanner

    Institute of Scientific and Technical Information of China (English)

    杨忞婧

    2013-01-01

    The appearance of 3D laser scanning technology provide a new technical support for obtaining 3D spatial information rapidly,effectively and accurately.3D laser scanner will not be restricted by the day and night,it can work all the day and obtain high precision 3d information and reflectivity information of points on the surface,and realize quickly 3d reconstruction of objects.But,because of instruments'own technological limitations and the influence from and the environment,the accuracy of the field collected point cloud data will be influent on different levels,and make the point cloud data processing will be complicated and slow,even the final 3d model will be not accord with the real objects.This article mainly aims at analyzing distance and angle measurement errors of the terrestrial 3D laser scanner,and the origin of the errors and form a point error model,it provides a necessary condition for improving the speed and precision of 3D point cloud data processing.%三维激光扫描技术的出现为快速、有效、准确获取三维空间信息提供了全新的技术支持.三维激光扫描仪能够不受白天黑夜的限制,全天侯对任意物体进行扫描并获取高精度的物体表面点的三维信息及反射率信息,从而快速实现物体的三维重建.然而,由于在应用过程中,受到仪器本身技术的限制以及外界的影响,使得外业采集的点云数据的精度受到不同程度的影响,从而使得后续的点云数据处理变得复杂且缓慢,甚至使得最终生成的三维模型与实际物体不一致.主要针对地面三维激光扫描仪在测量过程中存在的测距误差、测角误差以及误差来源进行了详细地分析并构建了点位误差模型,为提高三维激光点云数据处理的效率和精度提供了必要的条件.

  10. A multinational deployment of 3D laser scanning to study craniofacial dysmorphology in fetal alcohol spectrum disorders

    Science.gov (United States)

    Rogers, Jeff; Wernert, Eric; Moore, Elizabeth; Ward, Richard; Wetherill, Leah F.; Foroud, Tatiana

    2007-01-01

    Craniofacial anthropometry (the measurement and analysis of head and face dimensions) has been used to assess and describe abnormal craniofacial variation (dysmorphology) and the facial phenotype in many medical syndromes. Traditionally, anthropometry measurements have been collected by the direct application of calipers and tape measures to the subject's head and face, and can suffer from inaccuracies due to restless subjects, erroneous landmark identification, clinician variability, and other forms of human error. Three-dimensional imaging technologies promise a more effective alternative that separates the acquisition and measurement phases to reduce these variabilities while also enabling novel measurements and longitudinal analysis of subjects. Indiana University (IU) is part of an international consortium of researchers studying fetal alcohol spectrum disorders (FASD). Fetal alcohol exposure results in predictable craniofacial dysmorphologies, and anthropometry has been proven to be an effective diagnosis tool for the condition. IU is leading a project to study the use of 3D surface scanning to acquire anthropometry data in order to more accurately diagnose FASD, especially in its milder forms. This paper describes our experiences in selecting, verifying, supporting, and coordinating a set of 3D scanning systems for use in collecting facial scans and anthropometric data from around the world.

  11. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    Norbert Pfeifer

    2008-11-01

    Full Text Available Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  12. 3D激光切割机的MasterCAM后处理定制技术%MasterCAM Post-processing Customization Technology of 3D Laser Cutter

    Institute of Scientific and Technical Information of China (English)

    詹华西; 李艳华

    2011-01-01

    在分析激光切割机床加工程序格式特点的基础上,以MasterCAM软件的3D数控铣削后置处理文档MPFAN.PST为参照,提出了两种后处理定制的方案及刀路定义要点,有效地解决了3D激光切割加工所需程序输出问题.%This text advanced two post-processing customization method and key of tool path design by analyzing program format of laser cutter and referring to MPFAN. PST of masterCAM software. And it solved program export about 3D laser cutting.

  13. Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating

    Science.gov (United States)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-10-01

    A 3D laser coating technology using Cr powder was developed for Zr-based alloys considering parameters such as: the laser beam power, inert gas flow, cooling of Zr-based alloys, and Cr powder control. This technology was then applied to Zr cladding tube samples to study the effect of Cr coating on the high-temperature oxidation of Zr-based alloys in a steam environment of 1200 °C for 2000s. It was revealed that the oxide layer thickness formed on the Cr-coated tube surface was about 25-times lower than that formed on a Zircaloy-4 tube surface. In addition, both the ring compression and the tensile tests were performed to evaluate the adhesion properties of the Cr-coated sample. Although some cracks were formed on the Cr-coated layer, the Cr-coated layer had not peeled off after the two tests.

  14. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  15. 3D laser inspection of fuel assembly grid spacers for nuclear reactors based on diffractive optical elements

    Science.gov (United States)

    Finogenov, L. V.; Lemeshko, Yu A.; Zav'yalov, P. S.; Chugui, Yu V.

    2007-06-01

    Ensuring the safety and high operation reliability of nuclear reactors takes 100% inspection of geometrical parameters of fuel assemblies, which include the grid spacers performed as a cellular structure with fuel elements. The required grid spacer geometry of assembly in the transverse and longitudinal cross sections is extremely important for maintaining the necessary heat regime. A universal method for 3D grid spacer inspection using a diffractive optical element (DOE), which generates as the structural illumination a multiple-ring pattern on the inner surface of a grid spacer cell, is investigated. Using some DOEs one can inspect the nomenclature of all produced grids. A special objective has been developed for forming the inner surface cell image. The problems of diffractive elements synthesis, projecting optics calculation, adjusting methods as well as calibration of the experimental measuring system are considered. The algorithms for image processing for different constructive elements of grids (cell, channel hole, outer grid spacer rim) and the experimental results are presented.

  16. 仿人眼功能的三维激光扫描算法%3D laser scanning algorithm with humanoid-eye function

    Institute of Scientific and Technical Information of China (English)

    陈伟海; 宋蔚阳; 荣利霞; 刘敬猛

    2009-01-01

    Aiming at the scanning efficiency of three dimensional (3D) laser scanning system for mobile robot all over the world, a humanoid-eye 3D laser scanning algorithm was proposed. Imitating the scanning function of human eyes from bionics, this algorithm divides the scanning process into two steps: according to the scanning information currently, the scanning scheme of the next step will be planned to reduce the gain of useless information; Through adopting the stepping interpolation location to fetch up the time consuming from stepping scan, the efficiency of the scan can be improved. To satisfy the real-time requirement for the online computing, a hardware architecture consisting of digital signal processing (DSP) and field-programmable gate array (FPGA) was proposed. Therefore, as the main controller, DSP can obtain 3D laser data; as the coprocessor, FPGA can complete the scanning algorithm. The experiment result shows the humanoid-eye scanning algorithm can improve the efficiency of the 3D scanning system greatly.%针对目前国内外应用于移动机器人的三维激光扫描系统存在的扫描效率问 题,提出了一种仿人眼功能的三维激光扫描算法.从仿生学角度出发,该算法模仿人类眼睛的 扫描功能,对陌生环境进行分步扫描:根据当前的扫描信息,在线规划出下一步的扫描规律,以 减少无用信息的获取;采用分步插补定位的方法来弥补分步扫描带来的时间消耗,从而提高了 扫描系统的效率.为了满足扫描算法的在线处理对实时性的要求,采用了一种DSP(Digital Sig-nal Processing)+FPGA(Field-Programmable Gate Array)的硬件平台架构:即DSP作主控制器负 责三维信息的获取,FPGA作协处理器负责扫描算法的实现.实验结果表明仿人眼功能的扫描算法可以有效的提高三维扫描系统的扫描效率.

  17. Standing-wave-excited multiplanar fluorescence in a laser scanning microscope reveals 3D information on red blood cells

    CERN Document Server

    Amor, Rumelo; Amos, William Bradshaw; McConnell, Gail

    2014-01-01

    Standing-wave excitation of fluorescence is highly desirable in optical microscopy because it improves the axial resolution. We demonstrate here that multiplanar excitation of fluorescence by a standing wave can be produced in a single-spot laser scanning microscope by placing a plane reflector close to the specimen. We report that the relative intensities in each plane of excitation depend on the Stokes shift of the fluorochrome. We show by the use of dyes specific for the cell membrane how standing-wave excitation can be exploited to generate precise contour maps of the surface membrane of red blood cells, with an axial resolution of ~90 nm. The method, which requires only the addition of a plane mirror to an existing confocal laser scanning microscope, may well prove useful in studying diseases which involve the red cell membrane, such as malaria.

  18. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Zhou, Jianxin; Shao, Xinyu; Wang, Chunming

    2015-11-01

    The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid-liquid-vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.

  19. IMU and Multiple RGB-D Camera Fusion for Assisting Indoor Stop-and-Go 3D Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Jacky C.K. Chow

    2014-07-01

    Full Text Available Autonomous Simultaneous Localization and Mapping (SLAM is an important topic in many engineering fields. Since stop-and-go systems are typically slow and full-kinematic systems may lack accuracy and integrity, this paper presents a novel hybrid “continuous stop-and-go” mobile mapping system called Scannect. A 3D terrestrial LiDAR system is integrated with a MEMS IMU and two Microsoft Kinect sensors to map indoor urban environments. The Kinects’ depth maps were processed using a new point-to-plane ICP that minimizes the reprojection error of the infrared camera and projector pair in an implicit iterative extended Kalman filter (IEKF. A new formulation of the 5-point visual odometry method is tightly coupled in the implicit IEKF without increasing the dimensions of the state space. The Scannect can map and navigate in areas with textureless walls and provides an effective means for mapping large areas with lots of occlusions. Mapping long corridors (total travel distance of 120 m took approximately 30 minutes and achieved a Mean Radial Spherical Error of 17 cm before smoothing or global optimization.

  20. A system for the simulation and planning of orthodontic treatment using a low cost 3D laser scanner for dental anatomy capturing.

    Science.gov (United States)

    Alcañiz, M; Grau, V; Monserrat, C; Juan, C; Albalat, S

    1999-01-01

    The detection and correction of malocclusions and other dental abnormalities is a significant area of work in orthodontic diagnosis. To assess the quality of occlusion between the teeth the orthodontist has to estimate distances between specific points located on the teeth of both arches. Distance measuring is based on the observation, by the orthodontist, of a plaster model of the mouth. Gathering of information required to make the diagnosis is a time consuming and costly operation. On the other hand, obtaining and manipulation of plaster casts constitute a huge problem in clinics, due to both the large space needed and high costs associated with plaster casts manufacturing. For this problem we present a new system for three-dimensional orthodontic treatment planning and movement of teeth. We describe a computer vision technique for the acquisition and processing of three-dimensional images of the profile of hydrocolloids dental imprints taken by mean of a own developed 3D laser scanner. Profile measurement is based on the triangulation method which detects deformation of the projection of a laser line on the dental imprints. The system is computer-controlled and designed to achieve depth and lateral resolutions of 0.1 mm and 0.2 mm, respectively, within a depth range of 40 mm. The developed diagnosis software system (named MAGALLANES) and the 3D laser scanner (named 3DENT) are both commercially available and have been designed to replace manual measurement methods, which use costly plaster models, with computer measurements methods and teeth movement simulation using cheap hydrocolloid dental wafers. This procedure will reduce the cost and acquisition time of orthodontic data and facilitate the conduct of epidemiological studies.

  1. Documenting a Complex Modern Heritage Building Using Multi Image Close Range Photogrammetry and 3d Laser Scanned Point Clouds

    Science.gov (United States)

    Vianna Baptista, M. L.

    2013-07-01

    Integrating different technologies and expertises help fill gaps when optimizing documentation of complex buildings. Described below is the process used in the first part of a restoration project, the architectural survey of Theatre Guaira Cultural Centre in Curitiba, Brazil. To diminish time on fieldwork, the two-person-field-survey team had to juggle, during three days, the continuous artistic activities and performers' intense schedule. Both technologies (high definition laser scanning and close-range photogrammetry) were used to record all details in the least amount of time without disturbing the artists' rehearsals and performances. Laser Scanning was ideal to record the monumental stage structure with all of its existing platforms, light fixtures, scenery walls and curtains. Although scanned with high-definition, parts of the exterior façades were also recorded using Close Range Photogrammetry. Tiny cracks on the marble plaques and mosaic tiles, not visible in the point clouds, were then able to be precisely documented in order to create the exterior façades textures and damages mapping drawings. The combination of technologies and the expertise of service providers, knowing how and what to document, and what to deliver to the client, enabled maximum benefits to the following restoration project.

  2. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    Science.gov (United States)

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  3. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-07-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  4. Feasibility Study on 3-D Printing of Metallic Structural Materials with Robotized Laser-Based Metal Additive Manufacturing

    Science.gov (United States)

    Ding, Yaoyu; Kovacevic, Radovan

    2016-05-01

    Metallic structural materials continue to open new avenues in achieving exotic mechanical properties that are naturally unavailable. They hold great potential in developing novel products in diverse industries such as the automotive, aerospace, biomedical, oil and gas, and defense. Currently, the use of metallic structural materials in industry is still limited because of difficulties in their manufacturing. This article studied the feasibility of printing metallic structural materials with robotized laser-based metal additive manufacturing (RLMAM). In this study, two metallic structural materials characterized by an enlarged positive Poisson's ratio and a negative Poisson's ratio were designed and simulated, respectively. An RLMAM system developed at the Research Center for Advanced Manufacturing of Southern Methodist University was used to print them. The results of the tensile tests indicated that the printed samples successfully achieved the corresponding mechanical properties.

  5. A single-station multi-tasking 3D coordinate measurement method for large-scale metrology based on rotary-laser scanning

    International Nuclear Information System (INIS)

    This paper presents a novel 3D coordinate measurement method based on the rotary-laser scanning technique for large-scale metrology. The method is implemented by a rotary-laser transmitter and a probe integrated with several photoelectric receivers. Measurement is accomplished with the tip of the probe contacting the measured point. The receivers capture the scanning angles of the laser planes emitted by the transmitter to calculate their corresponding equations. Then, we can establish the multi-plane constraint that the receiver points are in the corresponding planes. Subsequently, the coordinates of the measured point can be obtained through an optimization calculation method. In a 480 mm × 480 mm × 480 mm measurement volume that is 6 m away from the transmitter, the distance measurement accuracy of the proposed method is better than 0.40 mm and repeatability remains within 0.17 mm. For coordinate measurement, the accuracy and repeatability exceed 0.46 mm and 0.12 mm respectively. Experimental results show that the method is feasible and valid with good accuracy. (paper)

  6. MODELLING OF AN INEXPENSIVE 9M SATELLITE DISH FROM 3D POINT CLOUDS CAPTURED BY TERRESTRIAL LASER SCANNERS

    Directory of Open Access Journals (Sweden)

    D. Belton

    2012-09-01

    Full Text Available This paper presents the use of Terrestrial laser scanners (TLS to model the surface of satellite dish. In this case, the dish was an inexpensive 9m parabolic satellite dish with a mesh surface, and was to be utilised in radio astronomy. The aim of the modelling process was to determine the deviation of the surface away from its true parabolic shape, in order to estimate the surface efficiency with respect to its principal receiving frequency. The main mathematical problems were the optimal and unbiased estimation the orientation of the dish and the fitting of a parabola to the local orientation or coordinate system, which were done by both orthogonal and algebraic minimization using the least-squares method. Due to the mesh structure of the dish, a classification method was also applied to filter out erroneous points being influenced by the supporting structure behind the dish. Finally, a comparison is performed between the ideal parabolic shape, and the data collected from three different temporal intervals.

  7. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    Energy Technology Data Exchange (ETDEWEB)

    Hervas, Jaime Rubio; Tang, Hui [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 (Singapore); Reyhanoglu, Mahmut [Physical Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 (United States)

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  8. Tracking 3D Moving Objects Based on GPS/IMU Navigation Solution, Laser Scanner Point Cloud and GIS Data

    Directory of Open Access Journals (Sweden)

    Siavash Hosseinyalamdary

    2015-07-01

    Full Text Available Monitoring vehicular road traffic is a key component of any autonomous driving platform. Detecting moving objects, and tracking them, is crucial to navigating around objects and predicting their locations and trajectories. Laser sensors provide an excellent observation of the area around vehicles, but the point cloud of objects may be noisy, occluded, and prone to different errors. Consequently, object tracking is an open problem, especially for low-quality point clouds. This paper describes a pipeline to integrate various sensor data and prior information, such as a Geospatial Information System (GIS map, to segment and track moving objects in a scene. We show that even a low-quality GIS map, such as OpenStreetMap (OSM, can improve the tracking accuracy, as well as decrease processing time. A bank of Kalman filters is used to track moving objects in a scene. In addition, we apply non-holonomic constraint to provide a better orientation estimation of moving objects. The results show that moving objects can be correctly detected, and accurately tracked, over time, based on modest quality Light Detection And Ranging (LiDAR data, a coarse GIS map, and a fairly accurate Global Positioning System (GPS and Inertial Measurement Unit (IMU navigation solution.

