Sample records for 3-d electromagnetic induction

  1. Electromagnetic induction sounding and 3D laser imaging in support of a Mars methane analogue mission

    Boivin, A.; Lai, P.; Samson, C.; Cloutis, E.; Holladay, S.; Monteiro Santos, F. A.


    The Mars Methane Analogue Mission simulates a micro-rover mission whose purpose is to detect, analyze, and determine the source of methane emissions on the planet's surface. As part of this project, both an electromagnetic induction sounder (EMIS) and a high-resolution triangulation-based 3D laser scanner were tested at the Jeffrey open-pit asbestos mine to identify and characterize geological environments favourable to the occurrence of methane. The presence of serpentinite in the form of chrysotile (asbestos), magnesium carbonate, and iron oxyhydroxides make the mine a likely location for methane production. The EMIS clearly delineated the contacts between the two geological units found at the mine, peridotite and slate, which are separated by a shear zone. Both the peridotite and slate units have low and uniform apparent electrical conductivity and magnetic susceptibility, while the shear zone has much higher conductivity and susceptibility, with greater variability. The EMIS data were inverted and the resulting model captured lateral conductivity variations through the different bedrock geological units buried beneath a gravel road. The 3D point cloud data acquired by the laser scanner were fitted with triangular meshes where steeply dipping triangles were plotted in dark grey to accentuate discontinuities. The resulting images were further processed using Sobel edge detection to highlight networks of fractures which are potential pathways for methane seepage.

  2. 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anomalies in the Earth's mantle

    Kuvshinov, A.; Sabaka, T.; Olsen, Nils


    An approach is presented to detect deep-seated regional conductivity anomalies by analysis of magnetic observations taken by low-Earth-orbiting satellites. The approach deals with recovery of C-responses on a regular grid and starts with a determination of time series of external and internal....... For validation of the approach, 3 years of realistic synthetic data at Simulated orbits of the forthcoming Swarm constellation of 3 satellites have been used. To obtain the synthetic data for a given 3-D conductivity Earth's model a time-domain scheme has been applied which relies oil a Fourier transformation...... satellite data that contain contributions from the core and lithosphere, from the rnagnetosphere and ionosphere (and their Earth-induced counterparts), as well as payload noise has been investigated. The model Studies have shown that C-responses obtained oil a regular grid might be used to map regional deep...

  3. Issues on 3D Noncommutative Electromagnetic Duality

    Rodrigues, D C; Rodrigues, Davi C.; Wotzasek, Clovis


    We extend the ordinary 3D electromagnetic duality to the noncommutative (NC) space-time through a Seiberg-Witten map to second order in the noncommutativity parameter $\\theta$, defining a new scalar field model. There are similarities with the 4D NC duality, these are exploited to clarify properties of both cases. Up to second order in $\\theta$, we find duality interchanges the 2-form $\\theta$ with its 1-form Hodge dual ${^\\star} \\theta $ times the gauge coupling constant, i.e., $ \\theta \\to {^\\star} \\theta g^2$ (similar to the 4D NC electromagnetic duality). We prove that this property is false in the third order expansion in both 3D and 4D space-times. Starting from the third order expansion, $\\theta$ cannot be rescaled to attain an S-duality; on the other hand, to any order in $\\theta$, it is possible to rescale the fields to obtain the same coupling constants in both dual descriptions. In addition to possible applications on effective models, the 3D space-time is useful for studying general properties of ...

  4. Electromagnetic induction in Australia

    Lilley, F. E. M.

    Electromagnetic induction at the terrestrial surface is a general and ubiquitous process. This note, which covers research on the subject in Australia, reflects the writer's own interest and refers particularly to induction by natural source fields in the period range of 1 minute to 1 day.Such source fields arise external to Earth, in the ionosphere and beyond, in the magnetosphere. The process of electromagnetic induction by these fields involves the flow through Earth of tens of thousands of amperes, over scale lengths of thousands of kilometers.

  5. 冷坩埚玻璃固化熔炉埚底的三维电磁分析%3D Electromagnetic Analysis for Bottom of Cold Crucible Induction Melter for Vitrification

    陈楠; 刘丽君; 郄东生


    利用ANSYS有限元分析软件建模并分析了冷坩埚玻璃固化熔炉埚底结构以及埚底与感应线圈之间的距离对冷坩埚内电磁场分布的影响.计算结果表明,磁通密度、电流密度和焦耳热密度在玻璃熔体的表面中部区域最大,在中心和底部区域最低.对埚底进行分瓣有利于降低埚底的屏蔽效应,分为3瓣时,玻璃的发热量提高了12.7%.埚底与感应线圈距离在10~15 cm时,冷坩埚对玻璃物料的加热效率较高.%3D model of cold crucible induction melter (CCIM ) for vitrification was built by finite element analysis software ANSYS .The effects of CCIM bottom structure and distance between crucible bottom and induction coil on the distribution of electromagnetic field in CCIM were studied .The results show that the magnetic flux density ,current density and Joule heat density reach maximum value at the middle region of the glass melt surface and reach minimum value at the center and crucible bottom of the glass melt .The crucible bottom has significant shielding effect on the electromagnetic field . Sectioning the crucible bottom can improve the electromagnetic field penetrability .The Joule heat generated in the glass increases by 12.7% when the crucible bottom is sec-tioned into 3 parts .The CCIM has a relative high heating efficiency when the distance between the crucible bottom and the induction coil is 10-15 cm .

  6. Electromagnetic induction studies

    Hermance, J. F.


    Recent developments in electromagnetic induction studies of the lithosphere and the asthenosphere are reviewed. Attention is given to geoelectrical studies of active tectonic areas in terms of the major zones of crustal extension, the basin and range province along western regions of North America, and the Rio Grande rift. Studies have also been performed of tectonic activity around Iceland, the Salton Trough and Cerro Prieto, and the subduction zones of the Cascade Mountains volcanic belt, where magnetotelluric and geomagnetic variation studies have been done. Geomagnetic variations experiments have been reported in the Central Appalachians, and submarine electromagnetic studies along the Juan de Fuca ridge. Controlled source electromagnetic and dc resistivity investigations have been carried out in Nevada, Hawaii, and in the Adirondacks Mountains. Laboratory examinations on the conductivity of representative materials over a broad range of temperature, pressure, and chemistry are described.

  7. Induction Heating Process: 3D Modeling and Optimisation

    Naar, R.; Bay, F.


    An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First

  8. 3-D Finite Element Analysis of Induction Logging in a Dipping Formation



    Electromagnetic induction by a magnetic dipole located above a dipping interface is of relevance to the petroleum well-logging industry. The problem is fully three-dimensional (3-D) when formulated as above, but reduces to an analytically tractable one-dimensional (1-D) problem when cast as a small tilted coil above a horizontal interface. The two problems are related by a simple coordinate rotation. An examination of the induced eddy currents and the electric charge accumulation at the interface help to explain the inductive and polarization effects commonly observed in induction logs from dipping geological formations. The equivalence between the 1-D and 3-D formulations of the problem enables the validation of a previously published finite element solver for 3-D controlled-source electromagnetic induction.

  9. Electromagnetic Mathematical Modeling of 3D Supershaped Dielectric Lens Antennas

    L. Mescia


    Full Text Available The electromagnetic analysis of a special class of 3D dielectric lens antennas is described in detail. This new class of lens antennas has a geometrical shape defined by the three-dimensional extension of Gielis’ formula. The analytical description of the lens shape allows the development of a dedicated semianalytical hybrid modeling approach based on geometrical tube tracing and physical optic. In order to increase the accuracy of the model, the multiple reflections occurring within the lens are also taken into account.

  10. Image Appraisal for 2D and 3D Electromagnetic Inversion

    Alumbaugh, D.L.; Newman, G.A.


    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  11. A 3D printed electromagnetic nonlinear vibration energy harvester

    Constantinou, P.; Roy, S.


    A 3D printed electromagnetic vibration energy harvester is presented. The motion of the device is in-plane with the excitation vibrations, and this is enabled through the exploitation of a leaf isosceles trapezoidal flexural pivot topology. This topology is ideally suited for systems requiring restricted out-of-plane motion and benefits from being fabricated monolithically. This is achieved by 3D printing the topology with materials having a low flexural modulus. The presented system has a nonlinear softening spring response, as a result of designed magnetic force interactions. A discussion of fatigue performance is presented and it is suggested that whilst fabricating, the raster of the suspension element is printed perpendicular to the flexural direction and that the experienced stress is as low as possible during operation, to ensure longevity. A demonstrated power of ˜25 μW at 0.1 g is achieved and 2.9 mW is demonstrated at 1 g. The corresponding bandwidths reach up-to 4.5 Hz. The system’s corresponding power density of ˜0.48 mW cm-3 and normalised power integral density of 11.9 kg m-3 (at 1 g) are comparable to other in-plane systems found in the literature.

  12. The law of electromagnetic induction

    V.J. Kutkovetskyy


    Full Text Available Mathematical models of the electromagnetic induction law which do not take into account Faraday’s restrictions are not in full accordance with the physical phenomenon and so they are not laws. Their incomplete correspondence with real devices results in such "paradoxes" as unlimited magnetic field of unipolar generators, infinite sizes of inductors for DC and AC machines modeled, and so on.

  13. Investigation of an Electromagnetic Induction Sensor


    Induction, Metal Detector Waymond R. Scott, Jr. Georgia Tech Applied Research Corporation Office of Sponsored Programs 505 Tenth St., NW Atlanta, GA 30332...dipole coil. Experimental results are presented for several targets. Keywords; Electromagnetic Induction, EMI, Mine, Lansmine, Metal Detector . I...presented for several targets. Keywords; Electromagnetic Induction, EMI, Mine, Landmine, Metal Detector . I. INTRODUCTION For many years, extensive effort

  14. Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures


    of Texas at El Paso, 2014. [19] A. Sihvola, " Electromagnetic Emergence in Metamaterials," in Advances in Electromagnetics of Complex Media and...complex power of radiating elements under electromagnetic source transformation," Microwave and Optical Technology Letters, vol. 53, pp. 1524-1527...AFRL-RW-EG-TP-2015-002 Rapid Prototyping across the Spectrum: RF to Optical 3D Electromagnetic Structures Jeffery W. Allen Monica S. Allen Brett

  15. Invariant superoscillatory electromagnetic fields in 3D-space

    Makris, K. G.; Papazoglou, D. G.; Tzortzakis, S.


    We derive exact solutions of Maxwell’s equations based on superoscillatory superpositions of vectorial Bessel beams. These novel beams are diffraction-free and can support subwavelength features in their transverse electromagnetic fields, without the presence of any evanescent waves. These features can be propagated into the far field. Approximate solutions in closed form are also derived based on asymptotic expansions of Bessel functions for simple prescribed subwavelength patterns. The superoscillatory characteristics of both electric, magnetic field components (transverse and longitudinal), and the Poynting vector, as well as, the effect of nonparaxiality are systematically investigated.

  16. Time efficient 3-D electromagnetic modeling on massively parallel computers

    Alumbaugh, D.L.; Newman, G.A.


    A numerical modeling algorithm has been developed to simulate the electromagnetic response of a three dimensional earth to a dipole source for frequencies ranging from 100 to 100MHz. The numerical problem is formulated in terms of a frequency domain--modified vector Helmholtz equation for the scattered electric fields. The resulting differential equation is approximated using a staggered finite difference grid which results in a linear system of equations for which the matrix is sparse and complex symmetric. The system of equations is solved using a preconditioned quasi-minimum-residual method. Dirichlet boundary conditions are employed at the edges of the mesh by setting the tangential electric fields equal to zero. At frequencies less than 1MHz, normal grid stretching is employed to mitigate unwanted reflections off the grid boundaries. For frequencies greater than this, absorbing boundary conditions must be employed by making the stretching parameters of the modified vector Helmholtz equation complex which introduces loss at the boundaries. To allow for faster calculation of realistic models, the original serial version of the code has been modified to run on a massively parallel architecture. This modification involves three distinct tasks; (1) mapping the finite difference stencil to a processor stencil which allows for the necessary information to be exchanged between processors that contain adjacent nodes in the model, (2) determining the most efficient method to input the model which is accomplished by dividing the input into ``global`` and ``local`` data and then reading the two sets in differently, and (3) deciding how to output the data which is an inherently nonparallel process.

  17. A minimum-order boundary element method to extract the 3-D inductance and resistance of the interconnects in VLSI

    方蜀州; 王泽毅


    The high frequency resistance and inductance of the 3-D complex interconnect structures can be calculated by solving an eddy current electromagnetic problem. In this paper, a model for charactering such a 3-D eddy current problem is proposed, in which the electromagnetic fields in both the conducting and non-conducting regions are described in terms of the magnetic vector potential, and a set of the indirect boundary integral equations (IBIE) is obtained. The IBIEs can be solved by boundary element method, so this method avoids discretizing the domain of the conductors. As an indirect boundary element method, it is of minimum order. It does not restrict the direction of the current in conductors, and hence it can consider the mutual impedance between two perpendicular conductors. The numerical results can well meet the analytical solution of a 2-D problem. The mutual impedance of two perpendicular conductors is also shown under the different gaps between conductors and different frequencies.

  18. Physic basis of electromagnetic induction low

    V.J. Kutkovetskyy


    Full Text Available The statement on the macro level of EMF dependence on change in magnetic flux in time wrong reflects the physical phenomenon of electromagnetic induction low by Faraday, because EMF can be inducted if the magnetic flux of the circuit does not change. Changing magnetic flux of the circuit when the electromotive force arises is only a result of crossing the magnetic field lines by conductor and is an exception, which applies only to certain classes of electric machines.

  19. A full 3D time-dependent electromagnetic model for Roebel cables

    Rodriguez Zermeno, Victor Manuel; Grilli, Francesco; Sirois, Frederic


    current sharing among them. However, since Roebel cables have a true 3D structure and are made of several high aspect ratio coated conductors, modelling and simulation of their electromagnetic properties is very challenging. Therefore, a realistic model taking into account the actual layout of the cable...

  20. A general law for electromagnetic induction

    Giuliani, Giuseppe


    The definition of the induced $emf$ as the integral over a closed loop of the Lorentz force acting on a unit positive charge leads immediately to a general law for electromagnetic induction phenomena. The general law is applied to three significant cases: moving bar, Faraday's and Corbino's disc. This last application illustrates the contribution of the drift velocity of the charges to the induced $emf$: the magneto-resistance effect is obtained without using microscopic models of electrical conduction. Maxwell wrote down `general equations of electromotive intensity' that, integrated over a closed loop, yield the general law for electromagnetic induction, if the velocity appearing in them is correctly interpreted. The flux of the magnetic field through an arbitrary surface that have the circuit as contour {\\em is not the cause} of the induced $emf$. The flux rule must be considered as a calculation shortcut for predicting the value of the induced $emf$ when the circuit is filiform. Finally, the general law o...

  1. Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection

    Phatak, C.; Knoop, L. de; Houdellier, F.; Gatel, C.; Hÿtch, M. J.; Masseboeuf, A.


    One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as well as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.

  2. Finite Element Analysis of 3-D Electromagnetic Field in Bloom Continuous Casting Mold

    LIU Xu-dong; YANG Xiao-dong; ZHU Miao-yong; CHEN Yong; YANG Su-bo


    Three-dimensional finite element model of electromagnetic stirrer was built to predict magnetic field in a bloom continuous casting mold for steel during operation. The effects of current intensity, current frequency, and mold copper plate thickness on the magnetic field distribution in the mold were investigated. The results show that the magnetic induction intensity increases linearly with the increase in current intensity and decreases with the increase in current frequency. Increasing current intensity and frequency is available in increasing the electromagnetic force. The Joule heat decreases gradually from surface to center of bloom, and a maximum Joule heat can be found on corner of bloom. The prediction of magnetic induction intensity is in good agreement with the measured values.

  3. Penetrating power of resonant electromagnetic induction imaging

    Guilizzoni, Roberta; Watson, Joseph C.; Bartlett, Paul; Renzoni, Ferruccio


    The possibility of revealing the presence and identifying the nature of conductive targets is of central interest in many fields, including security, medicine, industry, archaeology and geophysics. In many applications, these targets are shielded by external materials and thus cannot be directly accessed. Hence, interrogation techniques are required that allow penetration through the shielding materials, in order for the target to be identified. Electromagnetic interrogation techniques represent a powerful solution to this challenge, as they enable penetration through conductive shields. In this work, we demonstrate the power of resonant electromagnetic induction imaging to penetrate through metallic shields (1.5-mm-thick) and image targets (having conductivities σ ranging from 0.54 to 59.77 MSm-1) concealed behind them.

  4. 3D Finite Volume Modeling of ENDE Using Electromagnetic T-Formulation

    Yue Li


    Full Text Available An improved method which can analyze the eddy current density in conductor materials using finite volume method is proposed on the basis of Maxwell equations and T-formulation. The algorithm is applied to solve 3D electromagnetic nondestructive evaluation (E’NDE benchmark problems. The computing code is applied to study an Inconel 600 work piece with holes or cracks. The impedance change due to the presence of the crack is evaluated and compared with the experimental data of benchmark problems No. 1 and No. 2. The results show a good agreement between both calculated and measured data.

  5. Comparison between 2D and 3D Modelling of Induction Machine Using Finite Element Method

    Zelmira Ferkova


    Full Text Available The paper compares two different ways (2D and 3D of modelling of two-phase squirrel-cage induction machine using the finite element method (FEM. It focuses mainly on differences between starting characteristics given from both types of the model. It also discusses influence of skew rotor slots on harmonic content in air gap flux density and summarizes some issues of both approaches.

  6. Research on 3D Braided Nickel Plated Carbon Fiber/epoxy Resin Composites and Their Electromagnetic Protection Properties

    QU Zhaoming; WANG Qingguo; LEI Yisan; ZHANG Ruigang


    To develop electromagnetic protection composites with integrated structure-function properties,the three-dimension (3D) braided nickel plated carbon fiber/epoxy resin (Ni-CF3D/EP) composites were prepared based on 3D five-directional braiding,unitary nickel plating and mold compression shaping.The electromagnetic protection properties of Ni-CF3D/EP composites including shielding effectiveness (SE) and reflection loss against plane electromagnetic wave,shielding properties against electromagnetic pulse (EMP) were investigated.The test results show that the novel composites have good electromagnetic protection properties in a wide frequency range of 14 kHz~ 18 GHz with SE of 42 dB~95 dB,the absorption bandwidth of-5 dB in 2 GHz~ 18 GHz can reach 10 GHz and the pulse peak SE against EMP is 43.7 dB which can reduce the electromagnetic energy greatly.Meanwhile,the mechanic properties were also investigated and the results indicate that the Ni-CF3D/EP composites can replace metal materials for loading-bearing structural applications because of their excellent mechanic properties.

  7. University Students' Understanding of Electromagnetic Induction

    Guisasola, Jenaro; Almudi, Jose M.; Zuza, Kristina


    This study examined engineering and physical science students' understanding of the electromagnetic induction (EMI) phenomena. It is assumed that significant knowledge of the EMI theory is a basic prerequisite when students have to think about electromagnetic phenomena. To analyse students' conceptions, we have taken into account the fact that individuals build mental representations to help them understand how a physical system works. Individuals use these representations to explain reality, depending on the context and the contents involved. Therefore, we have designed a questionnaire with an emphasis on explanations and an interview, so as to analyse students' reasoning. We found that most of the students failed to distinguish between macroscopic levels described in terms of fields and microscopic levels described in terms of the actions of fields. It is concluded that although the questionnaire and interviews involved a limited range of phenomena, the identified explanations fall into three main categories that can provide information for curriculum development by identifying the strengths and weaknesses of students' conceptions.

  8. Massless particles, electromagnetism, and Rieffel induction

    Landsman, N.P. [ed.] [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Wiedemann, U.A. [ed.] [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik


    The connection between space-time covariant representations (obtained by inducing from the Lorentz group) and irreducible unitary representations (induced from Wigner`s little group) of the Poincare groups is re-examined in the massless case. In the situation relevant to physics, it is found that these are related by Marsden-Weinstein reduction with respect to a gauge group. An analogous phenomenon is observed for classical massless relativistic particles. This symplectic reduction procedure can be (`second`) quantized using a generalization of the Rieffel induction technique in operator algebra theory, which is carried through in detail for electromagnetism. Starting from the so-called Fermi representation of the field algebra generated by the free abelian gauge field, we construct a new (`rigged`) sesquilinear form on the representation space, which is positive semi-definite, and given in terms of a Gaussian weak distribution (promeasure) on the gauge group (taken to be a Hilbert Lie group). This eventually constructs the algebra of observables of quantum electromagnetism (directly in its vacuum representation) as a representation of the so-called algebra of weak observables induced by the trivial representation of the gauge group. (orig.)

  9. On electromagnetic induction in electric conductors

    Korolev, Alexander I


    Experimental validation of the Faraday's law of electromagnetic induction (EMI) is performed when an electromotive force is generated in thin copper turns, located inside a large magnetic coil. It has been established that the electromotive force (emf) value should be dependent not only on changes of the magnetic induction flux through a turn and on symmetry of its crossing by magnetic power lines also. The law of EMI is applicable in sufficient approximation in case of the changes of the magnetic field near the turn are symmetrical. Experimental study of the induced emf in arcs and a direct section of the conductor placed into the variable field has been carried out. Linear dependence of the induced emf on the length of the arc has been ascertained in case of the magnetic field distribution symmetry about it. Influence of the magnetic field symmetry on the induced emf in the arc has been observed. The curve of the induced emf in the direct section over period of current pulse is similar to this one for the t...

  10. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg-Landau formalism

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa; Stošić, Borko; Milošević, Milorad V.


    Ginzburg-Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame - with speedup of over 100× compared to best available CPU implementations of the theory on a 2563 grid.

  11. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg–Landau formalism

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa [Centro de Informática, Universidade Federal de Pernambuco, Av. Luiz Freire s/n, 50670-901, Recife, PE (Brazil); Stošić, Borko [Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE (Brazil); Milošević, Milorad V., E-mail: [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)


    Ginzburg–Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100× compared to best available CPU implementations of the theory on a 256{sup 3} grid.

  12. [A 3D FEM model for calculation of electromagnetic fields in transmagnetic stimulation].

    Seilwinder, J; Kammer, T; Andrä, W; Bellemann, M E


    We developed a realistic finite elements method (FEM) model of the brain for the calculation of electromagnetic fields in transcranial magnetic stimulation (TMS). A focal butterfly stimulation coil was X-rayed, parameterized, and modeled. The magnetic field components of the TMS coil were calculated and compared for validation to pointwise measurements of the magnetic fields with a Hall sensor. We found a mean deviation of 7.4% at an axial distance of 20 mm to the coil. A 3D brain model with the biological tissues of white and gray matter, bone, and cerebrospinal fluid was developed. At a current sweep of 1000 A in 120 microseconds, the maximum induced current density in gray matter was 177 mA/m2 and the strongest electric field gradient covered an area of 40 mm x 53 mm.

  13. Research on 3D marine electromagnetic interferometry with synthetic sources for suppressing the airwave interference

    Zhang Jian-Guo; Wu Xin; Qi You-Zheng; Huang Ling; Fang Guang-You


    In order to suppress the airwave noise in marine controlled-source electromagnetic (CSEM) data, we propose a 3D deconvolution (3DD) interferometry method with a synthetic aperture source and obtain the relative anomaly coefficient (RAC) of the EM field reflection responses to show the degree for suppressing the airwave. We analyze the potential of the proposed method for suppressing the airwave, and compare the proposed method with traditional methods in their effectiveness. A method to select synthetic source length is derived and the effect of the water depth on RAC is examined via numerical simulations. The results suggest that 3DD interferometry method with a synthetic source can effectively suppress the airwave and enhance the potential of marine CSEM to hydrocarbon exploration.

  14. Influential Factors on Electromagnetic Properties of Selected 3D Reticulated Ceramics

    Qing GONG; Xiaoming CAO; Jinsong ZHANG; Zheng FANG


    3D reticulated ceramics (3DRCs) with the composition containing SrFe12O19-SiC-TiO2 were prepared by a replication process with polyurethane sponges as the template in ceramic slurry. The electrical conductivity, dielectric and magnetic parameters of 3D reticulated ceramics (3DRCs) were measured with changes in cell size of the sponges, contents in the slurry and sintering temperature in this paper. Discussions about the influential factors of those parameters were focused on their electrical conductivity. The experimental results indicated that the electrical conductivity of 3DRCs raised with the increase of cell size, SiC/SrO.6Fe2O3 with weight ratio and sintering temperature. X-ray diffractions and SEM were used to investigate the relationship between electrical conductivity and sintering temperature. Deoxidizing reactions of SrO.6Fe2O3 caused the increasing electrical conductivity. The real part of permittivity (ε′) and imaginary part of permeability (μ") raised with the increase of electrical conductivity (σ). The imaginary part of permittivity (ε") has a maximum at 10° S/cm with the increase of σ, and the real part of permeability (μ′)changes slightly with the increase of σ. When σ is at the range of 10-4 S/cm to 100 S/cm (a semi conductive state),both the imagine part of permittivity and permeability raises with increasing σ, therefore, the 3DRCs present their high electromagnetic loss properties.

  15. Electromagnetic 3D subsurface imaging with source sparsity for a synthetic object

    Pursiainen, Sampsa


    This paper concerns electromagnetic 3D subsurface imaging in connection with sparsity of signal sources. We explored an imaging approach that can be implemented in situations that allow obtaining a large amount of data over a surface or a set of orbits but at the same time require sparsity of the signal sources. Characteristic to such a tomography scenario is that it necessitates the inversion technique to be genuinely three-dimensional: For example, slicing is not possible due to the low number of sources. Here, we primarily focused on astrophysical subsurface exploration purposes. As an example target of our numerical experiments we used a synthetic small planetary object containing three inclusions, e.g. voids, of the size of the wavelength. A tetrahedral arrangement of source positions was used, it being the simplest symmetric point configuration in 3D. Our results suggest that somewhat reliable inversion results can be produced within the present a priori assumptions, if the data can be recorded at a spe...

  16. Compute extremely low-frequency electromagnetic field exposure by 3-D impendance method


    A 3-D impedance method has been introduced to compute the electric currents induced in a human body exposed to extremely low-frequency electromagnetic field.The 3-D impedance method has been deduced from Maxwell equations and is put into the computation and simulation effectively to the visible human body model, which has 196×114×626 cells and more than 40 types of tissues.As the result, two representative cases are investigated.One is exposure of the human body to 100 μT (1 000 mG), the limit recommended by the International Commission on Non-Ionizing Radiation Protection for the public and the other one is the exposure of human body to 0.4 μT (4 mG), the level at which a statistical link appears with a doubled risk of development of childhood leukaemia.The distribution of induced current density can be obtained and the maximum of induced current are found to be 16 mA/m2 and 0.07 mA/m2.

  17. A tetrahedral mesh generation approach for 3D marine controlled-source electromagnetic modeling

    Um, Evan Schankee; Kim, Seung-Sep; Fu, Haohuan


    3D finite-element (FE) mesh generation is a major hurdle for marine controlled-source electromagnetic (CSEM) modeling. In this paper, we present a FE discretization operator (FEDO) that automatically converts a 3D finite-difference (FD) model into reliable and efficient tetrahedral FE meshes for CSEM modeling. FEDO sets up wireframes of a background seabed model that precisely honors the seafloor topography. The wireframes are then partitioned into multiple regions. Outer regions of the wireframes are discretized with coarse tetrahedral elements whose maximum size is as large as a skin depth of the regions. We demonstrate that such coarse meshes can produce accurate FE solutions because numerical dispersion errors of tetrahedral meshes do not accumulate but oscillates. In contrast, central regions of the wireframes are discretized with fine tetrahedral elements to describe complex geology in detail. The conductivity distribution is mapped from FD to FE meshes in a volume-averaged sense. To avoid excessive mesh refinement around receivers, we introduce an effective receiver size. Major advantages of FEDO are summarized as follow. First, FEDO automatically generates reliable and economic tetrahedral FE meshes without adaptive meshing or interactive CAD workflows. Second, FEDO produces FE meshes that precisely honor the boundaries of the seafloor topography. Third, FEDO derives multiple sets of FE meshes from a given FD model. Each FE mesh is optimized for a different set of sources and receivers and is fed to a subgroup of processors on a parallel computer. This divide and conquer approach improves the parallel scalability of the FE solution. Both accuracy and effectiveness of FEDO are demonstrated with various CSEM examples.

  18. Some Student Conceptions of Electromagnetic Induction

    Thong, Wai Meng; Gunstone, Richard


    Introductory electromagnetism is a central part of undergraduate physics. Although there has been some research into student conceptions of electromagnetism, studies have been sparse and separated. This study sought to explore second year physics students' conceptions of electromagnetism, to investigate to what extent the results from the present…

  19. EMPulse, a new 3-D simulation code for electromagnetic pulse studies

    Cohen, Bruce; Eng, Chester; Farmer, William; Friedman, Alex; Grote, David; Kruger, Hans; Larson, David


    EMPulse is a comprehensive and modern 3-D simulation code for electro-magnetic pulse (EMP) formation and propagation studies, being developed at LLNL as part of a suite of codes to study E1 EMP originating from prompt gamma rays. EMPulse builds upon the open-source Warp particle-in-cell code framework developed by members of this team and collaborators at other institutions. The goal of this endeavor is a new tool enabling the detailed and self-consistent study of multi-dimensional effects in geometries that have typically been treated only approximately. Here we present an overview of the project, the models and methods that have been developed and incorporated into EMPulse, tests of these models, comparisons to simulations undertaken in CHAP-lite (derived from the legacy code CHAP due to C. Longmire and co-workers), and some approaches to increased computational efficiency being studied within our project. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Accurate 2D/3D electromagnetic modeling for time-domain airborne EM systems

    Yin, C.; Hodges, G.


    The existing industry software cannot deliver correct results for 3D time-domain airborne EM responses. In this paper, starting from the Fourier transform and convolution, we compare the stability of different modeling techniques and analyze the reason for instable calculations of the time-domain airborne EM responses. We find that the singularity of the impulse responses of EM systems at very early time that are used in the convolution is responsible for the instability of the modeling (Fig.1). Based on this finding, we put forward an algorithm that uses step response rather than impulse response of the airborne EM system for the convolution and create a stable algorithm that delivers precise results and maintains well the integral/derivative relationship between the magnetic field B and the magnetic induction dB/dt. A three-step transformation procedure for the modeling is proposed: 1) output the frequency-domain EM response data from the existing software; 2) transform into step-response by digital Fourier/Hankel transform; 3) convolve the step response with the transmitting current or its derivatives. The method has proved to be working very well (Fig. 2). The algorithm can be extended to the modeling of other time-domain ground and airborne EM system responses.Fig. 1: Comparison of impulse and step responses for an airborne EM system Fig. 2: Bz and dBz/dt calculated from step (middle panel) and impulse responses (lower panel) for the same 3D model as in Fig.1.

  1. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)


    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  2. Kinetic inductance driven nanoscale 2D and 3D THz transmission lines.

    Mousavi, S Hossein; Williamson, Ian A D; Wang, Zheng


    We examine the unusual dispersion and attenuation of transverse electromagnetic waves in the few-THz regime on nanoscale graphene and copper transmission lines. Conventionally, such propagation has been considered to be highly dispersive, due to the RC time constant-driven voltage diffusion below 1 THz and plasmonic effects at higher optical frequencies. Our numerical modeling across the microwave, THz, and optical frequency ranges reveals that the conductor kinetic inductance creates an ultra-broadband linear-dispersion and constant-attenuation region in the THz regime. This so-called LC region is an ideal characteristic that is known to be absent in macro-scale transmission lines. The kinetic-LC frequency range is dictated by the structural dimensionality and the free-carrier scattering rate of the conductor material. Moreover, up to 40x wavelength reduction is observed in graphene transmission lines.

  3. Kinetic inductance driven nanoscale 2D and 3D THz transmission lines

    Mousavi, S. Hossein; Williamson, Ian A. D.; Wang, Zheng


    We examine the unusual dispersion and attenuation of transverse electromagnetic waves in the few-THz regime on nanoscale graphene and copper transmission lines. Conventionally, such propagation has been considered to be highly dispersive, due to the RC time constant-driven voltage diffusion below 1 THz and plasmonic effects at higher optical frequencies. Our numerical modeling across the microwave, THz, and optical frequency ranges reveals that the conductor kinetic inductance creates an ultra-broadband linear-dispersion and constant-attenuation region in the THz regime. This so-called LC region is an ideal characteristic that is known to be absent in macro-scale transmission lines. The kinetic-LC frequency range is dictated by the structural dimensionality and the free-carrier scattering rate of the conductor material. Moreover, up to 40x wavelength reduction is observed in graphene transmission lines. PMID:27137628

  4. Kinetic inductance driven nanoscale 2D and 3D THz transmission lines

    Mousavi, S Hossein; Wang, Zheng


    We examine the unusual dispersion and attenuation of transverse electromagnetic waves in the few-THz regime on nanoscale graphene and copper transmission lines. Conventionally, such propagation has been considered to be highly dispersive, due to the RC-constant-driven voltage diffusion below 1THz and plasmonic effects at higher frequencies. Our numerical modelling between the microwave and optical regimes reveals that conductor kinetic inductance creates an ultra-broadband LC region. This resultant frequency-independent attenuation is an ideal characteristic that is known to be non-existent in macro-scale transmission lines. The kinetic-LC frequency range is dictated by the structural dimensionality and the free-carrier scattering rate of the conductor material. Moreover, up to 40x wavelength reduction is observed in graphene transmission lines.

  5. Computational Finite Element Software Assisted Development of a 3D Inductively Coupled Power Transfer System

    Pratik Raval


    Full Text Available To date inductively coupled power transfer (ICPT systems have already found many practical applications including battery charging pads. In fact, current charging platforms tend to largely support only one- or two-dimensional planar movement in load. This paper proposes a new concept of extending the aspect ratios of the operating power transfer volume of ICPT systems to support arbitrary three dimensional load movements with respect to the primary coils. This is done by use of modern finite element method analysis software to propose the primary and secondary magnetic structures of such an ICPT system. Firstly, two primary magnetic structures are proposed based on contrasting modes of operation and different field directions. This includes a single-phase and multi-phase current model. Next, a secondary magnetic structure is customized to be compatible with both primary structures. The resulting system is shown to produce a 3D power transfer volume for battery cell charging applications.

