The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
3D unstructured mesh discontinuous finite element hydro
Energy Technology Data Exchange (ETDEWEB)
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J. [Lawrence Livermore National Lab., CA (United States)
1995-07-01
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.
3D Finite Element Analysis of Particle-Reinforced Aluminum
Shen, H.; Lissenden, C. J.
2002-01-01
Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.
Beam and Truss Finite Element Verification for DYNA3D
Energy Technology Data Exchange (ETDEWEB)
Rathbun, H J
2007-07-16
The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.
3D finite element model for treatment of cleft lip
Jiao, Chun; Hong, Dongming; Lu, Hongbing; Wang, Jianqi; Lin, Qin; Liang, Zhengrong
2009-02-01
Cleft lip is a congenital facial deformity with high occurrence rate in China. Surgical procedure involving Millard or Tennison methods is usually employed for treatment of cleft lip. However, due to the elasticity of the soft tissues and the mechanical interaction between skin and maxillary, the occurrence rate of facial abnormality or dehisce is still high after the surgery, leading to multiple operations of the patient. In this study, a framework of constructing a realistic 3D finite element model (FEM) for the treatment of cleft lip has been established. It consists of two major steps. The first one is the reconstruction of a 3D geometrical model of the cleft lip from scanning CT data. The second step is the build-up of a FEM for cleft lip using the geometric model, where the material property of all the tetrahedrons was calculated from the CT densities directly using an empirical curve. The simulation results demonstrated (1) the deformation procedure of the model step-by-step when forces were applied, (2) the stress distribution inside the model, and (3) the displacement of all elements in the model. With the computer simulation, the minimal force of having the cleft be repaired is predicted, as well as whether a given force sufficient for the treatment of a specific individual. It indicates that the proposed framework could integrate the treatment planning with stress analysis based on a realistic patient model.
3D GEOMETRIC MODELING AND FINITE ELEMENT ANALYSIS OF “TURBO-COOLER” SUBASSEMBLY
Directory of Open Access Journals (Sweden)
EFTIMIE Dorin
2013-06-01
Full Text Available 3D design of turbo-cooler subassembly can be optimized by using finite element analysis software NX 7.5. Finite element analysis results are useful for 3D design of this unit. Results can be easily implemented in 3D design in order to optain optimal virtual model that meets the requirements imposed.
A 3D Finite Element evaluation of the exophthalmia reduction
Luboz, V; Boutault, F; Swider, P; Payan, Y; Luboz, Vincent; Pedrono, Annaig; Boutault, Franck; Swider, Pascal; Payan, Yohan
2003-01-01
This paper presents a first evaluation of the feasibility of Finite Element modelling of the orbital decompression, in the context of exophthalmia. First simulations are carried out with data extracted from a patient TDM exam. Results seem to qualitatively validate the feasibility of the simulations, with a Finite Element analysis that converges and provides a backward movement of the ocular globe associated with displacements of the fat tissues through the sinuses. This FE model can help a surgeon for the planning of the exophthalmia reduction, and especially for the position and the size of the decompression hole. To get an estimation of the fat tissues volume affected by the surgery, an analytical model seems to provide quicker results for an equivalent efficiency.
Beam section stiffness properties usig 3D finite elements
DEFF Research Database (Denmark)
Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker
2013-01-01
The cross-section properties of a beam is characterized by a six by six stiffness matrix, relating the six generalized strains to the conjugate section forces. The problem is formulated as a single-layer finite element model of a slice of the beam, on which the six deformation modes are imposed via...... Lagrange multipliers. The Lagrange multipliers represent the constraining forces, and thus combine to form the cross-section stiffness matrix. The theory is illustrated by a simple isotropic cross-section....
Institute of Scientific and Technical Information of China (English)
ZHANG Xiang-wei; TAKEUCHI Kuniyoshi; CHEN Jing
2007-01-01
In this article, the finite element solution of quasi-three-dimensional (quasi-3-D) groundwater flow was mathematically analyzed. The research shows that the spurious oscillation solution to the Finite Element Model (FEM) is the results choosing the small time step or the large element size L and using the non-diagonal storage matrix. The mechanism for this phenomenon is explained by the negative weighting factor of implicit part in the discretized equations. To avoid spurious oscillation solution, the criteria on the selection of and L for quasi-3-D groundwater flow simulations were identified. An application example of quasi-3-D groundwater flow simulation was presented to verify the criteria. The results indicate that temporal discretization scale has significant impact on the spurious oscillations in the finite-element solutions, and the spurious oscillations can be avoided in solving practical quasi-3-D groundwater flow problems if the criteria are satisfied.
General beam cross-section analysis using a 3D finite element slice
DEFF Research Database (Denmark)
Couturier, Philippe; Krenk, Steen
2014-01-01
A formulation for analysis of general cross-section properties has been developed. This formulation is based on the stress-strain states in the classic six equilibrium modes of a beam by considering a finite thickness slice modelled by a single layer of 3D finite elements. The displacement...... an analytical solution is available. The paper also shows an application to wind turbine blade cross-sections and discusses the effect of the finite element discretization on the cross-section properties such as stiffness parameters and the location of the elastic and shear centers....
Investigation of a Hybrid Winding Concept for Toroidal Inductors using 3D Finite Element Modeling
DEFF Research Database (Denmark)
Schneider, Henrik; Andersen, Thomas; Mønster, Jakob Døllner;
2013-01-01
This paper investigates a hybrid winding concept for a toroidal inductor by simulating the winding resistance as a function of frequency. The problem of predicting the resistance of a non-uniform and complex winding shape is solved using 3D Finite Element Modeling. A prototype is built and tested...
A detailed 3D finite element analysis of the peeling behaviour of a gecko spatula
Sauer, R.A.; Holl, M.
2013-01-01
This paper presents a detailed finite element analysis of the adhesion of a gecko spatula. The gecko spatulae form the tips of the gecko foot hairs that transfer the adhesional and frictional forces between substrate and foot. The analysis is based on a parameterised description of the 3D geometry o
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex geo
A Comparison of Continuous Mass-lumped Finite Elements and Finite Differences for 3D
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2012-01-01
The finite-difference method is widely used for time-domain modelling of the wave equation because of its ease of implementation of high-order spatial discretization schemes, parallelization and computational efficiency. However, finite elements on tetrahedral meshes are more accurate in complex
Institute of Scientific and Technical Information of China (English)
Qijin Huang; Guoquan Liu; Yong Li; Jin Gao; Zhengqiu Gu; Yuanzheng Ma; Haibin Xue
2004-01-01
Pilot biomechanical design of biomaterials for artificial nucleus prosthesis was carried out based on the 3D finite-element method. Two 3D models of lumbar intervertebral disc respectively with a real human nucleus and with the nucleus removed were developed and validated using published experimental and clinical data. Then the models with a stainless steel nucleus prosthesis implanted and with polymer nucleus prostheses of various properties implanted were used for the 3D finite-element biomechanical analysis. All the above simulation and analysis were carried out for the L4/L5 disc under a human worst-daily compression load of 2000 N. The results show that the polymer materials with Young's modulus of elasticity E = 0.1-100 MPa and Poisson's ratio v=0.35-0.5 are suitable to produce artificial nucleus prosthesis in view of biomechanical consideration.
Finite element analysis of 3D elastic-plastic frictional contact problem for Cosserat materials
Zhang, S.; Xie, Z. Q.; Chen, B. S.; Zhang, H. W.
2013-06-01
The objective of this paper is to develop a finite element model for 3D elastic-plastic frictional contact problem of Cosserat materials. Because 3D elastic-plastic frictional contact problems belong to the unspecified boundary problems with nonlinearities in both material and geometric forms, a large number of calculations are needed to obtain numerical results with high accuracy. Based on the parametric variational principle and the corresponding quadratic programming method for numerical simulation of frictional contact problems, a finite element model is developed for 3D elastic-plastic frictional contact analysis of Cosserat materials. The problems are finally reduced to linear complementarity problems (LCP). Numerical examples show the feasibility and importance of the developed model for analyzing the contact problems of structures with materials which have micro-polar characteristics.
Mathematical Description and Finite Element Equation of 3D Coupled Thermo-elastic Contact Problem
Institute of Scientific and Technical Information of China (English)
Shi Yu; Xiao Yougang; Chen Guoxin
2006-01-01
Through defining slide yield function and floating potential function of thermo-contact surface, the complementary equation of thermo-contact boundary has been reached, the fundamental equations to solve 3D thermo-contact coupled problem have been listed. On this foundation, the finite element equation and definite solution condition of contact heat transfer have been given out. Based on virtual work principle and contact element technology, the finite element equation of 3D elastic contact system has been deduced under the effect of thermal stress. The pseudo load brought by contact gap have been introduced into this equation in order to reflect the contact state change. During iteration, once contact rigidity matrix is formed, it won't change,which will make calculation reduce greatly.
A finite element analysis of a 3D auxetic textile structure for composite reinforcement
Ge, Zhaoyang; Hu, Hong; Liu, Yanping
2013-08-01
This paper reports the finite element analysis of an innovative 3D auxetic textile structure consisting of three yarn systems (weft, warp and stitch yarns). Different from conventional 3D textile structures, the proposed structure exhibits an auxetic behaviour under compression and can be used as a reinforcement to manufacture auxetic composites. The geometry of the structure is first described. Then a 3D finite element model is established using ANSYS software and validated by the experimental results. The deformation process of the structure at different compression strains is demonstrated, and the validated finite element model is finally used to simulate the auxetic behaviour of the structure with different structural parameters and yarn properties. The results show that the auxetic behaviour of the proposed structure increases with increasing compression strain, and all the structural parameters and yarn properties have significant effects on the auxetic behaviour of the structure. It is expected that the study could provide a better understanding of 3D auxetic textile structures and could promote their application in auxetic composites.
Institute of Scientific and Technical Information of China (English)
ZHONG Denghua; TONG Dawei
2009-01-01
Applying stiffness migration method, a 3D finite element mechanical model is established to simulate the excavation and advance processes. By using 3D nonlinear finite element method, the tunnel boring machine (TBM) excavation process is dynamically simulated to analyze the stress and strain field status of surrounding rock and segment. The maximum tensile stress of segment ring caused by tunnel construction mainly lies in arch bottom and presents zonal distribution. The stress increases slightly and limitedly in the course of excavation. The maxi-mum and minimum displacements of segment, manifesting as zonal distribution, distribute in arch bottom and vault respectively. The displacements slightly increase with the advance of TBM and gradually tend to stability.
2D-3D hybrid stabilized finite element method for tsunami runup simulations
Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.
2016-09-01
This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.
hp-finite element method for simulating light scattering from complex 3D structures
Burger, S; Pomplun, J; Herrmann, S; Schmidt, F
2015-01-01
Methods for solving Maxwell's equations are integral part of optical metrology and computational lithography setups. Applications require accurate geometrical resolution, high numerical accuracy and/or low computation times. We present a finite-element based electromagnetic field solver relying on unstructured 3D meshes and adaptive hp-refinement. We apply the method for simulating light scattering off arrays of high aspect-ratio nano-posts and FinFETs.
Comparison between 2D and 3D Modelling of Induction Machine Using Finite Element Method
Directory of Open Access Journals (Sweden)
Zelmira Ferkova
2015-01-01
Full Text Available The paper compares two different ways (2D and 3D of modelling of two-phase squirrel-cage induction machine using the finite element method (FEM. It focuses mainly on differences between starting characteristics given from both types of the model. It also discusses influence of skew rotor slots on harmonic content in air gap flux density and summarizes some issues of both approaches.
3-D Finite Element Analysis of Induction Logging in a Dipping Formation
Energy Technology Data Exchange (ETDEWEB)
EVERETT,MARK E.; BADEA,EUGENE A.; SHEN,LIANG C.; MERCHANT,GULAMABBAS A.; WEISS,CHESTER J.
2000-07-20
Electromagnetic induction by a magnetic dipole located above a dipping interface is of relevance to the petroleum well-logging industry. The problem is fully three-dimensional (3-D) when formulated as above, but reduces to an analytically tractable one-dimensional (1-D) problem when cast as a small tilted coil above a horizontal interface. The two problems are related by a simple coordinate rotation. An examination of the induced eddy currents and the electric charge accumulation at the interface help to explain the inductive and polarization effects commonly observed in induction logs from dipping geological formations. The equivalence between the 1-D and 3-D formulations of the problem enables the validation of a previously published finite element solver for 3-D controlled-source electromagnetic induction.
3D finite element analysis of porous Ti-based alloy prostheses.
Mircheski, Ile; Gradišar, Marko
2016-11-01
In this paper, novel designs of porous acetabular cups are created and tested with 3D finite element analysis (FEA). The aim is to develop a porous acetabular cup with low effective radial stiffness of the structure, which will be near to the architectural and mechanical behavior of the natural bone. For the realization of this research, a 3D-scanner technology was used for obtaining a 3D-CAD model of the pelvis bone, a 3D-CAD software for creating a porous acetabular cup, and a 3D-FEA software for virtual testing of a novel design of the porous acetabular cup. The results obtained from this research reveal that a porous acetabular cup from Ti-based alloys with 60 ± 5% porosity has the mechanical behavior and effective radial stiffness (Young's modulus in radial direction) that meet and exceed the required properties of the natural bone. The virtual testing with 3D-FEA of a novel design with porous structure during the very early stage of the design and the development of orthopedic implants, enables obtaining a new or improved biomedical implant for a relatively short time and reduced price.
Modeling and validation of a 3D premolar for finite element analysis
Directory of Open Access Journals (Sweden)
Letícia Brandão DURAND
Full Text Available Abstract Introduction The development and validation of mathematical models is an important step of the methodology of finite element studies. Objective This study aims to describe the development and validation of a three-dimensional numerical model of a maxillary premolar for finite element analysis. Material and method The 3D model was based on standardized photographs of sequential slices of an intact premolar and generated with the use of SolidWorks Software (Dassault, France. In order to validate the model, compression and numerical tests were performed. The load versus displacement graphs of both tests were visually compared, the percentage of error calculated and homogeneity of regression coefficients tested. Result An accurate 3D model was developed and validated since the graphs were visually similar, the percentage error was within acceptable limits, and the straight lines were considered parallel. Conclusion The modeling procedures and validation described allows the development of accurate 3D dental models with biomechanical behavior similar to natural teeth. The methods may be applied in development and validation of new models and computer-aided simulations using FEM.
Wang, Dafang; Kirby, Robert M; Johnson, Chris R
2011-06-01
We consider the inverse electrocardiographic problem of computing epicardial potentials from a body-surface potential map. We study how to improve numerical approximation of the inverse problem when the finite-element method is used. Being ill-posed, the inverse problem requires different discretization strategies from its corresponding forward problem. We propose refinement guidelines that specifically address the ill-posedness of the problem. The resulting guidelines necessitate the use of hybrid finite elements composed of tetrahedra and prism elements. Also, in order to maintain consistent numerical quality when the inverse problem is discretized into different scales, we propose a new family of regularizers using the variational principle underlying finite-element methods. These variational-formed regularizers serve as an alternative to the traditional Tikhonov regularizers, but preserves the L(2) norm and thereby achieves consistent regularization in multiscale simulations. The variational formulation also enables a simple construction of the discrete gradient operator over irregular meshes, which is difficult to define in traditional discretization schemes. We validated our hybrid element technique and the variational regularizers by simulations on a realistic 3-D torso/heart model with empirical heart data. Results show that discretization based on our proposed strategies mitigates the ill-conditioning and improves the inverse solution, and that the variational formulation may benefit a broader range of potential-based bioelectric problems.
DEFF Research Database (Denmark)
Davoudinejad, Ali; Tosello, Guido
2017-01-01
Drilling is an indispensable process for many manufacturing industries due to its importance for assembling components. This study presents a 3D finite element modelling (3D FEM) approach for drilling process of aluminium 2024-T3. The 3D model of drilling tools for two facet HSSCo and four facet...
DEFF Research Database (Denmark)
Davoudinejad, Ali; Tosello, Guido
Drilling is an indispensable process for many manufacturing industries due to the importance of the process for assembling components. This study presents a 3D finite element modeling (3D FEM) approach for drilling process of aluminum 2024-T3. The 3D model of tool for two facet HSSCo and four facet...
Energy Technology Data Exchange (ETDEWEB)
Aristovich, K Y; Khan, S H, E-mail: kirill.aristovich.1@city.ac.u [School of Engineering and Mathematical Sciences, City University London, Northampton Square, London EC1V 0HB (United Kingdom)
2010-07-01
Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.
The mesh-matching algorithm: an automatic 3D mesh generator for Finite element structures
Couteau, B; Lavallee, S; Payan, Yohan; Lavallee, St\\'{e}phane
2000-01-01
Several authors have employed Finite Element Analysis (FEA) for stress and strain analysis in orthopaedic biomechanics. Unfortunately, the use of three-dimensional models is time consuming and consequently the number of analysis to be performed is limited. The authors have investigated a new method allowing automatically 3D mesh generation for structures as complex as bone for example. This method called Mesh-Matching (M-M) algorithm generated automatically customized 3D meshes of bones from an already existing model. The M-M algorithm has been used to generate FE models of ten proximal human femora from an initial one which had been experimentally validated. The new meshes seemed to demonstrate satisfying results.
A least-squares finite element method for 3D incompressible Navier-Stokes equations
Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.
1993-01-01
The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.
Finite element 3D modeling of mechanical behavior of mineralized collagen microfibrils
Barkaoui, Abdelwahed
2011-01-01
The aim of this work is to develop a 3D finite elements model to study the nanomechanical behaviour of mineralized collagen microfibrils, which consists of three phases, (i) collagen phase formed by five tropocollagen (TC) molecules linked together with cross links, (ii) a mineral phase (Hydroxyapatite) and (iii) impure mineral phase, and to investigate the important role of individual properties of every constituent. The mechanical and the geometrical properties (TC molecule diameter) of both tropocollagen and mineral were taken into consideration as well as cross-links, which was represented by spring elements with adjusted properties based on experimental data. In the present paper an equivalent homogenised model was developed to assess the whole microfibril mechanical properties (Young's modulus and Poisson's ratio) under varying mechanical properties of each phase. In this study both equivalent Young's modulus and Poisson's ratio which were expressed as functions of Young's modulus of each phase were obt...
3D Finite element analysis of functionally graded multilayered dental ceramic cores.
Al-Maqtari, Ali Abdullah; Razak, Abdul Aziz Abdul; Hamdi, Mohd
2014-01-01
This study aimed at investigating and establishing stress distributions in graded multilayered zirconia/alumina ceramic cores and at veneer-core-cement-dentin interfaces, using finite element analysis (FEA), to facilitate the structural design of ceramic cores through computer modeling. An intact maxillary premolar was digitized using CT scanning. An imaging software, Mimics, was used to reconstruct 3D models based on computed tomography (CT) data saved in DICOM format. Eight different 3D models were created for FEA, where each 3D model was meshed and its bottom boundaries constrained. A static load was applied in the oblique direction. The materials were assumed to be isotropic and homogeneous. Highest von Mises stress values were found in areas directly below the load application point, and stress gradually decreased in occlusal loading direction from the external surface toward the dentin. Stress levels occurring at veneer-ceramic core-cement-dentin interfaces were shown to be lower in multilayered ceramic cores than in single-layer models.
3D finite element models of shoulder muscles for computing lines of actions and moment arms.
Webb, Joshua D; Blemker, Silvia S; Delp, Scott L
2014-01-01
Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle-muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including the effects of large attachment regions and 3D mechanical interactions of muscle fibres constrains muscle motion, generates more realistic muscle paths and allows deeper analysis of shoulder muscle function.
A 3D moving mesh Finite Element Method for two-phase flows
Anjos, G. R.; Borhani, N.; Mangiavacchi, N.; Thome, J. R.
2014-08-01
A 3D ALE Finite Element Method is developed to study two-phase flow phenomena using a new discretization method to compute the surface tension forces. The computational method is based on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element Method (FEM), creating a two-phase method with an improved model for the liquid-gas interface. An adaptive mesh update procedure is also proposed for effective management of the mesh to remove, add and repair elements, since the computational mesh nodes move according to the flow. The ALE description explicitly defines the two-phase interface position by a set of interconnected nodes which ensures a sharp representation of the boundary, including the role of the surface tension. The proposed methodology for computing the curvature leads to accurate results with moderate programming effort and computational cost. Static and dynamic tests have been carried out to validate the method and the results have compared well to analytical solutions and experimental results found in the literature, demonstrating that the new proposed methodology provides good accuracy to describe the interfacial forces and bubble dynamics. This paper focuses on the description of the proposed methodology, with particular emphasis on the discretization of the surface tension force, the new remeshing technique, and the validation results. Additionally, a microchannel simulation in complex geometry is presented for two elongated bubbles.
Applications of 3D finite element modeling to the study of ventricular physiology
Moulton, Michael J.; Creswell, Lawrence L.; Hu, Ning S.; Actis, Ricardo L.; Myers, Kent W.; Szabo, Barna A.; Pasque, Michael K.
1995-05-01
A 3D, nonlinear finite element (FE) model of the diastolic canine heart was constructed from multislice magnetic resonance images (MRI). The model was solved using the p-version of the FE method to predict stress and deformation in diastole. Finite element models were employed in an 'inverse' problem to estimate the nonlinear material properties of intact diastolic myocardium. Additionally, FE models were employed to examine the effects of RV pressure overload on LV pressure-volume (P- V) relationships in the pathologic heart. A 3D, nonlinear FE model had 1,704 degrees of freedom and 8 elements, it had a maximum principal stress value of 429,127 dynes/cm2 and a minimum principal stress of -344,599 dynes/cm2 at p equals 6. Average nonlinear material parameters estimated for 6 dogs were E equals 28,722 +/- 15,984 dynes/cm2 and c equals 0.00182 +/- 0.00232 cm2/dyne. Examination of the effects of RV pressure increase on LV P-V relationships indicated substantially different effects of RV pressure overload on the different pathologic conditions (p < 0.005 by ANOVA) with increasing RV pressure having a more pronounced effect on the dilated heart than the hypertrophied heart. When the mechanical effects of the pericardium were included in the model, at higher RV pressures, all of the pressure-volume (P-V) curves became similar indicating that at higher RV pressures, the P-V curves were independent of ventricular shape and material properties and depended only on the RV pressure. In conclusion, FE models of the heart were constructed from MRI images of the heart and were employed to study diastolic ventricular function in the normal and pathologic heart.
3D finite element simulation of explosive welding of three-layer plates
Sui, GuoFa; Li, JinShan; Sun, Feng; Ma, Bei; Li, HongWei
2011-05-01
A 3D finite element model of the explosive welding process of three-layer plates with materials of steel-copper-copper is established. Based on the presented model, the bonding mechanism is simulated and analyzed, different detonation modes are also comparatively studied to indicate the driving force spread in few microseconds. The results show that the three layer plates bond together after many times of impact between the flyers and the base driven by detonation wave, which is damping rapidly at each impact with wavelength decreasing. The pressure at the detonation point is minimal, which induces non-bonding of the plates here. Detonation wave propagates in concentric circle both under side-midpoint detonation mode and under center-point detonation mode, but the movement of the flyer is different, which makes non-bonding easily occur at the end of detonation under side-midpoint detonation and at the center of the plate under center-point detonation.
Directory of Open Access Journals (Sweden)
P. Raval
2014-02-01
Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.
ANALYSIS OF SLAB EDGING BY A 3-D RIGID VISCO-PLASTIC FINITE ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
3-D rigid visco-plastic finite element method (FEM) is used in the analysis of metal forming processes, including strip and plate rolling, shape rolling, slab edging, special strip rolling. The shifted incomplete Cholesky decomposition of the stiffness matrix with the solution of the equations for velocity increment by the conjugate gradient method is combined. This technique, termed the shifted ICCG method, is then employed to solve the slab edging problem. The performance of this algorithm in terms of the number of iterations, friction variation, shifted parameter ( and the results of simulation for processing parameters are analysed. Numerical tests and application of this technique verify the efficiency and stability of the shifted ICCG method in the analysis of slab edging.
Hu, Shengsun; Guo, Chaobo; Wang, Dongpo; Wang, Zhijiang
2016-09-01
The nonuniform distributions of the residual stress were simulated by a 3D finite element model to analyze the elastic-plastic dynamic ultrasonic impact treatment (UIT) process of multiple impacts on the 2024 aluminum alloy. The evolution of the stress during the impact process was discussed. The successive impacts during the UIT process improve the uniformity of the plastic deformation and decrease the maximum compressive residual stress beneath the former impact indentations. The influences of different controlled parameters, including the initial impact velocity, pin diameter, pin tip, device moving, and offset distances, on the residual stress distributions were analyzed. The influences of the controlled parameters on the residual stress distributions are apparent in the offset direction due to the different surface coverage in different directions. The influences can be used to understand the UIT process and to obtain the desired residual stress by optimizing the controlled parameters.
3D Finite Element Analysis of HMA Overlay Mix Design to Control Reflective Cracking
Ghauch, Ziad G
2011-01-01
One of the most common rehabilitation techniques of deteriorated pavements is the placement of an HMA overlay on top of the existing Asphalt Concrete (AC) or Portland Cement Concrete (PCC) pavement. However, shortly after pavement resurfacing, HMA overlays exhibit a cracking pattern similar to that of the underlying pavement. This phenomenon is known as reflective cracking. This study examines the effectiveness of several HMA overlay mix design strategies for the purpose of controlling the development of reflective cracking. A parametric study was conducted using a 3D Finite Element (FE) model of a rigid pavement section including a Linear Viscoelastic (LVE) model for Hot Mix Asphalt (HMA) materials and non-uniform tire-pavement contact stresses. Results obtained show that for the intermediate and surface courses, using a Dense Graded (DG) or Polymer Modified (PM) asphalt mixture instead of a Standard Binder (SB) mixture results in reduced tensile stresses at the bottom of the HMA overlay but higher levels of...
Directory of Open Access Journals (Sweden)
Allahyar Geramy
2015-10-01
Full Text Available Objectives: Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treat- ment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of uni- lateral expanded outer bow asymmetric headgears by the finite element method (FEM.Materials and Methods: Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs, cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The mod- els were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2-Newton force. The distal driving force and the net moment were evaluated.Results: A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown.Conclusion: Unilateral outer bow expansion can produce different distalizing forces in mo- lars, which increase by increasing the expansion.
3D Finite Element Analysis of a Man Hip Joint Femur under Impact Loads
Institute of Scientific and Technical Information of China (English)
YU Xue-zhong; GUO Yi-mu; LI Jun; ZHANG Yun-qiu; HE Rong-xin
2007-01-01
The biomechanical characters of the bone fracture of the man femoral hip joint under impact loads are explored. Methods: A biosystem model of the man femoral hip joint by using the GE ( General Electric) lightspeed multi-lay spiral CT is conducted. A 3D finite element model is established by employing the finite element software ANSYS. The FE analysis mainly concentrates on the effects of the impact directions arising from intense movements and the parenchyma on the femoral hip joint on the stress distributions of the proximal femur. Results:The parenchyma on the hip joint has relatively large relaxation effect on the impact loads. Conclusion:Effects of the angle δ of the impact load to the anterior direction and the angle γ of the impact load to the femur shaft on the bone fracture are given;δ has larger effect on the stress and strain distributions than the angle γ, which mainly represents the fracture of the upper femur including the femoral neck fracture when the posterolateral femur is impacted, consistent with the clinical results.
Energy Technology Data Exchange (ETDEWEB)
Kolotilina, L.; Nikishin, A.; Yeremin, A. [and others
1994-12-31
The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.
Geramy, Allahyar; Mortezai, Omid; Esmaily, Masomeh; Darvishpour, Hojat
2015-04-01
Headgears are among the effective orthodontic appliances to achieve treatment goals. Unilateral molar distal movement is sometimes needed during an orthodontic treatment, which can be achieved by an asymmetric headgear. Different unilateral headgears have been introduced. The main goal of this study was to analyze the force system of unilateral expanded outer bow asymmetric headgears by the finite element method (FEM). Six 3D finite element models of a mesiodistal slice of the maxilla containing upper first molars, their periodontal ligaments (PDLs), cancellous bone, cortical bone, and a cervical headgear with expanded outer bow attached to maxillary first molars were designed in SolidWorks 2010 and meshed in ANSYS Workbench ver. 12.1. The models were the same except for the degree of outer bow expansion. The outer bow ends were loaded with 2 N force. The distal driving force and the net moment were evaluated. A decrease in the distalizing force in the normal side molar from 1.69 N to 1.37 N was shown by increasing the degree of unilateral expansion. At the same time, the force increased from 2.19 N to 2.49 N in the expanded side molar. A net moment increasing from 2.26 N.mm to 4.64 N.mm was also shown. Unilateral outer bow expansion can produce different distalizing forces in molars, which increase by increasing the expansion.
3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.
Guiotto, Annamaria; Sawacha, Zimi; Guarneri, Gabriella; Avogaro, Angelo; Cobelli, Claudio
2014-09-22
Diabetic foot is an invalidating complication of diabetes that can lead to foot ulcers. Three-dimensional (3D) finite element analysis (FEA) allows characterizing the loads developed in the different anatomical structures of the foot in dynamic conditions. The aim of this study was to develop a subject specific 3D foot FE model (FEM) of a diabetic neuropathic (DNS) and a healthy (HS) subject, whose subject specificity can be found in term of foot geometry and boundary conditions. Kinematics, kinetics and plantar pressure (PP) data were extracted from the gait analysis trials of the two subjects with this purpose. The FEM were developed segmenting bones, cartilage and skin from MRI and drawing a horizontal plate as ground support. Materials properties were adopted from previous literature. FE simulations were run with the kinematics and kinetics data of four different phases of the stance phase of gait (heel strike, loading response, midstance and push off). FEMs were then driven by group gait data of 10 neuropathic and 10 healthy subjects. Model validation focused on agreement between FEM-simulated and experimental PP. The peak values and the total distribution of the pressures were compared for this purpose. Results showed that the models were less robust when driven from group data and underestimated the PP in each foot subarea. In particular in the case of the neuropathic subject's model the mean errors between experimental and simulated data were around the 20% of the peak values. This knowledge is crucial in understanding the aetiology of diabetic foot.
3D finite element model of the chinchilla ear for characterizing middle ear functions.
Wang, Xuelin; Gan, Rong Z
2016-10-01
Chinchilla is a commonly used animal model for research of sound transmission through the ear. Experimental measurements of the middle ear transfer function in chinchillas have shown that the middle ear cavity greatly affects the tympanic membrane (TM) and stapes footplate (FP) displacements. However, there is no finite element (FE) model of the chinchilla ear available in the literature to characterize the middle ear functions with the anatomical features of the chinchilla ear. This paper reports a recently completed 3D FE model of the chinchilla ear based on X-ray micro-computed tomography images of a chinchilla bulla. The model consisted of the ear canal, TM, middle ear ossicles and suspensory ligaments, and the middle ear cavity. Two boundary conditions of the middle ear cavity wall were simulated in the model as the rigid structure and the partially flexible surface, and the acoustic-mechanical coupled analysis was conducted with these two conditions to characterize the middle ear function. The model results were compared with experimental measurements reported in the literature including the TM and FP displacements and the middle ear input admittance in chinchilla ear. An application of this model was presented to identify the acoustic role of the middle ear septa-a unique feature of chinchilla middle ear cavity. This study provides the first 3D FE model of the chinchilla ear for characterizing the middle ear functions through the acoustic-mechanical coupled FE analysis.
3D Finite Element Analysis of PWA-Oil Sand Terrain System Interaction
Directory of Open Access Journals (Sweden)
Y. Li
2012-01-01
Full Text Available A simulator for analyzing the interaction between the oil sand terrain and a pipe wagon articulating (PWA system has been developed in this paper. An elastic-plastic oil sand model was built based on the finite element analysis (FEA method and von Mises yield criterion using the Algor mechanical event simulation (MES software. The three-dimensional (3D distribution of the stress, strain, nodal displacement, and deformed shape of the oil sands was animated at an environmental temperature of 25°C. The 3D behavior of the oil sand terrain was investigated with different loading conditions. The effect of the load and contact area on the stress and nodal displacement was analyzed, respectively. The results indicate that both the max stress and max nodal displacement increase with the load varying from 0 to 3.6+7 N and decrease with the contact area varying from 2 to 10 m2. The method presented in this paper forms the basis for evaluating the bearing capacity of oil sand ground.
A NURBS-based generalized finite element scheme for 3D simulation of heterogeneous materials
Safdari, Masoud; Najafi, Ahmad R.; Sottos, Nancy R.; Geubelle, Philippe H.
2016-08-01
A 3D NURBS-based interface-enriched generalized finite element method (NIGFEM) is introduced to solve problems with complex discontinuous gradient fields observed in the analysis of heterogeneous materials. The method utilizes simple structured meshes of hexahedral elements that do not necessarily conform to the material interfaces in heterogeneous materials. By avoiding the creation of conforming meshes used in conventional FEM, the NIGFEM leads to significant simplification of the mesh generation process. To achieve an accurate solution in elements that are crossed by material interfaces, the NIGFEM utilizes Non-Uniform Rational B-Splines (NURBS) to enrich the solution field locally. The accuracy and convergence of the NIGFEM are tested by solving a benchmark problem. We observe that the NIGFEM preserves an optimal rate of convergence, and provides additional advantages including the accurate capture of the solution fields in the vicinity of material interfaces and the built-in capability for hierarchical mesh refinement. Finally, the use of the NIGFEM in the computational analysis of heterogeneous materials is discussed.
Kees, C. E.; Miller, C. T.; Dimakopoulos, A.; Farthing, M.
2016-12-01
The last decade has seen an expansion in the development and application of 3D free surface flow models in the context of environmental simulation. These models are based primarily on the combination of effective algorithms, namely level set and volume-of-fluid methods, with high-performance, parallel computing. These models are still computationally expensive and suitable primarily when high-fidelity modeling near structures is required. While most research on algorithms and implementations has been conducted in the context of finite volume methods, recent work has extended a class of level set schemes to finite element methods on unstructured methods. This work considers models of three-phase flow in domains containing air, water, and granular phases. These multi-phase continuum mechanical formulations show great promise for applications such as analysis of coastal and riverine structures. This work will consider formulations proposed in the literature over the last decade as well as new formulations derived using the thermodynamically constrained averaging theory, an approach to deriving and closing macroscale continuum models for multi-phase and multi-component processes. The target applications require the ability to simulate wave breaking and structure over-topping, particularly fully three-dimensional, non-hydrostatic flows that drive these phenomena. A conservative level set scheme suitable for higher-order finite element methods is used to describe the air/water phase interaction. The interaction of these air/water flows with granular materials, such as sand and rubble, must also be modeled. The range of granular media dynamics targeted including flow and wave transmision through the solid media as well as erosion and deposition of granular media and moving bed dynamics. For the granular phase we consider volume- and time-averaged continuum mechanical formulations that are discretized with the finite element method and coupled to the underlying air
3D Rigid-Plastic Finite Element Analysis for Skew Rolling Process of the Stepped Part
Institute of Scientific and Technical Information of China (English)
Gang FANG; Pan ZENG
2003-01-01
Based on rigid-plastic finite element method, a skew rolling process of stepped part is simulated. Considering nodesaving and effective remeshing, the tetrahedron solid elements are used to discrete workpiece. The workpiece material adopts rigid-plastic m
3D viscous time dependent analysis of a slow moving landslide by finite elements
Bru, Guadalupe; Fernández-Merodo, Josè Antonio; García-Davalillo, Juan Carlos; Herrera, Gerardo
2017-04-01
A methodology to study the cinematic behavior in time and 3D effects of slow moving landslides is presented by its application to the Portalet landslide, located in the Spanish Central Pyrenees. The area is characterize by the presence of several complex landslides triggered by glacial retreat and developed in weathered Devonian and Carboniferous slate materials. In summer 2004, the toe of two paleolanslides was excavated in order to construct a parking area, which reactivated the preexistent rupture surfaces and generated a new and smaller roto-translational landslide of about 5·105m3. Works were paralyzed and the road A-136 connecting Spain and France was temporary closed. In 2006 stabilizing solutions were performed, although surface and deep monitoring data reveal that the landslide is currently active. In this work the cinematic behavior of the Portalet parking landslide has been reproduced since the excavation in 2004 until 2016 by an advanced 3D finite element model (FEM) analysis. A detailed 3D litho-stratigraphic geometry has been defined using the information available from previous works(1-3): real topography, geological profiles, ground water level and material properties. The first step has been a stability analysis using the shear stress reduction (SSR) technique to calibrate the value of the friction angle of the soil layer where the rupture surface develops. In this step the sensibility of the mesh size has been studied, as is a critical parameter. Secondly, stability analysis results have been verified by simulating the parking excavation with a static analysis using Mohr-Coulomb elastoplastic failure criteria. In the last step the behavior of the landslide has been recreated using a hydromechanic coupled formulation for displacements and interstitial water pressure (u-pw), a simple elevation ground water model calculated from daily rainfall and a Perzyna viscous constitutive model of the solid skeleton which represent the creep detected by
Development of a 3D finite element model of lens microcirculation
Directory of Open Access Journals (Sweden)
Vaghefi Ehsan
2012-09-01
Full Text Available Abstract Background It has been proposed that in the absence of a blood supply, the ocular lens operates an internal microcirculation system. This system delivers nutrients, removes waste products and maintains ionic homeostasis in the lens. The microcirculation is generated by spatial differences in membrane transport properties; and previously has been modelled by an equivalent electrical circuit and solved analytically. While effective, this approach did not fully account for all the anatomical and functional complexities of the lens. To encapsulate these complexities we have created a 3D finite element computer model of the lens. Methods Initially, we created an anatomically-correct representative mesh of the lens. We then implemented the Stokes and advective Nernst-Plank equations, in order to model the water and ion fluxes respectively. Next we complemented the model with experimentally-measured surface ionic concentrations as boundary conditions and solved it. Results Our model calculated the standing ionic concentrations and electrical potential gradients in the lens. Furthermore, it generated vector maps of intra- and extracellular space ion and water fluxes that are proposed to circulate throughout the lens. These fields have only been measured on the surface of the lens and our calculations are the first 3D representation of their direction and magnitude in the lens. Conclusion Values for steady state standing fields for concentration and electrical potential plus ionic and fluid fluxes calculated by our model exhibited broad agreement with observed experimental values. Our model of lens function represents a platform to integrate new experimental data as they emerge and assist us to understand how the integrated structure and function of the lens contributes to the maintenance of its transparency.
Institute of Scientific and Technical Information of China (English)
韩厚德; 郑春雄
2002-01-01
The mixed finite element method is used to solve the exterior Poisson equations with higher-order local artificial boundary conditions in 3-D space. New unknowns are introduced to reduce the order of the derivatives of the unknown to two. The result is an equivalent mixed variational problem which was solved using bilinear finite elements. The primary advantage is that special finite elements are not needed on the adjacent layer of the artificial boundary for the higher-order derivatives. Error estimates are obtained for some local artificial boundary conditions with prescibed orders. A numerical example demonstrates the effectiveness of this method.
Anterior Teeth Splinting After Orthodontic Treatment: 3D Analysis Using Finite Element Method
Directory of Open Access Journals (Sweden)
A. Geramy
2012-01-01
Full Text Available Objective: Retention after orthodontic treatment is still an important part of the treatment. Splints are considered as an alternative for removable retainers. The main goal of this study was to assess splinting biomechanically.Materials and Methods: Three dimensional finite element models (3D were designed of a mandibular anterior segment which included six anterior teeth with their supporting tissues (model 1 as control and with a bonded lingual fixed retainer in the two other models. The wire cross section was round (0.016” in model 2 and rectangular (0.016” × 0.022” in model 3. The models were designed in Solid Works 2006 and analyzed in ANSYS Workbench Ver. 11.0 SolidWorks Incisors were loaded with a vertical force of 187 N. PDL stress and tooth displacements were evaluated.Results: The numeric findings showed an increase after splinting in the central incisors [2.42 MPa to 4.57 MPa (round and 16.66 (rectangular MPa] in biting with four incisors. Biting with two incisors decreased the stress after splinting [2.42 MPa to 1.7 MPa (round wire and 1.77 MPa (rectangular wire]. In lateral movement, all teeth showed an increased stress except for the working side canine.Conclusion: Splinted cases (with round or rectangular wires can benefit from stress redistribution when biting small food particles and in lateral movement.
Validation of the 3D finite element transport theory code EVENT for shielding applications
Energy Technology Data Exchange (ETDEWEB)
Warner, Paul [Rolls Royce Power Engineering Plc., Derby (United Kingdom); Oliveira, R.E. de [T. H. Huxley School of Environment, Earth Science and Engineering, Imperial College of Science Technology and Medicine, London (United Kingdom)
2000-03-01
This paper is concerned with the validation of the 3D deterministic neutral-particle transport theory code EVENT for shielding applications. The code is based on the finite element-spherical harmonics (FE-P{sub N}) method which has been extensively developed over the last decade. A general multi-group, anisotropic scattering formalism enables the code to address realistic steady state and time dependent, multi-dimensional coupled neutron/gamma radiation transport problems involving high scattering and deep penetration alike. The powerful geometrical flexibility and competitive computational effort makes the code an attractive tool for shielding applications. In recognition of this, EVENT is currently in the process of being adopted by the UK nuclear industry. The theory behind EVENT is described and its numerical implementation is outlined. Numerical results obtained by the code are compared with predictions of the Monte Carlo code MCBEND and also with the results from benchmark shielding experiments. In particular, results are presented for the ASPIS experimental configuration for both neutron and gamma ray calculations using the BUGLE 96 nuclear data library. (author)
Finite element modeling of a 3D coupled foot-boot model.
Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei
2011-12-01
Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military.
Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham Sadat
2015-03-01
This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use.
3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel
Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi
2015-09-01
Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.
3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel
Directory of Open Access Journals (Sweden)
Hayashi Asuka
2015-01-01
Full Text Available Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998. It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.