  9. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    International Nuclear Information System (INIS)

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example

  10. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  11. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  12. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  13. 2D and 3D documentation of St. Nicolas baroque church for the general reconstruction using laser scanning and photogrammetry technologies combination

    Science.gov (United States)

    Křemen, Tomáš; Koska, Bronislav

    2013-04-01

    Total reconstruction of a historical object is a complicated process consisting of several partial steps. One of these steps is acquiring high-quality data for preparation of the project documentation. If these data are not available from the previous periods, it is necessary to proceed to a detailed measurement of the object and to create a required drawing documentation. New measurement of the object brings besides its costs also several advantages as complex content and form of drawings exactly according to the requirements together with their high accuracy. The paper describes measurement of the Baroque church by the laser scanning method extended by the terrestrial and air photogrammetry. It deals with processing the measured data and creating the final outputs, which is a 2D drawing documentation, orthophotos and a 3D model. Attention is focused on their problematic parts like interconnection of the measurement data acquired by various technologies, creation of orthophotos and creation of the detailed combined 3D model of the church exterior. Results of this work were used for preparation of the planned reconstruction of the object.

  14. Rapid Laser Photosensitive Resin 3D Printing Plotter%绘图仪式高速激光树脂3D打印设备研制

    Institute of Scientific and Technical Information of China (English)

    晏恒峰; 方浩博; 陈继民

    2015-01-01

    In order to further explore the realization method of 3D printing, and to get a promotion in the precision and efficiency, based on the structure of the plotter, combined with the stereolithography (SLA) technology, a new stereolithography plotter ( SLP) design was presented for 3D printing with photosensitive resin. Its movement structure was similar with the plotter, and laser focus part did xy two-dimensional motion directly. Its focus length was much shorter than that of SLA, so its power requirement of light source was lower. Compared to the SLA and digital light processing ( DLP), its work field can be extended more easily.%为了进一步探索3D打印实现方法,提高精度和效率,在绘图仪的结构基础上,结合光固化立体打印技术(SLA)的原理,设计了一种用于树脂材料的绘图仪式3D打印设备(SLP),它拥有绘图仪式的运动结构,激光及聚焦部分可直接做xy二维运动. 相对于SLA技术,SLP大幅减小了焦距,所以对光源的要求更低. 相比SLA和数字光处理技术(DLP),SLP加工幅面更容易扩大.

  15. The Application of 3D Laser Scanning in the Survey and Measuring of Guyue Bridge of Song Dynasty in Yiwu City

    Science.gov (United States)

    Lu, N.; Wang, Q.; Wang, S.; Zhang, R.

    2015-08-01

    It is believed that folding-arch is the transitional form from beam to curved arch. Guyue Bridge, built in JiaDing 6year (A.D 1213) of Southern Song Dynasty, located in Yiwu City, Zhejiang Province in China, is one of typical objective examples for this transition. It possesses high historical, scientific, artistic, cultural and social values. Facing severe environmental problems and deteriorated heritage situation, our conservation team selected 3D laser scanning as basic recording method, then acquired the precise threedimensional model. Measured the fundamental dimension and components' sizes, we analysed its stable state. Moreover, combined with historic documents, we reasonably speculated and calculated the original sizes and important scales at the building time. These findings have significant research values as well as evidential meanings for future conservation.

  16. Fabrication of PDMS (poly-dimethyl siloxane) molding and 3D structure by two-photon absorption induced by an ultrafast laser

    Science.gov (United States)

    Yi, Shin Wook; Lee, Seong Ku; Cho, Mi Jung; Kong, Hong Jin; Yang, Dong-Yol; Park, Sang-hu; Lim, Tae-woo; Kim, Ran Hee; Lee, Kwang-Sup

    2004-12-01

    Multi-photon absorption phenomena induced by ultra fast laser have been considered for many applications of microfabrications such as metal ablation, glass etching and photopolymerization. Among the applications, the photopolymerization by two-photon absorption (TPA) has been regarded as a new microfabricating method. It is possible to be used in photo mask correcting, diffractive optical element and micro machining. The TPA photopolymerization is made possible to fabricate a complicated three dimensional structure which the conventional photomask technology has not been able to make. Furthermore the TPA photopolymerization process applied to a two dimensional structure fabrication may take shorter time than the old process since the absence of etching and deposition processes. Recently we have made a simple 3D structure and applied the technique to PDMS(poly-dimethyl siloxane) molding.

  17. Back Analysis of the 2014 San Leo Landslide Using Combined Terrestrial Laser Scanning and 3D Distinct Element Modelling

    Science.gov (United States)

    Spreafico, Margherita Cecilia; Francioni, Mirko; Cervi, Federico; Stead, Doug; Bitelli, Gabriele; Ghirotti, Monica; Girelli, Valentina Alena; Lucente, Claudio Corrado; Tini, Maria Alessandra; Borgatti, Lisa

    2016-06-01

    Landslides of the lateral spreading type, involving brittle geological units overlying ductile terrains, are a common occurrence in the sandstone and limestone plateaux of the northern Apennines of Italy. The edges of these plateaux are often the location of rapid landslide phenomena, such as rock slides, rock falls and topples. In this paper, we present a back analysis of a recent landslide (February 2014), involving the north-eastern sector of the San Leo rock slab (northern Apennines, Emilia-Romagna Region) which is a representative example of this type of phenomena. The aquifer hosted in the fractured slab, due to its relatively higher secondary permeability in comparison to the lower clayey units leads to the development of perennial and ephemeral springs at the contact between the two units. The related piping erosion phenomena, together with slope processes in the clay-shales have led to the progressive undermining of the slab, eventually predisposing large-scale landslides. Stability analyses were conducted coupling terrestrial laser scanning (TLS) and distinct element methods (DEMs). TLS point clouds were analysed to determine the pre- and post-failure geometry, the extension of the detachment area and the joint network characteristics. The block dimensions in the landslide deposit were mapped and used to infer the spacing of the discontinuities for insertion into the numerical model. Three-dimensional distinct element simulations were conducted, with and without undermining of the rock slab. The analyses allowed an assessment of the role of the undermining, together with the presence of an almost vertical joint set, striking sub-parallel to the cliff orientation, on the development of the slope instability processes. Based on the TLS and on the numerical simulation results, an interpretation of the landslide mechanism is proposed.

  18. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    Science.gov (United States)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  19. An optical laser device for mapping 3D geometry of underwater karst structures: first tests in the Ox BelHa system, Yucatan, Mexico; Un dispositivo laser optico para la cartografia 3D de la geometria de estructuras karsticas submarinas: primeros resultados en el sistema de Ox BelHa, Yucatan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A.; Renard, P.

    2016-07-01

    In the course of extended hydrological studies in the coastal Karst plain of Yucatan, near the town of Tulum amongst others, a novel laser scanning device was developed and applied for the acquisition of the 3d-geometry of ground water conduits. The method is derived from similar industrial systems and for the first time adapted to the specific measurement conditions in underwater cave systems. The device projects a laser line over the whole perimeter at a certain position. This line represents the intersection of a plane with the cave walls. The line is imaged with a wide angle camera system. Through proper design and calibration of the device it is possible to derive the true scale geometry of the perimeter via special image processing techniques. By acquiring regularly spaced images it is possible to reconstruct the true scale and 3 d-shape of a tunnel through the incorporation of location and attitude data. In a first test in the Ox Bel Ha under-water cave system, about 800 metres of tunnels have been scanned down to water depths of 20 metres. The raw data is further interpolated using the ODSIM-algorithm in order to delineate the 3D geometry of the cave system. The method provides easy, operable acquisition of the 3-D geometry of caves in clear water with superior resolution and speed and significantly facilitates the measurement in underwater tunnels as well as in dry tunnels. The data gathered represents crucial input to the study of the state, dynamics and genesis of the complex karst water regime. (Author)

  20. Three-step laser excitation of the odd-parity 5s5d 3D → 5s nf 3F states of cadmium

    Science.gov (United States)

    Nadeem, Ali; Shah, M.; Haq, S. U.; Shahzada, S.; Mumtaz, M.; Waheed, A.; Nawaz, M.; Ahmed, M.; Baig, M. A.

    2014-07-01

    We report new experimental data on the term energies and effective quantum numbers of the highly excited odd parity states of cadmium in the 71 773-72 500 cm-1 energy range. The experiment was performed using three dye lasers simultaneously pumped by the second harmonic (532 nm) of the Nd;YAG laser. The vapor containment and detection system was a thermionic diode ion detector working in a space charge limited mode. The new observations include the 5snf3F3 (12 ⩽ n ⩽ 52), 5snf3F4 (13 ⩽ n ⩽ 33) and 5snf3F2 (12 ⩽ n ⩽ 22) Rydberg series excited from the 5s5d3D multiplet. A two parameter fit to the transitions energies of the 5snf3F3 series yields the binding energy of the 5snd 2D2 level as 13 042.178 ± 0.02 cm-1 and consequently the first ionization of cadmium is determined as 72 540.05 ± 0.13 cm-1, which is in good agreement with the previously reported value.

  1. Study of hybrid laser / MAG welding process: characterization of the geometry and the hydrodynamics of the melt pool and development of a 3D thermal model; Etude du procede de soudage hybride laser/MAG: Caracterisation de la geometrie et de l'hydrodynamique du bain de fusion et developpement d'un modele 3D thermique

    Energy Technology Data Exchange (ETDEWEB)

    Le Guen, E.

    2010-11-15

    Hybrid laser/MIG-MAG welding shows high advantages compared to laser welding or GMAW arc welding used separately. Thanks to this process, higher productivity can be gained through higher welding speed, higher squeeze tolerance moreover possible improvement of the metallurgical properties of the weld seam can be obtained. However, many operating parameters have to be set up in order to achieve optimal process. The complex physical phenomena, which govern welding process, have to be understood in order to use efficiently this technique in mass production. Understanding of these phenomena is also necessary to program numerical simulations which fit to this process. In the first step, experimental studies have been carried out with GMAW, laser and hybrid welding on samples of S355 steel. Influence of operating parameters has been analyzed through films performed with speed camera and macro-graphies of weld seam cross section. Surface deformations of the melt pool, induced by the arc pressure, weld pool length, droplet detachment and welding speed, have been analyzed precisely from images of the surface melt pool. In a second step, a numerical model was developed using the COMSOL Multiphysics software for MAG, laser and hybrid laser/MAG welding processes. A 3D quasi-stationary model has been calculated from the temperature field within the metal. The originality of the MAG and hybrid model lies in the prediction of the melt pool surface profile used to determine the 3D geometry, by taking into account the material input. The influence of different parameters such as arc power and speed welding on the efficiency as well as the distribution radius of the arc power and the arc pressure are analyzed through validations with different experimental results and different calculation configurations. (author)

  2. Doppler-free intermodulated fluorescence spectroscopy of $^4He$ $2^3P-3^{1,3}D$ transitions at 588 nm with a one-watt compact laser system

    CERN Document Server

    Luo, Pei-Ling; Feng, Yan; Wang, Li-Bang; Shy, Jow-Tsong

    2015-01-01

    We have demonstrated Doppler-free intermodulated fluorescence spectroscopy of helium $2^3P-3^{1,3}D$ transitions in an rf discharged sealed-off cell using a compact laser system at 588 nm. An external cavity diode laser at 1176 nm was constructed to seed a Raman fiber amplifier. Laser power of more than one watt at 588 nm was produced by frequency doubling of the fiber amplifier output using a MgO:PPLN crystal. A doubling efficiency of 23 % was achieved. The power-dependent spectra of the $2^3P-3^3D$ transitions were investigated. Furthermore, the Doppler-free spectrum of the spin-forbidden $2^3P-3^1D$ transitions was observed for the first time. Our results are crucial towards precision test of QED atomic calculations, especially for improving the determination of the helium $3^1D-3^3D$ separation.

  3. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  4. Solid works 3D

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Cheol Yeong

    2004-02-15

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  5. Solid works 3D

    International Nuclear Information System (INIS)

    This book explains modeling of solid works 3D and application of 3D CAD/CAM. The contents of this book are outline of modeling such as CAD and 2D and 3D, solid works composition, method of sketch, writing measurement fixing, selecting projection, choosing condition of restriction, practice of sketch, making parts, reforming parts, modeling 3D, revising 3D modeling, using pattern function, modeling necessaries, assembling, floor plan, 3D modeling method, practice floor plans for industrial engineer data aided manufacturing, processing of CAD/CAM interface.

  6. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  7. Innovative design for a cutting head rotary mechanism of 3D laser cutting machine%一种三维激光切割机激光头旋转机构的创新设计

    Institute of Scientific and Technical Information of China (English)

    龚立新; 周鹏飞; 胡金龙; 孙健

    2013-01-01

    The exiting cutting head rotary mechanism of 3D laser cutting machine has been illustrated and compared.A rotary mechanism based on composite drive technology has been designed,which provides reference for the R&D of the 3D & 5-axis laser cutting machine.%对现有三维激光切割机的激光头旋转机构进行了介绍和比较,设计了一种基于复合驱动技术的激光头旋转机构,可为三维五轴激光切割机的研发提供参考.

  8. Image-Based 3d Modeling VS Laser Scanning for the Analysis of Medieval Architecture: the Case of ST. Croce Church in Bergamo

    Science.gov (United States)

    Cardaci, A.; Versaci, A.

    2013-07-01

    The Church of St. Croce in Bergamo (second half of the 11th century), is a small four-sided building consisting of two overlapping volumes located in the courtyard adjacent to the Bishop's Palace. In the last years, archaeological excavations have unearthed parts of the edifice, until that time hidden because buried during the construction of the Basilica of Santa Maria Maggiore and now restored its original form. Due to the recent discoveries, a critical review of all the existing documentation in order to clarify the relationship of the various building components has been considered necessary. A quick, well-timed, chromatically characterized and accurate survey aimed at the complete digital reconstruction of this interesting example of medieval Italian architecture was then needed. This has suggested simultaneously testing two of the most innovative technologies: the 3D laser scanning survey ensuring high-resolution and complete models within a short time, and the photogrammetric automatic image-based modelling, allowing a three-dimensional reconstruction of the architectural objects. This paper intends to show the results achieved by the analytical comparison between the two methodologies, and thus analyse their differences, the advantages and the deficiencies of both of them and the opportunities for future enhancements and developments.

  9. 三维激光扫描技术曲面拟合方法研究%3 dLaser Scanning Technology Surface Fitting Method

    Institute of Scientific and Technical Information of China (English)

    曹奇; 岳东杰; 杨畅

    2014-01-01

    Point cloud data processing and point cloud of curved surface and curve fitting in reverse engineering is an important re -search topic .Reverse engineering is an important task to actual physical model reconstruction , but the geometric models generated from the core problem is how to reconstruct the sampling point curve and surface model .C++development platform and MATLAB based on 3D laser scanning data using B -spline, NURBS, triangular mesh surface method and the curve fitting method of research and exploration .%点云数据处理以及点云的曲面、曲线拟合是逆向工程中一个重要的研究课题,其重要任务就是将实际物理模型重建生成几何模型,而核心问题就是如何从采样点出发重建曲线、曲面模型。本文以C++开发平台和MATLAB为基础,对三维激光扫描数据利用B样条、NURBS、三角网格曲面拟合方法和曲线拟合方法进行研究探索。

  10. Laser-ignited frontal polymerization of shape-controllable poly(VI-co-AM) hydrogels based on 3D templates toward adsorption of heavy metal ions

    Science.gov (United States)

    Fan, Suzhen; Liu, Sisi; Wang, Xiao-Qiao; Wang, Cai-Feng; Chen, Su

    2016-06-01

    Given the increasing heavy metal pollution issue, fast preparation of polymeric hydrogels with excellent adsorption property toward heavy metal ions is very attractive. In this work, a series of poly( N-vinylimidazole-co-acrylamide) (poly(VI-co-AM)) hydrogels were synthesized via laser-ignited frontal polymerization (LIFP) for the first time. The dependence of frontal velocity and temperature on two factors monomer ratios and initiator concentrations was systematically investigated. Poly(VI-co-AM) hydrogels with any self-supporting shapes can be synthesized by a one-step LIFP in seconds through the application of 3D templates. These shape-persistent hydrogels are pH-responsive and exhibit excellent adsorption/desorption characteristics toward Mn(II), Zn(II), Cd(II), Ni(II), Cu(II) and Co(II) ions, and the adsorption conformed to the pseudo-second-order kinetic model. The reusability of the hydrogels toward mental ions adsorption was further researched, which suggested that the hydrogels can be reused without serious decrease in adsorption capacity. This work might open a promising strategy to facilely prepare shape-controllable hydrogels and expand the application of LIFP.