  6. 3-D geometry calibration and markerless electromagnetic tracking with a mobile C-arm

    Cheryauka, Arvi; Barrett, Johnny; Wang, Zhonghua; Litvin, Andrew; Hamadeh, Ali; Beaudet, Daniel


    The design of mobile X-ray C-arm equipment with image tomography and surgical guidance capabilities involves the retrieval of repeatable gantry positioning in three-dimensional space. Geometry misrepresentations can cause degradation of the reconstruction results with the appearance of blurred edges, image artifacts, and even false structures. It may also amplify surgical instrument tracking errors leading to improper implant placement. In our prior publications we have proposed a C-arm 3D positioner calibration method comprising separate intrinsic and extrinsic geometry calibration steps. Following this approach, in the present paper, we extend the intrinsic geometry calibration of C-gantry beyond angular positions in the orbital plane into angular positions on a unit sphere of isocentric rotation. Our method makes deployment of markerless interventional tool guidance with use of high-resolution fluoro images and electromagnetic tracking feasible at any angular position of the tube-detector assembly. Variations of the intrinsic parameters associated with C-arm motion are measured off-line as functions of orbital and lateral angles. The proposed calibration procedure provides better accuracy, and prevents unnecessary workflow steps for surgical navigation applications. With a slight modification, the Misalignment phantom, a tool for intrinsic geometry calibration, is also utilized to obtain an accurate 'image-to-sensor' mapping. We show simulation results, image quality and navigation accuracy estimates, and feasibility data acquired with the prototype system. The experimental results show the potential of high-resolution CT imaging (voxel size below 0.5 mm) and confident navigation in an interventional surgery setting with a mobile C-arm.

  7. Examination of Buoyancy-Reduction Effect in Induction-Heating Cookers by Using 3D Finite Element Method

    Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa

    In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.

  8. Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836

    Morgan, F. Dale; Sogade, John


    This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28

  9. 3D and 4D noncommutative electromagnetic duality and the role of the slowly varying fields limit

    Rodrigues, D C; Rodrigues, Davi C.; Wotzasek, Clovis


    We study classical noncommutative (NC) electromagnetic duality in both 3D and 4D space-times through the Seiberg-Witten (SW) map to all orders in theta. We evaluate the role of space-time dimensions, of the gauge coupling constant g^2 inversion, of the slowly varying fields (SVF) limit and of the rule theta --> g^2 *theta (where * is the Hodge duality operator), which was originally found in the 4D space-time. Among our results, a new scalar picture for NC electromagnetism to second order in theta is established, a formula which simplifies considerably the application of the SW map in 3D is presented and we show that the SVF limit has a crucial role in this duality starting from the third order in theta for any dimension: outside this limit the symmetry between theta and g^2 *theta is lost.

  10. New 3D parallel GILD electromagnetic modeling and nonlinear inversion using global magnetic integral and local differential equation

    Xie, G.; Li, J.; Majer, E.; Zuo, D.


    This paper describes a new 3D parallel GILD electromagnetic (EM) modeling and nonlinear inversion algorithm. The algorithm consists of: (a) a new magnetic integral equation instead of the electric integral equation to solve the electromagnetic forward modeling and inverse problem; (b) a collocation finite element method for solving the magnetic integral and a Galerkin finite element method for the magnetic differential equations; (c) a nonlinear regularizing optimization method to make the inversion stable and of high resolution; and (d) a new parallel 3D modeling and inversion using a global integral and local differential domain decomposition technique (GILD). The new 3D nonlinear electromagnetic inversion has been tested with synthetic data and field data. The authors obtained very good imaging for the synthetic data and reasonable subsurface EM imaging for the field data. The parallel algorithm has high parallel efficiency over 90% and can be a parallel solver for elliptic, parabolic, and hyperbolic modeling and inversion. The parallel GILD algorithm can be extended to develop a high resolution and large scale seismic and hydrology modeling and inversion in the massively parallel computer.

  11. Modeling geomagnetic induction hazards using a 3-D electrical conductivity model of Australia

    Wang, Liejun; Lewis, Andrew M.; Ogawa, Yasuo; Jones, William V.; Costelloe, Marina T.


    The surface electric field induced by external geomagnetic source fields is modeled for a continental-scale 3-D electrical conductivity model of Australia at periods of a few minutes to a few hours. The amplitude and orientation of the induced electric field at periods of 360 s and 1800 s are presented and compared to those derived from a simplified ocean-continent (OC) electrical conductivity model. It is found that the induced electric field in the Australian region is distorted by the heterogeneous continental electrical conductivity structures and surrounding oceans. On the northern coastlines, the induced electric field is decreased relative to the simple OC model due to a reduced conductivity contrast between the seas and the enhanced conductivity structures inland. In central Australia, the induced electric field is less distorted with respect to the OC model as the location is remote from the oceans, but inland crustal high-conductivity anomalies are the major source of distortion of the induced electric field. In the west of the continent, the lower conductivity of the Western Australia Craton increases the conductivity contrast between the deeper oceans and land and significantly enhances the induced electric field. Generally, the induced electric field in southern Australia, south of latitude -20°, is higher compared to northern Australia. This paper provides a regional indicator of geomagnetic induction hazards across Australia.

  12. 3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications

    Saleh, Ehab; Woolliams, Peter; Clarke, Bob; Gregory, Andrew; Greedy, Steve; Smartt, Chris; Ricky D. Wildman; Ashcroft, Ian; Hague, Richard J.M.; Dickens, Phill; Tuck, Christopher


    Inkjet printing of multiple materials is usually processed in multiple steps due to various jetting and curing/sintering conditions. In this paper we report on the development of all inkjet-printed UV-curable electromagnetic responsive inks in a single process, and the electromagnetic characterization of the developed structure. The ink consists of iron oxide (Fe3O4) nanoparticles (nominal particle size 50–100 nm) suspended within a UV curable matrix resin. The viscosity and surface tension o...

  13. New results on the resistivity structure of Merapi Volcano(Indonesia), derived from 3D restricted inversion of long-offsettransient electromagnetic data

    Commer, Michael; Helwig, Stefan, L.; Hordt, Andreas; Scholl,Carsten; Tezkan, Bulent


    Three long-offset transient electromagnetic (LOTEM) surveyswerecarried out at the active volcano Merapi in Central Java (Indonesia)during the years 1998, 2000, and 2001. The measurements focused on thegeneral resistivity structure of the volcanic edifice at depths of 0.5-2km and the further investigation of a southside anomaly. The measurementswere insufficient for a full 3D inversion scheme, which could enable theimaging of finely discretized resistivity distributions. Therefore, astable, damped least-squares joint-inversion approach is used to optimize3D models with a limited number of parameters. The mode ls feature therealistic simulation of topography, a layered background structure, andadditional coarse 3D blocks representing conductivity anomalies.Twenty-eight LOTEM transients, comprising both horizontal and verticalcomponents of the magnetic induction time derivative, were analyzed. Inview of the few unknowns, we were able to achieve reasonable data fits.The inversion results indicate an upwelling conductor below the summit,suggesting hydrothermal activity in the central volcanic complex. Ashallow conductor due to a magma-filled chamber, at depths down to 1 kmbelow the summit, suggested by earlier seismic studies, is not indicatedby the inversion results. In conjunction with an anomalous-density model,derived from arecent gravity study, our inversion results provideinformation about the southern geological structure resulting from amajor sector collapse during the Middle Merapi period. The density modelallows to assess a porosity range andthus an estimated vertical salinityprofile to explain the high conductivities on a larger scale, extendingbeyond the foothills of Merapi.

  14. Mechanical and electromagnetic properties of 3D printed hot pressed nanocarbon/poly(lactic) acid thin films

    Kotsilkova, R.; Ivanov, E.; Todorov, P.; Petrova, I.; Volynets, N.; Paddubskaya, A.; Kuzhir, P.; Uglov, V.; Biró, I.; Kertész, K.; Márk, G. I.; Biró, L. P.


    We constructed a new type of light-weight, nanocarbon based thin film material having good mechanical properties, thermal stability, and electromagnetic shielding efficiency. Our method, 3D printing combined with hot pressing, is a cheap and industrially upscalable process. First a sandwich structure was created by layer-to-layer deposition of alternating 100 μm thick nanocarbon containing plastic layers and 100 μm thick pristine plastic layers, repeated as building blocks. The 3D printed samples were hot pressed to obtain thin films of 10-30 μm thickness. We used a commercial nanocarbon 3D printing filament (Black Magic). TEM investigations revealed the nanocarbon filler to be a mixture of graphene sheets, short carbon nanotubes, fishbone nanotubes, graphitic nanoparticles, and carbon black. Small-angle X-ray scattering and X-ray diffraction studies showed some amorphization of the nanocarbon filler as a consequence of the hot pressing. The nanoindentation hardness, nanoscratch hardness, and Young's modulus increase gradually by increasing the number of layers in the films, due to an increase of the amount of nanocarbon filler. Microwave absorption also increases continuously with the number of nanocarbon layers, reaching 40% for 3 nanocarbon layers. We demonstrate that unlike most conventional composites loaded with nanocarbons having pronounced dielectric properties, when the real part of permittivity Re(ɛ) is much higher than its imaginary part Im(ɛ) at high frequencies, a combination of 3D printing and hot pressing allows the fabrication of composites with Re ɛ ≈ Im ɛ in a very broad frequency range (0.2-0.6 THz). Our new 3D printed—hot pressed thin films may compete with the CVD graphene sandwiches in electromagnetic shielding applications because of their easier processability and low cost.

  15. Applying airborne electromagnetics in 3D stochastic geohydrological modelling for determining groundwater protection

    Gunnink, J.L.; Siemon, B.


    Airborne electromagnetic (AEM) measurements provide information regarding the electrical properties of the subsurface for large spatial coverage in a limited time. In mapping and modelling for geological and geohydrological purposes, electrical properties (e.g. resistivity) need to be converted to r

  16. New aspects of whistler waves driven by an electron beam studied by a 3-D electromagnetic code

    Nishikawa, Ken-Ichi; Buneman, Oscar; Neubert, Torsten


    We have restudied electron beam driven whistler waves with a 3-D electromagnetic particle code. The simulation results show electromagnetic whistler wave emissions and electrostatic beam modes like those observed in the Spacelab 2 electron beam experiment. It has been suggested in the past that the spatial bunching of beam electrons associated with the beam mode may directly generate whistler waves. However, the simulation results indicate several inconsistencies with this picture: (1) whistler waves continue to be generated even after the beam mode space charge modulation looses its coherence, (2) the parallel (to the background magnetic field) wavelength of the whistler wave is longer than that of the beam instability, and (3) the parallel phase velocity of the whistler wave is smaller than that of the beam mode. The complex structure of the whistler waves in the vicinity of the beam suggest that the transverse motion (gyration) of the beam and background electrons is also involved in the generation of whistler waves.

  17. 3D joint inversion using seismic data and marine controlled-source electromagnetic data for evaluating gas hydrate concentrations

    Kim, B.; Byun, J.; Seol, S. J.; Jeong, S.; Chung, Y.; Kwon, T.


    For many decades, gas hydrates have been received great attention as a potential source of natural gas. Therefore, the detailed information of structures of buried gas hydrates and their concentrations are prerequisite for the production for the gas hydrate as a reliable source of alternate energy. Recently, for this reason, a lot of gas hydrate assessment methods have been proposed by many researchers. However, it is still necessary to establish as new method for the further improvement of the accuracy of the 3D gas hydrate distribution. In this study, we present a 3D joint inversion method that provides superior quantitative information of gas hydrate distributions using 3D seismic data obtained by ocean-bottom cable (OBC) and marine controlled-source electromagnetic (CSEM) data. To verify our inversion method, we first built the general 3D gas hydrate model containing vertical methane-flow pathways. With the described model, we generated synthetic 3D OBC data and marine CSEM data using finite element modeling algorithms, respectively. In the joint inversion process, to obtain the high-resolution volumetric P-wave velocity structure, we applied the 3D full waveform inversion algorithm to the acquired OBC data. After that, the obtained P-wave velocity model is used as the structure constraint to compute cross-gradients with the updated resistivity model in the EM inversion process. Finally, petrophysical relations were applied to estimate volumetric gas hydrate concentrations. The proposed joint inversion process makes possible to obtain more precise quantitative gas hydrate assessment than inversion processes using only seismic or EM data. This technique can be helpful for accurate decision-making in gas hydrate development as well as in their production monitoring.

  18. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Slough, John [MSNW LLC, Redmond, WA (United States)


    modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the

  19. Electromagnetic induction in non-uniform domains

    Giesecke, A; Luddens, F; Stefani, F; Gerbeth, G; Léorat, J; Guermond, J -L


    Kinematic simulations of the induction equation are carried out for different setups suitable for the von-K\\'arm\\'an-Sodium (VKS) dynamo experiment. Material properties of the flow driving impellers are considered by means of high conducting and high permeability disks that are present in a cylindrical volume filled with a conducting fluid. Two entirely different numerical codes are mutually validated by showing quantitative agreement on Ohmic decay and kinematic dynamo problems using various configurations and physical parameters. Field geometry and growth rates are strongly modified by the material properties of the disks even if the high permeability/high conductivity material is localized within a quite thin region. In contrast the influence of external boundary conditions remains small. Utilizing a VKS like mean fluid flow and high permeability disks yields a reduction of the critical magnetic Reynolds number for the onset of dynamo action of the simplest non-axisymmetric field mode. However this decreas...

  20. Electromagnetic induction studies. [of earth lithosphere and asthenosphere

    Hermance, J. F.


    Recent developments in electromagnetic induction studies of the lithosphere and the asthenosphere are reviewed. Attention is given to geoelectrical studies of active tectonic areas in terms of the major zones of crustal extension, the basin and range province along western regions of North America, and the Rio Grande rift. Studies have also been performed of tectonic activity around Iceland, the Salton Trough and Cerro Prieto, and the subduction zones of the Cascade Mountains volcanic belt, where magnetotelluric and geomagnetic variation studies have been done. Geomagnetic variations experiments have been reported in the Central Appalachians, and submarine electromagnetic studies along the Juan de Fuca ridge. Controlled source electromagnetic and dc resistivity investigations have been carried out in Nevada, Hawaii, and in the Adirondacks Mountains. Laboratory examinations on the conductivity of representative materials over a broad range of temperature, pressure, and chemistry are described.

  1. Subsurface Electromagnetic Induction Imaging for Unexploded Ordnance Detection


    Subsurface imaging Gauss –Newton method Detection and classification of unexploded ordnance based on electromagnetic induction have made tremen- dous progress...variables instead of βξmakes the problem nonlinear, one that has to be solved iteratively. We use a Gauss –Newton method (Press et al., 1992) for the...7 results after ten iterations. As we state at the be- ginning of Section 2, the procedure produces three images, one along each canonical direction

  2. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping


    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  3. Electromagnetic and absorbing property of CIPs/resin composite using the 3D forming process

    Xu, Yonggang; Liang, Zichang; Wang, Xiaobing; Yuan, Liming; Li, Xinghao


    The absorbing composite filled with the flaky carbonyl iron particles (CIPs) were prepared using a three-dimensional (3D) forming process, in which the forming powder was fabricated using a milling process. The surface morphology was characterized by the scanning electron microscopy, the static magnetic property was evaluated on a vibrating sample magnetometer, and X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 4-18 GHz. With the variable thickness was set, the reflection loss (RL) was simulated to analyze the absorbing property of the composite. The results showed that the forming powder was uniformly dispersed in the absorber, and the saturation magnetization and the grain structure of the CIPs in the forming powder nearly did not change in the milling process. With the same volume content CIPs added, the average permittivity and the imaginary permeability of the samples added the powder was smaller than the directly mixing sample due to the aggregation effect. The RL results showed that the absorbing composites using the 3D forming process with thickness 6 or 8 mm had an better absorbing property (minimum RL -13.58 and -21.85 dB) in 4-18 GHz.

  4. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Slough, John [MSNW LLC, Redmond, WA (United States)


    modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the

  5. Instability of induction cooker (electromagnetic stove) antigen retrieval in immunohistochemistry.

    Ding, Wei; Zheng, Xiang-Yi


    An induction cooker is a modern electric cooker that takes electromagnetic induction principle to heat. As it has high efficiency, no open flame, and is safe and convenient, more and more laboratories use it as an antigen retrieval heating tool in immunohistochemistry. We found that there was still some instability with the induction cooker, because with certain antigens the power change influenced the results of immunohistochemistry staining, showing weaker staining intensity or decreased number of positive cells, but which were not entirely negative. For some antigens, it had no influence on results. The instability of this heating tool for antigen retrieval was caused partly by negligent operators, and which may influence the experimental results and the pathologic diagnosis.

  6. Fabrication of imitative cracks by 3D printing for electromagnetic nondestructive testing and evaluations

    Noritaka Yusa


    Full Text Available This study demonstrates that 3D printing technology offers a simple, easy, and cost-effective method to fabricate artificial flaws simulating real cracks from the viewpoint of eddy current testing. The method does not attempt to produce a flaw whose morphology mirrors that of a real crack but instead produces a relatively simple artificial flaw. The parameters of this flaw that have dominant effects on eddy current signals can be quantitatively controlled. Three artificial flaws in type 316L austenitic stainless steel plates were fabricated using a powderbed-based laser metal additive manufacturing machine. The three artificial flaws were designed to have the same length, depth, and opening but different branching and electrical contacts between flaw surfaces. The flaws were measured by eddy current testing using an absolute type pancake probe. The signals due to the three flaws clearly differed from each other although the flaws had the same length and depth. These results were supported by subsequent destructive tests and finite element analyses.

  7. The Study on the Shape of 2-D Stator with Electromagnets and Permanent Magnets for 3-D Superconducting Actuator

    Ozasa, S.; Kim, S. B.; Nakano, H.; Sawae, M.; Kobayashi, H.

    The electric device applications of a high temperature superconducting (HTS) bulk magnet having stable levitation and suspension properties due to their strong flux pinning force have been proposed and developed. We have been investigating the three-dimensional (3-D) superconducting actuator using HTS bulk to develop a non-contact transportation device. Probably, the cost of the manufactory will be increased to install the 2-D arranged electromagnets (EM) in a large area because many EMs are needed to cover the area. Therefore, we have been trying to find the method for reducing the number of EMs. In this study, all the EMs except for rotation were replaced in the 2-D arranged permanent magnets (PM), and gap length between PMs were experimentally investigated to improve the dynamic behavior of the mover and to reduce the cost of the manufacturing. As a result, we have succeeded in conveyance of the bulk and reduce the convergence time and maximum overshoot.

  8. 3D transient electromagnetic simulation using a modified correspondence principle for wave and diffusion fields

    Hu, Y.; Ji, Y.; Egbert, G. D.


    The fictitious time domain method (FTD), based on the correspondence principle for wave and diffusion fields, has been developed and used over the past few years primarily for marine electromagnetic (EM) modeling. Here we present results of our efforts to apply the FTD approach to land and airborne TEM problems which can reduce the computer time several orders of magnitude and preserve high accuracy. In contrast to the marine case, where sources are in the conductive sea water, we must model the EM fields in the air; to allow for topography air layers must be explicitly included in the computational domain. Furthermore, because sources for most TEM applications generally must be modeled as finite loops, it is useful to solve directly for the impulse response appropriate to the problem geometry, instead of the point-source Green functions typically used for marine problems. Our approach can be summarized as follows: (1) The EM diffusion equation is transformed to a fictitious wave equation. (2) The FTD wave equation is solved with an explicit finite difference time-stepping scheme, with CPML (Convolutional PML) boundary conditions for the whole computational domain including the air and earth , with FTD domain source corresponding to the actual transmitter geometry. Resistivity of the air layers is kept as low as possible, to compromise between efficiency (longer fictitious time step) and accuracy. We have generally found a host/air resistivity contrast of 10-3 is sufficient. (3)A "Modified" Fourier Transform (MFT) allow us recover system's impulse response from the fictitious time domain to the diffusion (frequency) domain. (4) The result is multiplied by the Fourier transformation (FT) of the real source current avoiding time consuming convolutions in the time domain. (5) The inverse FT is employed to get the final full waveform and full time response of the system in the time domain. In general, this method can be used to efficiently solve most time-domain EM

  9. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar


    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation. PMID:28240314

  10. Autaptic regulation of electrical activities in neuron under electromagnetic induction

    Xu, Ying; Ying, Heping; Jia, Ya; Ma, Jun; Hayat, Tasawar


    Realistic neurons may hold complex anatomical structure, for example, autapse connection to some internuncial neurons, which this specific synapse can connect to its body via a close loop. Continuous exchanges of charged ions across the membrane can induce complex distribution fluctuation of intracellular and extracellular charged ions of cell, and a time-varying electromagnetic field is set to modulate the membrane potential of neuron. In this paper, an autapse-modulated neuron model is presented and the effect of electromagnetic induction is considered by using magnetic flux. Bifurcation analysis and sampled time series for membrane potentials are calculated to investigate the mode transition in electrical activities and the biological function of autapse connection is discussed. Furthermore, the Gaussian white noise and electromagnetic radiation are considered on the improved neuron model, it is found appropriate setting and selection for feedback gain and time delay in autapse can suppress the bursting in neuronal behaviors. It indicates the formation of autapse can enhance the self-adaption of neuron so that appropriate response to external forcing can be selected, this biological function is helpful for encoding and signal propagation of neurons. It can be useful for investigation about collective behaviors in neuronal networks exposed to electromagnetic radiation.


    Séraphin M. Mefire


    A numerical method combining the approaches of C.I. Goldstein and L.-A. Ying is used for the simulation in three-dimensional magnetostatics related to an exterior problem in magnetic induction. Recently introduced, this method is based on the use of a graded mesh obtained by gluing homothetic layers in the exterior domain and has been performed in the case of edge element discretizations. In this work, the theoretical and practical aspects of the method are inspected in the case of face element and volume element discretizations,for computing a magnetic induction. Error estimates, implementations, and numerical results are provided.

  12. An approximate 3D computational method for real-time computation of induction logging responses

    Bensdorp, S.; Petersen, S.A.; Van den Berg, P.M.; Fokkema, J.T.


    Over many years, induction logging systems have been used to create well formation logs. The major drawback for the utilization of these tools is the long simulation time for a single forward computation. We proposed an efficient computational method based on a contrast-type of integral-equation for

  13. Modeling induction heating and 3-D heat transfer for growth of rectangular crystals using FIDAP

    Atherton, L. J.; Martin, R. W.


    We are developing a process to grow large rectangular crystals for use as solid state lasers by a Bridgman-like method. The process is based on induction heating of two graphite susceptors which transfer energy to an ampoule containing the melt and crystal. The induction heating version of FIDAP developed by Gresho and Derby is applied to this system to determine the power deposition profile in electrically conducting regions. The calculated power is subsequently used as a source term in the heat equation to calculate the temperature profile. Results are presented which examine the sensitivity of the system to electrical and thermal conductivities, and design modifications are illustrated which could improve the temperature field for crystal growth applications.


    Irwin Yousept


    Full Text Available An optimal control problem arising in the context of 3D electromagnetic induction heating is investigated. The state equation is given by a quasilinear stationary heat equation coupled with a semilinear time harmonic eddy current equation. The temperature-dependent electrical conductivity and the presence of pointwise inequality state-constraints represent the main challenge of the paper. In the first part of the paper, the existence and regularity of the state are addressed. The second part of the paper deals with the analysis of the corresponding linearized equation. Some suffcient conditions are presented which guarantee thesolvability of the linearized system. The final part of the paper is concerned with the optimal control. The aim of the optimization is to find the optimal voltage such that a desired temperature can be achieved optimally. The corresponding first-order necessary optimality condition is presented.

  15. Comparison of 3D Adaptive Remeshing Strategies for Finite Element Simulations of Electromagnetic Heating of Gold Nanoparticles

    Fadhil Mezghani


    Full Text Available The optical properties of metallic nanoparticles are well known, but the study of their thermal behavior is in its infancy. However the local heating of surrounding medium, induced by illuminated nanostructures, opens the way to new sensors and devices. Consequently the accurate calculation of the electromagnetically induced heating of nanostructures is of interest. The proposed multiphysics problem cannot be directly solved with the classical refinement method of Comsol Multiphysics and a 3D adaptive remeshing process based on an a posteriori error estimator is used. In this paper the efficiency of three remeshing strategies for solving the multiphysics problem is compared. The first strategy uses independent remeshing for each physical quantity to reach a given accuracy. The second strategy only controls the accuracy on temperature. The third strategy uses a linear combination of the two normalized targets (the electric field intensity and the temperature. The analysis of the performance of each strategy is based on the convergence of the remeshing process in terms of number of elements. The efficiency of each strategy is also characterized by the number of computation iterations, the number of elements, the CPU time, and the RAM required to achieve a given target accuracy.

  16. Jordan-Schwinger map, 3D harmonic oscillator constants of motion, and classical and quantum parameters characterizing electromagnetic wave polarization

    Mota, R D [Unidad Profesional Interdisciplinaria de IngenierIa y TecnologIas Avanzadas, IPN. Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, 07340 Mexico DF (Mexico); Xicotencatl, M A [Departamento de Matematicas del Centro de Investigacion y Estudios Avanzados del IPN, Mexico DF, 07000 (Mexico); Granados, V D [Escuela Superior de FIsica y Matematicas, Instituto Politecnico Nacional, Ed. 9, Unidad Profesional Adolfo Lopez Mateos, 07738 Mexico DF (Mexico)


    In this work we introduce a generalization of the Jauch and Rohrlich quantum Stokes operators when the arrival direction from the source is unknown a priori. We define the generalized Stokes operators as the Jordan-Schwinger map of a triplet of harmonic oscillators with the Gell-Mann and Ne'eman matrices of the SU(3) symmetry group. We show that the elements of the Jordan-Schwinger map are the constants of motion of the three-dimensional isotropic harmonic oscillator. Also, we show that the generalized Stokes operators together with the Gell-Mann and Ne'eman matrices may be used to expand the polarization matrix. By taking the expectation value of the Stokes operators in a three-mode coherent state of the electromagnetic field, we obtain the corresponding generalized classical Stokes parameters. Finally, by means of the constants of motion of the classical 3D isotropic harmonic oscillator we describe the geometrical properties of the polarization ellipse.

  17. The Search for Electromagnetic Induction (1820-1831). Experiment No. 20.

    Devons, Samuel

    This paper focuses on the search for electromagnetic induction from 1820 to 1831 and the efforts by Augustin Fresnel's colleague, Andre Marie Ampere, in electric and magnetic induction. Faraday's work is discussed with excerpts from his diary on electromagnetism. A variety of different experiments by researchers including Francoise Jean Arago,…

  18. Ballistocardiogram of avian eggs determined by an electromagnetic induction coil.

    Ono, H; Akiyama, R; Sakamoto, Y; Pearson, J T; Tazawa, H


    As an avian embryo grows within an eggshell, the whole egg is moved by embryonic activity and also by the embryonic heartbeat. A technical interest in detecting minute biological movements has prompted the development of techniques and systems to measure the cardiogenic ballistic movement of the egg or ballistocardiogram (BCG). In this context, there is interest in using an electromagnetic induction coil (solenoid) as another simple sensor to measure the BCG and examining its possibility for BCG measurement. A small permanent magnet is attached tightly to the surface of an incubated egg, and then the egg with the magnet is placed in a solenoid. Preliminary model analysis is made to design a setup of the egg, magnet and solenoid coupling system. Then, simultaneous measurement with a laser displacement measuring system, developed previously, is made for chicken eggs, indicating that the solenoid detects the minute cardiogenic ballistic movements and that the BCG determined is a measure of the velocity of egg movements.

  19. Electromagnetic induction by ferrofluid in an oscillating heat pipe

    Monroe, J. G.; Vasquez, E. S.; Aspin, Z. S.; Walters, K. B.; Berg, M. J.; Thompson, S. M.


    Thermal-to-electrical energy conversion was demonstrated using an oscillating heat pipe (OHP) filled with ferrofluid and equipped with an annular-type solenoid. The OHP was subjected to a 100 °C axial temperature difference allowing the ferrofluid to passively oscillate through the solenoid, thus accomplishing electromagnetic induction. The measured solenoid voltage consisted of aperiodic pulses with dominant frequencies between 2 and 5 Hz and peak-to-peak amplitudes approaching 1 mV. Despite exposure to the thermal and phase change cycling within the OHP, nanoparticle morphologies and magnetic properties of the ferrofluid remained intact. This energy harvesting method allows for combined thermal management and in-situ power generation.

  20. Design of a small Annular Linear Induction Electromagnetic Pump - Simulation and Experiment

    Yong-Lin, Ma; Yan-Jiang, Chen; Tao, Jiang; Shu-Qing, Xing


    International audience; An annular linear induction electromagnetic pump (ALIP) is used for pumping liquid tin alloy with a flow rate and developed pressure of 17l /min and 0.5bar respectively. The electromagnetic force, flux density and inducted current density are calculated using a by finite element method (FEM) the various design variables. The performance of ALIP is tested with liquid tin for various melting point temperatures. Results show that pressure increases as electromagnetic forc...

  1. An electromagnetic induction method for underground target detection and characterization

    Bartel, L.C.; Cress, D.H.


    An improved capability for subsurface structure detection is needed to support military and nonproliferation requirements for inspection and for surveillance of activities of threatening nations. As part of the DOE/NN-20 program to apply geophysical methods to detect and characterize underground facilities, Sandia National Laboratories (SNL) initiated an electromagnetic induction (EMI) project to evaluate low frequency electromagnetic (EM) techniques for subsurface structure detection. Low frequency, in this case, extended from kilohertz to hundreds of kilohertz. An EMI survey procedure had already been developed for borehole imaging of coal seams and had successfully been applied in a surface mode to detect a drug smuggling tunnel. The SNL project has focused on building upon the success of that procedure and applying it to surface and low altitude airborne platforms. Part of SNL`s work has focused on improving that technology through improved hardware and data processing. The improved hardware development has been performed utilizing Laboratory Directed Research and Development (LDRD) funding. In addition, SNL`s effort focused on: (1) improvements in modeling of the basic geophysics of the illuminating electromagnetic field and its coupling to the underground target (partially funded using LDRD funds) and (2) development of techniques for phase-based and multi-frequency processing and spatial processing to support subsurface target detection and characterization. The products of this project are: (1) an evaluation of an improved EM gradiometer, (2) an improved gradiometer concept for possible future development, (3) an improved modeling capability, (4) demonstration of an EM wave migration method for target recognition, and a demonstration that the technology is capable of detecting targets to depths exceeding 25 meters.

  2. 基于Maxwell 3D瞬变电磁法三维正演研究%Research about 3D Forward Modeling of Transient Electromagnetic Method Based on Maxwell 3D

    蒋大青; 付志红; 侯兴哲; 张淮清


    瞬变电磁法(TEM)是一种时间域电磁法,在地球物理勘探领域得到广泛应用.目前三维反演的快速性与精确度均存在着很多问题,这就需要三维正演分析提供支持,但是应用于瞬变电磁法的专业三维正演软件非常缺乏.基于此,本文创新性地将Ansoft Maxwell 3D引入瞬变电磁法地质探测的正演分析中,建立了均匀半空间瞬变电磁正演模型,与传统的电磁模型分析软件EMMA进行对比,证实了Maxwell用于瞬变电磁法正演的可行性与有效性;同时,还构建了低阻三维地质异常体的Maxwell正演模型.仿真结果可以很好地反映地下异常体的存在,证明Ansoft Maxwell 3D能很好的应用于TEM正演模型的构建与分析.%Transient electromagnetic method (TEM) is a very valuable way in the time domain electromagnetic methods which is used widely in geophysical electromagnetic field. At present, there are many problems with speed and precision about 3D inversion, which needs 3D forward analysis providing support. Though, there is very little software based on 3D forward modeling in domestic used for TEM. This article model forward methods based on Ansoft Maxwell 3D, used in the TEM forward modeling analysis. Compared with the traditional electromagnetic model analysis software-EMMA, it is not only proved to be feasibility in even half space model ,but also to build a low resistance globe model, simulation analysis model, and the simulation results can well reflect the existence of the underground anomalyglobe. The research process proved that Ansoft Maxwell 3D can be a very good used in modeling and analyzing TEM forward method, contenting the guidance demand of inversion method.

  3. The role of 3-D geomagnetic induction in the determination of the ionospheric currents from the ground geomagnetic data

    A. Pulkkinen


    Full Text Available The geomagnetic field variations measured at the surface of the Earth are composed of both internal and external parts. The external field arises from the sources in the magnetosphere and ionosphere, whereas the internal field is generated by the currents induced within the Earth. The internal part may in some situations comprise a notable part of the measured total field and thus a blind usage of geomagnetic field recordings potentially produces significant errors to estimated ionospheric currents. In this paper the role of geomagnetic induction in auroral ionospheric studies is investigated by modeling the induction using simultaneously the realistic ionospheric source and a realistic three-dimensional Earth conductivity structure.

    The modeling results imply that the effects of the lateral ground conductivity anomalies on ionospheric equivalent current patterns are, though clearly detected, less severe than anticipated for fields varying with periods from 5 to 120min. However, the amplification of the determined currents caused by induction is significant, leading to an overestimation of up to 30% of the main current flow intensities, with the overestimation increasing sharply when moving away from the region of the main flow.

    In addition to the 3-D modeling, a simple method is introduced to help estimate the internal contribution to the measured variations of the IL index (local variant of the AL index. A test with the 26 June 1998 substorm event indicates that the method can help to extract the internal contribution from the IL index.

  4. Characterizing subsurface textural properties using electromagnetic induction mapping and geostatistics

    Abdu, Hiruy

    Knowledge of the spatial distribution of soil textural properties at the watershed scale is important for understanding spatial patterns of water movement, and in determining soil moisture storage and soil hydraulic transport properties. Capturing the heterogeneous nature of the subsurface without exhaustive and costly sampling presents a significant challenge. Soil scientists and geologists have adapted geophysical methods that measure a surrogate property related to the vital underlying process. Apparent electrical conductivity (ECa) is such a proxy, providing a measure of charge mobility due to application of an electric field, and is highly correlated to the electrical conductivity of the soil solution, clay percentage, and water content. Electromagnetic induction (EMI) provides the possibility of obtaining high resolution images of ECa across a landscape to identify subtle changes in subsurface properties. The aim of this study was to better characterize subsurface textural properties using EMI mapping and geostatistical analysis techniques. The effect of variable temperature environments on EMI instrumental response, and EC a -- depth relationship were first determined. Then a procedure of repeated EMI mapping at varying soil water content was developed and integrated with temporal stability analysis to capture the time invariant properties of spatial soil texture on an agricultural field. In addition, an EMI imaging approach of densely sampling the subsurface of the Reynolds Mountain East watershed was presented using kriging to interpolate, and Sequential Gaussian Simulation to estimate the uncertainty in the maps. Due to the relative time-invariant characteristics of textural properties, it was possible to correlate clay samples collected over three seasons to ECa data of one mapping event. Kriging methods [ordinary kriging (OK), cokriging (CK), and regression kriging (RK)] were then used to integrate various levels of information (clay percentage, ECa

  5. Progressing from 1D to 2-3D near surface airborne electromagnetic mapping: Development of MAiSIE, a Multi-Sensor, Airborne Sea Ice Explorer

    Pfaffhuber, Andreas; Hendricks, Stefan; Kvistedal, Yme


    The polar oceans’ sea ice cover is an unconventional and challenging geophysical target to map. Current state of ractice helicopter-electromagnetic (HEM) ice thickness apping is limited to 1D interpretation due to common rocedures and systems that are mainly sensitive to layered tructures. We present a new generation Multi-sensor, irborne Sea Ice Explorer (MAiSIE) to overcome these imitations. As the actual sea ice structure is 3D and in parts heterogeneous, errors up to 50% are observe...