Sotelo, Julio; Urbina, Jesús; Valverde, Israel; Mura, Joaquín; Tejos, Cristián; Irarrazaval, Pablo; Andia, Marcelo E; Hurtado, Daniel E; Uribe, Sergio
2017-03-31
We propose a 3D finite-element method for the quantification of vorticity and helicity density from 3D cine phase-contrast (PC) MRI. By using a 3D finite-element method, we seamlessly estimate velocity gradients in 3D. The robustness and convergence were analyzed using a combined Poiseuille and Lamb-Ossen equation. A computational fluid dynamics simulation was used to compared our method with others available in the literature. Additionally, we computed 3D maps for different 3D cine PC-MRI data sets: phantom without and with coarctation (18 healthy volunteers and 3 patients). We found a good agreement between our method and both the analytical solution of the combined Poiseuille and Lamb-Ossen. The computational fluid dynamics results showed that our method outperforms current approaches to estimate vorticity and helicity values. In the in silico model, we observed that for a tetrahedral element of 2 mm of characteristic length, we underestimated the vorticity in less than 5% with respect to the analytical solution. In patients, we found higher values of helicity density in comparison to healthy volunteers, associated with vortices in the lumen of the vessels. We proposed a novel method that provides entire 3D vorticity and helicity density maps, avoiding the used of reformatted 2D planes from 3D cine PC-MRI. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis
S. Hosseini; MOGHANI, J. S.; Jensen, B B
2011-01-01
This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A new method is then proposed that reveals the behavior of the generator under any load. Finally, torque calculations are carried out using three dimensional finite element analyses. It is shown that...
Energy Technology Data Exchange (ETDEWEB)
Preece, D.S.; Thorne, B.J.
1996-03-01
The transient dynamics finite element computer program, PRONTO-3D, has been used in conjunction with a damage constitutive model to study the influence of detonation timing on rock fragmentation during blasting. The primary motivation of this study is to investigate the effectiveness of precise detonators in improving fragmentation. PRONTO-3D simulations show that a delay time of 0.0 sec between adjacent blastholes results in significantly more fragmentation than a 0.5 ms delay.
DEFF Research Database (Denmark)
Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen
2011-01-01
This paper presents a new method for computation of the nonlinear flux linkage in 3-D finite-element models (FEMs) of electrical machines. Accurate computation of the nonlinear flux linkage in 3-D FEM is not an easy task. Compared to the existing energy-perturbation method, the new technique......-perturbation method. The new method proposed is validated using experimental results on two different permanent magnet machines....
A feasibility study of a 3-D finite element solution scheme for aeroengine duct acoustics
Abrahamson, A. L.
1980-01-01
The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.
Simulation of 3D tumor cell growth using nonlinear finite element method.
Dong, Shoubing; Yan, Yannan; Tang, Liqun; Meng, Junping; Jiang, Yi
2016-01-01
We propose a novel parallel computing framework for a nonlinear finite element method (FEM)-based cell model and apply it to simulate avascular tumor growth. We derive computation formulas to simplify the simulation and design the basic algorithms. With the increment of the proliferation generations of tumor cells, the FEM elements may become larger and more distorted. Then, we describe a remesh and refinement processing of the distorted or over large finite elements and the parallel implementation based on Message Passing Interface to improve the accuracy and efficiency of the simulation. We demonstrate the feasibility and effectiveness of the FEM model and the parallelization methods in simulations of early tumor growth.
Directory of Open Access Journals (Sweden)
Allahyar Geramy
2015-10-01
Full Text Available Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths.Materials and Methods: Four 3D finite element method (FEM models of a cer- vical headgear attached to the maxillary first molars were designed in SolidWorks2010 software and transferred to ANSYS Workbench ver. 11 software. Modelscontained the first molars, their periodontal ligament (PDL, cancellous and cor- tical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with dif- ferences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was cal- culated trigonometrically using data from a volunteer.Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N and distal (= 1.008 N forces and also generated moments (5.044 N.mm.Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance:A difference range of 1mm to 15 mm of length in cervical headgear can be consi-dered as a safe length of outer bow shortening in clinical use.
Finite element method for accurate 3D simulation of plasmonic waveguides
Burger, S; Pomplun, J; Schmidt, F; 10.1117/12.841995
2010-01-01
Optical properties of hybrid plasmonic waveguides and of low-Q cavities, formed by waveguides of finite length are investigated numerically. These structures are of interest as building-blocks of plasmon lasers. We use a time-harmonic finite-element package including a propagation-mode solver, a resonance-mode solver and a scattering solver for studying various properties of the system. Numerical convergence of all used methods is demonstrated.
3-d finite element model development for biomechanics: a software demonstration
Energy Technology Data Exchange (ETDEWEB)
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.
Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis
DEFF Research Database (Denmark)
Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech
2011-01-01
This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A n...... by combining three single-phase modules into a three-phase generator....
Directory of Open Access Journals (Sweden)
Allahyar Geramy
2014-02-01
Full Text Available Several appliances have been used for palatal expansion for treatment of posterior cross bite. The purpose of this study was to evaluate the stress induced in the apical and crestal alveolar bone and the pattern of tooth displacement following expansion via removable expansion plates or fixed-banded palatal expander using the finite element method (FEM analysis.Two 3D FEM models were designed from a mesio-distal slice of the maxilla containing the upper first molars, their periodontium and alveolar bone. Two palatal expanders (removable and fixed were modeled. The models were designed in SolidWorks 2006 and then transferred to ANSYS Workbench. The appliance halves were displaced 0.1 mm laterally. The von Mises stress in the apical, crestal, and PDL areas and also the vertical displacement of the cusps (palatal and buccal was were evaluated.The total PDL stress was 0.40003 MPa in the removable appliance (RA model and 4.88e-2 MPa in the fixed appliance (FA model and the apical stress was 9.9e-2 and 1.17e-2 MPa, respectively. The crestal stress was 2.99e-1 MPa in RA and 7.62e-2 MPa in the FA. The stress in the cortical bone crest was 0.30327 and 7.9244e-2 MPa for RA and FA, respectively and 3.7271 and 7.4373e-2 MPa in crestal area of spongy bone, respectively. The vertical displacement of the buccal cusp and palatal cusp was 1.64e-2 and 5.90e-2 mm in RA and 1.05e-4 and 1.7e-4 mm in FA, respectively.The overall stress as well as apical and crestal stress in periodontium of anchor teeth was higher in RA than FA; RA elicited higher stress in both cortical and spongy bone. The vertical displacement of molar cusps was more in removable than fixed palatal expander model.
Geramy, Allahyar; Shahroudi, Atefe Saffar
2014-01-01
Several appliances have been used for palatal expansion for treatment of posterior cross bite. The purpose of this study was to evaluate the stress induced in the apical and crestal alveolar bone and the pattern of tooth displacement following expansion via removable expansion plates or fixed-banded palatal expander using the finite element method (FEM) analysis. Two 3D FEM models were designed from a mesio-distal slice of the maxilla containing the upper first molars, their periodontium and alveolar bone. Two palatal expanders (removable and fixed) were modeled. The models were designed in SolidWorks 2006 and then transferred to ANSYS Workbench. The appliance halves were displaced 0.1 mm laterally. The von Mises stress in the apical, crestal, and PDL areas and also the vertical displacement of the cusps (palatal and buccal) was were evaluated. The total PDL stress was 0.40003 MPa in the removable appliance (RA) model and 4.88e-2 MPa in the fixed appliance (FA) model and the apical stress was 9.9e-2 and 1.17e-2 MPa, respectively. The crestal stress was 2.99e-1 MPa in RA and 7.62e-2 MPa in the FA. The stress in the cortical bone crest was 0.30327 and 7.9244e-2 MPa for RA and FA, respectively and 3.7271 and 7.4373e-2 MPa in crestal area of spongy bone, respectively. The vertical displacement of the buccal cusp and palatal cusp was 1.64e-2 and 5.90e-2 mm in RA and 1.05e-4 and 1.7e-4 mm in FA, respectively. The overall stress as well as apical and crestal stress in periodontium of anchor teeth was higher in RA than FA; RA elicited higher stress in both cortical and spongy bone. The vertical displacement of molar cusps was more in removable than fixed palatal expander model.
Finite-element discretization of 3D energy-transport equations for semiconductors
Energy Technology Data Exchange (ETDEWEB)
Gadau, Stephan
2007-07-01
In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and
Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements
Talebi, Hossein; Saputra, Albert; Song, Chongmin
2016-10-01
While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.
Low-Velocity Impact Response and Finite Element Analysis of Four-Step 3-D Braided Composites
Sun, Baozhong; Zhang, Yan; Gu, Bohong
2013-08-01
The low-velocity impact characters of 3-D braided carbon/epoxy composites were investigated from experimental and finite element simulation approaches. The quasi-static tests were carried out at a constant velocity of 2 mm/min on MTS 810.23 material tester system to obtain the indentation load-displacement curves and indentation damages. The low-velocity tests were conducted at the velocities from 1 m/s to 6 m/s (corresponding to the impact energy from 3.22 J to 116 J) on Instron Dynatup 9250 impact tester. The peak force, energy for peak force, time to peak force, and total energy absorption were obtained to determine the impact responses of 3-D braided composites. A unit cell model was established according to the microstructure of 3-D braided composites to derive the constitutive equation. Based on the model, a user-defined material subroutine (VUMAT) has been compiled by FORTRAN and connected with commercial finite element code ABAQUS/Explicit to calculate the impact damage. The unit cell model successfully predicted the impact response of 3-D braided composites. Furthermore, the stress wave propagation and failure mechanisms have been revealed from the finite element simulation results and ultimate damage morphologies of specimens.
Non-regularised Inverse Finite Element Analysis for 3D Traction Force Microscopy
Munoz, Jose J
2016-01-01
The tractions that cells exert on a gel substrate from the observed displacements is an increasingly attractive and valuable information in biomedical experiments. The computation of these tractions requires in general the solution of an inverse problem. Here, we resort to the discretisation with finite elements of the associated direct variational formulation, and solve the inverse analysis using a least square approach. This strategy requires the minimisation of an error functional, which is usually regularised in order to obtain a stable system of equations with a unique solution. In this paper we show that for many common three-dimensional geometries, meshes and loading conditions, this regularisation is unnecessary. In these cases, the computational cost of the inverse problem becomes equivalent to a direct finite element problem. For the non-regularised functional, we deduce the necessary and sufficient conditions that the dimensions of the interpolated displacement and traction fields must preserve in ...
Superconvergence of mixed finite element approximations to 3-D Maxwell's equations in metamaterials
Huang, Yunqing
2011-09-01
Numerical simulation of metamaterials has attracted more and more attention since 2000, after the first metamaterial with negative refraction index was successfully constructed. In this paper we construct a fully-discrete leap-frog type finite element scheme to solve the three-dimensional time-dependent Maxwell\\'s equations when metamaterials are involved. First, we obtain some superclose results between the interpolations of the analytical solutions and finite element solutions obtained using arbitrary orders of Raviart-Thomas-Nédélec mixed spaces on regular cubic meshes. Then we prove the superconvergence result in the discrete l2 norm achieved for the lowest-order Raviart-Thomas-Nédélec space. To our best knowledge, such superconvergence results have never been obtained elsewhere. Finally, we implement the leap-frog scheme and present numerical results justifying our theoretical analysis. © 2011 Elsevier Inc.
Study of a 3D-Finite Element Calculation of Bucket Foundation
DEFF Research Database (Denmark)
André Larsen, Kim; Ibsen, Lars Bo
2004-01-01
as the wind turbines are getting larger and more effective. The behaviour of bucket foundations located in saturated dense sand has been investigated by use of model tests. One of the methods to predict the response of a full size bucket foundation is the Finite Element Method, FEM. This method has been used......The bucket foundation is a new type of foundation, which has been developed over the past 3 years and today it is used for a Vestas V90-3.0 MW offshore wind turbine as a prototype. Ibsen et al.(2003). The bucket foundation is believed to have great potential in the future offshore wind parks...... to back calculate the response of the model tests in the laboratory. It has been shown that a three-dimensional Finite Element model is a useful method to predict the behaviour of bucket foundations for offshore wind turbines installed in saturated sand....
Finite-Element-Based Discretization and Regularization Strategies for 3D Inverse Electrocardiography
Wang, Dafang; Kirby, Robert M.; Johnson, Chris R.
2011-01-01
We consider the inverse electrocardiographic problem of computing epicardial potentials from a body-surface potential map. We study how to improve numerical approximation of the inverse problem when the finite element method is used. Being ill-posed, the inverse problem requires different discretization strategies from its corresponding forward problem. We propose refinement guidelines that specifically address the ill-posedness of the problem. The resulting guidelines necessitate the use of ...
3-D finite element computation and dynamic modal analysis on ultrasonic vibration systems
Institute of Scientific and Technical Information of China (English)
倪金刚; 张学仁; 聂景旭(Department of Jet Propulsion 405; Beijing University of Aeronautics and Astronautics; Beijing 100083; China)
1996-01-01
Stress and modal analyses are performed on an ultrasonic vibration system by means of a 3-dimensional finite element computation and dynamic modal analysis code "Algor" The system consists of an edge-cracked specimen linked elastically with one or two amplifying horns which come into resonant longitudinal vibration at 20kHz.Operating principle of the ultrasonic fatigue machines and experimental procedures for ultrasonic fatigue crack growth studies are briefly presented.
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
Lagrangian Integral Method) is a finite element method where Galerkons method is used for solving the governing equation in rectangular coordinates numerically. In the present implementation the velocity and pressure fields are approximated with tri-linear and constant shape functions, respectivly.The 3D LIM......) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymeric melt into a elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can be followed easily......A new technique for the numerical 3D simulation of time dependent flow of viscoelastic fluid is presented. The technique is based on a Lagrangian kinematics description of the fluid flow. The fluid is described by the Rivlin Sawyer integral constitutive equation. The method (referred to as the 3D...
Institute of Scientific and Technical Information of China (English)
YAN Zuwe; YAN Shuwang; LI Sa
2006-01-01
Based on elastoplastic model, 2D and 3D finite element method (FEM) are used to calculate the stress and displacement distribution in the soft clay slope under gravity and uniform load at the slope top. Stability analyses indicate that 3D boundary effect varies with the stress level of the slope. When the slope is stable, end effect of 3D space is not remarkable. When the stability decreases, end effect occurs; when the slope is at limit state, end effect reaches maximum. The energy causing slope failure spreads preferentially along y-z section, and when the failure resistance capability reaches the limit state, the energy can extend along x-axis direction. The 3D effect of the slope under uniform load on the top is related to the ratio of load influence width to slope height, and the effect is remarkable with the decrease of the ratio.
Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting
De Ford, John F; Petillo, John
2005-01-01
Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...
Zhang, Huiming; Zhang, Min; Yuan, Weijia
2017-02-01
An efficient three dimensional (3D) finite element method numerical model is proposed for superconducting coated conductors. The model is based on the T-A formulation and can be used to tackle 3D computational challenges for superconductors with high aspect ratios. By assuming a sheet approximation for the conductors, the model can speed up the computational process. The model has been validated by established analytical solutions. Two examples with complex geometries, which can hardly be simulated by the 2D model, are given. The model could be used to characterise and design large-scale applications using superconducting coated conductors, such as high field magnets and other electrical devices.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A numerical model is developed in this paper to calculate the bending moments of flexural members through integration in 3D solid finite element analyses according to the nonlinear constitutive model of concrete and the elastoplastic constitutive model of steel,utilizing the stress condition of the cross-section,considering the destruction characteristic of reinforced concrete members,and based on the plane cross-section assumption.The results of this model give good agreement with those of the classical me...
3D Finite Element Modeling of the 2009 L'Aquila Earthquake Deformation Field
Volpe, M.; Casarotti, E.; Piersanti, A.
2009-12-01
The L'Aquila earthquake (Mw 6.3) occurred on April 6th at 01:32 UTC in the Central Appennines at a depth of about 9 km and was felt all over Central Italy. The main shock was preceded by a long seismic sequence started several months before and was followed by thousands of aftershocks, some of them with Mw>4. We built up a high resolution three-dimensional model, incorporating surface topography, which was discretized using 20-nodes brick elements. The element horizontal size is biased from 500 m to 2 km using the paving meshing algorithm in combination with an appropriate adaptive sizing function. A realistic rheology was introduced from a vp/vpvs travel time tomographic model. We computed the co-seismic deformation induced by the earthquake by means of a recently developed finite elements simulation tool, FEMSA (Finite Element Modeling for Seismic Applications). We used different seismic source models obtained from fault inversion of GPS measurements, joint inversion of strong motion and GPS data and from inversion of DInSAR displacements. The synthetic deformation patterns were compared with the experimental results in order to evaluate which source model better reconciles the data and quantify the trade off introduced by 1D simulations.
Liu, Xingzong; Tang, Chun'an; Li, Lianchong; Lv, Pengfei; Liu, Hongyuan
2017-07-01
The right bank slope of Dagangshan hydropower station in China has complex geological conditions and is subjected to high in situ stress. Notably, microseismic activities in the right bank slope occurred during reservoir impounding. This paper describes the microseismic monitoring technology, and three-dimensional (3D) finite element analysis is used to explore the microseismic activities and damage mechanisms in the right bank slope during reservoir impounding. Based on data obtained from microseismic monitoring, a progressive microseismic damage model is proposed and implemented for 3D finite element analysis. The safety factor for the right bank slope after reservoir impoundment obtained from the 3D finite element analysis, which included the effects of progressive microseismic damage, was 1.10, indicating that the slope is stable. The microseismic monitoring system is able to capture the slope disturbance during reservoir impounding in real time and is a powerful tool for qualitatively assessing changes in slope stability over time. The proposed progressive microseismic damage model adequately simulates the changes in the slope during the impoundment process and provides a valuable tool for evaluating slope stability.
3D finite element analysis to detect stress distribution: spiral family implants.
Danza, Matteo; Zollino, Ilaria; Paracchini, Luigi; Riccardo, Guidi; Fanali, Stefano; Carinci, Francesco
2009-12-01
Spiral family implants are a root-form fixtures with increasing thickness of tread. This characteristic gives a self-tapping and self-condensing bone properties to implants. To study spiral family implant inserted in different bone quality and connected with abutments of different angulations a Finite Element Analysis (FEA) was performed. Once drawn the systems that were object of the study by CAD (Computer Aided Design), the FEA discretized solids composing the system in many infinitesimal little elementary solids defined finite elements. This lead to a mesh formation where the single finite elements were connected among them by nodes. For the 3 units bone-implant-abutments several thousand of tetrahedral elements having 10 parabolic nodes were employed. The biomechanical behaviour of 4.2 mm × 13 mm dental implants, connecting screw, straight and 15° and 25° angulated abutment subjected to static loads, in contact with high and poor bone quality was evaluated by FEA. A double system was analyzed: a) FY strength acting along Y axis and having 200 N intensity; b) FY and FZ couple of strengths applied along Y and Z directions and having respectively 200N and 140N intensity. The materials were considered as homogeneous, linear and isotropic. Then the FEA simulation was performed hypothesizing a linearity between loads and deformations. The lowest stress value was found in the system composed by implants and straight abutments loaded with a vertical strength, while the highest stress value were found in implants and 15° angulated abutment loaded with a angulated strength. In addition, the lower is the bone quality (i.e. D4) the higher is the distribution of the stress within the bone. Spiral family implants can be used successfully in low bone quality but a straight force is recommended.
Finite Element Treatment of Vortex States in 3D Cubic Superconductors in a Tilted Magnetic Field
Peng, Lin; Cai, Chuanbing
2017-03-01
The time-dependent Ginzburg-Landau equations have been solved numerically by a finite element analysis for superconducting samples with a cubic shape in a tilted magnetic field. We obtain different vortex patterns as a function of the external magnetic field. With a magnetic field not parallel to the x- or y-axis, the vortices attempt to change their orientation accordingly. Our analysis of the corresponding changes in the magnetic response in different directions can provide information not only about vorticity but also about the three-dimensional vortex arrangement, even about the very subtle changes for the superconducting samples with a cubic shape in a tilted magnetic field.
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
Splinting effect on posterior implants under various loading modes: a 3D finite element analysis.
Hauchard, Erwan; Fournier, Benjamin Philippe; Jacq, Romain; Bouton, Antoine; Pierrisnard, Laurent; Naveau, Adrien
2011-09-01
This three-dimensional finite element study compared stresses, intensities and displacements of three mandibular posterior implants restored with cemented crowns (two molars and a premolar in straight line), splinted versus non-splinted. Hundred newton occlusal loads were vertically or horizontally applied, either on one single crown or on all of them. Maximal stresses and implants displacements were higher under horizontal loading. Splinting major effects appeared under single horizontal load with a decrease in stresses (34-49%) and displacements (16-19%) of the loaded crown. Splinting seems more appropriate for implant-supported restorations submitted to frequent single horizontal or oblique loads than vertical ones.
2015-07-01
UNCLASSIFIED UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test...circular hole in an aluminium plate fitted with a titanium fastener that were computed using two-dimensional finite element contact analysis . By...UNCLASSIFIED Linear-Elastic 2D and 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon
Energy Technology Data Exchange (ETDEWEB)
Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.
2015-05-01
An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.
Energy Technology Data Exchange (ETDEWEB)
Jeong, Sang Sub; Jang Seok Myeong [Chungnam National University(Korea)
2000-06-01
The 4-pole linear homopolar synchronous motor (LHSM), so called linear inductor motor, is composed of the figure-of-eight shaped 3-phase armature windings, DC field windings, and the segmented secondary with the transverse bar track. To reduce the calculation time, the simplified 3D finite element model with equivalent reluctance and/or permanent magnet is presented. To obtain a clear understanding, propriety and usefulness of the developed mode., we compare with the results of simplified 3D FEA and test. Consequently, the results of simplified and 3D FEM analysis are nearly identical, but much larger than that of static test at d-axis armature excitation. Therefore the improved FEA model, such as full model with half slot, is needed for the precise analysis. (author). refs., figs., tabs.
Xie, Yifan; Wu, Jichun; Nan, Tongchao; Xue, Yuqun; Xie, Chunhong; Ji, Haifeng
2017-03-01
In this paper, an efficient triple-grid multiscale finite element method (ETMSFEM) is proposed for 3D groundwater simulation in heterogeneous porous media. The main idea of this method is to employ new 3D linear base functions and the domain decomposition technique to solve the local reduced elliptical problem, thereby simplifying the base function construction process and improving the efficiency. Furthermore, by using the ETMSFEM base functions, this method can solve Darcy's equation with high efficiency to obtain a continuous velocity field. Therefore, this method can considerably reduce the computational cost of solving for heads and velocities, which is crucial for large-scale 3D groundwater simulations. In the application section, we present numerical examples to compare the ETMSFEM with several classical methods to demonstrate its efficiency and effectiveness.
Energy Technology Data Exchange (ETDEWEB)
Spear, A. D. [Department of Mechanical Engineering, University of Utah, Salt Lake City UT USA; Hochhalter, J. D. [NASA Langley Research Center, Hampton VA USA; Cerrone, A. R. [GE Global Research Center, Niskayuna NY USA; Li, S. F. [Lawrence Livermore National Laboratory, Livermore CA USA; Lind, J. F. [Lawrence Livermore National Laboratory, Livermore CA USA; Suter, R. M. [Department of Physics, Carnegie Mellon University, Pittsburgh PA USA; Ingraffea, A. R. [School of Civil & Environmental Engineering, Cornell University, Ithaca NY USA
2016-04-27
In an effort to reproduce computationally the observed evolution of microstructurally small fatigue cracks (MSFCs), a method is presented for generating conformal, finite-element (FE), volume meshes from 3D measurements of MSFC propagation. The resulting volume meshes contain traction-free surfaces that conform to incrementally measured 3D crack shapes. Grain morphologies measured using near-field high-energy X-ray diffraction microscopy are also represented within the FE volume meshes. Proof-of-concept simulations are performed to demonstrate the utility of the mesh-generation method. The proof-of-concept simulations employ a crystal-plasticity constitutive model and are performed using the conformal FE meshes corresponding to successive crack-growth increments. Although the simulations for each crack increment are currently independent of one another, they need not be, and transfer of material-state information among successive crack-increment meshes is discussed. The mesh-generation method was developed using post-mortem measurements, yet it is general enough that it can be applied to in-situ measurements of 3D MSFC propagation.
Finite element modeling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy
Cervera, M.; Barbat, G. B.; Chiumenti, M.
2017-07-01
This paper discusses the finite element modeling of cracking in quasi-brittle materials. The problem is addressed via a mixed strain/displacement finite element formulation and an isotropic damage constitutive model. The proposed mixed formulation is fully general and is applied in 2D and 3D. Also, it is independent of the specific finite element discretization considered; it can be equally used with triangles/tetrahedra, quadrilaterals/hexahedra and prisms. The feasibility and accuracy of the method is assessed through extensive comparison with experimental evidence. The correlation with the experimental tests shows the capacity of the mixed formulation to reproduce the experimental crack path and the force-displacement curves with remarkable accuracy. Both 2D and 3D examples produce results consistent with the documented data. Aspects related to the discrete solution, such as convergence regarding mesh resolution and mesh bias, as well as other related to the physical model, like structural size effect and the influence of Poisson's ratio, are also investigated. The enhanced accuracy of the computed strain field leads to accurate results in terms of crack paths, failure mechanisms and force displacement curves. Spurious mesh dependency suffered by both continuous and discontinuous irreducible formulations is avoided by the mixed FE, without the need of auxiliary tracking techniques or other computational schemes that alter the continuum mechanical problem.
Institute of Scientific and Technical Information of China (English)
黄春跃; 周德俭; 黄红艳
2004-01-01
Based on the modal analysis theory and by using the dynamics finite element analysis model of a three-dimensional assembly circuit module, dynamic characteristics of circuit module have been studied, including both natural characteristics analysis and dynamic responses analysis. Using a subspace method, modal analysis is first carried out. The first 6 orders of natural frequencies and vibration modes are obtained. Influence of the number of the Z-shaped metal slices on dynamic characteristics of the entire structure is also studied.Harmonic response analysis is then conducted. The steady-state response when the circuit module is subjected to harmonic excitation is determined. A curve of the response values against frequencies is obtained. As a result, the optimal number of Z-shaped metal slices can be determined, and it can be assured that the three-dimensional assembly circuit module has good performance in terms of the dynamic characteristics.
3-D finite element cyclic symmetric and contact stress analysis for a complete gear train
Yin, Zeyong; Xu, Youliang; Gao, Xiangqun; Wei, Gang
1992-10-01
A complete gear train of a reduction gearbox is the object of finite element stress analysis. One of the basic segments of the complete gear train is taken as the computational model in the light of the cyclic symmetry of the gear train; meanwhile, the contact transmission forces between the corresponding meshed teeth are considered in the analysis of the model. For simplicity, the corresponding meshed lines are used instead of the actual contact surfaces. Both torque and centrifugal loads are involved in the analysis. The stresses in all the parts of a complete gear train can be determined by one analysis. The computed results show that the contact force on a meshed tooth is correlative not only to the length of the meshed line, but also to its position. It is shown that the neglect of the stress resulted from centrifugal load is inappropriate to a high speed gear train.
How Can Stress Be Controlled in Endodontically Treated Teeth? A 3D Finite Element Analysis
Directory of Open Access Journals (Sweden)
İhsan Yıkılgan
2013-01-01
Full Text Available The aim of this study was to analyze the stresses that develop by oblique and vertical forces in endodontically treated maxillary second premolars that were restored with resin composite. Additionally, in our study the effects of the different restorative approaches and use of different base materials on stress formation were analyzed using three-dimensional finite element stress analysis. For restoration, the models representing both cusp capping, palatinal cusp capping, standard MOD restoration, and use of woven fiber in occlusal part were prepared. In all models, oblique forces caused more stress than did vertical forces. Materials with low elastic moduli cause high amounts of stress, whereas materials with elastic moduli similar to that of dental tissues cause low amounts of stress. Additional approaches such as cusp capping, functional cusp capping, and woven fiber use do not affect stress formation on the tooth after endodontic treatment.
Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold
Institute of Scientific and Technical Information of China (English)
LIU Xu-dong; YANG Xiao-dong; ZHU Miao-yong; CHEN Yong; YANG Su-bo
2007-01-01
Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.
A Simulation of crustal deformation around sourthwest Japan using 3D Finite Element Method
Oma, T.; Ito, T.; Sasajima, R.
2015-12-01
In southwest Japan, the Philippine Sea plate is subducting beneath the Amurian plate at the Nankai Trough. Megathrust earthquakes have been occurred with recurrence intervals of about 100-150 years. Previous studies have estimated co-seismic slip distribution at the 1944 Tokankai and the 1946 Nankai earthquakes and interplate plate coupling along the Nankai Trough. Many of previous studies employed a homogeneous elastic half space or elastic and viscoelastic layers structure. However, these assumptions as mentioned above are inadequate, since inhomogeneous structure is exceled in the real earth result from subducting plate. Therefore, in order to estimate the effect of inhomogeneous structure on the crustal deformation, we calculate crustal deformation due to Megathrust earthquake using 3-dimensional Finite Element Method (FEM). We use FEM software PyLith v2.1. In this study, we construct a finite element mesh with the region of 3000km(SW) × 2300km(NS) × 400km(depth) cover Japanese Islands, using Cubit 13.0. This mesh is considered topography, the Philippine Sea plate, the Pacific plate, Moho discontinuity, and curvature of the earth. In order to examine differences of surface displacement between inhomogeneous and homogeneous structures, we use co-seismic slip distribution of the 1944 and 1946 earthquakes estimated by Sagiya and Thatcher (1999). In result, surface elastic response under inhomogeneous structure becomes 30% larger than it's homogeneous structure at the Muroto cape. This difference indicates that co-seismic slip or plate coupling distribution estimated from Green's function under an assumption of homogeneous structure is overestimated. Then, we calculate viscoelastic response assuming Maxwell rheology model and viscosity as 1×1019. As a result, predicted horizontal velocity of viscoelastic response due to the events corresponds to 10 % of observed present deformation. It suggest that spatial pattern of plate coupling might be change when we
3D finite element analysis on pile-soil interaction of passive pile group
Institute of Scientific and Technical Information of China (English)
ZHAO Ming-hua; LIU Dun-ping; ZHANG Ling; JIANG Chong
2008-01-01
The interaction between pile and soft soil of the passive pile group subjected to soil movement was analyzed with three-dimensional finite element model by using ANSYS software. The soil was assumed to be elastic-plastic complying with the Drucker-Prager yield criterion in the analysis. The large displacement of soil was considered and contact elements were used to evaluate the interaction between pile and soil. The influences of soil depth of layer and number of piles on the lateral pressure of the pile were investigated, and the lateral pressure distributions on the (2×1) pile group and on the (2×2) pile group were compared. The results show that the adjacent surcharge may result in significant lateral movement of the soft soil and cousiderable pressure on the pile. The pressure acting on the row near the surcharge is higher than that on the other row, due to the "barrier" and arching effects in pile groups. The passive load and its distribution should be taken into account in the design of the passive piles.
Cai, Hongzhu; Hu, Xiangyun; Li, Jianhui; Endo, Masashi; Xiong, Bin
2017-02-01
We solve the 3D controlled-source electromagnetic (CSEM) problem using the edge-based finite element method. The modeling domain is discretized using unstructured tetrahedral mesh. We adopt the total field formulation for the quasi-static variant of Maxwell's equation and the computation cost to calculate the primary field can be saved. We adopt a new boundary condition which approximate the total field on the boundary by the primary field corresponding to the layered earth approximation of the complicated conductivity model. The primary field on the modeling boundary is calculated using fast Hankel transform. By using this new type of boundary condition, the computation cost can be reduced significantly and the modeling accuracy can be improved. We consider that the conductivity can be anisotropic. We solve the finite element system of equations using a parallelized multifrontal solver which works efficiently for multiple source and large scale electromagnetic modeling.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The hydrogen distribution of 16MnR steel weldment in hydrogen contained environment was calculated using the finite element method (FEM). The effect of welding residual stress on hydrogen diffusion has been discussed using a 3-D sequential coupling finite element analysis procedure complied by Abaqus code. The hydrogen diffusion coefficient in weld metal, the heat affected zone (HAZ), and the base metal of the 16MnR steel weldment were measured using the electrochemical permeation technique. The hydrogen diffusion without the effect of stress was also calculated and compared. Owing to the existence of welding residual stress, the hydrogen concentration was obviously increased and the hydrogen would diffuse and accumulate in the higher stress region.
Moortgat, Joachim
2016-01-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...
DEFF Research Database (Denmark)
Cai, Hongzhu; Xiong, Bin; Han, Muran
2014-01-01
This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions...... of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system...
Institute of Scientific and Technical Information of China (English)
Jin Wencheng; Zhou Xiaoyong; Li Na
2008-01-01
A numerical model is developed in this paper to calculate the bending moments of flexural members through integration in 3D solid finite element analyses according to the nonlinear constitutive model of concrete and the elastoplastic constitutive model of steel, utilizing the stress condition of the cross-section, considering the destruction characteristic of reinforced concrete members, and based on the plane cross-section assumption. The results of this model give good agreement with those of the classical method. Consequently, we can also deduce the corresponding numerical expression for eccentrically loaded members according to the analysis method.
Directory of Open Access Journals (Sweden)
Nicola Ponara
2012-11-01
Full Text Available Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance with respect to the discontinuity interface are exploited. Tornberg and Engquist (Journal of Scientific Computing, 2003, 19: 527–552 proved that the use of compact support weight function is not suitable because it leads to errors that do not vanish for decreasing mesh size. They proposed the adoption of non-compact support weight functions. In the present contribution, the relationship between the Fourier transform of the weight functions and the accuracy of the regularization procedure is exploited. The proposed regularized approach was implemented in the eXtended Finite Element Method. As a three-dimensional example, we study a slender solid characterized by an inclined interface across which the displacement is discontinuous. The accuracy is evaluated for varying position of the discontinuity interfaces with respect to the underlying mesh. A procedure for the choice of the regularization parameters is proposed.
3D Finite Element Simulation of Graphene Nano-Electro-Mechanical Switches
Directory of Open Access Journals (Sweden)
Jothiramalingam Kulothungan
2016-08-01
Full Text Available In this paper, we report the finite element method (FEM simulation of double-clamped graphene nanoelectromechanical (NEM switches. Pull-in and pull-out characteristics are analyzed for graphene NEM switches with different dimensions and these are consistent with the experimental results. This numerical model is used to study the scaling nature of the graphene NEM switches. We show the possibility of achieving a pull-in voltage as low as 2 V for a 1.5-μm-long and 3-nm-thick nanocrystalline graphene beam NEM switch. In order to study the mechanical reliability of the graphene NEM switches, von Mises stress analysis is carried out. This analysis shows that a thinner graphene beam results in a lower von Mises stress. Moreover, a strong electrostatic force at the beam edges leads to a mechanical deflection at the edges larger than that around the center of the beam, which is consistent with the von Mises stress analysis.
Comparative Analysis of Bulge Deformation between 2D and 3D Finite Element Models
Directory of Open Access Journals (Sweden)
Qin Qin
2014-02-01
Full Text Available Bulge deformation of the slab is one of the main factors that affect slab quality in continuous casting. This paper describes an investigation into bulge deformation using ABAQUS to model the solidification process. A three-dimensional finite element analysis model of the slab solidification process has been first established because the bulge deformation is closely related to slab temperature distributions. Based on slab temperature distributions, a three-dimensional thermomechanical coupling model including the slab, the rollers, and the dynamic contact between them has also been constructed and applied to a case study. The thermomechanical coupling model produces outputs such as the rules of bulge deformation. Moreover, the three-dimensional model has been compared with a two-dimensional model to discuss the differences between the two models in calculating the bulge deformation. The results show that the platform zone exists in the wide side of the slab and the bulge deformation is affected strongly by the ratio of width-to-thickness. The indications are also that the difference of the bulge deformation for the two modeling ways is little when the ratio of width-to-thickness is larger than six.
3D Finite Element Numerical Simulation of Residual Stresses on Electron Beam Welded BT20 Plates
Institute of Scientific and Technical Information of China (English)
Lixing HUO; Furong CHEN; Yufeng ZHANG; Li ZHANG; Fangjun LIU; Gang CHEN
2004-01-01
A three-dimensional finite-element model (FEM) used for calculating electron beam (EB) welding temperature and stresses fields of thin plates of BT20 titanium has been developed in which the nonlinear thermophysical and thermo-mechanical properties of the material has been considered. The welding temperature field, the distributions of residual stresses in aswelded (AW) and electron beam local post-weld heat treatment (EBLPWHT) conditions have been successfully simulated.The results show that: (1) In the weld center, the maximum magnitude of residual tensile stresses of BT20 thin plates of Ti alloy is equal to 60%～ 70% of its yield strength σs. (2) The residual tensile stresses in weld center can be even decreased after EBLPWHT and the longitudinal tensile stresses are decreased about 50% compared to joints in AW conditions. (3)The numerical calculating results of residual stresses by using FEM are basically in agreement with the experimental results.Combined with numerical calculating results, the effects of electron beam welding and EBLPWHT on the distribution of welding residual stresses in thin plates of BT20 have been analyzed in detail.
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz
2000-01-01
The 3D-LIM has as yet been used to simulate the following two three-dimensional problems. First, the method has been used to simulete for viscoelastic end-plate instability that occurs under certain conditions in the transient filament stretching apparatus for pressure sensitive adhesives...... (polymeric melts) and polymeric solutions. Secondly, the 3D-LIM has also been applied to calculate the inflation of a thick sheet of a polymer melt into an elliptic cylinder. These problems all include free surfaces. As the governing equations are solved for the particle positions, the motion of surfaces can...... be followed easily even in 3D viscoelastic flow....
García, E.; Oliver, A.; Diaz, O.; Diez, Y.; Gubern-Mérida, A.; Martí, R.; Martí, J.
2017-03-01
Patient-specific finite element (FE) models of the breast have received increasing attention due to the potential capability of fusing images from different modalities. During the Magnetic Resonance Imaging (MRI) to X-ray mammography registration procedure, the FE model is compressed mimicking the mammographic acquisition. Subsequently, suspicious lesions in the MRI volume can be projected into the 2D mammographic space. However, most registration algorithms do not provide the reverse information, avoiding to obtain the 3D geometrical information from the lesions localized in the mammograms. In this work we introduce a fast method to localize the 3D position of the lesion within the MRI, using both cranio-caudal (CC) and medio-lateral oblique (MLO) mammographic projections, indexing the tetrahedral elements of the biomechanical model by means of an uniform grid. For each marked lesion in the Full-Field Digital Mammogram (FFDM), the X-ray path from source to the marker is calculated. Barycentric coordinates are computed in the tetrahedrons traversed by the ray. The list of elements and coordinates allows to localize two curves within the MRI and the closest point between both curves is taken as the 3D position of the lesion. The registration errors obtained in the mammographic space are 9.89 +/- 3.72 mm in CC- and 8.04 +/- 4.68 mm in MLO-projection and the error in the 3D MRI space is equal to 10.29 +/- 3.99 mm. Regarding the uniform grid, it is computed spending between 0.1 and 0.7 seconds. The average time spent to compute the 3D location of a lesion is about 8 ms.
Finite Element Simulation on the Spin-forming of the 3D Non-axisymmetric Thin-Walled Tubes
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The roller movement trace for the 3D non-axisymmetric thin-walled tubes is a complex space curve. Besides the roller rotation caused by contact with the blank, the roller rotates around the workpiece together with the main spindle, and also moves simultaneously along the direction of the revolution radius. The method to correctly establish the finite element (FE) models of the metal spinning is based on the MSC. MARC software was introduced. The calculation formulas considering both the revolution and rotation of the roller were obtained by the mathematical deduction. The saving calculation points m should be a multiple of 4 for one revolution of the roller around the workpiece to obtain the maximum forming force for the spinning of the 3D non-axisymmetric thin-walled tubes. The simulation results conform well to the experimental ones for several spinning methods; the maximum error is less than ±15%.
Mulder, W. A.; Zhebel, E.; Minisini, S.
2014-02-01
We analyse the time-stepping stability for the 3-D acoustic wave equation, discretized on tetrahedral meshes. Two types of methods are considered: mass-lumped continuous finite elements and the symmetric interior-penalty discontinuous Galerkin method. Combining the spatial discretization with the leap-frog time-stepping scheme, which is second-order accurate and conditionally stable, leads to a fully explicit scheme. We provide estimates of its stability limit for simple cases, namely, the reference element with Neumann boundary conditions, its distorted version of arbitrary shape, the unit cube that can be partitioned into six tetrahedra with periodic boundary conditions and its distortions. The Courant-Friedrichs-Lewy stability limit contains an element diameter for which we considered different options. The one based on the sum of the eigenvalues of the spatial operator for the first-degree mass-lumped element gives the best results. It resembles the diameter of the inscribed sphere but is slightly easier to compute. The stability estimates show that the mass-lumped continuous and the discontinuous Galerkin finite elements of degree 2 have comparable stability conditions, whereas the mass-lumped elements of degree one and three allow for larger time steps.
Korneev, V. G.
2012-09-01
BPS is a well known an efficient and rather general domain decomposition Dirichlet-Dirichlet type preconditioner, suggested in the famous series of papers Bramble, Pasciak and Schatz (1986-1989). Since then, it has been serving as the origin for the whole family of domain decomposition Dirichlet-Dirichlet type preconditioners-solvers as for h so hp discretizations of elliptic problems. For its original version, designed for h discretizations, the named authors proved the bound O(1 + log2 H/ h) for the relative condition number under some restricting conditions on the domain decomposition and finite element discretization. Here H/ h is the maximal relation of the characteristic size H of a decomposition subdomain to the mesh parameter h of its discretization. It was assumed that subdomains are images of the reference unite cube by trilinear mappings. Later similar bounds related to h discretizations were proved for more general domain decompositions, defined by means of coarse tetrahedral meshes. These results, accompanied by the development of some special tools of analysis aimed at such type of decompositions, were summarized in the book of Toselli and Widlund (2005). This paper is also confined to h discretizations. We further expand the range of admissible domain decompositions for constructing BPS preconditioners, in which decomposition subdomains can be convex polyhedrons, satisfying some conditions of shape regularity. We prove the bound for the relative condition number with the same dependence on H/ h as in the bound given above. Along the way to this result, we simplify the proof of the so called abstract bound for the relative condition number of the domain decomposition preconditioner. In the part, related to the analysis of the interface sub-problem preconditioning, our technical tools are generalization of those used by Bramble, Pasciak and Schatz.