  11. 3d-3d correspondence revisited

    Science.gov (United States)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  12. Study on Laser Spot Radius Compensation Technology for 3D Laser Cutting%三维激光切割光斑半径补偿技术的研究

    Institute of Scientific and Technical Information of China (English)

    迟关心; 沈宏; 周亚丽; 刘运娇

    2014-01-01

    Laser spot radius offset principle for the 3D laser cutting is analysed ,and a kind of algorithm based on laser optical axis rector is proposed. The space planar curve is calculated by planer laser spot offset principle,and for space location relationship between the line and line,four transition way and compensation principle are propoesd ,thus accurate laser spot compensation model is established.%分析了三维激光切割光斑半径补偿的原理,提出了一种基于激光光轴矢量的激光光斑半径补偿算法。对空间平面曲线依据平面光斑半径补偿原理进行补偿计算,对空间直线提出了基于激光光轴矢量的4种过渡方式及补偿原则,建立了准确的激光光斑补偿模型。

  13. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  14. 三维激光扫描技术在核设施退役中的应用研究%Research on Application of 3D Laser Scanning Technology in the Decommissioning Nuclear Facilities

    Institute of Scientific and Technical Information of China (English)

    张凯; 赵立宏; 邓骞

    2016-01-01

    针对目前核设施退役没有核设施三维资料的现状,提出运用三维激光扫描技术获得点云数据来进行退役核设施设备三维模型重构的的方法,介绍了三维激光扫描技术获取核设施三维模型的原理,并重点阐述了对退役核设施进行三维扫描的实施方案,给核设施的退役方法提出了一种新思路。%When the current nuclear facilities are released from military service, 3D data of nuclear facilities should be grasped. 3D laser scanning technology is put forward to get point cloud data for building 3D model of nuclear facilities reconstruction. The principle of 3D model building method using 3D laser scanning technology is introduced for nuclear facilities. The implementation scheme of 3D scanning provides a new way of thinking for the retirement of nuclear facilities.

  15. A Novel Methodology to Estimate Single-Tree Biophysical Parameters from 3D Digital Imagery Compared to Aerial Laser Scanner Data

    Directory of Open Access Journals (Sweden)

    Rocío Hernández-Clemente

    2014-11-01

    (LPI, interquartile distance (IQ, and Percentile 30 (P30 yielded an R2 = 0.75 and an RMSE = 0.14 m2/m−2. The results provide insight on the appropriateness of using cost-effective 3D photo-reconstruction methods for targeting single trees with irregular and heterogeneous tree crowns in complex open-canopy forests. It quantitatively demonstrates that low-cost CIR cameras can be used to estimate both single-tree height and LAI in forest inventories.

  16. 三维激光扫描技术在土石方量测量中的应用%Application of 3D laser scanning technology to the earthwork calculation

    Institute of Scientific and Technical Information of China (English)

    袁凤祥; 秦岩宾; 安家瑞

    2016-01-01

    This paper introduces the theory of the 3D laser scanner,the method of earth volume calculation, and the basic flow of measuring earth volume by 3D laser scanning technology.Combined with examples, illustrations are made on measuring a small ore heap by 3D laser scanning technology in the Town of Chujiang,Dayi County,Sichuan Province.The results show that 3D laser scanning technology enjoys high superiority over the traditional method of measuring the earth volume.%简要介绍三维激光扫描仪的工作原理,测量土石方量的基本步骤及土石方量计算的基本原理。结合四川省大邑县出江镇矿堆测量实例,计算出土石方量。结果表明,相对于传统测量方法,三维激光扫描技术更具优势。

  17. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. The Area of a Polygon with an Inscribed Circle

    CERN Document Server

    Buck, Marshall W

    2012-01-01

    Heron's formula states that the area $K$ of a triangle with sides $a$, $b$, and $c$ is given by $$ K=\\sqrt {s(s-a) (s-b) (s-c)} $$ where $s$ is the semiperimeter $(a+b+c)/2$. Brahmagupta, Robbins, Roskies, and Maley generalized this formula for polygons of up to eight sides inscribed in a circle. In this paper we derive formulas giving the areas of any $n$-gon, with odd $n$, in terms of the ordered list of side lengths, if the $n$-gon is circumscribed about a circle (instead of being inscribed in a circle). Unlike the cyclic polygon problem, where the order of the sides does not matter, for the inscribed circle problem (our case) it does matter. The solution is much easier than for the cyclic polygon problem, but it does generalize easily to all odd $n$. We also provide necessary and sufficient conditions for there to be solutions in the case of even $n$.

  19. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  20. 新型三维激光扫描系统曲面重构技术%Surface reconstruction techniques for a novel 3D laser scanning system

    Institute of Scientific and Technical Information of China (English)

    王文标; 吴德烽; 马孜; 李爱国; 汪洋

    2011-01-01

    The existed reverse engineering equipments are expensive and of low speed, a novel 3D laser free surface scanning system was developed, which had fast scanning speed and of low cost.As for the surface reconstruction part in the proposed system, two surface reconstruction schemes were presented based on two types of artificial neural network, namely, radial basis function neural network (RBFNN)and multiperceptron layer neural network (MLPNN).The X and Y coordinates of point cloud data were chosen as network input while the Z coordinate was chosen as network output.Comparison is made between these two approaches.Experimental results demonstrate that the accuracy of RBFNN for scattered point cloud surface reconstruction is higher than MLPNN.However, more neurons in hidden layer are needed for RBFNN than MLPNN.%为了克服现有逆向工程装备价格昂贵且不能满足实时测量的缺点,提出了一种新型成本低、扫描速度快的三维激光自由曲面扫描系统.针对该系统的曲面重构问题,提出神经网络曲面重构方案,网络的输入选取所获得的点云数据的X、Y坐标,网络的输出则选取点云数据的Z坐标.比较了径向基神经网络(RBFNN)和多层前馈神经网络(MLPNN)两种典型神经网络曲面重构方案的优缺点.实验结果表明:RBFNN对于离散点云的曲面重构精度比MLPNN重构的精度高,但RBFNN较MLPNN 所需的隐层神经元个数多.

  1. The X'tal cube PET detector with a monolithic crystal processed by the 3D sub-surface laser engraving technique: Performance comparison with glued crystal elements

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Hirano, Yoshiyuki; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu, Shizuoka 434-8601 (Japan); Murayama, Hideo; Yamaya, Taiga [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan)

    2013-09-21

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from six sides of the crystal block. The X'tal cube is composed of a 3D crystal block with isotropic segments. Each face of the 3D crystal block is covered with a 4×4 array of multi-pixel photon counters (MPPCs). Previously, in order to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving technique to a monolithic crystal block instead of gluing segmented small crystals. A dense arrangement of multiple micro-cracks carved by the laser beam works efficiently as a scattering wall for the scintillation photons. The X'tal cube with the laser-processed block showed excellent performance with respect to crystal identification and energy resolution. In this work, for characteristics comparison between the laser-processed block and the conventional segmented array block, we made the laser-processed block and two types of segmented array blocks, one with air gaps and the other with glued segmented small crystals. All crystal blocks had 3D grids of 2 mm pitch. The 4×4 MPPC arrays were optically coupled to each surface of the crystal block. When performance was evaluated using a uniform irradiation of 511 keV, we found that the X'tal cubes with the laser-processed block could easily achieve 2 mm{sup 3} uniform crystal identification. Also, the average energy resolution of each 3D grid was 11.1±0.7%. On the other hand, the glued segmented array block had a pinched distribution and crystals could not be separated clearly. The segmented array block with air gaps had satisfactory crystal identification performance; however, the laser-processed block had higher crystal identification performance. Also, the energy resolution of the laser-processed block was better than for the segmented array blocks. In summary, we found the laser-processed X'tal cube had

  2. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  3. Reconstruction and analysis of shapes from 3D scans

    NARCIS (Netherlands)

    ter Haar, F.B.

    2009-01-01

    In this thesis we use 3D laser range scans for the acquisition, reconstruction, and analysis of 3D shapes. 3D laser range scanning has proven to be a fast and effective way to capture the surface of an object in a computer. Thousands of depth measurements represent a part of the surface geometry as

  4. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  5. Calibration Error of Robotic Vision System of 3D Laser Scanner%机器人三维激光扫描视觉系统标定误差

    Institute of Scientific and Technical Information of China (English)

    齐立哲; 汤青; 贠超; 王京; 甘中学

    2011-01-01

    The 3D laser scanner is widely applied in industry robot vision system, but the calibration error of positional relationship between the scanner and the robot has important influence on the application of robot vision system. It is presented systematically how the scanning results are influenced by the robotic vision calibration position and orientation errors and how the workpiece positioning process is affected by the scanning result and then it is concluded that the position calibration of vision system is not necessary in the robot workpiece positioning system when there is no variation of robot scanning posture no matter whether the workpiece has posture variation or not. The validity of the theoretical analysis conclusion is verified by tests, thus providing the theoretical basis for explaining the influence of calibration error of vision system on the scanning result and for simplifying the calibration process of the vision system.%基于三维激光扫描仪的工业机器人视觉系统应用越来越广泛,而扫描仪与机器人之间位姿关系标定精度对于机器人视觉系统的应用有重要的影响.介绍基于三维激光扫描仪的机器人视觉系统的相关原理,然后在此基础上系统分析机器人视觉系统位置和姿态标定误差对工件扫描结果和根据扫描结果对工件进行定位过程的影响,得出在工件无姿态变化或有姿态变化但机器人扫描姿态不变情况下的机器人工件定位系统中无须进行视觉系统位置标定的结论,并试验验证了理论分析结论的有效性,为解释视觉系统标定误差对扫描结果的影响情况及简化视觉系统标定过程提供了理论依据.

  6. Deformation Measurement of 3D Printing Model Based on Laser Speckle Method%基于激光散斑法的模型变形测量研究

    Institute of Scientific and Technical Information of China (English)

    吕纯洁

    2015-01-01

    本文采用激光散斑法测量模型在不同承载状态下的变形数据,并与理论数据进行比较分析,为研究3D打印技术中成品的力学性能提供了实验参考。%It is one of the effective indicators for the performance of 3D printing technology whether or not its products can fully retain inherent mechanics parameters of the materials.A method to measure the deformation of 3D printing models in different load conditions by laser speckle is presented in this paper in comparison with some theoretical data,thus to offer an experimental reference for researches on mechanical property of materials in 3D technology.

  7. 3维激光扫描技术在墓葬保护中的应用%The Application of 3D Laser Scanning Technique in Tomb Protection

    Institute of Scientific and Technical Information of China (English)

    韦春桃; 张利恒; 张旭东; 杨海兰

    2012-01-01

    3维扫描技术可以说的是21世纪又一项测绘技术新突破,本文介绍了3维激光扫描技术的工作原理,通过结合实际的墓葬保护工程,重点阐述了3维激光扫描技术数据的采集、处理、建模过程和方法,同时总结3维扫描技术的优点和现阶段存在的问题,为数字考古和文物保护提供新的技术支持。%3D scanning technology is the new breakthrough in Topographic Technique in the 21 st century. This paper introduces the working principle of 3 d laser scanning technology, and it focuses on the 3 d laser scanning techniques of data acquisition, processing, the modeling process and method by combining the actual burial protection engineering, it also summarizes the advantages and the ex- isting problems of 3d scanning technology to provide new technical support for digital archaeology and historic preservation.

  8. Repumping and spectroscopy of laser-cooled Sr atoms using the (5s5p){sup 3}P{sub 2}-(5s4d){sup 3}D{sub 2} transition

    Energy Technology Data Exchange (ETDEWEB)

    Mickelson, P G; De Escobar, Y N Martinez; Anzel, P; DeSalvo, B J; Nagel, S B; Traverso, A J; Yan, M; Killian, T C, E-mail: killian@rice.ed [Department of Physics and Astronomy, Rice University, Houston, TX 77251 (United States)

    2009-12-14

    We describe repumping and spectroscopy of laser-cooled strontium (Sr) atoms using the (5s5p){sup 3}P{sub 2}-(5s4d){sup 3}D{sub 2} transition. Atom number in a magneto-optical trap is enhanced by driving this transition because Sr atoms that have decayed into the (5s5p){sup 3}P{sub 2} dark state are repumped back into the (5s{sup 2}){sup 1}S{sub 0} ground state. Spectroscopy of {sup 84}Sr, {sup 86}Sr, {sup 87}Sr and {sup 88}Sr improves the value of the (5s5p){sup 3}P{sub 2}-(5s4d){sup 3}D{sub 2} transition frequency and determines the isotope shifts for the transition accurately enough to guide laser-cooling experiments with less abundant isotopes.

  9. Two-step laser excitation of 4snd 3D1,2,3 and 4sns 3S1 states from the 4s4p 3P levels in zinc

    International Nuclear Information System (INIS)

    We present new experimental data on the term energies and quantum defects of the even-parity triplet states of zinc using a two-step laser excitation scheme in conjunction with a thermionic diode ion detector. The first laser was fixed at 32 501.399 cm-1 to populate the 4s4p 3P1 intermediate level. The 4s4p 3P0,2 fine structure components get populated through collisional energy transfer. The second laser was scanned covering the energy region 43 200 to 42 000 cm-1 revealing the highly excited states up to the first ionization limit. Our observations include 4snd 3D2 (14 ≤ n ≤ 55) and 4sns 3S1 (15 ≤ n ≤ 35) Rydberg series excited from the 4s4p 3P1 level. In addition, 4snd 3D3 (13 ≤ n ≤ 49) and 4snd 3D1 (10 ≤ n ≤ 20) series including few members of the 4sns 3S1 series have also been observed from the 4s4p 3P2 and 4s4p 3P0 levels, respectively. The binding energy of 4s4p 3P1 has been determined as 43 267.93 ± 0.02 cm-1, which consequently yields the first ionization potential of zinc as 75 769.35 ± 0.05 cm-1, which is in good agreement with that reported previously

  10. Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser

    International Nuclear Information System (INIS)

    For the first time femtosecond-laser writing has inscribed low-loss optical waveguides in Schott BK7 glass, a commercially important type of borosilicate widely used in optical applications. The use of a variable repetition rate laser enabled the identification of a narrow processing window at 1 MHz repetition rate with optimal waveguides exhibiting propagation losses of 0.3 dB/cm and efficient mode matching to standard optical fibers at a 1550 nm wavelength. The waveguides were characterized by complementary phase contrast and optical transmission microscopy, identifying a micrometer-sized guiding region within a larger complex structure of both positive and negative refractive index variations

  11. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  12. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  13. 基于Kalman滤波的组合导航方法在三维激光成像系统中的应用%Application of Integrated Navigation Based on Kalman Filter in 3D Laser Imaging System

    Institute of Scientific and Technical Information of China (English)

    刘生炳; 车鹏宇; 魏宗康; 赵龙; 陈东生

    2014-01-01

    三维激光成像系统是一种包含激光扫描仪、惯性导航系统(SINS)、全球定位系统(GPS)等多种先进技术的复杂系统。三维激光成像系统工作时需要持续地对成像平台进行高精度的定位、定姿,单一SINS和GPS均无法满足三维激光成像系统的高精度定位、定姿要求。通过建立惯性导航系统的误差模型,以GPS系统提供的高精度速度和位置信息为外测,运用Kalman滤波理论设计了SINS/GPS组合导航系统,实现对惯性导航系统的导航误差的修正。通过试验验证表明,基于Kalman滤波的SINS/GPS组合导航系统可以提高三维激光成像系统构像点定位精度,为建立被扫描物的精确三维模型奠定基础。%The 3D laser imaging system is a complicated system which contains a variety of advanced technology, including laser scanner, SINS and GPS. It is important to ensure the attitude and location of the platform of 3D laser imaging system. Single SINS or GPS can not meet the requirement of the 3D laser imaging system. In the paper, through setting up the error model of the SINS, using velocity and location supplied by GPS, the author designed SINS/GPS integrated navigation based on Kalman filter to correct the error of the SINS. The test results demonstrate that the orientation precision of 3D laser imaging system can be improved by SINS/GPS integrated navigation based on Kalman filter. It paves the way for setting up precise 3D model of scanned object.