  6. The Use of Electromagnetic Induction Techniques for Soil Mapping

    Brevik, Eric C.; Doolittle, Jim


    Soils have high natural spatial variability. This has been recognized for a long time, and many methods of mapping that spatial variability have been investigated. One technique that has received considerable attention over the last ~30 years is electromagnetic induction (EMI). Particularly when coupled with modern GPS and GIS systems, EMI techniques have allowed the rapid and relatively inexpensive collection of large spatially-related data sets that can be correlated to soil properties that either directly or indirectly influence electrical conductance in the soil. Soil electrical conductivity is directly controlled by soil water content, soluble salt content, clay content and mineralogy, and temperature. A wide range of indirect controls have been identified, such as soil organic matter content and bulk density; both influence water relationships in the soil. EMI techniques work best in areas where there are large changes in one soil property that influences soil electrical conductance, and don't work as well when soil properties that influence electrical conductance are largely homogenous. This presentation will present examples of situations where EMI techniques were successful as well as a couple of examples of situations where EMI was not so useful in mapping the spatial variability of soil properties. Reasons for both the successes and failures will be discussed.

  7. Review of electromagnetic induction for mapping barrier island framework geology

    Weymer, Bradley A.; Everett, Mark E.; de Smet, Timothy S.; Houser, Chris


    The geologic framework controls on modern barrier island transgression and the relationship of these controls to subsurface structure, hydrology and island geomorphology are not well understood. Recent evidence suggests that alongshore variations in pre-Holocene geology of barrier islands modify nearshore hydrodynamic processes and sediment transport, ultimately affecting how barrier islands will respond to relative sea-level rise. Explorations of Holocene barrier island geology are usually based on cores to supplement bathymetric, onshore/offshore seismic and/or ground-penetrating radar (GPR) surveys. The advantages and limitations of these methods with respect to barrier island investigations are briefly described in this review. Alternative near-surface geophysical methods including electromagnetic induction (EMI) sensors are increasingly being used for coastal research because they are non-invasive, provide continuous subsurface information across a variety of sub-environments, and are capable of characterizing large areas in a short time. Although these EMI sensors have shown promise in coastal applications, a number of issues primarily related to subsurface hydrology need to be addressed to fully assess the limitations of this technique. This paper reviews the theory, methodology and applications of EMI in support of geologic framework studies with particular reference to barrier islands. Resolution of these issues will allow EMI sensors to complement and offer significant advantages over traditional methods in support of an improved understanding of large-scale barrier island evolution.

  8. Joseph Henry’s role in the discovery of electromagnetic induction

    Smith, Glenn S.


    The discovery of electromagnetic induction in the early part of the 19th century is one of the greatest scientific achievements of all time, and it has had tremendous technological consequences. The credit for this discovery rightfully goes to the great English experimental physicist Michael Faraday. However, the American physicist Joseph Henry made some observations comparable to Faraday’s at nearly the same time, and for that reason, Faraday and Henry are often considered to be co-discoverers of some aspects of electromagnetic induction. We examine Henry’s early research on electromagnetism, starting from his efforts to improve the electromagnet, which led directly to his investigations of induction. We describe his earliest experiments on both mutual and self-induction, and pay particular attention to the relationship of Henry’s research to that of Faraday. The approach is one in which the experiments are described and then analysed using modern theory and terminology.

  9. An analytic electromagnetic calculation method for performance evolution of doubly fed induction generators for wind turbines

    Zhang, Wen-juan; Huang, Shou-dao; Chen, Zhe


    An analytic electromagnetic calculation method for doubly fed induction generator (DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The ele......An analytic electromagnetic calculation method for doubly fed induction generator (DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed....... The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure...

  10. An approach of inertia compensation based on electromagnetic induction in brake test

    Xiaowen Li


    Full Text Available This paper briefly introduced the operational principle of the brake test bench, and points out the shortcomings when controlling the current of brake test, which means the reference measuring data is instantaneous. Aimed at this deficiency, a current control model based on electromagnetic induction and DC voltage is proposed. On the principle of electromagnetic induction, continuous data and automatic processes are realized. It significantly minimized errors owing to instantaneous data, and maximized the accuracy of the brake test.

  11. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng


    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the

  12. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering.

    Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M


    Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production.

  13. Development of a 3D Electromagnetic Model for Eddy Current Tubing Inspection: Application to Steam Generator Tubing

    Pichenot, G.; Prémel, D.; Sollier, T.; Maillot, V.


    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws.

  14. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

    Manuwong, Theerapatt; Zhang, Wei; Kazinczi, Peter Lobo; Bodey, Andrew J.; Rau, Christoph; Mi, Jiawei


    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

  15. Analysis of Winske-Daughton 3D Electromagnetic Particle Simulation of Ion Ring Generated Lower Hybrid Turbulence

    Rudakov, Leonid; Mithaiwala, Manish; Ganguli, Gurudas


    Using electromagnetic particle-in-cell simulations Winske and Daughton [Phys Plasmas, 19, 072109, 2012] have recently demonstrated that the nonlinear evolution of a wave turbulence initiated by cold ion ring beam is vastly different in three dimensions than in two dimensions. We further analyze the Winske-Daughton three dimensional simulation data and show that the nonlinear induced scattering by thermal plasma particles is crucial for understanding the evolution of lower hybrid/whistler wave turbulence as described in the simulation.

  16. Electromagnetic Induction E-Sensor for Underwater UXO Detection


    junction is over-molded with a waterproof , rubberized epoxy; visible above in Figure 4. The size of this over-molded junction meant that two electrodes...Unexploded Ordnance (UXO) objects in seawater. The system was based around an existing Time Domain Electromagnetic (TDEM) sensor, in which a pulsed...Dimensional model, Time-domain electromagnetic measurement, Acknowledgements This material is based upon work supported by SERDP through the

  17. Massive parallelization of a 3D finite difference electromagnetic forward solution using domain decomposition methods on multiple CUDA enabled GPUs

    Schultz, A.


    3D forward solvers lie at the core of inverse formulations used to image the variation of electrical conductivity within the Earth's interior. This property is associated with variations in temperature, composition, phase, presence of volatiles, and in specific settings, the presence of groundwater, geothermal resources, oil/gas or minerals. The high cost of 3D solutions has been a stumbling block to wider adoption of 3D methods. Parallel algorithms for modeling frequency domain 3D EM problems have not achieved wide scale adoption, with emphasis on fairly coarse grained parallelism using MPI and similar approaches. The communications bandwidth as well as the latency required to send and receive network communication packets is a limiting factor in implementing fine grained parallel strategies, inhibiting wide adoption of these algorithms. Leading Graphics Processor Unit (GPU) companies now produce GPUs with hundreds of GPU processor cores per die. The footprint, in silicon, of the GPU's restricted instruction set is much smaller than the general purpose instruction set required of a CPU. Consequently, the density of processor cores on a GPU can be much greater than on a CPU. GPUs also have local memory, registers and high speed communication with host CPUs, usually through PCIe type interconnects. The extremely low cost and high computational power of GPUs provides the EM geophysics community with an opportunity to achieve fine grained (i.e. massive) parallelization of codes on low cost hardware. The current generation of GPUs (e.g. NVidia Fermi) provides 3 billion transistors per chip die, with nearly 500 processor cores and up to 6 GB of fast (DDR5) GPU memory. This latest generation of GPU supports fast hardware double precision (64 bit) floating point operations of the type required for frequency domain EM forward solutions. Each Fermi GPU board can sustain nearly 1 TFLOP in double precision, and multiple boards can be installed in the host computer system. We

  18. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.


    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  19. Every Day a New 3D Printing Material

    Hughes, Bill; Mona, Lynn; Wilson, Greg; Seamans, Jeff; McAninch, Steve; Stout, Heath


    A handful of technological episodes: fire, wheel and axle, Industrial Revolution, Faraday's discovery of electromagnetic induction, the transistor, and the digital age, have historically altered humanity. We are now witnessing/participating in the next transformational technology: 3D printing. Although dating back nearly 30 years, the technology…

  20. Constructal complex-objective optimization of electromagnets based on maximization of magnetic induction and minimization of entransy dissipation rate

    Lingen Chen, Shuhuan Wei, Zhihui Xie, Fengrui Sun


    Full Text Available An electromagnet requests high magnetic induction and low temperature. Based on constructal theory and entransy theory, a new complex-objective function of magnetic induction and mean temperature difference to describe performance of electromagnet is provided, and the electromagnet has been optimized using the new complex-objective function. When the performance of electromagnet achieves its best, the solenoid becomes longer and thinner as the number of the high thermal conductivity cooling discs increases. Simultaneously, the magnetic induction becomes higher and the mean temperature difference becomes lower. The optimized performance of electromagnet is also improved as the volume of solenoid increases. Simultaneously, as the volume of the electromagnet increases, the magnetic induction increases to its maximum and then decreases, but the mean temperature decreases all along.

  1. Appraisal of electromagnetic induction effects on magnetic pulsation studies

    B. R. Arora

    Full Text Available The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and phase changes that these perturbations produce, in the resultant fields at the Earth’s surface, make determination of polarization and phase of the oscillating external signals problematic. In this paper, with the help of a classical Pc5 magnetic pulsation event of 24 March 1991, recorded by dense network of magnetometers in the equatorial belt of Brazil, we document the nature and extent of the possible influence of anomalous induction effects in the wave polarization of ULF waves. The presence of anomalous induction effects at selected sites lead to an over estimation of the equatorial enhancement at pulsation period and also suggest changes in the azimuth of ULF waves as they propagate through the equatorial electrojet. Through numerical calculations, it is shown that anomalous horizontal fields, that result from induction in the lateral conductivity distribution in the study region, vary in magnitude and phase with the polarization of external source field. Essentially, the induction response is also a function of the period of external inducing source field. It is further shown that when anomalous induction fields corresponding to the magnitude and polarization of the 24 March 1991 pulsation event are eliminated from observed fields, corrected amplitude in the X and Y horizontal components allows for true characterisation of ULF wave parameters.

    Key words. Geomagnetism and paleomagnetism (geomagnetic induction – Ionosphere (equatorial ionosphere – Magnetospheric physics (magnetosphere-ionosphere interactions

  2. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    Deans, Cameron; Hussain, Sarah; Renzoni, Ferruccio


    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  3. Chapter 9.5: Electromagnetic induction to manage cattle feedlot waste

    This book chapter summarizes results of waste management research that utilized electromagnetic induction (EMI) tools for the purposes of: 1) collection of solid waste from feedlot surfaces to be utilized by crops 2) control and utilization of nutrient laden liquid runoff, and 3) feedlot surface man...

  4. Electromagnetic Induction Sensor Data to Identify Areas of Manure Accumulation on a Feedlot Surface

    A study was initiated to test the validity of using electromagnetic induction (EMI) survey data, a prediction-based sampling strategy and ordinary linear regression modeling to predict spatially variable feedlot surface manure accumulation. A 30 m × 60 m feedlot pen with a central mound was selecte...

  5. A Datalogger Demonstration of Electromagnetic Induction with a Falling, Oscillating and Swinging Magnet

    Wong, Darren; Lee, Paul; Foong, See Kit


    We investigate the electromagnetic induction phenomenon for a "falling," "oscillating" and "swinging" magnet and a coil, with the help of a datalogger. For each situation, we discuss the salient aspects of the phenomenon, with the aid of diagrams, and relate the motion of the magnet to its mathematical and graphical representations. Using various…

  6. Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise

    Wu, Fuqiang; Wang, Chunni; Jin, Wuyin; Ma, Jun


    Complex electrical activities in neuron can induce time-varying electromagnetic field and the effect of various electromagnetic inductions should be considered in dealing with electrical activities of neuron. Based on an improved neuron model, the effect of electromagnetic induction is described by using magnetic flux, and the modulation of magnetic flux on membrane potential is realized by using memristor coupling. Furthermore, additive phase noise is imposed on the neuron to detect the dynamical response of neuron and phase transition in modes. The dynamical properties of electrical activities are detected and discussed, and double coherence resonance behavior is observed, respectively. Furthermore, multiple modes of electrical activities can be observed in the sampled time series for membrane potential of the neuron model.

  7. Electromagnetic, complex image model of a large area RF resonant antenna as inductive plasma source

    Guittienne, Ph; Jacquier, R.; Howling, A. A.; Furno, I.


    A large area antenna generates a plasma by both inductive and capacitive coupling; it is an electromagnetically coupled plasma source. In this work, experiments on a large area planar RF antenna source are interpreted in terms of a multi-conductor transmission line coupled to the plasma. This electromagnetic treatment includes mutual inductive coupling using the complex image method, and capacitive matrix coupling between all elements of the resonant network and the plasma. The model reproduces antenna input impedance measurements, with and without plasma, on a 1.2× 1.2 m2 antenna used for large area plasma processing. Analytic expressions are given, and results are obtained by computation of the matrix solution. This method could be used to design planar inductive sources in general, by applying the termination impedances appropriate to each antenna type.

  8. Improved treatments for evaluating horizontal magnetic components through the 3-D FDM in E-polarization induction problems



    To improve the accuracy of the numerical evaluation through the 3-D finite difference method, the surface boundary conditions are added to modify the old program. The author has tested the new program by making calculations for the model constructed by Wanamaker, et al (1984). The comparison between the numerical results obtained from this paper and those by Wannamaker, et al (1984) indicates that a pronounced improvement is realized in the evaluation of the horizontal magnetic components. Moreover, better calculations for the vertical magnetic components are also obtainable by using the new program.

  9. Research on Design of Plate-type Electromagnetic Coupler in Underwater Inductive Power Transmission

    Qu Li-yan


    Full Text Available Magnetic coupler has a good application in the field of underwater sensor. Magnetic coupler at work, interference by underwater complex situation, stability and efficiency of charging device of the gap is larger fluctuations. The traditional electromagnetic coupling is charging for the stability of the clearance to demand higher. Charging for underwater, as a result of the existence of ocean currents, electromagnetic coupling clearance may not remain very stable. When there is deviation gap, a larger electromagnetic coupling performance deviation. On this particular problem, it puts forward the design method of a new type of plate type electromagnetic coupling. First of all, the leakage inductance of the finite element method to calculate system and excitation inductance, establish electromagnetic coupler with compensation capacitor equivalent circuit, and the primary circuit and secondary circuit was designed. On the basis, the voltage gain and efficiency of the system are carrying on the theoretical derivation and calculation. The simulation experimental results show that the magnetic coupler has a stable voltage gain and charging efficiency, when the partial core within 10 mm, voltage gain remains steady at 5.8%, efficiency remain at around 90%.

  10. Electromagnetic interference with a bipolar pacemaker by an induction heating (IH) rice cooker.

    Nagatomo, Toshihisa; Abe, Haruhiko; Kohno, Ritsuko; Toyoshima, Takeshi; Fujimoto, Hiroshi; Kondo, Shoichi; Kabashima, Narutoshi; Takeuchi, Masaaki; Tamura, Masahito; Okazaki, Masahiro; Otsuji, Yutaka


    Electromagnetic fields may interfere with normal pacemaker function. Despite new device designs and bipolar leads, electromagnetic interference (EMI) remains a concern when pacemaker recipients are exposed to various household appliances. We report the observation of EMI by an induction heating (IH) rice cooker in a patient with sick sinus syndrome who was the recipient of a bipolar dual chamber-pacing system. Stored electrograms revealed episodes of inappropriate ventricular pacing, all coinciding with the opening of an IH rice cooker. Recipients of implantable medical devices must be warned to handle IH rice cookers with caution.

  11. Jovian Plasmas Torus Interaction with Europa. Plasma Wake Structure and Effect of Inductive Magnetic Field: 3D Hybrid Kinetic Simulation

    Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.


    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive

  12. Induction of Cell Activation Processes by Low Frequency Electromagnetic Fields

    Myrtill Simkó


    Full Text Available Electromagnetic fields (EMF such as those from electric power transmission and distribution lines (50/60 Hz have been associated with increased risk of childhood leukemia, cancer of the nervous system, and lymphomas. Several in vitro studies on EMF effects were performed to clarify the existing controversies, define the risks, and determine the possible mechanisms of adverse effects. In some of these reports, the effects were related to other mechanisms of carcinogenesis. Modification in cell proliferation was observed after EMF exposure and a few reports on cytotoxic effects have also been published. This limited review gives an overview of the current results of scientific research regarding in vitro studies on the effects of power line frequency EMF, but also cell biological mechanisms and their potential involvement in genotoxicity and cytotoxicity are discussed. Cell cycle control and signal transduction processes are included to elucidate the biochemical background of possible interactions. Exposure to EMF has been also linked to the incidence of leukemia and other tumors in some epidemiological studies and is considered as “possibly carcinogenic to humans”, but there is no well-established biological mechanism that explains such a relation. Furthermore, EMF is also shown as a stimulus for immune relevant cells (e.g., macrophages to release free radicals. It is known that chronic activation of macrophages is associated with the onset of phagocytosis and leads to increased formation of reactive oxygen species, which themselves may cause DNA damage and are suggested to lead to carcinogenesis. To demonstrate a possible interaction between EMF and cellular systems, we present a mechanistic model describing cell activation as a major importance for cellular response.


    C. O. MOLNAR


    Full Text Available The paper presents the numerical modeling ofelectromagnetic field within the induction hardening ofinner cylindrical surface. The numerical computation hasbeen done by means of finite element method in order tosolve the coupled electromagnetic and thermal fieldquestion. The obtained results provide informationregarding the heating process taking into account therelative movement between the inductor and workpiece,the over heating of thin layers, the geometricalconfiguration of the inductor as well the technologicalrequirements correlated with electrical parameters andrepresents an active tool to setup the induction heatingequipment in order to get best results during hardeningprocess .

  14. Assessment of diesel contamination in groundwater using electromagnetic induction geophysical techniques.

    Jin, Song; Fallgren, Paul; Cooper, Jeffrey; Morris, Jeffrey; Urynowicz, Michael


    Determining hydrocarbon plumes in groundwater is typically accomplished through the installation of extensive monitoring wells. Issues of scale and site heterogeneities tend to introduce errors in delineating the extent of contamination and environmental impact. In this study, electromagnetic induction survey was investigated as an alternative technique for mapping petroleum contaminants in the subsurface. The surveys were conducted at a coal mining site near Gillette, Wyoming, using the EM34-XL ground conductivity meter. Data from this survey were validated with known concentrations of diesel compounds detected in groundwater from the study site. Groundwater data correlated well with the electromagnetic survey data, which was used to generate a site model to identify subsurface diesel plumes. To our knowledge, this is one of the first studies to use electromagnetic survey techniques for mapping hydrocarbon contamination in groundwater. Results from this study indicate that this geophysical technique can be an effective tool for assessing subsurface petroleum hydrocarbon sources and plumes at contaminated sites.

  15. A new source of lunar electromagnetic induction - Forcing by the diamagnetic cavity

    Sonett, C. P.; Wiskerchen, M. J.


    Analysis of the power spectral densities (PSD's) of eight 50-hour time series from Apollo 12 lunar surface magnetometer (LSM) and isochronous Explorer 35 Ames magnetometer data points to the existence of a new source of electromagnetic induction in the interior of the moon which is independent of the transverse electric mode. This source is hypothesized to arise from extension of the cavity diamagnetic field into the moon in analogy with the fringing field of a solenoid.

  16. Electromagnetic induction heating of an orthopaedic nickel--titanium shape memory device.

    Müller, Christian W; Pfeifer, Ronny; El-Kashef, Tarek; Hurschler, Christof; Herzog, Dirk; Oszwald, Markus; Haasper, Carl; Krettek, Christian; Gösling, Thomas


    Shape memory orthopaedic implants made from nickel-titanium (NiTi) might allow the modulation of fracture healing, changing their cross-sectional shape by employing the shape memory effect. We aimed to show the feasibility and safety of contact-free electromagnetic induction heating of NiTi implants in a rat model. A water-cooled generator-oscillator combination was used. Induction characteristics were determined by measuring the temperature increase of a test sample in correlation to generator power and time. In 53 rats, NiTi implants were introduced into the right hind leg. The animals were transferred to the inductor, and the implant was electromagnetically heated to temperatures between 40 and 60°C. Blood samples were drawn before and 4 h after the procedure. IL-1, IL-4, IL-10, TNF-α, and IFN-γ were measured. Animals were euthanized at 3 weeks. Histological specimens from the hind leg and liver were retrieved and examined for inflammatory changes, necrosis, and corrosion pits. Cytokine measurements and histological specimens showed no significant differences among the groups. We concluded that electromagnetic induction heating of orthopedic NiTi implants is feasible and safe in a rat model. This is the first step in the development of new orthopedic implants in which stiffness or rigidity can be modified after implantation to optimize bone-healing.

  17. An analytic electromagnetic calculation method for performance evolution of doubly fed induction generators for wind turbines

    张文娟; 黄守道; 高剑; CHEN; Zhe


    An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.

  18. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon


    Intermediate electrical conductivity (IEC) materials (101S/m IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  19. Transient electromagnetic behaviour in inductive oxygen and argon-oxygen plasmas

    Chadwick, A. R.; Herdrich, G.; Kim, M.; Dally, B.


    In order to develop inductive electric propulsion as a flexible, throttleable technology for future space operations, a greater understanding of discharge transitions within the inductive plasma generator discharge chamber is required. This paper presents a non-intrusive method to determine the conditions under which transitions between the capacitive, low inductive, and high inductive regimes occur with greater accuracy, as well as determining the proportion of a single discharge cycle the plasma spends in either capacitive or inductive regime. Such a method allows a more robust method of classification of inductive discharges than previously available and can be applied to numerous gases. This approach presents an advantage over previous methods which relied on strongly radiating or thermally reactive gases to exhibit certain behaviour (due to the restriction of classical diagnostics on such high power sources) before a transition could be confirmed. This paper presents results from the proposed method applied to a pure oxygen plasma as well as two combinations of argon and oxygen (at 1:1 and 3:2 Ar:O2 volumetric ratios) in order to assess the tunability of electromagnetic regime transitions through modifications of gas composition rather than mechanical alterations. Transitions to the higher inductive mode were observed for much lower input powers for the argon-oxygen blends, as was expected, allowing final discharge conditions to occupy the inductive regime for 94% and 85% of a single discharge cycle for the 3:2 and 1:1 Ar:O2 mixtures, respectively. Pure oxygen achieved a maximum inductive proportion of 71% by comparison.

  20. Using a PC and external media to quantitatively investigate electromagnetic induction

    Bonanno, A.; Bozzo, G.; Camarca, M.; Sapia, P.


    In this article we describe an experimental learning path about electromagnetic induction which uses an Atwood machine where one of the two hanging bodies is a cylindrical magnet falling through a plexiglass guide, surrounded either by a coil or by a copper pipe. The first configuration (magnet falling across a coil) allows students to quantitatively study the Faraday-Neumann-Lenz law, while the second configuration (falling through a copper pipe) permits learners to investigate the complex phenomena of induction by quantifying the amount of electric power dissipated through the pipe as a result of Foucault eddy currents, when the magnet travels through the pipe. The magnet's fall acceleration can be set by adjusting the counterweight of the Atwood machine so that both the kinematic quantities associated with it and the electromotive force induced within the coil are continuously and quantitatively monitored (respectively, by a common personal computer (PC) equipped with a webcam and by freely available software that makes it possible to use the audio card to convert the PC into an oscilloscope). Measurements carried out when the various experimental parameters are changed provide a useful framework for a thorough understanding and clarification of the conceptual nodes related to electromagnetic induction. The proposed learning path is under evaluation in various high schools participating in the project 'Lauree Scientifiche' promoted by the Italian Department of Education.

  1. Application of Electromagnetic Induction to Monitor Changes in Soil Electrical Conductivity Profiles in Arid Agriculture

    Jadoon, K.Z.


    In this research, multi-configuration electromagnetic induction (EMI) measurements were conducted in a corn field to estimate variation in soil electrical conductivity profiles in the roots zone. Electromagnetic forward model based on the full solution of Maxwell\\'s equation was used to simulate the apparent electrical conductivity measured with EMI system (the CMD mini-Explorer). Joint inversion of multi-configuration EMI measurements were performed to estimate the vertical soil electrical conductivity profiles. The inversion minimizes the misfit between the measured and modeled soil apparent electrical conductivity by DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm, which is based on Bayesain approach. Results indicate that soil electrical conductivity profiles have low values close to the corn plants, which indicates loss of soil moisture due to the root water uptake. These results offer valuable insights into future potential and emerging challenges in the development of joint analysis of multi-configuration EMI measurements to retrieve effective soil electrical conductivity profiles.

  2. Influence analysis of structural parameters on electromagnetic properties of HTS linear induction motor

    Zhao, J.; Zheng, T. Q.; Zhang, W.; Fang, J.; Liu, Y. M.


    A new type high temperature superconductor linear induction motor is designed and analyzed as a prototype to ensure applicability aimed at industrial motors. Made of Bi-2223/Ag, primary windings are distributed with the double-layer concentrated structure. The motor is analyzed by 2D electromagnetic Finite Element Method to get magnetic field distribution, thrust force, vertical force and so on. The critical current of motor and the electromagnetic force are mostly decided by the leakage flux density of primary slot and by the main magnetic flux and eddy current respectively. The structural parameters of motor have a great influence on the distribution of magnetic field. Under constant currents, the properties of motor are analyzed with different slot widths, slot heights and winding turns. The properties of motor, such as the maximum slot leakage flux density, motor thrust and motor vertical force, are analyzed with different structural parameters.

  3. Vertical spatial sensitivity and exploration depth of low-induction-number electromagnetic-induction instruments

    Callegary, J.B.; Ferre, T. P. A.; Groom, R.W.


    Vertical spatial sensitivity and effective depth of exploration (d e) of low-induction-number (LIN) instruments over a layered soil were evaluated using a complete numerical solution to Maxwell's equations. Previous studies using approximate mathematical solutions predicted a vertical spatial sensitivity for instruments operating under LIN conditions that, for a given transmitter-receiver coil separation (s), coil orientation, and transmitter frequency, should depend solely on depth below the land surface. When not operating under LIN conditions, vertical spatial sensitivity and de also depend on apparent soil electrical conductivity (??a) and therefore the induction number (??). In this new evaluation, we determined the range of ??a and ?? values for which the LIN conditions hold and how de changes when they do not. Two-layer soil models were simulated with both horizontal (HCP) and vertical (VCP) coplanar coil orientations. Soil layers were given electrical conductivity values ranging from 0.1 to 200 mS m-1. As expected, de decreased as ??a increased. Only the least electrically conductive soil produced the de expected when operating under LIN conditions. For the VCP orientation, this was 1.6s, decreasing to 0.8s in the most electrically conductive soil. For the HCP orientation, de decreased from 0.76s to 0.51s. Differences between this and previous studies are attributed to inadequate representation of skin-depth effect and scattering at interfaces between layers. When using LIN instruments to identify depth to water tables, interfaces between soil layers, and variations in salt or moisture content, it is important to consider the dependence of de on ??a. ?? Soil Science Society of America.

  4. Electromagnetic forward and inverse problems of non-rotating magnetoacoustic tomography with magnetic induction.

    Zhang, Yang; Liu, Guoqiang; Tao, Chunjing; Wang, Hao; He, Wenjing


    The analysis of electromagnetic forward and inverse problems is very important in the process of image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). A new analysis method was introduced in this paper. It breaks through some illogical supposes that the existing methods applied and can improve the spatial resolution of the image availably. Besides it can avoid rotating the static magnetic field which is very difficult to come true in application, therefore the development of MAT-MI technique can be promoted greatly. To test the validity of the new method, two test models were analyzed, and the availability of the method was demonstrated.

  5. Electromagnetic induction by finite wavenumber source fields in 2-D lateral heterogeneities - The transverse electric mode

    Hermance, J. F.


    Electromagnetic induction in a laterally homogeneous earth is analyzed in terms of a source field with finite dimensions. Attention is focused on a time-varying two-dimensional current source directed parallel to the strike of a two-dimensional anomalous structure within the earth, i.e., the E-parallel mode. The spatially harmonic source field is expressed as discontinuities in the magnetic (or electric) field of the current in the source. The model is applied to describing the magnetic gradients across megatectonic features, and may be used to predict the magnetic fields encountered by a satellite orbiting above the ionosphere.

  6. Landmine classification using possibilistic K-nearest neighbors with wideband electromagnetic induction data

    Dula, J.; Zare, A.; Ho, Dominic; Gader, P.


    A possibilistic K-Nearest Neighbors classifier is presented to classify mine and non-mine objects using data collected from a wideband electromagnetic induction (WEMI) sensor. The proposed classifier is motivated by the observation that buried objects often have consistent signatures depending on their metal content, size, shape, and depth. Given a joint orthogonal matching pursuits (JOMP) sparse representation, particular target types consistently selected the same dictionary elements. The proposed classifier distinguishes between target types using the frequency of dictionary elements selected by potential landmine alarms. Results are shown on data containing sixteen landmine types and several non-mine examples.

  7. Local flow characteristics in a MHD induction machine duct at large parameters of electromagnetic interaction

    Valdmane, R.A.; Krishberg, R.R.; Lielpeter, Ya.Ya.; Mikryukov, Ch.K.; Ulmanis, L.Ya.


    A study is made of the velocity distribution along the duct width of an induction MHD machine with a traveling magnetic field under pump, generator and damping conditions. The computed velocity profiles were compared to those obtained on a sodium circuit under pump and damping conditions. The parameter values for electromagnetic interaction E in the experiments and in the computations changed from 2 to 4.5. Agreement was obtained between the measured velocity distribution and the compared ones at values E > 1. 6 references, 7 figures.

  8. Analytical modelling of soil effects on electromagnetic induction sensor for humanitarian demining

    Vasić, D.; Ambruš, D.; Bilas, V.


    Accurate compensation of the soil effect is essential for a new generation of sensitive classification-based electromagnetic induction landmine detectors. We present an analytical model for evaluation of the soil effect suitable for straightforward numerical implementation. The modelled soil consists of arbitrary number of conductive and magnetic layers. The solution region is truncated leading to the solution in form of a series rather than infinite integrals. Frequency-dependent permeability is inherent to the model, and time domain analysis can be made using DFT. In order to illustrate the model usage, we evaluate performances of three metal detector designs.

  9. Model of the double-rotor induction motor in terms of electromagnetic differential

    Adamczyk Dominik


    Full Text Available The paper presents a concept, a construction, a circuit model and experimental results of the double-rotor induction motor. This type of a motor is to be implemented in the concept of the electromagnetic differential. At the same time it should fulfill the function of differential mechanism and the vehicle drive. One of the motor shafts is coupled to the direction changing mechanical transmission. The windings of the external rotor are powered by slip rings and brushes. The inner rotor has the squirrel-cage windings. The circuit model parameters were calculated based on the 7.5 kW real single-rotor induction motor (2p = 4. Experimental verification of the model was based on comparison between the mentioned single-rotor motor and double-rotor model with the outer rotor blocked. The presented results showed relatively good compliance between the model and real motor.

  10. Comparing bulk electrical conductivities spatial series obtained by Time Domain Reflectometry and Electromagnetic Induction sensors

    Saeed, Ali; Ajeel, Ali; dragonetti, giovanna; Comegna, Alessandro; Lamaddalena, Nicola; Coppola, Antonio


    solution (and of the water content) induced by natural soil heterogeneity. Thus, the variability of TDR readings is expected to come from a combination of smaller and larger-scale variations. By contrast, an EMI sensor reading partly smoothes the small-scale variability seen by a TDR probe. As a consequence, the variability revealed by profile-integrated EMI and local (within a given depth interval) TDR readings may have completely different characteristics. In this study, a comparison between the variability patterns of σb revealed by TDR and EMI sensors was carried out. The database came from a field experiment conducted in the Mediterranean Agronomic Institute (MAI) of Valenzano (Bari). The soil was pedologically classified as Colluvic Regosol, consisting of a silty loam with an average depth of 60 cm on a shallow fractured calcareous rock. The experimental field (30m x 15.6 m; for a total area of 468 m2) consisted of three transects of 30 m length and 4.2 width, cultivated with green bean and irrigated with three different salinity levels (1 dS/m, 3dS/m, 6dS/m). Each transect consisted of seven crop rows irrigated by a drip irrigation system (dripper discharge q=2 l/h.). Water salinity was induced by adding CaCl2 to the tap water. All crop-soil measurements were conducted along the middle row at 24 monitoring sites, 1m apart. The spatial and temporal evolution of bulk electrical conductivity (σb) of soil was monitored by i) an Electromagnetic Induction method (EM38-DD) and ii) Time Domain Reflectometry (TDR). Herein we will focus on the methodology we used to elaborate the database of this experiment. Mostly, the data elaboration was devoted to make TDR and EMI data actually comparable. Specifically, we analysed the effect of the different observation windows of TDR and EMI sensors on the different spatial and temporal variability observed in the data series coming from the two sensors. After exploring the different patterns and structures of variability of the

  11. Combining ground penetrating radar and electromagnetic induction for industrial site characterization

    Van De Vijver, Ellen; Van Meirvenne, Marc; Saey, Timothy; De Smedt, Philippe; Delefortrie, Samuël; Seuntjens, Piet


    Industrial sites pose specific challenges to the conventional way of characterizing soil and groundwater properties through borehole drilling and well monitoring. The subsurface of old industrial sites typically exhibits a large heterogeneity resulting from various anthropogenic interventions, such as the dumping of construction and demolition debris and industrial waste. Also larger buried structures such as foundations, utility infrastructure and underground storage tanks are frequently present. Spills and leaks from industrial activities and leaching of buried waste may have caused additional soil and groundwater contamination. Trying to characterize such a spatially heterogeneous medium with a limited number of localized observations is often problematic. The deployment of mobile proximal soil sensors may be a useful tool to fill up the gaps in between the conventional observations, as these enable measuring soil properties in a non-destructive way. However, because the output of most soil sensors is affected by more than one soil property, the application of only one sensor is generally insufficient to discriminate between all contributing factors. To test a multi-sensor approach, we selected a study area which was part of a former manufactured gas plant site located in one of the seaport areas of Belgium. It has a surface area of 3400 m² and was the location of a phosphate production unit that was demolished at the end of the 1980s. Considering the long and complex history of the site we expected to find a typical "industrial" soil. Furthermore, the studied area was located between buildings of the present industry, entailing additional practical challenges such as the presence of active utilities and aboveground obstacles. The area was surveyed using two proximal soil sensors based on two different geophysical methods: ground penetrating radar (GPR), to image contrasts in dielectric permittivity, and electromagnetic induction (EMI), to measure the apparent

  12. University students’ understanding of the electromotive force concept in the context of electromagnetic induction

    Zuza, Kristina; De Cock, Mieke; van Kampen, Paul; Bollen, Laurens; Guisasola, Jenaro


    In this work, we present research on university students’ understanding of the concept of electromotive force (emf). The work presented here is a continuation of previous research by Garzón et al (2014 Am. J. Phys. 82 72-6) in which university students’ understanding of emf in the contexts of transient current and direct current circuits was analyzed. In the work we present here the investigation focuses on electromagnetic induction phenomena. Three open-ended questions from a broader questionnaire were analyzed in depth. We used phenomenography to define categories and detect lines of reasoning and difficulties in conceptual understanding. Very few students showed a good understanding of the emf concept in electromagnetic induction circuits or an ability to distinguish it from potential difference. Although the prevalences of the responses in the different categories are different, we find that the difficulties are the same in the three universities. Standard instruction does not allow most students to analyze unfamiliar contexts where the answer requires a systemic explanatory model.