Bodily labializing lateral incisors: 3D analysis using finite element method.
Geramy, Allahyar
2013-01-01
Among all tooth types and movements, bodily labializing the upper lateral incisors is a challenging one. The main goal of this study is to introduce and analyze a method to labialize palatally erupted lateral incisors. Five three dimensional finite element models were designed in SolidWorks 2010 of a segment of maxilla containing the upper left anterior teeth (with the lateral incisor in palatal position), their brackets, their PDLs, the spongy and cortical bone. A segment of 0.016 wire passing through the central incisor and canine brackets (bypassing the lateral incisor bracket) and a designed hook in the lateral incisor bracket (which comprises an inventory approach/design to treat a palatally erupted tooth). The hook and vertical bypassed segment height were 8, 10, 11.5 (stage 1), 9.5 (stage 2) and 9.45 mm (stage 3). Two equal forces (0.15 N each) were applied. Tooth displacements were recorded. A hook length of 8 mm resulted in a tipping movement (apical = -7.78 × 10(-5) mm; incisal = 3.8 × 10(4) mm). The other two caused root movement. Stage 2 (hook = 9.5 mm) resulted in root movement (-1.4 × 10(-4) mm in incisal; 1.58 × 10(4) mm in apical area). Hook length = 9.45 produced bodily movement (incisal = 7.1 × 10(5) mm; apical = 6.9 × 10(5) mm). A definite length of the hook was shown to produce bodily movement. This definite length of hook in combination with the same length of bypassed wire can be applied to produce bodily movement of the lateral incisor. An intrusive component can also be added.
Institute of Scientific and Technical Information of China (English)
Fan Yuxin; Xia Jian
2014-01-01
A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute tran-sient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute infla-tion is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES) method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hil-ber–Hughes–Taylor (HHT) time integration method is employed. For the fluid dynamic simula-tions, the Roe and HLLC (Harten–Lax–van Leer contact) scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS) approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Directory of Open Access Journals (Sweden)
Fan Yuxin
2014-12-01
Full Text Available A fluid–structure interaction method combining a nonlinear finite element algorithm with a preconditioning finite volume method is proposed in this paper to simulate parachute transient dynamics. This method uses a three-dimensional membrane–cable fabric model to represent a parachute system at a highly folded configuration. The large shape change during parachute inflation is computed by the nonlinear Newton–Raphson iteration and the linear system equation is solved by the generalized minimal residual (GMRES method. A membrane wrinkling algorithm is also utilized to evaluate the special uniaxial tension state of membrane elements on the parachute canopy. In order to avoid large time expenses during structural nonlinear iteration, the implicit Hilber–Hughes–Taylor (HHT time integration method is employed. For the fluid dynamic simulations, the Roe and HLLC (Harten–Lax–van Leer contact scheme has been modified and extended to compute flow problems at all speeds. The lower–upper symmetric Gauss–Seidel (LU-SGS approximate factorization is applied to accelerate the numerical convergence speed. Finally, the test model of a highly folded C-9 parachute is simulated at a prescribed speed and the results show similar characteristics compared with experimental results and previous literature.
Moortgat, Joachim; Firoozabadi, Abbas
2016-06-01
Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.
Parallel Finite Element Solution of 3D Rayleigh-Benard-Marangoni Flows
Carey, G. F.; McLay, R.; Bicken, G.; Barth, B.; Pehlivanov, A.
1999-01-01
A domain decomposition strategy and parallel gradient-type iterative solution scheme have been developed and implemented for computation of complex 3D viscous flow problems involving heat transfer and surface tension effects. Details of the implementation issues are described together with associated performance and scalability studies. Representative Rayleigh-Benard and microgravity Marangoni flow calculations and performance results on the Cray T3D and T3E are presented. The work is currently being extended to tightly-coupled parallel "Beowulf-type" PC clusters and we present some preliminary performance results on this platform. We also describe progress on related work on hierarchic data extraction for visualization.
3D finite elements method (FEM Analysis of basic process parameters in rotary piercing mill
Directory of Open Access Journals (Sweden)
Z. Pater
2012-10-01
Full Text Available In this paper 3D FEM analysis of process parameters and its infl uence in rotary piercing mill is presented. The FEM analyze of the rotary piercing process was made under the conditions of 3D state of strain with taking into consideration the thermal phenomena. The calculations were made with application of different rolls’ skew angles and different plug designs. In the result, progression of shapes, temperature and distributions of stress and strain were characterized. The numerical results of calculations were compared with results of stand test with use of 100Cr6 steel. The comparisons of numerical and experimental tests confirm good agreement between obtained results.
Simulating hydroplaning of submarine landslides by quasi 3D depth averaged finite element method
De Blasio, Fabio; Battista Crosta, Giovanni
2014-05-01
G.B. Crosta, H. J. Chen, and F.V. De Blasio Dept. Of Earth and Environmental Sciences, Università degli Studi di Milano Bicocca, Milano, Italy Klohn Crippen Berger, Calgary, Canada Subaqueous debris flows/submarine landslides, both in the open ocean as well as in fresh waters, exhibit extremely high mobility, quantified by a ratio between vertical to horizontal displacement of the order 0.01 or even much less. It is possible to simulate subaqueous debris flows with small-scale experiments along a flume or a pool using a cohesive mixture of clay and sand. The results have shown a strong enhancement of runout and velocity compared to the case in which the same debris flow travels without water, and have indicated hydroplaning as a possible explanation (Mohrig et al. 1998). Hydroplaning is started when the snout of the debris flow travels sufficiently fast. This generates lift forces on the front of the debris flow exceeding the self-weight of the sediment, which so begins to travel detached from the bed, literally hovering instead of flowing. Clearly, the resistance to flow plummets because drag stress against water is much smaller than the shear strength of the material. The consequence is a dramatic increase of the debris flow speed and runout. Does the process occur also for subaqueous landslides and debris flows in the ocean, something twelve orders of magnitude larger than the experimental ones? Obviously, no experiment will ever be capable to replicate this size, one needs to rely on numerical simulations. Results extending a depth-integrated numerical model for debris flows (Imran et al., 2001) indicate that hydroplaning is possible (De Blasio et al., 2004), but more should be done especially with alternative numerical methodologies. In this work, finite element methods are used to simulate hydroplaning using the code MADflow (Chen, 2014) adopting a depth averaged solution. We ran some simulations on the small scale of the laboratory experiments, and secondly
Error analysis of 3D shearography using finite-element modelling
Goto, D.T.; Groves, R.M.
2010-01-01
This paper describes the development of an opto-mechanical simulation of a complete shearography system, including the shearography instrument, the samples and the test environment. This simulation is applied to the measurement of 3D strains in engineering samples. The samples are a cylinder loaded
Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Miller, Michael J
2014-09-01
With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction.
3D Finite Elements Modelling for Design and Performance Analysis of UO Pellets
Directory of Open Access Journals (Sweden)
Gustavo L. Demarco
2011-01-01
Full Text Available The geometry of a fuel pellet is a compromise among the intention to maximize UO2 content and minimize the temperature gradient taking into account the thermomechanical behaviour, the economy, and the safety of the fuel management during and after irradiation. “Dishings”, “shoulders”, “chamfers”, and/or “a central hole” on a cylinder with an improved l/d relation (length of the pellet/diameter are introduced in order to optimize the shape of the pellet. The MeCom tools coupled with the BaCo code constitutes a complete system for the 3D analysis of the stress strain state of the pellet under irradiation. CANDU and PHWR MOX fuel will be used to illustrate the excellent qualitative agreement between experimental data and calculations by using these computational tools.
Stresses around a miniscrew. 3-D analysis with the finite element method (FEM).
Geramy, Allahyar
2009-11-01
Miniscrews used for absolute anchorage may induce stresses in the surrounding tissues that are dependent on their proximity to the miniscrew. To determine the stresses in the buccal walls of the sockets of lower molars adjacent to a miniscrew under load when the position and angulation of the miniscrew are changed. Five 3-D FEM models containing the first and second lower molars, their periodontal ligaments and the surrounding spongy and cortical bone, were modelled in SolidWorks 2006 (SolidWorks, Concord, MA, USA) and transferred to the ANSYS Workbench (ANSYS Inc., Southpointe, Canonsburg, PA, U.S.A.). A tensile force of 2 N, decomposed in 3-D space, was applied to a miniscrew inserted between the lower first and second molars. The von Mises (equivalent) stresses along the buccal walls of the sockets of the first and second molars were derived following changes in miniscrew position and angulation. No direct force was applied to the molars. When the miniscrew was inserted at right angles to the bone and midway between the molars the stress in the crestal area was 0.093 MPa. This stress increased proportionally in the first molar socket as the miniscrew was moved towards the first molar and declined when the miniscrew was tipped towards the second molar. Stresses also decreased in the crestal area of the second molar as the miniscrew was moved towards the first molar, but increased when it was tipped towards the second molar. A 30-55 per cent increase in crestal stress in the first molar socket was detected. Stress occurred in the tissues surrounding a miniscrew subjected to a force vector. Changes in the position or angulation of a miniscrew can affect the stress in the socket walls of adjacent teeth.
Orthodontic intrusion of maxillary incisors: a 3D finite element method study
Directory of Open Access Journals (Sweden)
Armando Yukio Saga
2016-02-01
Full Text Available Objective: In orthodontic treatment, intrusion movement of maxillary incisors is often necessary. Therefore, the objective of this investigation is to evaluate the initial distribution patterns and magnitude of compressive stress in the periodontal ligament (PDL in a simulation of orthodontic intrusion of maxillary incisors, considering the points of force application. Methods: Anatomic 3D models reconstructed from cone-beam computed tomography scans were used to simulate maxillary incisors intrusion loading. The points of force application selected were: centered between central incisors brackets (LOAD 1; bilaterally between the brackets of central and lateral incisors (LOAD 2; bilaterally distal to the brackets of lateral incisors (LOAD 3; bilaterally 7 mm distal to the center of brackets of lateral incisors (LOAD 4. Results and Conclusions: Stress concentrated at the PDL apex region, irrespective of the point of orthodontic force application. The four load models showed distinct contour plots and compressive stress values over the midsagittal reference line. The contour plots of central and lateral incisors were not similar in the same load model. LOAD 3 resulted in more balanced compressive stress distribution.
3D Finite Element Analysis of TBM Water Diversion Tunnel Segment Coupled with Seepage Field
Institute of Scientific and Technical Information of China (English)
钟登华; 胡能明; 程正飞; 吕鹏; 佟大威
2016-01-01
In most studies of tunnel boring machine(TBM)tunnelling, the groundwater pressure was not consid-ered, or was simplified and exerted on the boundary of lining structure. Meanwhile, the leakage, which mainly oc-curs in the segment joints, was often ignored in the relevant studies of TBM tunnelling. Additionally, the geological models in these studies were simplified to different extents, and mostly were simplified as homogenous bodies. Considering the deficiencies above, a 3D refined model of the surrounding rock of a tunnel is firstly established using NURBS-TIN-BReP hybrid data structure in this paper. Then the seepage field of the surrounding rock con-sidering the leakage in the segment joints is simulated. Finally, the stability of TBM water diversion tunnel is stud-ied coupled with the seepage simulation, to analyze the stress-strain conditions, the axial force and the bending moment of tunnel segment considering the leakage in the segment joints. The results illustrate that the maximum radial displacement, the minimum principal stress, the maximum principal stress and the axial force of segment lining considering the seepage effect are all larger than those disregarding the seepage effect.
A Novel Hybrid-Flux Magnetic Gear and Its Performance Analysis Using the 3-D Finite Element Method
Directory of Open Access Journals (Sweden)
Yiduan Chen
2015-04-01
Full Text Available This paper presents a novel hybrid-flux magnetic gear, which integrates a transverse-flux magnetic gear and an axial-flux magnetic gear into a single unit. Compared to its conventional counterparts, the proposed magnetic gear transmits a relatively high torque density. When compared to the transverse-flux magnetic gear, this new structure employs an extra iron segment between the low-speed rotor and high-speed rotor to modulate the magnetic field and contribute to the transmission of additional torque. A three-dimensional (3-D finite element method (FEM is used for the analysis of the magnetic field. In the paper a variables-decoupling method based on the sensitivity analysis of the design parameters is also presented to accelerate the optimization process of the proposed machine.
Giasin, Khaled; Ayvar-Soberanis, Sabino; French, Toby; Phadnis, Vaibhav
2017-02-01
Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin ( 2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process.
Giasin, Khaled; Ayvar-Soberanis, Sabino; French, Toby; Phadnis, Vaibhav
2016-07-01
Machining Glass fibre aluminium reinforced epoxy (GLARE) is cumbersome due to distinctively different mechanical and thermal properties of its constituents, which makes it challenging to achieve damage-free holes with the acceptable surface quality. The proposed work focuses on the study of the machinability of thin (~2.5 mm) GLARE laminate. Drilling trials were conducted to analyse the effect of feed rate and spindle speed on the cutting forces and hole quality. The resulting hole quality metrics (surface roughness, hole size, circularity error, burr formation and delamination) were assessed using surface profilometry and optical scanning techniques. A three dimensional (3D) finite-element (FE) model of drilling GLARE laminate was also developed using ABAQUS/Explicit to help understand the mechanism of drilling GLARE. The homogenised ply-level response of GLARE laminate was considered in the FE model to predict cutting forces in the drilling process.
3D finite element model for writing long-period fiber gratings by CO2 laser radiation.
Coelho, João M P; Nespereira, Marta; Abreu, Manuel; Rebordão, José
2013-08-12
In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber's material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation) is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.
3D Finite Element Model for Writing Long-Period Fiber Gratings by CO2 Laser Radiation
Directory of Open Access Journals (Sweden)
José Rebordão
2013-08-01
Full Text Available In the last years, mid-infrared radiation emitted by CO2 lasers has become increasing popular as a tool in the development of long-period fiber gratings. However, although the development and characterization of the resulting sensing devices have progressed quickly, further research is still necessary to consolidate functional models, especially regarding the interaction between laser radiation and the fiber’s material. In this paper, a 3D finite element model is presented to simulate the interaction between laser radiation and an optical fiber and to determine the resulting refractive index change. Dependence with temperature of the main parameters of the optical fiber materials (with special focus on the absorption of incident laser radiation is considered, as well as convection and radiation losses. Thermal and residual stress analyses are made for a standard single mode fiber, and experimental results are presented.
Liu, F.; Borja, R. I.
2009-12-01
Stress concentration induced by the heterogeneity in brittle geomaterials is generally considered as the driving force in the evolution of the microstructure (such as the crack and pore microstructure). Specifically, modeling heterogeneity is key to properly predicting the nucleation, coalescence and propagation of micro-cracks in brittle solids. In this paper, we propose a two-scale model for frictional cracks in fractured brittle media. The major crack in the study domain is modeled at a macro level, while the micro-cracks are modeled at a finer scale. The macro-scale behavior is described by a standard boundary value problem. The finer-scale problem is modeled using the notion of representative elementary volume (REV) consisting of a solid volume with distributed micro-cracks. Periodic boundary condition and small strain formulation are assumed in the finer-scale analysis. The scale bridging mechanism is borrowed from the standard homogenization technique. The proposed model is implemented with the extended finite element method. The macro stress at each Gauss point in the finite element formulation is computed as the volume average of finer-scale stresses in each corresponding REV. The macro tangent operator is computed using a perturbation method. For 3D problems, six independent linear perturbation analyses are carried out for each numerical integration point. Our numerical examples capture the nucleation and coalescence of micro-cracks, which can be used to infer the potential propagation direction of the major crack.
Schaa, R.; Gross, L.; du Plessis, J.
2016-04-01
We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.
Nakazawa, Shohei
1991-01-01
Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.
Scaling/LER study of Si GAA nanowire FET using 3D finite element Monte Carlo simulations
Elmessary, Muhammad A.; Nagy, Daniel; Aldegunde, Manuel; Seoane, Natalia; Indalecio, Guillermo; Lindberg, Jari; Dettmer, Wulf; Perić, Djordje; García-Loureiro, Antonio J.; Kalna, Karol
2017-02-01
3D Finite Element (FE) Monte Carlo (MC) simulation toolbox incorporating 2D Schrödinger equation quantum corrections is employed to simulate ID-VG characteristics of a 22 nm gate length gate-all-around (GAA) Si nanowire (NW) FET demonstrating an excellent agreement against experimental data at both low and high drain biases. We then scale the Si GAA NW according to the ITRS specifications to a gate length of 10 nm predicting that the NW FET will deliver the required on-current of above 1 mA/ μ m and a superior electrostatic integrity with a nearly ideal sub-threshold slope of 68 mV/dec and a DIBL of 39 mV/V. In addition, we use a calibrated 3D FE quantum corrected drift-diffusion (DD) toolbox to investigate the effects of NW line-edge roughness (LER) induced variability on the sub-threshold characteristics (threshold voltage (VT), OFF-current (IOFF), sub-threshold slope (SS) and drain-induced-barrier-lowering (DIBL)) for the 22 nm and 10 nm gate length GAA NW FETs at low and high drain biases. We simulate variability with two LER correlation lengths (CL = 20 nm and 10 nm) and three root mean square values (RMS = 0.6, 0.7 and 0.85 nm).
Verri, Fellippo Ramos; Cruz, Ronaldo Silva; Lemos, Cleidiel Aparecido Araújo; de Souza Batista, Victor Eduardo; Almeida, Daniel Augusto Faria; Verri, Ana Caroline Gonçales; Pellizzer, Eduardo Piza
2017-02-01
The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).
Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan
2013-01-01
Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…
Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan
2013-01-01
Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…
Zhengyong, R.; Jingtian, T.; Changsheng, L.; Xiao, X.
2007-12-01
Although adaptive finite-element (AFE) analysis is becoming more and more focused in scientific and engineering fields, its efficient implementations are remain to be a discussed problem as its more complex procedures. In this paper, we propose a clear C++ framework implementation to show the powerful properties of Object-oriented philosophy (OOP) in designing such complex adaptive procedure. In terms of the modal functions of OOP language, the whole adaptive system is divided into several separate parts such as the mesh generation or refinement, a-posterior error estimator, adaptive strategy and the final post processing. After proper designs are locally performed on these separate modals, a connected framework of adaptive procedure is formed finally. Based on the general elliptic deferential equation, little efforts should be added in the adaptive framework to do practical simulations. To show the preferable properties of OOP adaptive designing, two numerical examples are tested. The first one is the 3D direct current resistivity problem in which the powerful framework is efficiently shown as only little divisions are added. And then, in the second induced polarization£¨IP£©exploration case, new adaptive procedure is easily added which adequately shows the strong extendibility and re-usage of OOP language. Finally we believe based on the modal framework adaptive implementation by OOP methodology, more advanced adaptive analysis system will be available in future.
Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa
In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.
Institute of Scientific and Technical Information of China (English)
J. Li; W. Liu; Y.Q. Lai; Q.Y. Li; Y.X. Liu
2006-01-01
Two full 3D steady mathematical models are developed by finite element method (FEM) to calculate coupled physics fields: the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.
Energy Technology Data Exchange (ETDEWEB)
Mueller, P. [Fusion Technology-Materials, CRPP-EPFL, Association EURATOM-Confederation Suisse, 5232 Villigen PSI (Switzerland)], E-mail: pablo.mueller@psi.ch; Spaetig, P. [Fusion Technology-Materials, CRPP-EPFL, Association EURATOM-Confederation Suisse, 5232 Villigen PSI (Switzerland)
2009-06-01
The fracture properties of the tempered martensitic steel Eurofer97, which is among the main candidates for fusion power plant structural applications, were studied with two sizes of pre-cracked compact specimens (0.35T C(T) and 0.87T C(T)). The fracture toughness behavior was characterized within the temperature range -80 to -40 deg. C. The ductile-to-brittle transition reference temperature, as defined in the ASTM standard E1921, was around T{sub 0} {approx} -75 deg. C. At -60 deg. C, it was found that two sets of toughness data obtained with 0.35T and 0.87T C(T) specimens are not consistent with the size adjustments recommended in the ASTM standard. It was then shown that the underlying reason of this inconsistency is an inappropriate specimen size limit of the ASTM standard for this type of steel. From published fracture toughness data on the tempered martensitic steel F82H steel, similar results were also highlighted. 3D finite elements simulations of the compact specimens were performed to compare the stresses and deformations at the onset of fracture. A local approach model based on the attainment of a critical stress and a critical volume was used to study the constraint loss phenomenon. Within the framework of this model, the strong toughness increase by reducing the specimen size could be satisfactorily explained.
Mueller, P.; Spätig, P.
2009-06-01
The fracture properties of the tempered martensitic steel Eurofer97, which is among the main candidates for fusion power plant structural applications, were studied with two sizes of pre-cracked compact specimens (0.35T C(T) and 0.87T C(T)). The fracture toughness behavior was characterized within the temperature range -80 to -40 °C. The ductile-to-brittle transition reference temperature, as defined in the ASTM standard E1921, was around T0 ≈ -75 °C. At -60 °C, it was found that two sets of toughness data obtained with 0.35T and 0.87T C(T) specimens are not consistent with the size adjustments recommended in the ASTM standard. It was then shown that the underlying reason of this inconsistency is an inappropriate specimen size limit of the ASTM standard for this type of steel. From published fracture toughness data on the tempered martensitic steel F82H steel, similar results were also highlighted. 3D finite elements simulations of the compact specimens were performed to compare the stresses and deformations at the onset of fracture. A local approach model based on the attainment of a critical stress and a critical volume was used to study the constraint loss phenomenon. Within the framework of this model, the strong toughness increase by reducing the specimen size could be satisfactorily explained.
Soares, P V; Machado, A C; Zeola, L F; Souza, P G; Galvão, A M; Montes, T C; Pereira, A G; Reis, B R; Coleman, T A; Grippo, J O
2015-09-01
The present study analysed the effects of different occlusal loading on premolars displaying various non-carious cervical lesions morphologies, restored (or not) with composites, by 3D finite element analysis. A three-dimensional digital model of a maxillary premolar was generated using CAD software. Three non-carious cervical lesions morphological types were simulated: wedged-shaped, saucer and mixed. All virtual models underwent three loading types (100 N): vertical, buccal and palatal loading. The simulated non-carious cervical lesions morphologies were analysed with and without restorations to consider specific regions, such as the occlusal and gingival walls as well as the depth of the lesions. Data summarizing the stress distribution were obtained in MPa using Maximum Principal Stress. Palatal loads were responsible for providing the highest values of accumulated tensile stress on the buccal wall; 27.66 MPa and 25.76 MPa for mixed and wedged-shaped morphologies, respectively. The highest tensile values found on non-carious cervical lesions morphologies restored with composite resin were 5.9 MPa in the mixed morphology, similar to those found on sound models despite their morphologies and occlusal loading. The various non-carious cervical lesions morphologies had little effect on stress distribution patterns, whereas the loading type and presence of composite restorations influenced the biomechanical behaviour of the maxillary premolars. © 2015 Australian Dental Association.
González, Amparo; Graciani, Enrique; París, Federico
2009-01-01
Prediction of in-plane stiffness properties of Non-Crimp Fabric laminates by means of 3D Finite Element analysis correspondance: Corresponding author. Tel.: +34 954 487 300; fax: +34 954 461 637 . (Graciani, Enrique) (Graciani, Enrique) Grupo de Elasticidad y Resistencia de Materiales--> , Escuela Superior de Ingenieros--> , Universidad de Sevilla--> - (Gonzalez, Amparo) Grupo de Elasticidad y...
Directory of Open Access Journals (Sweden)
Aiwen Wang
2012-01-01
Full Text Available We investigate an Oseen two-level stabilized finite-element method based on the local pressure projection for the 2D/3D steady Navier-Stokes equations by the lowest order conforming finite-element pairs (i.e., Q1−P0 and P1−P0. Firstly, in contrast to other stabilized methods, they are parameter free, no calculation of higher-order derivatives and edge-based data structures, implemented at the element level with minimal cost. In addition, the Oseen two-level stabilized method involves solving one small nonlinear Navier-Stokes problem on the coarse mesh with mesh size H, a large general Stokes equation on the fine mesh with mesh size h=O(H2. The Oseen two-level stabilized finite-element method provides an approximate solution (uh,ph with the convergence rate of the same order as the usual stabilized finite-element solutions, which involves solving a large Navier-Stokes problem on a fine mesh with mesh size h. Therefore, the method presented in this paper can save a large amount of computational time. Finally, numerical tests confirm the theoretical results. Conclusion can be drawn that the Oseen two-level stabilized finite-element method is simple and efficient for solving the 2D/3D steady Navier-Stokes equations.
Energy Technology Data Exchange (ETDEWEB)
Holford, D.J.
1994-01-01
This document is a user`s manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water.
Construction of the cervical vertebra 3D finite element model%全颈椎三维有限元模型的建立
Institute of Scientific and Technical Information of China (English)
周毅强; 张建新; 林蔚莘
2014-01-01
Objective: To establish 3D finite element model of the cervical vertebra. Methods:Volunteers’ cervical vertebras were observed by thin layer CT. Medical image processing software (Mimics 10.01), reverse engineering software (Geomagic Studio 10) and finite element software (MSC. Patran 2004) were applied to establish the finite element model. Results: 3D finite element model of the cervical vertebra was established, it comprised with 7 vertebral bones and 5 cervical intervertebral discs and related ligaments, including 44, 526 nodes and 248, 348 elements. Conclusion: 3D finite element model of the cervical vertebra was precise; it could be used to simulate biomechanical experiment.%目的：建立正常人的全颈椎三维有限元模型。方法：对正常男性志愿者进行颈椎薄层CT扫描，使用医学图像处理软件Mimics 10.01、逆向工程软件Geomagic Studio 10、有限元软件MSC.Patran 2004等软件联合建立有限元模型。结果：成功建立了正常人的全颈椎三维有限元模型，由7块椎骨、5个椎间盘及相关韧带组成，包含44526个节点，248348个单元。结论：所建立的颈椎三维有限元模型精度较高，可用于进行生物力学实验。
3D adaptive finite element method for a phase field model for the moving contact line problems
Shi, Yi
2013-08-01
In this paper, we propose an adaptive finite element method for simulating the moving contact line problems in three dimensions. The model that we used is the coupled Cahn-Hilliard Navier-Stokes equations with the generalized Navier boundary condition(GNBC) proposed in [18]. In our algorithm, to improve the efficiency of the simulation, we use the residual type adaptive finite element algorithm. It is well known that the phase variable decays much faster away from the interface than the velocity variables. There- fore we use an adaptive strategy that will take into account of such difference. Numerical experiments show that our algorithm is both efficient and reliable. © 2013 American Institute of Mathematical Sciences.
Energy Technology Data Exchange (ETDEWEB)
Whirley, R.G.; Engelmann, B.E.
1993-11-01
This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit, finite element code for analyzing the transient dynamic response of three-dimensional solids and structures. The code is fully vectorized and is available on several computer platforms. DYNA3D includes solid, shell, beam, and truss elements to allow maximum flexibility in modeling physical problems. Many material models are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects, and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding and single surface contact. Rigid materials provide added modeling flexibility. A material model driver with interactive graphics display is incorporated into DYNA3D to permit accurate modeling of complex material response based on experimental data. Along with the DYNA3D Example Problem Manual, this document provides the information necessary to apply DYNA3D to solve a wide range of engineering analysis problems.
Cwik, T.; Jamnejad, V.; Zuffada, C.
1993-01-01
It is often desirable to calculate the electromagnetic fields inside and about a complicated system of scattering bodies, as well as in their far-field region. The finite element method (FE) is well suited to solving the interior problem, but the domain has to be limited to a manageable size. At the truncation of the FE mesh one can either impose approximate (absorbing) boundary conditions or set up an integral equation (IE) for the fields scattered from the bodies. The latter approach is preferable since it results in higher accuracy. Hence, the two techniques can be successfully combined by introducing a surface that encloses the scatterers, applying a FE model to the inner volume and setting up an IE for the tangential fields components on the surface. Here the continuity of the tangential fields is used bo obtain a consistent solution. A few coupled FE-IE methods have recently appeared in the literature. The approach presented here has the advantage of using edge-based finite elements, a type of finite elements with degrees of freedom associated with edges of the mesh. Because of their properties, they are better suited than the conventional node based elements to represent electromagnetic fields, particularly when inhomogeneous regions are modeled, since the node based elements impose an unnatural continuity of all field components across boundaries of mesh elements. Additionally, our approach is well suited to handle large size problems and lends itself to code parallelization. We will discuss the salient features that make our approach very efficient from the standpoint of numerical computation, and the fields and RCS of a few objects are illustrated as examples.
Energy Technology Data Exchange (ETDEWEB)
Puso, M; Maker, B N; Ferencz, R M; Hallquist, J O
2000-03-24
This report provides the NIKE3D user's manual update summary for changes made from version 3.0.0 April 24, 1995 to version 3.3.6 March 24,2000. The updates are excerpted directly from the code printed output file (hence the Courier font and formatting), are presented in chronological order and delineated by NIKE3D version number. NIKE3D is a fully implicit three-dimensional finite element code for analyzing the finite strain static and dynamic response of inelastic solids, shells, and beams. Spatial discretization is achieved by the use of 8-node solid elements, 2-node truss and beam elements, and 4-node membrane and shell elements. Thirty constitutive models are available for representing a wide range of elastic, plastic, viscous, and thermally dependent material behavior. Contact-impact algorithms permit gaps, frictional sliding, and mesh discontinuities along material interfaces. Several nonlinear solution strategies are available, including Full-, Modified-, and Quasi-Newton methods. The resulting system of simultaneous linear equations is either solved iteratively by an element-by-element method, or directly by a direct factorization method.
2015-08-01
Aeronautical Research Laboratory, Defence Science and Technology Organisation , Department of Defence, Australia, January 1988. 5. D Duprat, D Campassens...Containing a Circular Insert in a Fatigue Test Coupon Witold Waldman AUSTRALIA DEFENCE ORGANISATION No. of Copies Task Sponsor OIC-ASI-DGTA...UNCLASSIFIED DEFENCE SCIENCE AND TECHNOLOGY GROUP DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT) 2. TITLE Elasto–Plastic 3D Finite Element
Goal-Oriented Self-Adaptive hp Finite Element Simulation of 3D DC Borehole Resistivity Simulations
Calo, Victor M.
2011-05-14
In this paper we present a goal-oriented self-adaptive hp Finite Element Method (hp-FEM) with shared data structures and a parallel multi-frontal direct solver. The algorithm automatically generates (without any user interaction) a sequence of meshes delivering exponential convergence of a prescribed quantity of interest with respect to the number of degrees of freedom. The sequence of meshes is generated from a given initial mesh, by performing h (breaking elements into smaller elements), p (adjusting polynomial orders of approximation) or hp (both) refinements on the finite elements. The new parallel implementation utilizes a computational mesh shared between multiple processors. All computational algorithms, including automatic hp goal-oriented adaptivity and the solver work fully in parallel. We describe the parallel self-adaptive hp-FEM algorithm with shared computational domain, as well as its efficiency measurements. We apply the methodology described to the three-dimensional simulation of the borehole resistivity measurement of direct current through casing in the presence of invasion.
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyeong Keun; Lee, Sang Min; Chang, Yoon Suk; Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan Univ., Suwon (Korea, Republic of); Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of)
2004-07-01
In this paper, a new procedure is proposed to accomplish the primary plus secondary stress(P+Q) at the 'structural element' instead of 'transition element'. For the P+Q evaluation, the calculated stresses by FEA are linearized along a stress classification line to extract the stress category, then the stress intensity is calculated to compare with the 3Sm limit. Also, in this paper, the 'design by analysis' criteria, adopted fundamental concepts and a new approach to calculate Ke factors are explained. The new procedure combined with 3-D FEA has been applied to motor operated valve in order to the over conservatism and the rack of margin. The evaluation results show a good applicability and can be utilized for fatigue life evaluation by using P+Q.
Directory of Open Access Journals (Sweden)
ADEGUN, I. K.
2014-08-01
Full Text Available The paper investigated the flow of incompressible fluid and contaminant transport through a Porous Landfill using a numerical technique. A threedimensional finite element analysis technique was adopted for the solution. The problem was based on the Darcy’s Law and the Advection-Dispersion equation. The solutions of the Darcy’s and Advection-Dispersion equations were generated using Finite Element Analysis Software known as COMSOL Multiphysics. This simulation tool tracked the contaminant transport in the Landfill for 360 days at 10 days interval. It first modeled steady-state fluid flow by employing the Darcy’s Law Application Mode and then followed up with a transient solute-transport simulation by employing the Solute-Transport Application Mode from the Earth Science Module of COMSOL. The solution results obtained from this model were found to be in close agreement with reallife data obtained at the 130- million ton Bukit Tagar Mega Sanitary Landfill site, Selangor near Kuala Lumpur, Malaysia. This showed that the model can effectively predict the trends in the distributions of pollutants from a Municipal Solid Waste Landfill into nearby land and water sources. The model is thus applicable to the issues of environmental protection and safety of groundwater.
Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan
2013-12-01
The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the λ model along the muscle fibers, together with the passive properties of muscle tissues in the 3-D space. The muscle element was first assessed using simple geometrical representations of muscles in the form of rectangular bars. It was then included in a 3-D face model, and its impact on lip protrusion was compared with the impact of a Hill-type muscle model. The force-length characteristic associated with the muscle elements matched well with the invariant characteristics of the λ model. The impact of the passive properties was assessed. Isometric force variation and isotonic displacements were modeled. The comparison with a Hill-type model revealed strong similarities in terms of global stress and strain. The DLM accounted for the characteristics of the λ model. Biomechanically, no clear differences were found between the DLM and a Hill-type model. Accurate evaluations of the λ model, based on the comparison between data and simulations, are now possible with 3-D biomechanical descriptions of the speech articulators because of the DLM.
3D FINITE ELEMENT ANALYSIS OF THE DAMAGE EFFECTS ON THE DENTAL COMPOSITE SUBJECT TO WATER SORPTION
Institute of Scientific and Technical Information of China (English)
Fan Jianping; Tsui,C.P.; Tang,C.Y.; Chow,C.L.
2006-01-01
The damage effects of water sorption on the mechanical properties of the hydroxyapatite particle reinforced Bis-GMA/TEGDMA copolymer (HA/Bis-GMA/TEGDMA) have been predicted using 3D finite cell models. The plasticizer effect on the polymer matrix was considered as a variation of its Young's modulus. Three different cell models were used to determine the influence of varying particle contents, interphase strength and moisture concentration on the debonding damage. The stress distribution pattern has been examined and the stress transfer mode clarified. The Young's modulus and fracture strength of the Bis-GMA/TEGDMA composite were also predicted using the model with and without consideration of the damage. The former results with consideration of the debonding damage are in good agreement with existing literature experimental data. The shielding effect of our proposed model and an alternative approach were discussed. The FCC cell model has also been extended to predict the critical load for the damaged and the undamaged composite subject to the 3-point flexural test.
Directory of Open Access Journals (Sweden)
Fadhil Mezghani
2015-01-01
Full Text Available The optical properties of metallic nanoparticles are well known, but the study of their thermal behavior is in its infancy. However the local heating of surrounding medium, induced by illuminated nanostructures, opens the way to new sensors and devices. Consequently the accurate calculation of the electromagnetically induced heating of nanostructures is of interest. The proposed multiphysics problem cannot be directly solved with the classical refinement method of Comsol Multiphysics and a 3D adaptive remeshing process based on an a posteriori error estimator is used. In this paper the efficiency of three remeshing strategies for solving the multiphysics problem is compared. The first strategy uses independent remeshing for each physical quantity to reach a given accuracy. The second strategy only controls the accuracy on temperature. The third strategy uses a linear combination of the two normalized targets (the electric field intensity and the temperature. The analysis of the performance of each strategy is based on the convergence of the remeshing process in terms of number of elements. The efficiency of each strategy is also characterized by the number of computation iterations, the number of elements, the CPU time, and the RAM required to achieve a given target accuracy.
A 3D Finite Element model of the face for simulation in plastic and maxillo-facial surgery
Chabanas, M; Chabanas, Matthieu; Payan, Yohan
2000-01-01
This paper introduces a new Finite Element biomechanical model of the human face, which has been developed to be integrated into a simulator for plastic and maxillo-facial surgery. The idea is to be able to predict, from an aesthetic and functional point of view, the deformations of a patient face, resulting from repositioning of the maxillary and mandibular bone structures. This work will complete the simulator for bone-repositioning diagnosis that has been developed by the laboratory. After a description of our research project context, each step of the modeling is precisely described: the continuous and elastic structure of the skin tissues, the orthotropic muscular fibers and their insertions points, and the functional model of force generation. First results of face deformations due to muscles activations are presented. They are qualitatively compared to the functional studies provided by the literature on face muscles roles and actions.
Mokhtarikhoee, Sepideh; Jannesari, Alireza; Behroozi, Hamid; Mokhtarikhoee, Saeedeh
2008-01-01
Connectors in fixed partial dentures (FPDs) are the weakest areas and responsible for failure in most cases. Optimizing the design of connectors will lead to higher strength and better performance of all-ceramic FPDs. The aim of this study was to use the finite element method in order to simulate the effect of connector width on stress distribution in all-ceramic FPDs. Three 3-dimensional finite element models for a 3-unit FPD made of IPS-Empress 2 representing a lower first molar were created and a static load of 500 N was applied axially at mid pontic area. By choosing three different widths, 3 mm, 4 mm, 5 mm for connectors, three models I,II, and III for complete assembly of teeth and connectors were created. Maximum stress occurred in the connector area in all models. Compared to model I, stress decreased 24% in model III; so the wider connector lead to lower stress values. Connectors are the most regular area for the fracture in all-ceramic FPDs because of high concentration of stress. Decreasing the width of connector raises the stress and increases the risk for fracture. Also, maximum stress in bridges is less than half of the strength of IPS-Empress2 and no failure is expected for all cases. This in vitro study of 3-unit all ceramicFPDs made with IPS-Empress2 shows that an increase in the width of connector reduces the stress concentration and improves the likelihood of long-term prognosis. Also, IPS-Empress2 can be used in posterior regions in many cases.
Bone stress for a mini-implant close to the roots of adjacent teeth--3D finite element analysis.
Motoyoshi, M; Ueno, S; Okazaki, K; Shimizu, N
2009-04-01
This study aimed to evaluate stress in the bone when an orthodontic mini-implant is close to the roots of adjacent teeth using finite element models (FEMs), and to investigate the causes of the high implant failure rate in the mandible. Four FEMs were used: the implant touches nothing; the implant touches the surface of the periodontal membrane; part of the screw thread is embedded in the periodontal membrane; and the implant touches the root. The effect of cortical bone thickness was evaluated using values of 1, 2 and 3 mm. Maximum stress value and stress distribution on the bone elements was determined. Maximum stress on the bone increased when the mini-implant was close to the root. When the implant touched the root, stress increased to 140 MPa or more, and bone resorption could be predicted. Stress was higher for a cortical bone thickness of 2 mm than for other thicknesses. Cortical bone 2 mm thick had a higher risk for bone resorption. A mandible with an average cortical bone thickness of 2 mm may have a higher risk for implant loosening than a maxilla with the same degree of root proximity, which may be related to the lower success rate in the mandible.
Directory of Open Access Journals (Sweden)
Yi ePan
2013-12-01
Full Text Available Axonal injury represents a critical target area for the prevention and treatment of traumatic brain and spinal cord injuries. Finite element (FE models of the head and/or brain are often used to predict brain injury caused by external mechanical loadings, such as explosive waves and direct impact. The accuracy of these numerical models depends on correctly determining the material properties and on the precise depiction of the tissues’ microstructure (microscopic level. Moreover, since the axonal microstructure for specific regions of the brain white matter is locally oriented, the stress and strain fields are highly anisotropic and axon orientation dependent. Additionally, mechanical strain has been identified as the proximal cause of axonal injury, which further demonstrates the importance of this multi-scale relationship. In this study, our previously developed FE and kinematic axonal models are coupled and applied to a pseudo 3-dimensional representative volume element (RVE of central nervous system white matter to investigate the multi-scale mechanical behavior. An inverse FE procedure was developed to identify material parameters of spinal cord white matter by combining the results of uniaxial testing with FE modeling. A satisfactory balance between simulation and experiment was achieved via optimization by minimizing the squared error between the simulated and experimental force-stretch curve. The combination of experimental testing and FE analysis provides a useful analysis tool for soft biological tissues in general, and specifically enables evaluations of the axonal response to tissue-level loading and subsequent predictions of axonal damage.
Sotelo, Julio; Urbina, Jesus; Valverde, Israel; Tejos, Cristian; Irarrazaval, Pablo; Andia, Marcelo E; Uribe, Sergio; Hurtado, Daniel E
2016-06-01
Several 2D methods have been proposed to estimate WSS and OSI from PC-MRI, neglecting the longitudinal velocity gradients that typically arise in cardiovascular flow, particularly on vessel geometries whose cross section and centerline orientation strongly vary in the axial direction. Thus, the contribution of longitudinal velocity gradients remains understudied. In this work, we propose a 3D finite-element method for the quantification of WSS and OSI from 3D-CINE PC-MRI that accounts for both in-plane and longitudinal velocity gradients. We demonstrate the convergence and robustness of the method on cylindrical geometries using a synthetic phantom based on the Poiseuille flow equation. We also show that, in the presence of noise, the method is both stable and accurate. Using computational fluid dynamics simulations, we show that the proposed 3D method results in more accurate WSS estimates than those obtained from a 2D analysis not considering out-of-plane velocity gradients. Further, we conclude that for irregular geometries the accurate prediction of WSS requires the consideration of longitudinal gradients in the velocity field. Additionally, we compute 3D maps of WSS and OSI for 3D-CINE PC-MRI data sets from an aortic phantom and sixteen healthy volunteers and two patients. The OSI values show a greater dispersion than WSS, which is strongly dependent on the PC-MRI resolution. We envision that the proposed 3D method will improve the estimation of WSS and OSI from 3D-CINE PC-MRI images, allowing for more accurate estimates in vessels with pathologies that induce high longitudinal velocity gradients, such as coarctations and aneurisms.