  14. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  15. TOWARDS: 3D INTERNET

    OpenAIRE

    Ms. Swapnali R. Ghadge

    2013-01-01

    In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot o...

  16. Bootstrapping 3D fermions

    Science.gov (United States)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  17. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  18. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  19. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  20. Non-destructive 3D Imaging of Extraterrestrial Materials by Synchrotron X-ray Micro- tomography (XR-CMT) and Laser Confocal Scanning Microscopy (LCSM): Beyond Pretty Pictures

    Science.gov (United States)

    Ebel, D. S.; Greenberg, M.

    2009-05-01

    We report scientific results made possible only by the use these two non-destructive 3D imaging techniques. XR-CMT provides 3D image reconstructions at spatial resolutions of 1 to 17 micron/voxel edge. We use XR- CMT to locate potential melt-inclusion-bearing phenocrysts in batches of 100-200 micron lunar fire-fountain spherules; to locate and visualize the morphology of 1-2mm size, irregular, unmelted Ca-, Al-rich inclusions (CAIs) and to quantify chondrule/matrix ratios and chondrule size distributions in 6x6x20mm chunks of carbonaceous chondrites; to quantify the modal abundance of opaque phases in similar sized Martian meteorite fragments, and in individual 1-2mm diameter chondrules from chondrites. LCSM provides 3D image stacks at resolutions < 100 nm/pixel. We are the only group creating deconvolved image stacks of 100 to over 1000 micron long comet particle tracks in aerogel keystones from the Stardust mission. We present measurements of track morphology in 3D, and locate high-value particles using complementary synchrotron x- ray fluorescence (XRF) examination. We show that bench-top LCSM extracts maximum information about tracks and particles rapidly and cheaply prior to destructive disassembly. Using XR-CMT we quantify, for the first time, the volumetric abundances of metal grains in 1-2 mm diameter CR chondrite chondrules. Metal abundances vary from 1 to 37 vol.% between 8 chondrules (and more by inspection), in a meteorite with solar (chondritic) Fe/Si ratio, indicating that chondrules formed and accreted locally from bulk solar composition material. They are 'complementary' to each other in Fe/Si ratios. Void spaces in chondritic CAIs and chondrules are shown to be a primary feature, not due to plucking during sectioning. CAI morphology in 3D reveals pre-accretionary impact features, and various types of mineralogical layering, seen in 3D, reveal the formation history of these building blocks of planets and asteroids. We also quantify the x

  1. Efficient workflows for 3D building full-color model reconstruction using LIDAR long-range laser and image-based modeling techniques

    Science.gov (United States)

    Shih, Chihhsiong

    2005-01-01

    Two efficient workflow are developed for the reconstruction of a 3D full color building model. One uses a point wise sensing device to sample an unknown object densely and attach color textures from a digital camera separately. The other uses an image based approach to reconstruct the model with color texture automatically attached. The point wise sensing device reconstructs the CAD model using a modified best view algorithm that collects the maximum number of construction faces in one view. The partial views of the point clouds data are then glued together using a common face between two consecutive views. Typical overlapping mesh removal and coarsening procedures are adapted to generate a unified 3D mesh shell structure. A post processing step is then taken to combine the digital image content from a separate camera with the 3D mesh shell surfaces. An indirect uv mapping procedure first divide the model faces into groups within which every face share the same normal direction. The corresponding images of these faces in a group is then adjusted using the uv map as a guidance. The final assembled image is then glued back to the 3D mesh to present a full colored building model. The result is a virtual building that can reflect the true dimension and surface material conditions of a real world campus building. The image based modeling procedure uses a commercial photogrammetry package to reconstruct the 3D model. A novel view planning algorithm is developed to guide the photos taking procedure. This algorithm successfully generate a minimum set of view angles. The set of pictures taken at these view angles can guarantee that each model face shows up at least in two of the pictures set and no more than three. The 3D model can then be reconstructed with minimum amount of labor spent in correlating picture pairs. The finished model is compared with the original object in both the topological and dimensional aspects. All the test cases show exact same topology and

  2. 利用3S技术及三维激光扫描仪进行耕地损毁勘测%3 S Technology and 3 D Laser Scanner is used to Survey Cultivated Land Damaged

    Institute of Scientific and Technical Information of China (English)

    林学艺

    2016-01-01

    3S technology is used to find cultivated land damaged,network RTK survey the range and area of cultivated land damaged, GIS extract the land area and grade before cultivated land damaged,and Maptek I-Site8810 3D laser scanner is used to recreate 3D model of cultivated land damaged with network RTK.%利用RS技术发现耕地损毁,网络RTK测量耕地损毁范围及面积,GIS提取耕地被损毁前的分类面积和等别,以及利用网络RTK配合Maptek I-Site8810三维激光扫描仪重构损毁耕地三维模型。

  3. 车身覆盖件3维激光切割的特殊工艺处理%Special treatment of 3-D laser cutting of auto-body panels

    Institute of Scientific and Technical Information of China (English)

    梅丽芳; 陈根余; 易际明; 刘金武

    2011-01-01

    为了研究车身覆盖件3维激光切割的工艺技术特性,采用3维5轴联动激光切割装备以及自动编程软件PEPS Pentacut分析了车身覆盖件3维激光切割的特殊工艺,提出了切割过程中特殊工艺的处理方法并通过切割试验进行了验证.结果表明,在实际的3维激光切割过程中,针对碰撞问题,通过添加工艺点,调整切割头方向,使其偏离法线方向一个角度便可消除;针对过烧缺陷,通过修改工艺点法线的方向和密集程度、采用脉冲激光或采用空气作为辅助气体等措施可以有效避免;针对变形难题,通过均布夹钳或修改程序等方法可有效解决.兼顾切割质量和效率,应在穿孔、上下坡及转角的轨迹段采用脉冲激光,在平缓轨迹段采用连续激光.采用3维激光切割技术取代传统工艺的修边模和冲孔模进行车身覆盖件的加工,可以大幅度地降低成本,缩短新车型的研发周期,具有良好的经济价值和应用前景.%In order to study the characteristics of 3-D laser cutting technology of auto-body panels, the 3-D five-axis laser cutting equipment and automatic programming software PEPS Pentacut were adopted. The special process technology of 3-D laser cutting auto body panels was analyzed, and the approaches to special processes in cutting process were proposed and were verified by experiment. The results show that in the actual 3-D laser cutting process, the collision can be escaped by adding the processing points, adjust the direction of the cutting head to offset from the normal direction; the over-burnt defect can be avoided by modifying the normal direction and intensive level of processing points, using pulsed laser or adopting air as auxiliary gas and other measures; the deformation problem can by effectively resolved by clamping or modifying the program. Taking into account the cutting quality and efficiency, a pulse laser should be adopted in the trajectory of perforated

  4. 建筑物重建中的三维激光扫描精度分析%The Accuracy Analysis of 3D Laser Scanning in Building Reconstruction

    Institute of Scientific and Technical Information of China (English)

    张亚; 山峰; 王涛

    2015-01-01

    针对三维激光扫描技术在建筑物重建中数据采集、处理方面存在的误差,从三维激光扫描仪测站定向误差、仪器扫描误差、数据拼接误差进行分析,并构建了点位误差模型,为三维激光扫描技术在建筑物的重建中测量成果的精度评定及测量方案的优化设计提供了理论基础。最后以脉冲式三维激光扫描仪为例对建筑物重建进行精度分析。%According to the error of data collection and data processing,when we use 3D laser scanning technology in the process of building reconstruction,the paper mainly aims at analyzing station directional error,instrument scanning errors and data splicing errors of 3D laser scanner,and forms point error model. It provides theoretical foundation for accuracy evaluation in the measuring outcomes and optimized design of the measurement program. Finally,we analyze the accuracy of the reconstruction of building using pulsed laser scanner.

  5. Application of 3D Laser Scanner in Road Final Survey and Precisicion Analysis%三维激光扫描仪在道路竣工测量中的应用

    Institute of Scientific and Technical Information of China (English)

    王星杰

    2012-01-01

    The three-dimensional laser scanner in road final survey application compared with the conventional mode of operation greatly improves the operation efficiency, reduce the amount and intensity of labor and industry. Due to the three-dimensional laser scanner can quickly collect a large amount of point cloud data, virtual reproduction of the surveyed area terrain, compared with the traditional operation method, it has incomparable advantages. It briefly introduces the working principle of 3D laser scanning technology, introduces in detail the 3D laser scanning technology in road final survey in indoor and field work method, and the testing of the accuracy, of three laser scanning technology in he related engineering application provides a very good reference.%三维激光扫描仪在道路竣工测量中的应用相对于常规作业方式极大地提高了作业效率,降低了外业劳动量和劳动强度。由于三维激光扫描仪能够迅速采集大量的点云数据,实景再现了测区的地形地势,相对于传统的作业方法具有无法比拟的优势。全文概略介绍了三维激光扫描技术的工作原理,详细介绍了三维激光扫描技术在道路竣工测量中的内外业作业方法,同时进行了多方面的精度检验,为三维激光扫描技术在其他相关工程中应用的提供了很好的借鉴作用。

  6. Data Integration Acquired from Micro-Uav and Terrestrial Laser Scanner for the 3d Mapping of Jesuit Ruins of São Miguel das Missões

    Science.gov (United States)

    Reiss, M. L. L.; da Rocha, R. S.; Ferraz, R. S.; Cruz, V. C.; Morador, L. Q.; Yamawaki, M. K.; Rodrigues, E. L. S.; Cole, J. O.; Mezzomo, W.

    2016-06-01

    The Jesuit Missions the Guaranis were one of the great examples of cultural, social, and scientific of the eighteenth century, which had its decline from successive wars that followed the exchange of territories domain occupied by Portugal and Spain with the Madrid Treaty of January 13, 1750. One of the great examples of this development is materialized in the ruins of 30 churches and villages that remain in a territory that now comprises part of Brazil, Argentina and Paraguay. These Churches, São Miguel das Missões is among the Brazilian ruins, the best preserved. The ruins of São Miguel das Missões were declared a UNESCO World Cultural Heritage in 1983 and the Institute of National Historical Heritage (IPHAN) is the Brazilian Federal agency that manages and maintains this heritage. In order to produce a geographic database to assist the IPHAN in the management of the Ruins of São Miguel das Missões it was proposed a three-dimensional mapping of these ruins never performed in this location before. The proposal is integrated data acquired from multiple sensors: two micro-UAV, an Asctec Falcon 8 (rotary wing) and a Sensefly e-Bee (fixed wing); photos from terrestrial cameras; two terrestrial LIDAR sensors, one Faro Focus 3D S-120 and Optec 3D-HD ILRIS. With this abundance of sensors has been possible to perform comparisons and integration of the acquired data, and produce a 3D reconstruction of the church with high completeness and accuracy (better than 25 mm), as can be seen in the presentation of this work.

  7. Research on application of 3D laser scanner in ancient architecture mapping%三维激光扫描仪在古建筑测绘中的应用研究

    Institute of Scientific and Technical Information of China (English)

    张远翼; 张鹰; 陈晓娟

    2014-01-01

    根据古建筑测绘的特点以及传统测绘方式的不足,在介绍三维激光扫描仪测量原理的基础上,结合三维激光扫描仪在古建筑测绘的优势,以福建武夷山市城村赵氏家祠为例,从古建筑数据的采集、测绘数据的处理到CAD测绘图纸的生成研究三维激光扫描仪在古建筑测绘实践中的实际应用效果。针对三维激光扫描仪测绘过程中庞大的数据量以及Cyclone软件缺陷问题,提出了“分组处理、整合拼接”的应对策略。%On the basis of the characteristics of ancient architecture mapping and the deficiency of traditional survey methods ,this paper introduces the measuring principle of 3D laser scanner at first. Then ,combined with the advantages of 3D laser scanner in ancient architecture mapping ,taking the “Zhao Ancestral Hall”which is an ancient building in Wuyishan City of Fujian Province as an example ,this paper studies the practical application effect of 3D laser scanner used in ancient architecture mapping ,from the collection of ancient architecture mapping data and mapping data processing to the generation of CAD drawings of surveying and mapping. Finally ,aiming at the technical problems of a large number of data generated in the application process and the software defects of Cyclone ,this paper puts forward a specific coping strategy which is “packet processing ,integ rated splice .”

  8. The Application Research of Terrestrial 3 D Laser Scanner for Special Landforms Mapping%三维激光扫描仪在特殊地貌测量中的应用研究

    Institute of Scientific and Technical Information of China (English)

    海青; 沈忱

    2016-01-01

    As a non-contact data collecting instrument, terrestrial 3D laser scanner can be applied in special landform mapping and be broad prospects.The paper elaborates principle of special landform mapping and method of data merging and matching in the spe-cial landform mapping.The accuracy of result is compared in Height and Coordinate between terrestrial 3D laser scanner and total sta-tion.It proves that special landform mapping can be completed and expressed real topography with high accuracy and quick speed by terrestrial 3D laser scanner.A new technic is provided for large-scale mapping of special landform area.%三维激光扫描仪作为一种非接触数据采集设备,在特殊地貌的大比例尺地形测绘中有着广泛的应用前景。本文以草原石城景区为例,阐述了三维激光扫描仪在这种特殊地貌测绘中的应用原理,数据拼接和配准的方法,并与全站仪全野外数字采集的成果进行了高程和平面坐标的比对,证明了使用三维激光扫描仪测绘特殊地貌精度高、速度快,地貌表达逼真,为特殊地貌区域的大比例尺地形图测绘提供了新的技术手段。

  9. Nonlocal effects in the self-consistent nonlinear 3D propagation of an ultra-strong, femtosecond laser pulse in plasmas

    International Nuclear Information System (INIS)

    A theoretical investigation of the interaction of an ultra-strong and ultra-short laser pulse with unmagnetized plasma is carried out and applied to the specifications of the Ti:Sa Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME). The analysis is based on the Lorentz-Maxwell fluid model in the fully relativistic regime taking the pancake approximation. The mathematical model yields Zakharov-like equations, which gives a satisfactory description of a wide range of laser-plasma acceleration configurations. It is shown that the pancake structure is unstable in two dimensions (2D) but the collapse occurs over a distance much longer than the typical active plasma length. (authors)

  10. APPLYING 3D AFFINE TRANSFORMATION AND LEAST SQUARES MATCHING FOR AIRBORNE LASER SCANNING STRIPS ADJUSTMENT WITHOUT GNSS/IMU TRAJECTORY DATA

    Directory of Open Access Journals (Sweden)

    C. Ressl

    2012-09-01

    Full Text Available In this article we extend our previous work on the topic of ALS strip adjustment without GNSS/IMU trajectory data. Between overlap- ping strip pairs the relative orientation as a 3D affine transformation is estimated by a 3D LSM approach, which uses interpolated 2.5D grid surface models of the strips and the entire strip overlap as one big LSM window. The LSM derived relative orientations of all strip pairs in the block together with their covariance matrices are then used simultaneously as observations in an adjustment following the Gauss-Helmert model. This way the exterior orientation of each strip is computed, which refers to a relative block system. If proper ground control data is given, then an absolute orientation of the block of strips can be computed by a final LSM run. In a small example consisting of 4 strips with ca. 70% overlap the improvement in the relative geometric accuracy is demonstrated by the decreasing óMAD of the height differences from 8.4cm (before to 1.6cm (after the strip adjustment.