  13. Three-dimensional sensitivity distribution and sample volume of low-induction-number electromagnetic-induction instruments

    Callegary, J.B.; Ferre, T. P. A.; Groom, R.W.


    There is an ongoing effort to improve the understanding of the correlation of soil properties with apparent soil electrical conductivity as measured by low-induction-number electromagnetic-induction (LIN FEM) instruments. At a minimum, the dimensions of LIN FEM instruments' sample volume, the spatial distribution of sensitivity within that volume, and implications for surveying and analyses must be clearly defined and discussed. Therefore, a series of numerical simulations was done in which a conductive perturbation was moved systematically through homogeneous soil to elucidate the three-dimensional sample volume of LIN FEM instruments. For a small perturbation with electrical conductivity similar to that of the soil, instrument response is a measure of local sensitivity (LS). Our results indicate that LS depends strongly on the orientation of the instrument's transmitter and receiver coils and includes regions of both positive and negative LS. Integration of the absolute value of LS from highest to lowest was used to contour cumulative sensitivity (CS). The 90% CS contour was used to define the sample volume. For both horizontal and vertical coplanar coil orientations, the longest dimension of the sample volume was at the surface along the main instrument axis with a length of about four times the intercoil spacing (s) with maximum thicknesses of about 1 and 0.3 s, respectively. The imaged distribution of spatial sensitivity within the sample volume is highly complex and should be considered in conjunction with the expected scale of heterogeneity before the use and interpretation of LIN FEM for mapping and profiling. ?? Soil Science Society of America.

  14. Mapping soil water dynamics and a moving wetting front by spatiotemporal inversion of electromagnetic induction data

    Huang, J.; Monteiro Santos, F. A.; Triantafilis, J.


    Characterization of the spatiotemporal distribution of soil volumetric water content (θ) is fundamental to agriculture, ecology, and earth science. Given the labor intensive and inefficient nature of determining θ, apparent electrical conductivity (ECa) measured by electromagnetic induction has been used as a proxy. A number of previous studies have employed inversion algorithms to convert ECa data to depth-specific electrical conductivity (σ) which could then be correlated to soil θ and other soil properties. The purpose of this study was to develop a spatiotemporal inversion algorithm which accounts for the temporal continuity of ECa. The algorithm was applied to a case study where time-lapse ECa was collected on a 350 m transect on seven different days on an alfalfa farm in the USA. Results showed that the approach was able to map the location of moving wetting front along the transect. Results also showed that the spatiotemporal inversion algorithm was more precise (RMSE = 0.0457 cm3/cm3) and less biased (ME = -0.0023 cm3/cm3) as compared with the nonspatiotemporal inversion approach (0.0483 cm3/cm3 and ME = -0.0030 cm3/cm3, respectively). In addition, the spatiotemporal inversion algorithm allows for a reduced set of ECa surveys to be used when non abrupt changes of soil water content occur with time. To apply this spatiotemporal inversion algorithm beyond low induction number condition, full solution of the EM induction phenomena can be studied in the future.

  15. 2-D Versus 3-D Magnetotelluric Data Interpretation

    Ledo, Juanjo


    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  16. A physical pattern recognition approach for 2D electromagnetic induction studies

    D. Patella


    Full Text Available We present a new tomographic procedure for the analysis of natural source electromagnetic (EM induction field data collected over any complex 2D buried structure beneath a flat air-earth boundary. The tomography is developed in a pure physical context and the primary goal is the depiction of the space distribution of two occurrence probability functions for the induced electrical charge accumulations on resistivity discontinuities and current channelling inside conductive bodies, respectively. The procedure to obtain tomographic image consists of a scanning operation governed analytically by a set of multiple interference cross-correlations between the observed EM components and the corresponding synthetic components of a pair of elementary charge and dipole. To show the potentiality of the proposed physical tomography, we discuss the results from three 2D synthetic examples.

  17. Nonlinear electromagnetic fields in 0.5 MHz inductively coupled plasmas

    Ostrikov, K.N.; Tsakadze, E.L.; Xu, S.


    Radial profiles of magnetic fields in the electrostatic (E) and electromagnetic (H) modes of low-frequency (similar to500 kHz) inductively coupled plasmas have been measured using miniature magnetic probes. In the low-power (similar to170 W) E-mode, the magnetic field pattern is purely linear......, with the fundamental frequency harmonics only. After transition to higher-power (similar to1130 W) H-mode, the second-harmonic nonlinear azimuthal magnetic field B-phi(2omega) that is in 4-6 times larger than the fundamental frequency component B-phi(omega), has been observed. A simplified plasma fluid model...... explaining the generation of the second harmonics of the azimuthal magnetic field in the plasma source is proposed. The nonlinear second harmonic poloidal (r-z) rf current generating the azimuthal magnetic field B-phi(2omega) is attributed to nonlinear interactions between the fundamental frequency radial...

  18. Electromagnetic induction between axons and their schwann cell myelin-protein sheaths.

    Goodman, G; Bercovich, D


    Two concepts have long dominated vertebrate nerve electrophysiology: (a) Schwann cell-formed myelin sheaths separated by minute non-myelinated nodal gaps and spiraling around axons of peripheral motor nerves reduce current leakage during propagation of trains of axon action potentials; (b) "jumping" by action potentials between successive nodes greatly increases signal conduction velocity. Long-held and more recent assumptions and issues underlying those concepts have been obscured by research emphasis on axon-sheath biochemical symbiosis and nerve regeneration. We hypothesize: mutual electromagnetic induction in the axon-glial sheath association, is fundamental in signal conduction in peripheral and central myelinated axons, explains the g-ratio and is relevant to animal navigation.

  19. Improved electromagnetic induction processing with novel adaptive matched filter and matched subspace detection

    Hayes, Charles E.; McClellan, James H.; Scott, Waymond R.; Kerr, Andrew J.


    This work introduces two advances in wide-band electromagnetic induction (EMI) processing: a novel adaptive matched filter (AMF) and matched subspace detection methods. Both advances make use of recent work with a subspace SVD approach to separating the signal, soil, and noise subspaces of the frequency measurements The proposed AMF provides a direct approach to removing the EMI self-response while improving the signal to noise ratio of the data. Unlike previous EMI adaptive downtrack filters, this new filter will not erroneously optimize the EMI soil response instead of the EMI target response because these two responses are projected into separate frequency subspaces. The EMI detection methods in this work elaborate on how the signal and noise subspaces in the frequency measurements are ideal for creating the matched subspace detection (MSD) and constant false alarm rate matched subspace detection (CFAR) metrics developed by Scharf The CFAR detection metric has been shown to be the uniformly most powerful invariant detector.

  20. Fusion techniques for hybrid ground-penetrating radar: electromagnetic induction landmine detection systems

    Laffin, Matt; Mohamed, Magdi A.; Etebari, Ali; Hibbard, Mark


    Hybrid ground penetrating radar (GPR) and electromagnetic induction (EMI) sensors have advanced landmine detection far beyond the capabilities of a single sensing modality. Both probability of detection (PD) and false alarm rate (FAR) are impacted by the algorithms utilized by each sensing mode and the manner in which the information is fused. Algorithm development and fusion will be discussed, with an aim at achieving a threshold probability of detection (PD) of 0.98 with a low false alarm rate (FAR) of less than 1 false alarm per 2 square meters. Stochastic evaluation of prescreeners and classifiers is presented with subdivisions determined based on mine type, metal content, and depth. Training and testing of an optimal prescreener on lanes that contain mostly low metal anti-personnel mines is presented. Several fusion operators for pre-screeners and classifiers, including confidence map multiplication, will be investigated and discussed for integration into the algorithm architecture.

  1. A novel electromagnetic induction detector with a coaxial coil for capillary electrophoresis

    Jin Xiong Qian; Zuan Guang Chen


    A novel electromagnetic induction detector with two inductors for CE was described here.The two inductors were used as signal detection and reference,respectively.The parameters affecting the detector performance (including coil turns,detection distance,excitation frequency,voltage,etc.) were optimized.Under the optimum condition,the feasibility of the detector was examined by analyzing inorganic ions.The fabricated detector showed good linear relationship between the response and the analytes concentrations,with a detection limit of 13 μmol/L for Na+ (S/N =3).A variety of advantages,such as simple construction,ease of operation,and considerably universal response,suggested this novel detector a promising application prospect in analytical area.

  2. Promoting Conceptual Development in Physics Teacher Education: Cognitive-Historical Reconstruction of Electromagnetic Induction Law

    Mäntylä, Terhi


    In teaching physics, the history of physics offers fruitful starting points for designing instruction. I introduce here an approach that uses historical cognitive processes to enhance the conceptual development of pre-service physics teachers' knowledge. It applies a method called cognitive-historical approach, introduced to the cognitive sciences by Nersessian (Cognitive Models of Science. University of Minnesota Press, Minneapolis, pp. 3-45, 1992). The approach combines the analyses of actual scientific practices in the history of science with the analytical tools and theories of contemporary cognitive sciences in order to produce knowledge of how conceptual structures are constructed and changed in science. Hence, the cognitive-historical analysis indirectly produces knowledge about the human cognition. Here, a way to use the cognitive-historical approach for didactical purposes is introduced. In this application, the cognitive processes in the history of physics are combined with current physics knowledge in order to create a cognitive-historical reconstruction of a certain quantity or law for the needs of physics teacher education. A principal aim of developing the approach has been that pre-service physics teachers must know how the physical concepts and laws are or can be formed and justified. As a practical example of the developed approach, a cognitive-historical reconstruction of the electromagnetic induction law was produced. For evaluating the uses of the cognitive-historical reconstruction, a teaching sequence for pre-service physics teachers was conducted. The initial and final reports of twenty-four students were analyzed through a qualitative categorization of students' justifications of knowledge. The results show a conceptual development in the students' explanations and justifications of how the electromagnetic induction law can be formed.

  3. Sea ice thickness measurement in spring season in Bothnian Bay using an electromagnetic induction instrument


    As an important component of the cryosphere, sea ice is very sensitive to the climate change. The study of the sea ice physics needs accurate sea ice thickness. This paper presents an electromagnetic-induction (EM) technique which can be used to measure the sea ice thickness distribution efficiently, and the successful application in Bothnian Bay. Based on the electromagnetic field theory and the electrical properties of sea ice and seawater,EM technique can detect the distance between the instrument and the ice/water interface accurately, than the sea ice thickness is obtained. Contrastive analysis of the apparent conductivity data obtained by EM and the value of drill-hole at same positions allows a construction of a transformable formula of the apparent conductivity to sea ice thickness. The verification of the sea ice thickness calculated by this formula indicates that EM technique is able to get reliable sea ice thickness with average relative error of only 12%. The statistic of all ice thickness profiles shows that the level ice distribution in Bothnian Bay was 0.4 - 0.6 m.

  4. Joint inversion of multi-configuration electromagnetic induction data to characterize subsurface electrical conductivity

    Jadoon, Khan


    Electromagnetic induction (EMI) devices are capable of measuring the cumulative electrical conductivity over a certain depth range. In this study, a numerical experiment has been performed to test a novel join inversion approach for the Geonics EM34 instrument, by considering different coil offsets (10, 20 and 40 m), different coil orientations (vertical and horizontal), and different frequencies (6.4, 1.6 and 0.4 kHz). The subsurface is considered as four-layer model having different conductivities. The global multilevel coordinate search optimization algorithm is sequentially combination with the local optimization algorithm to minimize the misfit between the measured and modeled data. The layer conductivities are well predicted by the join inversion of electromagnetic data. The response surface of the objective function was investigated to assess the sensitivity of the subsurface layer conductivities. The sensitivity of the conductivity for the top two layers is less as compared to the deeper layers. The proposed approach is promising for the fast mapping of true conductivity distributions over large areas.

  5. Vito Volterra and his commemoration for the centenary of Faraday's discovery of electromagnetic induction

    Sparavigna, Amelia Carolina


    The paper presents a memoir of 1931 written by Vito Volterra on the Italian physicists of the nineteenth century and the researches these scientists made after the discoveries of Michael Faraday on electromagnetism. Here, the memoir entitled "I fisici italiani e le ricerche di Faraday" is translated from Italian. It was written to commemorate the centenary of Faraday's discovery of the electromagnetic induction. Besides being a remarkable article on the history of science, it was also, in a certain extent, a political paper. In fact, in 1931, the same year of the publication of this article, Mussolini imposed a mandatory oath of loyalty to Italian academies. Volterra was one of the very few professors who refused to take this oath of loyalty. Because of the political situation in Italy, Volterra wanted to end his paper sending a message to the scientists of the world, telling that the feeling of admiration and gratitude that in Italy the scientists had towards "the great thinker and British experimentalist" w...

  6. Influence analysis of structural parameters and operating parameters on electromagnetic properties of HTS linear induction motor

    Fang, J.; Sheng, L.; Li, D.; Zhao, J.; Li, Sh.; Qin, W.; Fan, Y.; Zheng, Q. L.; Zhang, W.

    A novel High Temperature Superconductor Linear Induction Motor (HTS LIM) is researched in this paper. Since the critical current and the electromagnetic force of the motor are determined mainly by the primary slot leakage flux, the main magnetic flux and eddy current respectively, in order to research the influence of structural parameters and operating parameters on electromagnetic properties of HTS LIM, the motor was analyzed by 2D transient Finite Element Method (FEM). The properties of the motor, such as the maximum slot leakage flux density, motor thrust, motor vertical force and critical current are analyzed with different structural parameters and operating parameters. In addition, an experimental investigation was carried out on prototype HTS motor. Electrical parameters were deduced from these tests and also compared with the analysis results from FEM. AC losses of one HTS coil in the motor were measured and AC losses of all HTS coils in HTS LIM were estimated. The results in this paper could provide reference for the design and research on the HTS LIM.

  7. Geoarchaeological prospection of a Medieval manor in the Dutch polders using an electromagnetic induction sensor in combination with soil augerings

    Simpson, D.; Lehouck, A.; Meirvenne, M.; Bourgeois, J.; Thoen, E.; Vervloet, J.


    In archaeological prospection, geophysical sensors are increasingly being used to locate buried remains within their natural context. To cover a large area in sufficient detail, an electromagnetic induction sensor can be very useful, measuring simultaneously the electrical conductivity and the magne

  8. A Missile-Borne Angular Velocity Sensor Based on Triaxial Electromagnetic Induction Coils

    Jian Li


    Full Text Available Aiming to solve the problem of the limited measuring range for angular motion parameters of high-speed rotating projectiles in the field of guidance and control, a self-adaptive measurement method for angular motion parameters based on the electromagnetic induction principle is proposed. First, a framework with type bent “I-shape” is used to design triaxial coils in a mutually orthogonal way. Under the condition of high rotational speed of a projectile, the induction signal of the projectile moving across a geomagnetic field is acquired by using coils. Second, the frequency of the pulse signal is adjusted self-adaptively. Angular velocity and angular displacement are calculated in the form of periodic pulse counting and pulse accumulation, respectively. Finally, on the basis of that principle prototype of the sensor is researched and developed, performance of measuring angular motion parameters are tested on the sensor by semi-physical and physical simulation experiments, respectively. Experimental results demonstrate that the sensor has a wide measuring range of angular velocity from 1 rps to 100 rps with a measurement error of less than 0.3%, and the angular displacement measurement error is lower than 0.2°. The proposed method satisfies measurement requirements for high-speed rotating projectiles with an extremely high dynamic range of rotational speed and high precision, and has definite value to engineering applications in the fields of attitude determination and geomagnetic navigation.

  9. Electromagnetic Propagation of Fiber Probe for Near-field Optical Recording Using 3-D FDTD Method%用3D-FDTD法分析用于近场光存储的光纤探针电磁波传输特性

    刘凯; 白明; 鲁拥华; 唐麟; 王超; 明海


    The data density of the near-field optical recording is mainlydetermined by near-field electromagnetic distribution of probe fiber such as transmission efficiency, near-field light spot size, polarization keeping and the grade of the electromagnetic field. The optical characters and light wave propagation of various fiber probes for near-field optical recording are numerically simulated using 3D finite-difference time-domain (3D-FDTD) method in this paper. The possible application in near-field optical recording with these probes is discussed. The entirely metal coat probe is pointed out to have an extremely small near-field spot size about 10 nm, which is far less than that of the conventional probe.%提高近场光存储的存储信息密度的关键主要在于掌握近场存储光纤探针的透光率、近场光斑直径尺寸以及场梯度等近场物理量。采用三维时域有限差分(3D-FDTD)法分析了可用于近场光存储的光纤探针尖的光学性质,对不同类型光纤的近场光场分布进行了数值计算,给出结果并进行比较,从光学性质的角度对其在近场光存储中的应用加以讨论。完全镀膜光纤尖在极近场处的光斑可获得10nm的尺寸,远小于传统光纤光学聚焦的光斑尺寸大小。

  10. Electromagnetism

    Without the electromagnetic force, you would not be solid. The atoms of your body are held together by electromagnetism: negatively charged electrons are held around the positively charged nucleus. Atoms share electrons to form molecules, so building up the structure of matter. As its name suggests, electromagnetism has a double nature: a moving electric charge creates a magnetic field. This intimate connection between electricity and magnetism was described by James Maxwell in 1864. The electromagnetic force can be both positive and negative : opposite charges attract, whereas like charges repel. Electromagnetic radiation, such as radio, microwaves, light and X-rays, is emitted by charges when they are made to move. For example, an oscillating current in a wire emits radio waves. Text for the interactive: Why do the needles move when you switch on the current ?

  11. Combining Satellite and Ground Magnetic Measurements to Improve Estimates of Electromagnetic Induction Transfer Functions

    Balasis, G.; Egbert, G. D.


    Electromagnetic (EM) induction studies using satellite and ground-based magnetic data may ultimately provide critical new constraints on the electrical conductivity of Earth's mantle. Unlike ground-based observatories, which leave large areas of the Earth (especially the ocean basins) unsampled, satellites have the potential for nearly complete global coverage. However, because the number of operating satellites is limited, spatially complex (especially non-zonal) external current sources are sampled relatively poorly by satellites at any fixed time. The comparatively much larger number of ground-based observatories provides more complete synoptic sampling of external source structure. By combining data from both satellites and observatories models of external sources can be improved, leading to more reliable global mapping of Earth conductivity. For example, estimates of EM induction transfer functions estimated from night-side CHAMP data have been previously shown to have biases which depend systematically on local time (LT). This pattern of biases suggests that a purely zonal model does not adequately describe magnetospheric sources. As a first step toward improved modeling of spatial complexity in sources, we have applied empirical orthogonal function (EOF) methods to exploratory analysis of night-side observatory data. After subtraction of the predictions of the CM4 comprehensive model, which includes a zonally symmetric storm-time correction based on Dst, we find significant non-axisymmetric, but large scale coherent variability in the mid-latitude night-side observatory residuals. Over the restricted range of local times (18:00-6:00) and latitudes (50°S to 50°N) considered, the dominant spatial mode of variability is reasonably approximated by a q21 quadrupole spherical harmonic. Temporal variability of this leading EOF mode is well correlated with Dst. Strategies for moving beyond this initial exploratory EOF analysis to combine observatory data with

  12. NEPTUNE:并行三维全电磁粒子模拟软件%NEPTUNE:A 3-D Fully Electromagnetic Particle Parallel Software

    陈军; 董烨; 杨温渊; 董志伟


    为求解具有复杂几何的高功率微波电磁场问题,本文研制了一个三维全电磁粒子并行软件NEPTUNE.本文介绍了该并行软件的基本结构和采用的一些并行算法.目前,该软件已经成功模拟了多种高功率源器件,并可扩展到数千台处理器核上运行.%We developed a three-dimensional fully electromagnetic particle parallel software based on the parallel adaptive structure mesh application infrastructure, ,to solve the electromagnetic problem in the high power microwave devices with complex geometry. This paper presents the basic numerical method and parallel algorithm used in the parallel program. A typical device with complex geometry is simulated by the parallel program on thousands of processors, and the results show the good scalability. Currently it has been simulated many high power microwave devices successfully.


    毛剑波; 杨明武; 梁华国; 宣晓峰; 吴朝阳; 刘金现; 张猛


    The algorithm realisation and main functions of 3D full-wave electromagnetic analysis software are addressed. The software consists of two main modules;the electromagnetic modelling and the FDTD numerical solver,it can be used in electromagnetic field analysis and design for systems of radio frequency and microwave,etc. The software conducts uniform and non-uniform mesh generation automatically in accord with FDTD algorithm conditions,forms data files needed by describing media,mesh,boundary condition,stimulus source setting,etc. It is convenient to observe and modify the targeted objective timely by translating,rotating and scaling operations,has quite high electromagnetic modelling efficiency and 3D visualised effect, which implements the dynamic variation demonstration of electromagnetic field in computation interval. The functions and applied value of the software have been verified through practical project application as well as the comparison with commercial software HFSS.%介绍三维全波电磁分析软件的算法实现和主要功能,软件包含电磁建模和FDTD数值求解两大模块,可用于射频微波等系统的电磁场分析和设计.自动进行满足FDTD算法条件的均匀和非均匀网格划分,生成描述介质、网格、边界条件、激励源设置等所需的数据文件.通过对目标物体进行平移、旋转、缩放等操作可以进行实时观察与修改,具有较强的电磁建模效率和三维可视化效果,实现了计算区间内电磁场的动态变化演示.通过在实际工程中的应用,以及和商用软件HFSS的对比,验证了软件的功能和应用价值.

  14. Physics Almost Saved the President! Electromagnetic Induction and the Assassination of James Garfield: A Teaching Opportunity in Introductory Physics

    Overduin, James; Molloy, Dana; Selway, Jim


    Electromagnetic induction is probably one of the most challenging subjects for students in the introductory physics sequence, especially in algebra-based courses. Yet it is at the heart of many of the devices we rely on today. To help students grasp and retain the concept, we have put together a simple and dramatic classroom demonstration that combines sight and sound with a compelling personal story from U.S. history. Other classroom activities dealing with induction have been discussed in this journal, but we believe that this one will be especially likely to attract and retain student interest, particularly in courses geared toward medical, biological, and other non-physics majors.

  15. Assessment of potential nutrient build-up around beef cattle production areas using electromagnetic induction.

    Cordeiro, Marcos R C; Ranjan, Ramanathan Sri; Cicek, Nazim


    Electromagnetic induction (EMI) has been used to map soil properties such as salinity and water content. The objective of this research is to use EMI to map the potential distribution of nutrients around beef cattle pens and to relate this distribution to major physiographic field features. Beef cattle farms in different physiographic locations were surveyed in Manitoba, Canada, using an EM-38 conductivity meter georeferenced with a GPS receiver. Samples were collected using a response surface design and analysed for electrical conductivity (ECe), which was used as a proxy for determining potential build-up of nutrients. Multiple linear regression models (MLR) were used for calibration of the EM readings. The results showed that areas 1 through 4 had ECe soil layer to accumulate the nutrients. Micro-depressions played a major role in salt accumulation, with the depressions corresponding to higher values of ECe. The presence of features such as drainage ditches and compacted soils beneath roads strongly affected the direction of the plumes. Based on these results, the location of the pens on high elevations and the provision to collect the run-off from the pens were identified as good design criteria. Highly permeable soils may require a low permeability liner to capture the deep percolation and redirect it towards a collection area.

  16. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    Yanjie Liu


    Full Text Available Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems.

  17. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching.

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang


    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  18. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection.

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio


    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems.

  19. Estimation of tidal ventilation in preterm and term newborn infants using electromagnetic inductance plethysmography.

    Williams, E M; Pickerd, N; Eriksen, M; Øygarden, K; Kotecha, S


    Tidal volume (VT) measurements in newborn infants remain largely a research tool. Tidal ventilation and breathing pattern were measured using a new device, FloRight, which uses electromagnetic inductive plethysmography,and compared simultaneously with pneumotachography in 43 infants either receiving no respiratory support or continuous positive airway pressure (CPAP).Twenty-three infants were receiving CPAP (gestational age 28 ± 2 weeks, mean ± SD) and 20 were breathing spontaneously (gestational age 34 ± 4 weeks). The two methods were in reasonable agreement, with VT (r2 = 0.69) ranging from 5 to 23 ml (4–11 ml kg−1) with a mean difference of 0.4 ml and limit of agreement of −4.7 to + 5.5 ml. For respiratory rate, minute ventilation,peak flow and breathing pattern indices, the mean difference between the two methods ranged between 0.7% and 5.8%. The facemask increased the respiratory rate (P < 0.001) in both groups with the change in VT being more pronounced in the infants receiving no respiratory support. Thus, FloRight provides an easy to use technique to measure term and preterm infants in the clinical environment without altering the infant's breathing pattern.

  20. Formulation for a practical implementation of electromagnetic induction coils optimized using stream functions

    Reed, Mark A.; Scott, Waymond R.


    Continuous-wave (CW) electromagnetic induction (EMI) systems used for subsurface sensing typically employ separate transmit and receive coils placed in close proximity. The closeness of the coils is desirable for both packaging and object pinpointing; however, the coils must have as little mutual coupling as possible. Otherwise, the signal from the transmit coil will couple into the receive coil, making target detection difficult or impossible. Additionally, mineralized soil can be a significant problem when attempting to detect small amounts of metal because the soil effectively couples the transmit and receive coils. Optimization of wire coils to improve their performance is difficult but can be made possible through a stream-function representation and the use of partially convex forms. Examples of such methods have been presented previously, but these methods did not account for certain practical issues with coil implementation. In this paper, the power constraint introduced into the optimization routine is modified so that it does not penalize areas of high current. It does this by representing the coils as plates carrying surface currents and adjusting the sheet resistance to be inversely proportional to the current, which is a good approximation for a wire-wound coil. Example coils are then optimized for minimum mutual coupling, maximum sensitivity, and minimum soil response at a given height with both the earlier, constant sheet resistance and the new representation. The two sets of coils are compared both to each other and other common coil types to show the method's viability.

  1. Electromagnetic inductance plethysmography is well suited to measure tidal breathing in infants

    Eriksen, Morten; Olsen, Merete S.; Markestad, Trond; Halvorsen, Thomas


    Reliable, accurate and noninvasive methods for measuring lung function in infants are desirable. Electromagnetic inductance plethysmography has been used to perform infant spirometry and VoluSense Pediatrics (VSP) (VoluSense, Bergen, Norway) represents an updated version of this technique. We aimed to examine its accuracy compared to a validated system measuring airflow via a facemask using an ultrasonic flowmeter. We tested 30 infants with postmenstrual ages between 36 to 43 weeks and weights from 2.3 to 4.8 kg, applying both methods simultaneously and applying VSP alone. Agreement between the methods was calculated using Bland–Altman analyses and we also estimated the effect of applying the mask. Mean differences for all breathing parameters were within ±5.5% and limits of agreement between the two methods were acceptable, except perhaps for peak tidal expiratory flow (PTEF). Application of the facemask significantly increased tidal volume, minute ventilation, PTEF, the ratio of inspiratory to expiratory time and the ratio of expiratory flow at 50% of expired volume to PTEF. VSP accurately measured tidal breathing parameters and seems well suited for tidal breathing measurements in infants under treatment with equipment that precludes the use of a facemask. PMID:28053968

  2. An analysis of how electromagnetic induction and Faraday's law are presented in general physics textbooks, focusing on learning difficulties

    Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel


    Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.

  3. On recovering distributed IP information from inductive source time domain electromagnetic data

    Kang, Seogi; Oldenburg, Douglas W.


    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: (1) Obtain a 3-D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. (2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. (3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (1) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps

  4. On recovering distributed IP information from inductive source time domain electromagnetic data

    Kang, Seogi; Oldenburg, Douglas W.


    We develop a procedure to invert time domain induced polarization (IP) data for inductive sources. Our approach is based upon the inversion methodology in conventional electrical IP (EIP), which uses a sensitivity function that is independent of time. However, significant modifications are required for inductive source IP (ISIP) because electric fields in the ground do not achieve a steady state. The time-history for these fields needs to be evaluated and then used to define approximate IP currents. The resultant data, either a magnetic field or its derivative, are evaluated through the Biot-Savart law. This forms the desired linear relationship between data and pseudo-chargeability. Our inversion procedure has three steps: 1) Obtain a 3D background conductivity model. We advocate, where possible, that this be obtained by inverting early-time data that do not suffer significantly from IP effects. 2) Decouple IP responses embedded in the observations by forward modelling the TEM data due to a background conductivity and subtracting these from the observations. 3) Use the linearized sensitivity function to invert data at each time channel and recover pseudo-chargeability. Post-interpretation of the recovered pseudo-chargeabilities at multiple times allows recovery of intrinsic Cole-Cole parameters such as time constant and chargeability. The procedure is applicable to all inductive source survey geometries but we focus upon airborne time domain EM (ATEM) data with a coincident-loop configuration because of the distinctive negative IP signal that is observed over a chargeable body. Several assumptions are adopted to generate our linearized modelling but we systematically test the capability and accuracy of the linearization for ISIP responses arising from different conductivity structures. On test examples we show: (a) our decoupling procedure enhances the ability to extract information about existence and location of chargeable targets directly from the data maps; (b

  5. 3D polarization speckle as a demonstration of tensor version of the van Cittert-Zernike theorem for stochastic electromagnetic beams

    Ma, Ning; Zhao, Juan; Hanson, Steen Grüner;


    . Statistical phenomena of random electric vector fields have close relevance to the theories of speckles, polarization and coherence theory. In this paper, we investigate the correlation tensor for stochastic electromagnetic fields modulated by a depolarizer consisting of a rough-surfaced retardation plate...... plate and the coherence matrix under the free space geometry. This relation is regarded as entirely analogous to the van Cittert-Zernike theorem of classical coherence theory. Within the paraxial approximation as represented by the ABCD-matrix formalism, the three-dimensional structure of the generated......Laser speckle has received extensive studies of its basic properties and associated applications. In the majority of research on speckle phenomena, the random optical field has been treated as a scalar optical field, and the main interest has been concentrated on their statistical properties...

  6. 3维全电磁粒子软件NEPTUNE中的并行计算方法%Parallelization methods in 3D fully electromagnetic code NEPTUNE

    陈军; 莫则尧; 董烨; 杨温渊; 董志伟


    NEPTUNE is a three-dimensional fully parallel electromagnetic code to solve electromagnetic problem in high power microwaveC HPM) devices with complex geometry. This paper introduces the following three parallelization methods used in the code. For massively computation, the "block-patch" two level parallel domain decomposition strategy is provided to scale the computation size to thousands of processor cores. Based on the geometry information, the mesh is reconfigured using the adaptive technology to get rid of invalid grid cells, and thus the storage amount and parallel execution time decrease sharply. On the basis of traditional Boris' successive over relaxation (SOR) iteration method, a parallel Poisson solver on irregular domains is provided with red and black ordering technology and geometry constraints. With the above methods, NEPTUNE can get 51. 8% parallel efficiency on 1 024 cores when simulating MILO devices.%介绍了NEPTUNE软件采用的一些并行计算方法:采用“块-网格片”二层并行区域分解方法,使计算规模能够扩展到上千个处理器核.基于复杂几何特征采用自适应技术并行生成结构网格,在原有规则区域的基础上剔除无效网格,大幅降低了存储量和并行执行时间.在经典的Boris和SOR迭代方法基础上,采用红黑排序和几何约束,提出了非规则区域上的Poisson方程并行求解方法.采用这些方法后,当使用NEP-TUNE软件模拟MILO器件时,可在1024个处理器核上获得51.8%的并行效率.