Ansari, S. M.; Farquharson, C. G.; MacLachlan, S. P.
2017-07-01
In this paper, a new finite-element solution to the potential formulation of the geophysical electromagnetic (EM) problem that explicitly implements the Coulomb gauge, and that accurately computes the potentials and hence inductive and galvanic components, is proposed. The modelling scheme is based on using unstructured tetrahedral meshes for domain subdivision, which enables both realistic Earth models of complex geometries to be considered and efficient spatially variable refinement of the mesh to be done. For the finite-element discretization edge and nodal elements are used for approximating the vector and scalar potentials respectively. The issue of non-unique, incorrect potentials from the numerical solution of the usual incomplete-gauged potential system is demonstrated for a benchmark model from the literature that uses an electric-type EM source, through investigating the interface continuity conditions for both the normal and tangential components of the potential vectors, and by showing inconsistent results obtained from iterative and direct linear equation solvers. By explicitly introducing the Coulomb gauge condition as an extra equation, and by augmenting the Helmholtz equation with the gradient of a Lagrange multiplier, an explicitly gauged system for the potential formulation is formed. The solution to the discretized form of this system is validated for the above-mentioned example and for another classic example that uses a magnetic EM source. In order to stabilize the iterative solution of the gauged system, a block diagonal pre-conditioning scheme that is based upon the Schur complement of the potential system is used. For all examples, both the iterative and direct solvers produce the same responses for the potentials, demonstrating the uniqueness of the numerical solution for the potentials and fixing the problems with the interface conditions between cells observed for the incomplete-gauged system. These solutions of the gauged system also
Stress distribution in the cervical region of an upper central incisor in a 3D finite element model
Directory of Open Access Journals (Sweden)
Isis Andréa Venturini Pola Poiate
2009-06-01
Full Text Available The aim of this study was to evaluate the stress distribution in the cervical region of a sound upper central incisor in two clinical situations, standard and maximum masticatory forces, by means of a 3D model with the highest possible level of fidelity to the anatomic dimensions. Two models with 331,887 linear tetrahedral elements that represent a sound upper central incisor with periodontal ligament, cortical and trabecular bones were loaded at 45º in relation to the tooth's long axis. All structures were considered to be homogeneous and isotropic, with the exception of the enamel (anisotropic. A standard masticatory force (100 N was simulated on one of the models, while on the other one a maximum masticatory force was simulated (235.9 N. The software used were: PATRAN for pre- and post-processing and Nastran for processing. In the cementoenamel junction area, tensile forces reached 14.7 MPa in the 100 N model, and 40.2 MPa in the 235.9 N model, exceeding the enamel's tensile strength (16.7 MPa. The fact that the stress concentration in the amelodentinal junction exceeded the enamel's tensile strength under simulated conditions of maximum masticatory force suggests the possibility of the occurrence of non-carious cervical lesions such as abfractions.
Pavlenko, I. V.; Simonovskiy, V. I.; Demianenko, M. M.
2017-08-01
This research paper is aimed to investigating rotor dynamics of multistage centrifugal machines with ball bearings by using the computer programs “Critical frequencies of the rotor” and “Forced oscillations of the rotor,” which are implemented the mathematical model based on the use of beam finite elements. Free and forces oscillations of the rotor for the multistage centrifugal oil pump NPS 200-700 are observed by taking into account the analytical dependence of bearing stiffness on rotor speed, which is previously defined on the basis of results’ approximation for the numerical simulation in ANSYS by applying 3D finite elements. The calculations found that characteristic and constrained oscillations of rotor and corresponded to them forms of vibrations, as well as the form of constrained oscillation on the actual frequency for acceptable residual unbalance are determined.
Energy Technology Data Exchange (ETDEWEB)
Seo, Sang-Kyu; Lee, Sung-Uk; Lee, Eun-Ho; Yang, Dong-Yol [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Hyo-Chan; Yang, Yong-Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
The fuel rod is composed of the pellet made of UO{sub 2} and the cladding made of zircaloy which covers the pellet and transfers the heat from the pellet to the coolant. In particular, pellet-cladding mechanical interaction(PCMI) causes the failure of the cladding. Therefore, PCMI simulation code is necessary to access this phenomenon. METEOR and TOUTATIS have been developed by CEA in France. These codes analyze the multiphysics behavior using axisymmetric, axially-stacked, one-dimensional representation. As these calculate the global rod shape, there is a weak point to represent local behavior. For this purpose, CAST3M, which is 3D-FE code, has been developed for TOUTATIS. Recently, ALCYONE has been developed from METEOR and TOUTATIS in order to analyze chemical-physics and thermo-mechanical aspects. In USA, INL also has developed BISON code with multidimensional capability. In this paper, NUFORM3D, which is able to calculate elasto-plastic and contact behavior as three dimensional finite element (FE) module, has been developed by KAERI and KAIST. The NUFORM3D, which is able to calculate elastoplastic and contact behavior as three-dimensional finite element (FE) module, has been developed by KAERI and KAIST. To evaluate PCMI behavior of fuel rod, NUFORM3D has been linked with FRAPCON-3.4. The power ramp database (REGATE) in the test reactor was employed. The linked NUFORM3D module is able to show bamboo-shape deformation of cladding and maximum stress due to its deformation that FRAPCON3.4 cannot obtain.
Sunbuloglu, Emin
2015-01-01
Complete maxillary dentures are one of the most economic and easy ways of treatment for edentulous patients and are still widely used. However, their survival rate is slightly above three years. It is presumed that the failure reasons are not only due to normal fatigue but also emerge from damage based on unavoidable improper usage. Failure types other than long-term fatigue, such as over-deforming, also influence the effective life span of dentures. A hypothesis is presumed, stating that the premature/unexpected failures may be initiated by impact on dentures, which can be related to dropping them on the ground or other effects such as biting crispy food. Thus, the behavior of a complete maxillary denture under impact loading due to drop on a rigid surface was investigated using the finite element method utilizing explicit time integration and a rate-sensitive elastoplastic material model of polymethylmethacrylate (PMMA). Local permanent deformations have been observed along with an emphasis on frenulum region of the denture, regardless of the point of impact. Contact stresses at the tooth-denture base were also investigated. The spread of energy within the structure via wave propagation is seen to play a critical role in this fact. Stress-wave propagation is also seen to be an important factor that decreases the denture's fatigue life.
三维有限元并行EBE方法%PARALLEL 3-D FINITE ELEMENT ANALYSIS BASED ON EBE METHOD
Institute of Scientific and Technical Information of China (English)
刘耀儒; 周维垣; 杨强
2006-01-01
采用Jacobi预处理,推导了基于EBE方法的预处理共轭梯度算法,给出了有限元EBE方法在分布存储并行机上的计算过程,可以实现整个三维有限元计算过程的并行化.编制了三维有限元求解的PFEM(Parallel Finite Element Method)程序,并在网络机群系统上实现.采用矩形截面悬臂梁的算例,对PFEM程序进行了数值测试,对串行计算和并行计算的效率进行了分析,最后将PFEM程序应用于二滩拱坝-地基系统的三维有限元数值计算中.结果表明,三维有限元EBE算法在求解过程中不需要集成整体刚度矩阵,有效地减少了对内存的需求,具有很好的并行性,可以有效地进行三维复杂结构的大规模数值分析.
Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints
Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent
2016-10-01
In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.
Institute of Scientific and Technical Information of China (English)
ZHAO Lan-hao; LI Tong-chun; WANG Ling; HERREROS M. I.; PASTOR M.
2006-01-01
A two-step Taylor-Galerkin fractional-step finite element method, which is of second order accuracy in space and time, was proposed for the three-dimensional free surface problem. With this method, the intermediate velocity was explicitly obtained by neglecting pressure gradient term, and then the velocity was corrected by adding the effects of pressure once the pressure field had been obtained from the pressure Poisson equation. The level set approach was applied to track implicitly the free surface. In order to track the free surface, the transport equation of the level set function was solved at each time step and the level set function is reinitialized through iteration to maintain it as a distance function. The governing equations of the system were discretized by the two- step Taylor-Galerkin method, which is of high-order accuracy and easy to be used. The validity and reliability of this method in this article were proved by two numerical examples.
Energy Technology Data Exchange (ETDEWEB)
Akherraz, B.; Lautard, J.J. [CEA Saclay, Dept. Modelisation de Systemes et Structures, Serv. d' Etudes des Reacteurs et de Modelisation Avancee (DMSS/SERMA), 91 - Gif sur Yvette (France); Erhard, P. [Electricite de France (EDF), Dir. de Recherche et Developpement, Dept. Sinetics, 92 - Clamart (France)
2003-07-01
In this paper we present two applications of the Nodal finite elements developed by Hennart and del Valle, first to three-dimensional Cartesian meshes and then to two-dimensional Hexagonal meshes. This work has been achieved within the framework of the DESCARTES project, which is a co-development effort by the 'Commissariat a l'Energie Atomique' (CEA) and 'Electricite de France' (EDF) for the development of a toolbox for reactor core calculations based on object oriented programming. The general structure of this project is based on the object oriented method. By using a mapping technique proposed in Schneider's thesis and del Valle, Mund, we show how this structuration allows us an easy implementation of the hexagonal case from the Cartesian case. The main attractiveness of this methodology is the possibility of a pin-by-pin representation by division of each lozenge into smaller ones. Furthermore, we will explore the use of non structured quadrangles to treat the circular geometry within a hexagon. It remains nevertheless, in the hexagonal case, the implementation of the acceleration of the internal iterations by the DSA (Diffusion Synthetic Acceleration) or the TSA. (authors)
Finite element solution of 3-D turbulent Navier-Stokes equations for propeller-driven slender bodies
Thomas, Russell Hicks
1987-12-01
Three-dimensional turbulent flow over the aft end of a slender propeller driven body with the wake from a slender, planar appendage was calculated for 4 configurations. The finite element method in the form of the weak Galerkin formulation with the penalty method was used to solve the Reynolds averaged Navier-Stokes equations. The actual code was FIDAP, modified with a propeller body force and turbulence model, used for the solution. The turbulence model included an Inner Layer Integrated TKE model, and Outer Layer mixing length model, and a Planar Wake model. No separate boundary layer method was used for the body, rather modifications to the Integrated TKE model were made to account for the primary effects of the surface boundary layer on the flow. The flow was calculated at two levels of thrust and corresponding swirl, selfpropelled and 100 percent overthrust, as well as with selfpropelled thrust but no torque simulating an ideal rotor stator combination. Also, the selfpropelled case was calculated with a simplified turbulence model using only the Inner Layer and Planar Wake model. The results compared favorably with experiments.
Katti, Dinesh R; Katti, Kalpana S
2017-05-23
A robust computational model of a cancer cell is presented using finite element modeling. The model accurately captures nuances of the various components of the cellular substructure. The role of degradation of cytoskeleton on overall elastic properties of the cancer cell is reported. The motivation for degraded cancer cellular substructure, the cytoskeleton is the observation that the innate mechanics of cytoskeleton is disrupted by various anti-cancer drugs as therapeutic treatments for the destruction of the cancer tumors. We report a significant influence on the degradation of the cytoskeleton on the mechanics of cancer cell. Further, a simulations based study is reported where we evaluate mechanical properties of the cancer cell attached to a variety of substrates. The loading of the cancer cell is less influenced by nature of the substrate, but low modulus substrates such as osteoblasts and hydrogels indicate a significant change in unloading behavior and also the plastic deformation. Overall, softer substrates such as osteoblasts and other bone cells result in a much altered unloading response as well as significant plastic deformation. These substrates are relevant to metastasis wherein certain type of cancers such as prostate and breast cancer cells migrate to the bone and colonize through mesenchymal to epithelial transition. The modeling study presented here is an important first step in the development of strong predictive methodologies for cancer progression. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Venkatkumar, D.; Ravindran, D. [National Engineering College, Tamilnadu (India)
2016-01-15
In the present study, the distortion induced in rectangular plate of AISI 304 SS during autogenous GTA welding process is measured experimentally and further validated using Finite element (FE) analysis. The thermal histories are measured at fixed locations over the surface of the plate and the results are compared with FE analysis. The Gaussian surface and Volumetric heat source models are simulated and transient heat transfer analysis is performed. The heat source models have been tested with two different speeds. The effectiveness of change in thermal histories of the heat sources have been studied and reported. In FE analysis, the sequentially coupled thermomechanical analysis is performed using the thermal histories as input and the distortion of the plates are predicted and compared with experimental measurements. The large and small displacement theories are employed for the above purpose and the effectiveness of the theories are reported. The edge deformation of the plates have been measured and validated for both the theories. The residual stress and distortion at the mid span are predicted and discussed. The results predicted using large displacement theory is in good agreement with measured values.
Shi, X.; Utada, H.; Jiaying, W.
2009-12-01
The vector finite-element method combined with divergence corrections based on the magnetic field H, referred to as VFEH++ method, is developed to simulate the magnetotelluric (MT) responses of 3-D conductivity models. The advantages of the new VFEH++ method are the use of edge-elements to eliminate the vector parasites and the divergence corrections to explicitly guarantee the divergence-free conditions in the whole modeling domain. 3-D MT topographic responses are modeling using the new VFEH++ method, and are compared with those calculated by other numerical methods. The results show that MT responses can be modeled highly accurate using the VFEH+ +method. The VFEH++ algorithm is also employed for the 3-D MT data inversion incorporating topography. The 3-D MT inverse problem is formulated as a minimization problem of the regularized misfit function. In order to avoid the huge memory requirement and very long time for computing the Jacobian sensitivity matrix for Gauss-Newton method, we employ the conjugate gradient (CG) approach to solve the inversion equation. In each iteration of CG algorithm, the cost computation is the product of the Jacobian sensitivity matrix with a model vector x or its transpose with a data vector y, which can be transformed into two pseudo-forwarding modeling. This avoids the full explicitly Jacobian matrix calculation and storage which leads to considerable savings in the memory required by the inversion program in PC computer. The performance of CG algorithm will be illustrated by several typical 3-D models with horizontal earth surface and topographic surfaces. The results show that the VFEH++ and CG algorithms can be effectively employed to 3-D MT field data inversion.
Directory of Open Access Journals (Sweden)
Kikinis Ron
2006-03-01
Full Text Available Abstract Introduction Mitral Valve (MV 3D structural data can be easily obtained using standard transesophageal echocardiography (TEE devices but quantitative pre- and intraoperative volume analysis of the MV is presently not feasible in the cardiac operation room (OR. Finite element method (FEM modelling is necessary to carry out precise and individual volume analysis and in the future will form the basis for simulation of cardiac interventions. Method With the present retrospective pilot study we describe a method to transfer MV geometric data to 3D Slicer 2 software, an open-source medical visualization and analysis software package. A newly developed software program (ROIExtract allowed selection of a region-of-interest (ROI from the TEE data and data transformation for use in 3D Slicer. FEM models for quantitative volumetric studies were generated. Results ROI selection permitted the visualization and calculations required to create a sequence of volume rendered models of the MV allowing time-based visualization of regional deformation. Quantitation of tissue volume, especially important in myxomatous degeneration can be carried out. Rendered volumes are shown in 3D as well as in time-resolved 4D animations. Conclusion The visualization of the segmented MV may significantly enhance clinical interpretation. This method provides an infrastructure for the study of image guided assessment of clinical findings and surgical planning. For complete pre- and intraoperative 3D MV FEM analysis, three input elements are necessary: 1. time-gated, reality-based structural information, 2. continuous MV pressure and 3. instantaneous tissue elastance. The present process makes the first of these elements available. Volume defect analysis is essential to fully understand functional and geometrical dysfunction of but not limited to the valve. 3D Slicer was used for semi-automatic valve border detection and volume-rendering of clinical 3D echocardiographic
Directory of Open Access Journals (Sweden)
Zohreh Hedayati
2016-10-01
Full Text Available Abstract Background Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. Methods A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Results Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. Conclusions According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.
Shurbaji Mozayek, Rami; Allaf, Mirza; B. Abuharb, Mohammad
2016-01-01
Background. Long span is seen in many clinical situations. Treatmentplanning options of these cases are difficult and may require FPD, RPD or ISP. Each option has its own disadvantages, including mechanical problems, patient comfort and cost. This article will evaluate the stress distribution of a different treatment option, which consists of adding a single sup-porting implant to the FPD by using 3D finite element analysis. Methods. Three models, each consisting of 5 units, were created as follows: 1. Tooth Pontic Pontic Pontic Tooth; 2. Tooth Pontic Implant Pontic Tooth; 3. Tooth Pontic Pontic Implant Tooth. An axial force was applied to the prostheses by using 3D finite element method and stresses were evaluated. Results. The maximum stress was found in the prostheses in all the models; the highest stress values in all the shared components of the models were almost similar. Stress in implants was lower in the second model than the third one. Conclusion. Adding a supporting implant in long-span FPD has no advantages while it has the disadvantages of complicating treatment and the complications that may occur to the implant and surrounding bone. PMID:27429723
Huang, Jiaxin; Zhang, Xiaorong; Yao, Ji
2014-04-01
To construct a 3D finite-element model of the craniofacial complex with the original DICOM data of CT and to investigate the preliminary biomechanical characteristics with different directions and magnitudes of retractive forces to the maxilla of rhesus monkeys. A male rhesus monkey with mixed dentition was used. Spiral CT was performed to establish a 3D finite-element model of the craniofacial complex. The ANSYS 12.1 software was used to analyze craniofacial complex displacement. Each landmark showed larger displacement with increasing force value. The displacement values and force size exhibited a linear relationship. In the x-axis direction, all displacements were small. In the y-axis direction, all displacements showed significantly higher changes with increasing force value displacement. In the z-axis direction, the A-point and ANS point moved downward, but PNS moved upward. Loading retractive force resultes in an apparent backward and clockwise rotation on the maxilla with no obvious effects on the width of the upper jaw.
Directory of Open Access Journals (Sweden)
A. Labibzadeh
2008-01-01
Full Text Available In recent years, the material behavior dependence of laboratory concrete specimens built with the same concrete mixture under the same load conditions to their geometrical sizes is well established. This phenomenon which is observed not only in concrete but also in most quasi-brittle materials such as rock, ceramic or composite materials is now called as size effect. Many of the existing structural analyzing codes are not able to consider this important feature of concrete structures especially under compressive loadings. However we know that the main purpose of concrete application in structural members is to resist compression. The aim of this study is to show the ability of author's recently developed 3D finite elements code equipped with the proposed author's newly micro-planes damage based model for considering of compressive size effect of plane concrete. To do so, two different sizes of cubic concrete specimens are modeled with mentioned code under the uniaxial compressive test and their fracture mechanisms, pre-peak and post-peak strain-stress paths are investigated. Obtained results reveal the good coincidence with experimental evidences. In fact, the combination of proposed micro-planes damage based model and developed presented 3D finite elements technique creates a powerful numerical tool to capture and predict precisely strain localization and fracture mechanism in the specimens and consequently to assess properly the compressive size effect of plane concrete in analysis and design.
Sun, Yongle; Li, Q. M.; Withers, P. J.
2015-09-01
Realistic simulations are increasingly demanded to clarify the dynamic behaviour of foam materials, because, on one hand, the significant variability (e.g. 20% scatter band) of foam properties and the lack of reliable dynamic test methods for foams bring particular difficulty to accurately evaluate the strain-rate sensitivity in experiments; while on the other hand numerical models based on idealised cell structures (e.g. Kelvin and Voronoi) may not be sufficiently representative to capture the actual structural effect. To overcome these limitations, the strain-rate sensitivity of the compressive and tensile properties of closed-cell aluminium Alporas foam is investigated in this study by means of meso-scale realistic finite element (FE) simulations. The FE modelling method based on X-ray computed tomography (CT) image is introduced first, as well as its applications to foam materials. Then the compression and tension of Alporas foam at a wide variety of applied nominal strain-rates are simulated using FE model constructed from the actual cell geometry obtained from the CT image. The stain-rate sensitivity of compressive strength (collapse stress) and tensile strength (0.2% offset yield point) are evaluated when considering different cell-wall material properties. The numerical results show that the rate dependence of cell-wall material is the main cause of the strain-rate hardening of the compressive and tensile strengths at low and intermediate strain-rates. When the strain-rate is sufficiently high, shock compression is initiated, which significantly enhances the stress at the loading end and has complicated effect on the stress at the supporting end. The plastic tensile wave effect is evident at high strain-rates, but shock tension cannot develop in Alporas foam due to the softening associated with single fracture process zone occurring in tensile response. In all cases the micro inertia of individual cell walls subjected to localised deformation is found to
Chen, Wen-Ming; Park, Jaeyoung; Park, Seung-Bum; Shim, Victor Phyau-Wui; Lee, Taeyong
2012-06-26
The functions of the gastrocnemius-soleus (G-S) complex and other plantar flexor muscles are to stabilize and control major bony joints, as well as to provide primary coordination of the foot during the stance phase of gait. Geometric positioning of the foot and transferring of plantar loads can be adversely affected when muscular control is abnormal (e.g., equinus contracture). Although manipulation of the G-S muscle complex by surgical intervention (e.g., tendo-Achilles lengthening) is believed to be effective in restoring normal plantar load transfer in the foot, there is lack of quantitative data supporting that notion. Thus, the objective of this study is to formulate a three-dimensional musculoskeletal finite element model of the foot to quantify the precise role of the G-S complex in terms of biomechanical response of the foot. The model established corresponds to a muscle-demanding posture during heel rise, with simulated activation of major extrinsic plantar flexors. In the baseline (reference) case, required muscle forces were determined from what would be necessary to generate the targeted resultant ground reaction forces. The predicted plantar load transfer through the forefoot plantar surface, as indicated by plantar pressure distribution, was verified by comparison with experimental observations. This baseline model served as a reference for subsequent parametric analysis, where muscle forces applied by the G-S complex were decreased in a step-wise manner. Adaptive changes of the foot mechanism, in terms of internal joint configurations and plantar stress distributions, in response to altered muscular loads were analyzed. Movements of the ankle and metatarsophalangeal joints, as well as forefoot plantar pressure peaks and pressure distribution under the metatarsal heads (MTHs), were all found to be extremely sensitive to reduction in the muscle load in the G-S complex. A 40% reduction in G-S muscle stabilization can result in dorsal-directed rotations
DEFF Research Database (Denmark)
Abdolvand, Hamidreza; Majkut, Marta; Oddershede, Jette
2015-01-01
-of-mass positions and volumes as measured by three-dimensional X-ray diffraction (3DXRD) microscopy. The constructed microstructure is meshed with different element densities and for different numbers of grains. Then a selected group of twin and parent pairs are studied. It is shown that the measured average stress...... each grain, stresses in the parent and twin are quite different if they are plotted in the global coordinate system. However, if the stress tensor is rotated into the local coordinate system of the twin habit plane, all the stress components averaged over the presented population are close, except......Stress heterogeneity within each individual grain of polycrystalline Zircaloy-2 is studied using a crystal plasticity finite element (CPFE) model. For this purpose, the weighted Voronoi tessellation method is used to construct 3D geometries of more than 2600 grains based on their center...
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
3D finite element computational fracture analysis of an MCTS specimen%MCTS试件的三维有限元计算断裂分析
Institute of Scientific and Technical Information of China (English)
李庆芬; 齐桂营; 朱莉; 何水清
2011-01-01
为了探讨三维复合型断裂问题,采用ANSYS软件对一种带有倾斜裂纹面的修正紧凑拉剪(MCTS)试件进行了三维断裂有限元分析,并应用修正的虚拟裂纹闭合积分方法(MVCCI),对三维裂纹试件的应力强度因子进行了计算.研究结果表明:该MCTS试件在Ⅰ型、Ⅱ型及Ⅰ+Ⅱ复合型(加载角为45°)加载条件下均产生了Ⅰ+Ⅱ+Ⅲ复合型断裂,实验结果与有限元分析的结果吻合.%The 3D finite element computational fracture analysis of a modified compact tension shear ( MCTS) specimen with an inclined crack plane was presented in this paper by using ANSYS in order to further study a 3D mixed-mode fracture. The stress intensity factors of the 3 D-crack specimen were calculated by the modified virtual crack closure integral (MVCCI) method. Results show that the mixed-mode I + II + HI fracture occurred when the MCTS specimen was subject to mode I, mode II, and mixed-mode I + II loadings (loading angle is 45°). Results of the finite element analysis are in good agreement with the experimental results, suggesting that the numerical analysis in the presented work is reliable.
Minisini, S.; Zhebel, E.; Kononov, A.; Mulder, W.A.
2012-01-01
The spreading adoption of computationally intensive techniques such as Reverse Time Migration and Full Waveform Inversion increases the need of efficiently solving the three-dimensional wave equation. Common finite-difference discretization schemes lose their accuracy and efficiency in complex geol
Ramos Verri, Fellippo; Santiago Junior, Joel Ferreira; de Faria Almeida, Daniel Augusto; de Oliveira, Guilherme Bérgamo Brandão; de Souza Batista, Victor Eduardo; Marques Honório, Heitor; Noritomi, Pedro Yoshito; Pellizzer, Eduardo Piza
2015-01-02
The study of short implants is relevant to the biomechanics of dental implants, and research on crown increase has implications for the daily clinic. The aim of this study was to analyze the biomechanical interactions of a singular implant-supported prosthesis of different crown heights under vertical and oblique force, using the 3-D finite element method. Six 3-D models were designed with Invesalius 3.0, Rhinoceros 3D 4.0, and Solidworks 2010 software. Each model was constructed with a mandibular segment of bone block, including an implant supporting a screwed metal-ceramic crown. The crown height was set at 10, 12.5, and 15 mm. The applied force was 200 N (axial) and 100 N (oblique). We performed an ANOVA statistical test and Tukey tests; p0.05) under axial load. However, crown heights of 12.5 and 15 mm caused statistically significant damage to the stress distribution of screws and to the cortical bone (p<0.001) under oblique load. High crown to implant (C/I) ratio harmed microstrain distribution on bone tissue under axial and oblique loads (p<0.001). Crown increase was a possible deleterious factor to the screws and to the different regions of bone tissue.
Han, Daoru; Wang, Pu; He, Xiaoming; Lin, Tao; Wang, Joseph
2016-09-01
Motivated by the need to handle complex boundary conditions efficiently and accurately in particle-in-cell (PIC) simulations, this paper presents a three-dimensional (3D) linear immersed finite element (IFE) method with non-homogeneous flux jump conditions for solving electrostatic field involving complex boundary conditions using structured meshes independent of the interface. This method treats an object boundary as part of the simulation domain and solves the electric field at the boundary as an interface problem. In order to resolve charging on a dielectric surface, a new 3D linear IFE basis function is designed for each interface element to capture the electric field jump on the interface. Numerical experiments are provided to demonstrate the optimal convergence rates in L2 and H1 norms of the IFE solution. This new IFE method is integrated into a PIC method for simulations involving charging of a complex dielectric surface in a plasma. A numerical study of plasma-surface interactions at the lunar terminator is presented to demonstrate the applicability of the new method.
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times
Directory of Open Access Journals (Sweden)
A. Lamecki
2014-12-01
Full Text Available In this paper, an efficient computational framework for the full-wave design by optimization of complex microwave passive devices, such as antennas, filters, and multiplexers, is described. The framework consists of a computational engine, a 3D object modeler, and a graphical user interface. The computational engine, which is based on a finite element method with curvilinear higher-order tetrahedral elements, is coupled with built-in or external gradient-based optimization procedures. For speed, a model order reduction technique is used and the gradient computation is achieved by perturbation with geometry deformation, processed on the level of the individual mesh nodes. To maximize performance, the framework is targeted to multicore CPU architectures and its extended version can also use multiple GPUs. To illustrate the accuracy and high efficiency of the framework, we provide examples of simulations of a dielectric resonator antenna and full-wave design by optimization of two diplexers involving tens of unknowns, and show that the design can be completed within the duration of a few simulations using industry-standard FEM solvers. The accuracy of the design is confirmed by measurements.
Finite element mesh generation
Lo, Daniel SH
2014-01-01
Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques
Shi, Dufang; Wang, Fang; Wang, Dongmei; Li, Xiaoqin; Wang, Qiugen
2014-06-01
The anterior part of the sacroiliac joint (SIJ) is a synovial joint, with little gliding and rotary movement between the contact surfaces of SIJ during locomotion. Due to its complex structure, especially when considering the surrounding ligaments, it is difficult to construct an accurate three-dimensional (3-D) finite element model for the human pelvis. Most of the pelvic models in the previous studies were simplified with either SIJ fusing together or without the sacral bone. However, the influence of those simplifications on the load transmission in human pelvis has not been studied, so the reliability of those studies remains unclear. In this study, two 3-D pelvic models were constructed: an SIJ fusing model and an SIJ contacting model. In the SIJ fusing model, the SIJ interfaces were fused together. In the SIJ contacting model, the SIJ interfaces were just in contact with each other without fusion. Compared with the SIJ contacting model, the SIJ fusing model have smaller movements in the SIJ. The stress distribution area in the SIJ fusing model on sacroiliac cartilages was also different. Those differences contributed to the decline of tensile force in the SIJ surrounding ligaments and the re-distribution of stress in the pelvic bones. In addition, the SIJ fusing model was far less sensitive to the increase in modulus of the sacroiliac cartilages, and decrease in stiffness of the ligaments surrounding the SIJ. The presence of synovia in the SIJ had greater influence on the load transmission in the human pelvic system. Therefore, the effect of the presence of synovia should not be neglected when the biomechanical behavior of human pelvis is being studied, especially for those studies related to clinical applications.
Ichimura, Tsuyoshi; Agata, Ryoichiro; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo; Fukahata, Yukitoshi
2016-07-01
As a result of the accumulation of high-resolution observation data, 3-D high-fidelity crustal structure data for large domains are becoming available. However, it has been difficult to use such data to perform elastic/viscoelastic crustal deformation analyses in large domains with quality assurance of the numerical simulation that guarantees convergence of the numerical solution with respect to the discretization size because the costs of analysis are significantly high. This paper proposes a method of constructing a high-fidelity crustal structure finite element (FE) model using high-fidelity crustal structure data and fast FE analysis to reduce the costs of analysis (based on automatic FE model generation for parallel computation, OpenMP/MPI hybrid parallel computation on distributed memory computers, a geometric multigrid, variable preconditioning and multiple precision arithmetic). Using the proposed methods, we construct 10 billion degree-of-freedom high-fidelity crustal structure FE models for the entire Japan, and conduct elastic/viscoelastic crustal deformation analysis using this model with enough high accuracy of the numerical simulation.
Ghasemi, Ehsan; Abedian, Alireza; Iranmanesh, Pedram; Khazaei, Saber
2015-01-01
Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis. A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic. For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part. Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer.
Ghasemi, Ehsan; Abedian, Alireza; Iranmanesh, Pedram; Khazaei, Saber
2015-01-01
Background: Osseointegration of dental implants is influenced by many biomechanical factors that may be related to stress distribution. The aim of this study was to evaluate the effect of type of luting agent on stress distribution in the bone surrounding implants, which support a three-unit fixed dental prosthesis (FDP) using finite element (FE) analysis. Materials and Methods: A 3D FE model of a three-unit FDP was designed replacing the maxillary first molar with maxillary second premolar and second molar as the abutments using CATIA V5R18 software and analyzed with ABAQUS/CAE 6.6 version. The model was consisted of 465108 nodes and 86296 elements and the luting agent thickness was considered 25 μm. Three load conditions were applied on eight points in each functional cusp in horizontal (57.0 N), vertical (200.0 N) and oblique (400.0 N, θ = 120°) directions. Five different luting agents were evaluated. All materials were assumed to be linear elastic, homogeneous, time independent and isotropic. Results: For all luting agent types, the stress distribution pattern in the cortical bone, connectors, implant and abutment regions was almost uniform among the three loads. Furthermore, the maximum von Mises stress of the cortical bone was at the palatal side of second premolar. Likewise, the maximum von Mises stress in the connector region was in the top and bottom of this part. Conclusion: Luting agents transfer the load to cortical bone and different types of luting agents do not affect the pattern of load transfer. PMID:25709676
Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.
2014-11-01
Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.
Energy Technology Data Exchange (ETDEWEB)
Deng, Dean, E-mail: deandeng@cqu.edu.c [College of Materials Science and Engineering, Chongqing University, Shazheng Street 174, Shapingba, Chongqing 400044 (China); Kiyoshima, Shoichi [Research Center of Computational Mechanics, Inc., Togoshi NI-Bldg., 1-7-1 Togoshi, Shinagawa-ku, Tokyo 142-0041 (Japan); Ogawa, Kazuo [Japan Nuclear Energy Safety Organization, TOKYU REIT Toranomon Bldg, 3-17-1, Toranomon, Minato-ku, Tokyo 105-0001 (Japan); Yanagida, Nobuyoshi [Hitachi Ltd. 1-1, Saiwa-cho 3-chome, Hitachi-shi, Ibaraki-ken 317-8511 (Japan); Saito, Koichi [Hitachi-GE Nuclear Energy, Ltd. 2-2, Omika-cho, 5-chome, Hitachi-shi, Ibaraki-ken 319-1221 (Japan)
2011-01-15
Research highlights: Welding residual stresses have asymmetrical distributions in the dissimilar metal pipe. Variable length heat source model can largely save computing time. Besides welding, other thermal processes also affect residual stresses. - Abstract: Dissimilar metal welds are commonly used in nuclear power plants to connect low alloy steel components and austenitic stainless steel piping systems. The integrity assessment and life estimation for such welded structures require consideration of residual stresses induced by manufacturing processes. Because the fabrication process of dissimilar metal weld joints is considerably complex, it is very difficult to accurately predict residual stresses. In this study, both numerical simulation technology and experimental method were used to investigate welding residual stress distribution in a dissimilar metal pipe joint with a medium diameter, which were performed by a multi-pass welding process. Firstly, an experimental mock-up was fabricated to measure the residual stress distributions on the inside and the outside surfaces. Then, a time-effective 3-D finite element model was developed to simulate welding residual stresses through using a simplified moving heat source. The simplified heat source method could complete the thermo-mechanical analysis in an acceptable time, and the simulation results generally matched the measured data near the weld zone. Through comparing the simulation results and the experimental measurements, we can infer that besides the multi-pass welding process other key manufacturing processes such as cladding, buttering and heat treatment should also be taken into account to accurately predict residual stresses in the whole range of the dissimilar metal pipe.
Boukazouha, F; Poulin-Vittrant, G; Tran-Huu-Hue, L P; Bavencoffe, M; Boubenider, F; Rguiti, M; Lethiecq, M
2015-07-01
This article is dedicated to the study of Piezoelectric Transformers (PTs), which offer promising solutions to the increasing need for integrated power electronics modules within autonomous systems. The advantages offered by such transformers include: immunity to electromagnetic disturbances; ease of miniaturisation for example, using conventional micro fabrication processes; and enhanced performance in terms of voltage gain and power efficiency. Central to the adequate description of such transformers is the need for complex analytical modeling tools, especially if one is attempting to include combined contributions due to (i) mechanical phenomena owing to the different propagation modes which differ at the primary and secondary sides of the PT; and (ii) electrical phenomena such as the voltage gain and power efficiency, which depend on the electrical load. The present work demonstrates an original one-dimensional (1D) analytical model, dedicated to a Rosen-type PT and simulation results are successively compared against that of a three-dimensional (3D) Finite Element Analysis (COMSOL Multiphysics software) and experimental results. The Rosen-type PT studied here is based on a single layer soft PZT (P191) with corresponding dimensions 18 mm × 3 mm × 1.5 mm, which operated at the second harmonic of 176 kHz. Detailed simulational and experimental results show that the presented 1D model predicts experimental measurements to within less than 10% error of the voltage gain at the second and third resonance frequency modes. Adjustment of the analytical model parameters is found to decrease errors relative to experimental voltage gain to within 1%, whilst a 2.5% error on the output admittance magnitude at the second resonance mode were obtained. Relying on the unique assumption of one-dimensionality, the present analytical model appears as a useful tool for Rosen-type PT design and behavior understanding.
Institute of Scientific and Technical Information of China (English)
Juan Chen; Chong-Jun Li; Wan-Ji Chen
2011-01-01
In this paper,a 13-node pyramid spline element is derived by using the tetrahedron volume coordinates and the B-net method,which achieves the second order completeness in Cartesian coordinates.Some appropriate examples were employed to evaluate the performance of the proposed element.The numerical results show that the spline element has much better performance compared with the isoparametric serendipity element Q20 and its degenerate pyramid element P13 especially when mesh is distorted,and it is comparable to the Lagrange element Q27.It has been demonstrated that the spline finite element method is an efficient tool for developing high accuracy elements.
Lightning fast animation in Element 3D
Audronis, Ty
2014-01-01
An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i
Zeumann, Stefanie; Hampel, Andrea
2015-04-01
Subduction of aseismic oceanic ridges causes considerable deformation of the forearc region. To investigate the role of ridge orientation relative to the margin and convergence direction on the style of forearc deformation, we developed a series of 3D finite-elemente models, in which a rigid oceanic plate carrying the model ridge subducts beneath a deformable forearc wedge. Experiments were carried out for angles of 30°, 60° and 90° between the ridge axis and the trench and for different convergence directions. In the experiments, in which the ridge axis is parallel to the convergence direction, the ridge is stationary; in all other experiments, the ridge migrates along the margin and thus affects different regions of the forearc. Our results show that the ridge indents and uplifts the forearc in all models. For obliquely subducting ridges the displacement and strain fields become highly asymmetric regardless if the ridge is stationary or migrates along the forearc. Only if the ridge is stationary and oriented perpendicular to the margin, the deformation is symmetric relative to the ridge axis. Stationary ridges show uplift only above the ridge tip, whereas a migrating ridge causes a wave of uplift above the leading flank of the ridge followed by subsidence above the trailing flank. Horizontal strain components show domains of both extension and shortening, with extension occurring above the ridge tip and shortening above the ridge flanks. To compare our results with natural case studies, we computed additional models reflecting the setting of the stationary Cocos Ridge subducting beneath southern Costa Rica and of the Nazca Ridge, which migrates along the Peruvian margin. The results of these adjusted models are in good agreement with field observations. For the model of the Cocos Ridge the highest degree of shortening occurs normal to the margin, which coincides with the location of a thrust belt in the forearc of Costa Rica with its maximum shortening inboard
Huang, Huajun; Xiang, Chunling; Zeng, Canjun; Ouyang, Hanbin; Wong, Kelvin Kian Loong; Huang, Wenhua
2015-12-01
We improved the geometrical modeling procedure for fast and accurate reconstruction of orthopedic structures. This procedure consists of medical image segmentation, three-dimensional geometrical reconstruction, and assignment of material properties. The patient-specific orthopedic structures reconstructed by this improved procedure can be used in the virtual surgical planning, 3D printing of real orthopedic structures and finite element analysis. A conventional modeling consists of: image segmentation, geometrical reconstruction, mesh generation, and assignment of material properties. The present study modified the conventional method to enhance software operating procedures. Patient's CT images of different bones were acquired and subsequently reconstructed to give models. The reconstruction procedures were three-dimensional image segmentation, modification of the edge length and quantity of meshes, and the assignment of material properties according to the intensity of gravy value. We compared the performance of our procedures to the conventional procedures modeling in terms of software operating time, success rate and mesh quality. Our proposed framework has the following improvements in the geometrical modeling: (1) processing time: (femur: 87.16 ± 5.90 %; pelvis: 80.16 ± 7.67 %; thoracic vertebra: 17.81 ± 4.36 %; P < 0.05); (2) least volume reduction (femur: 0.26 ± 0.06 %; pelvis: 0.70 ± 0.47, thoracic vertebra: 3.70 ± 1.75 %; P < 0.01) and (3) mesh quality in terms of aspect ratio (femur: 8.00 ± 7.38 %; pelvis: 17.70 ± 9.82 %; thoracic vertebra: 13.93 ± 9.79 %; P < 0.05) and maximum angle (femur: 4.90 ± 5.28 %; pelvis: 17.20 ± 19.29 %; thoracic vertebra: 3.86 ± 3.82 %; P < 0.05). Our proposed patient-specific geometrical modeling requires less operating time and workload, but the orthopedic structures were generated at a higher rate of success as compared with the conventional method. It is expected to benefit the surgical planning of orthopedic
Directory of Open Access Journals (Sweden)
ZHU Lei
2015-09-01
Full Text Available A three-dimensional finite-element software program is used in this study to analyze the causes of cracks in an underground garage. Numerous cracks, serious and regular alike, can be found in the underground garage of the Hefei Government Affairs Center. These cracks are mainly located around the central part of the bottom floor within a 44.6– 57.8 m radius. To explore the causes of the cracks, two attempts are made. On one hand, on-site crack detection and underground water monitoring are conducted. On the other hand, the finite-element software program ANSYS is adopted to establish a finite-element model for the floor–foundation and connecting beam–foundation soil systems of the underground garage. Furthermore, the influences of the underground foundation, underground water level, soil expansion, and Poisson ratio on the bottom floor are calculated and analyzed. On the basis of the calculation and monitoring results, the following conclusion can be made: underground water is the main cause of the bottom floor cracks because underground water exerts a pushing force from the bottom and causes the expansibility of expansive soil. The study aims to provide a theoretical basis for the treatment of cracking in the Hefei Government Affairs Center, and offer a reference for the design, construction, and maintenance of similar projects.
Institute of Scientific and Technical Information of China (English)
林志朋; 刘振祥; 杨栋; 欧阳建明; 杨丽佳
2016-01-01
基于deal．ii编写了电磁轨道炮有限元仿真程序，建立了拉格朗日运动坐标下电磁轨道炮的有限元仿真模型；通过使用有限元边界元耦合方法可以对电磁轨道炮的边界条件进行计算，而无需对轨道炮周边的空气划分网格，是一种处理电磁场边界问题的有效方法；但是，由于边界元方法，使用的是满秩矩阵，在三维情况下计算量大，利用轨道炮的对称性，使用对称边界条件，减少了参与计算的网格数目，从而减少计算量。%This article created finite element program and model for rail launch based on deal.ii in La-grange coordinate frame.By using coupling finite element/boundary element coupling method,we can cal-culate boundary condition without air grid surround rail gun.It is a valid method to handle boundary prob-lems of electromagnetic without the perimeter of the rail gun air mesh.But for boundary element method u-sing full matrix which will cost a lot of calculation in 3D situation,we would better using symmetry condi-tions for rail gun to reduce the grid number and calculation.