  11. Massive 3D Supergravity

    CERN Document Server

    Andringa, Roel; de Roo, Mees; Hohm, Olaf; Sezgin, Ergin; Townsend, Paul K

    2009-01-01

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered `massive 3D gravity'. Another is a `new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  12. Massive 3D supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Andringa, Roel; Bergshoeff, Eric A; De Roo, Mees; Hohm, Olaf [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Sezgin, Ergin [George and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Townsend, Paul K, E-mail: E.A.Bergshoeff@rug.n, E-mail: O.Hohm@rug.n, E-mail: sezgin@tamu.ed, E-mail: P.K.Townsend@damtp.cam.ac.u [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2010-01-21

    We construct the N=1 three-dimensional supergravity theory with cosmological, Einstein-Hilbert, Lorentz Chern-Simons, and general curvature squared terms. We determine the general supersymmetric configuration, and find a family of supersymmetric adS vacua with the supersymmetric Minkowski vacuum as a limiting case. Linearizing about the Minkowski vacuum, we find three classes of unitary theories; one is the supersymmetric extension of the recently discovered 'massive 3D gravity'. Another is a 'new topologically massive supergravity' (with no Einstein-Hilbert term) that propagates a single (2,3/2) helicity supermultiplet.

  13. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    ABSTRACT: Lack of productivity in construction is a well known issue. Despite the fact that causes hereof are multiple, the introduction of information technology is a frequently observed response to almost any challenge. ICT in construction is a thoroughly researched matter, however, the current...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  14. Multi-view passive 3D face acquisition device

    NARCIS (Netherlands)

    Spreeuwers, L.J.

    2008-01-01

    Approaches to acquisition of 3D facial data include laser scanners, structured light devices and (passive) stereo vision. The laser scanner and structured light methods allow accurate reconstruction of the 3D surface but strong light is projected on the faces of subjects. Passive stereo vision based

  15. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  16. Measurement of the $^{20-22}$Ne $^3$P$_2$-$^3$D$_3$ transition isotope shift using a single, phase modulated laser beam

    CERN Document Server

    Ohayon, Ben; Ron, Guy

    2016-01-01

    We develop a simple technique to accurately measure frequency differences between far lying resonances in a spectroscopy signal using a single laser. This technique was used to measure the isotope shift of the cooling transition of metastable neon for the result of $1626.264(79)$ MHz. The most accurate determination of this value to date.

  17. 3-D Simulation of the Temperature Field of Laser-Assisted Machining with FEM%激光辅助切削温度场的三维有限元仿真

    Institute of Scientific and Technical Information of China (English)

    王慧艺; 李从心; 阮雪榆

    2001-01-01

    激光加热的温度场受材料物性参数、工件几何形状、激光器功率、光斑形状及移动速度的影响.分析激光辅助立铣淬硬钢的工况,提出简化的计算模型,进而将非稳态传热方程化为稳态的传热控制方程.应用三维有限元法,对激光流动加热45#钢的温度场进行了仿真.经对比不同光斑形状、移动速度、光斑温度对温度场的影响,归纳了激光加热的特点,对激光辅助加工工艺参数的选择提出了建议.%Since the temperature field heated by moving laser is a huge gradient on space and time, it is not able to get a convincing result by experiments. However, it can be reproduced by 3-D simulation technology. Many factors affect the temperature field, like the material properties, geometry shape of a part, laser power, focus shape and moving rate. Based on laser-assisted milling of hardened steel, a simplified calculation model was suggested. Furthermore, the control equation of conduction was changed into static from dynamic. The temperature fields of 45# heated by moving laser was simulated with FEM and the different laser focus shapes, moving rates and temperatures were studied. The features of laser heating were concluded and the machining parameters of laser-assisted machining was suggested.

  18. 基于3维激光扫描的3维模型重建%Three- Dimensional Model Reconstruction Based on 3D Laser Scanning

    Institute of Scientific and Technical Information of China (English)

    胡洋; 杨小伟; 宫帅

    2012-01-01

    As a new method of acquiring spatial information, 3D laser scanner~ application areas become more and more widespread. The point clouds data obtained by 3D laser scanner can be used to construct the building~ total point clouds model. Furthermore, tri- angle nets model and entity model can also be built. This paper illustrates the main method of collecting point clouds data and model- ing combined with the actual operation of the project.%作为一种新兴的空间信息获取手段,3维激光扫描仪的应用日益广泛。通过3维激光扫描仪获取的点云数据,可用于构建建筑物的整体点云模型,进而生成三角网模型和实体模型。本文结合工程项目中的实际操作,阐述点云数据采集以及模型构建的主要方法。

  19. Mobile 3 D Laser Scanning System in Shield Tunnel Segment Ovality Detection%移动式三维激光扫描系统在盾构隧道管片椭圆度检测中的应用

    Institute of Scientific and Technical Information of China (English)

    张华

    2015-01-01

    Several common methods of metro shield tunnel segment ovality detection are compared and basic princi -ples and internal and external workflow of Ovality detection based on mobile 3 D laser scanning system are analyzed by taking GRP5000 for example.The actual project shows that the ovality detection method based on mobile 3D laser scan-ning system has advantages in metro shield tunnel segment ovality detection .%介绍对比了几种常用的地铁盾构隧道管片椭圆度检测方法,并在此基础上以GRP5000系统为例分析了基于移动式三维激光扫描系统的椭圆度检测的基本原理及内外业工作流程。通过实际项目检验,表明基于移动式三维激光扫描系统的地铁盾构隧道管片椭圆度检测方法具有优势。

  20. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  1. CONCEPT AND PRACTICE OF TEACHING TECHNICAL UNIVERSITY STUDENTS TO MODERN TECHNOLOGIES OF 3D DATA ACQUISITION AND PROCESSING: A CASE STUDY OF CLOSE-RANGE PHOTOGRAMMETRY AND TERRESTRIAL LASER SCANNING

    Directory of Open Access Journals (Sweden)

    I. Kravchenko

    2016-06-01

    Full Text Available For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.. The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student’s coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany and Kyiv National University of Construction and Architecture (Kiev, Ukraine had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  2. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    Science.gov (United States)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  3. Influence of the laser assisted fabricated 3D porous scaffolds from bioceramoplasts of micron and nano sizes on culture of MMSC

    Science.gov (United States)

    Shishkovsky, I.; Volchkov, S.

    2013-11-01

    The objective of the investigation was to test the biocompatibility of 3D porous biopolymer matrices (tissue-cellular scaffolds), made of biocompatible and bioresorbable polymers (polycarbonate, polyetheretherketone /PEEK/, polycaprolactone), including the materials with biocompatible oxide ceramics additive (TiO2, Al2O3, ZrO2 and hydroxyapatite) of micron and nano sizes, for tissue-engineering purposes. The porous samples were prepared via a layer-by-layer SLS method. The surface microstructures and their roughness were analyzed by the optical microscopy equipped with the cell analysis software. The cellular morphology, proliferative activity and adhesion of the polymeric and ceramopolymeric matrices were the subjects for comparison. The study showed that all the tested materials posessed biocompatible properties. The experimentally estimated cell duplication speed per day turned out to be maximal for polycarbonate (0.279 duplications per day) and for PEEK + Al2O3 = 3:1 group (0.30 dupl/day) against 0.387 dupl/day for the reference sample and 0.270 dupl/day for the group of cells placed close to the pure titanium samples.

  4. Design of 3 D laser imaging receiver based on 8 ×8 APD detector array%8×8 APD 阵列激光三维成像接收机研制

    Institute of Scientific and Technical Information of China (English)

    王飞; 汤伟; 王挺峰; 郭劲

    2015-01-01

    In order to realize scannerless three dimensional(3D) laser imaging and analyze system parameters impact on ranging precision, a 3D imaging receiver with 8 ×8 elements is implemented.The receiver utilizes linear mode APD array.Analog signal amplification and threshold processing is applied to convert the optical signal to digital pulse.Then a 64 channel time to digital convertor array is implemented in FPGA, and 3D la-ser imaging receiver is invented which can acquire 3D information of target in real-time.First the principle of 3D imaging and construction of the receiver is introduced, including procedure and implementation of the array signal processing.Then electrical test and 3D imaging experiment are carried out for FPGA timing unit and re-ceiver respectively, which indicate a timing resolution of 140 ps and range resolution of 0.2 m.At last, range resolution error is analyzed and we come to the conclusion that laser pulse energy fluctuation is the main error source.%为了实现对目标的无扫描阵列激光三维成像并研究系统参数对三维成像距离分辨率的影响,研制了8×8 pixel激光三维成像接收机。接收机采用线性模式APD阵列,设计了模拟信号放大、阈值处理将回波光信号转换为数字信号后,利用FPGA设计实现64通道高精度阵列计时系统,实现了对目标的无扫描实时三维成像功能。首先对设计完成的三维成像接收机组成及成像原理进行了介绍,对三维成像接收机中APD探测器阵列信号的模拟处理和数字处理流程和实现方式进行了说明。随后分别对三维成像的核心FPGA计时系统及探测器整体进行了电子学测试和实验测试。测试结果表明,FPGA计时子系统的时间分辨率优于140 ps,三维成像系统整体距离分辨率在0.2 m左右。最后对分辨率的误差进行了分析,结果表明,激光回波强度波动是影响此接收机距离分辨率的最主要因素。

  5. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  6. 3D reconstruction of old architecture by laser scanner and digital camera%基于互信息的LIDAR与光学影像配准方法

    Institute of Scientific and Technical Information of China (English)

    邓非; 杨海关; 李丽英

    2009-01-01

    This paper describes an algorithm framework for automatic registration of airborne based laser scanning data (LIDAR)and optical images by using mutual information. The part on methodology describes aspects such as preprocessing of images, intensity value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. In addition to the theoretical method , the paper presents a experimental analysis based on the quality of fit of final alignment between the LIDAR and digital cameras. With the framework presented in this paper we can align laser scanned data and images in a more efficient and reliable way.%本章论述了基于互信息的是单幅影像与LIDAR数据的配准方法.本方案是基于两幅图像灰度值的配准方法,即利用LIDAR数据生成的强度图像,实现与航空影像的配准.虽然两种传感器得到图像的灰度值有较大差异,且不成线性关系,通过引入互信息,可以将穷举的搜索问题变成基于相似性测度函数的优化问题.实验表明互信息准则对于航空影像与LiDAR数据之间是有效的.

  7. Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles.

    Science.gov (United States)

    Lao, Zhaoxin; Hu, Yanlei; Zhang, Chenchu; Yang, Liang; Li, Jiawen; Chu, Jiaru; Wu, Dong

    2015-12-22

    The hierarchical structures are the derivation of various functionalities in the natural world and have inspired broad practical applications in chemical systhesis and biological manipulation. However, traditional top-down fabrication approaches suffered from low complexity. We propose a laser printing capillary-assisted self-assembly (LPCS) strategy for fabricating regular periodic structures. Microscale pillars are first produced by the localized femtosecond laser polymerization and are subsequently self-assembled into periodic hierarchical architectures with the assistance of controlled capillary force. Moreover, based on anisotropic assemblies of micropillars, the LPCS method is further developed for the preparation of more complicated and advanced functional microstructures. Pillars cross section, height, and spatial arrangement can be tuned to guide capillary force, and diverse assemblies with different configurations are thus achieved. Finally, we developed a strategy for growing micro/nanoparticles in designed spatial locations through solution-evaporation self-assembly induced by morphology. Due to the high flexibility of LPCS method, the special arrangements, sizes, and distribution density of the micro/nanoparticles can be controlled readily. Our method will be employed not only to fabricate anisotropic hierarchical structures but also to design and manufacture organic/inorganic microparticles. PMID:26506428

  8. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 3D monitor

    OpenAIRE

    Szkandera, Jan

    2009-01-01

    Tato bakalářská práce se zabývá návrhem a realizací systému, který umožní obraz scény zobrazovaný na ploše vnímat prostorově. Prostorové vnímání 2D obrazové informace je umožněno jednak stereopromítáním a jednak tím, že se obraz mění v závislosti na poloze pozorovatele. Tato práce se zabývá hlavně druhým z těchto problémů. This Bachelor's thesis goal is to design and realize system, which allows user to perceive 2D visual information as three-dimensional. 3D visual preception of 2D image i...

  10. Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multi-station terrestrial laser scanning. (Polish Title: Automatyczne okreslanie srednicy pnia, podstawy korony oraz wysokosci sosny zwyczajnej (Pinus Silvestris L.) Na podstawie analiz chmur punktow 3D pochodzacych z wielostanowiskowego naziemnego skanowania laserowego)

    Science.gov (United States)

    Ratajczak, M.; Wężyk, P.

    2015-12-01

    Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x

  11. 3D FDTD simulations of photonic devices

    International Nuclear Information System (INIS)

    Full text: In our contribution we will present the recent results on 3D simulations of photonic devices. Particularly, quantum well infrared photodetectors with embedded photonic crystal are optimized to achieve optimal light coupling and quantum efficiency. Furthermore, we study schemes of light coupling into SOI waveguides. Both optical fibre-SOI waveguide and laser-SOI waveguide coupling schemes are investigated. The results of investigations regarding the influence of disorder on the reflection peak in opal 3D photonic crystal will be also presented. This work was supported by the Austrian Nanoinitiative RPC PLATON. (author)

  12. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  13. X3D: Extensible 3D Graphics Standard

    OpenAIRE

    Daly, Leonard; Brutzman, Don

    2007-01-01

    The article of record as published may be located at http://dx.doi.org/10.1109/MSP.2007.905889 Extensible 3D (X3D) is the open standard for Web-delivered three-dimensional (3D) graphics. It specifies a declarative geometry definition language, a run-time engine, and an application program interface (API) that provide an interactive, animated, real-time environment for 3D graphics. The X3D specification documents are freely available, the standard can be used without paying any royalties,...

  14. 基于空间球的三维激光扫描仪标定算法%A Calibration Algorithm for 3D Laser Scanner Based on Spatial Sphere

    Institute of Scientific and Technical Information of China (English)

    汪霖; 曹建福; 韩崇昭

    2013-01-01

    A model parameter calibration algorithm based on spatial sphere is proposed to estimate the measurement model parameters of a 3D laser scanner. The distance constraint between each laser scanning point on a spherical calibration object and the center of the calibration sphere is used to establish a nonlinear objective function to determine the model parameters of the 3D laser scanner and the calibration sphere parameters. The model parameter calibration of the laser scanner is realized by optimizing the objective function implemented by a proposed hybrid algorithm which integrates the invasive weed optimization (IWO) and the Levenberg-Marquardt algorithm. By adding the number of scanning points on the calibration sphere, the influence of measuring noise of laser scanner on calibration accuracy can be weakened, thereby the model parameter calibration accuracy of the proposed algorithm is improved. Experimental results show that the proposed algorithm can yield accurate calibration results with a good consistency of model parameters, and effectively suppress the measurement noise.%针对三维激光扫描仪测量模型参数的估计问题,提出一种基于空间球的模型参数标定算法.该算法根据球状标定物上各激光扫描点与标定球球心的距离约束条件,建立三维激光扫描仪模型参数和标定球参数的非线性目标函数;综合采用入侵性杂草优化算法和Levenberg-Marquardt算法优化该目标函数,以实现激光扫描仪模型参数标定;通过增加标定球上的扫描点数,能够减弱激光扫描仪测量噪声对标定精度的影响,从而提高文中算法的模型参数标定精度.实验结果表明,该算法的标定精度高,模型参数估计的一致性好,且能有效抑制测量噪声对标定结果的影响.

  15. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  16. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  17. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  18. Interior Reconstruction Using the 3d Hough Transform

    Science.gov (United States)

    Dumitru, R.-C.; Borrmann, D.; Nüchter, A.

    2013-02-01

    Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.

  19. Calibration of Images with 3D range scanner data

    OpenAIRE

    Adalid López, Víctor Javier

    2009-01-01

    Projecte fet en col.laboració amb EPFL 3D laser range scanners are used in extraction of the 3D data in a scene. Main application areas are architecture, archeology and city planning. Thought the raw scanner data has a gray scale values, the 3D data can be merged with colour camera image values to get textured 3D model of the scene. Also these devices are able to take a reliable copy in 3D form objects, with a high level of accuracy. Therefore, they scanned scenes can be use...