  7. Time-lapse electromagnetic induction surveys under olive tree canopies reveal soil moisture dynamics and controls

    Martínez, Gonzalo; Giraldez Cervera, Juan Vicente; Vanderlinden, Karl


    Soil moisture (θ) is a critical variable that exerts an important control on plant status and development. Soil sampling, neutron attenuation and electromagnetic methods such as TDR or FDR have been used widely to measure θ and provide point data at a possible range of temporal resolutions. However, these methods require either destructive sampling or permanently installed devices with often limiting measurement depths, or are extremely time-consuming. Moreover, the small support of such measurements compromises its value in heterogeneous soils. To overcome such limitations electromagnetic induction (EMI) can be tested to monitor θ at different spatial and temporal scales. This work investigates the potential of EMI to characterize the spatio-temporal variability of soil moisture from apparent electrical conductivity (ECa) under the canopy of individual olive trees. During one year we measured θ with a frequency of 5 min and ECa on an approximately weekly basis along transects from the tree trunk towards the inter-row area. CS-616 soil moisture sensors where horizontally installed in the walls of a trench at depths of 0.1, 0.2, 0.4, 0.6 and 0.8 m at five locations along the transect, with a separation of 0.8 m. The Dualem-21S sensor was used to measure weekly the ECa at 0.2 m increments, from the tree trunk to a distance of 4.4 m. The results showed similar drying and wetting patterns for θ and ECa. Both variables showed a decreasing pattern from the tree trunk towards the drip line, followed by a sharp increment and constant values towards the center of the inter-row space. This pattern reflects clearly the influence of root-zone water uptake under the tree canopy and higher θ values in the inter-row area where root-water uptake is smaller. Time-lapse ECa data responded to evaporation and infiltration fluxes with the highest sensitivity for the 1 and 1.5 m ECa signals, as compared to the 0.5 and 3.0 m signals. Overall these preliminary results revealed the

  8. Identifying and removing micro-drift in ground-based electromagnetic induction data

    De Smedt, Philippe; Delefortrie, Samuël; Wyffels, Francis


    As the application of ground-based frequency domain electromagnetic induction (FDEM) surveys is on the rise, so increases the need for processing strategies that allow exploiting the full potential of these often large survey datasets. While a common issue is the detection of baseline drift affecting FDEM measurements, the impact of residual corrugations present after initial drift removal is less documented. Comparable to the influence of baseline drift, this 'micro-drift' introduces aberrant data fluctuations through time, independent of the true subsurface variability. Here, we present a method to detect micro-drift in drift-corrected FDEM survey data, therefore allowing its removal. The core of the procedure lies in approaching survey datasets as a time series. Hereby, discrete multi-level wavelet decomposition is used to isolate micro-drift in FDEM data. Detected micro-drift is then excluded in subsequent signal reconstruction to produce a more accurate FDEM dataset. While independently executed from ancillary information, tie-line measurements are used to evaluate the reliability and pitfalls of the procedure. This demonstrates how data levelling without evaluation data can increase subjectivity of the procedure, and shows the flexibility and efficiency of the approach in detecting minute drift effects. We corroborated the method through its application on three experimental field datasets, consisting of both quadrature and in-phase measurements gathered with different FDEM instruments. Through a 1D assessment of micro-drift, we show how it impacts FDEM survey data, and how it can be identified and accounted for in straightforward processing steps.

  9. Electromagnetic inductance plethysmography to measure tidal breathing in preterm and term infants.

    Pickerd, N; Williams, E M; Kotecha, S


    Tidal breathing measurements which provide a non-invasive measure of lung function in preterm and term infants are particularly useful to guide respiratory support. We used a new technique of electromagnetic inductance plethysmography (EIP) to measure tidal breathing in infants between 32 and 42 weeks postconceptional age (PCA). Tidal breathing was measured in 49 healthy spontaneously breathing infants between 32 and 42 weeks PCA. The weight-corrected tidal volume (V(T) ) and minute volume (MV) decreased with advancing PCA (V(T) 6.5 ± 1.5 ml/kg and MV 0.44 ± 0.04 L/kg/min at 32-33 weeks, respectively; 6.3 ± 0.9 ml/kg and 0.38 ± 0.02 L/kg/min at 34-36 weeks; and 5.1 ± 1.1 ml/kg and 0.28 ± 0.02 L/kg/min at term, V(T) P < 0.001 and MV P < 0.01 for 32-33 weeks PCA vs. term; V(T) P = 0.016 and MV P = 0.015 for 34-36 weeks PCA vs. term). Respiratory frequency and the phase angle decreased significantly with advancing PCA but the flow parameter t(PTEF) /t(E) did not change significantly. Using a new technique to measure tidal breathing parameters in newborn infants, our data confirms its usability in clinical practice and establishes normative data which can guide future respiratory management of newborn infants.

  10. Fusion of ground-penetrating radar and electromagnetic induction sensors for landmine detection and discrimination

    Kolba, Mark P.; Torrione, Peter A.; Collins, Leslie M.


    Ground penetrating radar (GPR) and electromagnetic induction (EMI) sensors provide complementary capabilities in detecting buried targets such as landmines, suggesting that the fusion of GPR and EMI modalities may provide improved detection performance over that obtained using only a single modality. This paper considers both pre-screening and the discrimination of landmines from non-landmine objects using real landmine data collected from a U.S. government test site as part of the Autonomous Mine Detection System (AMDS) landmine program. GPR and EMI pre-screeners are first reviewed and then a fusion pre-screener is presented that combines the GPR and EMI prescreeners using a distance-based likelihood ratio test (DLRT) classifier to produce a fused confidence for each pre-screener alarm. The fused pre-screener is demonstrated to provide substantially improved performance over the individual GPR and EMI pre-screeners. The discrimination of landmines from non-landmine objects using feature-based classifiers is also considered. The GPR feature utilized is a pre-processed, spatially filtered normalized energy metric. Features used for the EMI sensor include model-based features generated from the AETC model and a dipole model as well as features from a matched subspace detector. The EMI and GPR features are then fused using a random forest classifier. The fused classifier performance is superior to the performance of classifiers using GPR or EMI features alone, again indicating that performance improvements may be obtained through the fusion of GPR and EMI sensors. The performance improvements obtained both for pre-screening and for discrimination have been verified by blind test results scored by an independent U.S. government contractor.

  11. 3D Animation Essentials

    Beane, Andy


    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  12. 3D video

    Lucas, Laurent; Loscos, Céline


    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  13. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong


    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  14. The use of electromagnetic induction methods for establishing quantitative permafrost models in West Greenland

    Ingeman-Nielsen, Thomas; Brandt, Inooraq


    The sedimentary settings at West Greenlandic town and infrastructural development sites are dominated by fine-grained marine deposits of late to post glacial origin. Prior to permafrost formation, these materials were leached by percolating precipitation, resulting in depletion of salts. Present day permafrost in these deposits is therefore very ice-rich with ice contents approaching 50-70% vol. in some areas. Such formations are of great concern in building and construction projects in Greenland, as they loose strength and bearing capacity upon thaw. It is therefore of both technical and economical interest to develop methods to precisely investigate and determine parameters such as ice-content and depth to bedrock in these areas. In terms of geophysical methods for near surface investigations, traditional methods such as Electrical Resistivity Tomography (ERT) and Refraction Seismics (RS) have generally been applied with success. The Georadar method usually fails due to very limited penetration depth in the fine-grained materials, and Electromagnetic Induction (EMI) methods are seldom applicable for quantitative interpretation due to the very high resistivities causing low induced currents and thus small secondary fields. Nevertheless, in some areas of Greenland the marine sequence was exposed relatively late, and as a result the sediments may not be completely leached of salts. In such cases, layers with pore water salinity approaching that of sea water, may be present below an upper layer of very ice rich permafrost. The saline pore water causes a freezing-point depression which results in technically unfrozen sediments at permafrost temperatures around -3 °C. Traditional ERT and VES measurements are severely affected by equivalency problems in these settings, practically prohibiting reasonable quantitative interpretation without constraining information. Such prior information may be obtained of course from boreholes, but equipment capable of drilling

  15. Development of an annular linear induction electromagnetic pump for the na-coolant circulation of LMFBR

    Kim, Hee Reyoung; Lee, Yong Bum; Kim, Yong Kyun; Nam, Ho Yun [KAERI, Taejon (Korea, Republic of)


    The EM (ElectroMagnetic) pump operated by Lorentz force (J x B) is developed for the sodium coolant circulation of LMFBR (Liquid Metal Fast Breeder Reactors). Design and experimental characterization are carried out on the linear induction EM pump of the narrow annular channel type. The pump which obtains propulsion force resultantly by the three phase symmetric alternating input currents is analyzed by the electrical equivalent circuit method used in the analyses of the induction machines. Then, the equivalent circuit for the pump consists of equivalent variables of primary and secondary resistances and magnetizing and leakage reactances given as functions of pump geometrical and electrical variables by Laithwaithe's standard formulae. Developing pressure-flowrate relation given by pump variables is sought from the balance equation on the circuit. Developing pressure and efficiency of the pump according to the pump variables are analyzed for the pump with a flowrate of 200 l/min. It is shown that pump is mainly characterized by length of the core, diameter of the inner core and channel gap geometrically and by input frequency electrically. Optimum values of pump geometrical and operational variables are determined to maximize the developing force and overall efficiency. The pump has geometrical size of 60 cm in length, 4.27 cm in inner core diameter and electrical input of 6,428 VA and 17 Hz. Optimally designed pump is manufactured by the consideration of material and operational requirements in the chemically-active sodium environment with high temperature of 600 .deg. C. Silicon-iron steel plates with high magnetic permeability in the high temperature are stacked for generation of the high magnetic flux and alumina-dispersion-strengthened-copper bands are used as exciting coils. Each turn of coil is insulated by asbestos band to protect electrical short in the high temperature. Stainless steel which can be compatible with sodium is selected as structural

  16. 电磁感应加热试验研究%Study on Test of Electromagnetic Induction Heating Device



    通过感应加热实验研究,介绍新型热处理技术在加氢反应器焊后热处理中的应用,对其在实验过程中遇到的问题做出分析和探讨。%The paper proposes a new heat treatment technology for the post-welding heat treatment of hydrogenation reactors on the basis of the study on the test of an electromagnetic induction heating device and discusses the problems that arose during the test.


    Chang-feng Ma


    This paper provides an convergence analysis of a fractional-step projection method for the controlled-source electromagnetic induction problems in heterogenous electrically conducting media by means of finite element approximations. Error estimates in finite time are given. And it is verified that provided the time step τ is sufficiently small, the proposed algorithm yields for finite time T an error of (O)(hs + τ) in the L2-norm for the magnetic field H, where h is the mesh size and 1/2 < s ≤ 1.

  18. Influences of a High Frequency Induction Current on the Uniformity of the Magnetic Field in an Electromagnetic Casting Mould

    Zhang, Lintao; Sienz, Johann


    An analysis of the influences of a high frequency (30 kHz) alternating current on the uniformity of the magnetic field (B) in an electromagnetic casting (EMC) mould is investigated by means of parametric numerical simulations where the induction current (Js) varies in the range of [1 to 10000 A]. The results show that values of the magnetic flux density along the casting direction (Bz) near the square mould corners are small, compared to those at the other locations where Js < 10000 A, and that the magnitude of Bz increases with an increased induction current (Js). However, it is shown that, for the EMC mould structure investigated in this paper, the variations of Js have no significant influences on the uniformity of the magnetic field, especially for the regions near molten steel level. Moreover, the effective acting region (Rbz) for the critical magnetic field (Bzc) is first introduced in this paper, which opens an interesting topic for future research.

  19. The Apparent Conductivity Deduction and Formation Parameter Analyses in Three-dimensional (3D) Induction Logging%三维感应视电导率推导与地层参数分析

    陈章龙; 陈涛; 白彦; 刘枭; 宋青山; 党峰


    Based on the electricity anisotropy measuring theory of three-dimensional (3D) induction, detailed are the apparent conductivities of 9 components in the three-coil system of the three-dimensional induction logging and analyzed are the sensitivity characteristics of 3D induction logging in anisotropic formations for changing formation parameters such as horizontal conductivity, vertical conductivity, dip and azimuth. Simulated are the apparent conductivities of the 9 components and the 2D contour line map is ploted with MATLAB software about different formations components. By describing and analyzing the response trend, it is found that 3D induction logging tool is very sensitive to the apparent conductivity changes in the dips,azimuths, horizontal conductivity and vertical conductivity, and the cross-components have the same response relations with the dips and azimuths.%基于三维感应电各向异性测量原理,详细推导了三维感应三线圈系9个分量的视电导率,分析了三维感应测井仪在各向异性地层中对水平电导率、垂直电导率、倾角以及方位角等地层参数变化时的敏感性特性.应用MATLAB软件对不同地层参数的9个分量视电导率仿真并绘制2D等高线图,描述和分析其响应变化趋势,可得出三维感应测井仪对视电导率在倾角、方位角、水平电导率以及垂直电导率在任意倾角和任意方位角下的变化都是敏感的,交叉分量具有相同的响应关系.

  20. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    Martinez, J.; Belahcen, A.; Detoni, J. G.


    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  1. Electromagnetism

    Grant, Ian S


    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  2. Coupling of electromagnetic and thermal codes. Induction heating; Couplage des codes electromagnetique et thermique. Le chauffage par induction

    Colombani, M. [CEDRAT, (France)


    The development and adjustment of induction heating systems is quite delicate because two different subjects of physics are involved: magnetism (Foucault currents) and thermal engineering. Moreover, the magnetic and electrical properties depends on the temperature and the dissipated power depends on the magnetic and electrical properties and on the electrical excitation sources (geometry, intensity, frequency). The CEDRAT company has been involved since several years in the development of modeling softwares which allow to analyze these kind of problems. The most used is the FLUX2D software, developed by CEDRAT RECHERCHE in collaboration with the LEG (CNRS-INPG) and EdF, and which is used in several domains of applications (electric motors, actuators, high-voltage devices, magnetic recording, induction heating etc..). This software is based on a finite-element calculation method and, in the case of induction heating, it can perform different types of modeling: magnetic, thermal, temperature-dependant properties, weak and strong coupling, coupling with the electric circuit equations etc.. (J.S.)

  3. Didactical Reconstruction of Processes in Knowledge Construction: Pre-service Physics Teachers Learning the Law of Electromagnetic Induction

    Mäntylä, Terhi


    In physics teacher education, two central goals are first to learn the structures of physics knowledge, and second the processes of its construction. To know the structure is to know the framework of concepts and laws; to know the processes is to know where the knowledge comes from, how the framework is constructed, and how it can be justified. This article introduces a way to approach these goals in the form of a graphical tool called the didactical reconstruction of processes (DRP), where knowledge is constructed to the extent that experiments and models have an equally important role in the construction process. In practice, the DRP is a graphical network representation or a `flow chart' with a specific structure, which aims to give an image of the processes of physical concept formation, while at the same time bearing in mind the educational goals. The DRP was tested in an instruction unit for pre-service physics teachers, where students drew flow charts for representing how the law of electromagnetic induction is formed. In addition to flow charts, students also wrote essays clarifying the content of the flow charts. The flow charts and essays were analysed through a qualitative categorisation of structural and knowledge claim patterns. The results show that the DRP helps students in arguing how to form the electromagnetic induction law and that the experiments and models have a distinct role in supporting students' knowledge claims.

  4. Electromagnetism

    Kim, Chang Hwan; Lee, Don Bae


    This book gives descriptions of vector analysis on vector algebra and vector double, coulomb's law, electric intensity, Gauss theory and Gauss divergence theorem, the avant-garde and a potential difference, conductor in vacuum, a dielectric and capacitance like dielectric and polarization, equation of poisson and Laplace, coulomb's law, property of a magnetic substance, magnetic attraction of current, magnetic circuit, inductance and application of a magnetic field, Faraday's law and Maxwell equation, plane wave and transmission cable.


    Brdnik, Lovro


    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  6. 3D and Education

    Meulien Ohlmann, Odile


    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  7. Collection, processing, and quality assurance of time-series electromagnetic-induction log datasets, 1995–2016, south Florida

    Prinos, Scott T.; Valderrama, Robert


    Time-series electromagnetic-induction log (TSEMIL) datasets are collected from polyvinyl-chloride cased or uncased monitoring wells to evaluate changes in water conductivity over time. TSEMIL datasets consist of a series of individual electromagnetic-induction logs, generally collected at a frequency of once per month or once per year that have been compiled into a dataset by eliminating small uniform offsets in bulk conductivity between logs probably caused by minor variations in calibration. These offsets are removed by selecting a depth at which no changes are apparent from year to year, and by adjusting individual logs to the median of all logs at the selected depth. Generally, the selected depths are within the freshwater saturated part of the aquifer, well below the water table. TSEMIL datasets can be used to monitor changes in water conductivity throughout the full thickness of an aquifer, without the need for long open-interval wells which have, in some instances, allowed vertical water flow within the well bore that has biased water conductivity profiles. The TSEMIL dataset compilation process enhances the ability to identify small differences between logs that were otherwise obscured by the offsets. As a result of TSEMIL dataset compilation, the root mean squared error of the linear regression between bulk conductivity of the electromagnetic-induction log measurements and the chloride concentration of water samples decreased from 17.4 to 1.7 millisiemens per meter in well G–3611 and from 3.7 to 2.2 millisiemens per meter in well G–3609. The primary use of the TSEMIL datasets in south Florida is to detect temporal changes in bulk conductivity associated with saltwater intrusion in the aquifer; however, other commonly observed changes include (1) variations in bulk conductivity near the water table where water saturation of pore spaces might vary and water temperature might be more variable, and (2) dissipation of conductive water in high-porosity rock

  8. Joint inversion of multi-configuration electromagnetic induction measurements to estimate soil wetting patterns during surface drip irrigation

    Jadoon, Khan Z.; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; McCabe, Matthew


    In arid and semi-arid regions, development of precise information on the soil wetting pattern is important to optimize drip irrigation system design for sustainable agricultural water management. Usually mathematical models are commonly used to describe infiltration from a point source to design and manage drip irrigation systems. The extent to which water migrates laterally and vertically away from the drip emitter depends on many factors, including dripper discharge rate, the frequency of water application, duration of drip emission, the soil hydraulic characteristics, initial conditions, evaporation, root water uptake and root distribution patterns. However, several simplified assumptions in the mathematical models affect their utility to provide useful design information. In this respect, non-invasive geophysical methods, i.e., low frequency electromagnetic induction (EMI) systems are becoming powerful tools to map spatial and temporal soil moisture patterns due to fast measurement capability and sensitivity to soil water content and salinity. In this research, a new electromagnetic system, the CMD mini-Explorer, is used for soil characterization to measure the wetting patterns of drip irrigation systems using joint inversion of multi-configuration EMI measurements. Six transects of EMI measurements were carried out in a farm where Acacia trees are irrigated with brackish water using a drip irrigation system. EMI reference data (ground-truths) were calculated using vertical soil electrical conductivity recorded in different trenches along one of the measurement transects. Reference data is used for calibration to minimize the instrumental shifts which often occur in EMI data. Global and local optimization algorithms are used sequentially, to minimize the misfit between the measured and modeled apparent electrical conductivity (δa) to reconstruct the vertical electrical conductivity profile. The electromagnetic forward model based on full solution of Maxwell

  9. Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismomagnetic phenomena during microfracturing

    Surkov, V. V.; Molchanov, O. A.; Hayakawa, M.


    This paper proposes a generation mechanism of ULF electromagnetic noise observed several hours before some strong earthquakes. It is assumed that this effect results from the energization of crack formation and fracture process in a focal zone before the main shock. Electromagnetic noise is considered as a by-product of the summation of electromagnetic micro-fields appearing in the conductive medium ahead of acoustic micro-waves radiated by an ensemble of tensile cracks. These micro-fields and currents are generated due to the movement of conductive medium in the geomagnetic field. The electromagnetic perturbations depend on the direction diagram of radiation and the attenuation of acoustic waves emitted by opening cracks. We investigate two different zones and regimes of ULF magnetic field propagation. In the near zone we expect the prevailing diffusion regime, where the sign of components of electromagnetic fields is found to be the same for all the cracks independent of their space orientation. A similar coherent effect takes place at the far or acoustic zone. These surprising effects occur, because the effective magnetic moments of current systems generated by the cracks are always directed opposite to the vector of geomagnetic field; i.e. these moments are strongly paralleled. It was established that the coherent amplification of ULF signals generated by the cracks could appear if only their size exceeds several critical values. Such an effect might appear at the background of low seismic activity because the acoustic emission of cracks is incoherent. The averaging of the fields over the ensemble of opening cracks allowed us to relate the parameters of electromagnetic noise to porosity, volumetric strain, dilatational coefficient and average size of macro-cracks at the earthquake hypocenter. Our theory predicts magnetic and electric perturbations to be of the order of 1-10nT and 1-10μV/m, respectively, at the distance 10-50km from the epicenter. These values


    Kolar, Nataša


    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  11. Inductive seismo-electromagnetic effect in relation to seismogenic ULF emission

    O. Molchanov


    Full Text Available During the seismic wave propagation through the crust, the electromagnetic pulse can originate due to MHD conversion in this conductive medium. On the assumption of simple models of seismic wave excitation and attenuation, the problem is reduced to the analysis of a diffusion-like equation for a vector potential function. In this way, we need to change the classical gauge condition. A semi-analytical form of the solution is obtained in a case with constant ground conductivity. Dependencies of the electric and magnetic field components and the pulse duration on distance and crust conductivity have been computed in detail. The results could be useful for the explanation of electromagnetic signals related to coseismic, foreshock and aftershock activity.

  12. Electromagnetic induction in the oceans and the anomalous behaviour of coastal C-responses for periods up to 20 days

    Kuvshinov, A.V.; Olsen, Nils; Avdeev, D.B.


    [1] Electromagnetic transfer functions at coastal sites are known to be strongly distorted by the conductivity of the seawater. This ocean effect is generally considered to be small for periods greater than a few days. We revise this statement by detailed and systematic model studies in the period....../bathymetry and map of sediment thicknesses. The simulations were performed for spatial resolutions of the surface shell of 5degrees x 5degrees,2degrees x 2degrees and 1degrees x 1degrees, respectively, and for two, continental and oceanic, underlying 1-D conductivity models. The inducing source is described...... that peculiarities in the observed coastal responses in the period range from 1 to 20 days can be explained to a large amount by induction in the oceans. We show that correction for the ocean effect results in responses that are much better interpretable by 1-D conductivity models compared to the uncorrected...

  13. Effects of a novel carbocyclic analog of pyrrolo[2,3-d]pyrimidine nucleoside on pleiotropic induction of cell death in prostate cancer cells with different androgen responsiveness.

    Suh, Hyewon; Choi, Ko-woon; Lee, Jongbok; Ryou, Chongsuk; Rhee, Hakjune; Lee, Chul-Hoon


    Prostate cancer is the most frequently diagnosed cancer and is one of the leading causes of male cancer death in the world. Recently, in the course of our screening for a novel anticancer compound, we synthesized carbocyclic analogs of pyrrolo[2,3-d]pyrimidine nucleoside; compounds 5, and 6. In the current study, we report the effects of compound 5 on pleiotropic induction of cell death via up-regulation of AR-associated p21(Cip1) protein in prostate cancer cells with different androgen responsiveness, such as LNCaP (androgen-dependent and -sensitive), LNCaP(C4-2) (androgen-independent and -sensitive; androgen-refractory), and DU145 (androgen-independent and -insensitive) cells. The treatment of LNCaP cells with 6 μM compound 5 for 24 h stimulated the androgen receptor (AR) activity and dramatically up-regulated transcription (56-fold) of p21(Cip1), which, in turn, induces typical apoptosis in the cells. However, induction of apoptosis through up-regulation (23-fold) of AR-associated p21(Cip1) achieved in LNCaP(C4-2) cells was possible by intensive cell treatment with compound 5 (9 μM, 48 h), because the cells are less sensitive and independent to androgen than LNCaP cells. Furthermore, 6 μM compound 5-treated DU145 cells, which exhibit extremely low AR activation due to no androgen responsiveness and dependency, showed neither up-regulation of p21(Cip1) nor apoptotic induction. Instead, a different type of cell death, autophagy-like death through the LC3B-associated autophagosome formation, was obviously induced in DU145 cells. Taken together, our results suggest that pleiotropic induction of prostate cancer cell death by compound 5 is determined by how efficiently and how abundantly androgen-dependent activation of the AR occurs, whereas compound 6 shows no induction of apoptosis in LNCaP cells.

  14. 铝锅表面导磁处理工艺%Surface treatment for making electromagnetic induction aluminum cooker



    介绍了一种能使铝锅具备导磁性能的表面处理工艺。首先对铝锅进行喷砂处理,使其外表面的粗糙度Ra达到2.5~5.0μm,再电弧喷涂一层可导磁的铁涂层,并对铁层进行砂光处理,最后喷涂高温有机硅树脂保护涂层。经测试,铁涂层平均膜厚为207μm,表面孔隙率为1.28%,平均断裂载荷为21109.48 N,平均断裂强度为41.66 MPa;有机硅涂层的附着力、耐溶剂性、耐热性良好。最终产品的导磁性能达到企业标准。%A surface treatment, which enables aluminum cooker get electromagnetic induction, was introduced. The process mainly includes: sandblasting to achieve a surface roughness Ra of 2.5-5.0μm, electric arc spraying to form an iron coating, polishing, and spraying with a high-temperature silicone resin coating. The test results showed that the iron coating has the following properties:average thickness 207μm, surface porosity 1.28%, average breaking load 21 109.48 N, and average fracture strength 41.66 MPa. The organic silicon coating has good adhesion strength, solvent resistance, and thermal resistance. The electromagnetic induction performance of the cooker meets the enterprise standard.

  15. Improved Geoarchaeological Mapping with Electromagnetic Induction Instruments from Dedicated Processing and Inversion

    Christiansen, Anders Vest; Pedersen, Jesper Bjergsted; Auken, Esben


    interesting possibilities for archaeological prospecting. However, it is commonly assumed that the instrument operates in what is referred to as Low Induction Number, or LIN. Here, we detail the problems of the approximations while discussing a best practice for EMI measurements, data processing...

  16. 3D virtuel udstilling

    Tournay, Bruno; Rüdiger, Bjarne


    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  17. Massively parallel code named NEPTUNE for 3D fully electromagnetic and PIC simulations%3维全电磁粒子模拟大规模并行程序NEPTUNE

    董烨; 董志伟; 周海京; 陈虹; 莫则尧; 陈军; 杨温渊; 赵强; 夏芳; 肖丽; 马彦; 廖丽; 孙会芳


    介绍了自主编制的3维全电磁粒子模拟大规模并行程序NEPTUNE的基本情况.该程序具备对多种典型高功率微波源器件的3维模拟能力,可以在数百乃至上千个CPU上稳定运行.该程序使用时域有限差分(FDTD)方法更新计算电磁场,采用Buneman-Boris算法更新粒子运动状态,运用质点网格法(PIC)处理粒子与电磁场的耦合关系,最后利用Boris方法求解泊松方程对电场散度进行修正,以确保计算精度.该程序初步具备复杂几何结构建模能力,可以对典型高功率微波器件中常见的一些复杂结构,如任意边界形状的轴对称几何体、正交投影面几何体,慢波结构、耦合孔洞、金属线和曲面薄膜等进行几何建模.该程序将理想导体边界、外加波边界、粒子发射与吸收边界及完全匹配层边界等物理边界应用于几何边界上,实现了数值计算的封闭求解.最后以算例的形式,介绍了使用NEPTUNE程序对磁绝缘线振荡器、相对论返波管、虚阴极振荡器及相对论速调管等典型高功率微波源器件进行的模拟计算情况,验证了模拟计算结果的可靠性,同时给出了并行效率的分布情况.%A massively parallel code named NEPTUNE for 3D fully electromagnetic and particle-in-cell(PIC) simulations is introduced , which can run on the Linux system with hundreds or even thousands of CPUs. NEPTUNE is capable of three-dimensional simulation of various typical high power microwave( HPM) devices. In NEPTUNE code, electromagnetic fields are updated by using finite-difference time-domain (FDTD) method to solve Maxwell equations and particles are moved by using Buneman-Boris method to solve the relativistic Newton-Lorentz equation. The electromagnetic fields and particles are coupled by using linear weighing interpolation PIC method, and the electric field components are corrected by using Boris method to solve the Poisson e-quation in order to ensure charge

  18. 3D Printed Terahertz Focusing Grating Couplers

    Jahn, David; Weidenbach, Marcel; Lehr, Jannik; Becker, Leonard; Beltrán-Mejía, Felipe; Busch, Stefan F.; Balzer, Jan C.; Koch, Martin


    We have designed, constructed and characterized a grating that focuses electromagnetic radiation at specific frequencies out of a dielectric waveguide. A simple theoretical model predicts the focusing behaviour of these chirped gratings, along with numerical results that support our assumptions and improved the grating geometry. The leaky waveguide was 3D printed and characterized at 120 GHz demonstrating its potential for manipulating terahertz waves.

  19. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells

    Mortazavi S.M.J.


    Full Text Available Background: Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Objective: Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS in human mononuclear cells, monocytes and lymphocytes as defence system cells. Method: 6 ml Peripheral Blood samples were obtained from 13 healthy volunteers (21-30 year-old. Each sample was devided into 2 groups: one was exposed RF radiation emitted from a mobile phone simulator for 2 hour and the other used as control group which was not exposed to any fields. After that, mononuclear cells were isolated from peripheral blood by density gradient centrifugation in Ficoll-Paque. The intracellular ROS content in monocytes and lymphocytes was measured by the CM-H2DCFDA fluorescence probe using flowcytometry technique. Results: Our results showed significant increase in ROS production after exposure in population rich in monocytes. This effect was not significant in population rich in lymphocytes in comparison with non exposed cells. Conclusion: The results obtained in this study clearly showed the oxidative stress induction capability of RF electromagnetic field in the portion of PBMCs mostly in monocytes, like the case of exposure to micro organisms, although the advantages or disadvantages of this effect should be evaluated.

  20. Blender 3D cookbook

    Valenza, Enrico


    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  1. 3D Digital Modelling

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  2. Analysis of Design Variables of Annular Linear Induction Electromagnetic Pump using an MHD Model

    Kwak, Jae Sik; Kim, Hee Reyoung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)


    The generated force is affected by lots of factors including electrical input, hydrodynamic flow, geometrical shape, and so on. These factors, which are the design variables of an ALIP, should be suitably analyzed to optimally design an ALIP. Analysis on the developed pressure and efficiency of the ALIP according to the change of design variables is required for the ALIP satisfying requirements. In this study, the design variables of the ALIP are analyzed by using ideal MHD analysis model. Electromagnetic force and efficiency are derived by analyzing the main design variables such as pump core length, inner core diameter, flow gap and turns of coils. The developed pressure and efficiency of the ALIP were derived and analyzed on the change of the main variables such as pump core length, inner core diameter, flow gap, and turns of coils of the ALIP.

  3. Induction of Oxidation in Living Cells by Time-Varying Electromagnetic Fields

    Stolc, Viktor


    We are studying how biological systems can harness quantum effects of time varying electromagnetic (EM) waves as the time-setting basis for universal biochemical organization via the redox cycle. The effects of extremely weak EM field on the biochemical redox cycle can be monitored through real-time detection of oxidation-induced light emissions of reporter molecules in living cells. It has been shown that EM fields can also induce changes in fluid transport rates through capillaries (approximately 300 microns inner diameter) by generating annular proton gradients. This effect may be relevant to understanding cardiovascular dis-function in spaceflight, beyond the ionosphere. Importantly, we show that these EM effects can be attenuated using an active EM field cancellation device. Central for NASA's Human Research Program is the fact that the absence of ambient EM field in spaceflight can also have a detrimental influence, namely via increased oxidative damage, on DNA replication, which controls heredity.

  4. Professional Papervision3D

    Lively, Michael


    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  5. AE3D


    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  6. 3D printed bionic ears.

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C


    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  7. Rigorous electromagnetic field model based on waveguide method for 3D thick resist lithography simulation%严格电磁场波导方法的三维厚胶光刻工艺仿真

    王禹欣; 周再发; 华杰; 王飞; 徐焕文; 黄庆安


    SU-8 thick resist lithography has become the mainstream technology for structures with high aspect ratio in the micro-electro-mechanical system (MEMS)and integrated circuits (ICs).So as to replace ex-pensive and time-consuming lithographic experiments,lithography simulation becomes an increasingly valuable tool for predicting results and optimizing manufacture process.A three-dimensional (3D)lithography simula-tion model is developed for the ultraviolet (UV)process of SU-8 resist.The model utilizes waveguide (WG) method based on rigorous electromagnetic field theory,which is more comprehensive than its two-dimension counterparts.Using this model,the light intensity distribution and morphology of photoresist after develop-ment process can be stereoscopically predicted.A series of simulations and experiments have been conducted to verify the validity of the model.The study is carried out on SU-8 under UV source with 365 nm and 2.6 mW/cm2 .Simulation results are given by cross section image and stereogram combined with corresponding experi-mental outcome.The results confirm the validity of the simulation model and prove that the 3D hybrid model is faster than other methods and remains accurate.%无论是在微机电系统(MEMS)还是集成电路(IC)领域,SU-8厚胶光刻已经成为制造高深宽比结构的主流工艺。为了取代昂贵而耗时的光刻实验,一套能够良好预测显影形貌,从而为优化光刻制造提供有效帮助的光刻仿真软件就成为必要而有价值的工具。基于严格电磁场波导法的理论,给出一种针对 SU-8光刻胶在紫外光下的三维光刻仿真模型。利用该模型,能很好地预测显影后的光刻胶内光强分布和立体形貌。并完成了一系列仿真和实验结果来验证模型的有效性。仿真结果给出横截面光强分布图和显影立体形貌模拟图形,并与相应的实验结果进行对照。结果验证了本文提出的仿真模型的正确性

  8. Estimation of soil salinity by using Markov Chain Monte Carlo simulation for multi-configuration electromagnetic induction measurements

    Jadoon, K. Z.; Altaf, M. U.; McCabe, M. F.; Hoteit, I.; Moghadas, D.


    In arid and semi-arid regions, soil salinity has a major impact on agro-ecosystems, agricultural productivity, environment and sustainability. High levels of soil salinity adversely affect plant growth and productivity, soil and water quality, and may eventually result in soil erosion and land degradation. Being essentially a hazard, it's important to monitor and map soil salinity at an early stage to effectively use soil resources and maintain soil salinity level below the salt tolerance of crops. In this respect, low frequency electromagnetic induction (EMI) systems can be used as a noninvasive method to map the distribution of soil salinity at the field scale and at a high spatial resolution. In this contribution, an EMI system (the CMD Mini-Explorer) is used to estimate soil salinity using a Bayesian approach implemented via a Markov chain Monte Carlo (MCMC) sampling for inversion of multi-configuration EMI measurements. In-situ and EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water using a drip irrigation system. The electromagnetic forward model is based on the full solution of Maxwell's equation, and the subsurface is considered as a three-layer problem. In total, five parameters (electrical conductivity of three layers and thickness of top two layers) were inverted and modeled electrical conductivities were converted into the universal standard of soil salinity measurement (i.e. using the method of electrical conductivity of a saturated soil paste extract). Simulation results demonstrate that the proposed scheme successfully recovers soil salinity and reduces the uncertainties in the prior estimate. Analysis of the resulting posterior distribution of parameters indicates that electrical conductivity of the top two layers and the thickness of the first layer are well constrained by the EMI measurements. The proposed approach allows for quantitative mapping and monitoring of the spatial electrical conductivity

  9. Induction

    Sprogøe, Jonas; Elkjaer, Bente


    The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning.......The purpose of this paper is to explore how induction of newcomers can be understood as both organizational renewal and the maintenance of status quo, and to develop ways of describing this in terms of learning....