Directory of Open Access Journals (Sweden)
Manuela Volpe
2015-06-01
Full Text Available We present a Finite Element inverse analysis of the static deformation field for the Mw= 6.3, 2009 L’Aquila earthquake, in order to infer the rupture slip distribution on the fault plane. An univocal solution for the rupture slip distribution has not been reached yet with negative impact for reliable hazard scenarios in a densely populated area. In this study, Finite Element computed Green’s functions were implemented in a linear joint inversion scheme of geodetic (GPS and InSAR and seismological (strong motion coseismic deformation data. In order to fully exploit the informative power of our dense dataset and to honor the complexities of the real Earth, we implemented an optimized source model, represented by a fault plane subdivided in variable size patches, embedded in a high-resolution realistic three-dimensional model of the Apenninic seismo-tectonic setting, accounting for topographic reliefs and rheological heterogeneities deduced from local tomography. We infer that the investigated inversion domain contains two minima configurations in the solution space, i.e. a single- and a double-patch slip distribution, which are almost equivalent, so that the available datasets and numerical models are not able to univocally discriminate between them. Nevertheless our findings suggest that a two high-slip patch pattern is slightly favoured.
三维有限元并行计算及其工程应用%PARALLEL 3D FINITE ELEMENT ANALYSIS AND ITS APPLICATION TO HYDRAULIC ENGINEERING
Institute of Scientific and Technical Information of China (English)
刘耀儒; 周维垣; 杨强; 陈新
2005-01-01
针对水利工程中的大型复杂三维结构对大规模数值计算的需求,基于J-PCG方法(Jacobi预处理共轭梯度法),建立了有限元EBE(element-by-element)方法在分布存储并行机上的计算算法.该算法不用考虑网格拓扑结构和单元的排序,同时不形成整体刚度矩阵,而且避免了对复杂的三维结构进行区域分解.采用上述算法编制了三维有限元并行求解的PFEM(parallel finite element method)程序,并在网络机群系统上实现,然后将其应用到二滩拱坝-地基系统和水布娅地下洞室的三维有限元数值计算中.数值计算结果表明,三维有限元并行EBE方法非常适合于水利工程中三维复杂结构的大规模数值计算.
Li, Liang; Huang, Ting-Zhu; Jing, Yan-Fei; Zhang, Yong
2010-02-01
The incomplete Cholesky (IC) factorization preconditioning technique is applied to the Krylov subspace methods for solving large systems of linear equations resulted from the use of edge-based finite element method (FEM). The construction of the preconditioner is based on the fact that the coefficient matrix is represented in an upper triangular compressed sparse row (CSR) form. An efficient implementation of the IC factorization is described in detail for complex symmetric matrices. With some ordering schemes our IC algorithm can greatly reduce the memory requirement as well as the iteration numbers. Numerical tests on harmonic analysis for plane wave scattering from a metallic plate and a metallic sphere coated by a lossy dielectric layer show the efficiency of this method.
Bielert, E; ten Kate, H
2012-01-01
For a future luminosity upgrade of CERN’s Large Hadron Collider, a drastically improved heat removal in the inner triplet quadrupole magnets is required. One of the necessary improvements involves the cable insulation. A porous all-polyimide insulation scheme has been proposed recently. Essentially the insulation features a network of micro channels filled with superfluid helium that significantly increases the heat transfer through the insulation layer. A three dimensional Finite Element model required to simulate and study the enhanced heat transfer through the micro channels is presented here. The thermal coupling between heated cable and helium as well as the heat flux through the micro-channels are investigated. The model is validated by comparison of results with published measured data. Finally a sensitivity analysis is performed concerning the stability of the cables in magnet windings.
Analysis of 3-D Frictional Contact Mechanics Problems by a Boundary Element Method
Institute of Scientific and Technical Information of China (English)
KEUM Bangyong; LIU Yijun
2005-01-01
The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discretizations for solving 3-D boundary element models, which provide much needed flexibility in the boundary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.
Mountris, K A; Bert, J; Noailly, J; Aguilera, A Rodriguez; Valeri, A; Pradier, O; Schick, U; Promayon, E; Ballester, M A Gonzalez; Troccaz, J; Visvikis, D
2017-03-21
Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model's computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10-20% the Day30 urethra D10 dose metric is higher by 4.2%-10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.
Mountris, K. A.; Bert, J.; Noailly, J.; Rodriguez Aguilera, A.; Valeri, A.; Pradier, O.; Schick, U.; Promayon, E.; Gonzalez Ballester, M. A.; Troccaz, J.; Visvikis, D.
2017-03-01
Prostate volume changes due to edema occurrence during transperineal permanent brachytherapy should be taken under consideration to ensure optimal dose delivery. Available edema models, based on prostate volume observations, face several limitations. Therefore, patient-specific models need to be developed to accurately account for the impact of edema. In this study we present a biomechanical model developed to reproduce edema resolution patterns documented in the literature. Using the biphasic mixture theory and finite element analysis, the proposed model takes into consideration the mechanical properties of the pubic area tissues in the evolution of prostate edema. The model’s computed deformations are incorporated in a Monte Carlo simulation to investigate their effect on post-operative dosimetry. The comparison of Day1 and Day30 dosimetry results demonstrates the capability of the proposed model for patient-specific dosimetry improvements, considering the edema dynamics. The proposed model shows excellent ability to reproduce previously described edema resolution patterns and was validated based on previous findings. According to our results, for a prostate volume increase of 10–20% the Day30 urethra D10 dose metric is higher by 4.2%–10.5% compared to the Day1 value. The introduction of the edema dynamics in Day30 dosimetry shows a significant global dose overestimation identified on the conventional static Day30 dosimetry. In conclusion, the proposed edema biomechanical model can improve the treatment planning of transperineal permanent brachytherapy accounting for post-implant dose alterations during the planning procedure.
Directory of Open Access Journals (Sweden)
X. Z. Zhu
2013-01-01
Full Text Available Three-dimensional finite element modeling of polymer melt flowing in a new co-rotating tri-screw extruder was established with mesh superposition technique. Based on the particle tracking technology, three typical particle trajectories in the tri-screw extruder were calculated using a 4th-order-Runge-Kutta method to study the dynamic motions of the particles. Then the flow visualizations in the local center region were carried out. Moreover, the dispersive, distributive and stretching mixing efficiencies of the tri-screw and twin-screw extruders were compared, respectively. The results show that when the particles move from one screw to another, there are great abrupt changes in the velocities and displacements, which induce the abrupt change in the stress magnitude. Most of particles, which are initially distributed in the inlet plane of the center region, fast flow out the outlet and don’t pass through any screw. This special phenomenon induces a series of new characteristics in the residence time distribution (RTD, flow number, segregation scale and time averaged efficiency. In comparison with the twin-screw extruder, the tri-screw extruder has better mixing efficiency.
Akça, K; Iplikçioğlu, H
2001-01-01
Buccolingual angulation of the mandibular posterior edentulous region may affect the prosthetic load conditions, so as to cause high stress concentrated areas that may easily lead to failure. The aim of this study was to evaluate the effect of various predetermined buccolingual angulation values on stress distribution in the mandibular posterior edentulous region restored with implant-supported fixed partial dentures, using three-dimensional finite element analysis. Stress analyses were performed applying 400N oblique force to implant-supported fixed prosthesis. Stress analyses indicated tensile stress values on the buccal surface and compressive stress values on the lingual surface of cortical bone were increased as the angulation of the edentulous bone increased (especially corresponding to the cervical region of the implants). Compressive stress values, observed where two implants were placed at the second premolar and second molar regions (5-7 design) and first and second molar regions (6-7 design), respectively, were very close to or even exceeded the ultimate compressive strength of bone. It is concluded that when a definite buccolingual angulation is added to other existing risk factors such as bruxism, placing an implant for every missing tooth might reduce the high stress concentration areas.
Stevenson, Thomas; Doschak, Michael
2014-01-01
The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built using μCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. For in vivo validation of the FE model, Sprague-Dawley rats (n = 25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs. PMID:25295060
Directory of Open Access Journals (Sweden)
Yeganeh Memari
2014-10-01
Full Text Available Distal extension removable partial denture is a prosthesis with lack of distal dental support with a 13-fold difference in resiliency between the mucosa and the periodontal ligament, resulting in leverage during compression forces. It may be potentially destructive to the abutments and the surrounding tissues. The aim of this study was to assess the effect of implant location on stress distribution, in distal extension implant assisted removable partial dentures.Three-dimensional models of a bilateral distal extension partially edentulous mandible containing anterior teeth and first premolar in both sides of the arch, a partial removable denture and an implant (4×10mm were designed. With the aid of the finite element program ANSYS 8.0, the models were meshed and strictly vertical forces of 10 N were applied to each cusp tip. Displacement and von Mises Maps were plotted for visualization of results.When an implant was placed in the second premolar region, the highest stress on implant, abutment tooth and cancellous bone was shown. The lowest stress was shown on implant and bone in the 1(st molar area.Implants located in the first molar area showed the least distribution of stresses in the analyzed models.
Celebi, Alper Tunga; Icer, Esra; Eren, Meltem Mert; Baykasoglu, Cengiz; Mugan, Ata; Yildiz, Esra
2017-11-01
Main objective of this study is to investigate the thermal behavior of ceramic laminate veneer restorations of the maxillary central incisor with different incisal preparations such as butt joint and palatinal chamfer using finite element method. In addition, it is also aimed to understand the effect of different thermal loads which simulates hot and cold liquid imbibing in the mouth. Three-dimensional solid models of the sound tooth and prepared veneer restorations were obtained using micro-computed tomography images. Each ceramic veneer restoration was made up of ceramic, luting resin cement and adhesive layer which were generated based on the scanned images using computer-aided design software. Our solid model also included the remaining dental tissues such as periodontal ligament and surrounding cortical and spongy bones. Time-dependent linear thermal analyses were carried out to compare temperature changes and stress distributions of the sound and restored tooth models. The liquid is firstly in contact with the crown area where the maximum stresses were obtained. For the restorations, stresses on palatinal surfaces were found larger than buccal surfaces. Through interior tissues, the effect of thermal load diminished and smaller stress distributions were obtained near pulp and root-dentin regions. We found that the palatinal chamfer restoration presents comparatively larger stresses than the butt joint preparation. In addition, cold thermal loading showed larger temperature changes and stress distributions than those of hot thermal loading independent from the restoration technique. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discrete elements for 3D microfluidics.
Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah
2014-10-21
Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.
Martinez, J.; Belahcen, A.; Detoni, J. G.
2016-01-01
This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.
Motta, Andréa Barreira; Pereira, Luiz Carlos; Duda, Fernando Pereira; Anusavice, Kenneth J
2014-07-01
Occlusal reduction is considered a fundamental step for providing adequate and uniform space for the ceramic prosthesis; however, a flat occlusal surface is usually found. The prosthesis design influences the resistance to deformation and the stress state within the ceramic. This finite element (FE) study analyzes the influence of changing the substructure design on the stress distribution of a metal-ceramic crown in a premolar tooth with three types of occlusal reduction. Each part of three-dimensional metal ceramic complete crown models was designed according to the space provided by different levels of occlusal reduction and the same external morphology of the tooth. Three models were designed: (1) correct occlusal reduction with a uniform thickness of the substructure (0.3 mm) and the veneering porcelain (1.5 mm); (2) flat occlusal reduction with different thicknesses of veneering porcelain to produce a uniform substructure; and (3) a flat occlusal reduction with different thicknesses of substructure for a uniform thickness of veneering porcelain. Stress distributions were very similar in the three models. The highest tensile stresses were concentrated immediately below the midline fissure in both the veneering porcelain and the metal alloy substructure. Although models with flat occlusal reduction had lower stress values, this preparation results from a reduction that removes a greater amount of sound tissue, which may increase the probability of dental pulp injury. Occlusal reduction must be anatomic; however, when a flat occlusal reduction already exists, the substructure must reproduce the correct anatomic form to allow a uniform thickness of the veneering porcelain. © 2014 by the American College of Prosthodontists.
Directory of Open Access Journals (Sweden)
Allahyar Gerami
2016-06-01
Full Text Available Abstract Background Fixed orthodontic retainers have numerous advantages, but it is not known whether they can exert pathological forces on supporting tissues around the splinted teeth. The purpose of this study was to investigate how the inclination of the lower anterior teeth can affect dental displacement and also change the direction of occlusal loads exerted to dental and its supporting tissues. Methods Four three-dimensional finite element models of the anterior part of the mandible were designed. All the models contained the incisors and canines, their periodontal ligament layers (PDLs, the supporting bone (both spongy and cortical, and a pentaflex splinting wire placed in the lingual side of the teeth. Teeth inclination was considered to be 80° (model 1, 90° (model 2, 100° (model 3, and 110° (model 4 to the horizontal plane. The lower incisors were loaded with a 187-N vertical force. Their displacement patterns and the stress in their PDLs were evaluated. Results In incisors with 80° of inclination, less than a 0.1-mm lingual displacement was seen on the incisal edge and a similar distance of displacement towards the labial was seen on their root apices. However, in models with 90°–110° of inclination, the incisal edge displaced labially between about 0.01 and 0.45 mm, while root apices displaced lingually instead. By increasing the angle of the teeth, the strain in the periodontal ligament increased from about 37 to 58 mJ. The von Mises stresses around the cervical and apical areas differed for each tooth and each model, without a similar pattern. Increasing the angle of the teeth resulted in much higher cervical stresses in the incisors, but not in the canines. In the lateral incisor, cervical stress increased until 100° of inclination but reduced to about half by increasing the angle to 110°. Apical stress increased rather consistently in the incisor and lateral incisors, by increasing the inclination. However, in the
Energy Technology Data Exchange (ETDEWEB)
Biffle, J.H.
1993-02-01
JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.
Bathe, Klaus-Jürgen
2015-01-01
Finite element procedures are now an important and frequently indispensable part of engineering analyses and scientific investigations. This book focuses on finite element procedures that are very useful and are widely employed. Formulations for the linear and nonlinear analyses of solids and structures, fluids, and multiphysics problems are presented, appropriate finite elements are discussed, and solution techniques for the governing finite element equations are given. The book presents general, reliable, and effective procedures that are fundamental and can be expected to be in use for a long time. The given procedures form also the foundations of recent developments in the field.
Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.
2010-06-01
On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.
Kang, Yu-Bong; Jung, Duk-Young; Tanaka, Masatoshi; Yoshino, Nobuyuki; Tsutsumi, Sadami; Ikeuchi, Ken
Whiplash injuries are most common disorders in rear-end car accidents, while the injury mechanism is yet unknown. Many numerical and experimental approaches have conducted to investigate the cervical behaviors with solely two-dimensional analyses in the sagittal plane. In real accidents, however, as impacts may affect several directions, the cervical behaviors should be evaluated three-dimensionally. Therefore, we evaluated the cervical behaviors under assumption of the posterior-oblique impacts depending on the impact angles with 3-D FE analysis. In addition, we analyzed the stresses occurred in the facet joints considering the relationship with a whiplash disorders. The cervical behaviors showed complex motion combined with axial torsion and lateral bending. The bending angle peaked in the impact at the angle of 15°, and the peak compressive and shear stress on the facet cartilage at C6-C7 increased by 11% and 14%. In the impact at the angle of 30°, the torsion angle peaked at C2-C3, the peak shear stress in the facet cartilage increased by 27%. It showed that the torsion and lateral bending affected the cervical behaviors, and caused the increase of peak stresses on the soft tissues. It is assumed as one of important causes of whiplash injury.
AN ANALYSIS OF 3D FINITE CRACKED BODIES
Institute of Scientific and Technical Information of China (English)
Tao Weiming; Guo Yimu; Cao Zhiyuan
2001-01-01
The new-type traction boundary integral equations developed by Hu and with no hyper singular integral are applied to analysis of 3D finite cracked bodies. A numerical algorithm for general 3D problems and a semi-analytical one for axisymmetric problems are presented. Some examples of thick plates and cylindrical columns including penny-shaped crack(s), and rectangular plates including an elliptical crack normal to the surface are analyzed. The comparison between present results and those in literature shows the high accuracy and effectiveness of the present method.
Institute of Scientific and Technical Information of China (English)
李杏芮; 陈清; 盛华均; 杨美; 吕发金; 李信友; 梁熙
2015-01-01
Objective:To establish a three-dimensional finite element analysis model of the knee joint to be used on the ordinary computer and then to do a preliminary biomechanical analysis ,w hich could provide a simulated foundation for personalized prosthesis design and 3-D printing .Methods :CT scan results of healthy adult volunteers were imported into Mimics software to set up a three-dimensional model ,and then were imported into ANSYS software to establish the three-dimensional finite element model by defi-ning a unit type ,choosing material properties and meshing .Results:The three-dimensional finite element model was mimic and clear which could be used on the ordinary computer .Mechanics analysis results showed that the main stress on the knee extension position was minimum .Conclusion :Based on Mimics and ANSYS software ,a three-dimensional finite element model of the knee joint was established success-fully which could be applied on a personal computer .Biomechanical analysis of the model showed that in personalized design of the shape of the knee implant ,the patient's own knee extension position should be taken for reference .%目的 :构建一个能在普通计算机上使用的膝关节三维有限元模型 ,并进行初步生物力学分析 ,为个性化假体设计及3D打印提供仿真基础 .方法 :对健康成人志愿者进行CT扫描 ,导入Mimics软件中建立三维模型 ,再导入ANSYS软件中 ,通过定义单元类型、选择材料属性和划分网格 ,建立三维有限元模型 .结果 :三维有限元模型逼真、清晰、数据量小 ,适用于普通计算机 ;力学分析结果显示膝关节在伸直位时主应力最小 .结论 :基于Mimics及ANSYS软件 ,成功构建了能够在个人计算机上应用的膝关节三维有限元模型 ,对该模型生物力学分析显示 ,在个性化膝关节假体设计时 ,其形态应以病人自身膝关节伸直位为参考依据 .
Parr, W C H; Chamoli, U; Jones, A; Walsh, W R; Wroe, S
2013-01-04
Most modelling of whole bones does not incorporate trabecular geometry and treats bone as a solid non-porous structure. Some studies have modelled trabecular networks in isolation. One study has modelled the performance of whole human bones incorporating trabeculae, although this required considerable computer resources and purpose-written code. The difference between mechanical behaviour in models that incorporate trabecular geometry and non-porous models has not been explored. The ability to easily model trabecular networks may shed light on the mechanical consequences of bone loss in osteoporosis and remodelling after implant insertion. Here we present a Finite Element Analysis (FEA) of a human ankle bone that includes trabecular network geometry. We compare results from this model with results from non-porous models and introduce protocols achievable on desktop computers using widely available softwares. Our findings show that models including trabecular geometry are considerably stiffer than non-porous whole bone models wherein the non-cortical component has the same mass as the trabecular network, suggesting inclusion of trabecular geometry is desirable. We further present new methods for the construction and analysis of 3D models permitting: (1) construction of multi-property, non-porous models wherein cortical layer thickness can be manipulated; (2) maintenance of the same triangle network for the outer cortical bone surface in both 3D reconstruction and non-porous models allowing exact replication of load and restraint cases; and (3) creation of an internal landmark point grid allowing direct comparison between 3D FE Models (FEMs).
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Advanced finite element technologies
Wriggers, Peter
2016-01-01
The book presents an overview of the state of research of advanced finite element technologies. Besides the mathematical analysis, the finite element development and their engineering applications are shown to the reader. The authors give a survey of the methods and technologies concerning efficiency, robustness and performance aspects. The book covers the topics of mathematical foundations for variational approaches and the mathematical understanding of the analytical requirements of modern finite element methods. Special attention is paid to finite deformations, adaptive strategies, incompressible, isotropic or anisotropic material behavior and the mathematical and numerical treatment of the well-known locking phenomenon. Beyond that new results for the introduced approaches are presented especially for challenging nonlinear problems.
2010-01-01
Finite element analysis is an engineering method for the numerical analysis of complex structures. This book provides a bird's eye view on this very broad matter through 27 original and innovative research studies exhibiting various investigation directions. Through its chapters the reader will have access to works related to Biomedical Engineering, Materials Engineering, Process Analysis and Civil Engineering. The text is addressed not only to researchers, but also to professional engineers, engineering lecturers and students seeking to gain a better understanding of where Finite Element Analysis stands today.
Weiser, Martin
2016-01-01
All relevant implementation aspects of finite element methods are discussed in this book. The focus is on algorithms and data structures as well as on their concrete implementation. Theory is covered as far as it gives insight into the construction of algorithms. Throughout the exercises a complete FE-solver for scalar 2D problems will be implemented in Matlab/Octave.
Finite element and finite difference methods in electromagnetic scattering
Morgan, MA
2013-01-01
This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca
3D finite-difference modeling algorithm and anomaly features of ZTEM
Wang, Tao; Tan, Han-Dong; Li, Zhi-Qiang; Wang, Kun-Peng; Hu, Zhi-Ming; Zhang, Xing-Dong
2016-09-01
The Z-Axis tipper electromagnetic (ZTEM) technique is based on a frequency-domain airborne electromagnetic system that measures the natural magnetic field. A survey area was divided into several blocks by using the Maxwell's equations, and the magnetic components at the center of each edge of the grid cell are evaluated by applying the staggered-grid finite-difference method. The tipper and its divergence are derived to complete the 3D ZTEM forward modeling algorithm. A synthetic model is then used to compare the responses with those of 2D finite-element forward modeling to verify the accuracy of the algorithm. ZTEM offers high horizontal resolution to both simple and complex distributions of conductivity. This work is the theoretical foundation for the interpretation of ZTEM data and the study of 3D ZTEM inversion.
3D Finite Difference Modelling of Basaltic Region
Engell-Sørensen, L.
2003-04-01
The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.
Reflectivity calculated for a 3D silicon photonic band gap crystal with finite support
Devashish, D; van der Vegt, J J W; Vos, Willem L
2016-01-01
We study numerically the reflectivity of three-dimensional (3D) photonic crystals with a complete 3D photonic band gap, with the aim to interpret recent experiments. We employ the finite element method to study crystals with the cubic diamond-like inverse woodpile structure. The high-index backbone has a dielectric function similar to silicon. We study crystals with a range of thicknesses up to ten unit cells ($L \\leq 10 c$). The crystals are surrounded by vacuum, and have a finite support as in experiments. The polarization-resolved reflectivity spectra reveal Fabry-P{\\'e}rot fringes related to standing waves in the finite crystal, as well as broad stop bands with nearly $100~\\%$ reflectivity, even for thin crystals. From the strong reflectivity peaks, it is inferred that the maximum reflectivity observed in experiments is not limited by finite size. The frequency ranges of the stop bands are in excellent agreement with stop gaps in the photonic band structure, that pertain to infinite and perfect crystals. ...
Institute of Scientific and Technical Information of China (English)
王和平; 吴申峰; 张雪萍
2011-01-01
针对淬硬轴承钢的干态车削过程,在Abaqus中建立考虑PCBN刀尖半径的热力耦合三维有限元切削模型.首次仿真预测出周期性绝热剪切引起的三维锯齿形切屑,并且切屑在刀屑接触面上的特征线和材料挤压流动方向,以及切屑自由表面沿进给量方向和沿切削深度方向的切屑形态与实际加工形成的切屑形态都能够很好的吻合.通过对切削力、切削温度,切削力和切屑形态预测分析,并与实验数据的比较,揭示了刀尖半径和主偏角对切削过程的影响.研究发现:刀尖半径增大到0.8 mm时,工件材料挤压变形更显著,平均切向力增大了17 N,与实验结果比较相符.斜角切削过程中材料受到的挤压变形力更大,温升更加明显,最高温度达到1 289℃,与试验测量的切削区平均温度1 100℃接近;预测的平均切向力为150 N,与实验值相差只有7%.%A thermo-mechanical three-dimensional finite element model (FEM) is developed based on Abaqus software to simulate the high-speed hard turning process, by PCBN cutting tool with a large tool nose radius.This paper simulates 3D sawtooth chip induced by periodic adiabatic shear, and validates that the chip characteristic line and material flow direction on the chip-tool interface, the chip morphology on the free surface along feed direction and the cutting depth direction, are all well matched with the actual measured chip morphology.The predicted chip morphology, cutting forces, cutting temperature and plastic strain distribution are compared with experimental data to analyze the effect of tool nose radius and lead angle on hard machining hardened bearing steel.It indictes that, the temperature/strain on the chip is relatively higher, and average tangential force increased about 17 N using cutting tool with lager nose radius O.8 mm, this is consistent with the experimental results.During oblique cutting process, cutting tool with lead angle enables workpiece
Finite element analysis of bolted flange connections
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
Limit Analysis of 3D Reinforced Concrete Beam Elements
DEFF Research Database (Denmark)
Larsen, Kasper P.; Nielsen, Leif Otto; Poulsen, Peter Noe
2012-01-01
A new finite-element framework for lower-bound limit analysis of reinforced concrete beams, subjected to loading in three dimensions, is presented. The method circumvents the need for a direct formulation of a complex section-force-based yield criterion by creating a discrete representation of th...
Solution of Finite Element Equations
DEFF Research Database (Denmark)
Krenk, Steen
An important step in solving any problem by the finite element method is the solution of the global equations. Numerical solution of linear equations is a subject covered in most courses in numerical analysis. However, the equations encountered in most finite element applications have some special...
Massively Parallel Finite Element Programming
Heister, Timo
2010-01-01
Today\\'s large finite element simulations require parallel algorithms to scale on clusters with thousands or tens of thousands of processor cores. We present data structures and algorithms to take advantage of the power of high performance computers in generic finite element codes. Existing generic finite element libraries often restrict the parallelization to parallel linear algebra routines. This is a limiting factor when solving on more than a few hundreds of cores. We describe routines for distributed storage of all major components coupled with efficient, scalable algorithms. We give an overview of our effort to enable the modern and generic finite element library deal.II to take advantage of the power of large clusters. In particular, we describe the construction of a distributed mesh and develop algorithms to fully parallelize the finite element calculation. Numerical results demonstrate good scalability. © 2010 Springer-Verlag.
基于形变模型和有限元的3D表面重建%3D Surface Reconstrucition Based-On a Deformable Model and Finite Element
Institute of Scientific and Technical Information of China (English)
夏利民; 谷士文
2000-01-01
In this paper,we present a method for 3D surface reconstruction using an elastic de formable model,which progressively carries out deformation under the action of simulatedexternal forces,which in turn drives the model profile toward the object profile extractiedfrom an image. Meanwhile, the internal forces made the surface smooth. We derive dynamicfinite element equation of 3D surface reconstruction by means of dynamic principle and finiteelement. Experimental results also show the feasibility of our newly presented method.%提出了一种利用弹性形变模型重建3 D表面的方法，该形变模型在模拟的外力作用下朝着从图像数据抽取的物体表面变形，内力维持模型的光滑性．利用动力学原理和有限元导出了表面重建的动态有限元方程．实验结果表明该方法的有效性
Comparison of different precondtioners for nonsymmtric finite volume element methods
Energy Technology Data Exchange (ETDEWEB)
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Quasimodes instability analysis of uncertain asymmetric rotor system based on 3D solid element model
Zuo, Yanfei; Wang, Jianjun; Ma, Weimeng
2017-03-01
Uncertainties are considered in the equation of motion of an asymmetric rotor system. Based on Hill's determinant method, quasimodes stability analysis with uncertain parameters is used to get stochastic boundaries of unstable regions. Firstly, A 3D finite element rotor model was built in rotating frame with four parameterized coefficients, which is assumed as random parameters representing the uncertainties existing in the rotor system. Then the influences of uncertain coefficients on the distribution of the unstable region boundaries are analyzed. The results show that uncertain parameters have various influences on the size, boundary and number of unstable regions. At last, the statistic results of the minimum and maximum spin speeds of unstable regions were got by Monte Carlo simulation. The used method is suitable for real engineering rotor system, because arbitrary configuration of rotors can be modeled by 3D finite element.
3D mode discrete element method with the elastoplastic model
Institute of Scientific and Technical Information of China (English)
2012-01-01
The three-dimensional mode-deformable discrete element method (3MDEM) is an extended distinct element approach under the assumptions of small strain,finite displacement,and finite rotation of blocks.The deformation of blocks is expressed by the combination of the deformation modes in 3MDEM.In this paper,the elastoplastic constitutive relationship of blocks is implemented on the 3MDEM platform to simulate the integrated process from elasticity to plasticity and finally to fracture.To overcome the shortcomings of the conventional criterion for contact fracturing,a new criterion based on plastic strain is introduced.This approach is verified by two numerical examples.Finally,a cantilever beam is simulated as a comprehensive case study,which went through elastic,elastoplastic,and discontinuous fracture stages.
Intersecting D 3 -D3 ' -brane system at finite temperature
Cottrell, William; Hanson, James; Hashimoto, Akikazu; Loveridge, Andrew; Pettengill, Duncan
2017-02-01
We analyze the dynamics of the intersecting D 3 -D3 ' -brane system overlapping in 1 +1 dimensions, in a holographic treatment where N D3 branes are manifested as anti-de Sitter Schwartzschild geometry, and the D3 ' brane is treated as a probe. We extract the thermodynamic equation of state from the set of embedding solutions, and analyze the stability at the perturbative and the nonperturbative level. We review a systematic procedure to resolve local instabilities and multivaluedness in the equations of state based on classic ideas of convexity in the microcanonical ensemble. We then identify a runaway behavior which was not noticed previously for this system.
Intersecting D3-D3' system at finite temperature
Cottrell, William; Hashimoto, Akikazu; Loveridge, Andrew; Pettengill, Duncan
2015-01-01
We analyze the embedding of probe D3'-brane in the background of $N$ D3-branes at finite temperature, oriented such that they overlap in 1+1 dimensions. As the distance between the D3'-brane and the D3 brane is varied, we find solutions that appear to intersect the horizon. We find that this brane bends logarithmically, making the precise definition of the distance separating the D3 and the D3' brane scale dependent. We also consider the embedding of a probe M5-brane in the background of $N$ M2-branes at finite temperature, for which the logarithmic bending is absent. These systems appear to open a path to probe physics near and behind the black hole horizon in a strictly field theoretic framework.
quadratic spline finite element method
Directory of Open Access Journals (Sweden)
A. R. Bahadir
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Finite element computational fluid mechanics
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Institute of Scientific and Technical Information of China (English)
黄春跃; 周德俭; 黄红艳
2004-01-01
Based on the modal analysis theory and by using the dynamics finite element analysis model of a three-dimensional assembly circuit module, dynamic characteristics of circuit module have been studied, including both natural characteristics analysis and dynamic responses analysis. Using a subspace method, modal analysis is first carried out. The first 6 orders of natural frequencies and vibration modes are obtained. Influence of the number of the Z-shaped metal slices on dynamic characteristics of the entire structure is also studied.Harmonic response analysis is then conducted. The steady-state response when the circuit module is subjected to harmonic excitation is determined. A curve of the response values against frequencies is obtained. As a result, the optimal number of Z-shaped metal slices can be determined, and it can be assured that the three-dimensional assembly circuit module has good performance in terms of the dynamic characteristics.
Programming the finite element method
Smith, I M; Margetts, L
2013-01-01
Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c
H-VERSION ADAPTIVE FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL SEEPAGE PROBLEM
Institute of Scientific and Technical Information of China (English)
Feng Xue-min; Chen Sheng-hong
2003-01-01
The h-version adaptive finite element method for 3-D seepage problem is presented in this paper.The adaptive system includes 4 modules: 3-D mesh generation, finite element analysis for 3-D seepage, mesh error estimation and post-process.The effectiveness of this system is verified by the given example.
Second order tensor finite element
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Institute of Scientific and Technical Information of China (English)
于恩林; 韩毅; 谷绪地; 张洪亮
2012-01-01
基于高频直缝焊管焊接热源的计算结果,综合考虑材料的物理属性随温度的高度非线性变化,以及高频加热的焊缝热影响区特有的温度分布规律,利用ANSYS有限元软件建立了高频直缝焊管焊接残余应力的三维有限元模型.获得了高频焊管温度场和残余应力场的分布规律,并对结果进行了分析.通过后处理模块,给出了焊缝部位残余应力的分布趋势,并分析了高频感应焊接残余应力的主要形成原因.发现焊缝附近的轴向残余应力较大,其中有些数值接近材料的屈服强度,而周向残余应力仅为材料屈服应力的1/3左右,径向残余应力数值较小,工程上可以忽略.%Based on the high-frequency longitudinal welding heat calculations, ANSYS finite element software is used to establish the three-dimensional finite element model of welding residual stress. Physical properties of materials with highly non-linear changes in temperature and high-frequency heating of the weld heat affected zone-specific temperature distribution are considered. High-frequency welded pipe temperature field and residual stress field distribution are obtained, and the results are analyzed. Trends of the main causes of the high frequency induction welding residual stress are analyzed through the post-processing module. The axial residual stress of near the weld seam are larger, and some of the values are close to the material yield strength. Residual stress in the circumferential direction is one-third of the material yield stress, and radial residual stress value is smaller that in projects can be ignored.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... Project. The data consisted of 21,219 3D elements with a cortical shell and a trabecular core. Three types of load of torsion, a direct lateral load and axial compression were applied. RESULTS: The finite element linear static analysis resulted in relevant fracture localizations and indicated relevant...
THERM3D -- A boundary element computer program for transient heat conduction problems
Energy Technology Data Exchange (ETDEWEB)
Ingber, M.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering
1994-02-01
The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.
Finite element methods for engineers
Fenner, Roger T
2013-01-01
This book is intended as a textbook providing a deliberately simple introduction to finite element methods in a way that should be readily understandable to engineers, both students and practising professionals. Only the very simplest elements are considered, mainly two dimensional three-noded “constant strain triangles”, with simple linear variation of the relevant variables. Chapters of the book deal with structural problems (beams), classification of a broad range of engineering into harmonic and biharmonic types, finite element analysis of harmonic problems, and finite element analysis of biharmonic problems (plane stress and plane strain). Full Fortran programs are listed and explained in detail, and a range of practical problems solved in the text. Despite being somewhat unfashionable for general programming purposes, the Fortran language remains very widely used in engineering. The programs listed, which were originally developed for use on mainframe computers, have been thoroughly updated for use ...
Implementation of Generalized Modes in a 3D Finite Difference Based Seakeeping Model
DEFF Research Database (Denmark)
Andersen, Matilde H.; Amini Afshar, Mostafa; Bingham, Harry B.
This work is an extension of the finite difference potential flow solver OceanWave3D-Seakeepingdeveloped by Afshar (2014) to include generalized modes. The continuity equation is solvedusing a fourth-order centered finite difference scheme which requires that the entire fluid domainis discretized...
Energy Technology Data Exchange (ETDEWEB)
Angerer, Andreas, E-mail: andreas.angerer@tuwien.ac.at; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes, E-mail: johannes.majer@tuwien.ac.at [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Sumiya, Hitoshi [Sumitomo Electric Industries Ltd., Itami 664-001 (Japan); Onoda, Shinobu [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Isoya, Junichi [Research Centre for Knowledge Communities, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550 (Japan); Putz, Stefan [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)
2016-07-18
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10{sup 17} nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
The finite element modeling of spiral ropes
Institute of Scientific and Technical Information of China (English)
Juan Wu
2014-01-01
Accurate understanding the behavior of spiral rope is complicated due to their complex geometry and complex contact conditions between the wires. This study proposed the finite element models of spiral ropes subjected to tensile loads. The parametric equations developed in this paper were implemented for geometric modeling of ropes. The 3D geometric models with different twisting manner, equal diameters of wires were generated in details by using Pro/ENGINEER software. The results of the present finite element analysis were on an acceptable level of accuracy as compared with those of theoretical and experimental data. Further development is ongoing to analysis the equivalent stresses induced by twisting manner of cables. The twisting manner of wires was important to spiral ropes in the three wire layers and the outer twisting manner of wires should be contrary to that of the second layer, no matter what is the first twisting manner of wires.
Finite elements of nonlinear continua
Oden, J T
2000-01-01
Geared toward undergraduate and graduate students, this text extends applications of the finite element method from linear problems in elastic structures to a broad class of practical, nonlinear problems in continuum mechanics. It treats both theory and applications from a general and unifying point of view.The text reviews the thermomechanical principles of continuous media and the properties of the finite element method, and then brings them together to produce discrete physical models of nonlinear continua. The mathematical properties of these models are analyzed, along with the numerical s
FINITE ELEMENT ANALYSIS OF STRUCTURES
Directory of Open Access Journals (Sweden)
PECINGINA OLIMPIA-MIOARA
2015-05-01
Full Text Available The application of finite element method is analytical when solutions can not be applied for deeper study analyzes static, dynamic or other types of requirements in different points of the structures .In practice it is necessary to know the behavior of the structure or certain parts components of the machine under the influence of certain factors static and dynamic . The application of finite element in the optimization of components leads to economic growth , to increase reliability and durability organs studied, thus the machine itself.
Institute of Scientific and Technical Information of China (English)
邓小康; 柳建新; 刘海飞; 童孝忠; 柳卓
2013-01-01
Within the roadway advanced detection methods, DC resistivity method has an extensive application because of its simple principle and operation. Numerical simulation of the effect of focusing current on advanced detection was carried out using a three-dimensional finite element method (FEM), meanwhile the electric-field distribution of the point source and nine-point power source were calculated and analyzed with the same electric charges. The results show that the nine-point power source array has a very good ability to focus, and the DC focus method can be used to predict the aquifer abnormality body precisely. By comparing the FEM modelling results with physical simulation results from soil sink, it is shown that the accuracy of forward simulation meets the requirement and the artificial disturbance from roadway has no impact on the DC focus method.% 在巷道超前探测的方法中，电阻率法由于原理简单、操作方便，有着很好的应用前景。运用三维有限元法对聚焦电流法的超前预报效果进行数值模拟，计算和分析点电源和九点式电源在供相同电流的情况下电场的分布情况。结果表明：九点式布极方式有很好的聚焦能力，聚焦电流法能准确地发现掘进面前方含水异常体。将数值模拟和物理土槽试验进行对比，正演模拟精度符合要求，巷道中的人为干扰对聚焦电流法超前探测没有影响。
3D finite element analysis of portal double row piles%门架式双排桩围护结构的三维有限元分析
Institute of Scientific and Technical Information of China (English)
朱华; 邓成发
2011-01-01
门架式双排桩支护结构是由前排桩、后排桩及桩顶冠梁共同作用的空间组合围护结构,这种围护结构主要是发挥组合桩的整体刚度和空间效应及桩土的协同作用,其三维空间效应显著.通过有限元软件ABAQUS对该种围护结构进行三维有限元分析,从而分析门架式双排桩围护结构的内力和变形以及与土的相互作用机理,并将数值计算结果与实测结果进行对比,验证理论计算与分析的合理性,并得出冠梁厚度增加到0.6m后,冠梁厚度对前后排桩的弯矩和位移的影响不再明显的结论.%The portal double row piles is a kind of composite retaining structure, which is composed of front pile, back pile and top beam. This kind of retaining structure not only has significantly threedimension space effect, but also plays a major role through the integral rigidity and spatial effect of composite piles, and the synergistic effects of soil and piles. Through the three-dimensional finite element analysis based on ABAQUS software, the deformation and internal force of support structure and the interaction mechanism between the soil and piles are revealed, and the rationality of the theoretical calculation and analysis are proved, and from the analysis, it is concluded that when the thickness of top beam is more than 0. 6 m, the displacement and moment of the front and back piles influenced by the thickness of top beam is no longer significant.
3D time-domain regular grid infinite element in elastic foundation
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The normal dynamic infinite element in elastic foundation cannot be used in time-domain due to it’s inclusive frequency term.A novel 3D regular grid infinite element is constructed to deal with the time-domain problem.This new infinite element method can easily transform the frequency terms of mass matrix and stiffness matrix to the terms in higher-order dynamic equation,thus a higher-order dynamic equilibrium equation is formed.Based on the second-order Wilson-θ dynamic equation,a new time-domain numeric formula of higher-order dynamic equation is deduced,and the time-domain calculation coupling with finite element and infinite element can be realized.The classic 3D fluctuation problem in elastic foundation is employed as an illustrative example to investigate the accuracy and validity of this new infinite element.The result indicates that the new dynamic infinite element has a high accuracy.
Finite element modelingof spherical induction actuator
Galary, Grzegorz
2005-01-01
The thesis deals with finite element method simulations of the two-degree of freedom spherical induction actuator performed using the 2D and 3D models. In some cases non-linear magnetization curves, rotor movement and existence of higher harmonics are taken into account. The evolution of the model leading to its simplification is presented. Several rotor structures are tested, namely the one-layer, two-layers and two-layers-with-teeth rotor. The study of some rotor parameters, i.e. t...
Spectral element method for band-structure calculations of 3D phononic crystals
Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Huo Liu, Qing
2016-11-01
The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss-Lobatto-Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals.
CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3D EDDY CURRENTS EQUATIONS
Institute of Scientific and Technical Information of China (English)
R.H.W. Hoppe; J. Sch(o)berl
2009-01-01
We consider an Adaptive Edge Finite Element Method (AEFEM) for the 3D eddy cur-rents equations with variable coefficients using a residual-type a posteriori error estimator. Both the components of the estimator and certain oscillation terms, due to the occurrence of the variable coefficients, have to be controlled properly within the adaptive loop which is taken care of by appropriate bulk criteria. Convergence of the AEFEM in terms of reductions of the energy norm of the discretization error and of the oscillations is shown. Numerical results are given to illustrate the performance of the AEFEM.