  20. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.

    Science.gov (United States)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-16

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  1. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.

    Science.gov (United States)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-16

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  2. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence

    Science.gov (United States)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-01

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  3. Novel application of confocal laser scanning microscopy and 3D volume rendering toward improving the resolution of the fossil record of charcoal.

    Directory of Open Access Journals (Sweden)

    Claire M Belcher

    Full Text Available Variations in the abundance of fossil charcoals between rocks and sediments are assumed to reflect changes in fire activity in Earth's past. These variations in fire activity are often considered to be in response to environmental, ecological or climatic changes. The role that fire plays in feedbacks to such changes is becoming increasingly important to understand and highlights the need to create robust estimates of variations in fossil charcoal abundance. The majority of charcoal based fire reconstructions quantify the abundance of charcoal particles and do not consider the changes in the morphology of the individual particles that may have occurred due to fragmentation as part of their transport history. We have developed a novel application of confocal laser scanning microscopy coupled to image processing that enables the 3-dimensional reconstruction of individual charcoal particles. This method is able to measure the volume of both microfossil and mesofossil charcoal particles and allows the abundance of charcoal in a sample to be expressed as total volume of charcoal. The method further measures particle surface area and shape allowing both relationships between different size and shape metrics to be analysed and full consideration of variations in particle size and size sorting between different samples to be studied. We believe application of this new imaging approach could allow significant improvement in our ability to estimate variations in past fire activity using fossil charcoals.

  4. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.

    Science.gov (United States)

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants' cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development. PMID:27073917

  5. 复杂建筑物三维激光扫描与室内外精细建模%3 D Laser Scanning of Complicated Build ing an d Fine Modeling for Its Indoor and Ou tdoor Environment

    Institute of Scientific and Technical Information of China (English)

    马敏杰; 杨洋; 范爱平; 杨容浩

    2015-01-01

    This paper describes a method of 3D model creation of complicated building based on 3D laser scanning, therefore, analy-zes in scanning programming , data collection and data processing , especially focuses on the principle of scanning point stitching , de-noising , triangulation construction , model reconstruction , model visualization and the issue of the application .It verifies the validity of the method using Chengdu University of Technology Library modeling as the object .%本文阐述了基于三维激光扫描技术建立复杂建筑物精细三维模型的技术方法。从扫描方案拟订、外业数据采集和内业数据处理三个方面逐层展开分析,重点探讨扫描点的拼接、降噪、三角网构建、模型重建、模型可视化等环节的原理和应用时需注意的问题。并以成都理工大学图书馆为建模对象,验证该方法的有效性。

  6. Fixture design of 3D laser cutting thin-walled stainless steel tube%薄壁不锈钢圆管三维激光切割夹具设计

    Institute of Scientific and Technical Information of China (English)

    王斌修; 田新国

    2013-01-01

    设计夹具解决了三维激光切割薄壁不锈钢圆管时,采用直接装夹方式产生装夹变形、翘曲变形及定位精度低的问题,而且还可以提高薄壁不锈钢圆管的切割质量和加工效率.%When the thin-walled stainless steel tube is cut with 3D laser cutting system, the fixture has been designed to solve the problems of clamping deformation, warping deformation and low position accuracy, which are caused by direct clamping method. The fixture can also improve the cutting quality and processing efficiency of thin-walled stainless steel tube.

  7. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  8. Application of 3D laser scanning technology in measurements of road engineering%三维激光扫描技术在道路工程测量中的应用

    Institute of Scientific and Technical Information of China (English)

    唐鹤; 韩峰; 杨国林

    2016-01-01

    针对道路竣工测量中传统测量方式效率低、劳动强度大、测量信息量少的缺点,以一段竣工道路为例,在介绍三维激光扫描仪测量原理的基础上,根据制定的测量方案,采用地面三维激光扫描仪进行竣工测量,并且通过数据处理,提取了道路特征。从精度分析可知,其数据准确度高,能完全满足道路竣工测量要求,其无接触测量等优势在道路竣工测量中具有很好的应用前景。%Aiming at the problems of completed road survey by traditional methods,such as low efficiency, great labor intensity and a small amount of survey information,taking a completed road as an example,based on the introduction of 3D Laser scanner measuring principle,this article collects the road information by terrestrial 3D laser scanner according to the proposed survey plan,and then extracts the road feature through processing the data.It is shown by the accuracy analysis that the data is accurate enough to meet the requirements of the completed road measurement,its advantages such as non-contact and so on have a good prospect in the measurement field of completed road.

  9. On the geometry and allometry of big-buttressed trees - a challenge for forest monitoring: new insights from 3D-modeling with terrestrial laser scanning

    Directory of Open Access Journals (Sweden)

    Nölke N

    2015-10-01

    Full Text Available In many old-growth natural and close-to-natural forest types, notably in humid tropical forests, a relatively small number of very tall trees contribute considerably to stand basal area and biomass. Such trees often show distinct buttress roots with irregular non-convex shapes. Buttresses are complex structures in the lowest stem section, where most tree biomass is located. The methods used to assess the diameter of buttressed trees have a large impact on the determination of volume and biomass, as well as on the resulting estimates of the aboveground carbon stock in tropical forests. As the measurement of diameter at breast height (DBH at 1.3 m is not feasible in such conditions, the diameter above buttress (DAB, where the cylindrical bole of the tree begins, is usually measured and included as an independent variable in biomass models. We conducted a methodological study aimed at determining the volume and biomass of individual buttressed trees belonging to several tropical species by the application of terrestrial laser scanning (TLS. The geometry and allometry of the buttresses, as well as the change with height along the stem in buttress volume and cross-sectional area were analyzed. Our results suggest that the relationship between cross-sectional areas at DAB height (ADAB and the actual tree basal area measured at 1.3 m height is relatively strong (R² = 0.87 across a range of different species, buttress morphologies and tree dimensions. Furthermore, the change in stem cross-sectional area with tree height was surprisingly similar and smooth. Despite the small number of trees sampled, the methodological approach used in this study provided new insights on the very irregular geometry of buttressed trees. Our results may help improving the volume and biomass models for buttressed trees, that are crucial contributors to carbon stocks in tropical forests.

  10. Research on 3D Model Reconstruction for Cavity Preparation Based on Laser Triangulation%义齿窝洞预备体三维重构关键技术研究

    Institute of Scientific and Technical Information of China (English)

    刘宝龙; 孙萍; 陈桦; 王秀斋

    2016-01-01

    Digtal evaluation of cavity preparation is still a gap in China.The products of this class are still monopolized by forerign companies.The 3D model reconstruction for cavity preparation based on laser triangulation took the dental cavity preparation as the object.The original data of dental surface were obtained by non?contact 3D scanning.The corresponding points in ICP algorithm were selected by using K?D tree searching policy,and the results were divided into four sections with each radial direction kept.The 3D model reconstruction was completed through denoising,triangular meshes techniques.The testing results show that the proposed method can present the 3D model of cavity preparation.Compared with other techniqnes abroad,the new method improves the efficiency of the system.%义齿窝洞预备体的数字化评估目前在我国还是空白,该类产品主要由国外垄断。基于激光三角测量法的义齿窝洞预备体三维重构技术以制备的窝洞预备体为测量对象,利用非接触式三角测量技术获取预备体表面形态的数据信息,采用 K?D(K?Dimension,K?D)树搜索策略实现 ICP(Iterative Closest Point,ICP)算法中对应点的选取,将 ICP 拼接后的数据分为四个块,保留每个相机径向上的部分,在此基础上通过去噪、消差、三角面法等技术实现被测预备体的三维重构。结果表明,本分提出的解决方案能够客观的呈现窝洞预备体的三维形貌。与国外同类技术比较,在保证三维点集配准精确度的情况下,有效提高了系统的整体运算速度。

  11. Accurate 3D point cloud comparison and volumetric change analysis of Terrestrial Laser Scan data in a hard rock coastal cliff environment

    Science.gov (United States)

    Earlie, C. S.; Masselink, G.; Russell, P.; Shail, R.; Kingston, K.

    2013-12-01

    Our understanding of the evolution of hard rock coastlines is limited due to the episodic nature and ';slow' rate at which changes occur. High-resolution surveying techniques, such as Terrestrial Laser Scanning (TLS), have just begun to be adopted as a method of obtaining detailed point cloud data to monitor topographical changes over short periods of time (weeks to months). However, the difficulties involved in comparing consecutive point cloud data sets in a complex three-dimensional plane, such as occlusion due to surface roughness and positioning of data capture point as a result of a consistently changing environment (a beach profile), mean that comparing data sets can lead to errors in the region of 10 - 20 cm. Meshing techniques are often used for point cloud data analysis for simple surfaces, but in surfaces such as rocky cliff faces, this technique has been found to be ineffective. Recession rates of hard rock coastlines in the UK are typically determined using aerial photography or airborne LiDAR data, yet the detail of the important changes occurring to the cliff face and toe are missed using such techniques. In this study we apply an algorithm (M3C2 - Multiscale Model to Model Cloud Comparison), initially developed for analysing fluvial morphological change, that directly compares point to point cloud data using surface normals that are consistent with surface roughness and measure the change that occurs along the normal direction (Lague et al., 2013). The surfaces changes are analysed using a set of user defined scales based on surface roughness and registration error. Once the correct parameters are defined, the volumetric cliff face changes are calculated by integrating the mean distance between the point clouds. The analysis has been undertaken at two hard rock sites identified for their active erosion located on the UK's south west peninsular at Porthleven in south west Cornwall and Godrevy in north Cornwall. Alongside TLS point cloud data, in

  12. Complex light in 3D printing

    Science.gov (United States)

    Moser, Christophe; Delrot, Paul; Loterie, Damien; Morales Delgado, Edgar; Modestino, Miguel; Psaltis, Demetri

    2016-03-01

    3D printing as a tool to generate complicated shapes from CAD files, on demand, with different materials from plastics to metals, is shortening product development cycles, enabling new design possibilities and can provide a mean to manufacture small volumes cost effectively. There are many technologies for 3D printing and the majority uses light in the process. In one process (Multi-jet modeling, polyjet, printoptical©), a printhead prints layers of ultra-violet curable liquid plastic. Here, each nozzle deposits the material, which is then flooded by a UV curing lamp to harden it. In another process (Stereolithography), a focused UV laser beam provides both the spatial localization and the photo-hardening of the resin. Similarly, laser sintering works with metal powders by locally melting the material point by point and layer by layer. When the laser delivers ultra-fast focused pulses, nonlinear effects polymerize the material with high spatial resolution. In these processes, light is either focused in one spot and the part is made by scanning it or the light is expanded and covers a wide area for photopolymerization. Hence a fairly "simple" light field is used in both cases. Here, we give examples of how "complex light" brings additional level of complexity in 3D printing.

  13. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    Science.gov (United States)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  14. 3D-skannaukseen perehtyminen

    OpenAIRE

    Santaluoto, Olli

    2012-01-01

    Tässä insinöörityössä tarkastellaan erilaisia 3D-skannaustekniikoita ja menetelmiä. Työssä myös kerrotaan esimerkkien avulla eri 3D-skannaustekniikoiden käyttökohteista. 3D-skannaus on Suomessa vielä melko harvinaista, siksi eri tekniikat ja käyttömahdollisuudet ovat monille tuntemattomia. 3D-skanneri on laite, jolla tutkitaan reaalimaailman esineitä tai ympäristöä keräämällä dataa kohteen muodoista. 3D-skannerit ovat hyvin paljon vastaavia tavallisen kameran kanssa. Kuten kameroilla, 3D...

  15. 三维激光扫描仪球形靶标测量方法与精度评定%Measurement method and precision evaluation of spherical targets in 3D laser scanner

    Institute of Scientific and Technical Information of China (English)

    梁建军; 范百兴; 邓向瑞; 李宗春; 汪涛

    2011-01-01

    球形靶标是三维激光扫描仪检定、坐标系转换等测量任务中的主要手段,通过获取球形靶标的中心坐标可以评定三维激光扫描仪的测量精度.本文结合三维激光扫描仪野外测量和室内检定的要求,提出了四种球形靶标球心测量方案,并结合某三维激光扫描仪检定场,对不同测量方案的特点和精度进行了分析.%Spherical target is the main device for calibration and coordinate system transformation in laser scanner measurements, and the precision evaluation can be performed with gnomonic measurement of the spherical target. Based on the requirements of field surveying and indoor calibrations, this paper proposes four gnomonic measurement methods. Furthermore, the characteristics and measurement precisions of the four methods are analyzed at a 3 D laser scanner calibration field.

  16. 3D Printing Functional Nanocomposites

    OpenAIRE

    Leong, Yew Juan

    2016-01-01

    3D printing presents the ability of rapid prototyping and rapid manufacturing. Techniques such as stereolithography (SLA) and fused deposition molding (FDM) have been developed and utilized since the inception of 3D printing. In such techniques, polymers represent the most commonly used material for 3D printing due to material properties such as thermo plasticity as well as its ability to be polymerized from monomers. Polymer nanocomposites are polymers with nanomaterials composited into the ...

  17. Are 3-D Movies Bad for Your Eyes?

    Medline Plus

    Full Text Available ... Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide ... for Your Eyes? Jul. 09, 2013 With the popularity of 3-D movies, it's natural to wonder what, if any, effect the technology has on your eyes. Is 3-D technology ...

  18. Are 3-D Movies Bad for Your Eyes?

    Medline Plus

    Full Text Available ... Education Center Oculofacial Plastic Surgery Center Laser Surgery Education Center Redmond Ethics Center Global Ophthalmology Guide ... Jul. 09, 2013 With the popularity of 3-D movies, it's natural to wonder what, if any, effect the technology has on your eyes. Is 3-D technology ...

  19. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  20. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  1. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  2. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  3. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  4. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen;

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  5. Design of 3D eye-safe middle range vibrometer

    Science.gov (United States)

    Polulyakh, Valeriy; Poutivski, Iouri

    2014-05-01

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1-100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t˜30psec) and low energy (E˜200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P˜30mW). Both lasers perform on the eye-safe wavelength 1.5 μm. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

  6. Design of 3D eye-safe middle range vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Polulyakh, Valeriy [Advanced Data Security, 1933 O' Toole Way, San Jose, CA 95131 (United States); Poutivski, Iouri [Terimber Corporation, 2456 Homewood Drive, San Jose, CA 95128, USA and Facebook Inc, 1601 Willow Road, Menlo Park, CA 94025 (United States)

    2014-05-27

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t∼30psec) and low energy (E∼200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P∼30mW). Both lasers perform on the eye-safe wavelength 1.5 μm. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

  7. Design of 3D eye-safe middle range vibrometer

    International Nuclear Information System (INIS)

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t∼30psec) and low energy (E∼200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P∼30mW). Both lasers perform on the eye-safe wavelength 1.5 μm. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts

  8. 3D Printed Programmable Release Capsules.

    Science.gov (United States)

    Gupta, Maneesh K; Meng, Fanben; Johnson, Blake N; Kong, Yong Lin; Tian, Limei; Yeh, Yao-Wen; Masters, Nina; Singamaneni, Srikanth; McAlpine, Michael C

    2015-08-12

    The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients. PMID:26042472

  9. Comparison of the impact of fire, floods, and large herbivore grazing on the 3-D structure and biomass of Mopane Woodland in Kruger National Park using Terrestrial Laser Scanning

    Science.gov (United States)

    Delgado, A.; Washington-Allen, R. A.; Bruton, R.; Swemmer, A.

    2012-12-01

    We conducted a study to look at the impact of large herbivore grazing exclusion, fire, and flooding on the three dimensional (3-D) structure and biomass of Mopane woodlands using Terrestrial Laser Scanning (TLS). The study was conducted at the 42-ha Letaba exclosure that is located on the northern shore of the Letaba River in the northern part of Kruger National Park (KNP), South Africa. The study entailed comparison of 4 X 30-m diameter paired plots, with 4 treatment (no grazing) plots within the exclosure and 4 control plots outside. Additionally, the northern 4 plots are in upland savanna vegetation on a gravelly loam stream terrace that had been burned in 2010. The southern 4 plots are in riparian woodlands on sandy loam soils that had been flooded in 2007. TLS data was collected at 4-cm spacing with 30-m range at 4 scans per plot. Scans were registered and a 3-D virtual environment was created for each plot from which canopy cover, plant density, and vegetation height were manually measured and biomass was derived. We used discriminant analysis to test the hypothesis that 4 structurally distinct groups would be detected, i.e., burned ungrazed savanna, burned grazed savanna, flooded ungrazed riparian, and a flooded grazed riparian group. We found that point density of grass and trees across plots correlated significantly with plot biomass. We predicted that exclosure biomass would be greater than biomass outside the exclosure and that upland biomass height and density in the canopy, shrub, and herbaceous layers within the exclosure compared to outside. However, though biomass was distinct, structural features were not in the upland pairs.

  10. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  11. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  12. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  13. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  14. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  15. Real-time 3D Outdoor Environment Modeling for Mobile Robot with a Laser Scanner%基于激光扫描的移动机器人3D室外环境实时建模

    Institute of Scientific and Technical Information of China (English)

    周波; 戴先中; 韩建达

    2012-01-01

    针对室外非结构化3D环境,研究了基于激光扫描的移动机器人实时地形建模问题.考虑了建模过程中可能存在的多源不确定性误差,将其建模为零均值高斯噪声,由此建立多级坐标变换矩阵将激光扫描数据转化为全局坐标系中的概率化高程估计,并根据置信区间将得到的高程估计关联至多个地形网格,在此基础上对关联网格内分配的高程估计进行概率融合,实现了局部高程地图的更新.此外,采用局部窗口检测方法对地形遮挡问题进行了处理,并同时解决了室外环境下移动机器人的3D定位问题.实验结果表明了该算法的实时性和有效性.%The real-time terrain modeling problem of mobile robot with a laser scanner in outdoor unstructured 3D environments is studied. The underlying uncertainties from multiple sources during modeling are taken into account and modeled as zero-mean Gaussian noises, and subsequently the multi-level coordinate transformation matrixes are created to convert the measurements from laser scanner into probabilistic elevation estimations in the global coordinate systems, which will be associated with several terrain cells according to the confidence interval of the estimation. The elevation estimations assigned to each cell can be fused through a probabilistic approach to update the map locally. In addition, a local measurement window is denned to detect the occlusions, and the 3D localization of the mobile robot in outdoor environment is solved simultaneously. Experimental results demonstrate the real-time performance and effectiveness of the proposed method.

  16. Innovative 3D-printing technology in the fashion industry

    Directory of Open Access Journals (Sweden)

    Anna Rykavishnikova

    2015-05-01

    Full Text Available This article describes improved methods of 3D-printing technology is their advantage, as well as used in modern fashion-industry. 3D-press began with the image on a fabric, flags, banners, advertising signs, furniture upholstery design, souvenirs. Improved and most commonly used in the fashion industry 3D-printing technology is the selective laser sintering. 3D-press is also used in the production of not only clothing, but also footwear company Nike; glasses, rings and other accessories.

  17. Random-Profiles-Based 3D Face Recognition System

    Directory of Open Access Journals (Sweden)

    Joongrock Kim

    2014-03-01

    Full Text Available In this paper, a noble nonintrusive three-dimensional (3D face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation.

  18. 3-D Video Processing for 3-D TV

    Science.gov (United States)

    Sohn, Kwanghoon; Kim, Hansung; Kim, Yongtae

    One of the most desirable ways of realizing high quality information and telecommunication services has been called "The Sensation of Reality," which can be achieved by visual communication based on 3-D (Three-dimensional) images. These kinds of 3-D imaging systems have revealed potential applications in the fields of education, entertainment, medical surgery, video conferencing, etc. Especially, three-dimensional television (3-D TV) is believed to be the next generation of TV technology. Figure 13.1 shows how TV's display technologies have evolved , and Fig. 13.2 details the evolution of TV broadcasting as forecasted by the ETRI (Electronics and Telecommunications Research Institute). It is clear that 3-D TV broadcasting will be the next development in this field, and realistic broadcasting will soon follow.

  19. PRODUCTION WITH 3D PRINTERS IN TEXTILES [REVIEW

    Directory of Open Access Journals (Sweden)

    KESKIN Reyhan

    2015-05-01

    Full Text Available 3D printers are gaining more attention, finding different applications and 3D printing is being regarded as a ‘revolution’ of the 2010s for production. 3D printing is a production method that produces 3-dimensional objects by combining very thin layers over and over to form the object using 3D scanners or via softwares either private or open source. 3D printed materials find application in a large range of fields including aerospace, automotive, medicine and material science. There are several 3D printing methods such as fused deposition modeling (FDM, stereolithographic apparatus (SLA, selective laser sintering (SLS, inkjet 3D printing and laminated object manufacturing (LOM. 3D printing process involves three steps: production of the 3D model file, conversion of the 3D model file into G-code and printing the object. 3D printing finds a large variety of applications in many fields; however, textile applications of 3D printing remain rare. There are several textile-like 3D printed products mostly for use in fashion design, for research purposes, for technical textile applications and for substituting traditional textiles suchas weft-knitted structures and lace patterns. 3D printed textile-like structures are not strong enough for textile applications as they tend to break easily and although they have the drape of a textile material, they still lack the flexibility of textiles. 3D printing technology has to gain improvement to produce materials that will be an equivalent for textile materials, and has to be a faster method to compete with traditional textile production methods.

  20. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  1. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  2. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  3. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  4. 3D on the internet

    OpenAIRE

    Puntar, Matej

    2012-01-01

    The purpose of this thesis is the presentation of already established and new technologies of displaying 3D content in a web browser. The thesis begins with a short presentation of the history of 3D content available on the internet and its development together with advantages and disadvantages of individual technologies. The latter two are described in detail as well is their use and the differences among them. Special emphasis has been given to WebGL, the newest technology of 3D conte...

  5. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  6. Surveying Topographic Map Quickly Based on 3D Laser Scanner in Hilly Region%基于地面三维激光扫描仪的丘陵地区地形快速测量

    Institute of Scientific and Technical Information of China (English)

    李婷峰; 杨润萍

    2014-01-01

    以 Riegl VZ -400地面三维激光扫描仪对丘陵地区地形测绘为例,探讨了此技术应用于地形测绘的方法及作业流程,最后通过实测的地形数据,分析了地面激光扫描仪在地形测绘应用中的可行性及有待于解决的一些问题。%By means of the application and practice of Riegl VZ-400 on the project of topographic surveying in the hilly region,the paper discusses the methods and processes for this technique used in topographic surveying.Through the measured terrain data,the application of the ground 3D laser scanner on topographic surveying is feasible and some of the issues to be resolved are pointed out in the end.

  7. 3D scene modeling from multiple range views

    Science.gov (United States)

    Sequeira, Vitor; Goncalves, Joao G. M.; Ribeiro, M. Isabel

    1995-09-01

    This paper presents a new 3D scene analysis system that automatically reconstructs the 3D geometric model of real-world scenes from multiple range images acquired by a laser range finder on board of a mobile robot. The reconstruction is achieved through an integrated procedure including range data acquisition, geometrical feature extraction, registration, and integration of multiple views. Different descriptions of the final 3D scene model are obtained: a polygonal triangular mesh, a surface description in terms of planar and biquadratics surfaces, and a 3D boundary representation. Relevant experimental results from the complete 3D scene modeling are presented. Direct applications of this technique include 3D reconstruction and/or update of architectual or industrial plans into a CAD model, design verification of buildings, navigation of autonomous robots, and input to virtual reality systems.

  8. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    traditionel keramisk produktionssammenhæng. Problemstillingen opmuntrede endvidere til i et samarbejde med en programmør at udvikle et 3d digitalt redskab, der er blevet kaldt et digitalt interaktivt formgivningsredskab (DIF). Eksperimentet undersøger interaktive 3d digitale dynamiske systemer, der...... samarbejder med designere fra fagområder som interaktionsdesign og programmering. Afhandlingen peger på et fremtidigt forskningsfelt indenfor generative og responderende digitale systemer til 3d formgivning, der ligeledes inkluderer følesansen. Endvidere er det relevant at forske i, hvordan de RP teknikker...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...

  9. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  10. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  11. Combinatorial 3D Mechanical Metamaterials

    Science.gov (United States)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  12. AI 3D Cybug Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  13. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  14. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  15. Reconstruction of High Resolution 3D Objects from Incomplete Images and 3D Information

    Directory of Open Access Journals (Sweden)

    Alexander Pacheco

    2014-05-01

    Full Text Available To this day, digital object reconstruction is a quite complex area that requires many techniques and novel approaches, in which high-resolution 3D objects present one of the biggest challenges. There are mainly two different methods that can be used to reconstruct high resolution objects and images: passive methods and active methods. This methods depend on the type of information available as input for modeling 3D objects. The passive methods use information contained in the images and the active methods make use of controlled light sources, such as lasers. The reconstruction of 3D objects is quite complex and there is no unique solution- The use of specific methodologies for the reconstruction of certain objects it’s also very common, such as human faces, molecular structures, etc. This paper proposes a novel hybrid methodology, composed by 10 phases that combine active and passive methods, using images and a laser in order to supplement the missing information and obtain better results in the 3D object reconstruction. Finally, the proposed methodology proved its efficiency in two complex topological complex objects.

  16. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  17. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  18. An Automated 3d Indoor Topological Navigation Network Modelling

    Science.gov (United States)

    Jamali, A.; Rahman, A. A.; Boguslawski, P.; Gold, C. M.

    2015-10-01

    Indoor navigation is important for various applications such as disaster management and safety analysis. In the last decade, indoor environment has been a focus of wide research; that includes developing techniques for acquiring indoor data (e.g. Terrestrial laser scanning), 3D indoor modelling and 3D indoor navigation models. In this paper, an automated 3D topological indoor network generated from inaccurate 3D building models is proposed. In a normal scenario, 3D indoor navigation network derivation needs accurate 3D models with no errors (e.g. gap, intersect) and two cells (e.g. rooms, corridors) should touch each other to build their connections. The presented 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. For reducing time and cost of indoor building data acquisition process, Trimble LaserAce 1000 as surveying instrument is used. The modelling results were validated against an accurate geometry of indoor building environment which was acquired using Trimble M3 total station.

  19. Remote 3D Medical Consultation

    Science.gov (United States)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  20. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  1. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  2. Emerging Applications of Bedside 3D Printing in Plastic Surgery.

    Science.gov (United States)

    Chae, Michael P; Rozen, Warren M; McMenamin, Paul G; Findlay, Michael W; Spychal, Robert T; Hunter-Smith, David J

    2015-01-01

    Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D) reconstructions, are limited by their representation on 2D workstations. 3D printing, also known as rapid prototyping or additive manufacturing, was once the province of industry to fabricate models from a computer-aided design (CAD) in a layer-by-layer manner. The early adopters in clinical practice have embraced the medical imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. With increasing accessibility, investigators are able to convert standard imaging data into a CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography, multijet modeling, selective laser sintering, binder jet technique, and fused deposition modeling. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without outsourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. In this review, existing uses of 3D printing in plastic surgery practice spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative esthetics are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, developing

  3. Emerging Applications of Bedside 3D Printing in Plastic Surgery

    Directory of Open Access Journals (Sweden)

    Michael P Chae

    2015-06-01

    Full Text Available Modern imaging techniques are an essential component of preoperative planning in plastic and reconstructive surgery. However, conventional modalities, including three-dimensional (3D reconstructions, are limited by their representation on 2D workstations. 3D printing has been embraced by early adopters to produce medical imaging-guided 3D printed biomodels that facilitate various aspects of clinical practice. The cost and size of 3D printers have rapidly decreased over the past decade in parallel with the expiration of key 3D printing patents. With increasing accessibility, investigators are now able to convert standard imaging data into Computer Aided Design (CAD files using various 3D reconstruction softwares and ultimately fabricate 3D models using 3D printing techniques, such as stereolithography (SLA, multijet modeling (MJM, selective laser sintering (SLS, binder jet technique (BJT, and fused deposition modeling (FDM. Significant improvements in clinical imaging and user-friendly 3D software have permitted computer-aided 3D modeling of anatomical structures and implants without out-sourcing in many cases. These developments offer immense potential for the application of 3D printing at the bedside for a variety of clinical applications. However, many clinicians have questioned whether the cost-to-benefit ratio justifies its ongoing use. In this review the existing uses of 3D printing in plastic surgery practice, spanning the spectrum from templates for facial transplantation surgery through to the formation of bespoke craniofacial implants to optimize post-operative aesthetics, are described. Furthermore, we discuss the potential of 3D printing to become an essential office-based tool in plastic surgery to assist in preoperative planning, patient and surgical trainee education, and the development of intraoperative guidance tools and patient-specific prosthetics in everyday surgical practice.

  4. Process for 3D chip stacking

    Science.gov (United States)

    Malba, Vincent

    1998-01-01

    A manufacturable process for fabricating electrical interconnects which extend from a top surface of an integrated circuit chip to a sidewall of the chip using laser pantography to pattern three dimensional interconnects. The electrical interconnects may be of an L-connect or L-shaped type. The process implements three dimensional (3D) stacking by moving the conventional bond or interface pads on a chip to the sidewall of the chip. Implementation of the process includes: 1) holding individual chips for batch processing, 2) depositing a dielectric passivation layer on the top and sidewalls of the chips, 3) opening vias in the dielectric, 4) forming the interconnects by laser pantography, and 5) removing the chips from the holding means. The process enables low cost manufacturing of chips with bond pads on the sidewalls, which enables stacking for increased performance, reduced space, and higher functional per unit volume.

  5. 3D Imager and Method for 3D imaging

    NARCIS (Netherlands)

    Kumar, P.; Staszewski, R.; Charbon, E.

    2013-01-01

    3D imager comprising at least one pixel, each pixel comprising a photodetectorfor detecting photon incidence and a time-to-digital converter system configured for referencing said photon incidence to a reference clock, and further comprising a reference clock generator provided for generating the re

  6. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  7. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich;

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  8. Crowded Field 3D Spectroscopy

    CERN Document Server

    Becker, T; Roth, M M; Becker, Thomas; Fabrika, Sergei; Roth, Martin M.

    2003-01-01

    The quantitative spectroscopy of stellar objects in complex environments is mainly limited by the ability of separating the object from the background. Standard slit spectroscopy, restricting the field of view to one dimension, is obviously not the proper technique in general. The emerging Integral Field (3D) technique with spatially resolved spectra of a two-dimensional field of view provides a great potential for applying advanced subtraction methods. In this paper an image reconstruction algorithm to separate point sources and a smooth background is applied to 3D data. Several performance tests demonstrate the photometric quality of the method. The algorithm is applied to real 3D observations of a sample Planetary Nebula in M31, whose spectrum is contaminated by the bright and complex galaxy background. The ability of separating sources is also studied in a crowded stellar field in M33.

  9. 3D-grafiikkamoottori mobiililaitteille

    OpenAIRE

    Vahlman, Lauri

    2014-01-01

    Tässä insinöörityössä käydään läpi mobiililaitteille suunnatun yksinkertaisen 3D-grafiikkamoottorin suunnittelu ja toteutus käyttäen OpenGL ES -rajapintaa. Työssä esitellään grafiikkamoottorin toteutuksessa käytettyjä tekniikoita sekä tutustutaan moottorin rakenteeseen ja toteutuksellisiin yksityiskohtiin. Työn alkupuolella tutustutaan myös modernin 3D-grafiikan yleisiin periaatteisiin ja toimintaan sekä käydään läpi 3D-grafiikkaan liittyviä suorituskykyongelmia. Työn loppupuolella esitel...

  10. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  11. DRACO development for 3D simulations

    Science.gov (United States)

    Fatenejad, Milad; Moses, Gregory

    2006-10-01

    The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.

  12. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  13. A new 3D modeling method for branches of standing trees based on point cloud data of terrestrial laser scanning%基于地面激光雷达的活立木枝干三维建模

    Institute of Scientific and Technical Information of China (English)

    张天安; 云挺; 薛联凤; 安锋

    2015-01-01

    The difficulty of 3D modeling for standing trees is to simplify complex and scattered mass measurement data. In regard to individual standing tree sample, the geometric shape of trunk is extremely irregular and unstructured, bran⁃ches and leaves grow optional and in dispersion, and the trunk measured point cloud data ( PCD) obtained by the terres⁃trial laser scanning( TLS) LiDAR is extraordinary numerous and jumbled. In this paper, we propose a new skeleton⁃based 3D modeling method for tree branches based on terrestrial laser scanned PCD. Firstly, leaves and branches of the original PCD are separated using semi⁃supervised SVM classifier. Then, the PCD of branches are segmented according to Dijkstra distance, and the skeleton of each connected part is extracted. After calculating the weights of distance and an⁃gle by linear programming, the skeletons are connected according to the weighted matching degree. The complete skele⁃tons of the whole tree are done, and the models are reconstructed by cylinder fitting. Experiments were carried out on Sakura and Michelia maudiae with the models reconstructed and the effectiveness of the algorithm analyzed. The results showed that the method used in this study is better than other previous methods in running time and occupying memory.%活立木点云数据三维重建的难点是测量数据海量且庞杂散乱。就单株活立木个体样本而言,树木主干几何形状极其不规整,枝叶分生散乱,由地面激光雷达扫描得到的树干实测数据非常庞杂散乱。笔者提出了一种新的基于骨架提取的活立木枝干三维建模方法:首先,对地面激光雷达扫描获得的原始点云进行枝叶分离;然后根据Dijkstra距离对枝干点云数据进行分段并提取每个连通部分的骨架;再根据加权的匹配度连接骨架,得到整株活立木完整的骨架;最后用圆柱体拟合出活立木枝干的模型。分别对含笑树和樱花树枝干进

  14. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  15. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... beamforming. This is achieved partly because synthetic aperture imaging removes the limitation of a fixed transmit focal depth and instead enables dynamic transmit focusing. Lately, the major ultrasound companies have produced ultrasound scanners using 2-D transducer arrays with enough transducer elements...

  16. Parameter Extraction of Highway Route Based on 3-d Laser Scanning Technology%基于地面三维激光扫描技术的公路路线设计参数提取

    Institute of Scientific and Technical Information of China (English)

    王鑫森; 孔立; 郑德华

    2013-01-01

    3-D laser scanner is applied to highway survey, the point cloud density is optimized by the control of point cloud acquisition parameters, improved the accuracy of registration using ICP algorithm based on quaternion, and got rid of noise points with the algorithm of local outlier. Thus, the highway pavement point cloud of high quality is got, which can be provided as reliable data source for the follow-up design parameter extraction. Then, the road boundary lines and center lines are extracted with an edge detection algorithm and finally the design parameters are computed. Experiments show that the results fully meet the needs of the subsequent construction design.%将三维激光扫描仪应用于公路测量,通过控制点云采集的参数来优化点云密度分布,采用基于四元数的ICP算法进行配准,提高配准精度.运用局部点离群算法完成点云去噪,得到高质量的公路路面点云,为后续设计参数的提取工作提供了可靠的数据源.最后运用点云边界点识别算法准确提取了公路边界线,并进一步生成了公路中心线及各项路线设计参数.实验表明结果完全满足后续施工设计的需要.

  17. 三维激光扫描地形点云的分层去噪方法%A Denoising Method by Layering for Terrain Point Cloud from 3D Laser Scanner

    Institute of Scientific and Technical Information of China (English)

    吕娅; 万程辉

    2014-01-01

    For the terrain point cloud acquired by 3D laser scanner, a denoising method by layered slices in eleva-tion direction is presented in this paper. Firstly, the hierarchically extracted point cloud is projected on a plane and the point cloud is divided by grid. In the meanwhile, the point cloud in the grid is transferred into a binary image. So the discrete grid noises can be filtered by using the method of digital image processing. Then the terrain contour grid can be extracted from the point cloud slice by slice. By the comparison of the upper and lower edge features, the isolated and non-ground points can be removed. According to the denoising experiments on the point cloud of different terrain, a satisfied denoising outcome can be obtained by filtering the non-ground points hierarchically.%针对三维激光扫描采集的地形点云,提出在高程方向进行切片分层的去噪方法。将分层提取的点云投影在平面上,对点云进行网格划分,把网格内的点云转换为二值图像,采用数字图像处理方法过滤离散的网格噪点;然后对分层提取的点云轮廓特征格网,通过对上下层轮廓边缘特征比较,获取点云的地面轮廓网格点,删除孤立噪点与非地面点。根据对不同地形的点云进行去噪实验,通过分层过滤非地面点可以得到很好的去噪效果。

  18. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  19. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    Science.gov (United States)

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag. PMID:27384934

  20. INTERACTIVE 3D LANDSCAPES ON LINE

    Directory of Open Access Journals (Sweden)

    B. Fanini

    2012-09-01

    Full Text Available The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.

  1. Interactive 3d Landscapes on Line

    Science.gov (United States)

    Fanini, B.; Calori, L.; Ferdani, D.; Pescarin, S.

    2011-09-01

    The paper describes challenges identified while developing browser embedded 3D landscape rendering applications, our current approach and work-flow and how recent development in browser technologies could affect. All the data, even if processed by optimization and decimation tools, result in very huge databases that require paging, streaming and Level-of-Detail techniques to be implemented to allow remote web based real time fruition. Our approach has been to select an open source scene-graph based visual simulation library with sufficient performance and flexibility and adapt it to the web by providing a browser plug-in. Within the current Montegrotto VR Project, content produced with new pipelines has been integrated. The whole Montegrotto Town has been generated procedurally by CityEngine. We used this procedural approach, based on algorithms and procedures because it is particularly functional to create extensive and credible urban reconstructions. To create the archaeological sites we used optimized mesh acquired with laser scanning and photogrammetry techniques whereas to realize the 3D reconstructions of the main historical buildings we adopted computer-graphic software like blender and 3ds Max. At the final stage, semi-automatic tools have been developed and used up to prepare and clusterise 3D models and scene graph routes for web publishing. Vegetation generators have also been used with the goal of populating the virtual scene to enhance the user perceived realism during the navigation experience. After the description of 3D modelling and optimization techniques, the paper will focus and discuss its results and expectations.

  2. 3D Face Apperance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations

  3. 3D Face Appearance Model

    OpenAIRE

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}

  4. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  5. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  6. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu;

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  7. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  8. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  9. 3D printing of functional biomaterials for tissue engineering.

    Science.gov (United States)

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed. PMID:27043763

  10. Priprava 3D modelov za 3D tisk

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  11. Post processing of 3D models for 3D printing

    OpenAIRE

    Pikovnik, Tomaž

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  12. 3D Cameras: 3D Computer Vision of Wide Scope

    OpenAIRE

    May, Stefan; Pervoelz, Kai; Surmann, Hartmut

    2007-01-01

    First of all, a short comparison of range sensors and their underlying principles was given. The chapter further focused on 3D cameras. The latest innovations have given a significant improvement for the measurement accuracy, wherefore this technology has attracted attention in the robotics community. This was also the motivation for the examination in this chapter. On this account, several applications were presented, which represents common problems in the domain of autonomous robotics. For...

  13. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  14. Powder-based 3D printing for bone tissue engineering.

    Science.gov (United States)

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed. PMID:27086202

  15. Powder-based 3D printing for bone tissue engineering.

    Science.gov (United States)

    Brunello, G; Sivolella, S; Meneghello, R; Ferroni, L; Gardin, C; Piattelli, A; Zavan, B; Bressan, E

    2016-01-01

    Bone tissue engineered 3-D constructs customized to patient-specific needs are emerging as attractive biomimetic scaffolds to enhance bone cell and tissue growth and differentiation. The article outlines the features of the most common additive manufacturing technologies (3D printing, stereolithography, fused deposition modeling, and selective laser sintering) used to fabricate bone tissue engineering scaffolds. It concentrates, in particular, on the current state of knowledge concerning powder-based 3D printing, including a description of the properties of powders and binder solutions, the critical phases of scaffold manufacturing, and its applications in bone tissue engineering. Clinical aspects and future applications are also discussed.

  16. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy. PMID:27501761

  17. Photochemical Copper Coating on 3D Printed Thermoplastics.

    Science.gov (United States)

    Yung, Winco K C; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-01-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy. PMID:27501761

  18. Photochemical Copper Coating on 3D Printed Thermoplastics.

    Science.gov (United States)

    Yung, Winco K C; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-09

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  19. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  20. Emitting system of fiber-array 3D laser imaging using off-axis three-mirror system%离轴三反光纤阵列激光三维成像发射系统

    Institute of Scientific and Technical Information of China (English)

    侯佳; 何志平; 舒嵘

    2016-01-01

    离轴三反光纤阵列激光三维成像发射系统中,大功率激光器发出的激光经阵列光纤分束,由光纤的芯径和单元发散角计算离轴三反光学系统的焦距,由光纤的数值孔径确定系统的入瞳直径范围,光纤阵列的长度决定了光学系统的发射总视场.离轴三反光学系统采用正向设计、反向使用的思路,将光纤阵列置于离轴三反光学系统焦面位置,反向追迹光线,可以得到光纤阵列上各元激光经光学系统后的高斯光束发散角大小和相邻元之间的角度关系.文中的设计实例实现了51元激光,每一元以20μrad的较小发散角出射,实例表明,该发射系统能实现多元激光微弧度量级的发散角出射,在目标面上形成间隔均匀、圆对称性良好的足印光斑.该发射系统在设计的发射总视场内,理论上不存在波束数的限制,这是区别于其他发射系统的另一优势.%A novel emitting system of fiber-array 3D laser imaging using off-axis three-mirror system was proposed. High-power laser was split to certain number of beams by fiber splitting and output with fiber-array. The off-axis three-mirror was designed as normal telescope system, and its focus length was the divergence angle divided by the core diameter of the fiber, while the F number in image space was determined by the Numerical Aperture (NA) of the fiber. The total field of view was the focus length divided by the length of the fiber-array. The fiber-array was set on the focus plane of the off-axis three-mirror system, and rays were traced in the opposite way of design. The example system realized divergence angle as 20μrad of 51 fiber beams, and it showed that the divergence angle of every fiber beam satisfied the target value well and the footprint between the neighbouring beams has good uniformity on the target surface. Besides, this emitting system was suitable for any number of laser beams within the total design field of view.

  1. Anomalous thermal dynamics of Bragg gratings inscribed in germanosilicate optical fiber

    OpenAIRE

    Rahman, A.; Madhav, Venu K; B. Srinivasan; S. Asokan

    2009-01-01

    An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to s...

  2. A New Type of Inscribed Copper Plate from Indus Valley (Harappan) Civilisation

    OpenAIRE

    Vasant Shinde; Willis, Rick J

    2014-01-01

    A group of nine Indus Valley copper plates (c. 2600–2000 BC), discovered from private collections in Pakistan, appear to be of an important type not previously described. The plates are significantly larger and more robust than those comprising the corpus of known copper plates or tablets, and most significantly differ in being inscribed with mirrored characters. One of the plates bears 34 characters, which is the longest known single Indus script inscription. Examination of the plates with x...

  3. Experimental Method of Temperature and Strain Discrimination in Polymer Composite Material by Embedded Fiber-Optic Sensors Based on Femtosecond-Inscribed FBGs

    Directory of Open Access Journals (Sweden)

    Victor V. Shishkin

    2016-01-01

    Full Text Available Experimental method of temperature and strain discrimination with fiber Bragg gratings (FBGs sensors embedded in carbon fiber-reinforced plastic is proposed. The method is based on two-fiber technique, when two FBGs inscribed in different fibers with different sensitivities to strain and/or temperature are placed close to each other and act as a single sensing element. The nonlinear polynomial approximation of Bragg wavelength shift as a function of temperature and strain is presented for this method. The FBGs were inscribed with femtosecond laser by point-by-point inscription technique through polymer cladding of the fiber. The comparison of linear and nonlinear approximation accuracies for array of embedded sensors is performed. It is shown that the use of nonlinear approximation gives 1.5–2 times better accuracy. The obtained accuracies of temperature and strain measurements are 2.6–3.8°C and 50–83 με in temperature and strain range of 30–120°C and 0–400 με, respectively.

  4. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  5. 3-D Relativistic MHD Simulations

    Science.gov (United States)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  6. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  7. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  8. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  9. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  10. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  11. INGRID, 3-D Mesh Generator for Program DYNA3D and NIKE3D and FACET and TOPAZ3D

    International Nuclear Information System (INIS)

    1 - Description of program or function: INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D (NESC 9909), NIKE3D (NESC 9725), FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The most important new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition. 2 - Method of solution: Geometries are described primarily using the index space notation of the INGEN program (NESC 975) with an additional type of notation, index progression. Index progressions provide a concise and simple method for describing complex structures; the concept was developed to facilitate defining multiple regions in index space. Rather than specifying the minimum and maximum indices for a region, one specifies the progression of indices along the I, J and K directions, respectively. The index progression method allows the analyst to describe most geometries including nodes and elements with roughly the same amount of input as a solids modeler

  12. 3D RoboMET Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Madison, Jonathan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Susan, Donald F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kilgo, Alice C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The goal of this project is to generate 3D microstructural data by destructive and non-destructive means and provide accompanying characterization and quantitative analysis of such data. This work is a continuing part of a larger effort to relate material performance variability to microstructural variability. That larger effort is called “Predicting Performance Margins” or PPM. In conjunction with that overarching initiative, the RoboMET.3D™ is a specific asset of Center 1800 and is an automated serialsectioning system for destructive analysis of microstructure, which is called upon to provide direct customer support to 1800 and non-1800 customers. To that end, data collection, 3d reconstruction and analysis of typical and atypical microstructures have been pursued for the purposes of qualitative and quantitative characterization with a goal toward linking microstructural defects and/or microstructural features with mechanical response. Material systems examined in FY15 include precipitation hardened 17-4 steel, laser-welds of 304L stainless steel, thermal spray coatings of 304L and geological samples of sandstone.

  13. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  14. Visualization of 3D optical lattices

    Science.gov (United States)

    Lee, Hoseong; Clemens, James

    2016-05-01

    We describe the visualization of 3D optical lattices based on Sisyphus cooling implemented with open source software. We plot the adiabatic light shift potentials found by diagonalizing the effective Hamiltonian for the light shift operator. Our program incorporates a variety of atomic ground state configurations with total angular momentum ranging from j = 1 / 2 to j = 4 and a variety of laser beam configurations including the two-beam lin ⊥ lin configuration, the four-beam umbrella configuration, and four beams propagating in two orthogonal planes. In addition to visualizing the lattice the program also evaluates lattice parameters such as the oscillation frequency for atoms trapped deep in the wells. The program is intended to help guide experimental implementations of optical lattices.

  15. Development of 3D holographic endoscope

    Science.gov (United States)

    Özcan, Meriç; Önal Tayyar, Duygu

    2016-03-01

    Here we present the development of a 3D holographic endoscope with an interferometer built around a commercial rigid endoscope. We consider recording the holograms with coherent and incoherent light separately without compromising the white light imaging capacity of the endoscope. In coherent light based recording, reference wave required for the hologram is obtained in two different ways. First, as in the classical holography, splitting the laser beam before the object illumination, and secondly creating the reference beam from the object beam itself. This second method does not require path-length matching between the object wave and the reference wave, and it allows the usage of short coherence length light sources. For incoherent light based holographic recordings various interferometric configurations are considered. Experimental results on both illumination conditions are presented.

  16. Tehokas 3D-animaatiotuotanto

    OpenAIRE

    Järvinen, Manu

    2009-01-01

    Opinnäytetyössä tutkittiin tehokasta tapaa toteuttaa minuutin mittainen animaatio Scene.org Awards -tapahtuman avajaisseremoniaan. Kyseinen video toteutettiin osana opinnäytetyötä. Työhön osallistui tekijän lisäksi 3D-mallintaja sekä muusikko. Työkaluina käytettiin pääasiassa Autodesk 3ds Max-, sekä Adobe After Effects- ja Adobe Photoshop -ohjelmia. Opinnäytetyö koostuu animaatioprojektin tuotantoputken ja tiedostonhallintamallin perinpohjaisesta läpikäymisestä sekä sen asian tutkimisesta...

  17. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  18. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  19. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  20. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.