  10. Radiochromic 3D Detectors

    Oldham, Mark


    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. 3D Spectroscopic Instrumentation

    Bershady, Matthew A


    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  12. 3D Projection Installations

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle


    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  13. Interaktiv 3D design

    Villaume, René Domine; Ørstrup, Finn Rude


    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  14. Lack of genotoxic effects (micronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields.

    Zeni, O; Chiavoni, A S; Sannino, A; Antolini, A; Forigo, D; Bersani, F; Scarfì, M R


    In the present study, we investigated the induction of genotoxic effects in human peripheral blood lymphocytes after exposure to electromagnetic fields used in mobile communication systems (frequency 900 MHz). For this purpose, the incidence of micronuclei was evaluated by applying the cytokinesis-block micronucleus assay. Cytotoxicity was also investigated using the cytokinesis-block proliferation index. The experiments were performed on peripheral blood from 20 healthy donors, and several conditions were tested by varying the duration of exposure, the specific absorption rate (SAR), and the signal [continuous-wave (CW) or GSM (Global System of Mobile Communication) modulated signal]. The following exposures were carried out: (1) CW intermittent exposure (SAR = 1.6 W/kg) for 6 min followed by a 3-h pause (14 on/off cycles); (2) GSM signal, intermittent exposure as described in (1); (3) GSM signal, intermittent exposure as described in (1) 24 h before stimulation with phytohemagglutinin (8 on/off cycles); (4) GSM signal, intermittent exposure (SAR = 0.2 W/kg) 1 h per day for 3 days. The SARs were estimated numerically. No statistically significant differences were detected in any case in terms of either micronucleus frequency or cell cycle kinetics.

  15. Feature extraction and processing of spatial frequency-domain electromagnetic induction sensor data for improved landmine discrimination

    Tantum, Stacy L.; Colwell, Kenneth A.; Morton, Kenneth D., Jr.; Scott, Waymond R., Jr.; Collins, Leslie M.; Torrione, Peter A.


    Frequency-domain electromagnetic induction (EMI) sensors have been shown to provide target signatures which enable discrimination of landmines from harmless clutter. In particular, frequency-domain EMI sensors are well-suited for target characterization by inverting a physics-based signal model. In many model-based signal processing paradigms, the target signatures can be decomposed into a weighted sum of parameterized basis functions, where the basis functions are intrinsic to the target under consideration and the associated weights are a function of the target sensor orientation. When spatial data is available, the diversity of the measured signals may provide more information for estimating the basis function parameters. After model inversion, the basis function parameters can be used as features for classifying the target as landmine or clutter. In this work, feature extraction from spatial frequency-domain EMI sensor data is investigated. Results for data measured with a prototype frequency-domain EMI sensor at a standardized test site are presented. Preliminary results indicate that Structured relevance vector machine (sRVM) regression model inversion using spatial data provides stable, and sparse, sets of target features.

  16. Sparse model inversion and processing of spatial frequency-domain electromagnetic induction sensor array data for improved landmine discrimination

    Tantum, Stacy L.; Colwell, Kenneth A.; Scott, Waymond R.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.


    Frequency-domain electromagnetic induction (EMI) sensors have been shown to provide target signatures which enable discrimination of landmines from harmless clutter. In particular, frequency-domain EMI sensors are well-suited for target characterization by inverting a physics-based signal model. In many model-based signal processing paradigms, the target signatures can be decomposed into a weighted sum of parameterized basis functions, where the basis functions are intrinsic to the target under consideration and the associated weights are a function of the target sensor orientation. When sensor array data is available, the spatial diversity of the measured signals may provide more information for estimating the basis function parameters. After model inversion, the basis function parameters can form the foundation of model-based classification of the target as landmine or clutter. In this work, sparse model inversion of spatial frequency-domain EMI sensor array data followed by target classification using a statistical model is investigated. Results for data measured with a prototype frequency-domain EMI sensor at a standardized test site are presented. Preliminary results indicate that extracting physics-based features from spatial frequency-domain EMI sensor array data followed by statistical classification provides an effective approach for classifying targets as landmine or clutter.

  17. Coupling Magnetic Fields and ALE Hydrodynamics for 3D Simulations of MFCG's

    White, D; Rieben, R; Wallin, B


    We review the development of a full 3D multiphysics code for the simulation of explosively driven Magnetic Flux Compression Generators (MFCG) and related pulse power devices. In a typical MFCG the device is seeded with an initial electric current and the device is then detonated. The detonation compresses the magnetic field and amplifies the current. This is a multiphysics problem in that detonation kinetics, electromagnetic diffusion and induction, material deformation, and thermal effects are all important. This is a tightly coupled problem in that the different physical quantities have comparable spatial and temporal variation, and hence should be solved simultaneously on the same computational mesh.

  18. Degradation of phenol wastewater by a new electromagnetic induction photo-catalytic reactor

    Yuan, X. C.; Meng, Q. H.; Sun, J. Y.; Yan, Y.; Li, L.; Li, G. C.; Li, D.


    A new inductive photo-catalytic reactor was obtained by the alternative magnetic field and optical coupling, which was driven by AC supply. In the cylinder reactor, UV-LED lights with the wavelength of 375-380nm were evenly distributed, and the phenol solution was used as simulated wastewater. The effects of initial phenol concentration, pH, TiO2, H2O2, alternative magnetic frequency, current, and reaction time on the phenol degradation were investigated under an imposed alternative magnetic field. The optimized conditions and results were as follows: phenol concentrations of 15mg/L, pH of 7, H2O2 of 15μL, TiO2 of 0.18g and alternative magnetic frequency of 12 KHz and current of 2A. With these conditions, the phenol degradation ratio reached 47.1% in 1 h reaction time. The new reactor is very promising for the effective treatment of refractory organic pollutants.

  19. Tangible 3D Modelling

    Hejlesen, Aske K.; Ovesen, Nis


    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...

  20. Shaping 3-D boxes

    Stenholt, Rasmus; Madsen, Claus B.


    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  1. 3D Wire 2015

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  2. 3D photoacoustic imaging

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.


    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  3. Electromagnetic and thermal modelling of induction motors, by accounting for space harmonics; Modelisation electromagnetique et thermique des moteurs a induction, en tenant compte des harmoniques d'espace

    Mezani, S.


    This work is interested in the study of the electromagnetic and thermal behaviors of the induction motor. A state of the art is initially drawn up, where we have presented and discussed the current methods dealing with electromagnetic and thermal modeling of induction motors. An electromagnetic model, that uses the 2D complex finite element method to solve the field equations, is developed. The rotor movement is accounted for by coupling the air gap field, for each space harmonic, using the double air gap method. The superposition principle permits the determination of the final solution. To deal with non linear problems, an approach that introduces equivalent reluctivities, is proposed. We have assumed that the saturation is only due to the first space harmonic. A thermal model is elaborated by using the nodal method. The machine is cut up into 11 cylindrical lumped elements, the thermal model represents the juxtaposition of these lumped elements. The electromagnetic and thermal models are, weakly, coupled together for a more precise determination of the temperature distribution inside the motor. In the validation phase of our work, we have designed a test bench that allows specific torque and temperature measurements. The comparison of the calculations and the measurements is satisfactory. (author)

  4. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen; Maher, Simon


    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting's theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond.

  5. A physical model for low-frequency electromagnetic induction in the near field based on direct interaction between transmitter and receiver electrons

    Smith, Ray T.; Jjunju, Fred P. M.; Young, Iain S.; Taylor, Stephen


    A physical model of electromagnetic induction is developed which relates directly the forces between electrons in the transmitter and receiver windings of concentric coaxial finite coils in the near-field region. By applying the principle of superposition, the contributions from accelerating electrons in successive current loops are summed, allowing the peak-induced voltage in the receiver to be accurately predicted. Results show good agreement between theory and experiment for various receivers of different radii up to five times that of the transmitter. The limitations of the linear theory of electromagnetic induction are discussed in terms of the non-uniform current distribution caused by the skin effect. In particular, the explanation in terms of electromagnetic energy and Poynting’s theorem is contrasted with a more direct explanation based on variable filament induction across the conductor cross section. As the direct physical model developed herein deals only with forces between discrete current elements, it can be readily adapted to suit different coil geometries and is widely applicable in various fields of research such as near-field communications, antenna design, wireless power transfer, sensor applications and beyond. PMID:27493580

  6. Development and First Results of a new Airplane Based Fixed Wing Electromagnetic Induction Sea Ice Thickness Sounder

    Rabenstein, L.; Lobach, J.; Haas, C.


    Regular observation of Arctic and Antarctic sea ice thickness is of high importance for a better understanding of processes of climate change in polar regions. For regular and accurate observations of polar sea ice thickness a long range airborne device is necessary. Airborne electromagnetic induction (AEM) sounding was found to be an ideal method for accurate and wide area sea ice thickness measurements. As a consequence of five years of successful helicopter electromagnetic (HEM) sea ice thickness measurements and to overcome helicopter range restrictions, the Alfred Wegener Institute (AWI) constructed a new airplane based fixed wing EM system. The first test flights were carried out in 2006 over the North Sea and in April 2007 in Svalbard, where the system's performance was proven under arctic conditions. The system operates in frequency domain with 1990 Hz and a vertical coplanar coil configuration. Thus the system produces a horizontal dipole. The coils are mounted beneath the wings with a separation of 11.6 meters. The airplane, a Dornier 228, is also equipped with a laser altimeter to determine the altitude of the instrument with an accuracy of 2cm. The compensation of the transmitter signal at the receiver coil is done electronically. Flights over open sea are used for the calibration of the system, because the ocean functions as a homogeneous half space with well known conductivity. A data acquisition computer records four voltages with a sample rate of 10 Hz. These are the reference voltage of the transmitter, the compensated and raw receiver voltages and the compensation signal. The laser height is recorded with a sample rate of 100 Hz to account for surface roughness. EM instruments for sea ice thickness sounding should have a vertical resolution of 10cm but due to the electrical noise caused by the airplane engines this was not easy to achieve. To account for the noise a time average filter is used. Alternatively, in order to keep the original

  7. Unoriented 3d TFTs

    Bhardwaj, Lakshya


    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  8. Using the Electromagnetic Induction Method to Connect Spatial Vegetation Distributions with Soil Water and Salinity Dynamics on Steppe Grassland

    Jiang, Z.; Li, X.; Wu, H.


    In arid and semi-arid areas, plant growth and productivity are obviously affected by soil water and salinity. But it is not easy to acquire the spatial and temporal dynamics of soil water and salinity by traditional field methods because of the heterogeneity in their patterns. Electromagnetic induction (EMI), for its rapid character, can provide a useful way to solve this problem. Grassland dominated by Achnatherum splendens is an important ecosystem near the Qinghai-Lake watershed on the Qinghai-Tibet Plateau in northwestern China. EMI surveys were conducted for electrical conductivity (ECa) at an intermediate habitat scale (a 60×60 m experimental area) of A. splendens steppe for 18 times (one day only for one time) during the 2013 growing season. And twenty sampling points were established for the collection of soil samples for soil water and salinity, which were used for calibration of ECa. In addition, plant species, biomass and spatial patterns of vegetation were also sampled. The results showed that ECa maps exhibited distinctly spatial differences because of variations in soil moisture. And soil water was the main factor to drive salinity patterns, which in turn affected ECa values. Moreover, soil water and salinity could explain 82.8% of ECa changes due to there was a significant correlation (Psalinity. Furthermore, with higher ECa values closer to A. splendens patches at the experimental site, patterns of ECa images showed clearly temporal stability, which were extremely corresponding with the spatial pattern of vegetation. A. splendens patches that accumulated infiltrating water and salinity and thus changed long-term soil properties, which were considered as "reservoirs" and were deemed responsible for the temporal stability of ECa images. Hence, EMI could be an indicator to locate areas of decreasing or increasing of water and to reveal soil water and salinity dynamics through repeated ECa surveys.

  9. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    Jadoon, Khan Zaib


    Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract – ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.

  10. The Inhibitory Effect of Camellia sinensis Extract on Decreasing Inductive Teratogenicity of Low Frequency Electromagnetic Field in Liver and Spleen of Balb/C Rat Embryo

    Javad Baharara


    Full Text Available Background: Many studies have an emphasis on Reactive Oxygen Species (ROS formation by electromagnetic field. Camellia sinensis is enriched with antioxidants and the antioxidants can neutralize the effects of ROS. In this study, the effect of Camellia sinensis extract on decreasing the inductive teratogenicity of the electromagnetic field (frequency 50Hz and intensity 50G in liver and spleen of Balb/C embryonic rat is examined. Materials and Methods: Twenty-four heads of pregnant female rat (Balb/C were divided into four groups: control group, experimental test group (off-device, empirical group1 (electromagnetic field 50 Gauss, empirical group2 (treated using Camellia sinensis extract + electromagnetic field 50 Gauss, in this empirical-experimental study. Then, liver and spleen tissue cross sections of 19-day embryos were prepared for histological assessments after weight and Crown-Rump length were measured. Resulting quantitative data was analyzed using ANOVA statistical tests and Tukey test with the significance level (p<0.05.Results: In examination of tissue sections, mean lymphocyte number of spleen in empirical group 1 showed a significant difference (p=0.001 comparing to the experimental control group, whereas mean lymphocyte number of spleen in empirical group 1 showed a significant difference (p=0.001 comparing to empirical group 2. Mean number of liver hepatocytes empirical samples 2 showed a significant decrease (p=0.004 comparing to the experimental control group, and mean number of liver hepatocytes empirical samples 2 showed a significant decrease (p=0.042 comparing to empirical samples 1. Conclusion: Consumption of Camellia sinensis could compensate for the inductive impairments in many cells electromagnetic fields, but it is not recommended in pregnancy period cause of changing the number of some cells.

  11. 3D and beyond

    Fung, Y. C.


    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  12. 3D Surgical Simulation

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael


    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308


    Ms. Swapnali R. Ghadge


    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  14. Analytical solution of electromagnetic field generated by induction logging tool in a fan-ring slot of drill collar while drilling


    Based on the structural characteristic of metal drill collar for induction logging while drilling, we have given the analytical formulae of lengthways fields Ez and Hz when the tool is located in a fan-ring shaped slot of drill collar by the boundary conditions of electromagnetic field, and derived the other components of electromagnetic field in and out the fan-ring slot from Ez and Hz. In the other intervals of formation, where the drill collar is a solid cylinder, the analytical formulae of field are educed through the method of variable coefficient. The total analytical solutions of field in whole space have been obtained. With the help of the analytical formulae, we have also given numerical examples and analyzed the distributive characteristic of electromagnetic field. From the computational results we find that the secondary scattering field Hz is in a linear relation with the conductivity of stratum. The characteristic of field is very useful for induction logging while drilling, which can be used to measure and analyze the logging responses of the stratum conductivity. This paper sets up a theoretical foundation for us to study the distrbutions of field and to direct the design of logging instruments.

  15. An Analysis of Stick Cutting Magnetic Induction Line in Electromagnetic Induction%电磁感应中杠切割磁感线问题分类解析



    Electromagnetic induction is a difficult part in electromagnetism and how to break and how to analyze is the key point. This paper introduces horizontal bar and parallel bars cutting starting off from cutting, and systemically solve comprehensive problems%电磁感应问题是电磁学中较难的一部分,如何突破、如何分析是文章的重点。本文从切割入手,分别介绍了单杠与双杠切割问题.比较系统地解决了电磁与力学问题的综合问题。

  16. Using an electromagnetic induction sensor to estimate mass and depth of metal objects in a former battlefield

    Smetryns, Marthe; Saey, Timothy; Note, Nicolas; Van Meirvenne, Marc


    Electromagnetic induction (EMI) sensors are used to perform a non-invasive geophysical survey of land, revealing electrical and magnetic properties of the soil. The technique is used for a variety of agricultural and archaeological purposes to map the soil and locate buried archaeological objects. Besides this, EMI sensors have proven effective to detect metal objects, like the metal remains of the First World War (WW1) in the Western part of Belgium. Most EMI sensors employed for metal detection rely on a single or multiple signal(s) coming from one receiver coil. In this research a multiple coil EMI sensor was used to survey several fields in the former war zone of WW1. This sensor, the DUALEM-21S sensor, consists of one transmitter and four receiver coils leading to four simultaneous measurements of the electric and magnetic properties of the soil. After mapping the fields, the possible metal objects were delineated based on a combination of all electrical measurements and safely excavated. By combining the signals from the different coil configurations, depth intervals for the buried metal objects were assigned to all selected anomalies. This way the metal objects could be located either within the plough layer (0 - 0.45 m), just underneath the plough layer (0.45 - 0.70 m) or deeper than 0.70 m under the surface. Finally, mass models were established within every depth interval to be able to predict the metal mass of every selected anomaly . This methodology was successfully validated in another field where several metal objects were buried. Finally, it was applied on several arable fields at a different location within the former WW1 front zone. Fields located in the centre of the former war zone contained more than 400 metal pieces per hectare, most of them just underneath the plough layer. Fields on the edge of the former war zone contained substantially less metal items per hectare. To conclude, the developed methodology can be employed to differentiate

  17. Inquiry Teaching Design for Faraday' s Electromagnetic Induction Law%“法拉第电磁感应定律”探究式教学设计



    This paper is a teaching design for faraday's electromagnetic induction law, and it aims at teaching students scientific thinking methods, motivating students' inquiry awareness and cultivating students' innovative ability.%本文为“法拉第电磁感应定律”一节的教学设计,该教学设计旨在教给学生科学思维的方法,激发学生的探究意识,培养学生的创新能力。

  18. 3D printing for dummies

    Hausman, Kalani Kirk


    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  19. Intraoral 3D scanner

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther


    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  20. Martian terrain - 3D


    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. 3D Erosion Simulation Method and Analysis of Electromagnetic Rail Mechanism%导轨式电磁驱动装置三维烧蚀仿真方法及分析

    关晓存; 鲁军勇; 康军; 张晓


    Based on multi-field coupling theory (assuming that the armature surface wear was mostly melted wear),electromagnetic-temperature field coupled physics equations were derived by use of considering armature erosion.APDL language was used to work out the correspond-ing program,and electromagnetic field and temperature field distribution of armature were ana-lyzed with the help of considering the armature three-dimensional erosion.Finally,armature three-dimensional erosion distribution was compared with the distribution of IAT armature test results,and the results showed that:in the movement of block armature,the erosion firstly occurs in the front contact surface between the guide rail and the armature.Under the condi-tion of only considering the Joule heat,the armature was distributed more consistent,and the difference between the edges on both sides of the armature was larger;under the conditions of consi-dering and not considering the erosion,the distributions of electromagnetic field and tem-perature field were very different.This research can provide theoretical basis for revealing the erosion mechanism of the electromagnetic rail gun.%基于多场耦合理论,推导出考虑烧蚀的电磁场-温度场耦合的物理方程。利用 APDL 语言编制相应程序,分析了在考虑电枢烧蚀条件下的电流密度和温度的分布状况。电枢三维烧蚀分布与 IAT试验结果分布进行对比结果表明块状电枢在导轨间运动过程中,烧蚀首先发生在导轨与电枢接触面前端边缘。在仅考虑焦耳热情况下,电枢前端烧蚀分布比较一致,电枢两侧边缘差别较大;考虑烧蚀和不考虑烧蚀情况下电磁场和温度场分布存在很大不同。此研究为揭示电磁驱动装置烧蚀机理奠定理论基础。

  2. 3D Printing an Octohedron

    Aboufadel, Edward F.


    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  3. Salient Local 3D Features for 3D Shape Retrieval

    Godil, Afzal


    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  4. Electrical performance analysis of HTS synchronous motor based on 3D FEM

    Baik, S. K.; Kwon, Y. K.; Kim, H. M.; Lee, J. D.; Kim, Y. C.; Park, G. S.


    A 1-MW class superconducting motor with High-Temperature Superconducting (HTS) field coil is analyzed and tested. This machine is a prototype to make sure applicability aimed at generator and industrial motor applications such as blowers, pumps and compressors installed in large plants. This machine has the HTS field coil made of Bi-2223 HTS wire and the conventional copper armature (stator) coils cooled by water. The 1-MW class HTS motor is analyzed by 3D electromagnetic Finite Element Method (FEM) to get magnetic field distribution, self and mutual inductance, and so forth. Especially excitation voltage (Back EMF) is estimated by using the mutual inductance between armature and field coils and compared with experimental result. Open and short circuit tests were conducted in generator mode while a 1.1-MW rated induction machine was rotating the HTS machine. Electrical parameters such as mutual inductance and synchronous inductance are deduced from these tests and also compared with the analysis results from FEM.

  5. Calculation and Measurement of Coil Inductance Profile in Tubular Linear Reluctance Motor and its Validation by Three Dimensional FEM

    Mosallanejad, Ali; Shoulaie, Abbas


    This paper reports a study of coil inductance profile in all positions of plunger in tubular linear reluctance motors (TLRMs) with open type magnetic circuits. In this paper, maximum inductance calculation methods in winding of tubular linear reluctance motors are described based on energy method. Furthermore, in order to calculate the maximum inductance, equivalent permeability is measured. Electromagnetic finite-element analysis for simulation and calculation of coil inductance in this motor is used. Simulation results of coil inductance calculation using 3-D FEM with coil current excitation is compared to theoretical and experimental results. The comparison yields a good agreement.

  6. 3D Spectroscopy in Astronomy

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco


    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  7. Spherical 3D isotropic wavelets

    Lanusse, F.; Rassat, A.; Starck, J.-L.


    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at

  8. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    Telea, Alexandru; Wijk, Jarke J. van


    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  9. 3D Elevation Program—Virtual USA in 3D

    Lukas, Vicki; Stoker, J.M.


    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  10. Interactive 3D multimedia content

    Cellary, Wojciech


    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  11. A 3-D Contextual Classifier

    Larsen, Rasmus


    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  12. 3D Bayesian contextual classifiers

    Larsen, Rasmus


    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  13. 3-D printers for libraries

    Griffey, Jason


    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  14. 3D for Graphic Designers

    Connell, Ellery


    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  15. Wireless Power Transfer in 3D Space



    Full Text Available The main objective of this project is to develop a system of wireless power transfer in 3D space. This concept based on low frequency to high frequency conversion. High frequency power is transmit between air-core and inductor. This work presents an experiment for wireless energy transfer by using the Inductive resonant coupling (also known as resonant energy transfer phenomenon. The basic principles will be presented about this physical phenomenon, the experiment design, and the results obtained for the measurements performed on the system. The parameters measured were the efficiency of the power transfer, and the angle between emitter and receiver. We can achieve wireless power transfer up to 10watts in 3D space using high frequency through tuned circuit. The wireless power supply is motivated by simple and comfortable use of many small electric appliances with low power input.

  16. 引信电磁感应系统电磁兼容性设计%EMC Design of Electromagnetic Induction System on Fuze

    解立洋; 曹翔明; 陈荷娟


    The EMC design on the fuze is paid attention increasingly. The EMC design of the electromagnetic induction system by which the fuze communicates with the platform quickly in shell launching is elaborated. The aim of the design is to improve the anti-interferenca performance of the system and to optimize the system structure. The characteristic of electromagnetic field of the launch coil the carrier wave frequency of which is 20 MHz is analyzed by graphical and analytical methods. The electromagnetic field which is resulted from the launch coil in single-group or double-group winding methods is simulated respectively by Matlab, by which we can find tha launch coil in double-group winding method can produce a more stable electromagnetic field. The finite element modes of the launching system and the receiving system are modeled by Ansys.By the FEM simulation, the shield cover made of aluminum or coppar and the air release equipment made of aluminum can control electromagnetic radiation effectively. It is tested by the experiments that the optimized structure meet with tha EMC requirements of GJB.%电磁兼容性设计在引信中越来越引起重视.对发射中引信与平台快速信息交联的电磁感应系统进行电磁兼容性设计,目的是提高系统的抗干扰性和优化结构.用图解及解析分析法分析20 MHz载波发射线圈的电磁场特性,对单、双组绕线感应磁场进行数值仿真表明,双组绕法电磁场更稳定.建立感应系统发射场和接收系统的Ansys有限元模型,通过仿真模拟证实屏蔽罩用铝或铜、泄气装置用铝可有效控制电磁辐射.实验验证表明,优化后结构满足国军标电磁兼容性的要求.

  17. Spherical 3D Isotropic Wavelets

    Lanusse, F; Starck, J -L


    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  18. Improvement of 3D Scanner


    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  19. 3D Printing for Bricks

    ECT Team, Purdue


    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  20. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    Mallan, R; Wilt, M; Kirkendall, B; Kasameyer, P


    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series of three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of

  1. Effect of inductive and capacitive coupling on the current-voltage characteristic and electromagnetic radiation from a system of Josephson junctions

    Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Zemlyanaya, E. V.; Bashashin, M. V.


    We have studied the current-voltage characteristic of a system of long Josephson junctions taking into account the inductive and capacitive coupling. The dependence of the average time derivative of the phase difference on the bias current and spatiotemporal dependences of the phase difference and magnetic field in each junction are considered. The possibility of branching of the current-voltage characteristic in the region of zero field step, which is associated with different numbers of fluxons in individual Josephson junctions, is demonstrated. The current-voltage characteristic of the system of Josephson junctions is compared with the case of a single junction, and it is shown that the observed branching is due to coupling between the junctions. The intensity of electromagnetic radiation associated with motion of fluxons is calculated, and the effect of coupling between junctions on the radiation power is analyzed.

  2. 3D vision system assessment

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad


    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  3. PLOT3D user's manual

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.


    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  4. 3D printing in dentistry.

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A


    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  5. Using 3D in Visualization

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen


    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  6. Use of electromagnetic induction tomography for monitoring liquid metal/gas flow regimes on a model of an industrial steel caster

    Terzija, N.; Yin, W.; Gerbeth, G.; Stefani, F.; Timmel, K.; Wondrak, T.; Peyton, A. J.


    Monitoring of the steel flow through the submerged entry nozzle (SEN) during continuous casting presents a challenge for the instrumentation system because of the high temperature environment and the limited access to the nozzle in between the tundish and the mould. Electromagnetic inductance tomography (EMT) presents an attractive tool to visualize the steel flow profile within the SEN. In this paper, we investigate various flow regimes over a range of stopper positions and gas volume flow rates on a model of a submerged entry nozzle. A scaled (approximately 10:1) experimental rig consisting of a tundish, stopper rod, nozzle and mould was used. Argon gas was injected through the centre of the stopper rod and the behaviour of the two-phase GaInSn/argon flow was studied. The experiments were performed with GaInSn as an analogue for liquid steel, because it has similar conductive properties as molten steel and allows measurements at room temperature. The electromagnetic system used in our experiments to monitor the behaviour of the two-phase GaInSn/argon flow consisted of an array of eight equally spaced induction coils arranged around the object, a data acquisition system and a host computer. The present system operates with a sinusoidal excitation waveform with a frequency of 40 kHz and the system has a capture rate of 40 frames per second. The results show the ability of the system to distinguish the different flow regimes and to detect the individual bubbles. Sample tomographic images given in the paper clearly illustrate the different flow regimes.

  7. ADT-3D Tumor Detection Assistant in 3D

    Jaime Lazcano Bello


    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  8. Análise do equilíbrio postural estático utilizando um sistema eletromagnético tridimensional Analysis of static postural balance using a 3d electromagnetic system

    José Ailton Oliveira Carneiro


    Full Text Available A detecção precoce de distúrbios posturais é fundamental para a promoção de intervenções adequadas para pacientes com desequilíbrios. OBJETIVO: Este é um estudo piloto que descreve uma nova ferramenta para avaliação do equilíbrio postural estático. FORMA DE ESTUDO: Coorte contemporânea com corte transversal. MATERIAL E MÉTODO: Foram avaliados 25 voluntários (15 mulheres e 10 homens. Idade média de 25,8±4,2anos, peso 63,9±13,1Kg, estatura 1,68±0,08m e índice de massa corporal 22,3±3,3kg/m2. A posturografia foi realizada por meio da análise de oscilação postural utilizando um equipamento eletromagnético com um sensor fixado sobre o processo espinhoso da 1ª vértebra torácica. Os testes foram realizados com os sujeitos na posição ortostática durante 90 segundos, para as condições de olhos abertos (OA e fechados (OF em superfície estável e instável. RESULTADOS: Quando analisada a influência da superfície (estável x instável para o equilíbrio postural na condição OA, foram observadas diferenças significativas nos parâmetros de trajetória médio-lateral (m-l (p=0.004 e total (p=0.014 e de velocidade m-l (p=0.004 e total (p=0.014. Na condição OF, foram observadas diferenças significativas em todos os parâmetros estudados (pEarly detection of postural disorders is essential for timely interventions in patients with imbalance. AIM: A pilot study describing a new tool for evaluating static postural balance. STUDY DESIGN: A cross-sectional study of a contemporary series. MATERIAL AND METHOD: Twenty-five volunteers (15 women and 10 men were evaluated. The mean age was 25.8 ± 4.2 years, the mean weight was 63.9 ± 13.1Kg, the mean height was 1.68 ± 0.08 m and the body mass index was 22.3±3.3kg/m2. Posturography was done by analysing postural sway with an electromagnetic system; a sensor was attached to the skin over the spinous process of the first thoracic vertebra. Tests were carried out with the

  9. Unassisted 3D camera calibration

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.


    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  10. Bioprinting of 3D hydrogels.

    Stanton, M M; Samitier, J; Sánchez, S


    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  11. Tuotekehitysprojekti: 3D-tulostin

    Pihlajamäki, Janne


    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  12. Handbook of 3D integration

    Garrou , Philip; Ramm , Peter


    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  13. Color 3D Reverse Engineering


    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  14. Exploration of 3D Printing

    Lin, Zeyu


    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  15. High performance 3D printed electronics using electroless plated copper

    Jian, Jin Rong; Kim, Taeil; Park, Jae Sung; Wang, Jiacheng; Kim, Woo Soo


    This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM) 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings. Electroless plated copper thin film ensures 3D printed toroidal plastic structures to possess inductive behaviors. The inductance is demonstrated reliably with an applied source frequency from 100 kHz to 2 MHz as designs vary. An RL circuit is utilized to test the fabricated inductors' phase-leading characteristics with corresponding phase angle changes.

  16. Accepting the T3D

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.


    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  17. Advanced 3-D Ultrasound Imaging

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... Field II simulations and measurements with the ultrasound research scanner SARUS and a 3.5MHz 1024 element 2-D transducer array. In all investigations, 3-D synthetic aperture imaging achieved a smaller main-lobe, lower sidelobes, higher contrast, and better signal to noise ratio than parallel...

  18. Conducting polymer 3D microelectrodes

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi


    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  19. 3D Face Apperance Model

    Lading, Brian; Larsen, Rasmus; Astrom, K


    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  20. 3D Face Appearance Model

    Lading, Brian; Larsen, Rasmus; Åström, Kalle


    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...


    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  2. The role of amino acid electron-donor/acceptor atoms in host-cell binding peptides is associated with their 3D structure and HLA-binding capacity in sterile malarial immunity induction

    Patarroyo, Manuel E., E-mail: [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia); Universidad Nacional de Colombia, Bogota (Colombia); Almonacid, Hannia; Moreno-Vranich, Armando [Fundacion Instituto de Inmunologia de Colombia (FIDIC), Bogota (Colombia)


    Highlights: Black-Right-Pointing-Pointer Fundamental residues located in some HABPs are associated with their 3D structure. Black-Right-Pointing-Pointer Electron-donor atoms present in {beta}-turn, random, distorted {alpha}-helix structures. Black-Right-Pointing-Pointer Electron-donor atoms bound to HLA-DR53. Black-Right-Pointing-Pointer Electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. -- Abstract: Plasmodium falciparum malaria continues being one of the parasitic diseases causing the highest worldwide mortality due to the parasite's multiple evasion mechanisms, such as immunological silence. Membrane and organelle proteins are used during invasion for interactions mediated by high binding ability peptides (HABPs); these have amino acids which establish hydrogen bonds between them in some of their critical binding residues. Immunisation assays in the Aotus model using HABPs whose critical residues had been modified have revealed a conformational change thereby enabling a protection-inducing response. This has improved fitting within HLA-DR{beta}1{sup Asterisk-Operator} molecules where amino acid electron-donor atoms present in {beta}-turn, random or distorted {alpha}-helix structures preferentially bound to HLA-DR53 molecules, whilst HABPs having amino acid electron-acceptor atoms present in regular {alpha}-helix structure bound to HLA-DR52. This data has great implications for vaccine development.

  3. Enhancements to the opera-3d suite

    Riley, Christopher P.


    The OPERA-3D suite of programs has been enhanced to include 2 additional 3 dimensional finite element based solvers, with complimentary features in the pre- and postprocessing. SOPRANO computes electromagnetic fields at high frequency including displacement current effects. It has 2 modules—a deterministic solution at a user defined frequency and an eigenvalue solution for modal analysis. It is suitable for designing microwave structures and cavities found in particle accelerators. SCALA computes electrostatic fields in the presence of space charge from charged particle beams. The user may define the emission characteristics of electrodes or plasma surfaces and compute the resultant space charge limited beams, including the presence of magnetic fields. Typical applications in particle accelerators are electron guns and ion sources. Other enhancements to the suite include additional capabilities in TOSCA and ELEKTRA, the static and dynamic solvers.

  4. MPML3D: Scripting Agents for the 3D Internet.

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru


    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  5. From 3D view to 3D print

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.


    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  6. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    Hiltula, Tytti


    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  7. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Schild, Jonas; Seele, Sven; Masuch, Maic


    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  8. 3D future internet media

    Dagiuklas, Tasos


    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet ( The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  9. Materialedreven 3d digital formgivning

    Hansen, Flemming Tvede


    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  10. Novel 3D media technologies

    Dagiuklas, Tasos


    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  11. Speaking Volumes About 3-D


    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  12. Electromagnetic Field Analysis of the Performance of Single-Phase Capacitor-Run Induction Motor Using Composite Rotor Conductor

    Mohd Afaque Iqbal


    Full Text Available Single-phase induction motor (SPIM has very crucial role in industrial, domestic and commercial sectors. So, the efficient SPIM is a major requirement of today’s market. For efficient motors, many research methodologies and suggestions have been given by researchers in past. Various parameters like as stator/rotor slot variation, size and shape of stator/rotor slots, stator/rotor winding configuration, choice of core material etc. have significant impact on machine design. Rotor slot geometry influences the distribution of the magnetic field to a degree. Even a little difference of the magnetic field distribution can make big difference on the performance of the induction motor. The rotor slot geometry influences the skin effect and slot leakage flux in order to increase the torque and efficiency. In this paper, three types of rotor slot configurations are designed and simulated with different rotor slot configuration and rotor bars composition by changing the rotor slot configuration of base model. Aluminum and Copper are used simultaneously as rotor winding material. The rotor bar is a composite conductor which carries Aluminum as well as Copper sub-conductors running parallel in the same slot. Overall cross section area of rotor bar in each model kept same and work is carried out with difference proportion of Aluminum and Copper sub conductors. All models are investigated and simulated in FEMM and finally the simulated results are compared for optimal solution.

  13. 3-D Printed High Power Microwave Magnetrons

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad


    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  14. Biocompatible 3D printed magnetic micro needles

    Kavaldzhiev, Mincho


    Biocompatible functional materials play a significant role in drug delivery, tissue engineering and single cell analysis. We utilized 3D printing to produce high aspect ratio polymer resist microneedles on a silicon substrate and functionalized them by iron coating. Two-photon polymerization lithography has been used for printing cylindrical, pyramidal, and conical needles from a drop cast IP-DIP resist. Experiments with cells were conducted with cylindrical microneedles with 630 ± 15 nm in diameter with an aspect ratio of 1:10 and pitch of 12 μm. The needles have been arranged in square shaped arrays with various dimensions. The iron coating of the needles was 120 ± 15 nm thick and has isotropic magnetic behavior. The chemical composition and oxidation state were determined using energy electron loss spectroscopy, revealing a mixture of iron and Fe3O4 clusters. A biocompatibility assessment was performed through fluorescence microscopy using calcein/EthD-1 live/dead assay. The results show a very high biocompatibility of the iron coated needle arrays. This study provides a strategy to obtain electromagnetically functional microneedles that benefit from the flexibility in terms of geometry and shape of 3D printing. Potential applications are in areas like tissue engineering, single cell analysis or drug delivery.

  15. Modification of 3D milling machine to 3D printer

    Halamíček, Lukáš


    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  16. Aspects of defects in 3d-3d correspondence

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito


    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  17. 高温超导直线感应电机的电磁优化设计%Electromagnetic optimization design of a HTS linear induction motor

    赵佳; 张威; 方进; 杨中平; 郑琼林; 刘友梅


    主要给出了高温超导直线感应电机的设计和电磁分析方法.根据常规直线感应电机设计公式,结合遗传算法和约束条件得到了当前条件下最优化的电机参数.由于高温超导直线感应电机的特殊性,很难用公式法直接得到准确的电机优化参数,因此用有限元电磁分析软件Ansoft对得到的电机模型进行了性能分析,并根据分析结果修改电机参数,直到电机性能满足设计要求为止.%This paper presents the design and the electromagnetic analysis of a high-temperature superconductor (HTS) linear induction motor (LIM). According to the formulas of the normal LIM, combined with genetic algorithm and the constraints, the optimal motor parameters could be obtained. Due to the particularity of the HTS LIM, it's difficult to obtain the accurate motor optimization parameters using the formula method directly. So the model of the motor is made and analyzed using the finite element electromagnetic analysis software Ansoft. According to the results the parameters of the motor will be modified until the characteristics meet the design requirements.

  18. 3-D Vector Flow Imaging

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  19. 3D vector flow imaging

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  20. Markerless 3D Face Tracking

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich


    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  1. 3D Printed Bionic Nanodevices.

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C


    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  2. Microfluidic 3D Helix Mixers

    Georgette B. Salieb-Beugelaar


    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  3. Induction of neuritogenesis in PC12 cells by a pulsed electromagnetic field via MEK-ERK1/2 signaling.

    Kudo, Tada-aki; Kanetaka, Hiroyasu; Shimizu, Yoshinaka; Abe, Toshihiko; Mori, Hitoshi; Mori, Kazumi; Suzuki, Eizaburo; Takagi, Toshiyuki; Izumi, Shin-ichi


    We examined the regulation of neuritogenesis by a pulsed electromagnetic field (PEMF) in rat PC12 pheochromocytoma cells, which can be induced to differentiate into neuron-like cells with elongated neurites by inducers such as nerve growth factor (NGF). Plated PC12 cells were exposed to a single PEMF (central magnetic flux density, 700 mT; frequency, 0.172 Hz) for up to 12 h per day and were then evaluated for extent of neuritogenesis or acetylcholine esterase (AChE) activity. To analyze the mechanism underlying the effect of the PEMF on the cells, its effects on intracellular signaling were examined using the ERK kinase (MEK) inhibitors PD098059 and U0126 (U0124 was used as a negative control for U0126). The number of neurite-bearing PC12 cells and AChE activity increased after PEMF exposure without the addition of other inducers of neuritogenesis. Additionally, PEMF exposure induced sustained activation of ERK1/2 in PC12 cells, but not in NR8383 rat alveolar macrophages. Furthermore, U0126 strongly inhibited PEMF-dependent ERK1/2 activation and neuritogenesis. The PEMF-dependent neuritogenesis was also suppressed by PD098059, but not U0124. These results suggest that PEMF stimulation independently induced neuritogenesis and that activation of MEK-ERK1/2 signaling was induced by a cell-type-dependent mechanism required for PEMF-dependent neuritogenesis in PC12 cells.

  4. Making Inexpensive 3-D Models

    Manos, Harry


    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  5. 3D terahertz beam profiling

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu


    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  6. 3D Printing: Exploring Capabilities

    Samuels, Kyle; Flowers, Jim


    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  7. When Art Meets 3D


    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  8. Priprava 3D modelov za 3D tisk


    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  9. Post processing of 3D models for 3D printing


    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  10. Mapping patterns of soil properties and soil moisture using electromagnetic induction to investigate the impact of land use changes on soil processes

    Robinet, Jérémy; von Hebel, Christian; van der Kruk, Jan; Govers, Gerard; Vanderborght, Jan


    As highlighted by many authors, classical or geophysical techniques for measuring soil moisture such as destructive soil sampling, neutron probes or Time Domain Reflectometry (TDR) have some major drawbacks. Among other things, they provide point scale information, are often intrusive and time-consuming. ElectroMagnetic Induction (EMI) instruments are often cited as a promising alternative hydrogeophysical methods providing more efficiently soil moisture measurements ranging from hillslope to catchment scale. The overall objective of our research project is to investigate whether a combination of geophysical techniques at various scales can be used to study the impact of land use change on temporal and spatial variations of soil moisture and soil properties. In our work, apparent electrical conductivity (ECa) patterns are obtained with an EM multiconfiguration system. Depth profiles of ECa were subsequently inferred through a calibration-inversion procedure based on TDR data. The obtained spatial patterns of these profiles were linked to soil profile and soil water content distributions. Two catchments with contrasting land use (agriculture vs. natural forest) were selected in a subtropical region in the south of Brazil. On selected slopes within the catchments, combined EMI and TDR measurements were carried out simultaneously, under different atmospheric and soil moisture conditions. Ground-truth data for soil properties were obtained through soil sampling and auger profiles. The comparison of these data provided information about the potential of the EMI technique to deliver qualitative and quantitative information about the variability of soil moisture and soil properties.

  11. Information-based sensor management for the intelligent tasking of ground penetrating radar and electromagnetic induction sensors in landmine detection pre-screening

    Kolba, Mark P.; Collins, Leslie M.


    Previous work has introduced a framework for information-based sensor management that is capable of tasking multiple sensors searching for targets among a set of discrete objects or in a cell grid. However, in many real-world scenarios-- such as detecting landmines along a lane or road--an unknown number of targets are present in a continuous spatial region of interest. Consequently, this paper introduces a grid-free sensor management approach that allows multiple sensors to be managed in a sequential search for targets in a grid-free spatial region. Simple yet expressive Gaussian target models are introduced to model the spatial target responses that are observed by the sensors. The sensor manager is then formulated using a Bayesian approach, and sensors are directed to make new observations that maximize the expected information gain between the posterior density on the target parameters after a new observation and the current posterior target parameter density. The grid-free sensor manager is applied to a set of real landmine detection data collected with ground penetrating radar (GPR) and electromagnetic induction (EMI) sensors at a U.S. government test site. Results are presented that compare the performance of the sensor manager with the performance of an unmanaged joint pre-screener that fuses individual GPR and EMI pre-screeners. The sensor manager is demonstrated to provide improved detection performance while requiring substantially fewer sensor observations than are made with the unmanaged joint pre-screening approach.

  12. 线圈炮电枢电磁—热耦合仿真分析%Simulation analysis of electromagnetic-thermal coupling for armature in inductive coilgun

    关晓存; 李治源; 赵然; 程二威


    According to Maxwell's equations and heat-conduction differential equation, a mathematical model is developed to describe the distribution of electromagnetic field, inductive eddy current and thermal field for multi-stage induction coilgun. Based on the finite element method(FEM) analysis of electromagnetic and thermal fields, a three-dimensional FEM model is built. When ignoring the inter-stage effect, armature temperature rise calculated in multi-stage is equivalent to multiple armature temperature rise calculated in single-stage, the practical induction heating quenching process is simulated by using ANSYS software. The rela tionship between the physical parameters of the coilgun and the resulting temperature is considered during the computation. The simulated results indicate that: 1. Temperature rise inside of the armature is concentrated in the exterior surface and the tail of the armature. 2. Temperature of the armature rises when voltage and capacity increases, because of increasing eddy current. 3. Trigger position and speed match relation of the armature influence temperature of the armature greatly. 4. Temperature of the armature in creases by increasing stage numbers of coilgun before the armature is melted. The results provide reference for the multi-stage coilgun project and its application.%从麦克斯韦方程组和导热微分方程出发,导出了3维多级感应线圈炮电磁场、温度场分布的基本方程,并以电磁场和温度场有限元分析为基础,建立了3维有限元分析模型,忽略级间的相互影响,多级线圈炮中电枢温升可以等效为多个单级电枢的温升,运用通用有限元分析软件ANSYS的耦合计算流程,对单级感应线圈炮中电枢电磁场和温度场进行仿真.计算中考虑了材料物理参数随温度变化对温度场的影响.仿真结果表明:电枢内的温升主要分布在电枢的外表面和尾部;电枢的温度随着电容器组电压和电容增加而升高,这是因

  13. Forensic 3D Scene Reconstruction



    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  14. 3D Printed Robotic Hand

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.


    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  15. 3D Printable Graphene Composite.

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong


    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. Medical 3D thermography system



    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  17. 3D silicon strip detectors

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail:; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)


    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  18. Slewing crane with electromagnet


    This paper describes a slewing crane with electromagnet, operated by three three-phase induction motors. A switchboard described in a separate paper, which also depicts the electromagnet construction details, drives the motors and the electromagnet. From its seat – mounted on the crane - an operator can make the crane arm slew left or right. The electromagnet can be moved back, forward, up or down. The crane is made of iron, has a height of 3m and a length of 2,5m. Such proportions make it ve...

  19. Fundamentals of engineering electromagnetism

    Kim, Nam; Yoon, Youngro; Jun, Sukhee; Jun, Hoin


    It indicates fundamentals of engineering electromagnetism. It mentions electromagnetic field model of introduction and International system of units and universal constant, Vector analysis with summary and orthogonal coordinate systems, electrostatic field on Coulomb's law and Gauss's law, electrostatic energy and strength, steady state current with Ohm's law and Joule's law and calculation of resistance, crystallite field with Vector's electrostatic potential, Biot-Savart law and application and Magnetic Dipole, time-Savart and Maxwell equation with potential function and Faraday law of electromagnetic induction, plane electromagnetic wave, transmission line, a wave guide and cavity resonator and antenna arrangement.

  20. Wireless 3D Chocolate Printer



    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  1. Interactive 3D Mars Visualization

    Powell, Mark W.


    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  2. How 3-D Movies Work



    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  3. Virtual 3-D Facial Reconstruction

    Martin Paul Evison


    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  4. Electromagnetic model of a three phase induction motor using finite elements; Modelo electromagnetico de un motor de induccion trifasico usando elementos finitos

    Ruvalcaba Marquez, Carlos


    This thesis shows a non-linear electromagnetic analysis of a three-phase induction machine using the two-dimensional finite element method (2D FEM). It is necessary to solve the diffusion equation to obtain the average magnetic vector potential of the FE machine model. The solution of this equation gives the induced eddy currents locally or globally inside the FE machine model. The induction machine is rated at 2.2 kw, 220 V, 60 Hz, and it can handle two different speeds, 1750/1150 rpm with a current consumption of 9.6/11.0 A, respectively. This machine is at the Laboratorio de Propulsion of the Instituto Tecnologico de la Laguna. The eddy currents induced in the conducting material appear because the FE model of the machine model is supplied by a sinusoidal current; finally, the depth penetration factor is considered on the FE mesh to achieve a better skin effect representation. [Spanish] En este trabajo de tesis se realiza un analisis electromagnetico no lineal de un motor de induccion trifasico empleando el metodo del elemento finito en dos dimensiones. De manera especifica, se calcula el potencial magnetico vectorial promedio del modelo de elemento finito del motor mediante la solucion de la ecuacion de difusion. Al resolver la ecuacion de difusion se obtiene la densidad de corrientes de eddy que se inducen ya sea en sentido local o global en el modelo del motor. El motor de induccion analizado esta disenado para operar a dos velocidades, 1750/1150 rpm, tiene una capacidad de 2.2 kW, 220 V, 9.6/11.0 A, 60 Hz, y se encuentra instalado en el Laboratorio de Propulsion del Instituto Tecnologico de la Laguna. Debido a que el modelo electromagnetico del motor de induccion es alimentado por una fuente de corriente senoidal, se tiene una induccion de corrientes de eddy en el material conductor. En el diseno de la malla se considero el factor de penetracion para lograr una mejor representacion del efecto piel.

  5. Electromagnetic modeling of the rings of the squirrel cage of an induction motor; Modelado electromagnetico de los anillos de la jaula de ardilla de un motor de induccion

    Limones Montoya, Juan Carlos


    An electromagnetic lineal model of a three-phase induction motor was developed in this thesis. The Finite element method in two dimensions was used. The model formulation takes into account the coupling with the stator wires and solid conductors of the rotor. In other words, the stator phases and squirrel-cage end-rings are considered in the model. The resulting set of electric-circuit and magnetic-field equations are solved simultaneously with the Incomplete Cholesky Bi-Conjugate Gradient Method using a matrix storage technique known as symmetric coordinate storage. The model was programmed in the C programming language. The magnetic field model is represented by the diffusion equation, which allows to compute the induced Eddy currents in the conducting material due to the sinusoidal stator excitation. The modelled induction motor has a rated power of 2.2 kW, 220 V, 9.6/11.0 A, 60 Hz and it can be operated at the speeds of 1750/1150 rpm. It is located in the Laboratorio de Propulsion at the Instituto Tecnologico de la Laguna. [Spanish] En este trabajo de tesis se desarrollo un modelo electromagnetico lineal de un motor de induccion trifasico utilizando el Metodo de Elemento Finito en dos dimensiones, en el cual se incluye la formulacion de sistemas acoplados para los conductores delgados y gruesos presentes en el estator y rotor respectivamente. Es decir, se incluyen en el modelo las fases de alimentacion y los anillos de cortocircuito del rotor de jaula de ardilla. Las ecuaciones electricas y magneticas derivadas del modelo se resuelven de manera acoplada con el Metodo del Gradiente BiConjugado con Precondicionamiento de Cholesky Incompleto empleando el sistema de Empaquetamiento de Coordenadas, cuyo codigo se desarrollo en el lenguaje de programacion C. En este modelo se resuelve la ecuacion de difusion, mediante la cual se determinan las corrientes de Eddy que se inducen en el material conductor debido a la presencia de fuentes de alimentacion senoidales. El

  6. Modeling and Finite Element Simulation in Electromagnetic Induction Heating System of Blown Film Extruder%吹膜挤出机的电磁感应加热系统建模与有限元模拟研究

    王超; 柴雄


    为实现吹膜挤出机在电磁感应加热条件下能效的定量分析,对吹膜挤出机电磁感应加热的三维有限元模型进行了研究,导出了对应于指定机筒和螺杆材料的电流透入深度与电磁感应加热器的各设计参数之间的关系;分析了挤出机的机筒与螺杆等关键部件在电磁感应三段式分区加热条件下的磁场分布、电流密度场分布及焦耳热能分布的相对趋势。结果表明,感应磁场主要分布在机筒内表面,而相应的感应电流主要分布在机筒外层,且当机筒上缠绕的3组匝数相同的电磁感应加热线圈中加载有大小相等、方向相同的交变电流时,电流密度和产生的焦耳热能集中在机筒和螺杆的中部,而适当增加进料段与计量段加热区所对应的两组线圈匝数可获得较为均匀的电磁感应加热效果。相对于电阻式加热,电磁感应加热的能量损耗较小,是一种环保节能的吹膜挤出机加热方式。%In order to achieve quantitative analysis of energy efficiency of the blown film extruder in electromagnetic induction heating condition,three dimensional finite element model of the extruder in electromagnetic induction heating condition were studied. The relationships between the current penetration depth with specified barrel and screw material and various design parameters of the electromagnetic induction heater were exported,the relative tendency of magnetic field distribution,current density field distribution and Joule heat field distribution of key components in extruder such as extruder barrel and screw in the three section type electromagnetic induction heating condition was analyzed. The simulation data prove that the induced magnetic field is mainly distributed on inner surface of the barrel,the corresponding induced current is mainly distributed on external layer of the barrel, and when the three group wound electromagnetic induction heating coils with

  7. 3D medical thermography device

    Moghadam, Peyman


    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  8. 3D Printable Graphene Composite

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong


    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  9. Gravito-electromagnetism versus electromagnetism

    Tartaglia, A; Ruggiero, M L [Dipartimento di Fisica, Politecnico and INFN, 10129 Torino (Italy)


    The properties of the gravito-magnetic interaction in non-stationary conditions are discussed. A direct deduction of the equivalent Faraday-Henry law is given. A comparison is made between gravito-magnetic and electromagnetic induction, and it is shown that there is no Meissner-like effect for superfluids in the field of massive spinning bodies. The impossibility of stationary motions in directions not along the lines of the gravito-magnetic field is found. Finally the results are discussed in relation to the behaviour of superconductors.

  10. Arbitrary modeling of TSVs for 3D integrated circuits

    Salah, Khaled; El-Rouby, Alaa


    This book presents a wide-band and technology independent, SPICE-compatible RLC model for through-silicon vias (TSVs) in 3D integrated circuits. This model accounts for a variety of effects, including skin effect, depletion capacitance and nearby contact effects. Readers will benefit from in-depth coverage of concepts and technology such as 3D integration, Macro modeling, dimensional analysis and compact modeling, as well as closed form equations for the through silicon via parasitics. Concepts covered are demonstrated by using TSVs in applications such as a spiral inductor?and inductive-based

  11. 3D biometrics systems and applications

    Zhang, David


    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  12. 3D Printing of Graphene Aerogels.

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong


    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  13. Conducting Polymer 3D Microelectrodes

    Jenny Emnéus


    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  14. Supernova Remnant in 3-D


    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  15. Unification By Induction

    Adewole, A I A


    We show that the problem of unifying electromagnetism with gravity has an elegant solution in classical physics through the phenomenon of induction. By studying the way that induction leads to the formation of electromagnetic fields, we identify the classical field equations which the unified field must satisfy and a corresponding set of constitutive equations for the medium sustaining the field. The unification problem is then reduced to the problem of finding the exact form of these constitutive equations for different media by experiments.

  16. 3D multiplexed immunoplasmonics microscopy

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel


    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  17. Response simulation and theoretical calibration of a dual-induction resistivity LWD tool

    Xu Wei; Ke Shi-Zhen; Li An-Zong; Chen Peng; Zhu Jun; Zhang Wei


    In this paper, responses of a new dual-induction resistivity logging-while-drilling (LWD) tool in 3D inhomogeneous formation models are simulated by the vector finite element method (VFEM), the influences of the borehole, invaded zone, surrounding strata, and tool eccentricity are analyzed, and calibration loop parameters and calibration coefficients of the LWD tool are discussed. The results show that the tool has a greater depth of investigation than that of the existing electromagnetic propagation LWD tools and is more sensitive to azimuthal conductivity. Both deep and medium induction responses have linear relationships with the formation conductivity, considering optimal calibration loop parameters and calibration coefficients. Due to the different depths of investigation and resolution, deep induction and medium induction are affected differently by the formation model parameters, thereby having different correction factors. The simulation results can provide theoretical references for the research and interpretation of the dual-induction resistivity LWD tools.

  18. Kuvaus 3D-tulostamisesta hammastekniikassa

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko


    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  19. 3D Field Simulation of Magnetic Thin Film Inductor

    FUJIWARA, Toshiyasu; CHOI, Kyung-Ku; SATO, SHIGEKI


    The 3D magnetic field simulations with FEM (finite element method) have been performed to predictand understand the performance of Magnetic Thin Film Inductor (MTFl). Inductor structures of planar electroplated Cu spiralcoil, which are sandwiched and underlaid with magnetic thin films, are considered as the simulation models. The inductance increment of 300% compared to air-core inductor was predicted when the sandwiched 5μm thickness magnetic thin film with relative permeability of 600 was a...

  20. Crowdsourcing Based 3d Modeling

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.


    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  1. Magnetic Flux Controllers for Induction Heating Applications

    Valentin Nemkov; Robert Goldstein; Robert Ruffini


    Application of magnetic flux controllers/concentrators to induction heating coils can drastically improve the process efficiency and heat pattern control. Presentation includes: benefits provided by flux controllers, materials available for controllers, application techniques, computer assisted design of induction coils with concentrators, examples of applications. Depending on induction system design, magnetic flux controllers can concentrate heating in a specified area,change heat source distribution and shield a particular part zone or external area preventing unintended eddy current heating.Besides of the coil efficiency improvement and optimal power distribution, magnetic flux controllers reduce the coil current demand from a supplying circuitry thus strongly reducing losses in busswork, cables, transformers and inverter components.Improvement that can be achieved due to magnetic flux controllers is case dependable. 2D and 3D computer simulation allows the designer to predict accurately effect of controllers on the coil parameters and temperature distribution and optimize the whole electromagnetic system. Special attention in presentation is paid to new magnetodielectric materials optimized for induction heating conditions. These materials have high magnetic permeability and saturation flux density,excellent machinability, good chemical and temperature resistance. Concentrators from these materials can work in a wide range of frequencies and specific powers. Examples of magnetic flux controller application include surface hardening of shafts and gears, induction surface hardfacing and brazing.

  2. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  3. Eesti 3D jaoks kitsas / Virge Haavasalu

    Haavasalu, Virge


    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  4. Will 3D printers manufacture your meals?

    Bommel, K.J.C. van


    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  5. An interactive multiview 3D display system

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui


    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  6. Sliding Adjustment for 3D Video Representation

    Galpin Franck


    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  7. Forward ramp in 3D


    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  8. Laser Based 3D Volumetric Display System


    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  9. 3D Printing and Its Urologic Applications.

    Soliman, Youssef; Feibus, Allison H; Baum, Neil


    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  10. Beowulf 3D: a case study

    Engle, Rob


    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  11. 3D Printing and Its Urologic Applications

    Soliman, Youssef; Feibus, Allison H; Baum, Neil


    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  12. Expanding Geometry Understanding with 3D Printing

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi


    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  13. Towards manipulating relativistic laser pulses with 3D printed materials

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U


    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  14. Solar Particle Acceleration at Reconnecting 3D Null Points

    Stanier, Adam J; Dalla, Silvia


    Context: The strong electric fields associated with magnetic reconnection in solar flares are a plausible mechanism to accelerate populations of high energy, non-thermal particles. One such reconnection scenario occurs at a 3D magnetic null point, where global plasma flows give rise to strong currents in the spine axis or fan plane. Aims: To understand the mechanism of charged particle energy gain in both the external drift region and the diffusion region associated with 3D magnetic reconnection. In doing so we evaluate the efficiency of resistive spine and fan models for particle acceleration, and find possible observables for each. Method: We use a full orbit test particle approach to study proton trajectories within electromagnetic fields that are exact solutions to the steady and incompressible magnetohydrodynamic equations. We study single particle trajectories and find energy spectra from many particle simulations. The scaling properties of the accelerated particles with respect to field and plasma para...

  15. A FLOSS Visual EM Simulator for 3D Antennas

    Koutsos, Christos A; Zimourtopoulos, Petros E


    This paper introduces the FLOSS Free Libre Open Source Software [VEMSA3D], a contraction of "Visual Electromagnetic Simulator for 3D Antennas", which are geometrically modeled, either exactly or approximately, as thin wire polygonal structures; presents its GUI Graphical User Interface capabilities, in interactive mode and/or in handling suitable formed antenna data files; demonstrates the effectiveness of its use in a number of practical antenna applications, with direct comparison to experimental measurements and other freeware results; and provides the inexperienced user with a specific list of instructions to successfully build the given source code by using only freely available IDE Integrated Development Environment tools-including a cross-platform one. The unrestricted access to source code, beyond the ability for immediate software improvement, offers to independent users and volunteer groups an expandable, in any way, visual antenna simulator, for a genuine research and development work in the field ...

  16. Developing novel 3D antennas using advanced additive manufacturing technology

    Mirzaee, Milad

    In today's world of wireless communication systems, antenna engineering is rapidly advancing as the wireless services continue to expand in support of emerging commercial applications. Antennas play a key role in the performance of advanced transceiver systems where they serve to convert electric power to electromagnetic waves and vice versa. Researchers have held significant interest in developing this crucial component for wireless communication systems by employing a variety of design techniques. In the past few years, demands for electrically small antennas continues to increase, particularly among portable and mobile wireless devices, medical electronics and aerospace systems. This trend toward smaller electronic devices makes the three dimensional (3D) antennas very appealing, since they can be designed in a way to use every available space inside the devise. Additive Manufacturing (AM) method could help to find great solutions for the antennas design for next generation of wireless communication systems. In this thesis, the design and fabrication of 3D printed antennas using AM technology is studied. To demonstrate this application of AM, different types of antennas structures have been designed and fabricated using various manufacturing processes. This thesis studies, for the first time, embedded conductive 3D printed antennas using PolyLactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) for substrate parts and high temperature carbon paste for conductive parts which can be a good candidate to overcome the limitations of direct printing on 3D surfaces that is the most popular method to fabricate conductive parts of the antennas. This thesis also studies, for the first time, the fabrication of antennas with 3D printed conductive parts which can contribute to the new generation of 3D printed antennas.

  17. 3D-Printed Linear Positioner with Micrometer Accuracy

    Kuo Yin-Yen


    Full Text Available This article presents a positioner, whose flexure main body is made by a commercial 3D printer. Using this method, manufacturing a positioner can be cost efficient and much easier to customize. Integrating a laser displacement sensor, an electromagnetic actuator, and a feedback controller, this positioning system has 100 micron translational stroke with 1 micron resolution. Experiments also demonstrate sinusoidal motions at different frequencies. Using the method developed by this article, micro-positioners with customized specifications can be implemented rapidly, iteratively, and cost-effectively.

  18. Calibration of a High Resolution Airborne 3-D SAR

    Dall, Jørgen; Grinder-Pedersen, Jan; Madsen, S.N.


    (EMI). In order to achieve a high geodetic fidelity when using such systems operationally, calibration procedures must be applied. Inaccurate navigation data and system parameters as well as system imperfections must be accounted for. This paper presents theoretical models describing the impact of key......The potential of across-track interferometric (XTI) synthetic aperture radar (SAR) for producing high resolution 3D imagery has been demonstrated by several airborne systems including EMISAR, the dual frequency, polarimetric, and interferometric SAR developed at the Dept. of Electromagnetic Systems...

  19. 3D shape measurement with thermal pattern projection

    Brahm, Anika; Reetz, Edgar; Schindwolf, Simon; Correns, Martin; Kühmstedt, Peter; Notni, Gunther


    Structured light projection techniques are well-established optical methods for contactless and nondestructive three-dimensional (3D) measurements. Most systems operate in the visible wavelength range (VIS) due to commercially available projection and detection technology. For example, the 3D reconstruction can be done with a stereo-vision setup by finding corresponding pixels in both cameras followed by triangulation. Problems occur, if the properties of object materials disturb the measurements, which are based on the measurement of diffuse light reflections. For example, there are existing materials in the VIS range that are too transparent, translucent, high absorbent, or reflective and cannot be recorded properly. To overcome these challenges, we present an alternative thermal approach that operates in the infrared (IR) region of the electromagnetic spectrum. For this purpose, we used two cooled mid-wave (MWIR) cameras (3-5 μm) to detect emitted heat patterns, which were introduced by a CO2 laser. We present a thermal 3D system based on a GOBO (GOes Before Optics) wheel projection unit and first 3D analyses for different system parameters and samples. We also show a second alternative approach based on an incoherent (heat) source, to overcome typical disadvantages of high-power laser-based systems, such as industrial health and safety considerations, as well as high investment costs. Thus, materials like glass or fiber-reinforced composites can be measured contactless and without the need of additional paintings.

  20. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret


    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  1. Wafer level 3-D ICs process technology

    Tan, Chuan Seng; Reif, L Rafael


    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  2. View-based 3-D object retrieval

    Gao, Yue


    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  3. Web-based interactive visualization of 3D video mosaics using X3D standard

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke


    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  4. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Handy Turner, Tara


    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  5. Magneto-structural Coupling Field Analysis on the End Winding of a Multi-phase Induction Machine

    Liu Hailong


    Full Text Available In order to study the steady-state electromagnetic forces acting on the stator end-winding in a multi-phase induction machine during the operation, we conducted a 3-D electromagnetic and mechanical sequential coupling analysis to analyze the stress and the deformation. Both of them are done by the finite-element method. Meanwhile, the geometry of the nose portion is modified for the limited computer resources. The result shows the nose part of the coil ends experiences larger displacement, but von Mises stresses are larger in the straight part.

  6. New Perspective on Classical Electromagnetism


    R. Feynman , R. Leighton, and M. Sands, The Feynman Lectures in Physics vol II (Addison-Wesley, Reading, MA, 1964). 6. W.K.H. Panofsky and M...of the basics of classical electromagnetism is provided by recognizing a previously overlooked law of induction as well as the physical reality of the...classical electromagnetism is provided by recognizing a previously overlooked law of induction as well as the physical reality of the vector potential

  7. 3D laptop for defense applications

    Edmondson, Richard; Chenault, David


    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  8. User-centered 3D geovisualisation

    Nielsen, Anette Hougaard


    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  9. Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes

    Yue, Weisheng


    Arrays of gold quasi-3D nanoholes were proposed and fabricated as substrates for surface-enhanced Raman scattering (SERS). By detecting rhodamine 6G (R6G) molecules, the gold quasi-3D nanoholes demonstrated an SERS intensity that was 25-62 times higher than that of two-dimensional nanoholes with the same geometrical shapes and periodicities. The larger SERS enhancement of the quasi-3D nanoholes is attributed to the enhanced electromagnetic field on the top-layer nanohole, the bottom nanodiscs and the field coupling between the two layers. In addition, the investigation of the shape dependence of the SERS on the quasi-3D nanoholes demonstrated that the quadratic, circular, triangular and rhombic holes exhibited different SERS properties. Numerical simulations of the electromagnetic properties on the nanostructures were performed with CST Microwave Studio, and the results agree with the experimental observations. © 2012 IOP Publishing Ltd.

  10. Study on Electromagnetic Field Influence on Nucleation Induction Period of Calcium Carbonate%电磁场对碳酸钙成核诱导期影响的实验研究

    王建国; 李松; 朱和升


    基于电导率随滴定液容积变化特征与碳酸钙结晶过程的对比分析,研究了电磁场作用对碳酸钙结晶过程中成核诱导期的影响.在不同频率的电磁场作用下观察了碳酸钙溶液临界过饱和度及成核诱导期的变化,大量实验结果表明:电磁场作用能够降低碳酸钙溶液临界过饱和度,加速碳酸钙成核,缩短成核诱导期.通过机理分析,电磁场对碳酸钙成核过程的主要作用为:在洛伦兹力的影响下,溶液中的Ca2+及CO32-等带电离子运动方向要向相反方向偏离,增加了Ca2+和CO32-离子间的碰撞几率,加快新相晶核的生成.%Based on analyzing the conductivity which changing with titration volume and comparing the calcium carbonate fouling process,the electromagnetic field influence on nucleation induction period of calcium carbonate crystallization was analyzed; and the changes of critical supersaturation ratio and nucleation induction period of calcium carbonate solution were observed at the electromagnetic field with different frequencies.Experiment results show that:the electromagnetic field influence can decrease the critical supersaturation ratio,and can speed up the nucleation rate and shorten nucleation induction period.The mechanism analysis shows that the main influence of electromagnetic field on calcium carbonate nucleation process is under the Lorentz force,the charge ions like Ca2+ and CO32-can move in opposite direction so as to increase collision probability of Ca2+ and CO32-and to speeded up the formation of new phase crystal nucleus.

  11. Field test of a multi-frequency electromagnetic induction sensor for the study of soil moisture in different land-soil units

    Calamita, Giuseppe; Onorati, Beniamino; Perrone, Angela; Manfreda, Salvatore; Brocca, Luca


    The crucial role of the soil moisture (SM) in a number of natural processes that act at different spatial and temporal scales has been largely recognized by the scientific community. Although the most used ground-based techniques for SM measurement (i.e. the Thermo-gravimentric, Time Domain Reflectometry (TDR) probes, Capacitance sensors, Neutron-moisture meters (NMM)) proved to be accurate and permit to acquire data at a high temporal resolution, they still remain invasive and punctual. As the size of the area of interest grows, these methods reveal applicability limitations that have been only partially overcome with the coming of the distributed sensor networks. During last decade, it has been pointed out that an improved understanding of the processes and factors that control SM patterns at non-punctual scales might result from information collected in larger volume of subsoil or larger study area. Indeed, sensing greater volumes of soil over larger areas would filter less important details that derive from a simple sum of multi-point measurements and would be useful to emphasize the characteristics emerging at larger scales. This implies the collection of measurements on a large number of points distributed over larger scales, although characterized by lower accuracy. Recently, geophysical methods have received special attention thanks to their ability to collect information that go beyond the local information sensed with traditional sensors. Between potentially useful methods, the Electro-Magnetic Induction (EMI) method has been indicated as one of the most promising for hydrological applications. Ground-based EMI sensors are lightweight, do not require contact with the soil allowing a considerable reduction of the survey costs as long as the spatial extent of the area of interest grows. Moreover, the ability to measure through thicknesses of soil greater than some centimetres and the possibility to collect data in wooded areas make the use of these sensors

  12. Development of 3D beam-beam simulation for the Tevatron

    Stern, E.; Amundson, J.; Spentzouris, P.; Valishev, A.; /Fermilab; Qiang, J.; Ryne, R.; /LBL, Berkeley


    We present status of development of a 3D Beam-Beam simulation code for simulating the Fermilab Tevatron collider. The essential features of the code are 3D particle-in-cell Poisson solver for calculating the Beam-Beam electromagnetic interactions with additional modules for linear optics, machine impedance and chromaticity, and multiple bunch tracking. The simulations match synchrobetatron oscillations measured at the VEPP-2M collider. The impedance calculations show beam instability development consistent with analytic expressions.


    My Abdellah Kassimi


    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  14. 3D change detection - Approaches and applications

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter


    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  15. Predicting ion flux uniformity at the ion extraction plate in a 3D ICP reactor

    Roy, Abhra; Bhoj, Ananth


    In order to achieve better control in processing the wafer surface, the ion fluxes in a remote plasma system are often focused through one or more ion extraction plates between the main plasma chamber and the downstream wafer plane. The ion extraction plates are typically of showerhead pattern with multiple holes. The focus of this particular study is to predict the ion flux uniformity over the ion extraction plate for a full 3D inductively coupled discharge reactor model using Argon chemistry. We will use the commercial modeling tool, CFD-ACE +, which can address such a process involving gas flow, heat transfer, plasma physics, reaction chemistry and electromagnetics in a coupled fashion. The plasma characteristics in the chamber and uniformity of the ion fluxes at ion extraction plate are discussed. Parametric studies varying the geometrical dimensions and process conditions to determine the effect on ion flux uniformity are presented. The showerhead-like ion extraction plate will be modeled as a porous media with a specified porosity. Further, a spatially varying porosity of the ion extraction plate is used to simulate ion recombination in order to reduce the ion flux non-uniformity. The goal is to optimize the system maximizing the ion flux while maintaining the uniformity.

  16. Electromagnetic Waves

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...

  17. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    A. Hoffmann (Alan)


    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  18. 背绕式定子绕组高速永磁电机三维端部区域电磁场分析与计算%Calculation and Analysis of 3D Electromagnetic Field for High Speed Permanent Magnet Generator End Region With Back Around Winding

    邱洪波; 李伟力; 张晓晨; 程树康


    以一台117kW、60 000 r/min背绕式定子绕组的高速永磁同步发电机为例,建立电机三维电磁场全域数学模型,给出了求解域内的基本假设及相应的边界条件;采用有限元法,计算了电机空载及额定负载状态下端部区域的磁密分布,并与部分实测数据进行了对比.同时,以气隙磁密为主要研究对象,定量分析气隙磁密在端部区域的变化情况,然后对发电机端面附近区域的转子护套、气隙、定子齿顶及定子轭部磁密径向分量和轴向分量进行分析,给出了磁密径向分量和轴向分量沿电机轴向的变化曲线.最后,对高速永磁同步发电机不同转速下背绕式定子绕组端部漏磁场进行计算,研究端部漏磁随转速的变化关系.得到了一些有益的结论,为深入研究高速永磁电机提供了理论依据.%Taking a 117 kW, 60 000 r/min high-speed permanent magnet generator (HSPMG) with back around winding as an example, the mathematical model for 3-D electromagnetic field analysis was established, and the basic assumptions and boundaries were given. The end region flux distributions in the generator operating at non-load and rated load were calculated by using the finite element method, some of which were compared with the test data. Taking the air gap flux density as the main study object, the variation of the flux density in the end region was obtained after the quantitative analysis, and then the radial component and the axia! component of the flux density in sleeve, air-gap, tooth-top and stator yoke were analyzed. Based on the above analysis, the variation of the radial component density and the axial component density along the axial direction were obtained. Lastly the end region flux leakage of the generator running at different speeds was calculated and the relationship between the flux leakage and speed was studied. The obtained conclusions may provide useful reference for the design and research of HSPMG.

  19. 3D-tulostus : case Printrbot

    Arvekari, Lassi


    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  20. Stability Criteria of 3D Inviscid Shears

    Li, Y Charles


    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  1. Ultrasonic Sensor Based 3D Mapping & Localization

    Shadman Fahim Ahmad


    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  2. ERP system for 3D printing industry

    Deaky Bogdan


    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  3. Reconhecimento de faces 3D com Kinect

    Cardia Neto, João Baptista [UNESP


    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  4. Topology Dictionary for 3D Video Understanding


    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  5. Illustrating Mathematics using 3D Printers

    Knill, Oliver; Slavkovsky, Elizabeth


    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  6. Calibration for 3D Structured Light Measurement


    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  7. Getting started in 3D with Maya

    Watkins, Adam


    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  8. Virtual Realization using 3D Password



    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  9. Ekologinen 3D-tulostettava asuste

    Paulasaari, Laura


    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  10. Modeling Coastal Salinity in Quasi 2D and 3D Using a DUALEM-421 and Inversion Software.

    Davies, Gareth; Huang, Jingyi; Monteiro Santos, Fernando Acacio; Triantafilis, John


    Rising sea levels, owing to climate change, are a threat to fresh water coastal aquifers. This is because saline intrusions are caused by increases and intensification of medium-large scale influences including sea level rise, wave climate, tidal cycles, and shifts in beach morphology. Methods are therefore required to understand the dynamics of these interactions. While traditional borehole and galvanic contact resistivity (GCR) techniques have been successful they are time-consuming. Alternatively, frequency-domain electromagnetic (FEM) induction is potentially useful as physical contact with the ground is not required. A DUALEM-421 and EM4Soil inversion software package are used to develop a quasi two- (2D) and quasi three-dimensional (3D) electromagnetic conductivity images (EMCI) across Long Reef Beach located north of Sydney Harbour, New South Wales, Australia. The quasi 2D models discern: the dry sand (dune; sand with fresh water (10 to 20 mS/m); mixing of fresh and saline water (20 to 500 mS/m), and; saline sand of varying moisture (more than 500 mS/m). The quasi 3D EMCIs generated for low and high tides suggest that daily tidal cycles do not have a significant effect on local groundwater salinity. Instead, the saline intrusion is most likely influenced by medium-large scale drivers including local wave climate and morphology along this wave-dominated beach. Further research is required to elucidate the influence of spring-neap tidal cycles, contrasting beach morphological states and sea level rise.

  11. An aerial 3D printing test mission

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy


    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  12. Needle placement for piriformis injection using 3-D imaging.

    Clendenen, Steven R; Candler, Shawn A; Osborne, Michael D; Palmer, Scott C; Duench, Stephanie; Glynn, Laura; Ghazi, Salim M


    Piriformis syndrome is a pain syndrome originating in the buttock and is attributed to 6% - 8% of patients referred for the treatment of back and leg pain. The treatment for piriformis syndrome using fluoroscopy, computed tomography (CT), electromyography (EMG), and ultrasound (US) has become standard practice. The treatment of Piriformis Syndrome has evolved to include fluoroscopy and EMG with CT guidance. We present a case study of 5 successful piriformis injections using 3-D computer-assisted electromagnet needle tracking coupled with ultrasound. A 6-degree of freedom electromagnetic position tracker was attached to the ultrasound probe that allowed the system to detect the position and orientation of the probe in the magnetic field. The tracked ultrasound probe was used to find the posterior superior iliac spine. Subsequently, 3 points were captured to register the ultrasound image with the CT or magnetic resonance image scan. Moreover, after the registration was obtained, the navigation system visualized the tracked needle relative to the CT scan in real-time using 2 orthogonal multi-planar reconstructions centered at the tracked needle tip. Conversely, a recent study revealed that fluoroscopically guided injections had 30% accuracy compared to ultrasound guided injections, which tripled the accuracy percentage. This novel technique exhibited an accurate needle guidance injection precision of 98% while advancing to the piriformis muscle and avoiding the sciatic nerve. The mean (± SD) procedure time was 19.08 (± 4.9) minutes. This technique allows for electromagnetic instrument tip tracking with real-time 3-D guidance to the selected target. As with any new technique, a learning curve is expected; however, this technique could offer an alternative, minimizing radiation exposure.

  13. Integration of real-time 3D image acquisition and multiview 3D display

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun


    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  14. 3D Printed Block Copolymer Nanostructures

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.


    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  15. Parametrizable cameras for 3D computational steering

    Mulder, J.D.; Wijk, J.J. van


    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  16. 3D elastic control for mobile devices.

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal


    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  17. 3D printing of functional structures

    Krijnen, G.J.M.


    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  18. 3D, or Not to Be?

    Norbury, Keith


    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  19. The 3D-city model

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno


    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  20. 3D Printing of Molecular Models

    Gardner, Adam; Olson, Arthur


    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  1. 3D Printing. What's the Harm?

    Love, Tyler S.; Roy, Ken


    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  2. Topology dictionary for 3D video understanding.

    Tung, Tony; Matsuyama, Takashi


    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  3. 3D background aerodynamics using CFD

    Sørensen, Niels N.


    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  4. Needle Steering in 3-D Via Rapid Replanning

    Patil, Sachin; Burgner, Jessica; Webster, Robert J.; Alterovitz, Ron


    Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm. PMID:25435829

  5. Discrete Method of Images for 3D Radio Propagation Modeling

    Novak, Roman


    Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.

  6. Needle Steering in 3-D Via Rapid Replanning.

    Patil, Sachin; Burgner, Jessica; Webster, Robert J; Alterovitz, Ron


    Steerable needles have the potential to improve the effectiveness of needle-based clinical procedures such as biopsy and drug delivery by improving targeting accuracy and reaching previously inaccessible targets that are behind sensitive or impenetrable anatomical regions. We present a new needle steering system capable of automatically reaching targets in 3-D environments while avoiding obstacles and compensating for real-world uncertainties. Given a specification of anatomical obstacles and a clinical target (e.g., from preoperative medical images), our system plans and controls needle motion in a closed-loop fashion under sensory feedback to optimize a clinical metric. We unify planning and control using a new fast algorithm that continuously replans the needle motion. Our rapid replanning approach is enabled by an efficient sampling-based rapidly exploring random tree (RRT) planner that achieves orders-of-magnitude reduction in computation time compared with prior 3-D approaches by incorporating variable curvature kinematics and a novel distance metric for planning. Our system uses an electromagnetic tracking system to sense the state of the needle tip during the procedure. We experimentally evaluate our needle steering system using tissue phantoms and animal tissue ex vivo. We demonstrate that our rapid replanning strategy successfully guides the needle around obstacles to desired 3-D targets with an average error of less than 3 mm.

  7. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Zheng Hu


    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  8. Fabrication of 3D Silicon Sensors

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.


    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  9. Maintaining and troubleshooting your 3D printer

    Bell, Charles


    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  10. 2D/3D switchable displays

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.


    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  11. 6D Interpretation of 3D Gravity

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos


    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  12. Computational Electronics and Electromagnetics

    DeFord, J.F.


    The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust area fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.

  13. Electromagnetic Waves

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  14. 3D Visualization Development of SIUE Campus

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  15. The psychology of the 3D experience

    Janicke, Sophie H.; Ellis, Andrew


    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  16. Phenomenological modeling of the thermal dynamics of a rotating cylinder heated by electromagnetic induction; Modelisation phenomenologique de la dynamique thermique d'un cylindre rotatoire chauffe par induction electromagnetique

    Perez, S. [Universidad de Carabobo, Facultad de Ingenieria, Valencia (Venezuela); Therien, N.; Broadbent, A.D. [Sherbrooke Univ., Faculte de Genie, Quebec (Canada)


    This work concerns the development of a phenomenological model describing the temperature dynamics of a metal cylinder heated by electric induction. The model used takes into consideration in an explicit way the different mechanisms of energy transfer from the cylinder towards the environment, in particular the convection and radiant heat transfers. The conduction process, which takes place inside the cylinder as a response to the temperature gradient at the periphery of the cylinder, has been characterized too. The process of energy induction inside the cylinder has been characterized in a precise way. The experiments show that the induction is localized in the part of the cylinder facing the inductors and that the induction presents a distributed feature in the induction section. The model proposed is based on the concept of substantial derivative. It calculates the response of the process with respect to these disturbances and with respect to the rotation speed of the cylinder and to the electric power supplied to the system. (J.S.)

  17. 3D linear inversion of magnetic susceptibility data acquired by frequency domain EMI

    Thiesson, J.; Tabbagh, A.; Simon, F.-X.; Dabas, M.


    Low induction number EMI instruments are able to simultaneously measure a soil's apparent magnetic susceptibility and electrical conductivity. This family of dual measurement instruments is highly useful for the analysis of soils and archeological sites. However, the electromagnetic properties of soils are found to vary over considerably different ranges: whereas their electrical conductivity varies from ≤ 0.1 to ≥ 100 mS/m, their relative magnetic permeability remains within a very small range, between 1.0001 and 1.01 SI. Consequently, although apparent conductivity measurements need to be inverted using non-linear processes, the variations of the apparent magnetic susceptibility can be approximated through the use of linear processes, as in the case of the magnetic prospection technique. Our proposed 3D inversion algorithm starts from apparent susceptibility data sets, acquired using different instruments over a given area. A reference vertical profile is defined by considering the mode of the vertical distributions of both the electrical resistivity and of the magnetic susceptibility. At each point of the mapped area, the reference vertical profile response is subtracted to obtain the apparent susceptibility variation dataset. A 2D horizontal Fourier transform is applied to these variation datasets and to the dipole (impulse) response of each instrument, a (vertical) 1D inversion is performed at each point in the spectral domain, and finally the resulting dataset is inverse transformed to restore the apparent 3D susceptibility variations. It has been shown that when applied to synthetic results, this method is able to correct the apparent deformations of a buried object resulting from the geometry of the instrument, and to restore reliable quantitative susceptibility contrasts. It also allows the thin layer solution, similar to that used in magnetic prospection, to be implemented. When applied to field data it initially delivers a level of contrast

  18. 利用电磁感应研发“误踩油门当刹车”智能识别系统%Intelligent recognition of mistakenly stepping on accelerator instead of brake using electromagnetic induction



    To avoid mistakenly stepping on accelerator instead of brake ,an intelligent recognition system was designed using electromagnetic induction .Using single-chip microcomputer and sensor , this system could recognize mistakenly stepping on the accelerator pedal and control vehicle effectively to avoid accidents .%为避免误踩油门当刹车,利用电磁感应设计了智能识别系统,该系统利用单片机和传感器对误踩和正常踩油门踏板情况进行了判别,进而对车辆进行了控制,有效地降低了由此引发的事故率。

  19. 3D imaging in forensic odontology.

    Evans, Sam; Jones, Carl; Plassmann, Peter


    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  20. Medical 3D Printing for the Radiologist.

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J


    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  1. Digital relief generation from 3D models

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian


    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  2. Comprehensive evaluation of latest 2D/3D monitors and comparison to a custom-built 3D mirror-based display in laparoscopic surgery

    Wilhelm, Dirk; Reiser, Silvano; Kohn, Nils; Witte, Michael; Leiner, Ulrich; Mühlbach, Lothar; Ruschin, Detlef; Reiner, Wolfgang; Feussner, Hubertus


    Though theoretically superior, 3D video systems did not yet achieve a breakthrough in laparoscopic surgery. Furthermore, visual alterations, such as eye strain, diplopia and blur have been associated with the use of stereoscopic systems. Advancements in display and endoscope technology motivated a re-evaluation of such findings. A randomized study on 48 test subjects was conducted to investigate whether surgeons can benefit from using most current 3D visualization systems. Three different 3D systems, a glasses-based 3D monitor, an autostereoscopic display and a mirror-based theoretically ideal 3D display were compared to a state-of-the-art 2D HD system. The test subjects split into a novice and an expert surgeon group, which high experience in laparoscopic procedures. Each of them had to conduct a well comparable laparoscopic suturing task. Multiple performance parameters like task completion time and the precision of stitching were measured and compared. Electromagnetic tracking provided information on the instruments path length, movement velocity and economy. The NASA task load index was used to assess the mental work load. Subjective ratings were added to assess usability, comfort and image quality of each display. Almost all performance parameters were superior for the 3D glasses-based display as compared to the 2D and the autostereoscopic one, but were often significantly exceeded by the mirror-based 3D display. Subjects performed the task at average 20% faster and with a higher precision. Work-load parameters did not show significant differences. Experienced and non-experienced laparoscopists profited equally from 3D. The 3D mirror system gave clear evidence for additional potential of 3D visualization systems with higher resolution and motion parallax presentation.

  3. 3D Reconstruction Technique for Tomographic PIV

    姜楠; 包全; 杨绍琼


    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  4. 3D object-oriented image analysis in 3D geophysical modelling

    Fadel, I.; van der Meijde, M.; Kerle, N.


    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  5. Simulation of current generation in a 3-D plasma model

    Tsung, F.S.; Dawson, J.M. [Univ. of California, Los Angeles, CA (United States)


    Two wires carrying current in the same direction will attract each other, and two wires carrying current in the opposite direction will repel each other. Now, consider a test charge in a plasma. If the test charge carries current parallel to the plasma, then it will be pulled toward the plasma core, and if the test charge carries current anti-parallel to the plasma, then it will be pushed to the edge. The electromagnetic coupling between the plasma and a test charge (i.e., the A{sub {parallel}} {circ} v{sub {parallel}} term in the test charge`s Hamiltonian) breaks the symmetry in the parallel direction, and gives rise to a diffusion coefficient which is dependent on the particle`s parallel velocity. This is the basis for the {open_quotes}preferential loss{close_quotes} mechanism described in the work by Nunan et al. In our previous 2+{1/2}D work, in both cylindrical and toroidal geometries, showed that if the plasma column is centrally fueled, then an initial current increases steadily. The results in straight, cylindrical plasmas showed that self generated parallel current arises without trapped particle or neoclassical diffusion, as assumed by the bootstrap theory. It suggests that the fundamental mechanism seems to be the conservation of particles canonical momenta in the direction of the ignorable coordinate. We have extended the simulation to 3D to verify the model put forth. A scalable 3D EM-PIC code, with a localized field-solver, has been implemented to run on a large class of parallel computers. On the 512-node SP2 at Cornell Theory Center, we have benchmarked the 2+{1/2}D calculations using 32 grids in the previously ignored direction, and a 100-fold increase in the number of particles. Our preliminary results show good agreements between the 2+{1/2}D and the 3D calculations. We will present our 3D results at the meeting.

  6. The Physics and Applications of a 3D Plasmonic Nanostructure

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  7. Design of inductive contactless angular sensor electromagnetic coupling system%感应式非接触角度传感器电磁耦合系统设计

    李凌; 杨明; 叶林


    The inductive contactless sensor is suitable for angular or linear position sensing. The mechanical robustness, insensitivity to electrical or magnetic fields as well as its mechanical tolerances makes the sensor suitable for harsh environment,such as the monitoring of implantable medical devices. The primary design task of a contactless inductive position sensor(CIPOS)is the design of its electromagnetic coupling system. A principle and realization of a CIPOS is described. By using the FEM simulation tool Ansoft Maxwell, design of CIPOS electromagnetic coupling system based on the principle is presented. A prototype is fabricated and tested, is confirmed the feasibility and reasonableness of the design.%感应式非接触角度传感器性能优良,日益得到广泛应用,其在植入式医疗器件状态监测领域的应用前景尤被看好.对作为感应式非接触角度传感器基础的电磁耦合系统进行设计研究.详细分析了感应式非接触角度传感器的基本测量原理,并基于该原理使用电磁场有限元分析软件Ansoft Maxwell 3D对其电磁耦合系统进行了仿真设计并制作了样机,实验结果证明了仿真研究和设计结果的合理性和可行性.

  8. 3-D Human Modeling and Animation

    Ratner, Peter


    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  9. FIT3D: Fitting optical spectra

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.


    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  10. 3D Immersive Visualization with Astrophysical Data

    Kent, Brian R.


    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  11. 3D Printing the ATLAS' barrel toroid

    Goncalves, Tiago Barreiro


    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  12. 3D face modeling, analysis and recognition

    Daoudi, Mohamed; Veltkamp, Remco


    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  13. A high capacity 3D steganography algorithm.

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee


    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  14. RHOCUBE: 3D density distributions modeling code

    Nikutta, Robert; Agliozzo, Claudia


    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  15. Computer Modelling of 3D Geological Surface

    Kodge, B G


    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  16. FUN3D Manual: 12.8

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 12.6

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 12.5

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 13.1

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.4

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 12.7

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.


    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. Automatic balancing of 3D models

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas


    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  3. Participation and 3D Visualization Tools

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune


    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  4. The reactor dynamics code DYN3D

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)


    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  5. Michael Faraday: o caminho da livraria à descoberta da indução eletromagnética Michael Faraday: the road from the bookstore to the discovery of electromagnetic induction

    Valéria Silva Dias


    Full Text Available Estudando o trabalho experimental sobre eletromagnetismo realizado por Michael Faraday no início do século XIX, encontramos vários elementos que poderiam ser utilizados no Ensino de Ciências. Um conhecimento histórico sobre o trabalho experimental desenvolvido por Faraday e que o levou à descoberta da indução eletromagnética pode transmitir aos estudantes uma concepção mais adequada do processo de desenvolvimento da Ciência. No entanto, isso só pode ser feito utilizando-se um estudo detalhado e bem fundamentado do processo histórico ocorrido, deixando de lado as simplificações e os mitos que costumam ser apresentados.The study of Michael Faraday's experimental research on electromagnetism developed in the early 19th century provides several components which could be used in Science Teaching. A historical knowledge of the experimental work that led Faraday to the discovery of electromagnetic induction may convey to students a more adequate process of the development of science. However, this can only be done by the use of a detailed and well grounded study of the historical process, leaving aside the naïve simplifications and the myths that are usually told.

  6. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.


    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  7. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    Bronkhorst, A.W.


    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  8. Detecting a salinity plume in an unconfined sandy aquifer and assessing secondary soil salinization using electromagnetic induction techniques, North Dakota, USA

    Hopkins, D. G.; Richardson, J. L.


    Land-use changes on the Sheyenne Delta in southeastern North Dakota, USA, have prompted research on impacts to the unconfined Sheyenne Delta aquifer (SDA). This study examines effects of the saline discharge of a flowing artesian well that taps the Dakota aquifer (DAK) on SDA groundwater chemistry and soil salinity. Objectives were to map the saline plume in the SDA using induction techniques, to assess chloride migration in the SDA, and to evaluate induction sensitivity to moderately saline sands. Induction data, collected in a 2.9-ha grid, were compared to 31 soil profiles analyzed for gravimetric moisture, electrical conductivity, and chloride. Soil salinization is widespread, but only 7% of the area meets the 4-dS/m threshold for saline soils. SDA chloride distribution was determined on transects oriented with and perpendicular to the flow path determined from induction readings. Chloride was detected in the aquifer 550 m from the source, indicating a transport rate of 21 m/yr. Complex recharge and discharge patterns and hummocky relief contribute to a wide chloride plume at this site. A mass balance based on soil-water content and chloride concentration shows that only 4% of the chloride from the DAK well remains in the grid volume.

  9. Networked 3D Virtual Museum System


    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  10. Two Accelerating Techniques for 3D Reconstruction

    刘世霞; 胡事民; 孙家广


    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  11. 3D-FPA Hybridization Improvements Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  12. The 3-d view of planetary nebulae

    Hugo E. Schwarz


    Full Text Available Considerando las nebulosas planetarias (PNe de manera tridimensional (3-D, demonstramos que se pueden reducir las grandes incertidumbres asociadas con los m etodos cl asicos de modelar y observar PNe para obtener sus estructuras 3-D y distancias. Usando espectrofotometr a de ranura larga o empleando un Integral Field Unit para restringir los modelos de fotoionizaci on 3-D de PNe y as eliminar dicha incertidumbre de la densidad y de la fracci on del volumen que emite radiaci on ( lling factor, determinamos las detalladas estructuras 3-D, los par ametros de las estrellas centrales y las distancias con una precisi on de 10-20%. Los m etodos cl asicos t picamente daban estos par ametros con una incertidumbre de un factor 3 o m as.

  13. Nonlaser-based 3D surface imaging

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)


    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  14. Designing Biomaterials for 3D Printing.

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim


    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  15. DNA biosensing with 3D printing technology.

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin


    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  16. Cubical Cohomology Ring of 3D Photographs

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271


    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  17. 3D scanning particle tracking velocimetry

    Hoyer, Klaus; Holzner, Markus; Lüthi, Beat; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang


    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.

  18. Lightning fast animation in Element 3D

    Audronis, Ty


    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  19. Advanced 3D Object Identification System Project

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  20. 3D Biomaterial Microarrays for Regenerative Medicine

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;


    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  1. 3D-printed bioanalytical devices

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.


    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.


    M. Skamantzari


    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  3. Eyes on the Earth 3D

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.


    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser ( Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  4. 3D Flash LIDAR Space Laser Project

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  5. Copper Electrodeposition for 3D Integration

    Beica, Rozalia; Ritzdorf, Tom


    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  6. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Anton Sugito Kurniawan


    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  7. Measuring Visual Closeness of 3-D Models

    Morales, Jose A.


    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  8. 3DSEM: A 3D microscopy dataset

    Ahmad P. Tafti


    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  9. Electromagnetic clutches and couplings

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W


    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  10. Signal and Noise in 3D Environments


    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Signal and Noise in 3D Environments Michael B. Porter...complicated 3D environments . I have also been doing a great deal of work in modeling the noise field (the ocean soundscape) due to various sources...we have emphasized the propagation of ‘signals’. We have become increasingly interested in modeling ‘ noise ’ which can illuminate the ocean environment



    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information...

  12. 3D Computer Graphics and Nautical Charts

    Porathe, Thomas


    This paper gives an overview of an ongoing project using real-time 3D visualization to display nautical charts in a way used by 3D computer games. By displaying the map in an egocentric perspective the need to make cognitively demanding mental rotations are suggested to be removed, leading to faster decision-making and less errors. Experimental results support this hypothesis. Practical tests with limited success have been performed this year.

  13. 3D Printing Electrically Small Spherical Antennas

    Kim, Oleksiy S.


    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  14. 3D Reconstruction of NMR Images

    Peter Izak


    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  15. Mayavi: Making 3D Data Visualization Reusable

    Varoquaux, Gaël; Ramachandran, Prabhu


    International audience; Mayavi is a general-purpose 3D scientific visualization package. We believe 3D data visualization is a difficult task and different users can benefit from an easy-to-use tool for this purpose. In this article, we focus on how Mayavi addresses the needs of different users with a common code-base, rather than describing the data visualization functionalities of Mayavi, or the visualization model exposed to the user.

  16. Auto convergence for stereoscopic 3D cameras

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit


    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  17. 3D steerable wavelets in practice.

    Chenouard, Nicolas; Unser, Michael


    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.


    M. C. Moshobane


    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  19. Assessing 3d Photogrammetry Techniques in Craniometrics

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.


    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  20. Computer Graphics Teaching Support using X3D: Extensible 3D Graphics for Web Authors

    Brutzman, Don


    X3D is the ISO-standard scene-graph language for interactive 3D graphics on the Web. A new course is available for teaching the fundamentals of 3D graphics using Extensible 3D (X3D). Resources include a detailed textbook, an authoring tool, hundreds of example scenes, and detailed slidesets covering each chapter. The published book is commercially available, while all other course-module resources are provided online free under open-source licenses. Numerous other commercial and o...

  1. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L


    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  2. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    Lehtimäki, Jarmo


    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...




    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  4. Reconciling measured scattering response of 3D metamaterials with simulation

    Adomanis Bryan M.


    Full Text Available Membrane projection lithography is used to create 3-dimensional unit cells in a silicon matrix decorated with metallic inclusions. The structures show pronounced resonances in the 4–16 µm wavelength range and demonstrate direct coupling to the magnetic field of a normally incident transverse electromagnetic (TEM wave, a behavior only possible for vertically oriented resonators. Qualitative agreement between rigorous coupled wave analysis (RCWA simulation and measured scattering response is shown. COMSOL simulations show that slight variations in both metallic inclusion and silicon unit cell physical dimensions can have large impact in the scattering response, so that design for manufacture of 3D metamaterial structures for applications should be done with care.

  5. Polarization Control by Using Anisotropic 3D Chiral Structures

    Chen, Menglin L N; Sha, Wei E I; Choy, Wallace C H; Itoh, Tatsuo


    Due to the mirror symmetry breaking, chiral structures show fantastic electromagnetic (EM) properties involving negative refraction, giant optical activity, and asymmetric transmission. Aligned electric and magnetic dipoles excited in chiral structures contribute to extraordinary properties. However, the chiral structures that exhibit n-fold rotational symmetry show limited tuning capability. In this paper, we proposed a compact, light, and highly tunable anisotropic chiral structure to overcome this limitation and realize a linear-to-circular polarization conversion. The anisotropy is due to simultaneous excitations of two different pairs of aligned electric and magnetic dipoles. The 3D omega-like structure, etched on two sides of one PCB board and connected by metallic vias, achieves 60% of linearto- circular conversion (transmission) efficiency at the operating frequency of 9.2 GHz. The desired 90-degree phase shift between the two orthogonal linear polarization components is not only from the finite-thick...

  6. 3D Printing Multi-Functionality: Embedded RF Antennas and Components

    Shemelya, C. M.; Zemba, M.; Liang, M.; Espalin, D.; Kief, C.; Xin, H.; Wicker, R. B.; MacDonald, E. W.


    Significant research and press has recently focused on the fabrication freedom of Additive Manufacturing (AM) to create both conceptual models and final end-use products. This flexibility allows design modifications to be immediately reflected in 3D printed structures, creating new paradigms within the manufacturing process. 3D printed products will inevitably be fabricated locally, with unit-level customization, optimized to unique mission requirements. However, for the technology to be universally adopted, the processes must be enhanced to incorporate additional technologies; such as electronics, actuation, and electromagnetics. Recently, a novel 3D printing platform, Multi3D manufacturing, was funded by the presidential initiative for revitalizing manufacturing in the USA using 3D printing (America Makes - also known as the National Additive Manufacturing Innovation Institute). The Multi3D system specifically targets 3D printed electronics in arbitrary form; and building upon the potential of this system, this paper describes RF antennas and components fabricated through the integration of material extrusion 3D printing with embedded wire, mesh, and RF elements.

  7. Improving the electromagnetic compatibility of track circuits with electric rolling stock of double power supply with induction traction motors and electrictraction network

    N.G. Visin


    Full Text Available In this article the research results of many authors on the effect of current interference from the existing electric rolling stock with induction traction motors (ITM on the track circuits and the possibility of exceeding the train traffic safety standards are used. The new promising scheme of power circuit for electric locomotive of double power supply with an ITM applying the intermediary high-frequency transformer for reducing significantly the interference effects to SCB and communication devices is developed.

  8. Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.

    Bureau of Naval Personnel, Washington, DC.

    The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…

  9. 基于电磁感应能力的 Rogowski 线圈结构参数选取研究%Study on structure parameters selection of Rogowski coil based on electromagnetic induction ability

    曾作钦; 郑立新; 陈金汕; 陈有昌


    以Rogowski线圈的电流测量原理为基础,建立了骨架截面为圆形和矩形时线圈结构参数影响其电磁感应能力的相关数学模型,并进行了仿真研究。结果表明,圆形线圈的互感系数相对误差较小,有利于获取更准确的电流值;增大线圈的骨架直径和中心直径,能使线圈的感应信号增强,但必须控制两者的比例值。最后,提出了线圈结构参数的选用方法,并结合实例对研究结果的有效性进行了验证,为快速、合理地选用Rogowski线圈提供有力的指导。%On the basis of current measuring principle of Rogowski coil, relevant mathematical models are set up for the impact of coil structure parameters on electromagnetic induction ability with the frame section as circular and rec-tangular respectively.Simulation results show that relative error of circular coil mutual inductance is small, which is helpful for obtaining accurate current values.Moreover, increasing the frame diameter and center diameter of coil could enhance the coil induction signal.The ratio values of them, however, must be under controlled.Finally, a structure parameters selection method of Rogowski coil is put forward, and the effectiveness has been verified combi-ning with instances, which will provide powerful guidance for selecting Rogowski coil rapidly and reasonably.

  10. Visual Fixation for 3D Video Stabilization

    Hans-Peter Seidel


    Full Text Available Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a hand-held video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a state-of-the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-the-art tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.

  11. PLOT3D Export Tool for Tecplot

    Alter, Stephen


    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  12. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Shamloo, Amir; Amirifar, Leyla


    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  13. Heat Equation to 3D Image Segmentation

    Nikolay Sirakov


    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  14. Recent Progress on 3D Silicon Detectors

    Lange, Jörn


    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  15. Full-color holographic 3D printer

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio


    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  16. Magnetic Properties of 3D Printed Toroids

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  17. 3D culture for cardiac cells.

    Zuppinger, Christian


    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  18. BEAMS3D Neutral Beam Injection Model

    McMillan, Matthew; Lazerson, Samuel A.


    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  19. 3D bioprinting for engineering complex tissues.

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho


    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  20. Heterogeneously Assembled Metamaterials and Metadevices via 3D Modular Transfer Printing

    Lee, Seungwoo; Kang, Byungsoo; Keum, Hohyun; Ahmed, Numair; Rogers, John A.; Ferreira, Placid M.; Kim, Seok; Min, Bumki


    Metamaterials have made the exotic control of the flow of electromagnetic waves possible, which is difficult to achieve with natural materials. In recent years, the emergence of functional metadevices has shown immense potential for the practical realization of highly efficient photonic devices. However, complex and heterogeneous architectures that enable diverse functionalities of metamaterials and metadevices have been challenging to realize because of the limited manufacturing capabilities of conventional fabrication methods. Here, we show that three-dimensional (3D) modular transfer printing can be used to construct diverse metamaterials in complex 3D architectures on universal substrates, which is attractive for achieving on-demand photonic properties. Few repetitive processing steps and rapid constructions are additional advantages of 3D modular transfer printing. Thus, this method provides a fascinating route to generate flexible and stretchable 2D/3D metamaterials and metadevices with heterogeneous material components, complex device architectures, and diverse functionalities.