Institute of Scientific and Technical Information of China (English)
王洁丽; 潘虹海; 刘健; 黄跃; 杨四维
2012-01-01
旋转;③牵引角度大于50°,三个不同种植体部位前牵引均可能导致上颌复合体顺时针旋转.%Objective To analyse the impact of implant anchorage protraction at different parts on maxillary complex with three-dimensional finite element method and to provide objective theoretical basis for treating skeletal Class Ⅲ malocclusion through implant anchorage protraction. Methods Implant at three different parts (between the roots of maxillary central incisor and lateral incisor; between the roots of canine and the first premolar; between the roots of the second premolar and the first molar) at buccal side of maxilla with the established three-dimensional finite element model of maxillary complex and implant and apply protraction to the implant in clinic manner. Then, there will be combination in pairs among different parts and angles and 12 conditions will be formed in all. At last, analyse and compare the stress distribution and changes on rotation and displacement on maxillary complex under different conditions. Results The impacts of protraction at different parts and angles on maxillary complex were: ①when the traction was applied to the lower part forward to form a 30-degree angle with frankfort plane, with the gradual retroposition of the implant part, stress at all sutures increased gradually except that stress at sutura zygomaticofrontalis decreased gradually. The values of principle stress at all related sutures of maxillary complex were closest to each other when the implant was placed between the roots of the second premolar and the first molar. ②A great change was witnessed on sutura sphenomaxillaris when the traction was applied to the lower part forward to form a 40-degree angle. The implant was under pressure stress when it was placed between the roots of central incisor and lateral incisor and between the roots of canine and the first premolar; however, when protraction was applied to the implant between the roots of the second premolar and the first molar
The Relation of Finite Element and Finite Difference Methods
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Wilkes, R; Zhao, Y; Cunningham, K; Kieswetter, K; Haridas, B
2009-07-01
This study describes a novel system for acquiring the 3D strain field in soft tissue at sub-millimeter spatial resolution during negative pressure wound therapy (NPWT). Recent research in advanced wound treatment modalities theorizes that microdeformations induced by the application of sub-atmospheric (negative) pressure through V.A.C. GranuFoam Dressing, a reticulated open-cell polyurethane foam (ROCF), is instrumental in regulating the mechanobiology of granulation tissue formation [Saxena, V., Hwang, C.W., Huang, S., Eichbaum, Q., Ingber, D., Orgill, D.P., 2004. Vacuum-assisted closure: Microdeformations of wounds and cell proliferation. Plast. Reconstr. Surg. 114, 1086-1096]. While the clinical response is unequivocal, measurement of deformations at the wound-dressing interface has not been possible due to the inaccessibility of the wound tissue beneath the sealed dressing. Here we describe the development of a bench-test wound model for microcomputed tomography (microCT) imaging of deformation induced by NPWT and an algorithm set for quantifying the 3D strain field at sub-millimeter resolution. Microdeformations induced in the tissue phantom revealed average tensile strains of 18%-23% at sub-atmospheric pressures of -50 to -200 mmHg (-6.7 to -26.7 kPa). The compressive strains (22%-24%) and shear strains (20%-23%) correlate with 2D FEM studies of microdeformational wound therapy in the reference cited above. We anticipate that strain signals quantified using this system can then be used in future research aimed at correlating the effects of mechanical loading on the phenotypic expression of dermal fibroblasts in acute and chronic ulcer models. Furthermore, the method developed here can be applied to continuum deformation analysis in other contexts, such as 3D cell culture via confocal microscopy, full scale CT and MRI imaging, and in machine vision.
Moortgat, Joachim; Soltanian, Mohamad Reza
2016-01-01
We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of mag...
Institute of Scientific and Technical Information of China (English)
叶堃; 王金武; 胡志刚; 王成焘; 干耀凯; 韦建和; 江川; 邓源; 李雨
2015-01-01
Objective To evaluate the biomechanical properties of a titanium alloy pelvic prosthesis individually manufactured by 3D printing through finite element analysis.Methods A male patient with a huge chondrosarcoma at the right ilium was recruited for the present study who had been arranged for hemipelvectomy and artificial hemi-pelvic replacement.After the patient underwent CT and MRI examinations before operation,scope of tumor invasion around the ilium,surgical margins and plane for osteotomy were determined using the 3D image fusion technique.A finite element model of the pelvis of the patient was established on the basis of the defective area after pelvic osteotomy using computer aided design (CAD).After the finite element analysis,a customized titanium alloy pelvic prosthesis was manufactured using 3D printing technology.The software Abaqus was used to conduct finite element analysis of the model of the pelvic prosthesis manufactured by 3D printing.The von Mises stress,relative displacement and stress concentration point in the finite element model of the pelvis were measured and analyzed.Results The maximum von Mises stress in the titanium alloy pelvic prosthesis manufactured by 3D printing was 25.29 MPa,far smaller than the yield strength of titanium alloy (950 MPa).The stress concentration area was near the nail holes where the prosthesis and the sacrum were connected.The patient was able to walk without crutches 3 months post-surgery.After half a year,the implant was stable and the patient could perform normal activities.Conclusions The titanium alloy pelvic prosthesis individually manufactured by 3D printing based on the results of finite element analysis met the biomechanical requirements of a pelvis.The calculation results of finite element analysis were consistent with the postoperative follow-up outcomes of the patient.This method can provide biomechanical evidence for clinical application of 3D printing implants in orthopedics.%目的 通过
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...3-D steady-state seepage analysis of permeability of the cutoff walls was varied from 10 to Cerrillos Dam near Ponce , Puerto Rico, for the U.S.-6 10...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
Chen Huaran; Li Yiqun; He Qiaoyun; Zhang Jieqing; Ma Hongsheng; Li Li
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the area of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
A FINITE ELEMENT MODEL FOR SEISMICITY INDUCED BY FAULT INTERACTION
Institute of Scientific and Technical Information of China (English)
ChenHuaran; LiYiqun; HeQiaoyun; ZhangJieqing; MaHongsheng; LiLi
2003-01-01
On ths basis of interaction between faults, a finite element model for Southwest China is constructed, and the stress adjustment due to the strong earthquake occurrence in this region was studied. The preliminary results show that many strong earthquakes occurred in the are a of increased stress in the model. Though the results are preliminary, the quasi-3D finite element model is meaningful for strong earthquake prediction.
A 3D staggered-grid finite difference scheme for poroelastic wave equation
Zhang, Yijie; Gao, Jinghuai
2014-10-01
Three dimensional numerical modeling has been a viable tool for understanding wave propagation in real media. The poroelastic media can better describe the phenomena of hydrocarbon reservoirs than acoustic and elastic media. However, the numerical modeling in 3D poroelastic media demands significantly more computational capacity, including both computational time and memory. In this paper, we present a 3D poroelastic staggered-grid finite difference (SFD) scheme. During the procedure, parallel computing is implemented to reduce the computational time. Parallelization is based on domain decomposition, and communication between processors is performed using message passing interface (MPI). Parallel analysis shows that the parallelized SFD scheme significantly improves the simulation efficiency and 3D decomposition in domain is the most efficient. We also analyze the numerical dispersion and stability condition of the 3D poroelastic SFD method. Numerical results show that the 3D numerical simulation can provide a real description of wave propagation.
Finite Element Method in Machining Processes
Markopoulos, Angelos P
2013-01-01
Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...
Advanced Manufacturing Technologies (AMT): 3D Print Element
National Aeronautics and Space Administration — MIS, Inc., under SBIR Phase III contract with NASA, will build a 3D printer that can build objects out of plastic feedstock. NASA will provide insight to ensure that...
Finite-Source Inversion for the 2004 Parkfield Earthquake using 3D Velocity Model Green's Functions
Kim, A.; Dreger, D.; Larsen, S.
2008-12-01
We determine finite fault models of the 2004 Parkfield earthquake using 3D Green's functions. Because of the dense station coverage and detailed 3D velocity structure model in this region, this earthquake provides an excellent opportunity to examine how the 3D velocity structure affects the finite fault inverse solutions. Various studies (e.g. Michaels and Eberhart-Phillips, 1991; Thurber et al., 2006) indicate that there is a pronounced velocity contrast across the San Andreas Fault along the Parkfield segment. Also the fault zone at Parkfield is wide as evidenced by mapped surface faults and where surface slip and creep occurred in the 1966 and the 2004 Parkfield earthquakes. For high resolution images of the rupture process"Ait is necessary to include the accurate 3D velocity structure for the finite source inversion. Liu and Aurchuleta (2004) performed finite fault inversions using both 1D and 3D Green's functions for 1989 Loma Prieta earthquake using the same source paramerization and data but different Green's functions and found that the models were quite different. This indicates that the choice of the velocity model significantly affects the waveform modeling at near-fault stations. In this study, we used the P-wave velocity model developed by Thurber et al (2006) to construct the 3D Green's functions. P-wave speeds are converted to S-wave speeds and density using by the empirical relationships of Brocher (2005). Using a finite difference method, E3D (Larsen and Schultz, 1995), we computed the 3D Green's functions numerically by inserting body forces at each station. Using reciprocity, these Green's functions are recombined to represent the ground motion at each station due to the slip on the fault plane. First we modeled the waveforms of small earthquakes to validate the 3D velocity model and the reciprocity of the Green"fs function. In the numerical tests we found that the 3D velocity model predicted the individual phases well at frequencies lower than 0
DOLFIN: Automated Finite Element Computing
Logg, Anders; 10.1145/1731022.1731030
2011-01-01
We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code.
Finite elements methods in mechanics
Eslami, M Reza
2014-01-01
This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...
Automation of finite element methods
Korelc, Jože
2016-01-01
New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.
Selective Smoothed Finite Element Method
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The paper examines three selective schemes for the smoothed finite element method (SFEM) which was formulated by incorporating a cell-wise strain smoothing operation into the standard compatible finite element method (FEM). These selective SFEM schemes were formulated based on three selective integration FEM schemes with similar properties found between the number of smoothing cells in the SFEM and the number of Gaussian integration points in the FEM. Both scheme 1 and scheme 2 are free of nearly incompressible locking, but scheme 2 is more general and gives better results than scheme 1. In addition, scheme 2 can be applied to anisotropic and nonlinear situations, while scheme 1 can only be applied to isotropic and linear situations. Scheme 3 is free of shear locking. This scheme can be applied to plate and shell problems. Results of the numerical study show that the selective SFEM schemes give more accurate results than the FEM schemes.
Finite-size scaling of interface free energies in the 3d Ising model
Pepé, M; Forcrand, Ph. de
2002-01-01
We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.
Finite-size scaling of interface free energies in the 3d Ising model
Pepe, M.; de Forcrand, Ph.
2001-01-01
We perform a study of the universality of the finite size scaling functions of interface free energies in the 3d Ising model. Close to the hot/cold phase transition, we observe very good agreement with the same scaling functions of the 4d SU(2) Yang--Mills theory at the deconfinement phase transition.
Infinite Possibilities for the Finite Element.
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Shakedown Analysis of 3-D Structures Using the Boundary Element Method Based on the Static Theorem
Institute of Scientific and Technical Information of China (English)
张晓峰; 刘应华; 岑章志
2003-01-01
The static shakedown theorem was reformulated for the boundary element method (BEM) rather than the finite element method with Melan's theorem, then used to develop a numerical solution procedure for shakedown analysis. The self-equilibrium stress field was constructed by a linear combination of several basis self-equilibrium stress fields with undetermined parameters. These basis self-equilibrium stress fields were expressed as elastic responses of the body to imposed permanent strains obtained using a 3-D BEM elastic-plastic incremental analysis. The lower bound for the shakedown load was obtained from a series of nonlinear mathematical programming problems solved using the Complex method. Numerical examples verified the precision of the present method.
Peridynamic Multiscale Finite Element Methods
Energy Technology Data Exchange (ETDEWEB)
Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...
WAVES GENERATED BY A 3D MOVING BODY IN A TWO-LAYER FLUID OF FINITE DEPTH
Institute of Scientific and Technical Information of China (English)
ZHU Wei; YOU Yun-xiang; MIAO Guo-ping; ZHAO Feng; ZHANG Jun
2005-01-01
This paper is concerned with the waves generated by a 3-D body advancing beneath the free surface with constant speed in a two-layer fluid of finite depth. By applying Green's theorem, a layered integral equation system based on the Rankine source for the perturbed velocity potential generated by the moving body was derived with the potential flow theory. A four-node isoparametric element method was used to treat with the solution of the layered integral equation system. The surface and interface waves generated by a moving ball were calculated numerically. The results were compared with the analytical results for a moving source with constant velocity.
Directory of Open Access Journals (Sweden)
David Lowell
2016-07-01
Full Text Available In this paper, we have systematically studied the holographic fabrication of three-dimensional (3D structures using a single 3D printed reflective optical element (ROE, taking advantage of the ease of design and 3D printing of the ROE. The reflective surface was setup at non-Brewster angles to reflect both s- and p-polarized beams for the interference. The wide selection of reflective surface materials and interference angles allow control of the ratio of s- and p-polarizations, and intensity ratio of side-beam to central beam for interference lithography. Photonic bandgap simulations have also indicated that both s and p-polarized waves are sometimes needed in the reflected side beams for maximum photonic bandgap size and certain filling fractions of dielectric inside the photonic crystals. The flexibility of single ROE and single exposure based holographic fabrication of 3D structures was demonstrated with reflective surfaces of ROEs at non-Brewster angles, highlighting the capability of the ROE technique of producing umbrella configurations of side beams with arbitrary angles and polarizations and paving the way for the rapid throughput of various photonic crystal templates.
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES
Institute of Scientific and Technical Information of China (English)
Zuorong Chen; A.P. Bunger; Xi Zhang; Robert G. Jeffrey
2009-01-01
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case.
Finite element differential forms on cubical meshes
Arnold, Douglas N
2012-01-01
We develop a family of finite element spaces of differential forms defined on cubical meshes in any number of dimensions. The family contains elements of all polynomial degrees and all form degrees. In two dimensions, these include the serendipity finite elements and the rectangular BDM elements. In three dimensions they include a recent generalization of the serendipity spaces, and new H(curl) and H(div) finite element spaces. Spaces in the family can be combined to give finite element subcomplexes of the de Rham complex which satisfy the basic hypotheses of the finite element exterior calculus, and hence can be used for stable discretization of a variety of problems. The construction and properties of the spaces are established in a uniform manner using finite element exterior calculus.
Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code
Energy Technology Data Exchange (ETDEWEB)
MINKOFF,SUSAN E.
1999-12-09
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code
Energy Technology Data Exchange (ETDEWEB)
Minkoff, S.E.
1999-12-01
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
3D Finite Element Modeling of Sliding Wear
2013-12-01
Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 With the Johnson - Cook Material Model”, Report No DOT/FAA/AR-03/57, Office of Aviation...177 1.4.3 Johnson - Cook Viscoplastic Model...178 1.4.4 Johnson - Cook Flow Rule ...................................................................179 1.4.5 Johnson - Cook Dynamic Failure
Elements with Square Roots in Finite Groups
Institute of Scientific and Technical Information of China (English)
M.S. Lucido; M.R. Pournaki
2005-01-01
In this paper, we study the probability that a randomly chosen element in a finite group has a square root, in particular the simple groups of Lie type of rank 1, the sporadic finite simple groups and the alternating groups.
Conforming finite elements with embedded strong discontinuities
Dias-da-Costa, D.; Alfaiate, J.; Sluys, L.J.; Areias, P.; Fernandes, C.; Julio, E.
2012-01-01
The possibility of embedding strong discontinuities into finite elements allowed the simulation of different problems, namely, brickwork masonry fracture, dynamic fracture, failure in finite strain problems and simulation of reinforcement concrete members. However, despite the significant contributi
Domain decomposition methods for mortar finite elements
Energy Technology Data Exchange (ETDEWEB)
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Unified Framework for Finite Element Assembly
Alnæs, Martin Sandve; Mardal, Kent-Andre; Skavhaug, Ola; Langtangen, Hans Petter; 10.1504/IJCSE.2009.029160
2012-01-01
At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain.
3D Finite Volume Simulation of Accretion Discs with Spiral Shocks
Makita, M; Makita, Makoto; Matsuda, Takuya
1998-01-01
We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the Simplified Flux vector Splitting (SFS) finite volume method. In our calculations, gas is assumed to be the ideal one, and we calculate the cases with gamma=1.01, 1.05, 1.1 and 1.2. The mass ratio of the mass losing star to the mass accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller gamma is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in somewhat weaker sense.
Diffusive mesh relaxation in ALE finite element numerical simulations
Energy Technology Data Exchange (ETDEWEB)
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
3D Finite Volume Modeling of ENDE Using Electromagnetic T-Formulation
Directory of Open Access Journals (Sweden)
Yue Li
2012-01-01
Full Text Available An improved method which can analyze the eddy current density in conductor materials using finite volume method is proposed on the basis of Maxwell equations and T-formulation. The algorithm is applied to solve 3D electromagnetic nondestructive evaluation (E’NDE benchmark problems. The computing code is applied to study an Inconel 600 work piece with holes or cracks. The impedance change due to the presence of the crack is evaluated and compared with the experimental data of benchmark problems No. 1 and No. 2. The results show a good agreement between both calculated and measured data.
多种软件和图像联合技术构建个体化颞下颌关节三维有限元模型的初步研究%Evaluation of 3-D Finite Element Models of Temporomandibular Joint
Institute of Scientific and Technical Information of China (English)
丁月峰; 周培刚; 费学东
2014-01-01
Objective: To develop finite element (FE) model for the temporomandibular joint (TMJ), including temporomandibular joint fossa (TMJF), mandible condyle, and temporomandibular joint disc (TMJD). Methods: The geometry of the TMJ from a healthy male volunteer, including the material properties of cancellous and cortical bone, were obtained from CT and MRI images. These data were used in MIMICS, an image-processing software, to form the geometry of TMJ before it could be introduced into SC/Tetra and Hypermesh software. Then the reconstructed models were assemble based on anatomic relation. Following the processes of intersecting surface deletion, mesh regeneration, optimization and tetrahedral mesh generation for TMJF and mandible condyle, whereas hexahedral mesh generation for TMJD, the TMJ finite element model,including different anatomical structures,was developed. The reconstructed finite element model was also imported into the Abaqus software to be tested. Results: The 3D mode of TMJ composed of TMJF,mandible condyle and TMJD was reconstructed from CT and MRI image data. Based on the 3D model,the TMJ finite element model was reconstructed by three reconstruction software retained the anatomical features of the included structures, and finite element model showed easy convergence. Conclusion: The method of CT-MRI image fusion combined with three reconstruction software is applicable to reconstruct the living subject TMJ finite element model ,which retains the geometry of TMJ-related anatomical structures,and offers a useful tool for accurate modeling of the TMJ biomechanical behavior.%目的：利用MRI-CT影像数据融合和多种建模软件协同应用，构建较为精确的颞下颌关节有限元模型。方法：采集正常颞下颌关节CT和MRI影像数据，导入Mimics软件，分别提取颞下颌关节窝、髁突和关节盘并构建三维模型。根据解剖关系对关节窝、髁突和关节盘进行装配。将装配的颞下颌关节三维
Institute of Scientific and Technical Information of China (English)
张丹; 白保晶; 张振庭
2011-01-01
Objective To establish a 3D solid and finite element model of maxillary premolar with class Ⅱ cavity restored by ceramic inlay and analyze the stress distribution. Methods The first permanent maxillary premolar was scanned by Micro-CT and a three-dimensional finite element model with class Ⅱ cavity restored by ceramic inlay estblished. The stress distribution and the level of stress concentration in the restoration, tooth structure and resin cement were analyzed by the FEA software. Results A more precise 3D solid and finite element model of maxillary premolar with class Ⅱ cavity restored by ceramic inlay was constructed, which included enamel, dentin, pulp chamber and peridentium. The tensile stress concentrated in the gingival wall in enamel, and near the gingival wall of tooth in inlay, and on the inner surface of dentin near the pulp in dentin. Conclusion The gingival wall of tooth and the inner surface of dentin near the pulp were the unsubstantial area of maxillary premolar with class Ⅱ cavity restored by ceramic inlay.%目的 建立上颌前磨牙Ⅱ类洞全瓷嵌体修复的计算机三维实体模型和有限元模型,并进行应力分析,以期为临床全瓷嵌体修复提供理论参考.方法 利用Micro-CT扫描获得牙体原始数据,建立上颌前磨牙Ⅱ类洞全瓷嵌体修复的三维有限元模型,采用有限元分析软件ANSYS10.0计算分析牙釉质、牙本质、嵌体及粘结剂层的最大主应力.结果 建立了包含牙釉质、牙本质、牙髓腔、牙周膜、嵌体及粘结剂层的上颌前磨牙Ⅱ类洞嵌体修复的精细三维有限元模型.牙釉质的应力集中部位在洞型龈壁的位置,最大主应力值为10.52MPa;牙本质的应力集中部位在牙本质近牙髓腔的位置,最大主应力值为3.76 MPa;嵌体的应力集中部位在其与龈壁对应的位置及嵌体底面,最大主应力值为5.82 MPa.结论 上颌前磨牙Ⅱ类洞全瓷嵌体修复后,牙釉质的薄弱部位在龈壁;牙
Superconvergence for rectangular serendipity finite elements
Institute of Scientific and Technical Information of China (English)
CHEN; Chuanmiao(陈传淼)
2003-01-01
Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.
A new formulation of hybrid/mixed finite element
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
Finite elements and finite differences for transonic flow calculations
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Continuous finite element methods for Hamiltonian systems
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By applying the continuous finite element methods of ordinary differential equations, the linear element methods are proved having second-order pseudo-symplectic scheme and the quadratic element methods are proved having third-order pseudosymplectic scheme respectively for general Hamiltonian systems, and they both keep energy conservative. The finite element methods are proved to be symplectic as well as energy conservative for linear Hamiltonian systems. The numerical results are in agreement with theory.
Moortgat, Joachim; Amooie, Mohammad Amin; Soltanian, Mohamad Reza
2016-10-01
We present a new implicit higher-order finite element (FE) approach to efficiently model compressible multicomponent fluid flow on unstructured grids and in fractured porous subsurface formations. The scheme is sequential implicit: pressures and fluxes are updated with an implicit Mixed Hybrid Finite Element (MHFE) method, and the transport of each species is approximated with an implicit second-order Discontinuous Galerkin (DG) FE method. Discrete fractures are incorporated with a cross-flow equilibrium approach. This is the first investigation of all-implicit higher-order MHFE-DG for unstructured triangular, quadrilateral (2D), and hexahedral (3D) grids and discrete fractures. A lowest-order implicit finite volume (FV) transport update is also developed for the same grid types. The implicit methods are compared to an Implicit-Pressure-Explicit-Composition (IMPEC) scheme. For fractured domains, the unconditionally stable implicit transport update is shown to increase computational efficiency by orders of magnitude as compared to IMPEC, which has a time-step constraint proportional to the pore volume of discrete fracture grid cells. However, when lowest-order Euler time-discretizations are used, numerical errors increase linearly with the larger implicit time-steps, resulting in high numerical dispersion. Second-order Crank-Nicolson implicit MHFE-DG and MHFE-FV are therefore presented as well. Convergence analyses show twice the convergence rate for the DG methods as compared to FV, resulting in two to three orders of magnitude higher computational efficiency. Numerical experiments demonstrate the efficiency and robustness in modeling compressible multicomponent flow on irregular and fractured 2D and 3D grids, even in the presence of fingering instabilities.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Why do probabilistic finite element analysis ?
Thacker, B H
2008-01-01
The intention of this book is to provide an introduction to performing probabilistic finite element analysis. As a short guideline, the objective is to inform the reader of the use, benefits and issues associated with performing probabilistic finite element analysis without excessive theory or mathematical detail.
Finite-Element Software for Conceptual Design
DEFF Research Database (Denmark)
Lindemann, J.; Sandberg, G.; Damkilde, Lars
2010-01-01
and research. Forcepad is an effort to provide a conceptual design and teaching tool in a finite-element software package. Forcepad is a two-dimensional finite-element application based on the same conceptual model as image editing applications such as Adobe Photoshop or Microsoft Paint. Instead of using...
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....
On a consistent finite-strain plate theory based on 3-D energy principle
Dai, Hui-Hui
2014-01-01
This paper derives a finite-strain plate theory consistent with the principle of stationary three-dimensional (3-D) potential energy under general loadings with a third-order error. Staring from the 3-D nonlinear elasticity (with both geometrical and material nonlinearity) and by a series expansion, we deduce a vector plate equation with three unknowns, which exhibits the local force-balance structure. The success relies on using the 3-D field equations and bottom traction condition to derive exact recursion relations for the coefficients. Associated weak formulations are considered, leading to a 2-D virtual work principle. An alternative approach based on a 2-D truncated energy is also provided, which is less consistent than the first plate theory but has the advantage of the existence of a 2-D energy function. As an example, we consider the pure bending problem of a hyperelastic block. The comparison between the analytical plate solution and available exact one shows that the plate theory gives second-order...
Finite element analysis of structures through unified formulation
Carrera, Erasmo; Petrolo, Marco; Zappino, Enrico
2014-01-01
The finite element method (FEM) is a computational tool widely used to design and analyse complex structures. Currently, there are a number of different approaches to analysis using the FEM that vary according to the type of structure being analysed: beams and plates may use 1D or 2D approaches, shells and solids 2D or 3D approaches, and methods that work for one structure are typically not optimized to work for another. Finite Element Analysis of Structures Through Unified Formulation deals with the FEM used for the analysis of the mechanics of structures in the case of linear elasticity. The novelty of this book is that the finite elements (FEs) are formulated on the basis of a class of theories of structures known as the Carrera Unified Formulation (CUF). It formulates 1D, 2D and 3D FEs on the basis of the same ''fundamental nucleus'' that comes from geometrical relations and Hooke''s law, and presents both 1D and 2D refined FEs that only have displacement variables as in 3D elements. It also covers 1D...
Finite element simulation of barge impact into a rigid wall
Directory of Open Access Journals (Sweden)
H.W. Leheta
2014-03-01
Many approaches have been developed in order to obtain these impact loads. In general, collision mechanics for floating units is classified into, external mechanics and internal mechanics. In external mechanics, analytical approaches are used to determine the absorbed energy acting on the vessel from the collision, while in internal mechanics analytical approaches are used to determine the ability of the ship’s structure to withstand the absorbed energy. Due to the difficulty and the highly expected cost to perform model testing and impact data for validation, finite element simulation provides an alternative tool for physical validation. In this study, a simulation of barge impact to a rigid wall is presented using the explicit nonlinear finite element code LS-DYNA3D. A conventional fine mesh finite element barge model is created. Impact results are obtained at two different speeds in order to show the consequence of barge and wall damage.
Finite element modeling of plasmon based single-photon sources
DEFF Research Database (Denmark)
Chen, Yuntian; Gregersen, Niels; Nielsen, Torben Roland;
2011-01-01
A finite element method (FEM) approach of calculating a single emitter coupled to plasmonic waveguides has been developed. The method consists of a 2D model and a 3D model: (I) In the 2D model, we have calculated the spontaneous emission decay rate of a single emitter into guided plasmonic modes...... waveguides with different geometries, as long as only one guided plasmonic mode is predominantly excited....
Finite element based model of parchment coffee drying
Preeda Prakotmak
2015-01-01
Heat and mass transfer in the parchment coffee during convective drying represents a complicated phenomena since it is important to consider not only the transport phenomena during drying but also the various changes of the drying materials. In order to describe drying of biomaterials adequately, a suitable mathematical model is needed. The aim of the present study was to develop a 3-D finite element model to simulate the transport of heat and mass within parchment coffee during the thin laye...
Model refinements of transformers via a subproblem finite element method
Dular, Patrick; Kuo-Peng, Patrick; Ferreira Da Luz, Mauricio,; Krähenbühl, Laurent
2015-01-01
International audience; A progressive modeling of transformers is performed via a subproblem finite element method. A complete problem is split into subproblems with different adapted overlapping meshes. Model refinements are performed from ideal to real flux tubes, 1-D to 2-D to 3-D models, linear to nonlinear materials, perfect to real materials, single wire to volume conductor windings, and homogenized to fine models of cores and coils, with any coupling of these changes. The proposed unif...
Experience gained with the 3D machining of the W7-X HHF divertor target elements
Energy Technology Data Exchange (ETDEWEB)
Junghanns, P. [Max Planck Institute for Plasma Physics, Greifswald (Germany); Boscary, J., E-mail: jean.boscary@ipp.mpg.de [Max Planck Institute for Plasma Physics, Garching (Germany); Peacock, A. [Max Planck Institute for Plasma Physics, Garching (Germany)
2015-10-15
Highlights: • The Wendelstein 7-X surface of the actively cooled divertor is built up of 890 individually 3D machined target elements. • To date 300 target elements have been 3D machined with an accuracy of ±0.015 mm. • Copper discovered on the surface of few elements is no risk to operation. - Abstract: The high heat flux (HHF) divertor of W7-X consists of 100 target modules assembled from 890 actively water-cooled target elements protected with CFC tiles. The divertor surface will be built up of individually 3D machined target elements with 89 individual element types. To date 300 of the 890 target elements have been 3D machined with a very good accuracy. To achieve this successful result, a prototyping phase has been conducted to qualify the manufacturing route and to define the acceptance criteria with measures taken to minimize the risk of unacceptable damage during the manufacturing. After the 3D-machining, during the incoming inspection, copper infiltration from the interface between the CFC tiles and the CuCrZr heat sink to the plasma facing surface was detected in a small number of elements.
A σ-coordinate model for 3D free-surface flows using an unstructured finite-volume technique
Uh Zapata, Miguel
2016-11-01
The aim of this work is to develop a numerical solution of three-dimensional free-surface flows using a σ-coordinate model, a projection method and an unstructured finite-volume technique. The coordinate transformation is used in order to overcome difficulties arising from free surface elevation and irregular geometry. The projection method consists to combine the momentum and continuity equations in order to establish a Poisson-type equation for the non-hydrostatic pressure. A cell-centered finite volume method with a triangular mesh in the horizontal direction is used to simulate the flows with free-surfaces, in which the average values of conserved variables are stored at the centre of each element. A parallel algorithm is also presented for the finite volume discretization of the 3D Navier-Stokes equations. The proposed parallel method is formulated by using a multi-color SOR method, a block domain decomposition and interprocessor data communication techniques with Message Passing Interface. The model has been validated by several benchmarks which numerical simulations are in good agreement with the corresponding analytical and existing experimental results.
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation.
Spectra of Full 3-D PIC Simulations of Finite Meteor Trails
Tarnecki, L. K.; Oppenheim, M. M.
2016-12-01
Radars detect plasma trails created by the billions of small meteors that impact the Earth's atmosphere daily, returning data used to infer characteristics of the meteoroid population and upper atmosphere. Researchers use models to investigate the dynamic evolution of the trails. Previously, all models assumed a trail of infinite length, due to the constraints of simulation techniques. We present the first simulations of 3D meteor trails of finite length. This change more accurately captures the physics of the trails. We characterize the turbulence that develops as the trail evolves and study the effects of varying the external electric field, altitude, and initial density. The simulations show that turbulence develops in all cases, and that trails travel with the neutral wind rather than electric field. Our results will allow us to draw more detailed and accurate information from non-specular radar observations of meteors.
Almost simple groups with socle 3D4(q) act on finite linear spaces
Institute of Scientific and Technical Information of China (English)
LIU; Weijun; DAI; Shaojun
2006-01-01
After the classification of flag-transitive linear spaces,attention has now turned to line-transitive linear spaces.Such spaces are first divided into the point-imprimitive and the point-primitive,the first class is usually easy by the theorem of Delandtsheer and Doyen.The primitive ones are now subdivided,according to the O'Nan-Scotte theorem and some further work by Camina,into the socles which are an elementary abelian or non-abelian simple.In this paper,we consider the latter.Namely,T ≤ G ≤ Aut(T) and G acts line-transitively on finite linear spaces,where T is a non-abelian simple.We obtain some useful lemmas.In particular,we prove that when T is isomorphic to 3D4(q),then T is line-transitive,where q is a power of the prime p.
Finite element analysis of optical waveguides
Mabaya, N.; Lagasse, P. E.; Vandenbulcke, P.
1981-06-01
Several finite element programs for the computation of the guided modes of optical waveguides are presented. The advantages and limitations of a very general program for the analysis of anisotropic guides are presented. A possible solution to the problem of the spurious numerical modes, encountered when calculating higher order modes, is proposed. For isotropic waveguides, it is shown that both EH- and HE-type modes can be very accurately approximated by two different scalar finite element programs. Finally, a boundary perturbation method is outlined that makes it possible to calculate the attenuation coefficient of leaky modes in single material guides, starting from a finite element calculation.
Electrical machine analysis using finite elements
Bianchi, Nicola
2005-01-01
OUTLINE OF ELECTROMAGNETIC FIELDSVector AnalysisElectromagnetic FieldsFundamental Equations SummaryReferencesBASIC PRINCIPLES OF FINITE ELEMENT METHODSIntroductionField Problems with Boundary ConditionsClassical Method for the Field Problem SolutionThe Classical Residual Method (Galerkin's Method)The Classical Variational Method (Rayleigh-Ritz's Method)The Finite Element MethodReferencesAPPLICATIONS OF THE FINITE ELEMENT METHOD TO TWO-DIMENSIONAL FIELDSIntroductionLinear Interpolation of the Function fApplication of the Variational MethodSimple Descriptions of Electromagnetic FieldsAppendix: I
Will Finite Elements Replace Structural Mechanics?
Ojalvo, I. U.
1984-01-01
This paper presents a personal view regarding the need for a continued interest and activity in structural methods in general, while viewing finite elements and the computer as simply two specific tools for assisting in this endeavor. An attempt is made to provide some insight as to why finite element methods seem to have "won the war," and to give examples of their more (and less) intelligent use. Items addressed include a highlight of unnecessary limitations of many existing standard finite element codes and where it is felt that further development work is needed.
Superconvergence of tricubic block finite elements
Institute of Scientific and Technical Information of China (English)
2009-01-01
In this paper, we first introduce interpolation operator of projection type in three dimen- sions, from which we derive weak estimates for tricubic block finite elements. Then using the estimate for the W 2, 1-seminorm of the discrete derivative Green’s function and the weak estimates, we show that the tricubic block finite element solution uh and the tricubic interpolant of projection type Πh3u have superclose gradient in the pointwise sense of the L∞-norm. Finally, this supercloseness is applied to superconvergence analysis, and the global superconvergence of the finite element approximation is derived.
GPU-accelerated 3D neutron diffusion code based on finite difference method
Energy Technology Data Exchange (ETDEWEB)
Xu, Q.; Yu, G.; Wang, K. [Dept. of Engineering Physics, Tsinghua Univ. (China)
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition
Schwaiger, Hans F.; Denlinger, Roger P.; Mastin, Larry G.
2012-01-01
We develop a transient, 3-D Eulerian model (Ash3d) to predict airborne volcanic ash concentration and tephra deposition during volcanic eruptions. This model simulates downwind advection, turbulent diffusion, and settling of ash injected into the atmosphere by a volcanic eruption column. Ash advection is calculated using time-varying pre-existing wind data and a robust, high-order, finite-volume method. Our routine is mass-conservative and uses the coordinate system of the wind data, either a Cartesian system local to the volcano or a global spherical system for the Earth. Volcanic ash is specified with an arbitrary number of grain sizes, which affects the fall velocity, distribution and duration of transport. Above the source volcano, the vertical mass distribution with elevation is calculated using a Suzuki distribution for a given plume height, eruptive volume, and eruption duration. Multiple eruptions separated in time may be included in a single simulation. We test the model using analytical solutions for transport. Comparisons of the predicted and observed ash distributions for the 18 August 1992 eruption of Mt. Spurr in Alaska demonstrate to the efficacy and efficiency of the routine.
Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.
Leckey, Cara A C; Rogge, Matthew D; Miller, Corey A; Hinders, Mark K
2012-02-01
We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.
A Comparison of Splitting Techniques for 3D Complex Padé Fourier Finite Difference Migration
Directory of Open Access Journals (Sweden)
Jessé C. Costa
2011-01-01
Full Text Available Three-dimensional wave-equation migration techniques are still quite expensive because of the huge matrices that need to be inverted. Several techniques have been proposed to reduce this cost by splitting the full 3D problem into a sequence of 2D problems. We compare the performance of splitting techniques for stable 3D Fourier finite-difference (FFD migration techniques in terms of image quality and computational cost. The FFD methods are complex Padé FFD and FFD plus interpolation, and the compared splitting techniques are two- and four-way splitting as well as alternating four-way splitting, that is, splitting into the coordinate directions at one depth and the diagonal directions at the next depth level. From numerical examples in homogeneous and inhomogeneous media, we conclude that, though theoretically less accurate, alternate four-way splitting yields results of comparable quality as full four-way splitting at the cost of two-way splitting.
Energy Technology Data Exchange (ETDEWEB)
Talukdar, P.; Steven, M.; Issendorff, F.V.; Trimis, D. [Institute of Fluid Mechanics (LSTM), University of Erlangen-Nuremberg, Cauerstrasse 4, D 91058 Erlangen (Germany)
2005-10-01
The finite volume method of radiation is implemented for complex 3-D problems in order to use it for combined heat transfer problems in connection with CFD codes. The method is applied for a 3-D block structured grid in a radiatively participating medium. The method is implemented in non-orthogonal curvilinear coordinates so that it can handle irregular structure with a body-fitted structured grid. The multiblocking is performed with overlapping blocks to exchange the information between the blocks. Five test problems are considered in this work. In the first problem, present work is validated with the results of the literature. To check the accuracy of multiblocking, a single block is divided into four blocks and results are validated against the results of the single block simulated alone in the second problem. Complicated geometries are considered to show the applicability of the present procedure in the last three problems. Both radiative and non-radiative equilibrium situations are considered along with an absorbing, emitting and scattering medium. (author)
3D micro-optical elements for generation of tightly focused vortex beams
Directory of Open Access Journals (Sweden)
Balčytis Armandas
2015-01-01
Full Text Available Orbital angular momentum carrying light beams are usedfor optical trapping and manipulation. This emerging trend provides new challenges involving device miniaturization for improved performance and enhanced functionality at the microscale. Here we discus a new fabrication method based on combining the additive 3D structuring capability laser photopolymerization and the substractive sub-wavelength resolution patterning of focused ion beam lithography to produce micro-optical elements capable of compound functionality. As a case in point of this approach binary spiral zone pattern based high numerical aperture micro-lenses capable of generating topological charge carrying tightly focused vortex beams in a single wavefront transformation step are presented. The devices were modelled using finite-difference time-domain simulations, and the theoretical predictions were verified by optically characterizing the propagation properties of light transmitted through the fabricated structures. The resulting devices had focal lengths close to the predicted values of f = 18 µm and f = 13 µm as well as topological charge ℓ dependent vortex focal spot sizes of ~ 1:3 µm and ~ 2:0 µm for ℓ = 1 and ℓ = 2 respectively.
FASHION DESIGN OF SILHOUETTES WITH THE USE OF 3D ELEMENTS
Directory of Open Access Journals (Sweden)
Julieta Ilieva
2016-10-01
Full Text Available An investigation of the possibility of fashion design of the different type of silhouettes with the use of 3D elements is the main aim of the paper. The silhouettes are non-volumetric and volumetric and 3D elements are more suitable for design of volumetric ones. For the realization of the purpose models of ladies’ dresses in different types of volumetric silhouettes with the use of different types of 3D elements are designed. One more silhouette – combined one can be added to the classification of the silhouettes. This type of silhouette can be combination between volumetric and non-volumetric shapes, or mixture of only volumetric ones. Every type of 3D elements can be used in design of volumetric silhouettes. And these types are: draperies; one-sided, bi-sided, and covered tucks; gathers, one-sided, bi-sided, and covered plates; goffers; ruffles; ribbons. 3D elements can be used in the fashion design of different types of silhouettes as elements which combined decorative and constructional function, or as only decorative ones.
DNS of Sheared Particulate Flows with a 3D Explicit Finite-Difference Scheme
Perrin, Andrew; Hu, Howard
2007-11-01
A 3D explicit finite-difference code for direct simulation of the motion of solid particulates in fluids has been developed, and a periodic boundary condition implemented to study the effective viscosity of suspensions in shear. The code enforces the no-slip condition on the surface of spherical particles in a uniform Cartesian grid with a special particle boundary condition based on matching the Stokes flow solutions next to the particle surface with a numerical solution away from it. The method proceeds by approximating the flow next to the particle surface as a Stokes flow in the particle's local coordinates, which is then matched to the finite difference update in the bulk fluid on a ``cage'' of grid points near the particle surface. (The boundary condition is related to the PHYSALIS method (2003), but modified for explicit schemes and with an iterative process removed.) Advantages of the method include superior accuracy of the scheme on a relatively coarse grid for intermediate particle Reynolds numbers, ease of implementation, and the elimination of the need to track the particle surface. For the sheared suspension, the effects of fluid and solid inertia and solid volume fraction on effective viscosity at moderate particle Reynolds numbers and concentrated suspensions will be discussed.
Finite element methods a practical guide
Whiteley, Jonathan
2017-01-01
This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.
Moving Finite Elements in 2-D.
1984-08-06
34 . - ; .-’- . - . -- .- -. . - -.. -- ; -. - - - - - ." . ,- . -••. - - ; . IOSR : TR. SAI-84/1299 (0 N MOVING FINITE ELEMENTS IN 2-I Final Report AFOSR Contract: F4962U-81-C-UO73 Program Manager
Advanced finite element method in structural engineering
Long, Yu-Qiu; Long, Zhi-Fei
2009-01-01
This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.
Finite element modeling of corneal strip extensometry
CSIR Research Space (South Africa)
Botha, N
2012-12-01
Full Text Available numerically modelled in several studies, this study focusses on accurately modelling the strip extensiometry test. Two methods were considered to simulate the experimental conditions namely, a single phase and a two phase method. A finite element model...
A survey of mixed finite element methods
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Infinite to finite: An overview of finite element analysis
Directory of Open Access Journals (Sweden)
Srirekha A
2010-01-01
Full Text Available The method of finite elements was developed at perfectly right times; growing computer capacities, growing human skills and industry demands for ever faster and cost effective product development providing unlimited possibilities for the researching community. This paper reviews the basic concept, current status, advances, advantages, limitations and applications of finite element method (FEM in restorative dentistry and endodontics. Finite element method is able to reveal the otherwise inaccessible stress distribution within the tooth-restoration complex and it has proven to be a useful tool in the thinking process for the understanding of tooth biomechanics and the biomimetic approach in restorative dentistry. Further improvement of the non-linear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.
Finite element modeling of the human pelvis
Energy Technology Data Exchange (ETDEWEB)
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Surgery simulation using fast finite elements
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1996-01-01
This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism......This paper describes our recent work on real-time surgery simulation using fast finite element models of linear elasticity. In addition, we discuss various improvements in terms of speed and realism...
The finite element method in electromagnetics
Jin, Jianming
2014-01-01
A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The
A NOTE ON FINITE ELEMENT WAVELETS
Institute of Scientific and Technical Information of China (English)
谌秋辉; 陈翰麟
2001-01-01
The refinability and approximation order of finite element multi-scale vector are discussed in [1]. But the coefficients in the conditions of approximation order of finite element multi-scale vector are incorrect there. The main purpose of this note is to make a correction of the error in the main result of [1]. These coefficients are very important for the properties of wavelets, such as vanishing moments and regularity.
Institute of Scientific and Technical Information of China (English)
任瑞波; 祁文洋; 李美玲
2011-01-01
Asphalt pavement is a kind of porous medium which consists of solid, liquid and gas phases under the action of outside environment. The coupled hydro-mechanical action leads to the initial failure of asphalt pavement. To explore the dynamic response of asphalt pavement subjected to moving vehicle loads is the premise for understanding the structure behavior of asphalt pavement. First, regarding asphalt mixture as a media consists of solid and liquid phases in level one reasonable approximation, based on the porous media theory, a 3D finite element model of typical semi-rigid base asphalt concrete pavement under moving load was developed in the assumption that the asphalt pavement is saturated. Then, the variation of 3D strain and stress as well as 3D distribution of vertical stress of pavement under saturated condition and dry condition were comparatively analysed. The result indicates that (1) the characteristics of dynamic response of asphalt pavement with moving load under saturated condition and dry condition in surface course are different; (2) it' is more likely to have structure damage such as fatigue cracking and permanent deformation when asphalt pavement is under saturated condition; (3) in asphalt pavement design, it is more reasonable to use flexural-tensile strain as the index than flexural-tensile stress.%沥青路面结构在外界环境作用下是气、液、固三相介质体,水和荷载的耦合作用导致了沥青路面初期损坏的产生,探究其在车辆移动荷栽作用下的动力响应是获知沥青路面结构行为的前提.首先,在沥青路面饱和情况下,作一级合理近似,将其视为流固两相介质.基于多孔介质理论,对于典型半刚性基层沥青路面结构建立了移动荷载作用下的三维有限元模型;而后对比分析了移动荷载作用下,饱和沥青路面和无水沥青路面三向应力、应变响应的时程变化规律以及竖向应力场的三维分布情况.结果表明:移动荷载
Design of extended viewing zone at autostereoscopic 3D display based on diffusing optical element
Kim, Min Chang; Hwang, Yong Seok; Hong, Suk-Pyo; Kim, Eun Soo
2012-03-01
In this paper, to realize a non-glasses type 3D display as next step from the current glasses-typed 3D display, it is suggested that a viewing zone is designed for the 3D display using DOE (Diffusing Optical Element). Viewing zone of proposed method is larger than that of the current parallax barrier method or lenticular method. Through proposed method, it is shown to enable the expansion and adjustment of the area of viewing zone according to viewing distance.
Finite element analysis of flexible, rotating blades
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Maerten, F.; Maerten, L.; Pollard, D. D.
2014-11-01
Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope
Element-Partition-Based Methods for Visualization of 3D Unstructured Grid Data
Institute of Scientific and Technical Information of China (English)
无
1998-01-01
Element-partition-based methods for visualization of 3D unstructured grid data are presented.First,partition schemes for common elements,including curvilinear tetrahedra,pentahedra,hexahedra,etc.,are given,so that complex elements can be divided into several rectilinear tetrahedra,and the visualization processes can be simplified.Then,a slice method for cloud map and an iso-surface method based on the partition schemes are described.
Recent advances in hybrid/mixed finite elements
Pian, T. H. H.
1985-01-01
In formulations of Hybrid/Mixed finite element methods respectively by the Hellinger-Reissner principle and the Hu-Washizu principle, the stress equilibrium equations are brought in as conditions of constraint through the introduction of additional internal displacement parameters. These two approaches are more flexible and have better computing efficiencies. A procedure for the choice of assumed stress terms for 3-D solids is suggested. Example solutions are given for plates and shells using the present formulations and the idea of semiloof elements.
Finite element and discontinuous Galerkin methods for transient wave equations
Cohen, Gary
2017-01-01
This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...
Modelling the electromagnetic performance of moving rail gun launchers using finite elements
Rodger, D.; Leonard, P. J.
1993-01-01
A finite element technique for modelling 3D transient eddy currents in 'smooth rotor' conductors moving at constant velocity is described. A method for joining discontinuous A fields at the interface between conductors in sliding electrical contact has been implemented in the MEGA software package for 2 and 3D electromagnetic field analysis.
Chu, Chunlei
2009-01-01
We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.
Quadrature representation of finite element variational forms
DEFF Research Database (Denmark)
Ølgaard, Kristian Breum; Wells, Garth N.
2012-01-01
This chapter addresses the conventional run-time quadrature approach for the numerical integration of local element tensors associated with finite element variational forms, and in particular automated optimizations that can be performed to reduce the number of floating point operations...
Institute of Scientific and Technical Information of China (English)
罗志强; 陈志敏
2013-01-01
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa-tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa-tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
Finite Element Computational Dynamics of Rotating Systems
Directory of Open Access Journals (Sweden)
Jaroslav Mackerle
1999-01-01
Full Text Available This bibliography lists references to papers, conference proceedings and theses/dissertations dealing with finite element analysis of rotor dynamics problems that were published in 1994–1998. It contains 319 citations. Also included, as separate subsections, are finite element analyses of rotor elements – discs, shafts, spindles, and blades. Topics dealing with fracture mechanics, contact and stability problems of rotating machinery are also considered in specific sections. The last part of the bibliography presents papers dealing with specific industrial applications.
Error computation for adaptive finite element analysis
Khan, A A; Memon, I R; Ming, X Y
2002-01-01
The paper gives a simple numerical procedure for computations of errors generated by the discretisation process of finite element method. The procedure given is based on the ZZ error estimator which is believed to be reasonable accurate and thus can be readily implemented in any existing finite element codes. The devised procedure not only estimates the global energy norm error but also evaluates the local errors in individual elements. In the example, the given procedure is combined with an adaptive refinement procedure, which provides guidance for optimal mesh designing and allows the user to obtain a desired accuracy with a limited number of interaction. (author)
Experimental Finite Element Approach for Stress Analysis
Directory of Open Access Journals (Sweden)
Ahmet Erklig
2014-01-01
Full Text Available This study aims to determining the strain gauge location points in the problems of stress concentration, and it includes both experimental and numerical results. Strain gauges were proposed to be positioned to corresponding locations on beam and blocks to related node of elements of finite element models. Linear and nonlinear cases were studied. Cantilever beam problem was selected as the linear case to approve the approach and conforming contact problem was selected as the nonlinear case. An identical mesh structure was prepared for the finite element and the experimental models. The finite element analysis was carried out with ANSYS. It was shown that the results of the experimental and the numerical studies were in good agreement.
Leng, Kuangdai; Nissen-Meyer, Tarje; van Driel, Martin
2016-12-01
We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models. We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridian equations, which is then solved by a 2-D spectral element method (SEM). Computational efficiency of such a hybrid method stems from lateral smoothness of 3-D Earth models and axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. We show novel benchmarks for global wave solutions in 3-D structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period ranging from 34 s down to 11 s. It turns out that our method has run up to two orders of magnitude faster than the 3-D SEM, featured by a computational advantage expanding with seismic frequency.
BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0
1991-01-01
The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.
Finite Element Model of Cardiac Electrical Conduction.
Yin, John Zhihao
1994-01-01
In this thesis, we develop mathematical models to study electrical conduction of the heart. One important pattern of wave propagation of electrical excitation in the heart is reentry which is believed to be the underlying mechanism of some dangerous cardiac arhythmias such as ventricular tachycardia and ventricular fibrillation. We present in this thesis a new ionic channel model of the ventricular cardiac cell membrane to study the microscopic electrical properties of myocardium. We base our model on recent single channel experiment data and a simple physical diffusion model of the calcium channel. Our ionic channel model of myocardium has simpler differential equations and fewer parameters than previous models. Further more, our ionic channel model achieves better results in simulating the strength-interval curve when we connect the membrane patch model to form a one dimensional cardiac muscle strand. We go on to study a finite element model which uses multiple states and non-nearest neighbor interactions to include curvature and dispersion effects. We create a generalized lattice randomization to overcome the artifacts generated by the interaction between the local dynamics and the regularities of the square lattice. We show that the homogeneous model does not display spontaneous wavefront breakup in a reentrant wave propagation once the lattice artifacts have been smoothed out by lattice randomization with a randomization scale larger than the characteristic length of the interaction. We further develop a finite 3-D 3-state heart model which employs a probability interaction rule. This model is applied to the simulation of Body Surface Laplacian Mapping (BSLM) using a cylindrical volume conductor as the torso model. We show that BSLM has a higher spatial resolution than conventional mapping methods in revealing the underlying electrical activities of the heart. The results of these studies demonstrate that mathematical modeling and computer simulation are very
Exact finite elements for conduction and convection
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
On a 3-D singularity element for computation of combined mode stress intensities
Atluri, S. N.; Kathiresan, K.
1976-01-01
A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.
Beam section stiffness properties using a single layer of 3D solid elements
DEFF Research Database (Denmark)
Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker
2015-01-01
A method is presented for analysis of the properties of general cross-sections with arbitrary geometry and material distribution. The full six by six cross-section stiffness matrix is evaluated from a single element thickness slice represented by 3D solid elements with lengthwise Hermitian...... illustrate the accuracy of the method for solid and thin-walled sections with isotropic and general anisotropic materials....
Yi, Longtao; Qin, Min; Wang, Kai; Lin, Xue; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo
2016-09-01
Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces.
Energy Technology Data Exchange (ETDEWEB)
Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)
2016-09-15
Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)
Latest Trends in Finite Element Analysis
Directory of Open Access Journals (Sweden)
L. S. Madhav
1996-01-01
Full Text Available This paper highlights the advances in computer graphics and the computational power of the processors which have promoted a method of analysis, applicable to almost all the fields of engineering. The advantages of the computers have been judiciously used in the design of algorithms, based on the principles of finite difference, finite element, boundary element, etc., intended for the analysis of engineering components. The concept of finite element method which has been generalised with the availability of commercial software, is also reviewed with a special emphasis on the future trends. The modelling and visualisation techniques have also been discussed with an inner perspective on future of visual display of multidimensional complex information. The application of these techniques in some fields is also indicated.
Finite Element Methods and Their Applications
Chen, Zhangxin
2005-01-01
This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.
Finite element model calibration of a nonlinear perforated plate
Ehrhardt, David A.; Allen, Matthew S.; Beberniss, Timothy J.; Neild, Simon A.
2017-03-01
This paper presents a case study in which the finite element model for a curved circular plate is calibrated to reproduce both the linear and nonlinear dynamic response measured from two nominally identical samples. The linear dynamic response is described with the linear natural frequencies and mode shapes identified with a roving hammer test. Due to the uncertainty in the stiffness characteristics from the manufactured perforations, the linear natural frequencies are used to update the effective modulus of elasticity of the full order finite element model (FEM). The nonlinear dynamic response is described with nonlinear normal modes (NNMs) measured using force appropriation and high speed 3D digital image correlation (3D-DIC). The measured NNMs are used to update the boundary conditions of the full order FEM through comparison with NNMs calculated from a nonlinear reduced order model (NLROM). This comparison revealed that the nonlinear behavior could not be captured without accounting for the small curvature of the plate from manufacturing as confirmed in literature. So, 3D-DIC was also used to identify the initial static curvature of each plate and the resulting curvature was included in the full order FEM. The updated models are then used to understand how the stress distribution changes at large response amplitudes providing a possible explanation of failures observed during testing.
3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media
Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.
2003-12-01
Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented
Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media
Aldridge, D. F.; Bartel, L. C.; Knox, H. A.
2013-12-01
Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common
Handling realistic assumptions in hypothesis testing of 3D co-localization of genomic elements.
Paulsen, Jonas; Lien, Tonje G; Sandve, Geir Kjetil; Holden, Lars; Borgan, Ornulf; Glad, Ingrid K; Hovig, Eivind
2013-05-01
The study of chromatin 3D structure has recently gained much focus owing to novel techniques for detecting genome-wide chromatin contacts using next-generation sequencing. A deeper understanding of the architecture of the DNA inside the nucleus is crucial for gaining insight into fundamental processes such as transcriptional regulation, genome dynamics and genome stability. Chromatin conformation capture-based methods, such as Hi-C and ChIA-PET, are now paving the way for routine genome-wide studies of chromatin 3D structure in a range of organisms and tissues. However, appropriate methods for analyzing such data are lacking. Here, we propose a hypothesis test and an enrichment score of 3D co-localization of genomic elements that handles intra- or interchromosomal interactions, both separately and jointly, and that adjusts for biases caused by structural dependencies in the 3D data. We show that maintaining structural properties during resampling is essential to obtain valid estimation of P-values. We apply the method on chromatin states and a set of mutated regions in leukemia cells, and find significant co-localization of these elements, with varying enrichment scores, supporting the role of chromatin 3D structure in shaping the landscape of somatic mutations in cancer.
Finite elements for analysis and design
Akin, J E; Davenport, J H
1994-01-01
The finite element method (FEM) is an analysis tool for problem-solving used throughout applied mathematics, engineering, and scientific computing. Finite Elements for Analysis and Design provides a thoroughlyrevised and up-to-date account of this important tool and its numerous applications, with added emphasis on basic theory. Numerous worked examples are included to illustrate the material.Key Features* Akin clearly explains the FEM, a numerical analysis tool for problem-solving throughout applied mathematics, engineering and scientific computing* Basic theory has bee
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Finite-Difference Algorithm for 3D Orthorhombic Elastic Wave Propagation
Jensen, R.; Preston, L. A.; Aldridge, D. F.
2016-12-01
Many geophysicists concur that an orthorhombic elastic medium, characterized by three mutually orthogonal symmetry planes, constitutes a realistic representation of seismic anisotropy in shallow crustal rocks. This symmetry condition typically arises via a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology. Mathematically, the elastic stress-strain constitutive relations for an orthorhombic body contain nine independent moduli. In turn, these moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We are developing an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Simplified FD updating formulae (with significantly reduced operation counts) for stress components are obtained by restricting the principle axes of the modulus tensor to be parallel to the global rectangular coordinate axes. Moreover, restriction to a piecewise homogeneous earth model reduces computational memory demand for storing the ten (including mass density) model parameters. These restrictions will be relaxed in the future. Novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, effectively suppress grid boundary reflections. Initial modeling results reveal the well-established anisotropic seismic phenomena of complex wavefront shapes, split (fast and slow) S-waves, and shear waves generated by a spherically-symmetric explosion in a homogeneous body.
Structural elements and collapse regimes in 3D flows on a slope
Energy Technology Data Exchange (ETDEWEB)
Goncharov, V. P., E-mail: v.goncharov@rambler.ru [Russian Academy of Sciences, Obukhov Institute of Atmospheric Physics (Russian Federation)
2011-10-15
The mechanisms and structural elements of an instability whose development results in the collapse of flow fragments have been studied in the scope of the Hamilton version of the 'shallow water' 3D model on a slope. The study indicated that the 3D model differs from its 2D analog in a more varied set of collapsing solutions. In particular, the solutions describing anisotropic collapse, during which the area of a collapsing fragment in contact with the slope contracts into a segment rather than a point, exist together with the solutions describing radially symmetric (isotropic) collapse.
Towards Computing Full 3D Seismic Sensitivity: The Axisymmetric Spectral Element Method
Nissen-Meyer, T.; Fournier, A.; Dahlen, F. A.
2004-12-01
Finite frequency tomography has recently provided detailed images of the Earth's deep interior. However, the Fréchet sensitivity kernels used in these inversions are calculated using ray theory and can therefore not account for D''-diffracted phases or any caustics in the wavefield, as e.g. occurring in phases used to map boundary layer topography. Our objective is to compile an extensive set of full sensitivity kernels based on seismic forward modeling to allow for inversion of any seismic phase. The sensitivity of the wavefield due to a scatterer off the theoretical ray path is generally determined by the convolution of the source-to-scatterer response with, using reciprocity, the receiver-to-scatterer response. Thus, exact kernels require the knowledge of the Green's function for the full moment tensor (i.e., source) and body forces (i.e., receiver components) throughout the model space and time. We develop an axisymmetric spectral element method for elastodynamics to serve this purpose. The axisymmetric approach takes advantage of the fact that kernels are computed upon a spherically symmetric Earth model. In this reduced dimension formulation, all moment tensor elements and single forces can be included and collectively unfold in six different 2D problems to be solved separately. The efficient simulations on a 2D mesh then allow for currently unattainable high resolution at low hardware requirements. The displacement field {u} for the 3D sphere can be expressed as {u}( {x}, {t})= {u}( {x}φ =0}, {t}) {f(φ ), where φ =0 represents the 2D computational domain and {f}(φ ) are trigonometric functions. Here, we describe the variational formalism for the full multipole source system and validate its implementation against normal mode solutions for the solid sphere. The global mesh includes several conforming coarsening levels to minimize grid spacing variations. In an effort of algorithmic optimization, the discretization is acquired on the basis of matrix
Numerical computation of transonic flows by finite-element and finite-difference methods
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Finite element analysis for radiative heat transfer in multidimensional participating media
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A finite element model is developed to simulate the radiative transfer in 2D and 3D complex-geometric enclosure filled with absorbing and scattering media. This model is based on the discrete ordinates method and finite element theory. The finite element formulations and detailed steps of numerical calculation are given.The discrepancy of the results produced by different space and solid angle discretization is also investigated and compared. The effect of the six-node quadric element on the accuracy is analyzed by a 2D rectangular enclosure. These results indicate that the present model can simulate radiative transfer in multidimensional complexgeometric enclosure with participating media effectively and accurately.
Orthodontic treatment: Introducing finite element analysis
Driel, W.D. van; Leeuwen, E.J. van
1998-01-01
The aim of orthodontic treatment is the displacement of teeth by means ofspecial appliances, like braces and brackets. Through these appliances the orthodontist can apply a set of forces to the teeth which wilt result in its displacement through the jawbone. Finite Element analysis of this process e
Interval Finite Element Analysis of Wing Flutter
Institute of Scientific and Technical Information of China (English)
Wang Xiaojun; Qiu Zhiping
2008-01-01
The influences of uncertainties in structural parameters on the flutter speed of wing are studied. On the basis of the deterministic flutter analysis model of wing, the uncertainties in structural parameters are considered and described by interval numbers. By virtue of first-order Taylor series expansion, the lower and upper bound curves of the transient decay rate coefficient versus wind velocity are given. So the interval estimation of the flutter critical wind speed of wing can be obtained, which is more reasonable than the point esti- mation obtained by the deterministic flutter analysis and provides the basis for the further non-probabilistic interval reliability analysis of wing flutter. The flow chart for interval finite element model of flutter analysis of wing is given. The proposed interval finite element model and the stochastic finite element model for wing flutter analysis are compared by the examples of a three degrees of freedorn airfoil and fuselage and a 15° swepthack wing, and the results have shown the effectiveness and feasibility of the presented model. The prominent advantage of the proposed interval finite element model is that only the bounds of uncertain parameters axe required, and the probabilistic distribution densities or other statistical characteristics are not needed.
Fast finite elements for surgery simulation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten
1997-01-01
This paper discusses volumetric deformable models for modeling human body parts and organs in surgery simulation systems. These models are built using finite element models for linear elastic materials. To achieve real-time response condensation has been applied to the system stiffness matrix, an...
Moruzzi, VL
1995-01-01
This is a handbook of calculated electronic properties of elements and of 3d/3d and 4d/4d ordered alloys. The book derives the ground-state or equilibrium properties of the metallic elements in both bcc and fcc structures, and of existing and nonexisting ordered binary transition-metal alloys in CsCl, CuAu, and Cu 3 Au structures by the analysis of binding curves, or total energy vs. volume curves, calculated from first-principles augmented-spherical-wave methods. The calculated properties, energy bands along symmetry lines in the respective Brillouin zones, and the total and I-decomposed dens
Institute of Scientific and Technical Information of China (English)
孙哲; 尹新芹; 林志勇; 孟德廷; 孙晓东; 石晓婷
2013-01-01
AIM: To analyze the effect of different root canal preparation techniques on the root canal stress values and distribution, and to compare the stress change under the different loading. METHODS:30 extracted human mandibular premolars were randomly divided into 3 groups ( n = 10). The root canals were prepared with standard system using Ni-Ti Mtwo instrument ( G1) , crown-down technique using Ni-Ti Protaper instrument (G2) and step-back technique using conventional stainless steel K-files (G3) respectively. The prepared canals were then filled with warmhearted gutta pertscha and restored with composite resin. CT scan and Abaqus 6. 10 software were used to establish 3D finite element models. The stress magnitude and distribution of the models were analyzed under the loading of 150 N vertically and at 45° linguoclination respectively. RESULTS: After root canal preparation, high stress area was mainly concentrated in the crown 1/3 of the canals, the stress value decreased gradually from the root canal orifice to the apical foramen. The average peak root canal stress under lateral loading was significantly higher than that under vertical loading(P 0. 05 ) , but the stress of G3 was higher than that of Gl and G2 (P 0. 05). CONCLUSION: All three root canal preparation methods were safe and feasible. Preparation with Protaper and Mtwo nickel titanium may result in more balanced root canal stress distribution.%目的:研究不同根管预备方法对根管应力大小和分布的影响,并比较不同加载状态下根管应力的改变.方法:选取30个离体下颌第一前磨牙,随机分成3组(n=10)∶G1组(标准法)用镍钛器械Mtwo预备；G2组(冠向下法)用镍钛器械Protaper预备；G3组(逐步后退法)用不锈钢K锉预备.预备后的根管经热牙胶充填和复合树脂修复后,应用CB-CT技术与Abaqus 6.10软件等相结合建立各组牙齿三维有限元模型,分析比较模型在垂直和舌侧倾斜45°不同载荷条件下的应力大小
On Hybrid and mixed finite element methods
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Finite Dynamic Elements and Modal Analysis
Directory of Open Access Journals (Sweden)
N.J. Fergusson
1993-01-01
Full Text Available A general modal analysis scheme is derived for forced response that makes use of high accuracy modes computed by the dynamic element method. The new procedure differs from the usual modal analysis in that the modes are obtained from a power series expansion for the dynamic stiffness matrix that includes an extra dynamic correction term in addition to the static stiffness matrix and the consistent mass matrix based on static displacement. A cantilevered beam example is used to demonstrate the relative accuracies of the dynamic element and the traditional finite element methods.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Energy Technology Data Exchange (ETDEWEB)
Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-31
This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.
LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS
Institute of Scientific and Technical Information of China (English)
Shiquan Zhang; Xiaoping Xie; Yumei Chen
2009-01-01
In this paper, we consider lower order rectangular finite element methods for the singularly perturbed Stokes problem. The model problem reduces to a linear Stokes problem when the perturbation parameter is large and degenerates to a mixed formulation of Poisson's equation as the perturbation parameter tends to zero. We propose two 2D and two 3D nonconforming rectangular finite elements, and derive robust discretization error estimates. Numerical experiments are carried out to verify the theoretical results.
Beam section stiffness properties using a single layer of 3D solid elements
DEFF Research Database (Denmark)
Couturier, Philippe; Krenk, Steen; Høgsberg, Jan Becker
2015-01-01
A method is presented for analysis of the properties of general cross-sections with arbitrary geometry and material distribution. The full six by six cross-section stiffness matrix is evaluated from a single element thickness slice represented by 3D solid elements with lengthwise Hermitian...... interpolation with six independent imposed deformation modes corresponding to extension, torsion, bending and shear. The flexibility matrix of the slice is obtained from complementary elastic energy, and the stiffness matrix is obtained by extracting and inverting the cross-section flexibility. Three examples...
SURFACE FINITE ELEMENTS FOR PARABOLIC EQUATIONS
Institute of Scientific and Technical Information of China (English)
G. Dziuk; C.M. Elliott
2007-01-01
In this article we define a surface finite element method (SFEM) for the numerical solution of parabolic partial differential equations on hypersurfaces Γ in (R)n+1. The key idea is based on the approximation of Γ by a polyhedral surface Γh consisting of a union of simplices (triangles for n = 2, intervals for n = 1) with vertices on Γ. A finite element space of functions is then defined by taking the continuous functions on Γh which are linear affine on each simplex of the polygonal surface. We use surface gradients to define weak forms of elliptic operators and naturally generate weak formulations of elliptic and parabolic equations on Γ. Our finite element method is applied to weak forms of the equations. The computation of the mass and element stiffness matrices are simple and straightforward.We give an example of error bounds in the case of semi-discretization in space for a fourth order linear problem. Numerical experiments are described for several linear and nonlinear partial differential equations. In particular the power of the method is demonstrated by employing it to solve highly nonlinear second and fourth order problems such as surface Allen-Cahn and Cahn-Hilliard equations and surface level set equations for geodesic mean curvature flow.
Thermal buckling comparative analysis using Different FE (Finite Element) tools
Energy Technology Data Exchange (ETDEWEB)
Banasiak, Waldemar; Labouriau, Pedro [INTECSEA do Brasil, Rio de Janeiro, RJ (Brazil); Burnett, Christopher [INTECSEA UK, Surrey (United Kingdom); Falepin, Hendrik [Fugro Engineers SA/NV, Brussels (Belgium)
2009-12-19
High operational temperature and pressure in offshore pipelines may lead to unexpected lateral movements, sometimes call lateral buckling, which can have serious consequences for the integrity of the pipeline. The phenomenon of lateral buckling in offshore pipelines needs to be analysed in the design phase using FEM. The analysis should take into account many parameters, including operational temperature and pressure, fluid characteristic, seabed profile, soil parameters, coatings of the pipe, free spans etc. The buckling initiation force is sensitive to small changes of any initial geometric out-of-straightness, thus the modeling of the as-laid state of the pipeline is an important part of the design process. Recently some dedicated finite elements programs have been created making modeling of the offshore environment more convenient that has been the case with the use of general purpose finite element software. The present paper aims to compare thermal buckling analysis of sub sea pipeline performed using different finite elements tools, i.e. general purpose programs (ANSYS, ABAQUS) and dedicated software (SAGE Profile 3D) for a single pipeline resting on an the seabed. The analyses considered the pipeline resting on a flat seabed with a small levels of out-of straightness initiating the lateral buckling. The results show the quite good agreement of results of buckling in elastic range and in the conclusions next comparative analyses with sensitivity cases are recommended. (author)
Finite element method for solving geodetic boundary value problems
Fašková, Zuzana; Čunderlík, Róbert; Mikula, Karol
2010-02-01
The goal of this paper is to present the finite element scheme for solving the Earth potential problems in 3D domains above the Earth surface. To that goal we formulate the boundary-value problem (BVP) consisting of the Laplace equation outside the Earth accompanied by the Neumann as well as the Dirichlet boundary conditions (BC). The 3D computational domain consists of the bottom boundary in the form of a spherical approximation or real triangulation of the Earth’s surface on which surface gravity disturbances are given. We introduce additional upper (spherical) and side (planar and conical) boundaries where the Dirichlet BC is given. Solution of such elliptic BVP is understood in a weak sense, it always exists and is unique and can be efficiently found by the finite element method (FEM). We briefly present derivation of FEM for such type of problems including main discretization ideas. This method leads to a solution of the sparse symmetric linear systems which give the Earth’s potential solution in every discrete node of the 3D computational domain. In this point our method differs from other numerical approaches, e.g. boundary element method (BEM) where the potential is sought on a hypersurface only. We apply and test FEM in various situations. First, we compare the FEM solution with the known exact solution in case of homogeneous sphere. Then, we solve the geodetic BVP in continental scale using the DNSC08 data. We compare the results with the EGM2008 geopotential model. Finally, we study the precision of our solution by the GPS/levelling test in Slovakia where we use terrestrial gravimetric measurements as input data. All tests show qualitative and quantitative agreement with the given solutions.
Finite element modeling of permanent magnet devices
Brauer, J. R.; Larkin, L. A.; Overbye, V. D.
1984-03-01
New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
K N Seetharamu; R Paragasam; Ghulam A Quadir; Z A Zainal; B Sathya Prasad; T Sundararajan
2001-02-01
The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is accounted in the heat transfer simulation. Distortion of the casting is caused due to non-uniform shrinkage associated with the process. Residual stresses are induced in the final castings. Simulation of the shrinkage and the thermal stresses are also carried out using finite element methods. The material behaviour is considered as visco-plastic. The simulations are compared with available experimental data and the comparison is found to be good. Special considerations regarding the simulation of solidification process are also brought out.
Finite element simulations with ANSYS workbench 16
Lee , Huei-Huang
2015-01-01
Finite Element Simulations with ANSYS Workbench 16 is a comprehensive and easy to understand workbook. It utilizes step-by-step instructions to help guide readers to learn finite element simulations. Twenty seven real world case studies are used throughout the book. Many of these cases are industrial or research projects the reader builds from scratch. All the files readers may need if they have trouble are available for download on the publishers website. Companion videos that demonstrate exactly how to preform each tutorial are available to readers by redeeming the access code that comes in the book. Relevant background knowledge is reviewed whenever necessary. To be efficient, the review is conceptual rather than mathematical. Key concepts are inserted whenever appropriate and summarized at the end of each chapter. Additional exercises or extension research problems are provided as homework at the end of each chapter. A learning approach emphasizing hands-on experiences spreads through this entire book. A...
Quantum Finite Elements for Lattice Field Theory
Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan
2016-01-01
Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.
Finite element modelling of SAW correlator
Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek
2007-12-01
Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.
FINITE ELEMENT ANALYSIS FOR PERIFLEX COUPLINGS
Directory of Open Access Journals (Sweden)
URDEA Mihaela
2015-06-01
Full Text Available The Periflex shaft couplings with rubber sleeve have a hig elasticity and link two shafts in diesel-engine and electric drives. They are simple from the point of view of construction, easily mounted and dismounted. The main goal of this paper is to present a finite element analysis for the Periflex coupling using the Generative Structural Analysis from CATIA software package. This paper presents important information about how to prepare an assembly for creating a static analysis case and also the important steps for developing a finite element analysis. It is very important that the analysis model should have the same behavior as the real, also the loading model. The results are images corresponding to Von Mises Stresses and Translational Displacement magnitude.
Finite Element Simulation of Metal Quenching
Institute of Scientific and Technical Information of China (English)
方刚; 曾攀
2004-01-01
The evolution of the phase transformation and the resulting internal stresses and strains in metallic parts during quenching were modeled numerically. The numerical simulation of the metal quenching process was based on the metallo-thermo-mechanical theory using the finite element method to couple the temperature, phase transformation, and stress-strain fields. The numerical models are presented for the heat treatment and kinetics of the phase transformation. The finite element models and the phase transition kinetics accurately predict the distribution of the microstructure volume fractions, the temperature, the distortion, and the stress-strain relation during quenching. The two examples used to validate the models are the quenching of a small gear and of a large turbine rotor. The simulation results for the martensite phase volume fraction, the stresses, and the distortion in the gear agree well with the experimental data. The models can be used to optimize the quenching conditions to ensure product quality.
FINITE ELEMENT METHODS FOR SOBOLEV EQUATIONS
Institute of Scientific and Technical Information of China (English)
Tang Liu; Yan-ping Lin; Ming Rao; J. R. Cannon
2002-01-01
A new high-order time-stepping finite element method based upon the high-order numerical integration formula is formulated for Sobolev equations, whose computations consist of an iteration procedure coupled with a system of two elliptic equations. The optimal and superconvergence error estimates for this new method axe derived both in space and in time. Also, a class of new error estimates of convergence and superconvergence for the time-continuous finite element method is demonstrated in which there are no time derivatives of the exact solution involved, such that these estimates can be bounded by the norms of the known data. Moreover, some useful a-posteriori error estimators are given on the basis of the superconvergence estimates.
Finite element analysis of human joints
Energy Technology Data Exchange (ETDEWEB)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element analysis of tibial fractures
DEFF Research Database (Denmark)
Wong, Christian Nai En; Mikkelsen, Mikkel Peter W; Hansen, Leif Berner
2010-01-01
INTRODUCTION: Fractures of the tibial shaft are relatively common injuries. There are indications that tibial shaft fractures share characteristics in terms of site, type and local fracture mechanisms. In this study, we aimed to set up a mathematical, computer-based model using finite element...... analysis of the bones of the lower leg to examine if such a model is adequate for prediction of fracture locations and patterns. In future studies, we aim to use these biomechanical results to examine fracture prevention, among others, and to simulate different types of osteosynthesis and the process...... of bony healing. The biomechanical results are the basis for fracture healing, biomechanical fall analysis and stability analysis of osteosynthesis. MATERIAL AND METHODS: A finite element model of the bony part of the lower leg was generated on the basis of computed tomography data from the Visible Human...
Multiphase Transformer Modelling using Finite Element Method
Directory of Open Access Journals (Sweden)
Nor Azizah Mohd Yusoff
2015-03-01
Full Text Available In the year of 1970 saw the starting invention of the five-phase motor as the milestone in advanced electric motor. Through the years, there are many researchers, which passionately worked towards developing for multiphase drive system. They developed a static transformation system to obtain a multiphase supply from the available three-phase supply. This idea gives an influence for further development in electric machines as an example; an efficient solution for bulk power transfer. This paper highlighted the detail descriptions that lead to five-phase supply with fixed voltage and frequency by using Finite-Element Method (FEM. Identifying of specification on a real transformer had been done before applied into software modeling. Therefore, Finite-Element Method provides clearly understandable in terms of visualize the geometry modeling, connection scheme and output waveform.
Introduction to nonlinear finite element analysis
Kim, Nam-Ho
2015-01-01
This book introduces the key concepts of nonlinear finite element analysis procedures. The book explains the fundamental theories of the field and provides instructions on how to apply the concepts to solving practical engineering problems. Instead of covering many nonlinear problems, the book focuses on three representative problems: nonlinear elasticity, elastoplasticity, and contact problems. The book is written independent of any particular software, but tutorials and examples using four commercial programs are included as appendices: ANSYS, NASTRAN, ABAQUS, and MATLAB. In particular, the MATLAB program includes all source codes so that students can develop their own material models, or different algorithms. This book also: · Presents clear explanations of nonlinear finite element analysis for elasticity, elastoplasticity, and contact problems · Includes many informative examples of nonlinear analyses so that students can clearly understand the nonlinear theory · ...
Finite element contact analysis of fractal surfaces
Energy Technology Data Exchange (ETDEWEB)
Sahoo, Prasanta; Ghosh, Niloy [Department of Mechanical Engineering, Jadavpur University, Kolkata 700032 (India)
2007-07-21
The present study considers finite element analysis of non-adhesive, frictionless elastic/elastic-plastic contact between a rigid flat plane and a self-affine fractal rough surface using the commercial finite element package ANSYS. Three-dimensional rough surfaces are generated using a modified two-variable Weierstrass-Mandelbrot function with given fractal parameters. Parametric studies are done to consider the general relations between contact properties and key material and surface parameters. The present analysis is validated with available experimental results in the literature. Non-dimensional contact area and displacement are obtained as functions of non-dimensional load for varying fractal surface parameters in the case of elastic contact and for varying rates of strain hardening in the case of elastic-plastic contact of fractal surfaces.
Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems
Zuliang Lu
2011-01-01
We will investigate the adaptive mixed finite element methods for parabolic optimal control problems. The state and the costate are approximated by the lowest-order Raviart-Thomas mixed finite element spaces, and the control is approximated by piecewise constant elements. We derive a posteriori error estimates of the mixed finite element solutions for optimal control problems. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element ...
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Finite Element Simulation for Interfacial Evolutions
Institute of Scientific and Technical Information of China (English)
JianmingHUANG; WeiYANG
1998-01-01
A three-dimensional finite element scheme based upon a weak statement of the classical theory is explored to simulate migration of interfaces in materials under linear evaporation and condensation kinetics,The present scheme is exemplified by two cases:facet formation of single crystals;and the evolution of a tri-crystal film on a substrate where the effect of multiple kinetics is demonstrated.
FINITE-ELEMENT MODELING OF SALT TECTONICS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2012-09-01
Full Text Available The two-dimensional thermal model of graben structure in the presence of salt tectonics on the basis of a finite elements method is constructed. The analysis of the thermal field is based on the solution of stationary equation of heat conductivity with variable boundary conditions. The high precision of temperatures distribution and heat flows is received. The decision accuracy is no more than 0,6 %.
Finite element model of needle electrode sensitivity
Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.
2010-04-01
We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.
Quick finite elements for electromagnetic waves
Pelosi, Giuseppe; Selleri, Stefano
2009-01-01
This practical book and accompanying software enables you to quickly and easily work out challenging microwave engineering and high-frequency electromagnetic problems using the finite element method (FEM) Using clear, concise text and dozens of real-world application examples, the book provides a detailed description of FEM implementation, while the software provides the code and tools needed to solve the three major types of EM problems: guided propagation, scattering, and radiation.
EXODUS II: A finite element data model
Energy Technology Data Exchange (ETDEWEB)
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
Finite element methods for incompressible flow problems
John, Volker
2016-01-01
This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Finite Element Analysis of Reverberation Chambers
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Application of the Finite Orbit Width Version of the CQL3D Code to Transport of Fast Ions
Petrov, Yu. V.; Harvey, R. W.
2016-10-01
The CQL3D bounce-averaged Fokker-Planck (FP) code now includes the ``fully'' neoclassical version in which the diffusion and advection processes are averaged over actual drift orbits, rather than using a 1st-order expansion. Incorporation of Finite-Orbit-Width (FOW) effects results in neoclassical radial transport caused by collisions, RF wave heating and by toroidal electric field (radial pinch). We apply the CQL3D-full-FOW code to study the thermalization and radial transport of high-energy particles, such as alpha-particles produced by fusion in ITER or deuterons from NBI in NSTX, under effect of their interaction with auxiliary RF waves. A particular attention is given to visualization of transport in 3D space of velocity +major-radius coordinates. Supported by USDOE Grants FC02-01ER54649, FG02-04ER54744, and SC0006614.
Nonlinear Finite Element Analysis of Ocean Cables
Institute of Scientific and Technical Information of China (English)
Nam-Il KIM; Sang-Soo JEON; Moon-Young KIM
2004-01-01
This study has focused on developing numerical procedures for the dynamic nonlinear analysis of cable structures subjected to wave forces and ground motions in the ocean. A geometrically nonlinear finite element procedure using the isoparametric curved cable element based on the Lagrangian formulation is briefly summarized. A simple and accurate method to determine the initial equilibrium state of cable systems associated with self-weights, buoyancy and the motion of end points is presented using the load incremental method combined with penalty method. Also the Newmark method is used for dynamic nonlinear analysis of ocean cables. Numerical examples are presented to validate the present numerical method.
Improved Convergence and Robustness of USM3D Solutions on Mixed Element Grids (Invited)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2015-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Scheme (HANIS), has been developed and implemented. It provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier Stokes (RANS) equations and a nonlinear control of the solution update. Two variants of the new methodology are assessed on four benchmark cases, namely, a zero-pressure gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the baseline solver technology.
Design and verification of diffractive optical elements for speckle generation of 3-D range sensors
Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang
2016-09-01
The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.
Design and verification of diffractive optical elements for speckle generation of 3-D range sensors
Du, Pei-Qin; Shih, Hsi-Fu; Chen, Jenq-Shyong; Wang, Yi-Shiang
2016-12-01
The optical projection using speckles is one of the structured light methods that have been applied to three-dimensional (3-D) range sensors. This paper investigates the design and fabrication of diffractive optical elements (DOEs) for generating the light field with uniformly distributed speckles. Based on the principles of computer generated holograms, the iterative Fourier transform algorithm was adopted for the DOE design. It was used to calculate the phase map for diffracting the incident laser beam into a goal pattern with distributed speckles. Four patterns were designed in the study. Their phase maps were first examined by a spatial light modulator and then fabricated on glass substrates by microfabrication processes. Finally, the diffraction characteristics of the fabricated devices were verified. The experimental results show that the proposed methods are applicable to the DOE design of 3-D range sensors. Furthermore, any expected diffraction area and speckle density could be possibly achieved according to the relations presented in the paper.
A multi-mesh finite element method for Lagrange elements of arbitrary degree
Witkowski, Thomas
2010-01-01
We consider within a finite element approach the usage of different adaptively refined meshes for different variables in systems of nonlinear, time-depended PDEs. To resolve different solution behaviours of these variables, the meshes can be independently adapted. The resulting linear systems are usually much smaller, when compared to the usage of a single mesh, and the overall computational runtime can be more than halved in such cases. Our multi-mesh method works for Lagrange finite elements of arbitrary degree and is independent of the spatial dimension. The approach is well defined, and can be implemented in existing adaptive finite element codes with minimal effort. We show computational examples in 2D and 3D ranging from dendritic growth to solid-solid phase-transitions. A further application comes from fluid dynamics where we demonstrate the applicability of the approach for solving the incompressible Navier-Stokes equations with Lagrange finite elements of the same order for velocity and pressure. The...
Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs
Energy Technology Data Exchange (ETDEWEB)
Mota, A; Knap, J; Ortiz, M
2006-10-18
An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.
Automation Tools for Finite Element Analysis of Adhesively Bonded Joints
Tahmasebi, Farhad; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
This article presents two new automation creation tools that obtain stresses and strains (Shear and peel) in adhesively bonded joints. For a given adhesively bonded joint Finite Element model, in which the adhesive is characterised using springs, these automation tools read the corresponding input and output files, use the spring forces and deformations to obtain the adhesive stresses and strains, sort the stresses and strains in descending order, and generate plot files for 3D visualisation of the stress and strain fields. Grids (nodes) and elements can be numbered in any order that is convenient for the user. Using the automation tools, trade-off studies, which are needed for design of adhesively bonded joints, can be performed very quickly.
Modeling the 3D Terrain Effect on MT by the Boundary Element Method
Institute of Scientific and Technical Information of China (English)
Ruan Baiyao; Xu Shizhe; Xu Zhifeng
2006-01-01
A numerical method is put forward in this paper, using the boundary element method(BEM) to model 3D terrain effects on magnetotelluric (MT) surveys. Using vector integral theory and electromagnetic field boundary conditions, the boundary problem of two electromagnetic fields in the upper half space (air) and lower half space (earth medium) was transformed into two vector integral equations just related to the topography: one magnetic equation for computing the magnetic field and the other electrical equation for computing the electrical field. The topography integral is decomposed into a series of integrals in a triangle element. For the integral in a triangle element, we suppose that the electromagnetic field in it is the stack of the electromagnetic field in the homogeneous earth and the topography response which is a constant; so the computation becomes simple, convenient and highly accurate. By decomposition and computation, each vector integral equation can be calculated by solving three linear equations that are related to the three Cartesian directions. The matrix of these linear equations is diagonally dominant and can be solved using the Symmetric Successive Over-Relaxation (SSOR) method. The apparent resistivity curve of MT on two 3D terrains calculated by BEM is shown in this paper.
A finite element parametric modeling technique of aircraft wing structures
Institute of Scientific and Technical Information of China (English)
Tang Jiapeng; Xi Ping; Zhang Baoyuan; Hu Bifu
2013-01-01
A finite element parametric modeling method of aircraft wing structures is proposed in this paper because of time-consuming characteristics of finite element analysis pre-processing. The main research is positioned during the preliminary design phase of aircraft structures. A knowledge-driven system of fast finite element modeling is built. Based on this method, employing a template parametric technique, knowledge including design methods, rules, and expert experience in the process of modeling is encapsulated and a finite element model is established automatically, which greatly improves the speed, accuracy, and standardization degree of modeling. Skeleton model, geometric mesh model, and finite element model including finite element mesh and property data are established on parametric description and automatic update. The outcomes of research show that the method settles a series of problems of parameter association and model update in the pro-cess of finite element modeling which establishes a key technical basis for finite element parametric analysis and optimization design.
Finite Element Based Design and Optimization for Piezoelectric Accelerometers
DEFF Research Database (Denmark)
Liu, Bin; Kriegbaum, B.; Yao, Q.
1998-01-01
A systematic Finite Element design and optimisation procedure is implemented for the development of piezoelectric accelerometers. Most of the specifications of accelerometers can be obtained using the Finite Element simulations. The deviations between the simulated and calibrated sensitivities...
Application of finite-element-methods in food processing
DEFF Research Database (Denmark)
Risum, Jørgen
2004-01-01
Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....
Finite element modeling for materials engineers using Matlab
Oluwole, Oluleke
2014-01-01
Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.
Stochastic finite elements: Where is the physics?
Directory of Open Access Journals (Sweden)
Ostoja-Starzewski Martin
2011-01-01
Full Text Available The micromechanics based on the Hill-Mandel condition indicates that the majority of stochastic finite element methods hinge on random field (RF models of material properties (such as Hooke’s law having no physical content, or even at odds with physics. At the same time, that condition allows one to set up the RFs of stiffness and compliance tensors in function of the mesoscale and actual random microstructure of the given material. The mesoscale is defined through a Statistical Volume Element (SVE, i.e. a material domain below the Representative Volume Element (RVE level. The paper outlines a procedure for stochastic scale-dependent homogenization leading to a determination of mesoscale one-point and two-point statistics and, thus, a construction of analytical RF models.
A 3D mixed frame element with multi-axial coupling for thin-walled structures with damage
Directory of Open Access Journals (Sweden)
D. Addessi
2014-07-01
Full Text Available A 3D mixed beam finite element is presented, modeling the warping of the cross-sections as an independent kinematic field. The beam formulation is derived on the basis of the Hu-Washizu variational principle, expressed as function of four independent fields: the standard displacements, strains and stresses and the additional warping displacement. This is interpolated along the beam axis and on the cross-section, by placing on it a regular grid of interpolation points and adopting Lagrange polynomials. The warping degrees of freedom defined at the cross-section interpolation points are condensed, thus preserving the element matrix and vector sizes. A fiber discretization of the cross-sections is adopted. The constitutive relationship at the midpoint of each fiber is based on an isotropic damage model for brittle-like materials, distinguishing between the damage variables in tension and in compression to properly describe the unilateral effect. An efficient algorithm is formulated for the element state determination, based on a consistent linearization of the governing equations. A simple numerical application on a cantilever beam with torsion in the linear elastic range is presented and two torsion tests on plain concrete beams are performed, by comparing the numerical results with the experimental outcomes.
Finite Element Analysis of Connecting Rod of IC Engine
Directory of Open Access Journals (Sweden)
Samal Prasanta Kumar
2015-01-01
Full Text Available A connecting rod of IC engine is subjected to complex dynamic loading conditions. Therefore it is a critical machine element which attracts researchers’ attention. This paper aims at development of simple 3D model, finite element analyses and the optimization by intuition of the connecting rod for robust design. In this study the detailed load analysis under in-service loading conditions was performed for a typical connecting rod. The CAD model was prepared taking the detailed dimensions from a standard machine drawing text book. Based on the gas pressure variation in the cylinder of an IC engine, the piston forces were calculated for critical positions. MATLAB codes were written for this calculation. Altair Hypermesh and Hyperview were used for pre-processing and post-processing of the model respectively. The finite element analyses were performed using Altair Radioss. The results obtained were compared to a case study for the field failure of the connecting rod. By comparing the induced stress result with the yield strength of the material, the component was redesigned. This was done to save some mass keeping in mind that the induced stress value should be well below the yield strength of the material. The optimized connecting rod is 11.3% lighter than the original design.
Hambli, Ridha
2011-01-01
The aim of this paper is to develop a multiscale hierarchical hybrid model based on finite element analysis and neural network computation to link mesoscopic scale (trabecular network level) and macroscopic (whole bone level) to simulate bone remodelling process. Because whole bone simulation considering the 3D trabecular level is time consuming, the finite element calculation is performed at macroscopic level and a trained neural network are employed as numerical devices for substituting the finite element code needed for the mesoscale prediction. The bone mechanical properties are updated at macroscopic scale depending on the morphological organization at the mesoscopic computed by the trained neural network. The digital image-based modeling technique using m-CT and voxel finite element mesh is used to capture 2 mm3 Representative Volume Elements at mesoscale level in a femur head. The input data for the artificial neural network are a set of bone material parameters, boundary conditions and the applied str...
2014-06-01
3D Euler Equations of Moist Atmospheric Convection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...STABILIZATION OF SPECTRAL ELEMENTS FOR THE 3D EULER EQUATIONS OF MOIST ATMOSPHERIC CONVECTION SIMONE MARRAS, ANDREAS MÜLLER, FRANCIS X. GIRALDO Dept. Appl...spectral elements, we introduce a dissipative scheme based on the solution of the compressible Euler equations that are regularized through the addi
Finite rotation shells basic equations and finite elements for Reissner kinematics
Wisniewski, K
2010-01-01
This book covers theoretical and computational aspects of non-linear shells. Several advanced topics of shell equations and finite elements - not included in standard textbooks on finite elements - are addressed, and the book includes an extensive bibliography.
Simulation of suspension flow of finite-size spherical particles in a 3D square channel
Gao, Hui; Wang, Lian-Ping
2008-11-01
Suspension flow of finite-size particles in a turbulent gas is of importance to many engineering applications and natural phenomena. As a first step, the present work focuses on the motion and hydrodynamic interaction of finite-size particles in the absence of background carrier-fluid turbulence. The major challenge for an accurate simulation is twofold: an efficient implementation of no-slip boundary conditions on the moving particle surface and an accurate representation of short-range lubrication effects that typically are not resolved numerically. A Navier-Stokes based hybrid approach (i.e., Physalis) developed by Prosperetti and co-workers is employed to solve the suspension flows of a pair of finite-size, freely-moving particles at finite particle Reynolds numbers. A lubrication force representation, designed by Ladd, involving particle relative location and velocity, is incorporated to capture the short-range interactions between particles. The accuracy of the representation and its compatibility with the flow simulation will be examined. A mesoscopic lattice Boltzmann equation (LBE) approach is also used to simulate the same problem for cross validation. Specific implementation issues will be addressed. Comparison with available numerical data will also be discussed.
Finite element modeling methods for photonics
Rahman, B M Azizur
2013-01-01
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron
Finite element simulation of asphalt fatigue testing
DEFF Research Database (Denmark)
Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders
1997-01-01
damage mechanics.The paper describes how continuum damage mechanics may be used with a finite element program to explain the progressive deterioration of asphalt mixes under laboratory fatigue testing. Both constant stress and constant strain testing are simulated, and compared to the actual results from...... three point and four point fatigue test on different mixes. It is shown that the same damage law, based on energy density, may be used to explain the gradual deterioration under constant stress as well as under constant strain testing.Some of the advantages of using this method for interpreting fatigue...
The serendipity family of finite elements
Arnold, Douglas N
2011-01-01
We give a new, simple, dimension-independent definition of the serendipity finite element family. The shape functions are the span of all monomials which are linear in at least s-r of the variables where s is the degree of the monomial or, equivalently, whose superlinear degree (total degree with respect to variables entering at least quadratically) is at most r. The degrees of freedom are given by moments of degree at most r-2d on each face of dimension d. We establish unisolvence and a geometric decomposition of the space.
Generalized multiscale finite element methods: Oversampling strategies
Efendiev, Yalchin R.
2014-01-01
In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local
A finite element model of ultrasonic extrusion
Energy Technology Data Exchange (ETDEWEB)
Lucas, M [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom); Daud, Y, E-mail: m.lucas@mech.gla.ac.u [College of Science and Technology, UTM City Campus, Kuala Lumpur (Malaysia)
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
A finite element model of ultrasonic extrusion
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
Iterative methods for mixed finite element equations
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Mixed finite elements for global tide models
Cotter, Colin J
2014-01-01
We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation -- the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in $L^2$ as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.
A 3-D Finite-Volume Non-hydrostatic Icosahedral Model (NIM)
Lee, Jin
2014-05-01
The Nonhydrostatic Icosahedral Model (NIM) formulates the latest numerical innovation of the three-dimensional finite-volume control volume on the quasi-uniform icosahedral grid suitable for ultra-high resolution simulations. NIM's modeling goal is to improve numerical accuracy for weather and climate simulations as well as to utilize the state-of-art computing architecture such as massive parallel CPUs and GPUs to deliver routine high-resolution forecasts in timely manner. NIM dynamic corel innovations include: * A local coordinate system remapped spherical surface to plane for numerical accuracy (Lee and MacDonald, 2009), * Grid points in a table-driven horizontal loop that allow any horizontal point sequence (A.E. MacDonald, et al., 2010), * Flux-Corrected Transport formulated on finite-volume operators to maintain conservative positive definite transport (J.-L, Lee, ET. Al., 2010), *Icosahedral grid optimization (Wang and Lee, 2011), * All differentials evaluated as three-dimensional finite-volume integrals around the control volume. The three-dimensional finite-volume solver in NIM is designed to improve pressure gradient calculation and orographic precipitation over complex terrain. NIM dynamical core has been successfully verified with various non-hydrostatic benchmark test cases such as internal gravity wave, and mountain waves in Dynamical Cores Model Inter-comparisons Projects (DCMIP). Physical parameterizations suitable for NWP are incorporated into NIM dynamical core and successfully tested with multimonth aqua-planet simulations. Recently, NIM has started real data simulations using GFS initial conditions. Results from the idealized tests as well as real-data simulations will be shown in the conference.
A Finite-Element Analysis on the Rheorolling Process of Semi-Solid Spring Steel
Institute of Scientific and Technical Information of China (English)
Hongbo DONG; Yonglin KANG
2003-01-01
With a geometrical model of porous material, a 3D finite-element analysis on the rolling process of spring steel60Si2Mn in the semi-solid state is carried out using software MARC. In terms of flat and groove rolling conditions,stress field and strain fiel
Parametric Design Optimization Of A Novel Permanent Magnet Coupling Using Finite Element Analysis
DEFF Research Database (Denmark)
Högberg, Stig; Mijatovic, Nenad; Holbøll, Joachim;
2014-01-01
A parametric design optimization routine has been applied to a novel magnetic coupling with improved recyclability. Coupling designs are modeled in a 3-D finite element environ- ment, and evaluated by three design objectives: pull-out torque, torque density by magnet mass, and torque density...
Finite element analysis of multilayer coextrusion.
Energy Technology Data Exchange (ETDEWEB)
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A. (Proctor & Gamble Company, West Chester, OH); Mrozek, Randy A. (Army Research Laboratory, Adelphi, MD); Lenhart, Joseph Ludlow (Army Research Laboratory, Adelphi, MD); Rao, Rekha Ranjana; Collins, Robert (Oak Ridge National Laboratory); Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Impeller deflection and modal finite element analysis.
Energy Technology Data Exchange (ETDEWEB)
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
A multigrid solution method for mixed hybrid finite elements
Energy Technology Data Exchange (ETDEWEB)
Schmid, W. [Universitaet Augsburg (Germany)
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
DEFF Research Database (Denmark)
Soliman, Mohammad Youssof Ahmad; Bezada, Max; Thybo, Hans;
2010-01-01
We have re-examined the P body wave data from the South Africa Seismic Experiment (Carlson et al, EOS 77, 1996) across the Kaapvaal and Zimbabwe cratons and the Bushveld complex. Using finite-frequency kernels, we inverted the P-wave delay times to obtain 3-D images of compressional velocity...... between the Archean and modified regions such as the Bushveld complex, and the mobile belts surrounding the cratons. The high velocity (+1.0%) cratonic roots extend to 220-250 km depth beneath the Kaapvaal and Zimbabwe cratons. Lower P-velocities are found under the Bushveld complex and the mobile belts...
Accurate finite element modeling of acoustic waves
Idesman, A.; Pham, D.
2014-07-01
In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.
A Teaching Experience: Aeroelasticity and the Finite Element Method
Directory of Open Access Journals (Sweden)
Mario Lázaro
2015-07-01
Full Text Available The aeroelastic modelling of aircraft structures is a fundamental area for the students of Aerospace Engineering Degree. This subject has a strongly multidisciplinary character and involves other several subjects like mechanics, vibrations, aerodynamics, structural analysis. Consequently, the students find stimulating the challenge of merging their knowledge at different areas. In this paper, a teaching experience on the solution of the aeroelastic problem of a 3D-wing through six different computer tasks is presented. The main objective is to attempt a relatively complex problem using a simple version of the Finite Element Method with only four degrees of freedom. The students begin creating the shape functions of the discrete model and finish solving the flutter instability problem.
Probabilistic Study of Bone Remodeling Using Finite Element Analysis
Werner, C.; Gorla, R. S. R.
2013-08-01
The dynamic bone remodeling process is a computationally challenging research area that struggles to understand the actual mechanisms. It has been observed that a mechanical stimulus in the bone greatly affects the remodeling process. A 3D finite element model of a femur is created and a probabilistic analysis is performed on the model. The probabilistic analysis measures the sensitivities of various parameters related to the material properties, geometric properties, and the three load cases defined as Single Leg Stance, Abduction, and Adduction. The sensitivity of each parameter is based on the calculated maximum mechanical stimulus and analyzed at various values of probabilities ranging from 0.001 to 0.999. The analysis showed that the parameters associated with the Single Leg Stance load case had the highest sensitivity with a probability of 0.99 and the angle of the force applied to the joint of the proximal femur had the overall highest sensitivity
Li, Jianying; Li, Haiyan; Fok, Alex S L; Watts, David C
2012-09-01
The aim of this study was to numerically evaluate the effects of filler contents and resin properties on the material properties of dental composites utilizing realistic 3D micromechanical finite element models. 3D micromechanical finite element models of dental composites containing irregular fillers with non-uniform sizes were created based on a large-scale, surrogate mixture fabricated from irregularly shaped stones and casting resin. The surrogate mixture was first scanned with a micro-CT scanner, and the images reassembled to produce a 3D finite element model. Different filler fractions were achieved by adjusting the matrix volume while keeping the fillers unchanged. Polymerization shrinkage, Young's modulus, Poisson's ratio and viscosity of the model composites were predicted using the finite element models, and their dependence on the filler fraction and material properties of the resin matrix were considered. Comparison of the numerical predictions with available experimental data and analytical models from the literature was performed. Increased filler fraction resulted in lower material shrinkage, higher Young's modulus, lower Poisson's ratio and higher viscosity in the composite. Predicted shrinkage and Young's modulus agreed well with the experimental data and analytical predictions. The McGee-McCullough model best fit the shrinkage and Young's modulus predicted by the finite element method. However, a new parameter, used as the exponent of the filler fraction, had to be introduced to the McGee-McCullough model to better match the predicted viscosity and Poisson's ratio with those from the finite element analysis. Realistic micro-structural finite element models were successfully applied to study the effects of filler fraction and matrix properties on a wide range of mechanical properties of dental composites with irregular fillers. The results can be used to direct the design of such materials to achieve the desired mechanical properties. Published by
Extended volume and surface scatterometer for optical characterization of 3D-printed elements
Dannenberg, Florian; Uebeler, Denise; Weiß, Jürgen; Pescoller, Lukas; Weyer, Cornelia; Hahlweg, Cornelius
2015-09-01
The use of 3d printing technology seems to be a promising way for low cost prototyping, not only of mechanical, but also of optical components or systems. It is especially useful in applications where customized equipment repeatedly is subject to immediate destruction, as in experimental detonics and the like. Due to the nature of the 3D-printing process, there is a certain inner texture and therefore inhomogeneous optical behaviour to be taken into account, which also indicates mechanical anisotropy. Recent investigations are dedicated to quantification of optical properties of such printed bodies and derivation of corresponding optimization strategies for the printing process. Beside mounting, alignment and illumination means, also refractive and reflective elements are subject to investigation. The proposed measurement methods are based on an imaging nearfield scatterometer for combined volume and surface scatter measurements as proposed in previous papers. In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. The device has been extended for observation of photoelasticity effects and therefore homogeneity of polarization behaviour. A refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of the layers of the surface under test, cross and parallel polarization techniques are applied. Practical examples from current research studies are included.
Linearized plastic plate models as Gamma-limits of 3D finite elastoplasticity
Davoli, Elisa
2013-01-01
The subject of this paper is the rigorous derivation of reduced models for a thin plate by means of {\\Gamma}-convergence, in the framework of finite plasticity. Denoting by {\\epsilon} the thickness of the plate, we analyse the case where the scaling factor of the elasto-plastic energy is of order {\\epsilon}^(2{\\alpha}-2), with {\\alpha}>=3. According to the value of {\\alpha}, partially or fully linearized models are deduced, which correspond, in the absence of plastic deformation, to the Von K...
BKT phase transitions in strongly coupled 3D Z(N) LGT at finite temperature
Borisenko, O.; V. Chelnokov; Cortese, G.; Fiore, R.; Gravina, M.; Papa, A.; Surzhikov, I.
2012-01-01
We investigate, both analytically and numerically, the phase diagram of three-dimensional Z(N) lattice gauge theories at finite temperature for N > 4. These models, in the strong coupling limit, are equivalent to a generalized version of vector Potts models in two dimension, with Polyakov loops playing the role of Z(N) spins. It is argued that the effective spin models have two phase transitions of infinite order (i.e. BKT). Using a cluster algorithm we confirm this conjecture, locate the pos...
BKT phase transitions in strongly coupled 3D Z(N) LGT at finite temperature
Borisenko, O; Cortese, G; Fiore, R; Gravina, M; Papa, A; Surzhikov, I
2012-01-01
We investigate, both analytically and numerically, the phase diagram of three-dimensional Z(N) lattice gauge theories at finite temperature for N > 4. These models, in the strong coupling limit, are equivalent to a generalized version of vector Potts models in two dimension, with Polyakov loops playing the role of Z(N) spins. It is argued that the effective spin models have two phase transitions of infinite order (i.e. BKT). Using a cluster algorithm we confirm this conjecture, locate the position of the critical points and extract various critical indices.
A Guide to Finite Element Simulations of Thermal Barrier Coatings
Bäker, Martin; Seiler, Philipp
2017-08-01
To understand the stress evolution and failure mechanisms of thermal barrier coatings (TBCs), finite element simulations are an invaluable tool. Simulations are especially useful to unwrap complex interactions of different phenomena at high temperature, including creep, sintering, diffusion, and oxidation. However, the correct setup and evaluation of a finite element model for this problem are difficult. This article reviews critical issues in modelling TBC systems. Some of the most important aspects are as follows: (a) stresses in 3D simulations may differ considerably from 2D models; (b) the interface shape strongly affects the stresses and using an idealized geometry may underestimate stresses; (c) crack propagation requires simulating sufficiently large regions to correctly capture stress redistribution; (d) a correct description of the material behaviour (visco-plasticity, TGO growth, sintering) is crucial in determining the stress state. The article discusses these and other issues in detail and provides guidelines on the choice of model parameters, boundary conditions, etc. The paper also points out open questions in modelling TBC systems and discusses aspects of verification and validation.
The application of finite element analysis on polydimethylsiloxane
Halim, Siti Aisyah Abdul; Yahud, Shuhaida; Muhamad, Wan Zuki Azman Wan; Daud, Ruslizam; Zain, Noor Alia Md
2015-05-01
An artificial skin should have the similarities of the human skin in term of biomechanical properties. In this paper, Polydimethysiloxane (PDMS) have been chosen as artificial skin material. PDMS specimens were prepared and the hardness of the material will be altered by adding different percentages of diluents to the mixture of the base and a cross-linker component. It indicated that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio and strain rate. Tensile and compression test are conducted to find out the Hyperelastic (HE) coefficient and Young's modulus. These material coefficients will be used to define the constitutive model of PDMS for finite element analysis study. In this paper, three dimensional (3D) finite element (FE) stress and displacement analysis were used. Three types of models with different values of height were simulated in COMSOL MULTIPHYSICS. The analysis of the von Mises stress and surface deflection values revealed that maximum stress and maximum deflection concentration were located in the region near line load. PDMS polymer 10:1 is the softer product and can be commercialized as artificial skin material.
Validation of a finite element model of the human metacarpal.
Barker, D S; Netherway, D J; Krishnan, J; Hearn, T C
2005-03-01
Implant loosening and mechanical failure of components are frequently reported following metacarpophalangeal (MCP) joint replacement. Studies of the mechanical environment of the MCP implant-bone construct are rare. The objective of this study was to evaluate the predictive ability of a finite element model of the intact second human metacarpal to provide a validated baseline for further mechanical studies. A right index human metacarpal was subjected to torsion and combined axial/bending loading using strain gauge (SG) and 3D finite element (FE) analysis. Four different representations of bone material properties were considered. Regression analyses were performed comparing maximum and minimum principal surface strains taken from the SG and FE models. Regression slopes close to unity and high correlation coefficients were found when the diaphyseal cortical shell was modelled as anisotropic and cancellous bone properties were derived from quantitative computed tomography. The inclusion of anisotropy for cortical bone was strongly influential in producing high model validity whereas variation in methods of assigning stiffness to cancellous bone had only a minor influence. The validated FE model provides a tool for future investigations of current and novel MCP joint prostheses.
2D-3D μXRF elemental mapping of archeological samples
Hampai, D.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Massussi, M.; Tucci, S.; Sardella, R.; Sciancalepore, A.; Polese, C.; Dabagov, S. B.
2017-07-01
Recently opened for users at LNF XLab-Frascati a μ XRF station, named ;Rainbow X-ray; - RXR, has been optimized for most of X-ray analytical research fields. The basic principle of the station is in the use of various geometrical combinations of polycapillary optics for X-ray beam shaping (focusing/collimation) at specially designed laboratory unit. In this work we have presented the results of archaeological studies on the artifacts of Paleolithic period and Iron Age (9th century BC to the midway of the 8th BC). The elemental analysis of these artifacts has been first performed by compact laboratory setup. Superficial (2D) and bulk (3D) micro-fluorescence mapping provides useful informations for the geologists in order to identify the possible artifacts provenience and origin. The results presented in this work are a part of wider anthropological/archeological investigations aimed at the understanding of social and economical relations of prehistorical communities.
Phase transitions in strongly coupled 3d Z(N) lattice gauge theories at finite temperature
Borisenko, O; Cortese, G; Fiore, R; Gravina, M; Papa, A; Surzhikov, I
2012-01-01
We perform an analytical and numerical study of the phase transitions in three-dimensional Z(N) lattice gauge theories at finite temperature for N>4. In the strong coupling limit these models are equivalent to a generalized version of the vector Potts models in two dimensions, where Polyakov loops play the role of Z(N) spins. The effective couplings of these two-dimensional spin models are calculated explicitly. It is argued that the effective spin models have two phase transitions of BKT type. This is confirmed by large-scale Monte Carlo simulations. Using a cluster algorithm we locate the position of the critical points and study the critical behavior across both phase transitions in details. In particular, we determine various critical indices, compute the helicity modulus, the average action and the specific heat. A scaling formula for the critical points with N is proposed.
Critical behaviour of the compact 3d U(1) gauge theory at finite temperature
Borisenko, Oleg; Gravina, Mario; Papa, Alessandro
2010-01-01
Critical properties of the compact three-dimensional U(1) lattice gauge theory are explored at finite temperatures. The critical point of the deconfinement phase transition, critical indices and the string tension are studied numerically on lattices with temporal extension N_t = 8 and spatial extension ranging from L = 32 to L = 256. The critical indices, which govern the behaviour across the deconfinement phase transition, are generally expected to coincide with the critical indices of the two-dimensional XY model. It is found that the determination of the infinite volume critical point differs from the pseudo-critical coupling at L = 32, found earlier in the literature and implicitly assumed as the onset value of the deconfined phase. The critical index $\
Experimental and three-dimensional finite element investigation of fatigue
Bomidi, John A. R.
Materials often fail at cyclic loads that are lower than their ultimate strength or even their yield strength due to progressive internal material degradation; commonly known as fatigue. Moreover, there is a wide scatter in observed fatigue lives of mechanical components operating under identical loading conditions. The randomness of fatigue failure is considered to be linked to basic microstructural effects such as random microstructure topology and the initiation/growth of cracks along inter/transgranular planes. Several modeling approaches have been previously presented ranging from 2D discrete element to 3D Finite Element methods with explicit representation of microstructure topology and continuum damage mechanics to capture dispersion in rolling contact fatigue life and fatigue spalling. There is, however, a need to compare the modeling approach with experimental fatigue test conditions in order to verify and as required enhance the modeling approach to capture observed fatigue failure. This dissertation presents experimental test results and three-dimensional modeling approach that capture fatigue failure. The three-dimensional modeling approach is enhanced according to the experimental observations to consider inter/trans granular failure, different modes of fatigue initiation and propagation and finally for considering effect of plasticity in fatigue of rolling contacts. The following phenomena have been investigated: (1) Fatigue of microbeams: (a )Results of fatigue life and failure from 3D modeling of intergranular fatigue in microbeams are compared with experimental observations reported in literature (2) Tensile fatigue of thin sheets: (a) A test rig with a new grip and alignment system is developed to address the challenges associated with thin sheet testing and conduct fatigue experiments. (b) The 3D fatigue model is enhanced to capture the dominant transgranular fatigue observed in the experiments. The observed and modeled fatigue life and failure
Test Simulation using Finite Element Method
Energy Technology Data Exchange (ETDEWEB)
Ali, M B; Abdullah, S; Nuawi, M Z; Ariffin, A K, E-mail: abgbas@yahoo.com [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)
2011-02-15
The dynamic responses of the standard Charpy impact machine are experimentally studied using the relevant data acquisition system, for the purpose of obtaining the impact response. For this reason, the numerical analysis by means of the finite element method has been used for experiment findings. Modelling of the charpy test was performed in order to obtain strain in the striker during the test. Two types of standard charpy specimens fabricated from different materials, i.e. aluminium 6061 and low carbon steel 1050, were used for the impact simulation testing. The related parameters on between different materials, energy absorbed, strain signal, power spectrum density (PSD) and the relationship between those parameters was finally correlated and discussed.
Finite-Element Modelling of Biotransistors
Directory of Open Access Journals (Sweden)
Selvaganapathy PR
2010-01-01
Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.
Friction welding; Magnesium; Finite element; Shear test.
Directory of Open Access Journals (Sweden)
Leonardo Contri Campanelli
2013-06-01
Full Text Available Friction spot welding (FSpW is one of the most recently developed solid state joining technologies. In this work, based on former publications, a computer aided draft and engineering resource is used to model a FSpW joint on AZ31 magnesium alloy sheets and subsequently submit the assembly to a typical shear test loading, using a linear elastic model, in order to conceive mechanical tests results. Finite element analysis shows that the plastic flow is concentrated on the welded zone periphery where yield strength is reached. It is supposed that “through the weld” and “circumferential pull-out” variants should be the main failure behaviors, although mechanical testing may provide other types of fracture due to metallurgical features.
Finite element methods in resistivity logging
Lovell, J. R.
1993-09-01
Resistivity measurements are used in geophysical logging to help determine hydrocarbon reserves. The derivation of formation parameters from resistivity measurements is a complicated nonlinear procedure often requiring additional geological information. This requires an excellent understanding of tool physics, both to design new tools and interpret the measurements of existing tools. The Laterolog measurements in particular are difficult to interpret because the response is very nonlinear as a function of electrical conductivity, unlike Induction measurements. Forward modeling of the Laterolog is almost invariably done with finite element codes which require the inversion of large sparse matrices. Modern techniques can be used to accelerate this inversion. Moreover, an understanding of the tool physics can help refine these numerical techniques.
Optimizing the Evaluation of Finite Element Matrices
Kirby, Robert C; Logg, Anders; Scott, L Ridgway; 10.1137/040607824
2012-01-01
Assembling stiffness matrices represents a significant cost in many finite element computations. We address the question of optimizing the evaluation of these matrices. By finding redundant computations, we are able to significantly reduce the cost of building local stiffness matrices for the Laplace operator and for the trilinear form for Navier-Stokes. For the Laplace operator in two space dimensions, we have developed a heuristic graph algorithm that searches for such redundancies and generates code for computing the local stiffness matrices. Up to cubics, we are able to build the stiffness matrix on any triangle in less than one multiply-add pair per entry. Up to sixth degree, we can do it in less than about two. Preliminary low-degree results for Poisson and Navier-Stokes operators in three dimensions are also promising.
Nonlinear Finite Element Analysis of Sloshing
Directory of Open Access Journals (Sweden)
Siva Srinivas Kolukula
2013-01-01
Full Text Available The disturbance on the free surface of the liquid when the liquid-filled tanks are excited is called sloshing. This paper examines the nonlinear sloshing response of the liquid free surface in partially filled two-dimensional rectangular tanks using finite element method. The liquid is assumed to be inviscid, irrotational, and incompressible; fully nonlinear potential wave theory is considered and mixed Eulerian-Lagrangian scheme is adopted. The velocities are obtained from potential using least square method for accurate evaluation. The fourth-order Runge-Kutta method is employed to advance the solution in time. A regridding technique based on cubic spline is employed to avoid numerical instabilities. Regular harmonic excitations and random excitations are used as the external disturbance to the container. The results obtained are compared with published results to validate the numerical method developed.
Adaptive finite element methods for differential equations
Bangerth, Wolfgang
2003-01-01
These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
Novel Discrete Element Method for 3D non-spherical granular particles.
Seelen, Luuk; Padding, Johan; Kuipers, Hans
2015-11-01
Granular materials are common in many industries and nature. The different properties from solid behavior to fluid like behavior are well known but less well understood. The main aim of our work is to develop a discrete element method (DEM) to simulate non-spherical granular particles. The non-spherical shape of particles is important, as it controls the behavior of the granular materials in many situations, such as static systems of packed particles. In such systems the packing fraction is determined by the particle shape. We developed a novel 3D discrete element method that simulates the particle-particle interactions for a wide variety of shapes. The model can simulate quadratic shapes such as spheres, ellipsoids, cylinders. More importantly, any convex polyhedron can be used as a granular particle shape. These polyhedrons are very well suited to represent non-rounded sand particles. The main difficulty of any non-spherical DEM is the determination of particle-particle overlap. Our model uses two iterative geometric algorithms to determine the overlap. The algorithms are robust and can also determine multiple contact points which can occur for these shapes. With this method we are able to study different applications such as the discharging of a hopper or silo. Another application the creation of a random close packing, to determine the solid volume fraction as a function of the particle shape.
Finite element simulation of wheel impact test
Directory of Open Access Journals (Sweden)
S.H. Yang
2008-06-01
Full Text Available Purpose: In order to achieve better performance and quality, the wheel design and manufacturing use a number of wheel tests (rotating bending test, radial fatigue test, and impact test to insure that the wheel meets the safety requirements. The test is very time consuming and expensive. Computer simulation of these tests can significantly reduce the time and cost required to perform a wheel design. In this study, nonlinear dynamic finite element is used to simulate the SAE wheel impact test.Design/methodology/approach: The test fixture used for the impact test consists of a striker with specified weight. The test is intended to simulate actual vehicle impact conditions. The tire-wheel assembly is mounted at 13° angle to the vertical plane with the edge of the weight in line with outer radius of the rim. The striker is dropped from a specified height above the highest point of the tire-wheel assembly and contacts the outboard flange of the wheel.Because of the irregular geometry of the wheel, the finite element model of an aluminium wheel is constructed by tetrahedral element. A mesh convergence study is carried out to ensure the convergence of the mesh model. The striker is assumed to be rigid elements. Initially, the striker contacts the highest area of the wheel, and the initial velocity of the striker is calculated from the impact height. The simulated strains at two locations on the disc are verified by experimental measurements by strain gages. The damage parameter of a wheel during the impact test is a strain energy density from the calculated result.Findings: The prediction of a wheel failure at impact is based on the condition that fracture will occur if the maximum strain energy density of the wheel during the impact test exceeds the total plastic work of the wheel material from tensile test. The simulated results in this work show that the total plastic work can be effectively employed as a fracture criterion to predict a wheel
FEMHD: An adaptive finite element method for MHD and edge modelling
Energy Technology Data Exchange (ETDEWEB)
Strauss, H.R.
1995-07-01
This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.
Wang, Jun; Moumni, Ziad; Zhang, Weihong; Xu, Yingjie; Zaki, Wael
2017-06-01
The paper presents a finite-strain constitutive model for shape memory alloys (SMAs) that accounts for thermomechanical coupling and martensite reorientation. The finite-strain formulation is based on a two-tier, multiplicative decomposition of the deformation gradient into thermal, elastic, and inelastic parts, where the inelastic deformation is further split into phase transformation and martensite reorientation components. A time-discrete formulation of the constitutive equations is proposed and a numerical integration algorithm is presented featuring proper symmetrization of the tensor variables and explicit formulation of the material and spatial tangent operators involved. The algorithm is used for finite element analysis of SMA components subjected to various loading conditions, including uniaxial, non-proportional, isothermal and adiabatic loading cases. The analysis is carried out using the FEA software Abaqus by means of a user-defined material subroutine, which is then utilized to simulate a SMA archwire undergoing large strains and rotations.
Finite Elements Modeling in Diagnostics of Small Closed Pneumothorax.
Lorkowski, J; Mrzygłód, M; Grzegorowska, O
2015-01-01
Posttraumatic pneumothorax still remains to be a serious clinical problem and requires a comprehensive diagnostic and monitoring during treatment. The aim of this paper is to present a computer method of modeling of small closed pneumothorax. Radiological images of 34 patients of both sexes with small closed pneumothorax were taken into consideration. The control group consisted of X-rays of 22 patients treated because of tension pneumothorax. In every single case the model was correlated with the clinical manifestations. The procedure of computational rapid analysis (CRA) for in silico analysis of surgical intervention was introduced. It included implementation of computerize tomography images and their automatic conversion into 3D finite elements model (FEM). In order to segmentize the 3D model, an intelligent procedure of domain recognition was used. In the final step, a computer simulation project of fluid-structure interaction was built, using the ANSYS\\Workbench environment of multi-physics analysis. The FEM model and computer simulation project were employed in the analysis in order to optimize surgical intervention. The model worked out well and was compatible with the clinical manifestations of pneumothorax. We conclude that the created FEM model is a promising tool for facilitation of diagnostic procedures and prognosis of treatment in the case of small closed pneumothorax.
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
CHEN ShaoChun; XIAO LiuChao
2008-01-01
Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.
Convergence of adaptive finite element methods for eigenvalue problems
Garau, Eduardo M.; Morin, Pedro; Zuppa, Carlos
2008-01-01
In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.
Interpolation theory of anisotropic finite elements and applications
Institute of Scientific and Technical Information of China (English)
2008-01-01
Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.
Finite Element Program Generator and Its Application in Engineering
Institute of Scientific and Technical Information of China (English)
WANShui; HUHong; CHENJian-pin
2004-01-01
A completely new finite element software, Finite ElementProgram Generator (FEPG), is introduced and its designing thought and organizing structure is presented.FEPG uses the method of components and the technique of artificial intelligence to generate finite element program automatically by a computer according to the general principles of mathematic and internal rules of finite element method,as is similar to the deduction of mathematics.FEPG breaks through the limitation of present finite element software,which only applies to special discipline,while FEPG is suitable for all kinds of differential equations solved by finite element method.Now FEPG has been applied to superconductor research,electromagnetic field study,petroleum exploration,transportation,structure engineering,water conservancy,ship mechanics, solid-liquid coupling problems and liquid dynamics,etc.in China.
Finite element analysis theory and application with ANSYS
Moaveni, Saeed
2015-01-01
For courses in Finite Element Analysis, offered in departments of Mechanical or Civil and Environmental Engineering. While many good textbooks cover the theory of finite element modeling, Finite Element Analysis: Theory and Application with ANSYS is the only text available that incorporates ANSYS as an integral part of its content. Moaveni presents the theory of finite element analysis, explores its application as a design/modeling tool, and explains in detail how to use ANSYS intelligently and effectively. Teaching and Learning Experience This program will provide a better teaching and learning experience-for you and your students. It will help: *Present the Theory of Finite Element Analysis: The presentation of theoretical aspects of finite element analysis is carefully designed not to overwhelm students. *Explain How to Use ANSYS Effectively: ANSYS is incorporated as an integral part of the content throughout the book. *Explore How to Use FEA as a Design/Modeling Tool: Open-ended design problems help stude...
Institute of Scientific and Technical Information of China (English)
庄晓莹; 张雪健; 朱合华
2015-01-01
分别采用弹塑性本构和弹塑性损伤本构,建立盾构管片接头三维有限元模型,模拟正负弯矩下接头压弯破坏全过程.与实验对比后表明:初始加减阶段采用弹塑性本构和损伤本构得到的结构变形曲线基本重合,且与试验值吻合较好;荷载进一步加大后,采用损伤本构进行分析,其结果更接近试验值,且可更好地模拟结构承载力下降过程.通过有限元网格的收敛性分析,证明网格划分的合理性并给出此类有限元模型网格大小的建议值.最后根据数值模拟结果给出管片接头健康评价指标.%Using the elastoplastic and damage constitutive methods for concrete respectively, a 3-D FEM model for segment joints of shield tunnel is established to simulate the process of bending failure under positive and negative loads. By comparing the simulated results with the experimental data, at the initial stage, the deformation curve is almost coincident with the FEM using the elastoplastic and damage constitutive methods, and both of them show a good agreement with the test results. With the increasing load, the results using the damage constitutive method are closer to the experimental values, and it can simulate the dropping process of structural bearing capacity better. Through the convergence analysis of FEM, the rationality of mesh generation is proved, and the grid sizes of similar element models are suggested. Finally, based on the simulated results, some evaluation indices for health assessment of segment joints are proposed.
Finite element modeling of blast lung injury in sheep.
Gibbons, Melissa M; Dang, Xinglai; Adkins, Mark; Powell, Brian; Chan, Philemon
2015-04-01
A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic-plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.
Finite Eement Facture Aalysis of the Main Arm of Tower Cranes with the 3-D Cracks
Institute of Scientific and Technical Information of China (English)
Zongjie Cao; Zhenbang Kuang; Changping Li
2004-01-01
In this paper the local solutions of displacement fields in front of three-dimensional cracks are introduced and a new singular element of three-dimensional crack problems is constructed, and a new method for calculating stress intensity factors of three-dimensional crack problems is presented. With the present method, the structural strength of with longitudinal closed cracks under axial tensions is analyzed. It is possible for the crack to propagate because there are ring tensile stresses near joints of the main arm in tower cranes under axial press stresses. The stress and the stress intensity factor are calculated at joints on the main arm of tower cranes. Influences of welding residual stress on stress intensity factors and stresses are discussed.
Institute of Scientific and Technical Information of China (English)
LIU Li-min(刘立民); LIU Han-long(刘汉龙); LIAN Chuan-jie(连传杰)
2003-01-01
The application of the finite layer & triangular prism element method to the 3D ground subsidence and stress analysis caused by mining is presented. The layer elements and the triangular prism elements have been alternatively used in the numerical simulation system, the displacement pattern, strain matrix, elastic matrix, stiffness matrix, load matrix and the stress matrix of the layer element and triangular prism element have been presented. By means of the Fortran90 programming language, a numerical simulation system based on finite layer & triangular prism element have been built up, and this system is suitable for subsidence prediction and stress analysis of all mining condition and mining methods. Comparing with the infinite element method, this approach dramatically reduces the size of the set of equations that need to be solved, and greatly reduces the amount of data preparation required. It not only saves the internal storage, and the computation time, but also decreases the cost.
The finite element method its basis and fundamentals
Zienkiewicz, Olek C; Zhu, JZ
2013-01-01
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob