WorldWideScience

Sample records for 2p core-level photoemission

  1. Detection of subsurface core-level shifts in Si 2p core-level photoemission from Si(111)-(1x1):As

    Energy Technology Data Exchange (ETDEWEB)

    Paggel, J.J. [Philipps-Universitaet Marburg (Germany); Hasselblatt, M.; Horn, K. [Fritz-Haber Institut der Max-Planck-Gesellschraft, Berlin (Germany)] [and others

    1997-04-01

    The (7 x 7) reconstruction of the Si(111) surface arises from a lowering energy through the reduction of the number of dangling bonds. This reconstruction can be removed by the adsorption of atoms such as hydrogen which saturate the dangling bonds, or by the incorporation of atoms, such as arsenic which, because of the additional electron it possesses, can form three bonds and a nonreactive lone pair orbital from the remaining two electrons. Core and valence level photoemission and ion scattering data have shown that the As atoms replace the top silicon atoms. Previous core level spectra were interpreted in terms of a bulk and a single surface doublet. The authors present results demonstrate that the core level spectrum contains two more lines. The authors assign these to subsurface silicon layers which also experience changes in the charge distribution when a silicon atom is replaced by an arsenic atom. Subsurface core level shifts are not unexpected since the modifications of the electronic structure and/or of photohole screening are likely to decay into the bulk and not just to affect the top-most substrate atoms. The detection of subsurface components suggests that the adsorption of arsenic leads to charge flow also in the second double layer of the Si(111) surface. In view of the difference in atomic radius between As and Si, it was suggested that the (1 x 1): As surface is strained. The presence of charge rearrangement up to the second double layer implies that the atomic coordinates also exhibit deviations from their ideal Si(111) counterparts, which might be detected through a LEED I/V or photoelectron diffraction analysis.

  2. Core level photoemission of rotaxanes : A summary on binding energies

    NARCIS (Netherlands)

    Mendoza, S. M.; Berna, J.; Perez, E. M.; Kay, E. R.; Mateo-Alonso, A.; De Nadai, C.; Zhang, S.; Baggerman, J.; Wiering, P. G.; Leigh, D. A.; Prato, M.; Brouwer, A.M.; Rudolf, P.; Nadaï, C. De

    2008-01-01

    Several rotaxanes were studied by XPS in the form of thin films or monolayers on gold substrates. Here we report a database of photoemission spectra of the C 1s, N 1s and F 1s core levels. Binding energy ranges are summarized, classifying the core levels according to the chemical groups that form pa

  3. Core level photoemission of rotaxanes: A summary on binding energies

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, S.M. [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Berna, J.; Perez, E.M.; Kay, E.R. [School of Chemistry, University of Edinburgh, King' s Buildings, West Mains Road, Edinburgh EH9 3JJ (United Kingdom); Mateo-Alonso, A. [Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); De Nadai, C. [Laboratoire Interdisciplinaire de Spectroscopie Electronique, Facultes Universitaires Notre Dame de la Paix, 61 Rue de Bruxelles, B-5000 Namur (Belgium); Zhang, S. [School of Chemistry, University of Edinburgh, King' s Buildings, West Mains Road, Edinburgh EH9 3JJ (United Kingdom); Baggerman, J.; Wiering, P.G. [Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, NL-1018 WS Amsterdam (Netherlands); Leigh, D.A. [School of Chemistry, University of Edinburgh, King' s Buildings, West Mains Road, Edinburgh EH9 3JJ (United Kingdom); Prato, M. [Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste (Italy); Brouwer, A.M. [Van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, NL-1018 WS Amsterdam (Netherlands); Rudolf, P. [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)], E-mail: P.Rudolf@rug.nl

    2008-09-15

    Several rotaxanes were studied by XPS in the form of thin films or monolayers on gold substrates. Here we report a database of photoemission spectra of the C 1s, N 1s and F 1s core levels. Binding energy ranges are summarized, classifying the core levels according to the chemical groups that form part of the rotaxanes.

  4. Spin polarization and magnetic dichroism in core-level photoemission from ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Menchero, Jose Gabriel [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-01

    In this thesis we present a theoretical investigation of angle- and spin-resolved core-level photoemission from ferromagnetic Fe and Ni. We also consider magneto-dichroic effects due to reversal of the photon helicity or reversal of the sample magnetization direction. In chapter 1, we provide a brief outline of the history of photoemission, and show how it has played an important role in the development of modern physics. We then review the basic elements of the theory of core-level photoemission, and discuss the validity of the some of the commonly-used approximations. In chapter 2, we present a one-electron theory to calculate spin- and angle-resolved photoemission spectra for an arbitrary photon polarization. The Hamiltonian includes both spin-orbit and exchange interactions. As test cases for the theory, we calculate the spin polarization and magnetic dichroism for the Fe 2p core level, and find that agreement with experiment is very good.

  5. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  6. Spin-Orbit Effects in Spin-Resolved L2,3 Core Level Photoemission of 3d Ferromagnetic Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Komesu, T; Waddill, G D; Yu, S W; Butterfield, M; Tobin, J G

    2007-10-02

    We present spin-resolved 2p core level photoemission for the 3d transition metal films of Fe and Co grown on Cu(100). We observe clear spin asymmetry in the main 2p core level photoemission peaks of Fe and Co films consistent with trends in the bulk magnetic moments. The spin polarization can be strongly enhanced, by variation of the experimental geometry, when the photoemission is undertaken with circularly polarized light, indicating that spin-orbit interaction can have a profound in spin polarized photoemission. Further spin polarized photoemission studies using variable circularly polarized light at high photon energies, high flux are indicated, underscoring the value of synchrotron measurements at facilities with increased beam stability.

  7. Evidence of the nature of core-level photoemission satellites using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors present a unique method of experimentally determining the angular momentum and intrinsic/extrinsic origin of core-level photoemission satellites by examining the satellite diffraction pattern in the Angle Resolved Photoemission Extended Fine Structure (ARPEFS) mode. They show for the first time that satellite peaks not associated with chemically differentiated atomic species display an ARPEFS intensity oscillation. They present ARPEFS data for the carbon 1s from ({radical}3x{radical}3)R30 CO/Cu(111) and p2mg(2xl)CO/Ni(110), nitrogen 1s from c(2x2) N{sub 2}/Ni(100), cobalt 1s from p(1x1)Co/Cu(100), and nickel 3p from clean nickel (111). The satellite peaks and tails of the Doniach-Sunjic line shapes in all cases exhibit ARPEFS curves which indicate an angular momentum identical to the main peak and are of an intrinsic nature.

  8. Photoemission and core-level magnetic circular dichroism studies of diluted magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, A. [Department of Complexity Science and Engineering, Universtiy of Tokyo, 1-5-1 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan) and Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, SPring-8, Mikazuki, Hyogo 679-5148 (Japan)]. E-mail: fujimori@phys.s.u-tokyo.ac.jp; Okabayashi, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-8656 (Japan); Takeda, Y. [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, SPring-8, Mikazuki, Hyogo 679-5148 (Japan); Mizokawa, T. [Department of Complexity Science and Engineering, Universtiy of Tokyo, 1-5-1 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Okamoto, J. [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, SPring-8, Mikazuki, Hyogo 679-5148 (Japan); Mamiya, K. [Photon Factory, IMSS, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305 (Japan); Saitoh, Y. [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, SPring-8, Mikazuki, Hyogo 679-5148 (Japan); Muramatsu, Y. [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, SPring-8, Mikazuki, Hyogo 679-5148 (Japan); Oshima, M. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-8656 (Japan); Ohya, S. [Department of Electronic Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Tanaka, M. [Department of Electronic Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2005-06-15

    An overview is given on the photoemission studies of the electronic structure of diluted magnetic semiconductors (DMS's), in particular of the prototypical ferromagnetic DMS Ga{sub 1-x}Mn{sub x}As. Configuration-interaction cluster-model analyses of the photoemission data allow us to estimate the p-d exchange coupling constant and hence to predict how to increase the Curie temperature in new materials. Spectra near the Fermi level combined with the transport and optical properties suggest a highly incoherent metallic state for the ferromagnetic metallic phase. It is shown that new insight into the chemically and magnetically inhomogeneous states of DMS's can be gained by the temperature and magnetic field dependence of core-level magnetic circular dichroism signals.

  9. Can circular dichroism in core-level photoemission provide a spectral fingerprint of adsorbed chiral molecules?

    Energy Technology Data Exchange (ETDEWEB)

    Allegretti, F [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Polcik, M [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); Sayago, D I [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); Demirors, F [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D 14195 Berlin (Germany); O' Brien, S [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Nisbet, G [Centre for Applied Catalysis, Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Lamont, C L A [Centre for Applied Catalysis, Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH (United Kingdom); Woodruff, D P [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2005-04-01

    The results of experimental measurements and theoretical simulations of circular dichroism in the angular distribution (CDAD) of photoemission from atomic core levels of each of the enantiomers of a chiral molecule, alanine, adsorbed on Cu(1 1 0) are presented. Measurements in, and out of, substrate mirror planes allow one to distinguish the CDAD due to the chirality of the sample from that due to a chiral experimental geometry. For these studies of oriented chiral molecules, the CDAD is seen not only in photoemission from the molecular chiral centre, but also from other atoms which have chiral geometries as a result of the adsorption. The magnitude of the CDAD due to the sample chirality differs for different adsorption phases of alanine, and for different emission angles and energies, but is generally small compared with CDAD out of the substrate mirror planes which is largely unrelated to the molecular chirality. While similar measurements of other molecules may reveal larger CDAD due to molecular chirality, the fact that the results for one chiral molecule show weak effects means that such CDAD is unlikely to provide a simple and routine general spectral fingerprint of adsorbed molecular chirality.

  10. Electronic Charges and Electric Potential at LaAlO3/SrTiO3 Interfaces Studied by Core-Level Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Harold

    2011-08-19

    We studied LaAlO{sub 3}/SrTiO{sub 3} interfaces for varying LaAlO{sub 3} thickness by core-level photoemission spectroscopy. In Ti 2p spectra for conducting 'n-type' interfaces, Ti{sup 3+} signals appeared, which were absent for insulating 'p-type' interfaces. The Ti{sup 3+} signals increased with LaAlO{sub 3} thickness, but started well below the critical thickness of 4 unit cells for metallic transport. Core-level shifts with LaAlO{sub 3} thickness were much smaller than predicted by the polar catastrophe model. We attribute these observations to surface defects/adsorbates providing charges to the interface even below the critical thickness.

  11. Core-level X-ray photoemission spectral shift through the successive phase transitions in layered TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ishizu, Takahiko [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Mimura, Kojiro [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)], E-mail: mimura@ms.osakafu-u.ac.jp; Shim, Yong Gu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Wakita, Kazuki [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino 275-0016 (Japan); Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Science, Baku, AZ-1143 (Azerbaijan); Taguchi, Yukihiro; Ichikawa, Kouichi [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)

    2008-12-31

    Temperature-dependent change in core-level electronic structures of the layered semiconductor-ferroelectric TlInS{sub 2} with incommensurate phase has been investigated by means of X-ray photoemission spectroscopy. The temperature dependence of the relative peak position for each core level (Tl 4f, In 3d and S 2p) is found to differ very much in the regions bordering each other at the normal-incommensurate phase transition point of 218 K. The obtained data suggest that the charge distribution in TlInS{sub 2} dramatically changes upon passing from the normal phase (T > 218 K) to the spatially modulated incommensurate phase (T < 218 K)

  12. Structural origin of Si-2p core-level shifts from Si(100)-c[4x2] surface: A spectral x-ray photoelectron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Tonner, B.P. [Univ. of Wisconsin, Milwaukee, WI (United States); Denlinger, J. [Univ. of Wisconsin, Milwaukee, WI (United States)][Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have performed angle-resolved x-ray photoelectron diffraction (XPD) from a Si(100)-c(4x2) surface to study the structural origin of Si-2p core-level shifts. In the experiment, the highly resolved surface Si-2p core-level spectra were measured as a fine grid of hemisphere and photon energies, using the SpectroMicroscopy Facility {open_quotes}ultraESCA{close_quotes} instrument. By carefully decomposing the spectra into several surface peaks, the authors are able to obtain surface-atom resolved XPD patterns. Using a multiple scattering analysis, they derived a detailed atomic model for the Si(100)-c(4x2) surface. In this model, the asymmetric dimers were found tilted by 11.5 plus/minus 2.0 degrees with bond length of 2.32 plus/minus 0.05{angstrom}. By matching model XPD patterns to experiment, the authors can identify which atoms in the reconstructed surface are responsible for specific photoemission lines in the 2p spectrum.

  13. Comparative study of the core level photoemission of the ZrB{sub 2} and ZrB{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Huerta, L. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Duran, A. [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Apartado Postal 2681, Ensenada, Baja California 22800 (Mexico); Falconi, R. [Division Academica de Ciencias Basicas, Universidad Juarez Autonoma de Tabasco, Cunduacan, Tabasco, CP 86690, AP 24 (Mexico); Flores, M. [Departamento de Ingenieria de Proyectos, CUCEI, Universidad de Guadalajara, AP 307, Zapopan Jal 45101 (Mexico); Escamilla, R., E-mail: rauleg@servidor.unam.m [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico)

    2010-05-01

    X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) were used to investigate the binding energies and valence band for ZrB{sub 2} and ZrB{sub 12}. The Zr 3d and B 1s core levels were identified. The Zr 3d core level shows a spin-orbit split 3d{sub 5/2} and 3d{sub 3/2} while that for B 1s core level exhibited a single symmetric peak, these being typical of zirconium and boride signals. Comparing the Zr 3d and B 1s core levels with metallic Zr, B{sub 2}O{sub 3} and ZrO{sub 2} reference materials only a negative chemical shift for Zr 3d associated to ZrB{sub 2} was observed, which suggests that the charge transfer model based on the concept of electronegativity was not applicable to explain the superconductivity in the ZrB{sub 12} sample. The measured valence band using UPS is consistent with the band-structure calculations indicating a higher density of states (DOS) at E{sub F} for ZrB{sub 12} respect to ZrB{sub 2}. Finally, we found that the weak mixed B-p and Zr-d states for ZrB{sub 12} is crucial for the superconductivity due to the state population increased the DOS at the E{sub F}.

  14. Time delay between photoemission from the 2p and 2s subshells of Neon atoms

    Science.gov (United States)

    Moore, L. R.; Lysaght, M. A.; Nikolopoulos, L. A. A.; Parker, J. S.; van der Hart, H. W.; Taylor, K. T.

    2012-11-01

    The R-Matrix incorporating Time (RMT) method is a new ab initio method for solving the time-dependent Schrödinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital. Using attosecond streaking methods, an experimental group measured this time delay to be twenty one attoseconds. We report RMT calculations of this time delay and demonstrate that such precise phase-sensitive information can be calculated using the new multi-electron RMT method.

  15. Study of silicon/oxides interfaces by means of Si2p resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, Massimo [BTU-Cottbus, Konrad-Wachsmann-Allee 17, 03046, Cottbus (Germany)], E-mail: tallamas@tu-cottbus.de; Schmeisser, Dieter [BTU-Cottbus, Konrad-Wachsmann-Allee 17, 03046, Cottbus (Germany)

    2008-11-03

    In this paper we show results from resonant photoemission experiments where energy dispersive curves (EDC) were collected at various photon energies around the Si2p absorption edge. From the complete collection we have extracted the spectrum measured at the photon energy of 125 eV and studied the Auger feature included in the EDC. From the comparison of the Auger line of the bulk SiO{sub 2} with the expected transitions we demonstrate the occurrence of inter-atomic transitions in the bulk oxide. Comparing the Auger line from the bulk oxide with that from a native oxide we may observe the occurrence of inter-atomic transitions localized at the interface. We propose an interpretation of this result by considering the geometry at the interface.

  16. Time delay between photoemission from the 2p and 2s subshells of Neon

    CERN Document Server

    Moore, L R; Parker, J S; van der Hart, H W; Taylor, K T; 10.1103/PhysRevA.84.061404

    2012-01-01

    The R-Matrix incorporating Time (RMT) method is a new method for solving the time-dependent Schroedinger equation for multi-electron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond XUV pulse. Time delays due to XUV pulses in the range 76-105 eV are presented. For an XUV pulse at the experimentally relevant 105.2 eV, we calculate the time delay to be 10.2 +/- 1.3 attoseconds, somewhat larger than estimated by other theoretical calculations, but still a factor two smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modelling correlated-electron dynamics within the neon atom and the residual Ne(+) ion. A time delay of 14.5 +/- 1.5 attoseconds was observed, compared to a 16.7 +/- 1.5 attosecond result using a singl...

  17. Time delay between photoemission from the 2p and 2s subshells of neon

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L. R.; Lysaght, M. A.; Parker, J. S.; Hart, H. W. van der; Taylor, K. T. [Centre for Theoretical Atomic, Molecular and Optical Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom)

    2011-12-15

    The R-matrix incorporating time (RMT) method is a method developed recently for solving the time-dependent Schroedinger equation for multielectron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond xuv pulse. Time delays due to xuv pulses in the range 76-105 eV are presented. For an xuv pulse at the experimentally relevant energy of 105.2 eV, we calculate the time delay to be 10.2{+-}1.3 attoseconds (as), somewhat larger than estimated by other theoretical calculations, but still a factor of 2 smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modeling correlated-electron dynamics within the neon atom and the residual Ne{sup +} ion. A time delay of 14.5{+-}1.5 as was observed, compared to a 16.7{+-}1.5 as result using a single-configuration representation of the residual Ne{sup +} ion.

  18. ELECTRONIC-STRUCTURE OF LA2-XSRXNIO4 STUDIED BY PHOTOEMISSION AND INVERSE-PHOTOEMISSION SPECTROSCOPY

    NARCIS (Netherlands)

    EISAKI, H; UCHIDA, S; MIZOKAWA, T; NAMATAME, H; FUJIMORI, A; VANELP, J; KUIPER, P; SAWATZKY, GA; HOSOYA, S; KATAYAMAYOSHIDA, H

    1992-01-01

    The electronic structure of La2-xSrxNiO4 is studied by use of photoemission spectroscopy, bremsstrahlung-isochromat spectroscopy (BIS), and electron-energy-loss spectroscopy. Quantitative analyses are made on the valence-band and Ni 2p core-level photoemission spectra through configuration-interacti

  19. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huff, W.R.A.; Moler, E.J.; Kellar, S.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.

  20. Photoelectron spectroscopy at a free-electron laser. Investigation of space-charge effects in angle-resolved and core-level spectroscopy and realizaton of a time-resolved core-level photoemission experiment

    Energy Technology Data Exchange (ETDEWEB)

    Marczynski-Buehlow, Martin

    2012-01-30

    The free-electron laser (FEL) in Hamburg (FLASH) is a very interesting light source with which to perform photoelectron spectroscopy (PES) experiments. Its special characteristics include highly intense photon pulses (up to 100 J/pulse), a photon energy range of 30 eV to 1500 eV, transverse coherence as well as pulse durations of some ten femtoseconds. Especially in terms of time-resolved PES (TRPES), the deeper lying core levels can be reached with photon energies up to 1500 eV with acceptable intensity now and, therefore, element-specific, time-resolved core-level PES (XPS) is feasible at FLASH. During the work of this thesis various experimental setups were constructed in order to realize angle-resolved (ARPES), core-level (XPS) as well as time-resolved PES experiments at the plane grating monochromator beamline PG2 at FLASH. Existing as well as newly developed systems for online monitoring of FEL pulse intensities and generating spatial and temporal overlap of FEL and optical laser pulses for time-resolved experiments are successfully integrated into the experimental setup for PES. In order to understand space-charge effects (SCEs) in PES and, therefore, being able to handle those effects in future experiments using highly intense and pulsed photon sources, the origin of energetic broadenings and shifts in photoelectron spectra are studied by means of a molecular dynamic N-body simulation using a modified Treecode Algorithm for sufficiently fast and accurate calculations. It turned out that the most influencing parameter is the ''linear electron density'' - the ratio of the number of photoelectrons to the diameter of the illuminated spot on the sample. Furthermore, the simulations could reproduce the observations described in the literature fairly well. Some rules of thumb for XPS and ARPES measurements could be deduced from the simulations. Experimentally, SCEs are investigated by means of ARPES as well as XPS measurements as a function of

  1. High temperature thermal stability of the HfO{sub 2}/Ge (100) interface as a function of surface preparation studied by synchrotron radiation core level photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Chellappan, Rajesh Kumar, E-mail: rajesh.chellappan2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Gajula, Durga Rao; McNeill, David [School of Electronics, Electrical Engineering and Computer Science, Queen' s University Belfast (United Kingdom); Hughes, Greg [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2014-02-15

    High resolution soft x-ray photoemission spectroscopy (SXPS) have been used to study the high temperature thermal stability of ultra-thin atomic layer deposited (ALD) HfO{sub 2} layers (∼1 nm) on sulphur passivated and hydrofluoric acid (HF) treated germanium surfaces. The interfacial oxides which are detected for both surface preparations following HfO{sub 2} deposition can be effectively removed by annealing upto 700 °C without any evidence of chemical interaction at the HfO{sub 2}/Ge interface. The estimated valence and conduction band offsets for the HfO{sub 2}/Ge abrupt interface indicated that effective barriers exist to inhibit carrier injection.

  2. Time-resolved soft X-ray core-level photoemission spectroscopy at 880 °C using the pulsed laser and synchrotron radiation and the pulse heating current

    Science.gov (United States)

    Abukawa, T.; Yamamoto, S.; Yukawa, R.; Kanzaki, S.; Mukojima, K.; Matsuda, I.

    2017-02-01

    We developed a time-resolved photoemission spectroscopy system for tracking the temporal variation in an electronic state of a heated sample. Our pump-probe method used laser and synchrotron radiation pulses on a silicon surface that was heated by a synchronized pulse current that did not interfere with the measurements. The transient surface photovoltage effect on the Si 2p core spectra was measured from room temperature to 880 °C and was found to be consistent with the thermal carrier distributions in silicon crystals at the corresponding temperatures. This versatile technique may have applications studying molecular dynamics on high temperature surfaces such as in catalytic reactions.

  3. Theory of Spin-State Selective Nonlocal Screening in Co 2p X-ray Photoemission Spectrum of LaCoO3

    Science.gov (United States)

    Hariki, Atsushi; Yamanaka, Akihiro; Uozumi, Takayuki

    2015-07-01

    The Co 2p X-ray photoemission spectrum (XPS) of LaCoO3 is investigated using a dp model simulating Co 3d and O 2p orbitals by means of a dynamical mean-field approach under the perovskite crystal structure. Across the spin-state transition from the low-spin to the high-spin state, the Co 2p3/2 main-line structure is substantially changed beyond expectation of a CoO6 cluster model calculation. In addition to the Coulombic multiplet effect, the origin of the spectral change is attributed to the nonlocal screening (NLS) from the correlated 3d band located on the top of the valence band to the core-excited Co site in the final state, where the NLS is practically active only for the high-spin state. The spin-state selectivity of the NLS is closely related to not only the spin state of the core-excited Co ion but also the spin and orbital character of the occupied Co 3d band in crystals. We emphasize that the Co 2p XPS can be an informative probe to investigate the spin state of Co ions in Co oxides, such as LaCoO3.

  4. Orbital- and spin-order sensitive nonlocal screening in Mn 2p X-ray photoemission of La1-xSrxMnO3

    Science.gov (United States)

    Hariki, A.; Yamanaka, A.; Uozumi, T.

    2016-04-01

    The Mn 2p X-ray photoemission spectra (XPS) of LaMnO3 (LMO) and hole-doped La0.7Sr0.3MnO3 (LSMO) are investigated using a dp model simulating Mn 3d and O 2p electrons under the perovskite-type crystal structure. The observed 2p XPS features, especially the low-binding-energy structure (LBES) of the 2p3/2 main line, are reproduced well using an impurity Anderson model optimized from the dp model within the dynamical mean-field approximation. The LBES in both compounds is due to the nonlocal screening (NLS) between the neighboring Mn ions in the final state, but the screening character is quite different: The NLS in LSMO directly reflects the character of the ferromagnetic metal, while that in undoped LMO the C-type orbital order between 3x^2-r2 and 3y^2-r2 orbitals in the ab-plane. We emphasize the directive nature of the NLS in the orbital order system, which can be a sensitive probe to the order pattern.

  5. Valence-band photoemission intensities in thorium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, W.P.; Boring, A.M.; Cox, L.E.; Cowan, R.D.; Arko, A.J. (Los Alamos National Lab., NM (USA)); Allen, J.W. (Michigan Univ., Ann Arbor, MI (USA). Dept. of Physics); Pate, B.B.; Lindau, I. (Stanford Univ., CA (USA). Synchrotron Radiation Lab.)

    1989-11-01

    Resonant photoemission spectra of the O 2p-derived valence band of insulating ThO{sub 2} are compared to linear muffin-tin orbital (LMTO) density-of-state (DOS) and XPS intensity calculations. At Th 5d core-level threshold energies (85 {le} hv {le} 120 eV), resonance is greatest at the bottom of the O 2p band where calculated p/d hybrid states are greatest; p/f hybrid content is weak by comparison. We conclude that the dominant hybridization is between O 2p states and Th 6d. (author).

  6. Evidence for the photoemission nature of Gd 4f resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.R.; Gammon, W.J. [Virginia Commonwealth Univ., Richmond, VA (United States). Dept. of Physics; Cummins, T.R.; Waddill, G.D. [Univ. of Missouri, Rolla, MO (United States). Dept. of Physics; Laan, G. van der [Daresbury Lab., Warrington (United Kingdom); Goodman, K.W.; Tobin, J.G. [Lawrence Livermore National Lab., CA (United States)

    1998-12-31

    The constructive interference between direct and indirect channels above the absorption threshold of a core level leads to a massive increase in the emission cross section leading to a phenomenon called resonant photoemission. Using novel magnetic linear dichroism in angular distribution photoelectron spectroscopy experiment, the authors have tried to understand the nature of the resonant photoemission process in Gd metal. The presence of dichroism in Gd 4f photoemission intensity at a photo energy corresponding to resonant photoemission clearly demonstrates the photoemission-like nature of the resonant photoemission process.

  7. Evidence from photoemission of comparable oxygen-2p and copper-3d character in the states at the fermi level of YBa sub 2 Cu sub 3 O sub 6. 9

    Energy Technology Data Exchange (ETDEWEB)

    List, R.S.; Arko, A.J.; Bartlett, R.J. (Los Alamos National Lab., NM (United States)); Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C. (Iowa State Univ., Ames (United States)); Veal, B.W.; Liu, J.Z.; Vandervoort, K.; Paulikas, A.P.; Campuzano, J.C. (Argonne National Lab., IL (United States))

    1989-01-01

    Only the states at the Fermi level of superconductors form Cooper pairs responsible for superconductivity. An understanding of the nature of these states is therefore essential for a proper description of the superconductivity. Previous resonant photoemission experiments claim that there is only O 2p character in the states at the Fermi level of the Bi{sub 2}CaSr{sub 2}Cu{sub 2}O{sub 8} superconductors. The authors have extended these studies to the YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} material employing a wider range of photon energies and conclude that there is comparable O 2p and Cu 3d character in the density of states at the Fermi level in these materials. This supports strongly hybridized models of high temperature superconductors and casts doubt on simplified one band models.

  8. The surface core level shift for lithium at the surface of lithium borate

    Energy Technology Data Exchange (ETDEWEB)

    Wooten, David [Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433-7765 (United States); Ketsman, I.; Xiao, Jie [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, P.O. Box 880111, Lincoln, NE 68588-0111 (United States); Losovyj, Ya.B. [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, P.O. Box 880111, Lincoln, NE 68588-0111 (United States); J. Bennett Johnston Sr. Center for Advanced Microstructures and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, LA 70806 (United States); Petrosky, J.; McClory, J. [Air Force Institute of Technology, 2950 Hobson Way, Wright Patterson Air Force Base, OH 45433-7765 (United States); Burak, Ya.V.; Adamiv, V.T. [Institute of Physical Optics, Dragomanov 23, Lviv 79005 (Ukraine); Dowben, P.A., E-mail: pdowben@unl.ed [Department of Physics and Astronomy and the Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, P.O. Box 880111, Lincoln, NE 68588-0111 (United States)

    2010-01-01

    The shallow Li 1s core level exhibits a surface-to-bulk core level shift for the stoichiometric Li{sub 2}B{sub 4}O{sub 7}(1 1 0) surface. Angle-resolved photoemission spectroscopy was used to indentify Li 1s bulk and surface core level components at binding energies -56.5+-0.4 and -53.7+-0.5 eV, respectively. We find photoemission evidence for surface states of Li{sub 2}B{sub 4}O{sub 7}(1 1 0) that exist in the gap of the projected bulk density of states. The existence of surface states is consistent with the large surface-to-bulk core level shift for the Li 1s core.

  9. Electronic study of Al substituted La{sub 0.7}Ca{sub 0.3}MnO{sub 3} using photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Phase, D. M., E-mail: dmphase@csr.res.in; Kumar, Manish, E-mail: dmphase@csr.res.in; Wadikar, A. D., E-mail: dmphase@csr.res.in; Choudhary, R. J., E-mail: dmphase@csr.res.in [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore-452001 (India)

    2014-04-24

    Polycrystalline samples of La{sub 0.7}Ca{sub 0.3}Mn{sub 1−X}Al{sub X}O{sub 3} (X=0, 0.05, 0.15) are prepared using solid state reaction route. Photoemission spectroscopy measurements were performed on these samples to investigate their electronic properties. Al shows 3+ oxidation state in both Al doped samples while no effect of Al doping is found on the core level spectrum of La 4d and Ca 2p orbitals and they were found in 3{sup +} and 2{sup +} oxidation state respectively in all the samples . Mn 2p core level photoemission measurements indicates that for 5% Al doped sample (lower doping) Al ions replaces the Mn{sup 3+} ions while they substitute Mn{sup 4+} in 15 % Al doped sample ((higher doping)

  10. Manifestation of screening effects and A-O covalency in the core level spectra of A site elements in the ABO3 structure of Ca1-xSrxRuO3

    Science.gov (United States)

    Singh, Ravi Shankar; Maiti, Kalobaran

    2007-08-01

    We investigate the evolution of Ca2p and Sr3d core level spectra in Ca1-xSrxRuO3 using photoemission spectroscopy. Core level spectra in this system exhibit multiple features and unusual evolution with the composition and temperatures. Analysis of the core level spectra in conjunction with the band structure results indicates final state effects due to different core hole screening channels. Such screening in the photoemission final states can be attributed to the large A-O covalency in these systems. Changes in the core level spectra with temperature and composition suggest significant modification in A-O (A=Ca/Sr) covalency in Ca-dominated samples, which gradually reduces with the increase in Sr content and becomes insignificant in SrRuO3 . This study thus provides a direct evidence of cation-oxygen covalency and its evolution with temperature, which may be useful in understanding the unusual ground state properties of these materials.

  11. An implementation of core level spectroscopies in a real space Projector Augmented Wave density functional theory code

    DEFF Research Database (Denmark)

    Ljungberg, M.P.; Mortensen, Jens Jørgen; Pettersson, L.G.M.

    2011-01-01

    We describe the implementation of K-shell core level spectroscopies (X-ray absorption (XAS), X-ray emission (XES), and X-ray photoemission (XPS)) in the real-space-grid-based Projector Augmented Wave (PAW) GPAW code. The implementation for XAS is based on the Haydock recursion method avoiding com...

  12. Trends in adsorbate induced core level shifts

    Science.gov (United States)

    Nilsson, Viktor; Van den Bossche, Maxime; Hellman, Anders; Grönbeck, Henrik

    2015-10-01

    Photoelectron core level spectroscopy is commonly used to monitor atomic and molecular adsorption on metal surfaces. As changes in the electron binding energies are convoluted measures with different origins, calculations are often used to facilitate the decoding of experimental signatures. The interpretation could in this sense benefit from knowledge on trends in surface core level shifts for different metals and adsorbates. Here, density functional theory calculations have been used to systematically evaluate core level shifts for (111) and (100) surfaces of 3d, 4d, and 5d transition metals upon CO, H, O and S adsorption. The results reveal trends and several non-intuitive cases. Moreover, the difficulties correlating core level shifts with charging and d-band shifts are underlined.

  13. Photoemission spectroscopy study of a multi-alkali photocathode

    CERN Document Server

    Ettema, A R H

    2000-01-01

    In this paper a photoemission study of the highest core levels of the elements and the electron escape barrier (work function) in a multi-alkali photocathode are presented. The core levels indicate that the alkali atoms are in an oxidized state and therefore the compound Na sub 2 KSb can be regarded as an ionic semiconductor. The measured escape barrier of the Cs sub 2 O surface layer is determined as 2.3 eV.

  14. SPIN POLARIZATION AND MAGNETIC DICHROISM IN PHOTOEMISSION FROM CORE AND VALENCE STATES IN LOCALIZED MAGNETIC SYSTEMS

    NARCIS (Netherlands)

    THOLE, BT; VANDERLAAN, G

    1991-01-01

    Using group theory we derive a general model for spin polarization and magnetic dichroism in photo-emission in the presence of atomic interactions between the hole created and the valence holes. We predict strong effects in the photoemission from core levels and localized valence levels of transitio

  15. Coherent and incoherent processes in resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, M.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    In this contribution the authors present the distinction between coherent and incoherent processes in resonant photoemission. As a first step they determine whether an autoionization process is photoemission-like or Auger-like. The discussion is based on measurements for a weakly bonded adsorption system, Ar/Pt(111). This type of system is well adapted to investigate these effects since it yields distinctly shifted spectral features depending on the nature of the process. After this, the question of resonance photoemission in metallic systems is addressed. This is done in connection with measurements at the 2p edges for Ni metal. Ni has been one of the prototype systems for resonant photoemission. The resonances have been discussed in connection with the strong correlation and d-band localization effects in this system. Based on the results some general comments about the appearance of resonant effects in metallic systems are made.

  16. A photoemission study of the diamond and the single crystal C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin

    1994-03-01

    This report studied the elctronic structure of diamond (100) and diamond/metal interface and C{sub 60}, using angle-resolved and core level photoemission. The C(100)-(2X1) surface electronic structure was studied using both core level and angle resolved valence band photoemission spectroscopy. The surface component of the C 1s core level spectrum agrees with theoretical existence of only symmetrical dimers. In the case of metal/diamond interfaces, core level and valence photoelectron spectroscopy and LEED studies WERE MADE OF B and Sb on diamond (100) and (111) surfaces. In the case of single-crystal C{sub 60}, photoemission spectra show sharp molecular features, indicating that the molecular orbitals are relatively undisturbed in solid C{sub 60}.

  17. First-principles calculation of core-level binding energy shift in surface chemical processes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Combined with third generation synchrotron radiation light sources, X-ray photoelectron spectroscopy (XPS) with higher energy resolution, brilliance, enhanced surface sensitivity and photoemission cross section in real time found extensive applications in solid-gas interface chemistry. This paper reports the calculation of the core-level binding energy shifts (CLS) using the first-principles density functional theory. The interplay between the CLS calculations and XPS measurements to uncover the structures, adsorption sites and chemical reactions in complex surface chemical processes are highlight. Its application on clean low index (111) and vicinal transition metal surfaces, molecular adsorption in terms of sites and configuration, and reaction kinetics are domonstrated.

  18. Photoemission with high-order harmonics: A tool for time-resolved core-level spectroscopy

    DEFF Research Database (Denmark)

    Christensen, Bjarke Holl; Raarup, Merete Krog; Balling, Peter

    2010-01-01

    realization allows the sample, located in an ultrahigh-vacuum chamber, to be illuminated by 106 65-eV photons per laser pulse at a 10 Hz repetition rate. The spectral width of a single harmonic is 0.77 eV (FWHM), and a few harmonics are selected by specially designed Mo/Si multi-layer mirrors. Photoelectrons...

  19. Electronic properties of the interface between p-CuI and anatase-phase n-TiO2 single crystal and nanoparticulate surfaces: a photoemission study.

    Science.gov (United States)

    Kumarasinghe, A R; Flavell, W R; Thomas, A G; Mallick, A K; Tsoutsou, D; Chatwin, C; Rayner, S; Kirkham, P; Warren, S; Patel, S; Christian, P; O'Brien, P; Grätzel, M; Hengerer, R

    2007-09-21

    We present a study of the growth of the p-type inorganic semiconductor CuI on n-type TiO2 anatase single crystal (101) surfaces and on nanoparticulate anatase surfaces using synchrotron radiation photoemission spectroscopy. Core level photoemission data obtained using synchrotron radiation reveal that both the substrate (TiO2) and the overlayer (CuI) core levels shift to a lower binding energy to different degrees following the growth of CuI on TiO2. Valence band photoemission data show that the valence band maximum of the clean substrate differs from that of the dosed surface which may be interpreted qualitatively as due to the introduction of a new density of states within the band gap of TiO2 as a result of the growth of CuI. The valence band offset for the heterojunction n-TiO2p-CuI has been measured using photoemission for both nanoparticulate and single crystal TiO2 surfaces, and the band energy alignment for these heterojunction interfaces is presented. With the information obtained here, it is suggested that the interface between p-CuI and single crystal anatase-phase n-TiO2 is a type-II heterojunction interface, with significant band bending. The measured total band bending matches the work function change at the interface, i.e., there is no interface dipole. In the case of the nanoparticulate interface, an interface dipole is found, but band bending within the anatase nanoparticles remains quite significant. We show that the corresponding depletion layer may be accommodated within the dimension of the nanoparticles. The results are discussed in the context of the functional properties of dye-sensitized solid state solar cells.

  20. Core level excitations — A fingerprint of structural and electronic properties of epitaxial silicene

    NARCIS (Netherlands)

    Friedlein, R.; Fleurence, A.; Aoyagi, K.; Jong, de M.P.; Van Bui, H.; Wiggers, F.B.; Yoshimoto, S.; Koitaya, T.; Shimizu, S.; Noritake, H.; Mukai, K.; Yoshinobu, J.; Yamada-Takamura, Y.

    2014-01-01

    From the analysis of high-resolution Si 2p photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra, we show that core level excitations of epitaxial silicene on ZrB2(0001) thin films are characteristically different from those of sp 3-hybridized silicon. In particular, it is rev

  1. Core level shifts of intercalated graphene

    Science.gov (United States)

    Schröder, Ulrike A.; Petrović, Marin; Gerber, Timm; Martínez-Galera, Antonio J.; Grånäs, Elin; Arman, Mohammad A.; Herbig, Charlotte; Schnadt, Joachim; Kralj, Marko; Knudsen, Jan; Michely, Thomas

    2017-03-01

    Through intercalation of metals and gases the Dirac cone of graphene on Ir(111) can be shifted with respect to the Fermi level without becoming destroyed by strong hybridization. Here, we use x-ray photoelectron spectroscopy to measure the C 1s core level shift (CLS) of graphene in contact with a number of structurally well-defined intercalation layers (O, H, Eu, and Cs). By analysis of our own and additional literature data for decoupled graphene, the C 1s CLS is found to be a non-monotonic function of the doping level. For small doping levels the shifts are well described by a rigid band model. However, at larger doping levels, a second effect comes into play which is proportional to the transferred charge and counteracts the rigid band shift. Moreover, not only the position, but also the C 1s peak shape displays a unique evolution as a function of doping level. Our conclusions are supported by intercalation experiments with Li, with which, due to the absence of phase separation, the doping level of graphene can be continuously tuned.

  2. Relationships Between Complex Core Level Spectra and Materials Properties

    Energy Technology Data Exchange (ETDEWEB)

    Nelin, Constance J.; Bagus, Paul S.; Ilton, Eugene S.; Chambers, Scott A.; Kuhlenbeck, Helmut; Freund, Hans-Joachim

    2010-12-01

    The XPS of many oxides are quite complex and there may be several peaks of significant intensity for each subshell. These peaks arise from many-electron effects, which normally are treated with configuration interaction (CI) wavefunctions where static correlation effects are taken into account. It is common to use semiempirical methods to determine the matrix elements of the CI Hamiltonian and there are few rigorous CI calculations where parameters are not adjusted to fit experiment. In contrast, we present, in the present work, theoretical XPS spectra obtained with rigorous CI wavefunctions for CeO2 where the XPS are especially complex; several different core levels are studied. This study uses an embedded CeO8 cluster model to represent bulk CeO2 and the relativistic CI wavefunctions are determined using four-component spinors from Dirac-Fock calculations. In particular, we examine the importance of interatomic many-body effects where there is a transfer of electrons from occupied oxygen 2p orbitals into empty cation orbitals as it is common to ascribe the complex XPS to this effect. We also contrast the importance of many-body charge-transfer effects for the isoelectronic cations of Ce4+ and La3+. The long-range goal of this work is to relate the XPS features to the nature of the chemical bonding in CeO2 and we describe our progress toward this goal.

  3. Relaxation and cross section effects in valence band photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McFeely, F.R.

    1976-09-01

    Various problems relating to the interpretation of valence band x-ray photoemission (XPS) spectra of solids are discussed. The experiments and calculations reported herein deal with the following questions: (1) To what extent do many-body effects manifest themselves in an XPS valence band spectrum, and thus invalidate a direct comparison between the photoemission energy distribution, I(E), and the density of states, N(E), calculated on the basis of ground-state one-electron theory. (2) The effect of the binding-energy-dependent photoemission cross section on I(E) at XPS energies. (3) In favorable cases indicated by (1) and (2) we examine the effect of the interaction of the crystal field with the apparent spin-orbit splittings of core levels observed in XPS spectra. (4) The use of tight binding band structure calculations to parameterize the electronic band structure from XPS and other data is described. (5) The use of high energy angle-resolved photoemission on oriented single crystals to gain orbital symmetry information is discussed. (6) The evolution of the shape of the photoemission energy distribution (of polycrystalline Cu) as a function of photon energy from 50 less than or equal h ..omega.. less than or equal 175 is discussed.

  4. Fourier Transform Photoemission Spectroscopy

    NARCIS (Netherlands)

    Meinders, M.B.J.; Drabe, K.E.; Jonkman, H.T.; Sawatzky, G.A.

    1996-01-01

    It is shown that photoemission spectra can be obtained by exciting the electrons with two phase-correlated wave trains. The phase-correlated wave trains are obtained by sending broad-band ultra-violet light, coming from a deuterium lamp, through a Michelson interferometer. It is possible to stabiliz

  5. Fourier transform photoemission spectroscopy

    NARCIS (Netherlands)

    Meinders, M.B J; Drabe, K.E.; Jonkman, H.T.; Sawatzky, G.A

    1996-01-01

    It is shown that photoemission spectra can be obtained by exciting the electrons with two phase-correlated wave trains. The phase-correlated wave trains are obtained by sending broad-band ultra-violet light, coming from a deuterium lamp, through a Michelson interferometer. It is possible to stabiliz

  6. Quanty for core level spectroscopy - excitons, resonances and band excitations in time and frequency domain

    Science.gov (United States)

    Haverkort, Maurits W.

    2016-05-01

    Depending on the material and edge under consideration, core level spectra manifest themselves as local excitons with multiplets, edge singularities, resonances, or the local projected density of states. Both extremes, i.e., local excitons and non-interacting delocalized excitations are theoretically well under control. Describing the intermediate regime, where local many body interactions and band-formation are equally important is a challenge. Here we discuss how Quanty, a versatile quantum many body script language, can be used to calculate a variety of different core level spectroscopy types on solids and molecules, both in the frequency as well as the time domain. The flexible nature of Quanty allows one to choose different approximations for different edges and materials. For example, using a newly developed method merging ideas from density renormalization group and quantum chemistry [1-3], Quanty can calculate excitons, resonances and band-excitations in x-ray absorption, photoemission, x-ray emission, fluorescence yield, non-resonant inelastic x-ray scattering, resonant inelastic x-ray scattering and many more spectroscopy types. Quanty can be obtained from: http://www.quanty.org.

  7. Photoemission, Correlation and Superconductivity:

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  8. Atom-Specific Identification of Adsorbed Chiral Molecules by Photoemission

    Science.gov (United States)

    Kim, J. W.; Carbone, M.; Dil, J. H.; Tallarida, M.; Flammini, R.; Casaletto, M. P.; Horn, K.; Piancastelli, M. N.

    2005-09-01

    The study of chiral adsorbed molecules is important for an analysis of enantioselectivity in heterogeneous catalysis. Here we show that such molecules can be identified through circular dichroism in core-level photoemission arising from the chiral carbon atoms in stereoisomers of 2,3-butanediol molecules adsorbed on Si(100), using circularly polarized x rays. The asymmetry in the carbon 1s intensity excited by right and left circularly polarized light is readily observed, and changes sign with the helicity of the radiation or handedness of the enantiomers; it is absent in the achiral form of the molecule. This observation demonstrates the possibility of determining molecular chirality in the adsorbed phase.

  9. Core level excitations—A fingerprint of structural and electronic properties of epitaxial silicene

    Energy Technology Data Exchange (ETDEWEB)

    Friedlein, R., E-mail: friedl@jaist.ac.jp; Fleurence, A.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1, Asahidai, Nomi, Ishikawa 923-1292 (Japan); Jong, M. P. de; Van Bui, H.; Wiggers, F. B. [MESA Institute for Nanotechnology, University of Twente, 7500 AE Enschede (Netherlands); Yoshimoto, S.; Koitaya, T.; Shimizu, S.; Noritake, H.; Mukai, K.; Yoshinobu, J. [The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-05-14

    From the analysis of high-resolution Si 2p photoelectron and near-edge x-ray absorption fine structure (NEXAFS) spectra, we show that core level excitations of epitaxial silicene on ZrB{sub 2}(0001) thin films are characteristically different from those of sp{sup 3}-hybridized silicon. In particular, it is revealed that the lower Si 2p binding energies and the low onset in the NEXAFS spectra as well as the occurrence of satellite features in the core level spectra are attributed to the screening by low-energy valence electrons and interband transitions between π bands, respectively. The analysis of observed Si 2p intensities related to chemically distinct Si atoms indicates the presence of at least one previously unidentified component. The presence of this component suggests that the observation of stress-related stripe domains in scanning tunnelling microscopy images is intrinsically linked to the relaxation of Si atoms away from energetically unfavourable positions.

  10. Photoemission study of the initial stage of Er/Si(100) interface formation

    CERN Document Server

    Chen Gang; Li Zhe Shen; Wang Xun

    2002-01-01

    The initial stage of Er/Si(100) interface formation has been investigated by using synchrotron radiation photoelectron spectroscopy combined with low-energy electron diffraction. Both the valence band and the core level peaks of the Si photoemission spectra shift rigidly with increasing Er coverage in the submonolayer region. Upon depositing 0.6 monolayers of Er on the Si(100) surface at room temperature, the surface Fermi level is ultimately pinned at 0.29 eV above its initial value, which is equivalent to a Schottky barrier height of 0.67 eV. No evidence is found for the formation of Er silicides at the as-deposited surfaces. Annealing of the Er-covered Si(100) surfaces at 600 deg. C results in the appearance of a new peak located 1.2 eV below the Si 2p peak, indicating the presence of some sort of Er silicide. Meanwhile, the Er 4f spectrum measured for samples upon annealing exhibits a well-resolved fine structure, implying that only monospecies of Er silicide may exist on the surface.

  11. Origin of metallic surface core-level shifts

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Abrikosov, I. A.

    1995-01-01

    The unique property of the open 4f energy shell in the lanthanide metals is used to show that the initial-state energy shift gives an insufficient description of surface core-level shifts. Instead a treatment, which fully includes the final-state screening, account for the experimentally observed...

  12. Exploring the core level shift origin of sulfur and thiolates on Pd(111) surfaces.

    Science.gov (United States)

    Salvarezza, Roberto Carlos; Carro, Pilar

    2015-10-01

    Thiol molecules on planar metal surfaces are widely used for building sensing and electronic devices and also as capping agents to protect and to control the size and shape of nanoparticles. In the case of Pd the thiol molecules exhibit a complex behavior because C-S bond scission is possible, resulting in a significant amount of co-adsorbed S. Therefore identification of these species on Pd is a key point for many applications, a task that is usually achieved by XPS. Here we show, from DFT calculations, that the core level shift (CLS) of the S 2p binding energy (BE) of thiol and sulfur on different thiol-Pd(111) surface models strongly depends on the adsorbed or subsurface state of sulfur atoms. Our results reflect the complexity of S 2p BE behavior and contribute to understanding and reanalyzing the experimental data of thiolated Pd surfaces.

  13. Angle resolved photoemission in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Petroff, Y.

    1983-02-01

    Bases of angular resolved photoemission: determination of the electronic band structure of solids (bulk), measurements of life-time and mean free path, determination of surfaces states (valence and core) and their relationship with surface reconstruction are described.

  14. Plasmon Enhanced Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Aleksandr [Univ. of California, Berkeley, CA (United States)

    2012-05-08

    Next generation ultrabright light sources will operate at megahertz repetition rates with temporal resolution in the attosecond regime. For an X-Ray Free Electron Laser (FEL) to operate at such repetition rate requires a high quantum efficiency (QE) cathode to produce electron bunches of 300 pC per 1.5 μJ incident laser pulse. Semiconductor photocathodes have sufficient QE in the ultraviolet (UV) and the visible spectrum, however, they produce picosecond electron pulses due to the electron-phonon scattering. On the other hand, metals have two orders of magnitude less QE, but can produce femtosecond pulses, that are required to form the optimum electron distribution for high efficiency FEL operation. In this work, a novel metallic photocathode design is presented, where a set of nano-cavities is introduced on the metal surface to increase its QE to meet the FEL requirements, while maintaining the fast time response. Photoemission can be broken up into three steps: (1) photon absorption, (2) electron transport to the surface, and (3) crossing the metal-vacuum barrier. The first two steps can be improved by making the metal completely absorbing and by localizing the fields closer to the metal surface, thereby reducing the electron travel distance. Both of these effects can be achieved by coupling the incident light to an electron density wave on the metal surface, represented by a quasi-particle, the Surface Plasmon Polariton (SPP). The photoemission then becomes a process where the photon energy is transferred to an SPP and then to an electron. The dispersion relation for the SPP defines the region of energies where such process can occur. For example, for gold, the maximum SPP energy is 2.4 eV, however, the work function is 5.6 eV, therefore, only a fourth order photoemission process is possible. In such process, four photons excite four plasmons that together excite only one electron. The yield of such non-linear process depends strongly on the light intensity. In

  15. Photoemission study of the ferromagnetic Kondo system CeRh3B2

    Science.gov (United States)

    Fujimori, A.; Takahashi, T.; Okabe, A.; Kasaya, M.; Kasuya, T.

    1990-04-01

    We have studied the electronic structure of CeRh3B2, which has an anomalously high ferromagnetic ordering temperature, by photoemission and Auger-electron spectroscopy. The Ce 4f occupancy nf~=0.85 evaluated from the Ce 3d core-level photoemission spectrum indicates a moderately strong valence fluctuation in the Kondo regime. Rh d-derived valence-band photoemission spectra are found to be in good agreement with the results of band-structure calculations when a strong energy dependence of the hole lifetime is taken into account. This observation and the deviation of the Rh M4,5VV Auger spectrum from the self-convolution of the Rh d partial density of states provide evidence for electron correlation within the Rh d band of order of U=1-2 eV. We discuss a possible effect of the latter electron correlation on the ferromagnetic instability of this compound.

  16. Surface structure and photoemission studies of nanocrystalline TiO{sub 2} layer/ITO coated glass interface

    Energy Technology Data Exchange (ETDEWEB)

    Taleatu, Bidini Alade, E-mail: bdntaleatu@gmail.com [Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria); School of Chemistry and Physics, University of KwaZulu-Natal, P Bag X01, Scottsville, 3209 Pietermaritzburg (South Africa); Omotoso, Ezekiel [Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife (Nigeria); Mola, Genene Tessema [School of Chemistry and Physics, University of KwaZulu-Natal, P Bag X01, Scottsville, 3209 Pietermaritzburg (South Africa)

    2016-02-15

    Highlights: • Titanium oxide thin film was grown on ITO glass substrate by electrodeposition technique. • The samples were charaterized and analysed by some surface studying facilities. • Photoemission studies were carried out befor and after annealing to understand possible interaction between the TiO{sub 2} layer and substrate as a result of postdeposition heat treatment. - Abstract: Room temperature growth of nanocrystalline TiO{sub 2} thin film was carried out by two-electrode cell. The film was characterized by surface probing techniques. Morphological studies revealed that film's grains are evenly distributed across substrate surface. Average height of grains distribution is below 64 nm. Post-deposition annealing aided film's particles’ orientation in a structure that resulted in compact layer. Average crystallite size was estimated as 19.5 nm. Quality and chemical states of film composition were observed by core level photoemission studies. From XPS studies, small shift (∼0.11 eV) observed in binding energy position of Ti 2p{sub 3/2} corroborated oxidation states of titanium species found in TiO{sub 2} structure. Peak broadening and formation of In−O−Sn linkage at oxygen valence band indicated interactions between substrate's atoms due to annealing. Apart from substrate's atoms interaction, chemical state of Ti profile remained stable implying no major chemical interaction between ITO atoms and film components. This study demonstrated TiO{sub 2} as a recipe for stable barrier layer capable of hindering charge trapping in nanostructured photonic devices.

  17. Core level binding energies of functionalized and defective graphene.

    Science.gov (United States)

    Susi, Toma; Kaukonen, Markus; Havu, Paula; Ljungberg, Mathias P; Ayala, Paola; Kauppinen, Esko I

    2014-01-01

    X-ray photoelectron spectroscopy (XPS) is a widely used tool for studying the chemical composition of materials and it is a standard technique in surface science and technology. XPS is particularly useful for characterizing nanostructures such as carbon nanomaterials due to their reduced dimensionality. In order to assign the measured binding energies to specific bonding environments, reference energy values need to be known. Experimental measurements of the core level signals of the elements present in novel materials such as graphene have often been compared to values measured for molecules, or calculated for finite clusters. Here we have calculated core level binding energies for variously functionalized or defected graphene by delta Kohn-Sham total energy differences in the real-space grid-based projector-augmented wave density functional theory code (GPAW). To accurately model extended systems, we applied periodic boundary conditions in large unit cells to avoid computational artifacts. In select cases, we compared the results to all-electron calculations using an ab initio molecular simulations (FHI-aims) code. We calculated the carbon and oxygen 1s core level binding energies for oxygen and hydrogen functionalities such as graphane-like hydrogenation, and epoxide, hydroxide and carboxylic functional groups. In all cases, we considered binding energy contributions arising from carbon atoms up to the third nearest neighbor from the functional group, and plotted C 1s line shapes by using experimentally realistic broadenings. Furthermore, we simulated the simplest atomic defects, namely single and double vacancies and the Stone-Thrower-Wales defect. Finally, we studied modifications of a reactive single vacancy with O and H functionalities, and compared the calculated values to data found in the literature.

  18. Surface core-level shifts for simple metals

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1994-01-01

    We have performed an ab initio study of the surface core-level binding energy shift (SCLS) for 11 of the simple metals by means of a Green’s-function technique within the tight-binding linear-muffin-tin-orbitals method. Initial- and final-state effects are included within the concept of complete....... We furthermore conclude that the unexpected negative sign of the SCLS in beryllium is predominantly an initial-state effect and is caused by the high electron density in this metal....

  19. Ba 4/ital d/ core-level spectroscopy in the YBa/sub 2/Cu/sub 3/O/sub 6. 9/ high-/ital T//sub /ital c// superconductor: Existence of a surface-shifted component

    Energy Technology Data Exchange (ETDEWEB)

    Liu, R.; Olson, C. G.; Yang, A.; Gu, C.; Lynch, D. W.; Arko, A. J.; List, R. S.; Bartlett, R. J.; Veal, B. W.; Liu, J. Z.; and others

    1989-08-01

    Two sets of spin-orbit split Ba 4/ital d/ core-level photoemission peaks were observed in a crystal of YBa/sub 2/Cu/sub 3/O/sub 6.9/. From constant final-state measurements taken as a function of kinetic energy, the low-binding-energy doublet is identified as a surface component. Possible origins of the surface shift are discussed.

  20. Development of a high-resolution soft x-ray (30--1500 eV) beamline at the Advanced Light Source and its use for the study of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huff, W R.A. [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1996-02-01

    ALS Bending magnet beamline 9.3.2 is for high resolution spectroscopy, with circularly polarized light. Fixed included-angle SGM uses three gratings for 30--1500 eV photons; circular polarization is produced by an aperture for selecting the beam above or below the horizontal plane. Photocurrent from upper and lower jaws of entrance slit sets a piezoelectric drive feedback loop on the vertically deflecting mirror for stable beam. End station has a movable platform. With photomeission data from Stanford, structure of c(2{times}2)P/Fe(100) was determined using angle-resolved photoemission extended fine structure (ARPEFS). Multiple-scattering spherical-wave (MSSW) calculations indicate that P atoms adsorb in fourfold hollow sites 1.02A above the first Fe layer. Self-consistent-field X{alpha} scattered wave calculation confirm that the Fe{sub 1}-Fe{sub 2} space is contracted for S/Fe but not for P/Fe; comparison is made to atomic N and O on Fe(100). Final-state effects on ARPEFS curves used literature data from the S 1s and 2p core levels of c(2{times}2)S/Ni(001); a generalized Ramsauer-Townsend splitting is present in the 1s but not 2p data. An approximate method for analyzing ARPEFS data from a non-s initial state using only the higher-{ell} partial wave was tested successfully. ARPEFS data from clean surfaces were collected normal to Ni(111) (3p core levels) and 5{degree} off-normal from Cu(111)(3s, 3p). Fourier transforms (FT) resemble adsorbate systems, showing backscattering signals from atoms up to 4 layers below emitters. 3p FTs show scattering from 6 nearest neighbors in the same crystal layer as the emitters. MSSW calulation indicate that Cu 3p photoemission is mostly d-wave. FTs also indicate double-scattering and single-scattering from laterally distant atoms; calculations indicate that the signal is dominated by photoemission from the first 2 crystal layers.

  1. 50 years anniversary of the discovery of the core level chemical shifts. The early years of photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mårtensson, Nils [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Sokolowski, Evelyn [Tvär-Ramsdal 1, 611 99 Tystberga (Sweden); Svensson, Svante, E-mail: Svante.Svensson@fysik.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden)

    2014-03-01

    Highlights: • 50 years since the discovery of t the core level chemical shift. • The pioneering years of ESCA. • A critical review of the first core electron chemical shift results. - Abstract: The pioneering years of photoelectron spectroscopy in Uppsala are discussed, especially the work leading to the discovery of the core level chemical shifts. At a very early stage of the project, the pioneering group observed what they described as evidence for chemical shifts in the core level binding energies. However, it can now be seen that the initial observations to a large extent was due to charging of the samples. It is interesting to note that the decisive experiment was realized, not as a result of a systematic study, but was obtained with a large element of serendipity. Only when a chemical binding energy shift was observed between two S2p electron lines in the same molecule, the results were accepted internationally, and the fascinating expansion of modern core level photoelectron spectroscopy could start.

  2. Temperature-dependent hard X-ray photoemission spectra of ternary Tl compounds with high Seebeck coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Kojiro; Ishizu, Takahiko; Yamamoto, Kazuya; Takasu, Junta; Yonehira, Yuri; Taguchi, Yukihiro; Ichikawa, Kouichi [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Wakita, Kazuki [Department of Electrical, Electronics and Computer Engineering, Chiba Institute of Technology, Narashino, Chiba (Japan); Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan); Yan, Ke; Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, Kouto, Sayo-cho (Japan); Kobayashi, Keisuke [National Institute for Materials Science, Kouto, Sayo-cho, Sayo-gun, Hyogo (Japan)

    2009-05-15

    The temperature dependence of the core-level and valence-band electronic structures of TlGaTe{sub 2} and TlInSe{sub 2} that exhibits high values of Seebeck coefficient has been studied by hard X-ray photoemission spectroscopy over the temperature range 40-450 K. The relative peak position and peak width for Tl 4f, Ga 2p and Te 3d in TlGaTe{sub 2} are determined. It is shown that not only chemical shift defying the peak position but also electron-phonon interaction responsible for temperature line-broadening has rather peculiar temperature behaviour that reflects incommensurate phase transition. Thermoelectric power of TlGaTe{sub 2} is evaluated and found to be very close to that of TlInSe{sub 2}. It is shown that Tl 4f spectra of both compounds also display close similarity (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Pulsed laser deposition for in-situ photoemission studies on YBa2Cu3O7-δ and related oxide films

    Science.gov (United States)

    Schmauder, T.; Frazer, B.; Gatt, R.; Xi, Xiaoxing; Onellion, Marshall; Ariosa, Daniel; Grioni, M.; Margaritondo, Giorgio; Pavuna, Davor

    1998-12-01

    We describe a new pled laser deposition (PLD) system that is linked to an angle-resolved photoemission (ARPES) chamber at the Synchrotron Radiation Center (SRC) in Wisconsin, USA. We also discuss our first results on epitaxially grown YBa2Cu3O7-(delta ) (YBCO) films. The core level photoemission data indicate that a Ba-oxide layer is the dominant surface layer. We were not able to reproducibly detect a sharp fermi edge in the photoemission spectra and thus conclude that the surface layer is non-metallic, probably due to oxygen loss at the surface. The absence of screening of the Y and Ba core levels is a further argument for this conclusion. Further experiments with ozone treated film surfaces are currently under way.

  4. X-Ray Photoemission Measurements of La(1-x)Ca(x)CoO3(x = 0, 0.5)

    Science.gov (United States)

    Vasquez, R. P.

    1996-01-01

    X-ray photoemission measurements of the core levels and valence electronic structure of LaCoO3 and La(0.5)Ca(0.5)CoO3 high quality epitaxial films are presented. Shifts of the core levels and main valence band features are consistent with a doping-induced change in the chemical potential. Oxygen states are found to significantly contribute to a peak in the valence band at 1 eV binding energy, verifying earlier results of cluster calculations. A Fermi level crossing of this same band upon doping is observed, yielding a high Fermi level density of states.

  5. Mn-induced modifications of Ga 3d photoemission from (Ga, Mn)As: evidence for long range effects.

    Science.gov (United States)

    Kanski, J; Ulfat, I; Ilver, L; Leandersson, M; Sadowski, J; Karlsson, K; Pal, P

    2012-10-31

    Using synchrotron based photoemission, we have investigated the Mn-induced changes in Ga 3d core level spectra from as-grown Ga(1-x)Mn(x)As. Although Mn is located in Ga substitutional sites, and therefore does not have any Ga nearest neighbors, the impact of Mn on the Ga core level spectra is pronounced even at Mn concentrations in the region of 0.5%. The analysis shows that each Mn atom affects a volume corresponding to a sphere with around 1.4 nm diameter.

  6. Core-level excitation and fragmentation of chlorine dioxide

    Science.gov (United States)

    Flesch, R.; Plenge, J.; Rühl, E.

    2006-03-01

    Inner-shell excitation and fragmentation of chlorine dioxide (OClO) in the Cl 2p- and O 1s-excitation regime is reported. The electronic structure of the element-selectively excited radical is studied by X-ray absorption and total cation yields. A comparison of both approaches allows us to estimate the absolute photoionization cross-section and the ionization yield near the Cl 2p- and O 1s-absorption edges. The latter quantity is characteristically enhanced in core-ionization continua. We observe below both core-absorption edges intense core-to-valence-transitions. These are assigned in comparison with related work on core-excited sulfur dioxide. These results give clear evidence that the highest molecular orbital of OClO is half-filled. High-resolution spectra recorded in the Cl 2p-regime show evidence for Rydberg transitions. The extrapolation of the term values of the low-lying Rydberg states allows us to derive the Cl 2p-ionization energy of OClO. Fragmentation of core-excited OClO is reported. Photoelectron-photoion-coincidence (PEPICO) spectra are recorded, indicating that singly and doubly charged fragments are formed. Fission of the doubly and multiply charged OClO leads to singly charged fragments. These are measured by photoion-photoion-coincidence (PIPICO) spectra, where characteristic changes in intensity of the fission channels in the Cl 2p- and O 1s-continuum are observed.

  7. Evaluation of the fluorinated antisticking layer by using photoemission and NEXAFS spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Haruyama, Yuichi; Nakai, Yasuki; Matsui, Shinji [University of Hyogo, Graduate School of Science, Laboratory of Advanced Science and Technology for Industry, Ako, Hyogo (Japan)

    2015-11-15

    The electronic structures of four kinds of fluorinated self-assembled monolayers (F-SAMs) with different chain length, which were used for an antisticking layer, were investigated by the photoemission and the near-edge X-ray absorption fine structure (NEXAFS) spectroscopies. From the photoemission spectra in the wide and in the C 1s core-level regions, chemical compositions and components of the F-SAMs with different chain length were evaluated. By using the curve fitting analysis of the photoemission spectra in C 1s core-level region, it was found that the CF{sub 3} site is located at the top of the surface in the C sites of the F-SAM. From the C K-edge NEXAFS spectra of the F-SAMs as a function of the incidence angle of the excitation photon, it was shown that the σ*(C-F) and σ*(C-C) orbitals in the F-SAMs are parallel and perpendicular to the surface, respectively. This indicates that the C-C chain in (CF{sub 2}){sub n} part of the F-SAMs is perpendicular to the surface. Based on these results, the electronic structures of the F-SAMs are discussed. (orig.)

  8. Ultrathin Pb film growth on Cu(111) studied by photoemission

    Institute of Scientific and Technical Information of China (English)

    M.C.Xu; H.J.Qian; F.Q.Liu; K.Ibrahim; W.Y.Lai; S.C.Wu

    2001-01-01

    The valence bands and the Pb 5d,Cu 3p core levels of Pb films evaporated on Cu(111) were measured by synchrotron radiation photoemission and characterized by low-energy electron diffraction(LEED) and Auger electron spectroscopy(AES).The variation of the surafce state at the center of the surface Brillouin zone (SBZ) of Cu(111) with Pb coverage shows that the submonolayer Pb grows on Cu(111) at room temperature(RT) as two-dimensional(2D) islands.With the Pb coverage increasing,the Pb 5d5/2 core level shifts to higher binding energy monotonically.While the Cu 3p3/2 core level is shifted toward higher binding energy by about 120 meV due to the deposition of 1.0ML Pb.At low Ph coverage,subsequent annealing at 200℃ gives rise to Pb-Cu surface alloy formation in the first layer of Cu(111).The Pb 5d core level is shifted toward Fermi level by 20-30 meV due to the surface alloying.An assumption about electron charge transfer from Cu to Pb was adopted to interpret the observed cored level shifts.2001 Published by Elsevier Science Ltd.

  9. Spin-orbit delays in photoemission

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Pabst, S.; Kheifets, A. S.; Baykusheva, D.; Wörner, H. J.

    2017-01-01

    Attosecond delays between photoelectron wave packets emitted from different electronic shells are now well established. Is there any delay between electrons originating from the same electronic shell but leaving the cation in different fine-structure states? This question is relevant for all attosecond photoemission studies involving heavy elements, be it atoms, molecules or solids. We answer this fundamental question by measuring energy-dependent delays between photoelectron wave packets associated with the 3/2 2P and 1/2 2P components of the electronic ground states of Xe+ and Kr+. We observe delays reaching up to 33 ±6 as in the case of Xe. Our results are compared with two state-of-the-art theories. Whereas both theories quantitatively agree with the results obtained for Kr, neither of them fully reproduces the experimental results in Xe. Performing delay measurements very close to the ionization thresholds, we compare the agreement of several analytical formulas for the continuum-continuum delays with experimental data. Our results show an important influence of spin-orbit coupling on attosecond photoionization delays, highlight the requirement for additional theory development, and offer a precision benchmark for such work.

  10. Observation of core-level binding energy shifts between (100) surface and bulk atoms of epitaxial CuInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J. [Colorado School of Mines, Golden, CO (United States); Berry, G.; Rockett, A. [Univ. of Illinois, Urbana-Champaign, IL (United States)] [and others

    1997-04-01

    Core-level and valence band photoemission from semiconductors has been shown to exhibit binding energy differences between surface atoms and bulk atoms, thus allowing one to unambiguously distinguish between the two atomic positions. Quite clearly, surface atoms experience a potential different from the bulk due to the lower coordination number - a characteristic feature of any surface is the incomplete atomic coordination. Theoretical accounts of this phenomena are well documented in the literature for III-V and II-VI semiconductors. However, surface state energies corresponding to the equilibrium geometry of (100) and (111) surfaces of Cu-based ternary chalcopyrite semiconductors have not been calculated or experimental determined. These compounds are generating great interest for optoelectronic and photovoltaic applications, and are an isoelectronic analog of the II-VI binary compound semiconductors. Surface core-level binding energy shifts depend on the surface cohesive energies, and surface cohesive energies are related to surface structure. For ternary compound semiconductor surfaces, such as CuInSe{sub 2}, one has the possibility of variations in surface stoichiometry. Applying standard thermodynamical calculations which consider the number of individual surface atoms and their respective chemical potentials should allow one to qualitatively determine the magnitude of surface core-level shifts and, consequently, surface state energies.

  11. Saperi P2P

    Directory of Open Access Journals (Sweden)

    Salvatore Iaconesi

    2009-10-01

    Full Text Available Il paper presenta l'architettura filosofica e logica di un progetto ongoing per la creazione di un'infrastruttura peer to peer per la diffusione dei saperi. Tale infrastruttura p2p vuole essere la base per costruire un framework aperto e orizzontale, che ospiti pratiche innovative di creazione, condivisione e disseminazione di informazioni e conoscenza.

  12. Photoemission-based microelectronic devices

    Science.gov (United States)

    Forati, Ebrahim; Dill, Tyler J.; Tao, Andrea R.; Sievenpiper, Dan

    2016-11-01

    The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices.

  13. Electronic properties of atomic layer deposition films, anatase and rutile TiO2 studied by resonant photoemission spectroscopy

    Science.gov (United States)

    Das, C.; Richter, M.; Tallarida, M.; Schmeisser, D.

    2016-07-01

    The TiO2 films are prepared by atomic layer deposition (ALD) method using titanium isopropoxide precursors at 250 °C and analyzed using resonant photoemission spectroscopy (resPES). We report on the Ti2p and O1s core levels, on the valence band (VB) spectra and x-ray absorption spectroscopy (XAS) data, and on the resonant photoelectron spectroscopy (resPES) profiles at the O1s and the Ti3p absorption edges. We determine the elemental abundance, the position of the VB maxima, the partial density of states (PDOS) in the VB and in the conduction band (CB) and collect these data in a band scheme. In addition, we analyze the band-gap states as well as the intrinsic states due to polarons and charge-transfer excitations. These states are found to cause multiple Auger decay processes upon resonant excitation. We identify several of these processes and determine their relative contribution to the Auger signal quantitatively. As our resPES data allow a quantitative analysis of these defect states, we determine the relative abundance of the PDOS in the VB and in CB and also the charge neutrality level. The anatase and rutile polymorphs of TiO2 are analyzed in the same way as the TiO2 ALD layer. The electronic properties of the TiO2 ALD layer are compared with the anatase and rutile polymorphs of TiO2. In our comparative study, we find that ALD has its own characteristic electronic structure that is distinct from that of anatase and rutile. However, many details of the electronic structure are comparable and we benefit from our spectroscopic data and our careful analysis to find these differences. These can be attributed to a stronger hybridization of the O2p and Ti3d4s states for the ALD films when compared to the anatase and rutile polymorphs.

  14. Photocathode device that replenishes photoemissive coating

    Energy Technology Data Exchange (ETDEWEB)

    Moody, Nathan A.; Lizon, David C.

    2016-06-14

    A photocathode device may replenish its photoemissive coating to replace coating material that desorbs/evaporates during photoemission. A linear actuator system may regulate the release of a replenishment material vapor, such as an alkali metal, from a chamber inside the photocathode device to a porous cathode substrate. The replenishment material deposits on the inner surface of a porous membrane and effuses through the membrane to the outer surface, where it replenishes the photoemissive coating. The rate of replenishment of the photoemissive coating may be adjusted using the linear actuator system to regulate performance of the photocathode device during photoemission. Alternatively, the linear actuator system may adjust a plasma discharge gap between a cartridge containing replenishment material and a metal grid. A potential is applied between the cartridge and the grid, resulting in ejection of metal ions from the cartridge that similarly replenish the photoemissive coating.

  15. Photoemission Spectroscopy Characterization of Attempts to Deposit MoO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Irfan

    2011-01-01

    Full Text Available Attempts to deposit molybdenum dioxide (MoO2 thin films have been described. Electronic structure of films, deposited by thermal evaporation of MoO2 powder, had been investigated with ultraviolet photoemission and X-ray photoemission spectroscopy (UPS and XPS. The thermally evaporated films were found to be similar to the thermally evaporated MoO3 films at the early deposition stage. XPS analysis of MoO2 powder reveals presence of +5 and +6 oxidation states in Mo 3d core level along with +4 state. The residue of MoO2 powder indicates substantial reduction in higher oxidation states while keeping +4 oxidation state almost intact. Interface formation between chloroaluminum phthalocyanine (AlPc-Cl and the thermally evaporated film was also investigated.

  16. Core-level positive-ion and negative-ion fragmentation of gaseous and condensed HCCl3 using synchrotron radiation

    Science.gov (United States)

    Lu, K. T.; Chen, J. M.; Lee, J. M.; Haw, S. C.; Liang, Y. C.; Deng, M. J.

    2011-07-01

    We investigated the dissociation dynamics of positive-ion and negative-ion fragments of gaseous and condensed HCCl3 following photoexcitation of Cl 2p electrons to various resonances. Based on ab initio calculations at levels HF/cc-pVTZ and QCISD/6-311G*, the first doublet structures in Cl L-edge x-ray absorption spectrum of HCCl3 are assigned to transitions from the Cl (2P3/2,1/2) initial states to the 10a1* orbitals. The Cl 2p → 10a1* excitation of HCCl3 induces a significant enhancement of the Cl+ desorption yield in the condensed phase and a small increase in the HCCl+ yield in the gaseous phase. Based on the resonant photoemission of condensed HCCl3, excitations of Cl 2p electrons to valence orbitals decay predominantly via spectator Auger transitions. The kinetic energy distributions of Cl+ ion via the Cl 2p → 10a1* excitation are shifted to higher energy ˜0.2 eV and ˜0.1 eV relative to those via the Cl 2p → 10e* excitation and Cl 2p → shape resonance excitation, respectively. The enhancement of the yields of ionic fragments at specific core-excited resonance states is assisted by a strongly repulsive surface that is directly related to the spectator electrons localized in the antibonding orbitals. The Cl- anion is significantly reinforced in the vicinity of Cl 2p ionization threshold of gaseous HCCl3, mediated by photoelectron recapture through post-collision interaction.

  17. Resonant Photoemission and M_{2,3}-Absorption Spectra in Nickel Dichloride

    Science.gov (United States)

    Igarashi, J.

    Ni 3p-resonant photoemission and Ni M_{2,3}-absorption spectra are calculated in detail on a cluster of (NiCl_6)^{4-} with the use of the transition matrix elements evaluated on the Herman-Skillman potential in Ni atom. Overall spectral shape agrees well with experiment, allowing a determination of the parameters which characterize Ni 3d and Cl 3p states. Resonance behavior is discussed near the Ni 3p-core level photothreshold. The resonant enhancement is found to be larger for the peak with higher binding energy in the d^7-multiplets.

  18. Core level photoelectron spectroscopy on the lanthanide-induced hydrolysis of DNA

    Science.gov (United States)

    Shigekawa, Hidemi; Ikawa, Hiroyuki; Yoshizaki, Ryozo; Iijima, Yoshitoki; Sumaoka, Jun; Komiyama, Makoto

    1996-03-01

    The electronic structures of the complexes of diphenyl phosphate (DPP), a model compound of DNA, with lanthanide ions have been investigated to shed light on the mechanism of the cerium (IV)-induced nonenzymatic hydrolysis of DNA. Binding energies of the P 2p core level of DPP were 134.2 eV for the complexes with La(III), Eu(III), and Lu(III), and was 134.4 eV for the Ce(IV) complex, when the metal/DPP molar ratio was 1:1. When the molar ratio was increased, only Ce(IV), the most active metal ion for DNA hydrolysis, showed a chemical shift of ˜0.5 eV toward the higher binding energy region. The chemical shift of ˜0.5 eV toward the higher binding energy region. The chemical shift was due to the systematic increase in the intensity of the higher binding energy component. The observed change in the electronic structure of the DPP-Ce(IV) complex may be related to the superb ability of Ce(IV) for the hydrolysis of DNA.

  19. Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Alexander William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2000-09-01

    This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and bonding and its relationship to other known effects are also discussed. We also consider in detail specially written data acquisition software that has been used for most of the measurements reported here. This software has been used with an existing experimental system to develop the method of detector characterization and then data correction required for the work described above. The development of a next generation one-dimensional, high-speed, electron detector is also discussed. Our goal has been to design, build and test a prototype high-performance, one-dimensional pulse-counting detector that represents a significant advancement in detector technology and is well

  20. Multi-atom resonant photoemission and the development of next-generation software and high-speed detectors for electron spectroscopy

    Science.gov (United States)

    Kay, Alexander William

    2000-10-01

    This dissertation has involved the exploration of a new effect in photoelectron emission, multi-atom resonant photoemission (MARPE), as well as the development of new software, data analysis techniques, and detectors of general use in such research. We present experimental and theoretical results related to MARPE, in which the photoelectron intensity from a core level on one atom is influenced by a core-level absorption resonance on another. We point out that some of our and others prior experimental data has been strongly influenced by detector non-linearity and that the effects seen in new corrected data are smaller and of different form. Corrected data for the MnO(001) system with resonance between the O 1s and Mn 2p energy levels are found to be well described by an extension of well-known intraatomic resonant photoemission theory to the interatomic case, provided that interactions beyond the usual second-order Kramers-Heisenberg treatment are included. This theory is also found to simplify under certain conditions so as to yield results equivalent to a classical x-ray optical approach, with the latter providing an accurate and alternative, although less detailed and general, physical picture of these effects. Possible future applications of MARPE as a new probe of near-neighbor identities and bonding and its relationship to other known effects are also discussed. We also consider in detail specially written data acquisition software that has been used for most of the measurements reported here. This software has been used with an existing experimental system to develop the method of detector characterization and then data correction required for the work described above. The development of a next generation one-dimensional, high-speed, electron detector is also discussed. Our goal has been to design, build and test a prototype high-performance, one-dimensional pulse-counting detector that represents a significant advancement in detector technology and is well

  1. Photoemission studies of wurtzite zinc oxide.

    Science.gov (United States)

    Powell, R. A.; Spicer, W. E.; Mcmenamin, J. C.

    1972-01-01

    The electronic structure of wurtzite zinc oxide, investigated over the widest possible photon energy range by means of photoemission techniques, is described. Of particular interest among the results of the photoemission study are the location of the Zn 3rd core states, the width of the upper valence bands, and structure in the conduction-band and valence-band density of states.

  2. Magnetic contrast in threshold photoemission electron microscopy

    NARCIS (Netherlands)

    Veghel, Marinus Godefridus Adrianus van

    2004-01-01

    In threshold photoemission electron microscopy (threshold PEEM), photoelectrons are excited by UV photons with an energy just above the photoemission threshold. The lateral intensity distribution of these electrons is then imaged by an electrostatic lens system. In this thesis, the possibilities o

  3. Electronic states of PrCoO{sub 3}: x-ray photoemission spectroscopy and LDA +U density of states studies

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S K [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Kumar, Ashwani [School of Physics, Devi Ahilya University, Khandwa Road, Indore 452 017 (India); Chaudhari, S M [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Pimpale, A V [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India)

    2006-02-01

    Electronic states of PrCoO{sub 3} are studied using x-ray photoemission spectroscopy. The Pr 3d{sub 5/2} core level and valence band (VB) were recorded using an Mg K {alpha} source. The core level spectrum shows that the 3d{sub 5/2} level is split into two components of multiplicity four and two, respectively, due to coupling of the spin states of the hole in 3d{sub 5/2} with the Pr 4f hole spin state. The observed splitting is 4.5 eV. The VB spectrum is interpreted using density of states (DOS) calculations under LDA and LDA +U. It is noted that LDA is not sufficient to explain the observed VB spectrum. Inclusion of on-site Coulomb correlation for Co 3d electrons in LDA +U calculations gives DOS which is useful in qualitative explanation of the ground state. However, it is necessary to include interactions between Pr 4f electrons to get better agreement with the experimental VB spectrum. It is seen that the VB consists of Pr 4f, Co 3d and O 2p states. Pr 4f, Co 3d and O 2p bands are highly mixed, indicating strong hybridization of these three states. The band near the Fermi level has about equal contributions from Pr 4f and O 2p states with somewhat smaller contribution from Co 3d states. Thus in the Zaanen, Sawatzky and Allen scheme PrCoO{sub 3} can be considered as a charge transfer insulator. The charge transfer energy {delta} can be obtained using LDA DOS calculations and the Coulomb-exchange energy U{sup '} from LDA +U. The explicit values for PrCoO{sub 3} are {delta} = 3.9 eV and U{sup '} = 5.5 eV; the crystal field splitting and 3d bandwidth of Co ions are also found to be 2.8 and 1.8 eV, respectively.

  4. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G.; Goodman, K.W. [Lawrence Berkeley National Lab., CA (United States); Schumann, F.O. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  5. Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Ikhsanov, Renat Sh;

    2015-01-01

    We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate photoemis...

  6. Core level photoemission spectroscopy and chemical bonding in Sr2Ta2O7

    DEFF Research Database (Denmark)

    Atuchin, V. V.; Grivel, Jean-Claude; Zhang, Z. M.

    2009-01-01

    structural and XPS data for other Sr- and Ta-containing oxide compounds. The new data point for Sr2Ta2O7 is consistent with the previously derived relationship for a set of Sr-bearing oxides. The binding energy difference Delta(O-Sr) was found to decrease with increasing bond distance L(Sr-O)....

  7. Angle-dependent hard X-ray photoemission study of Nb hydride formation in high-pressure supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Kazuo, E-mail: j45880a@cc.nagoya-u.ac.jp [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kondo, Hiroki; Yamaguchi, Kanta; Kato, Masahiko [Department of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Shiraki, Tatsuhito; Niwa, Ken; Kusaba, Keiji; Hasegawa, Masashi [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Xeniya, Kozina; Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan)

    2015-09-15

    Highlights: • Nb hydrides in 10-GPa supercritical water are studied by photoelectron spectroscopy. • The hydride components of the Nb 3d core-level spectra are increased with the depth. • The bulk valence-band spectrum shows a split band due to the Nb–H bond formation. • The hydrides are formed in the bulk and their surfaces are covered with Nb oxides. - Abstract: Nb hydrides formation in 10-GPa supercritical water has been investigated by angle-dependent micro-beam hard X-ray photoemission spectroscopy. In the Nb 3d core-level spectra, Nb hydride components are found in the slightly high binding energy side of the metallic components, and the oxide ones are observed even though little oxides are recognized in X-ray diffraction patterns. Obtained emission-angle dependence of the Nb 3d core-level spectra of Nb hydride specimens shows that the Nb hydride components increase with the emission angle decreased i.e. the sampling depth increased, while the oxide ones decrease. The bulk valence-band spectrum is obtained by decomposing the measured valence-band spectra into a bulk and surface components with use of the emission-angle dependence of the core-level and valence-band spectra; it consists of two bands. This implies the Nb–H chemical bond formation and Nb in an oxidation state, consistent with reported band structure calculations and the observed core-level chemical shifts. Thus it is confirmed by valence-band and core-level photoelectron spectroscopy that the Nb hydrides are formed inside the specimen, irrespective to the well-known high oxidation ability of supercritical water.

  8. On sulfur core level binding energies in thiol self-assembly and alternative adsorption sites: An experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Juanjuan [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); Kara, Abdelkader, E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Pasquali, Luca [Dipartimento di Ingegneria “E. Ferrari,” Università di Modena e Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy); Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Bendounan, Azzedine; Sirotti, Fausto [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex (France); Esaulov, Vladimir A., E-mail: abdelkader.kara@ucf.edu, E-mail: vladimir.esaulov@u-psud.fr [Institut des Sciences Moléculaires d’Orsay, Université-Paris Sud, 91405 Orsay (France); CNRS, UMR 8214, Institut des Sciences Moléculaires d’Orsay, Orsay ISMO, Bâtiment 351, Université Paris Sud, 91405 Orsay (France); IOM-CNR, s.s. 14, Km. 163.5 in AREA Science Park, 34149 Basovizza, Trieste (Italy)

    2015-09-14

    Characteristic core level binding energies (CLBEs) are regularly used to infer the modes of molecular adsorption: orientation, organization, and dissociation processes. Here, we focus on a largely debated situation regarding CLBEs in the case of chalcogen atom bearing molecules. For a thiol, this concerns the case when the CLBE of a thiolate sulfur at an adsorption site can be interpreted alternatively as due to atomic adsorption of a S atom, resulting from dissociation. Results of an investigation of the characteristics of thiol self-assembled monolayers (SAMs) obtained by vacuum evaporative adsorption are presented along with core level binding energy calculations. Thiol ended SAMs of 1,4-benzenedimethanethiol (BDMT) obtained by evaporation on Au display an unconventional CLBE structure at about 161.25 eV, which is close to a known CLBE of a S atom on Au. Adsorption and CLBE calculations for sulfur atoms and BDMT molecules are reported and allow delineating trends as a function of chemisorption on hollow, bridge, and atop sites and including the presence of adatoms. These calculations suggest that the 161.25 eV peak is due to an alternative adsorption site, which could be associated to an atop configuration. Therefore, this may be an alternative interpretation, different from the one involving the adsorption of atomic sulfur resulting from the dissociation process of the S–C bond. Calculated differences in S(2p) CLBEs for free BDMT molecules, SH group sulfur on top of the SAM, and disulfide are also reported to clarify possible errors in assignments.

  9. A New Spin on Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jozwiak, Chris [Univ. of California, Berkeley, CA (United States)

    2008-12-01

    The electronic spin degree of freedom is of general fundamental importance to all matter. Understanding its complex roles and behavior in the solid state, particularly in highly correlated and magnetic materials, has grown increasingly desirable as technology demands advanced devices and materials based on ever stricter comprehension and control of the electron spin. However, direct and efficient spin dependent probes of electronic structure are currently lacking. Angle Resolved Photoemission Spectroscopy (ARPES) has become one of the most successful experimental tools for elucidating solid state electronic structures, bolstered by-continual breakthroughs in efficient instrumentation. In contrast, spin-resolved photoemission spectroscopy has lagged behind due to a lack of similar instrumental advances. The power of photoemission spectroscopy and the pertinence of electronic spin in the current research climate combine to make breakthroughs in Spin and Angle Resolved Photoemission Spectroscopy (SARPES) a high priority . This thesis details the development of a unique instrument for efficient SARPES and represents a radical departure from conventional methods. A custom designed spin polarimeter based on low energy exchange scattering is developed, with projected efficiency gains of two orders of magnitude over current state-of-the-art polarimeters. For energy analysis, the popular hemispherical analyzer is eschewed for a custom Time-of-Flight (TOF) analyzer offering an additional order of magnitude gain in efficiency. The combined instrument signifies the breakthrough needed to perform the high resolution SARPES experiments necessary for untangling the complex spin-dependent electronic structures central to today's condensed matter physics.

  10. Photoemission from optoelectronic materials and their nanostructures

    CERN Document Server

    Ghatak, Kamakhya Prasad; Bhattacharya, Sitangshu

    2009-01-01

    This monograph investigates photoemission from optoelectronic materials and their nanostructures. It contains open-ended research problems which form an integral part of the text and are useful for graduate courses as well as aspiring Ph.D.'s and researchers..

  11. Deep layer-resolved core-level shifts in the beryllium surface

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    Core-level energy shifts for the beryllium surface region are calculated by means of a Green’s function technique within the tight-binding linear muffin-tin orbitals method. Both initial- and final-state effects in the core-ionization process are fully accounted for. Anomalously large energy shifts...

  12. Ab initio surface core-level shifts and surface segregation energies

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    We have calculated the surface core-level energy shifts of the 4d and 5d transition metals by means of local-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method. Final-state effects are included by treating the core-ionized atom as an impurity located...

  13. Modeling Shallow Core-Level Transitions in the Reflectance Spectra of Gallium-Containing Semiconductors

    Science.gov (United States)

    Stoute, Nicholas; Aspnes, David

    2012-02-01

    The electronic structure of covalent materials is typically approached by band theory. However, shallow core level transitions may be better modeled by an atomic-scale approach. We investigate shallow d-core level reflectance spectra in terms of a local atomic-multiplet theory, a novel application of a theory typically used for higher-energy transitions on more ionic type material systems. We examine specifically structure in reflectance spectra of GaP, GaAs, GaSb, GaSe, and GaAs1-xPx due to transitions that originate from Ga3d core levels and occur in the 20 to 25 eV range. We model these spectra as a Ga^+3 closed-shell ion whose transitions are influenced by perturbations on 3d hole-4p electron final states. These are specifically spin-orbit effects on the hole and electron, and a crystal-field effect on the hole, attributed to surrounding bond charges and positive ligand anions. Empirical radial-strength parameters were obtained by least-squares fitting. General trends with respect to anion electronegativity are consistent with expectations. In addition to the spin-orbit interaction, crystal-field effects play a significant role in breaking the degeneracy of the d levels, and consequently are necessary to understand shallow 3d core level spectra.

  14. Magnetic x-ray linear dichroism in resonant and non-resonant Gd 4f photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.; Gammon, W.J.; Pappas, D.P. [Virginia Commonwealth Univ., Richmond, VA (United States)] [and others

    1997-04-01

    The enhancement of the magnetic linear dichroism in resonant 4f photoemission (MLDRPE) is studied from a 50 monolayer film of Gd/Y(0001). The ALS at beamline 7.0.1 provided the source of linearly polarized x-rays used in this study. The polarized light was incident at an angle of 30 degrees relative to the film plane, and the sample magnetization was perpendicular to the photon polarization. The linear dichroism of the 4f core levels is measured as the photon energy is tuned through the 4d-4f resonance. The authors find that the MLDRPE asymmetry is strongest at the resonance. Near the threshold the asymmetry has several features which are out of phase with the fine structure of the total yield.

  15. Hard x-ray photoemission and density functional theory study of the internal electric field in SrTiO3/LaAlO3 oxide heterostructures

    Science.gov (United States)

    Slooten, E.; Zhong, Zhicheng; Molegraaf, H. J. A.; Eerkes, P. D.; de Jong, S.; Massee, F.; van Heumen, E.; Kruize, M. K.; Wenderich, S.; Kleibeuker, J. E.; Gorgoi, M.; Hilgenkamp, H.; Brinkman, A.; Huijben, M.; Rijnders, G.; Blank, D. H. A.; Koster, G.; Kelly, P. J.; Golden, M. S.

    2013-02-01

    A combined experimental and theoretical investigation of the electronic structure of the archetypal oxide heterointerface system LaAlO3 on SrTiO3 is presented. High-resolution, hard x-ray photoemission is used to uncover the occupation of Ti 3d states and the relative energetic alignment—and hence internal electric fields—within the LaAlO3 layer. First, the Ti 2p core-level spectra clearly show occupation of Ti 3d states already for two unit cells of LaAlO3. Second, the LaAlO3 core levels were seen to shift to lower binding energy as the LaAlO3 overlayer thickness, n, was increased, agreeing with the expectations from the canonical electron transfer model for the emergence of conductivity at the interface. However, not only is the energy offset of only ˜300 meV between n=2 (insulating interface) and n=6 (metallic interface) an order of magnitude smaller than the simple expectation, but it is also clearly not the sum of a series of unit-cell-by-unit-cell shifts within the LaAlO3 block. Both of these facts argue against the simple charge-transfer picture involving a cumulative shift of the LaAlO3 valence bands above the SrTiO3 conduction bands, resulting in charge transfer only for n≥4. We discuss effects which could frustrate this elegant and simple charge-transfer model, concluding that although it cannot be ruled out, photodoping by the x-ray beam is unlikely to be the cause of the observed behavior. Turning to the theoretical data, our density functional simulations show that the presence of oxygen vacancies at the LaAlO3 surface at the 25% level reverses the direction of the internal field in the LaAlO3. Therefore, taking the experimental and theoretical results together, a consistent picture emerges for real-life samples in which nature does not wait until n=4 and already for n=2 mechanisms other than internal-electric-field-driven electron transfer from idealized LaAlO3 to near-interfacial states in the SrTiO3 substrate are active in heading off the

  16. A single centre water splitting dye complex adsorbed on rutile TiO{sub 2}(110): Photoemission, x-ray absorption, and optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weston, Matthew; Britton, Andrew J.; Handrup, Karsten; O' Shea, James N. [School of Physics and Astronomy, University of Nottingham, NG7 2RD Nottingham (United Kingdom); Nottingham Nanotechnology and Nanoscience Centre (NNNC), University of Nottingham, NG7 2RD Nottingham (United Kingdom); Reade, Thomas J.; Champness, Neil R. [School of Chemistry, University of Nottingham, NG7 2RD Nottingham (United Kingdom)

    2011-09-21

    A single centre water splitting dye complex (aqua(2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2':6',6''-terpyridine)Ruthenium(II)), along with a related complex ((2,2'-bipyridyl-4,4'-dicarboxylic acid)-(2,2':6',6''-terpyridine)chloride Ruthenium(II)), has been investigated using photoemission and compared to molecules with similar structures. Dye molecules were deposited in situ using ultra-high vacuum electrospray deposition, which allows for the deposition of thermally labile molecules, such as these dye molecules. Adsorption of the dye molecules on the rutile TiO{sub 2}(110) surface has been studied using core-level and valence photoemission. Core-level photoemission spectra reveal that each complex bonds to the surface via deprotonation of its carboxylic acid groups. A consideration of the energy level alignments reveals that both complexes are capable of charge transfer from the adsorbed molecules to the conduction band of the rutile TiO{sub 2} substrate.

  17. New determination of the core-level life-time broadenings in mercury

    Energy Technology Data Exchange (ETDEWEB)

    Martensson, Nils, E-mail: nils.martensson@fysik.uu.se; Svensson, Svante

    2015-07-15

    Highlights: • We report core-level life-time widths for mercury in the gas phase. • Photoelectron spectra for the 4p, 4d, 4f and 5p levels are analyzed. • A Coster–Kronig like CI effect is observed for the 4d{sub 3/2} level. - Abstract: Previously recorded and published photoelectron spectroscopic data for mercury in the gas phase has been reanalyzed. The life-time broadenings have been determined for a large number of core levels. It is then seen that a recent detailed derivation of core-level line-widths based on X-ray emission spectroscopy give life-time widths that are generally too large. The 4d{sub 3/2}4d{sub 5/2}nd Coster–Kronig (CK) transition is also discussed. We find that the additional broadening of the 4d{sub 3/2} level for mercury metal is indeed due to a CK decay, in contrast to recent claims. In atomic mercury, however, the CK process in energetically forbidden. In spite of this we find that the 4d{sub 3/2} level is broadened also in this case. We propose that this is due to a mixing between the 4d{sub 3/2} hole state and discrete 4d{sub 5/2}nd states.

  18. Photoemission of switchable mirrors and quantum wells

    OpenAIRE

    Koitzsch, Christian; Aebi, Philippe

    2005-01-01

    This thesis focuses on the electronic properties of materials, which were explored with Angle Resolved Photoemission (ARPES) and Density Functional Theory (DFT). The natural fingerprint of electronic phenomena in crystalline solids, e.g. in this thesis the hydrogen-induced metal-insulator transition and the formation of standing electron waves in quantum wells, is the k-resolved band structure or in short the E(k) relation in the solid. The experimental technique to explore the occupied band ...

  19. Angle resolved photoemission spectroscopy and surface states

    Science.gov (United States)

    Kar, Nikhiles

    2016-10-01

    Angle Resolved Photo Emission Spectroscopy (ARPES) has been a very effective tool to study the electronic states of solids, from simple metals to complex systems like cuprate superconductors. For photon energy in the range of 10 - 100 eV, it is a surface sensitive process as the free path of the photo emitted electrons is of the order of a few lattice parameters. However to interpret the experimental data one needs to have a theoretical foundation for the photoemission process. From the theory of photoemission it may be seen that one can get information about the state from which the electron has been excited. As the translational periodicity is broken normal to the surface, a new type of electron state in the forbidden energy gap can exist localized in the surface region. ARPES can reveal the existence and the property of such surface states. We shall also discuss briefly how the electromagnetic field of the photons are influenced by the presence of the surface and how one can try to take that into account in photoemission theory.

  20. Increased electron photoemission from plasmonic nanoparticles and photoemission enhanced solar cells

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Uskov, Alexander; Gritti, Claudia;

    2011-01-01

    Numerical simulation shows possibility to enhance substantially (by one-two orders) the electron photoemission through surface of metal nanoparticles embedded into photovoltaic structures. This, in turn, can lead to increase of the solar cells efficiency due to efficient light-to-electricity tran......Numerical simulation shows possibility to enhance substantially (by one-two orders) the electron photoemission through surface of metal nanoparticles embedded into photovoltaic structures. This, in turn, can lead to increase of the solar cells efficiency due to efficient light......-to-electricity transformation below the solar cell semiconductor bandgap....

  1. Effects of vibrational motion on core-level spectra of prototype organic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Uejio, Janel S.; Schwartz, Craig P.; Saykally, Richard J.; Prendergast, David

    2008-08-21

    A computational approach is presented for prediction and interpretation of core-level spectra of complex molecules. Applications are presented for several isolated organic molecules, sampling a range of chemical bonding and structural motifs. Comparison with gas phase measurements indicate that spectral lineshapes are accurately reproduced both above and below the ionization potential, without resort to ad hoc broadening. Agreement with experiment is significantly improved upon inclusion of vibrations via molecular dynamics sampling. We isolate and characterize spectral features due to particular electronic transitions enabled by vibrations, noting that even zero-point motion is sufficient in some cases.

  2. In situ photoemission study of interface and film formation during epitaxial growth of Er2O3 film on Si(001) substrate

    Institute of Scientific and Technical Information of China (English)

    ZHU Yanyan; FANG Zebo; LIU Yongsheng; LIAO Can; CHEN Sheng

    2008-01-01

    Synchrotron radiation photoemission spectroscopy was used to study the formation process of Er2O3/Si(001) interface and film during epitaxial growth on Si. A shift in the O core-level binding energy was found accompanied by a shift in the Er2O3 valence band maxi-mum. This shift depended on the oxide layer thickness and interfacial structure. An interfacial layer was observed at the initial growth of Er2O3 film on Si, which was supposed to be attributed to the effect of Er atom catalytic oxidation effect.

  3. Photoemission study of iron-based superconductor

    Institute of Scientific and Technical Information of China (English)

    Liu Zhong-Hao; Cai Yi-Peng; Zhao Yan-Ge; Jia Lei-Lei; Wang Shan-Cai

    2013-01-01

    The iron-based superconductivity (IBSC) is a great challenge in correlated system.Angle-resolved photoemission spectroscopy (ARPES) provides electronic structure of the IBSCs,the pairing strength,and the order parameter symmetry.Here,we briefly review the recent progress in IBSCs and focus on the results from ARPES.The ARPES study shows the electronic structure of “122”,“111”,“11”,and “122*” families of IBSCs.It has been agreed that the IBSCs are unconventional superconductors in strong coupling region.The order parameter symmetry basically follows s± form with considerable out-of-plane contribution.

  4. Photoemission Fingerprints for Structural Identification of Titanium Dioxide Surfaces.

    Science.gov (United States)

    Borghetti, Patrizia; Meriggio, Elisa; Rousse, Gwenaëlle; Cabailh, Gregory; Lazzari, Rémi; Jupille, Jacques

    2016-08-18

    The wealth of properties of titanium dioxide relies on its various polymorphs and on their mixtures coupled with a sensitivity to crystallographic orientations. It is therefore pivotal to set out methods that allow surface structural identification. We demonstrate herein the ability of photoemission spectroscopy to provide Ti LMV (V = valence) Auger templates to quantitatively analyze TiO2 polymorphs. The Ti LMV decay reflects Ti 4sp-O 2p hybridizations that are intrinsic properties of TiO2 phases and orientations. Ti LMV templates collected on rutile (110), anatase (101), and (100) single crystals allow for the quantitative analysis of mixed nanosized powders, which bridges the gap between surfaces of reference and complex materials. As a test bed, the anatase/rutile P25 is studied both as received and during the anatase-to-rutile transformation upon annealing. The agreement with X-ray diffraction measurements proves the reliability of the Auger analysis and highlights its ability to detect surface orientations.

  5. Wigner photoemission time delay from endohedral anions

    Science.gov (United States)

    Kumar, Ashish; Varma, Hari R.; Deshmukh, Pranawa C.; Manson, Steven T.; Dolmatov, Valeriy K.; Kheifets, Anatoli

    2016-10-01

    Characteristic features of Wigner photoemission time delay from endohedral anions A@C60q along with their dependence on the anion charge q are unraveled. Specifically, significant enhancement of the time delay in the innermost dipole photoionization channels near threshold is found, owing to the presence of the Coulomb confined resonances (CRs). Moreover, it is shown that interchannel coupling of the inner-shell Coulomb CRs with outer-shell photoionization channels results in resonantly enhanced time delay in the release of the outer-shell photoelectron well above, several hundreds eV, the outer-shell thresholds. It is also demonstrated that, and explained why, photoionization cross sections of the innermost subshells as well as outer subshells (near the inner-subshell threshold) depends only very weakly on the anion charge q , but the dependence of the corresponding time delays on q can be significant. Furthermore, Coulomb CRs are found to emerge in the innermost quadrupole photoionization channels as well, thereby causing considerable time delay in the quadrupole photoemission. These findings are illustrated in calculations of the photoionization of inner and outer subshells of the endohedral anions Ne@C60-1 and Ne@C60-5 that were chosen as case studies.

  6. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    We calculate the difference of the ionization energies of a core electron of a surface alloy, i.e., a B atom in a A(1-x)B(x) overlayer on a fee B(001) substrate, and a core electron of the clean fee B(001) surface using density-functional theory. We analyze the initial-state contributions and the...... the initial-state trends are explained in terms of the change of inter- and intra-atomic screening upon alloying. A possible role of alloying on the chemical reactivity of metal surfaces is discussed....... and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  7. Core-level electronic properties of nanostructured NiO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Palacin, S. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Gutierrez, A. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)], E-mail: a.gutierrez@uam.es; Preda, I.; Hernandez-Velez, M. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Sanz, R. [Instituto de Ciencia de Materiales, CSIC, Cantoblanco, 28049 Madrid (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain); Soriano, L. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2007-10-31

    Nanostructured NiO films with different thicknesses were grown on nanoporous alumina membrane substrates by reactive evaporation of Ni in an oxygen atmosphere. The reactive deposition process was assisted by a low energy oxygen ion-beam in order to increase the NiO input into the pores. Surface morphology and structure of the films were analyzed by SEM and XPS. SEM observations reveal a well adhered film of NiO on the substrate. This film appears to be uniform and presents a rather irregular nanostructured morphology, built of NiO clusters with sizes ranging between 5 and 30 nm. The core-level electronic properties of this nanostructured NiO film result to be similar to those of an ultrathin film about one monolayer thick. This behaviour can be explained by the large surface to volume ratio of both systems.

  8. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    Science.gov (United States)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-02-01

    We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN's) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N2 atmosphere. For XPS measurements, layers are either (i) Ar+ ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These spectra-modifying effects of Ar+ ion bombardment increase with increasing the metal atom mass due to an increasing nitrogen-to-metal sputter yield ratio. The superior quality of the XPS spectra obtained in a non-destructive way from capped TMN films is evident from that numerous metal peaks, including Ti 2p, V 2p, Zr 3d, and Hf 4f, exhibit pronounced satellite features, in agreement with previously published spectra from layers grown and analyzed in situ. In addition, the N/metal concentration ratios are found to be 25-90% higher than those obtained from the corresponding ion-etched surfaces, and in most cases agree very well with the RBS and ToF-E ERDA values. The N 1 s BE:s extracted from

  9. Core-level magnetic circular dichroism in 3d and 4f magnetic systems (invited) (abstract)

    Science.gov (United States)

    Koide, T.

    1994-05-01

    With the recent availability of circulary polarized synchrotron radiation over a wide photon energy range from VUV to hard X rays, the magnetic circular dichroism (MCD) in core-level photoabsorption has rapidly attracted growing interest, both experimentally and theoretically. This novel technique can provide element-specific and site-selective information about the magnetic and the electronic states in various magnetic substances because the core-level MCD process involves optical transitions in which the one-electron initial states are well localized and have well-defined angular momenta. In order to get insight into the local magnetic states in 3d and 4f magnetic systems, we have studied MCD of ferrites, Fe1-xPtx alloys, and mixed-valence CeRh3B2 at the core-absorption edges in the VUV˜soft x-ray region. The experiments were performed by utilizing directly characterized, circularly polarized undulator radiation and off-plane synchrotron radiation1 in conjunction with an ultrahigh vacuum compatible superconducting magnet of special design.2 Clear MCD signals were observed for CeRh3B2 in the prethreshold region of the Ce 4d→4f (N4,5) edges. A comparison of the experimental MCD spectrum with theoretical ones3 for uniaxial crystal fields of Δc=0 and 0.2 eV shows that the experimental spectrum qualitatively agrees with the theoretical one for Δc=0 eV. Theory predicts that the MCD pattern for ΔcCeRh3B2. We will also present the MCD data in the M2,3 core-absorption region for ferrites (Fe3O4 and CoFe2O4) and Fe1-xPtx alloys, discussing the results.

  10. Preparation of solid-state samples of a transition metal coordination compound for synchrotron radiation photoemission studies

    CERN Document Server

    Crotti, C; Celestino, T; Fontana, S

    2003-01-01

    The aim of this research was to identify a sample preparation method suitable for the study of transition metal complexes by photoemission spectroscopy with synchrotron radiation as the X-ray source, even in the case where the compound is not evaporable. Solid-phase samples of W(CO) sub 4 (dppe) [dppe=1,2-bis(diphenylphosphino)ethane] were prepared according to different methods and their synchrotron radiation XPS spectra measured. The spectra acquired from samples prepared by spin coating show core level peaks only slightly broader than the spectrum recorded from UHV evaporated samples. Moreover, for these samples the reproducibility of the binding energy values is excellent. The dependence of the spin coating technique on parameters such as solvent and solution concentration, spinning speed and support material was studied. The same preparation method also allowed the acquisition of valence band spectra, the main peaks of which were clearly resolved. The results suggest that use of the spin coating techniqu...

  11. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    Directory of Open Access Journals (Sweden)

    M. Dell'Angela

    2015-03-01

    Full Text Available Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES have been studied at a free electron laser (FEL for an oxygen layer on Ru(0001. We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  12. Time-resolved photoemission using attosecond streaking

    CERN Document Server

    Nagele, Stefan; Wais, Michael; Wachter, Georg; Burgdörfer, Joachim

    2014-01-01

    We theoretically study time-resolved photoemission in atoms as probed by attosecond streaking. We review recent advances in the study of the photoelectric effect in the time domain and show that the experimentally accessible time shifts can be decomposed into distinct contributions that stem from the field-free photoionization process itself and from probe-field induced corrections. We perform accurate quantum-mechanical as well as classical simulations of attosecond streaking for effective one-electron systems and determine all relevant contributions to the time delay with attosecond precision. In particular, we investigate the properties and limitations of attosecond streaking for the transition from short-ranged potentials (photodetachment) to long-ranged Coulomb potentials (photoionization). As an example for a more complex system, we study time-resolved photoionization for endohedral fullerenes $A$@$\\text{C}_{60}$ and discuss how streaking time shifts are modified due to the interaction of the $\\text{C}_...

  13. Time-resolved photoemission using attosecond streaking

    Science.gov (United States)

    Nagele, S.; Pazourek, R.; Wais, M.; Wachter, G.; Burgdörfer, J.

    2014-04-01

    We theoretically study time-resolved photoemission in atoms as probed by attosecond streaking. We review recent advances in the study of the photoelectric efect in the time domain and show that the experimentally accessible time shifts can be decomposed into distinct contributions that stem from the feld-free photoionization process itself and from probe-field induced corrections. We perform accurate quantum-mechanical as well as classical simulations of attosecond streaking for efective one-electron systems and determine all relevant contributions to the time delay with attosecond precision. In particular, we investigate the properties and limitations of attosecond streaking for the transition from short-ranged potentials (photodetachment) to long-ranged Coulomb potentials (photoionization). As an example for a more complex system, we study time-resolved photoionization for endohedral fullerenes A@C60 and discuss how streaking time shifts are modifed due to the interaction of the C60 cage with the probing infrared streaking field.

  14. Electronic structure of MgB2 from angle-resolved photoemission spectroscopy.

    Science.gov (United States)

    Uchiyama, H; Shen, K M; Lee, S; Damascelli, A; Lu, D H; Feng, D L; Shen, Z-X; Tajima, S

    2002-04-15

    The first angle-resolved photoemission spectroscopy results from MgB2 single crystals are reported. Along the GammaK and GammaM directions, we observed three distinct dispersive features approaching the Fermi energy. These can be assigned to the theoretically predicted sigma (B 2p(x,y)) and pi (B 2p(z)) bands. In addition, a small parabolic-like band is detected around the Gamma point, which can be attributed to a surface-derived state. The overall agreement between our results and the band calculations suggests that the electronic structure of MgB2 is of a conventional nature, thus implying that electron correlations are weak and may be of little importance to superconductivity in this system.

  15. Core levels, valence band structure and unoccupied states of clean InN surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Himmerlich, Marcel; Eisenhardt, Anja; Schaefer, Juergen A.; Krischok, Stefan [Institut fuer Physik and Institut fuer Mikro- und Nanotechnologien, TU Ilmenau (Germany)

    2008-07-01

    In this study we used a surface analytics system directly connected to a MBE growth module to study the surface properties of thin InN films. The samples were prepared by plasma assisted molecular beam epitaxy on GaN/Al{sub 2}O{sub 3}(0001) templates and exhibited a 2 x 2 reconstruction after growth. The prepared samples were analysed by photoelectron spectroscopy as well as electron energy loss spectroscopy (EELS). For the occupied states, a very good agreement to available theoretical calculations is found. Although, the valence band maximum is located at 1.6 eV, indicating strong downward band bending of {proportional_to}0.9 eV, photoemission is detected up to E{sub F}. This indicates that the Fermi level is pinned above the conduction band minimum, as recently predicted. The spin-orbit splitting of the In 4d level at 17.8 eV could be resolved using He II radiation. Furthermore, from the fine structure of the secondary electron cascade peak we extract the energy of different unoccupied states 0 eV to 9 eV above the vacuum level. These measurements enable us to identify features in the InN EELS spectra, with a loss energy larger than 16 eV, as interband transitions from the In 4d level.

  16. High- Tc superconductivity: new issues from photoemission data

    Science.gov (United States)

    Margaritondo, G.; Grioni, M.; Vobornik, I.; Pavuna, D.

    2001-11-01

    Recent high-resolution photoemission results on high- Tc superconductors and other low-dimensional systems solve some critical issues but also open new fundamental questions. A recent breakthrough enabled us to clarify the interplay of conflicting periodicities in photoemission data, thus legitimizing the photoemission analysis of crystals with super-periodicities. On the other hand, results on the role of doping and of intentional disorder in Bi 2Sr 2CaCu 2O 8+ x single crystals raise questions about the origin of the pseudogap.

  17. Chiral asymmetry in the angle-resolved O and C 1s-1 core photoemissions of the R enantiomer of glycidol

    Science.gov (United States)

    Powis, Ivan; Harding, Chris J.; Barth, Silko; Joshi, Sanjeev; Ulrich, Volker; Hergenhahn, Uwe

    2008-11-01

    We present measurements of a photoelectron circular dichroism in photoionization from O and C 1s core levels, of the R enantiomer of glycidol (C3H6O2) in the gas phase. This dichroism emerges from a forward-backward asymmetry in the angular distribution of electrons created on ionization with circularly polarized synchrotron radiation and is already fully present in the pure electric dipole approximation. Asymmetry factors obtained for the core levels in this study range up to a few percent, but it is likely that these values are limited by a failure to resolve photoemission from individual atomic sites. Theoretical modeling is provided to examine possible differences between these alternative atomic photoemission sites, and between different conformational structures of glycidol. The calculated chiral angular distribution parameters that support the circular dichroism display a much enhanced sensitivity to the molecular conformation compared to the conventional photoionization cross section and the β parameter. Likely conformer structures can be suggested after comparison with the experiment.

  18. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofeng [Nesna University College, 8700 Nesna (Norway); Raaen, Steinar, E-mail: sraaen@ntnu.no [Physics Department, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbon cone containing material.

  19. Surface Optimization of RBa2Cu3O7-δ (R=Y, Nd) Epitaxial High Tc Films for In Situ Photoemission Studies

    Science.gov (United States)

    Abrecht, M.; Schmauder, T.; Ariosa, D.; Touzelet, O.; Rast, S.; Onellion, M.; Pavuna, D.

    One of the intrinsic difficulties for in situ photoemission studies of high Tc oxide films is the surface volatility, especially the oxygen loss. In order to solve this problem, we have constructed a dedicated system for high Tc film surface studies, in particular for ARPES measurements. Here we briefly describe our pulsed laser deposition (PLD) system that is linked to the photoemission chamber at the Synchrotron Radiation Center (SRC) in Wisconsin, and discuss crystallographic and electronic properties measured on epitaxial YBa2Cu3O7-δ (YBCO) and NdBa2Cu3O7-δ (NBCO) films. Resistivity and XRD studies show that the best c axis epitaxial films, with Tc (onset)=92 K (Tc0=90.5 K), are monophase and single crystalline with crystal coherence up to almost 1 µm. Initial core level photoemission study indicates that, for YBCO on SrTiO3 (without any buffer layer), the Ba oxide layer tends to be the dominant surface layer. Further experiments are underway to reproducibly detect sharp Fermi edge and perform ARPES study on optimally doped film surfaces.

  20. Soft x-ray photoemission of clean and sulfur-covered polar ZnO surfaces: A view of the stabilization of polar oxide surfaces

    Science.gov (United States)

    Lahiri, Jayeeta; Senanayake, Sanjaya; Batzill, Matthias

    2008-10-01

    The two polar surfaces of ZnO were investigated by soft x-ray photoemission spectroscopy. Surface components due to variation in the Madelung energy were identified in photoemission core-level spectra. Sulfur adsorption was used to passivate the surfaces in order to enable separation of the bulk from the surface components. For the ZnO(0001)-Zn surface the observed photoemission peaks were consistent with a Zn-deficient surface, exhibiting a high density of O-terminated step edges. The ZnO(000-1)-O surface is very reactive toward hydrogen adsorption and only above 650 K a hydrogen free surface was observed. For hydrogen-free and small hydrogen coverage an electrostatic shift of the Fermi-level toward the band-gap center was observed. This indicates an incomplete compensation of the internal electrostatic potential by surface oxygen vacancies or charged adsorbates. Coadsorption of sulfur lowered the desorption temperature for hydrogen indicating the possibility to tune the chemical properties of these polar surfaces by dopants.

  1. Synchrotron radiation photoemission study of Pb{sub 1−x}Cd{sub x}Te crystal with local structure

    Energy Technology Data Exchange (ETDEWEB)

    Orlowski, B.A.; Szczerbakow, A.; Dziawa, P.; Gas, K.; Reszka, A.; Kowalski, B.J. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Thiess, S.; Drube, W. [Hamburger Synchrotronstrahlungslabor HASYLAB am DESY, Notkestr. 85, D-22603 Hamburg (Germany)

    2015-12-01

    The paper presents photoemission study of core level binding energy shifts caused by local crystalline structure collapse in cubic Pb{sub 1−x}Cd{sub x}Te crystal. Photoemission spectra of two kinds of semiconductor samples are compared. The first one is ternary crystal of Pb{sub 0.94}Cd{sub 0.06}Te with the frozen rock salt structure where the crystalline local structure collapse is expected due to the difference of ion radii of Cd and Pb cations. The second sample was the CdTe(22 nm)/PbTe(6 nm)/CdTe(4 μm)/GaAs(1 1 1)B nanostructure grown by molecular beam epitaxy (MBE) method, where crystalline local structure is not expected to be created. The photoemission spectra show that for the crystal with local structure the electron binding energies of cations are higher (e.g. +0.2 eV) whereas for anions they are lower (e.g. −0.08 eV) than in the multilayer structure. A model is proposed to explain obtained results by the local crystalline structure collapse in Pb{sub 0.94}Cd{sub 0.06}Te crystal.

  2. Core-Level Modeling and Frequency Prediction for DSP Applications on FPGAs

    Directory of Open Access Journals (Sweden)

    Gongyu Wang

    2015-01-01

    Full Text Available Field-programmable gate arrays (FPGAs provide a promising technology that can improve performance of many high-performance computing and embedded applications. However, unlike software design tools, the relatively immature state of FPGA tools significantly limits productivity and consequently prevents widespread adoption of the technology. For example, the lengthy design-translate-execute (DTE process often must be iterated to meet the application requirements. Previous works have enabled model-based, design-space exploration to reduce DTE iterations but are limited by a lack of accurate model-based prediction of key design parameters, the most important of which is clock frequency. In this paper, we present a core-level modeling and design (CMD methodology that enables modeling of FPGA applications at an abstract level and yet produces accurate predictions of parameters such as clock frequency, resource utilization (i.e., area, and latency. We evaluate CMD’s prediction methods using several high-performance DSP applications on various families of FPGAs and show an average clock-frequency prediction error of 3.6%, with a worst-case error of 20.4%, compared to the best of existing high-level prediction methods, 13.9% average error with 48.2% worst-case error. We also demonstrate how such prediction enables accurate design-space exploration without coding in a hardware-description language (HDL, significantly reducing the total design time.

  3. Photoemission and magnetic circular dichroism studies of magnetic semiconductors

    Science.gov (United States)

    Fujimori, Atsushi

    2005-03-01

    Recently, a series of novel ferromagnetic semiconductors have been synthesized using MBE and related techniques and have attracted much attention because of unknown mechanisms of carrier-induced ferromagnetism and potential applications as "spin electronics" devices. Some new materials show ferromagnetism even well above room temperature. Photoemission spectroscopy has been used to study the d orbitals of the dilute transition-metal atoms, mostly Mn, and their hybridization with the host band states [1]. Soft x-ray absorption spectroscopy (XAS) and magnetic circular dichroism (MCD) at the transition-metal 2p-3d absorption edges are useful techniques to study the valence and spin states of the transition-metal atoms. Furthermore, since MCD has different sensitivities to the ferromagnetic and paramagnetic components at different temperatures and magnetic fileds, if the sample is a mixture of ferromagnetic and non-ferromagnetic transition- metal atoms, it can be used to separate the two components and to study their electronic structures. In this talk, results are presented for the prototypical diluted ferromagnetic semiconductor Ga1-xMnxAs [2] and the room-temperature ferromagnets Zn1-xCoxO and Ti1-xCoxO2.I acknowledge collaboration with Y. Ishida, J.-I. Hwang, M. Kobayashi, Y. Takeda, Y. Saitoh, J. Okamoto, T. Okane, Y. Muramatsu, K. Mamiya, T. Koide, A. Tanaka, M. Tanaka, Hayashi, S. Ohya, T. Kondo, H. Munekata, H. Saeki, H. Tabata, T. Kawai, Y. Matsumoto, H. Koinuma, T. Fukumura and M. Kawasaki. This work was supported by a Grant-in-Aid for Scientific Research in Priority Area "Semiconductor nano-spintronics" (14076209) from MEXT, Japan.1. J. Okabayashi et al., Phys. Rev. B 64, 125304 (2001).2. A. Fujimori et al., J. Electron Spectrosc. Relat. Phenom., in press.

  4. Theory of hot electron photoemission from graphene

    Science.gov (United States)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  5. P2P overlay over Simctl

    OpenAIRE

    Sicart López, Gerard Carles

    2016-01-01

    This project intends to find and implement a p2p overlay over the simctl platform. Simctl is used both for teaching and research in the network engineering department. P2P systems became an interesting area since early 2000. Researchers conducted a large amount of research in some challenging areas and, to check their experiments, several implementations and simulators were created. Over time, Internet has evolved and P2P has been widely used for file sharing, but the main structured P2P o...

  6. Photoemission spectroscopy of single crystal HTSC materials: A Fermi liquid electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C.; Veal, B.W.; Liu, J.Z.

    1989-01-01

    Photoemission spectra from HTSC materials (primarily 123-type), cleaved and measured at 20K, reveal a rich DOS structure which compares favorably with a calculated band structure, except for a residual 0.5 eV shift which may reflect some correlation effects. Band dispersion is observed throughout the valence bands, with clear evidence for a 0.2 eV wide band dispersing through E/sub F/. The orbital character at E/sub F/ is a mix of Cu-3d and O-2p. There is unambiguous evidence for a large BCS-like gap (2..delta.. greater than or equal to 4kT/sub c/). 25 refs., 5 figs.

  7. Superconductivity and x-ray photoemission study of MgB2 thin films

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 周岳亮; 朱亚彬; 张芹; 谢侃; 陈正豪; 吕惠宾; 杨国桢

    2002-01-01

    Highly c-axis oriented MgB2 thin films with Tconset of 39.6K were fabricated by magnesium diffusing into pulsed-laser-deposited boron precursors. The estimation of critical current density Jc, using hysteresis loops and the Bean model, has given the value of 107A/cm2 (15K, 0T), which is one of the highest values ever reported. The x-ray photoemission study of the MgB2 thin films has revealed that the binding energies of Mg 2p and B 1s are at 49.4eV and 186.9eV, which are close to those of metallic Mg and transition-metal diborides, respectively.

  8. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimental fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.

  9. Real-time observation of collective excitations in photoemission

    Science.gov (United States)

    Lemell, C.; Neppl, S.; Wachter, G.; Tőkési, K.; Ernstorfer, R.; Feulner, P.; Kienberger, R.; Burgdörfer, J.

    2015-06-01

    Ejection of an electron by absorption of an extreme ultraviolet (xuv) photon probes the many-electron response of a solid well beyond the single-particle picture. Photoemission spectra feature complex correlation satellite structures signifying the simultaneous excitation of single or multiple plasmons. The time delay of the plasmon satellites relative to the main line can be resolved in attosecond streaking experiments. Time-resolved photoemission thus provides the key to discriminate between intrinsic and extrinsic plasmon excitation. We demonstrate the determination of the branching ratio between intrinsic and extrinsic plasmon generation for simple metals.

  10. Fullerene photoemission time delay explores molecular cavity in attoseconds

    CERN Document Server

    Magrakvelidze, Maia; Dixit, Gopal; Madjet, Mohamed El-Amine; Chakraborty, Himadri S

    2014-01-01

    Time-resolved photoelectron spectroscopy can probe interference oscillations in C60 valence emissions that produce series of minima whose energy separation depends on the molecular size. We show that the quantum phase associated with these minima exhibits rapid variations due to electron correlations, causing rich structures in the photoemission time delay. These findings provide a way to utilize temporal information to access the fullerene cavity size, that is making the time to "see" the space, and can be generalized to photoemissions from clusters and nanostructures.

  11. Einstein's Photoemission from Quantum Confined Superlattices.

    Science.gov (United States)

    Debbarma, S; Ghatak, K P

    2016-01-01

    This paper is dedicated to the 83th Birthday of Late Professor B. R. Nag, D.Sc., formerly Head of the Departments of Radio Physics and Electronics and Electronic Science of the University of Calcutta, a firm believer of the concept of theoretical minimum of Landau and an internationally well known semiconductor physicist, to whom the second author remains ever grateful as a student and research worker from 1974-2004. In this paper, an attempt is made to study, the Einstein's photoemission (EP) from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum well heavily doped superlattices (QWHDSLs) with graded interfaces in the presence of quantizing magnetic field on the basis of newly formulated electron dispersion relations within the frame work of k · p formalism. The EP from III-V, II-VI, IV-VI, HgTe/CdTe and strained layer quantum wells of heavily doped effective mass superlattices respectively has been presented under magnetic quantization. Besides the said emissions, from the quantum dots of the aforementioned heavily doped SLs have further investigated for the purpose of comparison and complete investigation in the context of EP from quantum confined superlattices. Using appropriate SLs, it appears that the EP increases with increasing surface electron concentration and decreasing film thickness in spiky manners, which are the characteristic features of such quantized hetero structures. Under magnetic quantization, the EP oscillates with inverse quantizing magnetic field due to Shuvnikov-de Haas effect. The EP increases with increasing photo energy in a step-like manner and the numerical values of EP with all the physical variables are totally band structure dependent for all the cases. The most striking features are that the presence of poles in the dispersion relation of the materials in the absence of band tails create the complex energy spectra in the corresponding HD constituent materials of such quantum confined superlattices and effective electron

  12. Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code

    Energy Technology Data Exchange (ETDEWEB)

    Panka, Istvan; Kereszturi, Andras [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2013-09-15

    In this paper the uncertainties of the neutronic calculations at core level - originating from the uncertainties of the basic nuclear data - are presented. The investigations have been made for a VVER-1000 core (Kozloduy-6) defined in the frame of the OECD NEA UAM benchmark. In the first part of the paper, the uncertainties of the effective multiplication factor, the assembly-wise radial power distribution, the axial power distribution and the rod worth are shown. After that the preliminary evaluation of the uncertainties of the neutron kinetic calculations are presented for a rod movement transient at HZP (Hot Zero Power) state, where the uncertainties of the time dependent core and assembly powers and the dynamic reactivity were evaluated. In both cases, we will see that the most important quantities - at core level and at HZP state - have a considerable uncertainty which is originating from the uncertainties of the basic cross section library in these investigations. (orig.)

  13. Characterization of P2P Systems

    Science.gov (United States)

    Stutzbach, Daniel; Rejaie, Reza

    The combination of large scale and geographically distributed nature of P2P system has led to their significant impact on the Internet. It is essential to characterize deployed P2P system for at least three reasons: (1) Accurately assessing their impact on the Internet, (2) identifying any performance bottleneck as well as any opportunity for performance improvement, (3) understanding user-driven dynamics in P2P systems. To characterize a P2P system, one needs to accurately capture snapshots of the resulting P2P overlay. This is challenging because the overlay is often large and dynamic. While the overlay is discovered by a crawler, it is changing which leads to a distorted view of the system. Capturing unbiased view of the traffic in the overlay is equally challenging because it is difficult to show that the captured behavior represent the observed behavior by all peers. In this chapter, we describe some of the fundamental problems in empirical characterization of widely deployed P2P systems. We present several examples to illustrate the effect of ad-hoc measurement/data collection on the resulting analysis/characterization. We then present two sampling techniques as a powerful approach to capture unbiased view of peer properties in a scalable fashion.

  14. Simulation and characterization of the crystal growth by photoemission; Simulation et caracterisation de la croissance cristalline par photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Fazouan, N.

    1994-05-16

    In this thesis, we argue in favour of photoemission as an in-situ characterization tool for the homo-epitaxial growth of GaAs. The first part, is concerned with the interpretation of the origin of the photoemission oscillations as first observed by J.N. Eckstein and al during MBE growth of GaAs. To study this effect, two approaches have been used. These approaches are based on reaction surface and roughness observations to study the growth mode. They associate the photoemission current with the presence of uncovered gallium adatoms, i.e. those which do not have an arsenic atom above them. The first approach is based on chemical rate theory, whereas the second is based on an atomistic simulation of GaAs homo-epitaxy. This last approach introduces the notion of interlayer migration processes and uses a Monte Carlo technique to look at the temporal evolution of the configuration and hence the morphology. It is shown with these two approaches that the photoemission current has similar characteristics as to those of RHEED, c.g.the same oscillation period. The results obtained have shown the relationship between the photoemission oscillations amplitude and the growth mode which are determined by the mechanisms of absorption and diffusion of gallium atoms and arsenic atoms of molecules. Finally, the study of the effect of the surface reactions shows the importance of these in the case where arsenic is supplied in molecular form (As{sub 2}). The last part concerns the experimental measurements at the threshold photoemission current during epitaxial growth of GaAs by metal-organic vapour phase epitaxy (MOVPE). The objective of this experimental study is to test the good running of the photo-assisted MOVPE low pressure system and to study the possibilities offered by this as an in-situ diagnostic tool for MOVPE. (author). 101 refs., 80 figs., 6 tabs.

  15. Photoemission of Mn6Cr single-molecule magnets

    Science.gov (United States)

    Heinzmann, U.; Merschjohann, F.; Helmstedt, A.; Gryzia, A.; Winter, A.; Steppeler, S.; Müller, N.; Brechling, A.; Sacher, M.; Richthofen, C.-G. Freiherr v.; Glaser, T.; Voss, S.; Fonin, M.; Rüdiger, U.

    2009-11-01

    We present the status of new experimental studies of X-ray absorption spectroscopy, magnetic circular dichroism in photoemission and spin-resolved photoelectron spectroscopy of Mn6Cr single-molecule magnet systems by use of circularly-polarized synchrotron radiation of the electron storage rings in Maxlab Lund, Sweden und BESSY, Berlin, Germany.

  16. A state-of-the-art photoemission spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Photoelectric effect refers to a phenomenon that electrons are ejected when a material is irradiated by light. Photoemission spectroscopy is widely used as an experimental method to directly measure the electronic structure of materials. Based on this technique, cutting-edge research is conducted on various issues in such fields as semiconductors,superconductors, magnetic materials.

  17. Relativistic calculations of angle-dependent photoemission time delay

    Science.gov (United States)

    Kheifets, Anatoli; Mandal, Ankur; Deshmukh, Pranawa C.; Dolmatov, Valeriy K.; Keating, David A.; Manson, Steven T.

    2016-07-01

    Angular dependence of photoemission time delay for the valence n p3 /2 and n p1 /2 subshells of Ar, Kr, and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.

  18. Directional uv photoemission from (100) and (110) molybdenum surfaces

    DEFF Research Database (Denmark)

    Cinti, R. C.; Khoury, E. Al; Chakraverty, B. K.;

    1976-01-01

    A study of the (100) and (110) molybdenum surfaces by directional photoemission spectroscopy is presented. Energy distribution spectra formed by photoelectrons emitted normal to the surfaces have been measured for photon energies between 10.2 and 21.2 eV. The results are discussed in terms of cal...

  19. Relativistic calculations of angular dependent photoemission time delay

    CERN Document Server

    Kheifets, A S; Deshmukh, P C; Dolmatov, V K; Manson, S T

    2016-01-01

    Angular dependence of photoemission time delay for the valence $np_{3/2}$ and $np_{1/2}$ subshells of Ar, Kr and Xe is studied in the dipole relativistic random phase approximation. Strong angular anisotropy of the time delay is reproduced near respective Cooper minima while the spin-orbit splitting affects the time delay near threshold.

  20. P2P Techniques for Decentralized Applications

    CERN Document Server

    Pacitti, Esther

    2012-01-01

    As an alternative to traditional client-server systems, Peer-to-Peer (P2P) systems provide major advantages in terms of scalability, autonomy and dynamic behavior of peers, and decentralization of control. Thus, they are well suited for large-scale data sharing in distributed environments. Most of the existing P2P approaches for data sharing rely on either structured networks (e.g., DHTs) for efficient indexing, or unstructured networks for ease of deployment, or some combination. However, these approaches have some limitations, such as lack of freedom for data placement in DHTs, and high late

  1. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongik [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    EuNi2Ge2 and GdNi2Ge2 are two members of the RT2X2 (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr2Si2 structure are known for their wide variety of magnetic properties, Extensive studies of the RT2X2 series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi2Ge2 were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi2Ge2 and GdNi2Ge2 and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  2. Data Sharing in P2P Systems

    Science.gov (United States)

    Hayek, Rabab; Raschia, Guillaume; Valduriez, Patrick; Mouaddib, Noureddine

    In this chapter, we survey P2P data sharing systems. All along, we focus on the evolution from simple file-sharing systems, with limited functionalities, to Peer Data Management Systems (PDMS) that support advanced applications with more sophisticated data management techniques. Advanced P2P applications are dealing with semantically rich data (e.g., XML documents, relational tables), using a high-level SQL-like query language. We start our survey with an overview over the existing P2P network architectures, and the associated routing protocols. Then, we discuss data indexing techniques based on their distribution degree and the semantics they can capture from the underlying data. We also discuss schema management techniques which allow integrating heterogeneous data. We conclude by discussing the techniques proposed for processing complex queries (e.g., range and join queries). Complex query facilities are necessary for advanced applications which require a high level of search expressiveness. This last part shows the lack of querying techniques that allow for an approximate query answering.

  3. Quantum Efficiency Measurements of Femtosecond Vectorial Photoemission on Cu Photocathodes

    CERN Document Server

    Banfi, F; Galimberti, P G; Giannetti, C; Pagliara, S; Parmigiani, F; Pedersoli, E

    2005-01-01

    Quantum Efficiency (QE) measurements of single photon photoemission from a Cu(111) single crystal and a Cu polycrystal photocathodes, irradiated by 150~fs-6.28~eV laser pulses, are reported over a broad range of incidence angle in both s and p polarizations. The maximum value of QE for the Cu polycrystal sample is Y~4*10(-4), obtained with p polarization at an angle of incidence theta=65°. Our data confirm the vectorial photoemission model. Issues concerning surface roughness and symmetry considerations are addressed. An explanation in terms of non local conductivity tensor is proposed. Advantages of a 6.28~eV photon as compared to the standard 4.71~eV photon in use with Cu photocathodes are discussed.

  4. Bulk sensitive hard x-ray photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Patt, M., E-mail: m.patt@fz-juelich.de; Wiemann, C. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Weber, N.; Escher, M.; Merkel, M. [Focus GmbH, Neukirchner Str. 2, D-65510 Hünstetten (Germany); Gloskovskii, A.; Drube, W. [DESY Photon Science, Deutsches Elektronen-Synchrotron, D-22603 Hamburg (Germany); Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Fakultät f. Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany)

    2014-11-15

    Hard x-ray photoelectron spectroscopy (HAXPES) has now matured into a well-established technique as a bulk sensitive probe of the electronic structure due to the larger escape depth of the highly energetic electrons. In order to enable HAXPES studies with high lateral resolution, we have set up a dedicated energy-filtered hard x-ray photoemission electron microscope (HAXPEEM) working with electron kinetic energies up to 10 keV. It is based on the NanoESCA design and also preserves the performance of the instrument in the low and medium energy range. In this way, spectromicroscopy can be performed from threshold to hard x-ray photoemission. The high potential of the HAXPEEM approach for the investigation of buried layers and structures has been shown already on a layered and structured SrTiO{sub 3} sample. Here, we present results of experiments with test structures to elaborate the imaging and spectroscopic performance of the instrument and show the capabilities of the method to image bulk properties. Additionally, we introduce a method to determine the effective attenuation length of photoelectrons in a direct photoemission experiment.

  5. Core-level spectroscopy investigation of the Mo{sub 0.75}Re{sub 0.25}(100) surface

    Energy Technology Data Exchange (ETDEWEB)

    Lyman, P.F.; Zehner, D.M.

    1993-10-01

    Preferential surface segregation in the Mo{sub 0.75}(100) surface region was investigated using high-resolution core-level spectroscopy with synchrotron radiation. The magnitude and direction of the surface core-level shifts observed in this study can be qualitatively understood by comparison to W and Mo core-level shifts. Measured core-level intensities are found to be consistent with the segregation of Mo to the surface of the alloy, with an enrichment of Re in the second layer (as found in previous investigations). It is inferred that both Tc and Os will segregate to the Mo{sub 0.75}Re{sub 0.25}(100) surface.

  6. Photoemission in YbCu sub 2 Si sub 2 : Problems with the Kondo impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.M. (California Univ., Irvine (United States)); Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D. (Los Alamos National Lab., NM (United States))

    1991-01-01

    We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J=7/2) final state peak, centered 60meV below the Fermi level {epsilon}{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with the recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. 7 refs., 3 figs.

  7. Photoemission in YbCu sub 2 Si sub 2 : problem with the Kondo impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, J.M.; Arko, A.J.; Joyce, J.J.; Canfield, P.C.; Fisk, Z.; Thompson, J.D.; Bartlett, R.J. (Los Alamos National Lab., NM (United States))

    1992-02-01

    We report valence band photoemission results for YbCu{sub 2}Si{sub 2}. The 4f{sup 13}(J = 7/2) final state peak, centered 60 meV below the Fermi level element of{sub F}, lacks the temperature dependence and is broader than predicted for a Kondo resonance. Together with recent photoemission results for cerium compounds, these results raise serious doubts about the Kondo impurity explanation of heavy fermion photoemission. (orig.).

  8. CCQE, 2p2h excitations and \

    CERN Document Server

    Nieves, J; Sánchez, F; Vacas, M J Vicente

    2013-01-01

    We analyze the MiniBooNE muon neutrino CCQE-like d\\sigma/dT_\\mu/dcos\\theta_\\mu data using a theoretical model that, among other nuclear effects, includes RPA correlations and 2p2h (multinucleon) mechanisms. These corrections turn out to be essential for the description of the data. We find that MiniBooNE CCQE-like data are fully compatible with former determinations of the nucleon axial mass M_A ~ 1.05 GeV. This is in sharp contrast with several previous analysis where anomalously large values of M_A ~ 1.4 GeV have been suggested. We also show that because of the the multinucleon mechanism effects, the algorithm used to reconstruct the neutrino energy is not adequate when dealing with quasielastic-like events. Finally, we analyze the MiniBooNE unfolded cross section, and show that it exhibits an excess (deficit) of low (high) energy neutrinos, which is an artifact of the unfolding process that ignores 2p2h mechanisms.

  9. The effect of In doping in CdS/CuInSe[sub 2] heterojunction formation: A photoemission investigation

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Niles, D.W. (National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States)); Rioux, D.; Patel, R.; Hoechst, H. (Synchrotron Radiation Center, 3731 Schneider Drive, Stoughton, Wicsonsin 53589 (United States))

    1992-12-01

    Synchrotron radiation soft x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the CdS(In)/CuInSe[sub 2] heterojunction interface. In-doped CdS overlayers were deposited in steps on single-crystal [ital n]-type CuInSe[sub 2] at 250 [degree]C. Results indicate that the CdS(In) grows in registry with the substrate, initially in a two dimensional growth mode followed by three dimensional island growth as is corroborated by RHEED analysis. Photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the In4d, Se3d, Cd4d, and S2p core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the CdS(In)/CuInSe[sub 2] heterojunction valence band discontinuity and the consequent heterojunction band diagram as a function of In dopant concentration. We measured a valence band offset [Delta]E[sub v]=0.3 eV, independent of In doping.

  10. Soft X-ray photoemission investigation of the CdS/CuInSe 2 heterojunction interface

    Science.gov (United States)

    Nelson, Art J.; Gebhard, Steven; Kazmerski, L. L.; Rockett, Angus; Colavita, Elio; Engelhardt, Mike; Höchst, Hartmut

    1991-06-01

    Synchrotron radiation soft X-ray photoemission spectroscopy was used to investigate the development of the electronic structure at theCdS/CuInSe 2 heterojunction interface. CdS overlayers were deposited sequentially in steps on steps on single-crystal p- and n-type CuInSe 2 at 250°C. Results indicate that the CdS grows in registry with the substrate, initially in a two-dimensional growth mode followed by three-dimensional island growth as is corroborated by RHEED analysis. Photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the In4d, Se3d, Cd4d and S2p core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine theCdS/CuInSe 2 heterojunction valence band discontinuity and the consequent heterojunction band diagram.

  11. High-resolution x-ray photoemission spectra of silver

    DEFF Research Database (Denmark)

    Barrie, A.; Christensen, N. E.

    1976-01-01

    An electron spectrometer fitted with an x-ray monochromator for Al Kα1,2 radiation (1486.6 eV) has been used to record high-resolution x-ray photoelectron spectra for the 4d valence band as well as the 3d spin doublet in silver. The core-level spectrum has a line shape that can be described...

  12. Angle-resolved photoemission study of Ag(1 1 1)

    Science.gov (United States)

    Edamoto, K.; Miyazaki, E.; Shimokoshi, K.; Kato, H.

    1990-01-01

    The (1 1 1) face of Ag has been studied by angle-resolved photoemission spectroscopy utilizing synchrotron radiation as the excitation source (25 FIRO method. The peak positions thus determined are used to map the dispersion curves along the lang1 1 1rang (Γ-L) direction. The results show general agreement with calculated band structure, so far as the energy levels and symmetries are concerned. However, it is found that the density of state effect is dominant in the spectra obtained in the present photon energy region. The emission from the Ag 5s, p bands is observed to be broadened due to the indirect transition process.

  13. Photo-emission of two protons from nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Anguiano, Marta [Departamento de Radiacion Electromagnetica, Instituto de Fisica Aplicada, CSIC, Serrano 144, E-28006 Madrid (Spain)]. E-mail: marta.anguiano@iec.csic.es; Co' , Giampaolo [Dipartimento di Fisica, Universita di Lecce, I-73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare sez. di Lecce, I-73100 Lecce (Italy)]. E-mail: giampaolo.co@le.infn.it; Lallena, Antonio M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)]. E-mail: lallena@ugr.es

    2004-11-15

    The photo-emission of two protons from the {sup 12}C, {sup 16}O and {sup 40}Ca nuclei is investigated. Aim of the work is the study of the possibilities offered by this probe to obtain information about the characteristics of the short-range correlations. We have also evaluated the effects of the two-body {delta}-currents which, in this processes, compete with those produced by the short-range correlations. Our results show that ({gamma},pp) processes could be more useful than (e,e'pp) for the study of the short-range correlations.

  14. Photoemission from Au{111} and {110}. Temperature effects

    DEFF Research Database (Denmark)

    Christensen, Niels Egede

    1979-01-01

    Full zone band structures of gold have been calculated for three lattice constants by means of the relativistic augmented-plane-wave method. The results are used in an analysis of recent high-resolution symmetry-oriented normal photoemission data (Heiman and Neddermeyer). For those elements...... of structure which can be interpreted as bulk direct contributions we find temperature shifts in the spectral positions in agreement with the experiment. Comparison of absolute spectral positions suggests that the d-band complex in the calculation should be down-shifted by 0.38 eV relative to the Fermi level...

  15. Photoemission of graded-doping GaN photocathode

    Institute of Scientific and Technical Information of China (English)

    Fu Xiao-Qian; Chang Ben-Kang; Wang Xiao-Hui; Li Biao; Du Yu-Jie; Zhang Jun-Ju

    2011-01-01

    We study the photoemission process of graded-doping GaN photocathode and find that the built-in electric fields can increase the escape probability and the effective diffusion length of photo-generated electrons, which results in the enhancement of quantum efficiency. The intervalley scattering mechanism and the lattice scattering mechanism in high electric fields are also investigated. To prevent negative differential mobility from appearing, the surface doping concentration needs to be optimized, and it is calculated to be 3.19×1017 cm-3. The graded-doping GaN photocathode with higher performance can be realized by further optimizing the doping profile.

  16. Photoemission spectra of charge density wave states in cuprates

    Science.gov (United States)

    Tu, Wei-Lin; Chen, Peng-Jen; Lee, Ting-Kuo

    Angle-resolved photoemission spectroscopy(ARPES) experiments have reported many exotic properties of cuprates, such as Fermi arc at normal state, two gaps at superconducting state and particle-hole asymmetry at the antinodal direction. On the other hand, a number of inhomogeneous states or so-called charge density waves(CDW) states have also been discovered in cuprates by many experimental groups. The relation between these CDW states and ARPES spectra is unclear. With the help of Gutzwiller projected mean-field theory, we can reproduce the quasiparticle spectra in momentum space. The spectra show strong correspondence to the experimental data with afore-mentioned exotic features in it.

  17. Localized Multistreams for P2P Streaming

    Directory of Open Access Journals (Sweden)

    Majed Alhaisoni

    2010-01-01

    Full Text Available Streaming video over the Internet, including cellular networks, has now become a commonplace. Network operators typically use multicasting or variants of multiple unicasting to deliver streams to the user terminal in a controlled fashion. P2P streaming is an emerging alternative, which is theoretically more scalable but suffers from other issues arising from the dynamic nature of the system. Users' terminals become streaming nodes but they are not constantly connected. Another issue is that they are based on logical overlays, which are not optimized for the physical underlay infrastructure. An important proposition is to find effective ways to increase the resilience of the overlay whilst at the same time not conflicting with the network. In this article we look at the combination of two techniques, redundant streaming and locality awareness, in the context of both live and video-on-demand streaming. We introduce a new technique and assess it via a comparative, simulation-based study. We find that redundancy affects network utilization only marginally if traffic is kept at the edges via localization techniques.

  18. The ViP2P Platform: XML Views in P2P

    CERN Document Server

    Karanasos, Konstantinos; Manolescu, Ioana; Zoupanos, Spyros

    2011-01-01

    The growing volumes of XML data sources on the Web or produced by enterprises, organizations etc. raise many performance challenges for data management applications. In this work, we are concerned with the distributed, peer-to-peer management of large corpora of XML documents, based on distributed hash table (or DHT, in short) overlay networks. We present ViP2P (standing for Views in Peer-to-Peer), a distributed platform for sharing XML documents based on a structured P2P network infrastructure (DHT). At the core of ViP2P stand distributed materialized XML views, defined by arbitrary XML queries, filled in with data published anywhere in the network, and exploited to efficiently answer queries issued by any network peer. ViP2P allows user queries to be evaluated over XML documents published by peers in two modes. First, a long-running subscription mode, when a query can be registered in the system and receive answers incrementally when and if published data matches the query. Second, queries can also be asked...

  19. Ce Core-Level Spectroscopy, and Magnetic and Electrical Transport Properties of Lightly Ce-Doped YCoO3

    Science.gov (United States)

    Kobayashi, Yoshihiko; Koike, Tsuyoshi; Okawa, Mario; Takayanagi, Ryohei; Takei, Shohei; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Yasui, Akira; Ikenaga, Eiji; Saitoh, Tomohiko; Asai, Kichizo

    2016-11-01

    We have investigated the Ce and Co core level spectroscopy, and the magnetic and electrical transport properties of lightly Ce-doped YCoO3. We have successfully synthesized single-phase Y1-xCexCoO3 for 0.0 ≤ x ≤ 0.1 by the sol-gel method. Hard X-ray photoelectron and X-ray absorption spectroscopy experiments reveal that the introduced Ce ions are tetravalent, which is considered to be the first case of electron doping into bulk trivalent Co oxides with perovskite RECoO3 (RE: rare-earth element or Y) caused by RE site substitution. The magnitude of the effective magnetic moment peff obtained from the temperature dependence of magnetic susceptibility χ(T) at higher temperatures is close to that for high-spin Co2+ introduced by the Ce doping, implying that the electrons doped into the Co site induce Co2+ with a high-spin state. For x = 0.1, ferromagnetic ordering is observed below about 7 K. Electrical transport properties such as resistivity and thermoelectric power show that negative electron-like carriers are introduced by Ce substitution.

  20. Photoemission study of the adsorption of benzotriazole on copper

    Energy Technology Data Exchange (ETDEWEB)

    Fang, B.S.

    1985-01-01

    A photoemission study was performed on the chemisorption of benzotriazole (BTA) on polycrystalline copper (clean and oxidized) surfaces to understand the corrosion inhibition mechanism. The energy distribution curves indicate benzotriazole bonding to copper through nitrogen lone pair orbitals. They also disagree with the models which suggest that the benzotriazole molecular plane is oriented parallel to the copper surface by showing a lack of ..pi..-d interaction. The observed chemisorption of benzotriazole on atomically clean copper surfaces at room temperature suggests that an oxide layer is not necessary for the adsorption of benzotriazole. No structural difference was observed in the photoemission studies on BTA-clean copper and BTA-cuprous oxide surface film. This result demonstrates the major role of the copper atom upon benzotriazole adsorption. A new model of the CuBTA chemisorbed structure is presented. The Cu-BTA polymer is formed by strong charge-transfer interactions between benzotriazole molecules instead of by BTA-Cu-BTA connections. It successfully interprets the experimental results from solubility and tarnish resistance tests on adsorbed films on copper surfaces. It also gives a reasonable explanation for the different inhibition coefficients among BTA-treated copper single crystal surfaces. Mechanisms are suggested for the benzotriazole inhibition mechanisms.

  1. Revisiting Photoemission and Inverse Photoemission Spectra of Nickel Oxide from First Principles: Implications for Solar Energy Conversion

    Science.gov (United States)

    2015-01-01

    We use two different ab initio quantum mechanics methods, complete active space self-consistent field theory applied to electrostatically embedded clusters and periodic many-body G0W0 calculations, to reanalyze the states formed in nickel(II) oxide upon electron addition and ionization. In agreement with interpretations of earlier measurements, we find that the valence and conduction band edges consist of oxygen and nickel states, respectively. However, contrary to conventional wisdom, we find that the oxygen states of the valence band edge are localized whereas the nickel states at the conduction band edge are delocalized. We argue that these characteristics may lead to low electron–hole recombination and relatively efficient electron transport, which, coupled with band gap engineering, could produce higher solar energy conversion efficiency compared to that of other transition-metal oxides. Both methods find a photoemission/inverse-photoemission gap of 3.6–3.9 eV, in good agreement with the experimental range, lending credence to our analysis of the electronic structure of NiO. PMID:24689856

  2. Electronic Structure of the Kitaev Material α-RuCl3 Probed by Photoemission and Inverse Photoemission Spectroscopies.

    Science.gov (United States)

    Sinn, Soobin; Kim, Choong Hyun; Kim, Beom Hyun; Lee, Kyung Dong; Won, Choong Jae; Oh, Ji Seop; Han, Moonsup; Chang, Young Jun; Hur, Namjung; Sato, Hitoshi; Park, Byeong-Gyu; Kim, Changyoung; Kim, Hyeong-Do; Noh, Tae Won

    2016-12-21

    Recently, α-RuCl3 has attracted much attention as a possible material to realize the honeycomb Kitaev model of a quantum-spin-liquid state. Although the magnetic properties of α-RuCl3 have been extensively studied, its electronic structure, which is strongly related to its Kitaev physics, is poorly understood. Here, the electronic structure of α-RuCl3 was investigated by photoemission (PE) and inverse-photoemission (IPE) spectroscopies. The band gap was directly measured from the PE and IPE spectra and was found to be 1.9 eV, much larger than previously estimated values. Local density approximation (LDA) calculations showed that the on-site Coulomb interaction U could open the band gap without spin-orbit coupling (SOC). However, the SOC should also be incorporated to reproduce the proper gap size, indicating that the interplay between U and SOC plays an essential role. Several features of the PE and IPE spectra could not be explained by the results of LDA calculations. To explain such discrepancies, we performed configuration-interaction calculations for a RuCl6(3-) cluster. The experimental data and calculations demonstrated that the 4d compound α-RuCl3 is a Jeff = 1/2 Mott insulator rather than a quasimolecular-orbital insulator. Our study also provides important physical parameters required for verifying the proposed Kitaev physics in α-RuCl3.

  3. Electronic structure of a narrow-gap semiconductor FeGa3 investigated by photoemission and inverse photoemission spectroscopies

    Science.gov (United States)

    Arita, M.; Shimada, K.; Utsumi, Y.; Morimoto, O.; Sato, H.; Namatame, H.; Taniguchi, M.; Hadano, Y.; Takabatake, T.

    2011-06-01

    We have performed a photoemission and inverse photoemission spectroscopic study of a narrow-gap semiconductor FeGa3, in order to characterize the occupied and unoccupied electronic states. The energy-gap size was found to be ~0.4 eV, and the valence-band maximum (VBM) was located around the A point of the Brillouin zone. We observed a dispersive Ga 4sp derived band near the Fermi level (EF), and Fe 3d narrow bands located at -0.5 and -1.1 eV away from EF. In contrast to the case of FeSi, there was no temperature-dependent peak enhancement at the VBM on cooling. The observed density of states and band dispersions were reasonably reproduced by the LDA+U calculation with the on-site effective Coulomb interaction Ueff~3 eV to the Fe 3d states. Present results indicate that, in spite of sizable Ueff/W~0.6 (W: band width), electron correlation effects are not significant in FeGa3 compared with FeSi since the VBM consists of the dispersive band with the reduced Fe 3d contribution, and the energy gap is large.

  4. Crystal structure and X-ray photoemission spectroscopic study of A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Alo, E-mail: alo_dutta@yahoo.com [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Saha, Sujoy [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Kumari, Premlata [Department of Chemistry, Government P.G. College, Lansdowne, Pauri-Garhwal 246139 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Shannigrahi, Santiranjan [Institute of Materials Research and Engineering, Agency for Science Technology and Research, 3 Research Link, Singapore 117602 (Singapore)

    2015-09-15

    The X-ray photoemission spectroscopic (XPS) study of the double perovskite oxides A{sub 2}LaMO{sub 6} [A=Ba, Ca; M=Nb, Ta] synthesized by the solid-state reaction technique has been carried out to investigate the nature of the chemical state of the constituent ions and the bonding between them. The Rietveld refinement of the X-ray diffraction patterns suggests the monoclinic crystal structure of all the materials at room temperature. The negative and positive chemical shifts of the core level XPS spectrum of O-1s and Nb-3d{sub 3/2}/Ta-4f{sub 5/2} respectively suggest the covalent bonding between Nb/Ta cations and O ion. The change of the bonding strength between the anion and the cations from one material to another has been analyzed. The vibrational property of the materials is investigated using the room temperature Raman spectra. A large covalency of Ta-based compound than Nb compound is confirmed from the relative shifting of the Raman modes of the materials. - Graphical abstract: Crystal structure of two perovskite oxides CLN and CLT is investigated. XPS study confirms the two different co-ordination environments of Ca and covalent bonding between B-site cations and O-ion. - Highlights: • Ordered perovskite structure obtained by Rietveld refinement of XRD patterns. • Study of nature of chemical bonding by X-ray photoemission spectroscopy. • Opposite chemical shift of d-states of Nb/Ta with respect to O. • Covalent bonding between d-states of Nb/Ta and O. • Relative Raman shifts of CLN and CLT substantiate the more covalent character of Ta than Nb.

  5. High-resolution photoemission study of MgB2.

    Science.gov (United States)

    Takahashi, T; Sato, T; Souma, S; Muranaka, T; Akimitsu, J

    2001-05-21

    We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.

  6. Electric field stimulation setup for photoemission electron microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F., E-mail: frithjof.nolting@psi.ch [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland)

    2015-08-15

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg{sub 0.66}Nb{sub 0.33})O{sub 3}-PbTiO{sub 3} and La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/PMN-PT artificial multiferroic nanostructures.

  7. Electric field stimulation setup for photoemission electron microscopes

    Science.gov (United States)

    Buzzi, M.; Vaz, C. A. F.; Raabe, J.; Nolting, F.

    2015-08-01

    Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg0.66Nb0.33)O3-PbTiO3 and La0.7Sr0.3MnO3/PMN-PT artificial multiferroic nanostructures.

  8. Photoemission Electron Microscopy as a Tool for Studying Steel Grains

    Science.gov (United States)

    Roese, Peter; Keutner, Christoph; Berges, Ulf; Espeter, Philipp; Westphal, Carsten

    2017-03-01

    Key properties of steel like stability, weldability, or ability for absorbing deformation energy are defined by their grain structure. The knowledge about their micrometer and submicrometer structure is of particular interest for tailor-cut macroscopic steel properties. We report on photoemission electron microscopy studies which in principle yield a higher magnification than comparable optical techniques. A flat surface without any topographic features was obtained by applying a non-etching preparation procedure. PEEM images showed very tiny phase islands embedded within a steel phase matrix. Furthermore, we developed an analysis procedure for PEEM images for dual-phase steels. As a result, it is possible to identify the individual work functions of different steel phases at the surface.

  9. Microlens Array Laser Transverse Shaping Technique for Photoemission Electron Source

    CERN Document Server

    Halavanau, A; Qiang, G; Gai, W; Power, J; Piot, P; Wisniewski, E; Edstrom, D; Ruan, J; Santucci, J

    2016-01-01

    A common issue encountered in photoemission electron sources used in electron accelerators is distortion of the laser spot due to non ideal conditions at all stages of the amplification. Such a laser spot at the cathode may produce asymmetric charged beams that will result in degradation of the beam quality due to space charge at early stages of acceleration and fail to optimally utilize the cathode surface. In this note we study the possibility of using microlens arrays to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes at both Fermilab Accelerator Science \\& Technology (FAST) facility and Argonne Wakefield Accelerator (AWA). In particular, we discuss the experimental characterization of the homogeneity and periodic patterned formation at the photocathode. Finally, we compare the experimental results with the paraxial analysis, ray tracing and wavefront propagation software.

  10. Photoemission Electron Microscopy as a Tool for Studying Steel Grains

    Science.gov (United States)

    Roese, Peter; Keutner, Christoph; Berges, Ulf; Espeter, Philipp; Westphal, Carsten

    2017-01-01

    Key properties of steel like stability, weldability, or ability for absorbing deformation energy are defined by their grain structure. The knowledge about their micrometer and submicrometer structure is of particular interest for tailor-cut macroscopic steel properties. We report on photoemission electron microscopy studies which in principle yield a higher magnification than comparable optical techniques. A flat surface without any topographic features was obtained by applying a non-etching preparation procedure. PEEM images showed very tiny phase islands embedded within a steel phase matrix. Furthermore, we developed an analysis procedure for PEEM images for dual-phase steels. As a result, it is possible to identify the individual work functions of different steel phases at the surface.

  11. 48-Channel electron detector for photoemission spectroscopy and microscopy

    Science.gov (United States)

    Gregoratti, L.; Barinov, A.; Benfatto, E.; Cautero, G.; Fava, C.; Lacovig, P.; Lonza, D.; Kiskinova, M.; Tommasini, R.; Mähl, S.; Heichler, W.

    2004-01-01

    We show that it is possible to use a multichannel electron detector in a zone plate based photoemission spectromicroscopy in a snap shot mode to reduce the total acquisition time for a given counting time by 50% relative to the standard scanning mode while preserving the feature of the spectra. We describe the result of tests performed at Elettra using its microbeam (150 nm) together with a 48-channel detector designed for the PHOIBOS 100 analyzer optimized for extremely small x-ray sources. We also give a short summary of the technical features of the detector and describe one possible calibration procedure for its use in the snap shot mode. We show initial results from using this device to perform chemical maps of surfaces at a resolution of 150 nm.

  12. Photoemission from Coated Surfaces A Comparison of Theory to Experiment

    CERN Document Server

    Jensen, K

    2005-01-01

    Photocathodes for FELs and accelerators will benefit from rugged and self-rejuvenating photocathodes with high QE at the longest possible wavelength. The needs of a high power FEL are not met at present by existing photocathode-drive laser combinations: requirements generally necessitate barrier-lowering coatings which are degraded by operation. We seek to develop a controlled porosity dispenser cathode, and shall report on our coordinated experimental and theoretical studies. Our models account for field, thermal, and surface effects of cesium monolayers on photoemission, and compare well with concurrent experiments examining the QE, patchiness, and evolution of the coatings. Field enhancement, thermal variation of specific heat and electron relaxation rates and their relation to high laser intensity and/or short pulse-to-pulse separation, variations in work function effects due to coating non-uniformity, and the dependence on the wavelength of the incident light are included. The status of methods by which ...

  13. heterojunction interface investigated by X-ray photoemission spectroscopy

    Science.gov (United States)

    Lin, Lingyan; Yu, Jinling; Cheng, Shuying; Lu, Peimin; Lai, Yunfeng; Lin, Sile; Zhao, Pengyi

    2014-09-01

    The band alignment at the In2S3/Cu2ZnSnS4 heterojunction interface is investigated by X-ray photoemission spectroscopy. In2S3 is thermally evaporated onto the contamination-free polycrystalline Cu2ZnSnS4 surface prepared by magnetron sputtering. The valence band offset is measured to be 0.46 ± 0.1 eV, which matches well with the valance band offset value 0.49 eV calculated using "transitivity" method. The conduction band offset is determined to be 0.82 ± 0.1 eV, indicating a `type I' band alignment at the heterojunction interface.

  14. High-kinetic-energy photoemission spectroscopy of Ni at 1s : 6-eV satellite at 4 eV

    Science.gov (United States)

    Karis, O.; Svensson, S.; Rusz, J.; Oppeneer, P. M.; Gorgoi, M.; Schäfers, F.; Braun, W.; Eberhardt, W.; Mårtensson, N.

    2008-12-01

    Electron correlations are responsible for many profound phenomena in solid-state physics. A classical example is the 6-eV satellite in the photoelectron spectrum of Ni. Until now the satellite structure has only been investigated at the L shell and more shallow levels. Here we report a high-kinetic-energy photoemission spectroscopy (HIKE) investigation of Ni metal. We present 1s and 2p photoelectron spectra, obtained using excitation energies up to 12.6 keV. Our investigation demonstrates that the energy position of the satellite relative to the main line is different for the 1s and the 2p levels. In combination with electronic structure calculations, we show that this energy shift is attributed to unique differences in the core-valence coupling for the K and L2,3 shells in 3d transition metals, resulting in different screening of the core holes.

  15. a Photoemission Study of the Adsorption of Benzotriazole on Copper.

    Science.gov (United States)

    Fang, Bo-Shung

    1985-12-01

    A photoemission study was performed on the chemisorption of benzotriazole (BTA) on polycrystalline copper (clean and oxidized) surfaces to understand the corrosion inhibition mechanism. The energy distribution curves indicate benzotriazole bonding to copper through nitrogen lone pair orbitals. They also disagree with the models which suggest that the benzotriazole molecular plane is oriented parallel to the copper surface by showing a lack of (pi)-d interaction. The observed chemisorption of benzotriazole on atomi- cally clean copper surfaces at room temperature suggests that an oxide layer is not necessary for the adsorption of benzotriazole. No structural difference was observed in the photoemission studies on BTA-clean copper and BTA-cuprous oxide surface film. This results demonstrates the major role of the copper atom upon benzotriazole adsorption. A new model of the CuBTA chemisorbed structure is presented. The Cu-BTA polymer is formed by strong charge -transfer interac- tions between benzotriazole molecules instead of by BTA-Cu-BTA connections. It successfully interprets the experimental results from solubility and tarnish resistance tests on adsorbed films on copper surfaces. It also gives a reasonable explanation for the different inhibition coefficients among BTA-treated copper single crystal surfaces. This study leads to an understanding of the benzotriazole inhi- bition mechanism: (1) All the copper atoms can be bound to BTA nitrogen atoms and the absence of active surface sites prevents attack by corrosive ions. (2) The BTA molecule stands vertically, or nearly so, to the copper surface, but still allows the formation of a compact protective surface film. (3) The strong infinite polymer. chains stabilize the protective film and strengthen its inhibition capability. ('1)DOE Report IS-T-1196. This work was performed under contract No. W-7405-Eng-82 with the U.S. Department of Energy.

  16. Two-photon photoemission from metals induced by picosecond laser pulses

    Science.gov (United States)

    Bechtel, J. H.; Smith, W. L.; Bloembergen, N.

    1977-01-01

    We have measured the two-photon photoemission current density from tungsten, tantalum, and molybdenum when irradiated by 532-nm wavelength radiation. This wavelength was produced by the second-harmonic radiation of single picosecond laser pulses from a mode-locked neodymium-doped yttrium-aluminum-garnet laser. The results are interpreted in terms of both a simple temperature-independent two-photon photoemission effect and a generalization of the Fowler-DuBridge theory of photoemission. The laser polarization dependence of the emitted current is also reported.

  17. Main: 1M2P [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 1M2P トウモロコシ Corn Zea mays L. Casein Kinase Ii, Alpha Chain Name=Ack2; Zea Mays Mole...LVGRHSRKPWLKFMNADNQHLVSPEAIDFLDKLLRYDHQERLTALEAMTHPYFQQVRAAENSRTRA corn_1M2P.jpg ...

  18. Oxidation of the Si(100) surface promoted by Sr overlayer - An X-ray photoemission study. [high temperature superconductors

    Science.gov (United States)

    Mesarwi, A.; Fan, W. C.; Ignatiev, A.

    1990-01-01

    The interaction of strontium films with the underlaying Si (100) surface and the Sr-promoted low-temperature oxidation of Si were investigated, using XPS, at three different Sr coverages (theta): theta = 0.55 monolayer (ML), theta = 1 ML, and theta = 1.85 ML. Oxygen adsorption was studied both at room temperature and at 500 C, and at oxygen exposures up to 2 x 10 to the 6th L (1 L = 10 to the -6th torr) and 2 x 10 to the 5th L, respectively. The XPS spectra of the Si2p, O1s, and Sr3d core levels were measured for the atomically clean Si, the Sr-covered Si, and for the Sr-covered Si after each oxygen exposure. Results indicate that Sr interacts with the Si(100) surface forming a strong ionic bond, and that Sr promotes the oxidation of the Si (100) surface.

  19. Photoemission from single crystals of EuBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ cleaved below 20 K: Temperature-dependent oxygen loss

    Energy Technology Data Exchange (ETDEWEB)

    List, R.S.; Arko, A.J.; Fisk, Z.; Cheong, S.W.; Conradson, S.D.; Thompson, J.D.; Pierce, C.B.; Peterson, D.E.; Bartlett, R.J.; Shinn, N.D.; and others

    1988-12-01

    The first low-temperature photoemission spectra from well-oxygenated and characterized, cleaved single crystals of the 1:2:3-type superconductors, specifically EuBa/sub 2/Cu/sub 3/O/sub 7-//sub x/, are presented. In contrast with polycrystalline or higher-temperature single-crystalline studies, a distinct and very stable density of states is found at the Fermi edge below 20 K. As the crystal is warmed even to 80 K the emission is rapidly lost from both the upper and lower portions of the Cu-O hybrids. At room temperature there is a loss of intensity at the Fermi edge with an accompanying change in the Ba 4d core-level line shape and the presence of a charging effect indicative of an insulating surface. These results imply that upon warming from 20 K there is very rapid oxygen loss from the cleaved surface with a resulting loss of superconducting behavior. This suggests that future photoemission experiments, especially those investigating detailed band structure, should be performed at low temperatures.

  20. Providing VoD Streaming Using P2P Networks

    Science.gov (United States)

    Pedro Muñoz-Gea, Juan; Malgosa-Sanahuja, Josemaria; Manzanares-Lopez, Pilar; Carlos Sanchez-Aarnoutse, Juan

    Overlays and P2P systems, initially developed to support IP multicast and file-sharing, have moved beyond that functionality. They are also proving to be key technologies for the delivery of video streaming. Recently, there have been a number of successful deployments for "live" P2P streaming. However, the question remains open whether similar P2P technologies can be used to provide VoD (Video-On-Demand) services. A P2P VoD service is more challenging to design than a P2P live streaming system because the system should allow users arriving at arbitrary times to watch (arbitrary parts of) the video.

  1. First-principles photoemission spectroscopy of DNA and RNA nucleobases from Koopmans-compliant functionals

    CERN Document Server

    Nguyen, Ngoc Linh; Ferretti, Andrea; Marzari, Nicola

    2016-01-01

    The need to interpret ultraviolet photoemission data strongly motivates the refinement of first-principles techniques able to accurately predict spectral properties. In this work we employ Koopmans-compliant functionals, constructed to enforce piecewise linearity in approximate density functionals, to calculate the structural and electronic properties of DNA and RNA nucleobases. Our results show that not only ionization potentials and electron affinities are accurately predicted with mean absolute errors < 0.1 eV, but also that calculated photoemission spectra are in excellent agreement with experimental ultraviolet photoemission spectra. In particular, the role and contribution of different tautomers to the photoemission spectra are highlighted and discussed in detail. The structural properties of nucleobases are also investigated, showing an improved description with respect to local and semilocal density-functional theory. Methodologically, our results further consolidate the role of Koopmans-compliant ...

  2. Observation of Kondo resonance in rare-earth hexaborides using high resolution photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, Kalobaran; Patil, Swapnil; Adhikary, Ganesh [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Balakrishnan, Geetha, E-mail: kbmaiti@tifr.res.in [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom)

    2011-01-01

    We studied the electronic structure of rare earth hexaborides, CeB{sub 6}, PrB{sub 6} and NdB{sub 6} using state-of-the-art high resolution photoemission spectroscopy. CeB{sub 6} is a dense Kondo system. PrB{sub 6} and NdB{sub 6} are antiferromagnetic (Neel temperature {approx}7 K), known to be stable moment systems and do not exhibit Kondo effect. Photoemission spectra exhibit distinct signature of surface and bulk electronic structures of these compounds. The energy position of the surface feature is not influenced by the 4f density of states. High resolution spectra of CeB{sub 6} reveal multiple Kondo resonance features in the bulk spectra due to various photoemission final states. Interestingly, high resolution photoemission spectra of antiferromagnetic PrB{sub 6} also exhibit a sharp feature at the Fermi level that shows temperature dependence similar to the Kondo resonance features.

  3. Nonlinear Photoemission Electron Micrographs of Plasmonic Nanoholes in Gold Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2014-11-06

    Nonlinear photoemission electron microscopy of isolated nanoholes in gold thin films map propagating surface plasmon polaritons (SPPs) launched from the lithographically patterned plasmonic structures. A damped sinusoidal elongated ring-like photoemission beat pattern is observed from the nanoholes, following low angle of incidence irradiation of these structures with sub-15 fs 780 nm laser pulses. A notable agreement between finite difference time domain simulations and experiment corroborates our assignment of the observed photoemission patterns to SPPs launched from isolated nanoholes and probed through nonlinear photoemission. We also demonstrate how the efficiency of coupling light waves into isolated plasmonic holes can be tuned by varying hole diameter. In this regard, a simple intuitive geometrical model, which accounts for the observed and simulated diameter dependent plasmonic response, is proposed. Overall, this study paves the way for designing nanohole assemblies where optical coupling and subsequent plasmon propagation can be rationally controlled through 2D SPP interferometry

  4. Some future perspectives in soft- and hard- X-ray photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, Charles S., E-mail: fadley@physics.ucdavis.edu [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nemšák, Slavomir [Department of Physics, University of California Davis, Davis, CA 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-08-15

    Highlights: • Polarization-dependent differential photoelectric cross sections in valence photoemission. • Bulk electronic structure from hard X-ray angle-resolved photoemission. • Depth-resolved photoemission using standing-wave and total reflection excitation. • Standing-wave ambient-pressure photoemission as a probe of solid–liquid interfaces. • Molecular dissociation dynamics from photoelectron holography with free-electron laser excitation. - Abstract: We discuss several recent developments in photoemission, with comments on their perspectives for the future. These include an adequate allowance for differential cross section effects in core- and valence-angular distributions, as well as more accurate one-step modeling of angle-resolved photoemission (ARPES); the use of higher photon energies from the soft- to hard- X-ray regime to permit probing bulk electronic structure and buried layers and interfaces; extending ARPES into the soft- and hard- X-ray regimes; tailoring the X-ray wave field through X-ray optical effects including standing waves, total reflection, and tuning through resonances; using standing-wave excitation to provide much enhanced depth sensitivity in studying solid/gas and solid/liquid interfaces; and applying photoelectron holography to time-resolved studies of molecular reactions and dissociation. Specific application examples include a magnetic semiconductor, multilayer structures of complex metal oxides, a thin water solution on a metal oxide surface, and a halo-substituted benzene molecule.

  5. Core-Exciton Decay in Photoemission and the Nonmetal - Transition.

    Science.gov (United States)

    Zhang, Jiandi

    Ultra thin films or overlayers of materials, normally metallic in the bulk case, can exhibit nonmetallic characters. Typically, these systems undergo a nonmetal-to-metal transition with changing film density, crystalline structure, or thickness. The purpose of this thesis is to identify this electronic phase transition and to investigate the corresponding fundamental mechanisms by studying the detailed electronic structure. In particular, I attempted to look at the evolution of electronic structure in films undergoing this transition. The core -exciton decay in the resonant photoemission was probed, from both theoretical and experimental points of view, to correlate with the change of film metallicity. Resonant photoemission, combining with normal photoemission, was found to be a sensitive and successful method to identify the overlayer nonmetal-metal transition, both from static and dynamic pictures. In most of this work, we concentrate on the studies of the evolution of electronic structure of ultra thin films of divalent metals, on different crystalline surfaces. The formation of new Hg electronic states arising from the electron orbital hybridization between adjacent adatoms, the formation of quantum well states in the overlayers, and the evolution of mercury shape resonance due to 5d to epsilonf excitation, all provide indications of when mercury overlayers undergo a nonmetal to metal transition. This transition has been found to be associated the changes in adatom coordination number. On both Cu(100) and W(110), the interactions between the Hg adatoms and the substrates are very weak and the surface bonding is more like covalent bonding at low coverages. The Hg overlayers on these two surfaces resembles free-standing layers, and the metallicity of the overlayers is largely determined by the nearest neighbor interactions of Hg adatoms. Comparing Hg overlayers on Ni(111) where there exists a nonmetal to metal transition caused by the structure phase transition

  6. High-energy photoemission studies of oxide interfaces

    Science.gov (United States)

    Claessen, Ralph

    2015-03-01

    The interfaces of complex oxide heterostructures can host novel quantum phases not existing in the bulk of the constituents, with the high-mobility 2D electron system (2DES) in LaAlO3/SrTiO3 (LAO/STO) representing a prominent example. Despite extensive research the origin of the 2DES and its unusual properties - including the supposed coexistence of superconductivity and ferromagnetism - are still a matter of intense debate. Photoelectron spectroscopy, recently extended into the soft (SX-ARPES) and hard (HAXPES) X-ray regime, is a powerful method to provide detailed insight into the electronic structure of these heterostructures and, in particular, of the buried interface. This includes the identification of the orbital character of the 2DES as well as the determination of vital band structure information, such as band alignment, band bending, and even k-resolved band dispersions and Fermi surface topology. Moreover, resonant photoemission at the Ti L-edge reveals the existence of two different species of Ti 3d states, localized and itinerant, which can be distinguished and identified by their different resonance behavior. The role of oxygen vacancies is studied by controlled in-situ oxidation, which allows us to vary the composition from fully stoichiometric to strongly O-deficient. By comparison to free STO surfaces we can thus demonstrate that the metallicity of the heteointerfaces is intrinsic, i . e . it persists even in the absence of O defects. I will discuss our photoemission results on LAO/STO heterostructures in both (100) and (111) orientation as well as on the related system γ-Al2O3/STO(100), which also hosts a 2DES with an even higher mobility. Work in collaboration with J. Mannhart (MPI-FKF, Stuttgart), N. Pryds (TU Denmark), G. Rijnders (U Twente), S. Suga (U Osaka), M. Giorgoi (BESSY, HZB), W. Drube (DESY Photon Science), V.N. Strocov (Swiss Light Source), J. Denlinger (Advanced Light Source, LBNL), and T.-L. Lee (Diamond Light Source). Support by

  7. Self-consistent Green’s-function technique for bulk and surface impurity calculations: Surface core-level shifts by complete screening

    DEFF Research Database (Denmark)

    Aldén, M.; Abrikosov, I. A.; Johansson, B.;

    1994-01-01

    We have implemented an efficient self-consistent Green's-function technique, based on the tight-binding linear-muffin-tin-orbitals method, for calculating the electronic structure and total energy of a substitutional impurity located either in the bulk or at the surface. The technique makes use......'s-function impurity technique in a comprehensive study of the surface core-level shifts (SCLS) of the 4d and 5d transition metals. In those cases, where observed data refer to single crystals, we obtain good agreement with experiment, whereas the calculations typically underestimate the measured shift obtained from...... a polycrystalline surface. Comparison is made with independent theoretical data for the surface core-level eigenvalue shift, and the much debated role of the so-called initial-and final-state contributions to the SCLS is discussed....

  8. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system.

    Science.gov (United States)

    Rutkowski, M M; McNicholas, K M; Zeng, Zhaoquan; Brillson, L J

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (~1 eV) in the core level binding energies was observed.

  9. Determination of the surface band bending in InxGa1−xN films by hard x-ray photoemission spectroscopy

    Directory of Open Access Journals (Sweden)

    Mickael Lozac'h, Shigenori Ueda, Shitao Liu, Hideki Yoshikawa, Sang Liwen, Xinqiang Wang, Bo Shen, Kazuaki Sakoda, Keisuke Kobayashi and Masatomo Sumiya

    2013-01-01

    Full Text Available Core-level and valence band spectra of InxGa1−xN films were measured using hard x-ray photoemission spectroscopy (HX-PES. Fine structure, caused by the coupling of the localized Ga 3d and In 4d with N 2s states, was experimentally observed in the films. Because of the large detection depth of HX-PES (~20 nm, the spectra contain both surface and bulk information due to the surface band bending. The InxGa1−xN films (x = 0–0.21 exhibited upward surface band bending, and the valence band maximum was shifted to lower binding energy when the mole fraction of InN was increased. On the other hand, downward surface band bending was confirmed for an InN film with low carrier density despite its n-type conduction. Although the Fermi level (EF near the surface of the InN film was detected inside the conduction band as reported previously, it can be concluded that EF in the bulk of the film must be located in the band gap below the conduction band minimum.

  10. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    Science.gov (United States)

    Rutkowski, M. M.; McNicholas, K. M.; Zeng, Zhaoquan; Brillson, L. J.

    2013-06-01

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift (˜1 eV) in the core level binding energies was observed.

  11. Design of an ultrahigh vacuum transfer mechanism to interconnect an oxide molecular beam epitaxy growth chamber and an x-ray photoemission spectroscopy analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Rutkowski, M. M.; Zeng Zhaoquan [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); McNicholas, K. M. [Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States); Brillson, L. J. [Department of Physics, Ohio State University, Columbus, Ohio 43210 (United States); Department of Electrical and Computer Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2013-06-15

    We designed a mechanism and the accompanying sample holders to transfer between a VEECO 930 oxide molecular beam epitaxy (MBE) and a PHI Versa Probe X-ray photoemission spectroscopy (XPS) chamber within a multiple station growth, processing, and analysis system through ultrahigh vacuum (UHV). The mechanism consists of four parts: (1) a platen compatible with the MBE growth stage, (2) a platen compatible with the XPS analysis stage, (3) a sample coupon that is transferred between the two platens, and (4) the accompanying UHV transfer line. The mechanism offers a robust design that enables transfer back and forth between the growth chamber and the analysis chamber, and yet is flexible enough to allow transfer between standard sample holders for thin film growth and masked sample holders for making electrical contacts and Schottky junctions, all without breaking vacuum. We used this mechanism to transfer a barium strontium titanate thin film into the XPS analysis chamber and performed XPS measurements before and after exposing the sample to the air. After air exposure, a thin overlayer of carbon was found to form and a significant shift ({approx}1 eV) in the core level binding energies was observed.

  12. Adsorption site and structure determination of c(2x2) N{sub 2}/Ni(100) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.

  13. Research and Development of P2P Worms

    Institute of Scientific and Technical Information of China (English)

    Li You; Zhi-Guang Qin

    2011-01-01

    With the development and the application of many popular peer-to-peer (P2P) systems such as eMule and BitTorrent,worms probably employ the features of these P2P networks to put them at risk.Some features,such as the local routing table and the application routing mechanism,are helpful to quickly distribute the P2P worms into the networks.This paper aims to give a comprehensive survey of P2P worms.The definition and the classification of P2P worms are discussed firstly.Then,the research and development of P2P worms, including experimental analysis,propagation modeling,and defensive approaches,are addressed and analyzed in detail.

  14. P2P worm detection based on application identification

    Institute of Scientific and Technical Information of China (English)

    XIA Chunhe; SHI Yunping; LI Xiaojian; GAO Wei

    2007-01-01

    P2P worm exploits common vulnerabilities and spreads through peer-to-peer networks.Despite being recognized as a potential and deadly threat to the Internet recently,few relevant countermeasures are found in extant literature.Once it breaks out,a P2P worm could result in unpredictable losses.Based on propagation characteristics of the worm,this paper presents a detection method called PWD (P2P Worm Detection),which is designed based on application identification and unknown worm detection.Simulation result and LAN-environment experiment result both indicate that PWD is an effective method to detect and block P2P worms.

  15. P2P Networking and Technology Enablers in Business Applications

    OpenAIRE

    Hariharan, Mahesh

    2006-01-01

    The usage of Peer to Peer Networks over the Internet has been growing by exponentially. Apartbfrom the hype surrounding P2P, it has remarkable ramifications on the way the Internet could be used. This is an area which is not explored as well as we would want to. This thesis examines the architectural differences in P2P networks and generic application domains where the principles of P2P are exploited. The usage of P2P in different business verticals and technology enablers that go along with ...

  16. Search by shortcuts in P2P scientific collaboration system

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A P2P scientific collaboration is a P2P network whose members can share documents, co-compile papers and codes, and communicate with each other instantly. From the simulation experiment we found that P2P collaboration system is a power-law network with a tail between -2 and -3.We utilized the algorithm that searches by high-degree shortcuts to improve the scalability of p2p collaboration system. The experimental result shows that the algorithm works better than random walk algorithm.

  17. Einstein's photoemission emission from heavily-doped quantized structures

    CERN Document Server

    Ghatak, Kamakhya Prasad

    2015-01-01

    This monograph solely investigates the Einstein's Photoemission(EP) from Heavily Doped(HD) Quantized Structures on the basis of newly formulated electron dispersion laws. The materials considered are quantized structures of HD non-linear optical, III-V, II-VI, Ge, Te, Platinum Antimonide, stressed materials, GaP, Gallium Antimonide, II-V, Bismuth Telluride together with various types of HD superlattices and their Quantized counterparts respectively. The EP in HD opto-electronic materials and their nanostructures is studied in the presence of strong light waves and intense electric fields  that control the studies of such quantum effect devices. The suggestions for the experimental determinations of different important physical quantities in HD 2D and 3D materials  and the importance of measurement of band gap in HD optoelectronic materials under intense built-in electric field in nano devices and strong external photo excitation (for measuring   physical properties in the presence of intense light waves w...

  18. Internal photoemission in molecular junctions: parameters for interfacial barrier determinations.

    Science.gov (United States)

    Fereiro, Jerry A; Kondratenko, Mykola; Bergren, Adam Johan; McCreery, Richard L

    2015-01-28

    The photocurrent spectra for large-area molecular junctions are reported, where partially transparent copper top contacts permit illumination by UV-vis light. The effect of variation of the molecular structure and thickness are discussed. Internal photoemission (IPE), a process involving optical excitation of hot carriers in the contacts followed by transport across internal system barriers, is dominant when the molecular component does not absorb light. The IPE spectrum contains information regarding energy level alignment within a complete, working molecular junction, with the photocurrent sign indicating transport through either the occupied or unoccupied molecular orbitals. At photon energies where the molecular layer absorbs, a secondary phenomenon is operative in addition to IPE. In order to distinguish IPE from this secondary mechanism, we show the effect of the source intensity as well as the thickness of the molecular layer on the observed photocurrent. Our results clearly show that the IPE mechanism can be differentiated from the secondary mechanism by the effects of variation of experimental parameters. We conclude that IPE can provide valuable information regarding interfacial energetics in intact, working molecular junctions, including clear discrimination of charge transport mediated by electrons through unoccupied system orbitals from that mediated by hole transport through occupied system orbitals.

  19. GaAs clean up studied with synchrotron radiation photoemission

    Science.gov (United States)

    Tallarida, Massimo; Adelmann, Christoph; Delabie, Annelies; van Elshocht, Sven; Caymax, Matty; Schmeisser, Dieter

    2012-12-01

    In this contribution we describe the chemical changes at the surface of GaAs upon adsorption of tri-methyl-aluminum (TMA). TMA is used to grow Al2O3 with atomic layer deposition (ALD) usually using H2O as oxygen source. Recently, it was pointed out that the adsorption of TMA on various III-V surfaces reduces the native oxide, allowing the growth of an abrupt III-V/High-K interface with reduced density of defects. Synchrotron radiation photoemission spectroscopy (SR-PES) is a powerful method to characterize surfaces and interfaces of many materials, as it is capable to determine their chemical composition as well as the electronic properties. We performed in-situ SR-PES measurements after exposing a GaAs surface to TMA pulses at about 250°C. Upon using the possibility of tuning the incident photon energy we compared the Ga3d spectra at 41 eV, 71 eV, 91 eV and 121 eV, as well as the As3d at 71 eV and 91 eV. Finally, we show that using SR-PES allows a further understanding of the surface composition, which is usually not accessible with other techniques.

  20. Photoemission and magnetic response in the bipolaronic superconductor

    CERN Document Server

    Dent, C

    2001-01-01

    in the cuprates is extended to explain the crossing point in the curves of induced magnetization divided by the square root of field against temperature in the less anisotropic cuprates. This model has already been shown to provide a parameter-free expression for T sub c in a wide range of cuprates. We compare our results with experiment in YBa sub 2 Cu sub 3 O sub 7 sub - subdelta. A theory of angle-resolved photoemission (ARPES) in doped charge-transfer Mott insulators is developed taking into account the realistic band structure, (bi)polaron formation due to the strong electron-phonon interaction, and a random field potential. We derive the coherent part of the ARPES spectra with the oxygen hole spectral function calculated in the non-crossing (ladder) approximation and with the exact spectral function of a one-dimensional hole in a random potential. On the basis of this theory, explanations are proposed for several features of the ARPES spectra taken from the cuprate superconductors. These include the pol...

  1. Time-resolved two-photon photoemission from metal surfaces

    CERN Document Server

    Weinelt, M

    2002-01-01

    The Rydberg-like series of image-potential states is a prototype system for loosely bound electrons at a metal surface. The electronic structure and the femtosecond dynamics of these states is studied by high-resolution energy-and time-resolved two-photon photoemission spectroscopy. The electron trapped in the image potential moves virtually freely laterally to the surface where it is subject to inelastic and quasielastic scattering processes which cause decay of population and phase relaxation. The influence of surface corrugation on these processes has been investigated for adsorbates on Cu(001) and stepped Cu(117) and Cu(119) surfaces which are vicinal to Cu(001). The dynamics depend on both the distance of the electron in front of the surface and the parallel momentum. For CO molecules on Cu(001) inelastic scattering into bulk states and adsorbate-induced resonances determine the decay rate. For small numbers of Cu adatoms on Cu(001) and the vicinal surfaces the decay rate of image-potential states is sig...

  2. Hybridization and crystal-field effects in Kondo insulators studied by means of core-level spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Strigari, Fabio

    2015-04-13

    and even for symmetries lower than tetragonal. In addition to that, HAXPES measurements on the CeM{sub 2}Al{sub 10} series are presented. A common technique for studying hybridization effects in rare earths, and their electronic structure in general, is photoelectron spectroscopy in the soft X-ray range (hv ≤ 1.5 keV). However, in this energy region surface effects are known to matter so that the picture about the hybridization interaction might be distorted with respect to the bulk. The use of hard X-rays (hν=5-10 keV) guarantees a sufficiently large probing depth for obtaining information about the actual bulk electronic structure. In a detailed quantitative analysis of HAXPES 3d core level spectra - using a combination of full multiplet calculations and a configuration interaction model (fm-CI model) - the hybridization strength can be quantified. The XAS results show that the CEF ground states of CeRu{sub 2}Al{sub 10} and CeOs{sub 2}Al are very similar, while it is clearly different for the non-ordering system CeFe{sub 2}Al{sub 10}. The CEF description nicely explains the magnetic anisotropy observed in susceptibility data and to a large extent the small ordered moments along the c axis. We provide a reliable quantitative description of the CEF ground state of the CeM{sub 2}Al{sub 10} compounds. Furthermore, the analysis of the HAXPES data in the fm-CI model allows to quantify the intermediate 4f valence and establishes that the exchange interaction increases within the series from Ru to Os to Fe. A substantial amount of Kondo screening is shown to be present even in the magnetically ordered Ru and Os compounds. The polarized XAS study on CeNiSn demonstrates that the monoclinic CEF is well described in a trigonal approximation, and the determined 4f ground-state wave function is consistent with results from inelastic neutron scattering for Cu-doped CeNiSn. Moreover, the systematic investigation of the CeRh{sub 1-x}Ir{sub x}In{sub 5} substitution series by means

  3. Research of P2P SIP technology%P2P SIP技术的研究

    Institute of Scientific and Technical Information of China (English)

    隋晋光; 鲁士文

    2007-01-01

    在阐述P2P和SIP技术的基础上,引出了一种二者融合的新技术--P2P SIP,提出了采用P2P SIP技术系统的体系结构、工作方式,并且对P2P SIP技术的安全性问题进行了分析.

  4. Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions

    Science.gov (United States)

    Zubova, N. A.; Malyshev, A. V.; Tupitsyn, I. I.; Shabaev, V. M.; Kozhedub, Y. S.; Plunien, G.; Brandau, C.; Stöhlker, Th.

    2016-05-01

    Isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z =8 -92 . The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large-scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2 p3 /2-2 p1 /2 transition in B-like ions is significantly improved.

  5. Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions

    CERN Document Server

    Zubova, N A; Tupitsyn, I I; Shabaev, V M; Kozhedub, Y S; Plunien, G; Brandau, C; Stohlker, Th

    2016-01-01

    Isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions are evaluated for a wide range of the nuclear charge number: Z=8-92. The calculations of the relativistic nuclear recoil and nuclear size effects are performed using a large scale configuration-interaction Dirac-Fock-Sturm method. The corresponding QED corrections are also taken into account. The results of the calculations are compared with the theoretical values obtained with other methods. The accuracy of the isotope shifts of the 2$p_{3/2}$-2$p_{1/2}$ transition in B-like ions is significantly improved.

  6. Magnetocrystalline anisotropy and the magnetocaloric effect in Fe2P

    NARCIS (Netherlands)

    Caron, L.; Hudl, M.; Höglin, V.; Dung, N.H.; Gomez, C.P.; Sahlberg, M.; Brück, E.; Andersson, Y.; Nordblad, P.

    2013-01-01

    Magnetic and magnetocaloric properties of high-purity, giant magnetocaloric polycrystalline and single-crystalline Fe2P are investigated. Fe2P displays a moderate magnetic entropy change, which spans over 70 K and the presence of strong magnetization anisotropy proves this system is not fully itiner

  7. Resonant photoemission at the oxygen K edge as a tool to study the electronic properties of defects at SiO 2 /Si and SiO 2 /SiC interfaces

    Science.gov (United States)

    Tallarida, Massimo; Sohal, Rakesh; Schmeisser, Dieter

    2006-10-01

    Silicon is by far the most important material used in microelectronics, partly due to the excellent electronic properties of its native oxide (SiO 2), but substitute semiconductors are constantly the matter of research. SiC is one of the most promising candidates, also because of the formation of SiO 2 as native oxide. However, the SiO 2/SiC interface has very poor electrical properties due to a very high density of interface states which reduce its functionality in MIS devices. We have studied the electronic properties of defects in the SiO 2/Si and SiO 2/SiC interfaces by means of XAS, XPS and resonant photoemission at the O 1s and the Si 2p edges, using silicon dioxide thermally grown with thicknesses below 10 nm. Our XAS data are in perfect agreement with literature; in addition, resonant photoemission reveals the resonant contributions of the individual valence states. For the main peaks in the valence band we find accordance between the resonant behaviour and the absorption spectra, except for the peaks at -15 eV binding energy, whose resonant photoemission spectra have extra features. One of them is present in both interfaces and is due to similar defects, while another one at lower photon energy is present only for the SiO 2/SiC interface. This is related to a defect state which is not present at the SiO 2/Si interface.

  8. Simple theoretical analysis of the photoemission from quantum confined effective mass superlattices of optoelectronic materials

    Directory of Open Access Journals (Sweden)

    Debashis De

    2011-07-01

    Full Text Available The photoemission from quantum wires and dots of effective mass superlattices of optoelectronic materials was investigated on the basis of newly formulated electron energy spectra, in the presence of external light waves, which controls the transport properties of ultra-small electronic devices under intense radiation. The effect of magnetic quantization on the photoemission from the aforementioned superlattices, together with quantum well superlattices under magnetic quantization, has also been investigated in this regard. It appears, taking HgTe/Hg1−xCdxTe and InxGa1−xAs/InP effective mass superlattices, that the photoemission from these quantized structures is enhanced with increasing photon energy in quantized steps and shows oscillatory dependences with the increasing carrier concentration. In addition, the photoemission decreases with increasing light intensity and wavelength as well as with increasing thickness exhibiting oscillatory spikes. The strong dependence of the photoemission on the light intensity reflects the direct signature of light waves on the carrier energy spectra. The content of this paper finds six different applications in the fields of low dimensional systems in general.

  9. Queries mining for efficient routing in P2P communities

    CERN Document Server

    Ismail, Anis; Durand, Nicolas; Nachouki, Gilles; Hajjar, Mohammad

    2011-01-01

    Peer-to-peer (P2P) computing is currently attracting enormous attention. In P2P systems a very large number of autonomous computing nodes (the peers) pool together their resources and rely on each other for data and services. Peer-to-peer (P2P) Data-sharing systems now generate a significant portion of Internet traffic. Examples include P2P systems for network storage, web caching, searching and indexing of relevant documents and distributed network-threat analysis. Requirements for widely distributed information systems supporting virtual organizations have given rise to a new category of P2P systems called schema-based. In such systems each peer exposes its own schema and the main objective is the efficient search across the P2P network by processing each incoming query without overly consuming bandwidth. The usability of these systems depends on effective techniques to find and retrieve data; however, efficient and effective routing of content-based queries is a challenging problem in P2P networks. This wo...

  10. Increasing Structured P2P Protocol Resilience to Localized Attacks

    OpenAIRE

    Germanus, Daniel

    2015-01-01

    The Peer-to-Peer (P2P) computing model has been applied to many application fields over the last decade. P2P protocols made their way from infamous - and frequently illicit - file sharing applications towards serious applications, e.g., in entertainment, audio/video conferencing, or critical applications like smart grid, Car-2-Car communication, or Machine-to-Machine communication. Some of the reasons for that are P2P's decentralized design that inherently provides for fault tolerance to non-...

  11. Comparing Pedophile Activity in Different P2P Systems

    OpenAIRE

    Raphaël Fournier; Thibault Cholez; Matthieu Latapy; Isabelle Chrisment; Clémence Magnien; Olivier Festor; Ivan Daniloff

    2014-01-01

    International audience; Peer-to-peer (P2P) systems are widely used to exchange content over the Internet. Knowledge of pedophile activity in such networks remains limited, despite having important social consequences. Moreover, though there are different P2P systems in use, previous academic works on this topic focused on one system at a time and their results are not directly comparable. We design a methodology for comparing KAD and eDonkey, two P2P systems among the most prominent ones and ...

  12. Code wars 10 years of P2P software litigation

    CERN Document Server

    Giblin, Rebecca

    2011-01-01

    Code Wars recounts the legal and technological history of the first decade of the P2P file sharing era, focusing on the innovative and anarchic ways in which P2P technologies evolved in response to decisions reached by courts with regard to their predecessors. With reference to US, UK, Canadian and Australian secondary liability regimes, this insightful book develops a compelling new theory to explain why a decade of ostensibly successful litigation failed to reduce the number, variety or availability of P2P file sharing applications - and highlights ways the law might need to change if it is

  13. Distributed Frequent Item Sets Mining over P2P Networks

    OpenAIRE

    Zahra Farzanyar; Mohammadreza Kangavari

    2015-01-01

    Data intensive peer-to-peer (P2P) networks are becoming increasingly popular in applications like social networking, file sharing networks, etc. Data mining in such P2P environments is the new generation of advanced P2P applications. Unfortunately, most of the existing data mining algorithms do not fit well in such environments since they require data that can be accessed in its entirety. It also is not easy due to the requirements of online transactional data streams. In this paper, we have ...

  14. Electronic properties of metal-organic and organic-organic interfaces studied by photoemission and photoabsorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Molodtsova, Olga

    2006-07-01

    In this work systematic studies of the organic semiconductor CuPc have been presented. In general the investigation can be devided in three parts. In the first one we have studied the electronic structure of clean CuPc thin film. The next two parts are devoted to organic-organic and metal-organic interface formation, where one of the interface components is CuPc thin film. The main results of this thesis are: - The electronic structure of the pristine organic semiconductor CuPc has been obtained by a combination of conventional and resonant photoemission, near-edge X-ray absorption, as well as by theoretical ab initio quantum-chemical calculations. The contributions of different atomic species as well as sites of the CuPc molecule to the electronic DOS has been established. A combined experimental and theoretical study of the unoccupied electronic density of states of CuPc was presented. - The electronic properties of the organic heterointerfaces between fullerite and pristine copper phthalocyanine were studied. Both interfaces, CuPc/C{sub 60} and C{sub 60}/CuPc, were found to be non-reactive with pronounced shifts of the vacuum level pointing to the formation of an interfacial dipole mainly at the CuPc side of the heterojunctions. The dipole values are close to the difference of the work functions of the two materials. Important interface parameters and hole-injection barriers were obtained. The sequence of deposition does not influence the electronic properties of the interfaces. - CuPc doped with potassium was studied by means of photoemission and photoabsorption spectroscopy. A detailed analysis of the core-level PE spectra allows one to propose possible lattice sites, which harbor the potassium ions. The films prepared in this thesis showed no finite electronic density of states at the Fermi level. - Two stages of the In/CuPc interface formation have been distinguished. The low-coverage stage is characterized by a strong diffusion of the In atoms into the

  15. 1S core-level spectroscopy of graphite: The effects of phonons on emission and absorption and validity of the final-state rule

    Energy Technology Data Exchange (ETDEWEB)

    Franck, C.P.; Schnatterly, S.E.; Zutavern, F.J.; Aton, T.; Cafolla, T.; Carson, R.D.

    1985-04-15

    We have used both electron-induced soft x-ray emission and fast inelastic electron scattering to observe 1S core-level emission and absorption in graphite near threshold. Linear phonon coupling with partial relaxation is found to quantitatively explain the absorption linewidth, the emission broadening, and the unusually large difference between emission and absorption threshold energies (Stokes shift). Both emission and absorption line shapes quantitatively obey the final-state rule, which asserts that the best single-particle potential describing these many electron processes is the final-state potential.

  16. Photoemission from single-crystal EuBa sub 2 Cu sub 3 O sub 6+x cleaved below 20 K; Metallic-to-insulating surface transformation

    Energy Technology Data Exchange (ETDEWEB)

    List, R.S.; Arko, A.J.; Fisk, Z.; Cheong, S.; Conradson, S.D.; Thompson, J.D.; Pierce, C.B.; Peterson, D.E.; Bartlett, R.J.; O' Rourke, J.A. (Los Alamos National Laboratory, Los Alamos, NM 87545 (USA)); Shinn, N.D.; Schirber, J.E. (Sandia Laboratories, Albuquerque, NM 87185 (USA)); Olson, C.G.; Yang, A.; Pi, T. (Ames National Laboratory, Iowa State University, Ames, IA 50011 (USA)); Veal, B.W.; Paulikas, A.P.; Campuzano, J.C. (Argonne National Laboratory, Argonne, IL 60439 (USA))

    1989-02-01

    Valence band ultraviolet photoemission spectra (UPS) of single-crystal EuBa{sub 2}Cu{sub 3}O{sub 6+x} (x{gt}0.6) samples cleaved in vacuum at 20 K demonstrate that the metallic superconducting phase undergoes an irreversible transformation via near-surface oxygen loss to an insulating state upon annealing above 50 K. Freshly cleaved surfaces at 20 K exhibit a density of states at the Fermi level comparable to that of copper, and have both O(2p) and Cu(3d) character at E{sub F} based on the photon energy dependence of the intensity. Reasonably good agreement between band structure calculations and the present data would suggest theoretical models using the band state as a starting point.

  17. Origin of localized states in graphite: Indirect photoemission processes or impurities?

    Energy Technology Data Exchange (ETDEWEB)

    Davila, M.E. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz, 3, 28049 Madrid (Spain)], E-mail: mdavila@icmm.csic.es; Valbuena, M.A.; Pantin, V. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas (CSIC), C/ Sor Juana Ines de la Cruz, 3, 28049 Madrid (Spain); Avila, J. [Synchrotron SOLEIL, Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Esquinazi, P. [Department of Superconductivity and Magnetism, Leipzig University (Germany); Asensio, M.C. [Synchrotron SOLEIL, Orme des Merisiers, Saint Aubin BP 48, 91192 Gif sur Yvette Cedex (France)

    2007-10-31

    The electronic band structure of different types of graphite samples have been investigated in order to identify the origin of non-dispersive density of states recently reported in the literature. A systematic series of synchrotron radiation angle resolved photoemission spectroscopy (ARPES) measurements on graphite single crystal, highly oriented graphite (HOPG) and epitaxial grown graphite single crystal on 6H-SiC(0 0 0 1) samples, have been carried out as well as compared with theoretical tight binding calculations. Our results indicate that these localized states are present in all the graphite-investigated samples showing the same non-dispersive character and at the same binding energies. The photoemission data taken at several photon energies demonstrate that these states are not surface states nor due to indirect photoemission processes. It seems that they are closely related to the level of impurities present in the studied samples.

  18. Simple theoretical analysis of the Einstein’s photoemission from quantum confined superlattices

    Science.gov (United States)

    Pahari, S.; Bhattacharya, S.; Roy, S.; Saha, A.; De, D.; Ghatak, K. P.

    2009-11-01

    In this paper, we study the Einstein's photoemission from III-V, II-VI, IV-VI and HgTe/CdTe quantum well superlattices (QWSLs) with graded interfaces and quantum well effective mass superlattices in the presence of a quantizing magnetic field on the basis of newly formulated dispersion relations in the respective cases. Besides, the same has been studied from the afore-mentioned quantum dot superlattices and it appears that the photoemission oscillates with increasing carrier degeneracy and quantizing magnetic field in different manners. In addition, the photoemission oscillates with film thickness and increasing photon energy in quantum steps together with the fact that the solution of the Boltzmann transport equation will introduce new physical ideas and new experimental findings under different external conditions. The influence of band structure is apparent from all the figures and we have suggested three applications of the analyses of this paper in the fields of superlattices and microstructures.

  19. Photoemission study on the formation of Mo contacts to CuInSe2

    Science.gov (United States)

    Nelson, A. J.; Niles, D. W.; Kazmerski, L. L.; Rioux, D.; Patel, R.; Hoechst, H.

    1992-08-01

    Synchrotron radiation soft-X-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the Mo/CuInSe2 interface. Mo overlayers were e-beam deposited in steps on single-crystal n-type CuInSe2 at ambient temperature. Photoemission measurements were acquired after each growth in order to observe changes in the valence-band electronic structure as well as changes in the In 4d, Se 3d, and Mo 4d core lines. Photoemission measurements on the valence-band and core lines were also obtained after annealing. The results were used to correlate the interface chemistry with the electronic structure at this interface and to directly determine the maximum possible Schottky barrier height to be not greater than 0.2 eV at the Mo/CuInSe2 junction before annealing, thus showing that this contact is essentially ohmic.

  20. Layer-resolved photoemission tomography: The p -sexiphenyl bilayer upon Cs doping

    Science.gov (United States)

    Reinisch, E. M.; Puschnig, P.; Ules, T.; Ramsey, M. G.; Koller, G.

    2016-04-01

    The buried interface between a molecular thin film and the metal substrate is generally not accessible to the photoemission experiment. With the example of a sexiphenyl (6 P ) bilayer on Cu we show that photoemission tomography can be used to study the electronic level alignment and geometric structure, where it was possible to assign the observed orbital emissions to the individual layers. We further study the Cs doping of this bilayer. Initial Cs exposure leads to a doping of only the first interface layer, leaving the second layer unaffected except for a large energy shift. This result shows that it is in principle possible to chemically modify just the interface, which is important to issues like tuning of the energy level alignment and charge transfer to the interface layer. Upon saturating the film with Cs, photoemission tomography shows a complete doping (6 p4 - ) of the bilayer, with the molecular geometry changing such that the spectra become dominated by σ -orbital emissions.

  1. X-ray-induced photoemission yield for surface studies of solids beyond the photoelectron escape depth

    CERN Document Server

    Stoupin, Stanislav; Zhernenkov, Mikhail

    2016-01-01

    X-ray-induced photoemission in materials research is commonly acknowledged as a method with a probing depth limited by the escape depth of the photoelectrons. This general statement should be complemented with exceptions arising from the distribution of the X-ray wavefield in the material. Here we show that the integral hard-X-ray-induced photoemission yield is modulated by the Fresnel reflectivity of a multilayer structure with the signal originating well below the photoelectron escape depth. A simple electric self-detection of the integral photoemission yield and Fourier data analysis permit extraction of thicknesses of individual layers. The approach does not require detection of the reflected radiation and can be considered as a framework for non-invasive evaluation of buried layers with hard X-rays under grazing incidence.

  2. Trisomy 2p: Analysis of unusual phenotypic findings

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, I.W.; Ilyina, H.G.; Gurevich, D.B. [Belorussian Research Institute of Hereditary Disease, Minsk (Russian Federation)] [and others

    1995-01-16

    We present three probands with partial trisomies 2p21-23 due to ins(4;2)(q21;p21p23) pat, 2p23-pter due to t(2;4)(p23;q35)mat, and 2p21-pter due to t(2;11)(p21;q23.3)mat. More than 50 cases of partial trisomy 2p have been reviewed and some abnormalities, unusual for most other types of structural autosomal imbalance, have been found in patients with inherited forms of 2p trisomy and in their non-karyotyped sibs. Neural tube defects (anencephaly, occipital encephalocele, and spina bifida) were found in five probands and 4/6 affected non-karyotyped sibs. The only triplicated segment common to all was 2p24. Different forms of {open_quotes}broncho-pulmonary a/hypoplasia{close_quotes} (including two cases of lung agenesis) were described in four patients (overlapping triplicated segment was 2p21-p25). Three patients (with overlapping triplicated segment 2p23-p25) had diaphragmatic hernia. Abnormal rotation of the heart or L-transposition of large vessels (with or without visceral heterotaxia) was found in two infants (overlapping triplicated segment 2p23-p24). In two patients with common triplicated segment 2p22.3-p25, neuroblastoma has been described. The occurrence of all these defects may be explained either by the action of the same gene(s) mapped to 2p24 or by action of some independent factors located in different segments of the short arm. Although the latter hypothesis is much less probable, it can not be rejected at the present time. We propose the existence of a genetic system controlling surveillance of an abnormal embryo to explain the phenotypic differences between patients with the same imbalance within a family. In some {open_quotes}restrictive{close_quotes} combinations the abnormal embryos will die, although in {open_quotes}permissive{close_quotes} combinations they can survive. 47 refs., 2 figs., 3 tabs.

  3. Electronic structure of YbNiX{sub 3} (X =Si, Ge) studied by hard X-ray photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hitoshi; Shimada, Kenya; Namatame, Hirofumi [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046 (Japan); Utsumi, Yuki [Max-Planck Institute for Chemical Physics of Solids, 01187 Dresden (Germany); Kodama, Junichi; Nagata, Heisuke [Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Avila, Marcos A.; Ribeiro, Raquel A. [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Santo Andre - SP, 09210-580 (Brazil); Umeo, Kazunori [Cryogenics and Instrumental Analysis Division, N-BARD, Hiroshima University, Higashi-Hiroshima 739-8526 (Japan); Takabatake, Toshiro [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Mimura, Kojiro; Motonami, Satoru; Anzai, Hiroaki [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Ueda, Shigenori [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan); Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Kagamiyama 2-313, Higashi-Hiroshima 739-0046 (Japan); Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan)

    2015-06-15

    lectronic structure of the Kondo lattices YbNiX{sub 3} (X =Si, Ge) has been investigated by means of hard x-ray photoemission spectroscopy (HAXPES) with hν = 5.95 keV. From the Yb 3d HAXPES spectra, the Yb valence in YbNiSi{sub 3} is estimated to be ∝ 2.92, which is almost temperature-independent. On the other hand, the valence in YbNiGe{sub 3} is estimated to be 2.48 at 300 K, showing significant valence fluctuation, and gradually decreases to 2.41 at 20 K on cooling. The Ni 2p{sub 3/2} and Yb{sup 3+} 4f peaks exhibit opposite energy shifts amounting to ∝ 0.6 eV between YbNiSi{sub 3} and YbNiGe{sub 3}. We propose a simple model for the electronic structure of YbNiX{sub 3} based on the HAXPES results. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Improving P2P live-content delivery using SVC

    Science.gov (United States)

    Schierl, T.; Sánchez, Y.; Hellge, C.; Wiegand, T.

    2010-07-01

    P2P content delivery techniques for video transmission have become of high interest in the last years. With the involvement of client into the delivery process, P2P approaches can significantly reduce the load and cost on servers, especially for popular services. However, previous studies have already pointed out the unreliability of P2P-based live streaming approaches due to peer churn, where peers may ungracefully leave the P2P infrastructure, typically an overlay networks. Peers ungracefully leaving the system cause connection losses in the overlay, which require repair operations. During such repair operations, which typically take a few roundtrip times, no data is received from the lost connection. While taking low delay for fast-channel tune-in into account as a key feature for broadcast-like streaming applications, the P2P live streaming approach can only rely on a certain media pre-buffer during such repair operations. In this paper, multi-tree based Application Layer Multicast as a P2P overlay technique for live streaming is considered. The use of Flow Forwarding (FF), a.k.a. Retransmission, or Forward Error Correction (FEC) in combination with Scalable video Coding (SVC) for concealment during overlay repair operations is shown. Furthermore the benefits of using SVC over the use of AVC single layer transmission are presented.

  5. Characterization of P2P IPTV Traffic: Scaling Analysis

    CERN Document Server

    Silverston, Thomas; Salamatian, Kave

    2007-01-01

    P2P IPTV applications arise on the Internet and will be massively used in the future. It is expected that P2P IPTV will contribute to increase the overall Internet traffic. In this context, it is important to measure the impact of P2P IPTV on the networks and to characterize this traffic. During the 2006 FIFA World Cup, we performed an extensive measurement campaign. We measured network traffic generated by broadcasting soccer games by the most popular P2P IPTV applications, namely PPLive, PPStream, SOPCast and TVAnts. From the collected data, we characterized the P2P IPTV traffic structure at different time scales. To the best of our knowledge, this is the first work, which presents a complete multiscale analysis of the P2P IPTV traffic. Our observations show that the network traffic has not the same scale behavior whether the applications use TCP or UDP. For all the applications, the download traffic is different from the upload traffic and the signaling traffic has an impact on the download traffic.

  6. Network Awareness in P2P-TV Applications

    Science.gov (United States)

    Traverso, Stefano; Leonardi, Emilio; Mellia, Marco; Meo, Michela

    The increasing popularity of applications for video-streaming based on P2P paradigm (P2P-TV) is raising the interest of both broadcasters and network operators. The former see a promising technology to reduce the cost of streaming content over the Internet, while offering a world-wide service. The latter instead fear that the traffic offered by these applications can grow without control, affecting other services, and possibly causing network congestion and collapse. The “Network-Aware P2P-TV Application over Wise Networks” FP7 project aims at studying and developing a novel P2P-TV application offering the chance to broadcast high definition video to broadcasters and to carefully manage the traffic offered by peers to the network, therefore avoiding worries to Internet providers about network overload. In such context, we design a simulator to evaluate performance of different P2P-TV solutions, to compare them both considering end-users’ and network providers’ perspectives, such as quality of service perceived by subscribers and link utilization. In this paper, we provide some results that show how effective can be a network aware P2P-TV system.

  7. P2P Data Management in Mobile Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Nida Sahar Sayeda

    2013-04-01

    Full Text Available The rapid growth in wireless technologies has made wireless communication an important source for transporting data across different domains. In the same way, there are possibilities of many potential applications that can be deployed using WSNs (Wireless Sensor Networks. However, very limited applications are deployed in real life due to the uncertainty and dynamics of the environment and scare resources. This makes data management in WSN a challenging area to find an approach that suits its characteristics. Currently, the trend is to find efficient data management schemes using evolving technologies, i.e. P2P (Peer-to-Peer systems. Many P2P approaches have been applied in WSNs to carry out the data management due to similarities between WSN and P2P. With the similarities, there are differences too that makes P2P protocols inefficient in WSNs. Furthermore, to increase the efficiency and to exploit the delay tolerant nature of WSNs, where ever possible, the mobile WSNs are gaining importance. Thus, creating a three dimensional problem space to consider, i.e. mobility, WSNs and P2P. In this paper, an efficient algorithm is proposed for data management using P2P techniques for mobile WSNs. The real world implementation and deployment of proposed algorithm is also presented

  8. Generating few-cycle pulses for nanoscale photoemission easily with an erbium-doped fiber laser.

    Science.gov (United States)

    Thomas, Sebastian; Holzwarth, Ronald; Hommelhoff, Peter

    2012-06-18

    We demonstrate a simple setup capable of generating four-cycle pulses at a center wavelength of 1700 nm for nanoscale photoemission. Pulses from an amplified erbium-doped fiber laser are spectrally broadened by propagation through a highly non-linear fiber. Subsequently, we exploit dispersion in two different types of glass to compress the pulses. The pulse length is estimated by measuring an interferometric autocorrelation trace and comparing it to a numerical simulation. We demonstrate highly non-linear photoemission of electrons from a nanometric tungsten tip in a hitherto unexplored pulse parameter range.

  9. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip

    Science.gov (United States)

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-01

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  10. Two-color coherent control of femtosecond above-threshold photoemission from a tungsten nanotip

    CERN Document Server

    Förster, Michael; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-01-01

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a visibility of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  11. Theoretical estimates of spherical and chromatic aberration in photoemission electron microscopy.

    Science.gov (United States)

    Fitzgerald, J P S; Word, R C; Könenkamp, R

    2016-01-01

    We present theoretical estimates of the mean coefficients of spherical and chromatic aberration for low energy photoemission electron microscopy (PEEM). Using simple analytic models, we find that the aberration coefficients depend primarily on the difference between the photon energy and the photoemission threshold, as expected. However, the shape of the photoelectron spectral distribution impacts the coefficients by up to 30%. These estimates should allow more precise correction of aberration in PEEM in experimental situations where the aberration coefficients and precise electron energy distribution cannot be readily measured.

  12. Capability of Resonant Photoemission with Soft X-Rays in Rare-Earth Systems

    Science.gov (United States)

    Harasaki, Akiko; Tanaka, Arata; Jo, Takeo

    1993-07-01

    We theoretically discuss the capability of resonant photoemission with soft X-rays in clarifying the valence electronic state, by choosing Ce 4d core X-ray photoemission spectroscopy (4d XPS) at the Ce 3d threshold in CeRh3B2 with hexagonal crystal structure. On the basis of the Anderson model including multiplet splitting, we show that the dependence of 4d XPS on the energy and the linear polarization with respect to the hexagonal c-axis of the incident photon and the binding energy can be a powerful characteristic for probing a proposed uniaxial anisotropic distribution of 4f electrons.

  13. Characterization of the native oxide of CuInSe2 using synchrotron radiation photoemission

    Science.gov (United States)

    Nelson, Art J.; Gebhard, Steven; Kazmerski, L. L.; Colavita, Elio; Engelhardt, Mike; Höchst, Hartmut

    1990-10-01

    Synchrotron radiation soft x-ray photoemission spectroscopy was used to investigate the native oxide of n-type single-crystal CuInSe2. Photoemission measurements were acquired on the oxide surface before and after removal using sputter etching. Observed changes in the valence-band electronic structure as well as changes in the In 4d and Se 3d core lines were correlated with the interface chemistry at the oxide/CuInSe2 interface. These results show the native oxide to be composed of an In2O3 outer layer (no SeO2) with an additional Cu2Se interface layer.

  14. Preparation and Photoemission Spectra of Rb3C60 Single-Crystal Thin Films

    Institute of Scientific and Technical Information of China (English)

    李宏年; 吴太权; 陈晓; 李海洋; 鲍世宁; 徐亚伯; 钱海杰; 易卜拉欣奎热西; 刘风琴

    2002-01-01

    Rb3 C60 single-crystal thin films were prepared on the cleaved (111) surface of C60 single crystal. The photoemission spectrum line shapes of the lowest unoccupied molecular orbital (LUMO) derived band at room temperature and 150K were established by synchrotron radiation photoemission spectrum measurements. The density of states near the Fermi level was distinctly affected by temperature. No less than six sub-peaks of the LUMOband were observed even at room temperature. The existence of so many sub-peaks offered the opportunities to analyse in more detail the orientational structure and the electron-Boson interactions of the narrow-band metallic Rb3 C60 .

  15. An XUV source using a femtosecond enhancement cavity for photoemission spectroscopy

    Science.gov (United States)

    Mills, Arthur K.; Zhdanovich, Sergey; Sheyerman, Alex; Levy, Giorgo; Damascelli, Andrea; Jones, David J.

    2015-05-01

    Recent development of extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC) has enabled generation of high photon ux ( ̴ 1013-1014 photons/sec) in the XUV, at high repetition rates (> 50 MHz) and spanning the spectral region from 40 nm - 120 nm. Here we demonstrate the potential offered by this approach for angle-resolved photoemission spectroscopy by measuring the photoemission spectrum of Au using 8.3 and 25 eV photons with excellent resolution at rapid data rates.

  16. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  17. Performance of the TPSS Functional on Predicting Core Level Binding Energies of Main Group Elements Containing Molecules: A Good Choice for Molecules Adsorbed on Metal Surfaces.

    Science.gov (United States)

    Pueyo Bellafont, Noèlia; Viñes, Francesc; Illas, Francesc

    2016-01-12

    Here we explored the performance of Hartree-Fock (HF), Perdew-Burke-Ernzerhof (PBE), and Tao-Perdew-Staroverov-Scuseria (TPSS) functionals in predicting core level 1s binding energies (BEs) and BE shifts (ΔBEs) for a large set of 68 molecules containing a wide variety of functional groups for main group elements B → F and considering up to 185 core levels. A statistical analysis comparing with X-ray photoelectron spectroscopy (XPS) experiments shows that BEs estimations are very accurate, TPSS exhibiting the best performance. Considering ΔBEs, the three methods yield very similar and excellent results, with mean absolute deviations of ∼0.25 eV. When considering relativistic effects, BEs deviations drop approaching experimental values. So, the largest mean percentage deviation is of 0.25% only. Linear trends among experimental and estimated values have been found, gaining offsets with respect to ideality. By adding relativistic effects to offsets, HF and TPSS methods underestimate experimental values by solely 0.11 and 0.05 eV, respectively, well within XPS chemical precision. TPSS is posed as an excellent choice for the characterization, by XPS, of molecules on metal solid substrates, given its suitability in describing metal substrates bonds and atomic and/or molecular orbitals.

  18. The electronic and chemical structure of the a-B3CO0.5:Hy-to-metal interface from photoemission spectroscopy: implications for Schottky barrier heights.

    Science.gov (United States)

    Driver, M Sky; Paquette, Michelle M; Karki, S; Nordell, B J; Caruso, A N

    2012-11-01

    The electronic and chemical structure of the metal-to-semiconductor interface was studied by photoemission spectroscopy for evaporated Cr, Ti, Al and Cu overlayers on sputter-cleaned as-deposited and thermally treated thin films of amorphous hydrogenated boron carbide (a-B(x)C:H(y)) grown by plasma-enhanced chemical vapor deposition. The films were found to contain ~10% oxygen in the bulk and to have approximate bulk stoichiometries of a-B(3)CO(0.5):H(y). Measured work functions of 4.7/4.5 eV and valence band maxima to Fermi level energy gaps of 0.80/0.66 eV for the films (as-deposited/thermally treated) led to predicted Schottky barrier heights of 1.0/0.7 eV for Cr, 1.2/0.9 eV for Ti, 1.2/0.9 eV for Al, and 0.9/0.6 eV for Cu. The Cr interface was found to contain a thick partial metal oxide layer, dominated by the wide-bandgap semiconductor Cr(2)O(3), expected to lead to an increased Schottky barrier at the junction and the formation of a space-charge region in the a-B(3)CO(0.5):H (y) layer. Analysis of the Ti interface revealed a thick layer of metal oxide, comprising metallic TiO and Ti (2)O (3), expected to decrease the barrier height. A thinner, insulating Al(2)O(3) layer was observed at the Al-to-a-B(3)CO(0.5):H(y) interface, expected to lead to tunnel junction behavior. Finally, no metal oxides or other new chemical species were evident at the Cu-to-a-B(3)CO(0.5):H(y) interface in either the core level or valence band photoemission spectra, wherein characteristic metallic Cu features were observed at very thin overlayer coverages. These results highlight the importance of thin-film bulk oxygen content on the metal-to-semiconductor junction character as well as the use of Cu as a potential Ohmic contact material for amorphous hydrogenated boron carbide semiconductor devices such as high-efficiency direct-conversion solid-state neutron detectors.

  19. Behavioural Correlation for Detecting P2P Bots

    CERN Document Server

    Al-Hammadi, Yousof

    2010-01-01

    In the past few years, IRC bots, malicious programs which are remotely controlled by the attacker through IRC servers, have become a major threat to the Internet and users. These bots can be used in different malicious ways such as issuing distributed denial of services attacks to shutdown other networks and services, keystrokes logging, spamming, traffic sniffing cause serious disruption on networks and users. New bots use peer to peer (P2P) protocols start to appear as the upcoming threat to Internet security due to the fact that P2P bots do not have a centralized point to shutdown or traceback, thus making the detection of P2P bots is a real challenge. In response to these threats, we present an algorithm to detect an individual P2P bot running on a system by correlating its activities. Our evaluation shows that correlating different activities generated by P2P bots within a specified time period can detect these kind of bots.

  20. Managing Linguistic Data Summaries in Advanced P2P Applications

    Science.gov (United States)

    Hayek, Rabab; Raschia, Guillaume; Valduriez, Patrick; Mouaddib, Noureddine

    As the amount of stored data increases, data localization techniques become no longer sufficient in P2P systems. A practical approach is to rely on compact database summaries rather than raw database records, whose access is costly in large P2P systems. In this chapter, we describe a solution for managing linguistic data summaries in advanced P2P applications which are dealing with semantically rich data. The produced summaries are synthetic, multidimensional views over relational tables. The novelty of this proposal relies on the double summary exploitation in distributed P2P systems. First, as semantic indexes, they support locating relevant nodes based on their data descriptions. Second, due to their intelligibility, these summaries can be directly queried and thus approximately answer a query without the need for exploring original data. The proposed solution consists first in defining a summary model for hierarchical P2P systems. Second, appropriate algorithms for summary creation and maintenance are presented. A query processing mechanism, which relies on summary querying, is then proposed to demonstrate the benefits that might be obtained from summary exploitation.

  1. Determinants of Default in P2P Lending.

    Directory of Open Access Journals (Sweden)

    Carlos Serrano-Cinca

    Full Text Available This paper studies P2P lending and the factors explaining loan default. This is an important issue because in P2P lending individual investors bear the credit risk, instead of financial institutions, which are experts in dealing with this risk. P2P lenders suffer a severe problem of information asymmetry, because they are at a disadvantage facing the borrower. For this reason, P2P lending sites provide potential lenders with information about borrowers and their loan purpose. They also assign a grade to each loan. The empirical study is based on loans' data collected from Lending Club (N = 24,449 from 2008 to 2014 that are first analyzed by using univariate means tests and survival analysis. Factors explaining default are loan purpose, annual income, current housing situation, credit history and indebtedness. Secondly, a logistic regression model is developed to predict defaults. The grade assigned by the P2P lending site is the most predictive factor of default, but the accuracy of the model is improved by adding other information, especially the borrower's debt level.

  2. Determinants of Default in P2P Lending.

    Science.gov (United States)

    Serrano-Cinca, Carlos; Gutiérrez-Nieto, Begoña; López-Palacios, Luz

    2015-01-01

    This paper studies P2P lending and the factors explaining loan default. This is an important issue because in P2P lending individual investors bear the credit risk, instead of financial institutions, which are experts in dealing with this risk. P2P lenders suffer a severe problem of information asymmetry, because they are at a disadvantage facing the borrower. For this reason, P2P lending sites provide potential lenders with information about borrowers and their loan purpose. They also assign a grade to each loan. The empirical study is based on loans' data collected from Lending Club (N = 24,449) from 2008 to 2014 that are first analyzed by using univariate means tests and survival analysis. Factors explaining default are loan purpose, annual income, current housing situation, credit history and indebtedness. Secondly, a logistic regression model is developed to predict defaults. The grade assigned by the P2P lending site is the most predictive factor of default, but the accuracy of the model is improved by adding other information, especially the borrower's debt level.

  3. A Framework For Concept Drifting P2P Traffic Identification

    Directory of Open Access Journals (Sweden)

    Guanghui Yan

    2013-08-01

    Full Text Available Identification of network traffic using port-based or payload-based analysis is becoming increasing difficult with many Peer-to-Peer (P2P application using dynamic ports, masquerading techniques, and encryption to avoid detection. To overcome this problem, several machine learning technique were proposed to classify P2P traffics. But in the real P2P network environment, new communities of peers often attend and old communities of peers often leave. It requires the identification methods to be capable of coping with concept drift, and updating the model incrementally. In this paper, we present a concept-adapting algorithm CluMC which is based on streaming data mining techniques to identify P2P applications in Internet traffic. The CluMC use micro-cluster structures which contain potential micro-cluster structures and outlier micro-cluster structures to classify the P2P traffic and discover the concept drift with limited memory. Our performance study over a number of real data sets that we captured at a main gateway router demonstrates the effectiveness and efficiency of our method.

  4. On Using Seeders for P2P Live Streaming

    CERN Document Server

    Mathieu, Fabien

    2011-01-01

    Seeders (peers that do not request anything but contribute to the system) are a powerful concept in peer-to-peer (P2P). They allow to leverage the capacities of a P2P system. While seeding is a natural idea for filesharing or video-on-demand applications, it seems somehow counter-intuitive in the context of live streaming. This paper aims at describing the feasibility and performance of P2P live seeding. After a formal definition of "live seeding" and efficiency, we consider the theoretical performance of systems where the overhead is neglected. We then propose a linear overhead model and extend the results for this model, for a single seeder and for a set of seeders as well (it is not always possible to perfectly aggregate individual efficiencies in a given system).

  5. Compromising Tor Anonymity Exploiting P2P Information Leakage

    CERN Document Server

    Manils, Pere; Blond, Stevens Le; Kaafar, Mohamed Ali; Castelluccia, Claude; Legout, Arnaud; Dabbous, Walid

    2010-01-01

    Privacy of users in P2P networks goes far beyond their current usage and is a fundamental requirement to the adoption of P2P protocols for legal usage. In a climate of cold war between these users and anti-piracy groups, more and more users are moving to anonymizing networks in an attempt to hide their identity. However, when not designed to protect users information, a P2P protocol would leak information that may compromise the identity of its users. In this paper, we first present three attacks targeting BitTorrent users on top of Tor that reveal their real IP addresses. In a second step, we analyze the Tor usage by BitTorrent users and compare it to its usage outside of Tor. Finally, we depict the risks induced by this de-anonymization and show that users' privacy violation goes beyond BitTorrent traffic and contaminates other protocols such as HTTP.

  6. Model of Controlling the Hubs in P2P Networks

    Directory of Open Access Journals (Sweden)

    Yuhua Liu

    2009-06-01

    Full Text Available Research into the hubs in Peer-to-Peer (P2P networks, and present a new method to avoid generating the hubs in the networks by controlling the logical topology structure of P2P networks. We firstly introduce the controlling ideas about hierarchizing the hubs. Then, we disclose and interpret the controlling model, and give out the concrete method to carry it out. Finally, we validate our controlling model via simulations and the simulation results demonstrate that our work is effective to control the hubs in P2P networks. Thus, this model can improve the network competence to defend against coordinated attacks, promote the network robustness, and ensure the network would develop continually and healthily.

  7. PROSE: Proactive, Selective CDN Participation for P2P Streaming

    Institute of Scientific and Technical Information of China (English)

    Zhi-Hui Lv; Li-Jiang Chen; Jie Wu; Da Deng; Si-Jia Huang; Yi Huang

    2013-01-01

    Many production peer-to-peer (P2P) streaming systems use content delivery networks (CDN) to protect the user's quality of experiences.Thus,how to efficiently utilize the capacity of CDN (e.g.,which peers receive services from the CDN nodes) is a problem of practical significance.Existing solutions adopt a passive,on-demand approach,which is inefficient iu utilizing CDN resources.In this paper,we propose PROSE,a simple,novel scheme to achieve proactive,selective CDN participation for P2P streaming.PROSE introduces novel concepts such as choke point expansion nodes/super nodes and leads to efficient,light-weighted,and distributed algorithms to identify and serve these nodes using CDN.Our experimental results show that PROSE achieves at least 10%~25% performance improvement and 2~4 times overhead reduction compared with existing general CDN-P2P-hybrid schemes.

  8. Market Design for a P2P Backup System

    Science.gov (United States)

    Seuken, Sven; Charles, Denis; Chickering, Max; Puri, Sidd

    Peer-to-peer (P2P) backup systems are an attractive alternative to server-based systems because the immense costs of large data centers can be saved by using idle resources on millions of private computers instead. This paper presents the design and theoretical analysis of a market for a P2P backup system. While our long-term goal is an open resource exchange market using real money, here we consider a system where monetary transfers are prohibited. A user who wants to backup his data must in return supply some of his resources (storage space, upload and download bandwidth) to the system.We propose a hybrid P2P architecture where all backup data is transferred directly between peers, but a dedicated server coordinates all operations and maintains meta-data. We achieve high reliability guarantees while keeping our data replication factor low by adopting sophisticated erasure coding technology (cf., [2]).

  9. On the {P2, P3}-Factor of Cubic Graphs

    Institute of Scientific and Technical Information of China (English)

    GOU Kui-xiang; SUN Liang

    2005-01-01

    Let G = ( V, E) be a finite simple graph and Pn denote the path of order n. A spanning subgraph F is called a {P2, P3}-factor of G if each component of F is isomorphic to P2 or P3. With the path-covering method, it is proved that any connected cubic graph with at least 5 vertices has a { P2, P3 }-factor F such that | P3 (F) |≥|P2 (F) |, where P2 (F) and P3 (F) denote the set of components of P2 and P3 in F,respectively.

  10. Mobile P2P Web Services Using SIP

    Directory of Open Access Journals (Sweden)

    Guido Gehlen

    2007-01-01

    Full Text Available Telecommunication networks and the Internet are growing together. Peer-to-Peer (P2P services which are originally offered by network providers, like telephony and messaging, are provided through VoIP and Instant Messaging (IM by Internet service providers, too. The IP Multimedia Subsystem (IMS is the answer of the telecommunication industry to this trend and aims at providing Internet P2P and multimedia services controlled by the network operators. The IMS provides mobility and session management as well as message routing, security, and billing.

  11. High resolution-angle resolved photoemission studies of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.G.; Liu, R.; Lynch, D.W. (Ames Lab. and Dept. of Physics, Iowa State Univ. (USA)); Veal, B.W.; Chang, Y.C.; Jiang, P.Z.; Liu, J.Z.; Paulikas, A.P. (Argonne National Lab., IL (USA)); Arko, A.J.; List, R.S. (Los Alamos National Lab., NM (USA))

    1989-12-01

    Recent photoemission studies of Y 123 and Bi 2212 performed with high energy and angular resolution have provided detailed information on the nature of the states near the Fermi level. Measurements of the superconducting gap, band dispersion, and the density of states near the Fermi level in the normal state all support a Fermi liquid description of these materials. (orig.).

  12. High resolution-angle resolved photoemission studies of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Olson, C.G.; Liu, R.; Lynch, D.W.; Veal, B.W.; Chang, Y.C.; Jiang, P.Z.; Liu, J.Z.; Paulikas, A.P.; Arko, A.J.; List, R.S. (Ames Lab., IA (USA); Argonne National Lab., IL (USA); Los Alamos National Lab., NM (USA))

    1989-08-01

    Recent photoemission studies of Y 123 and Bi 2212 performed with high energy and angular resolution have provided detailed information on the nature of the states near the Fermi level. Measurements of the superconducting gap, band dispersion, and the density of states near the Fermi level in the normal state all support a Fermi liquid description of these materials. 5 refs., 4 figs.

  13. PHOTOEMISSION AS A PROBE OF THE COLLECTIVE EXCITATIONS IN CONDENSED MATTER SYSTEMS.

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, P.D.; VALLA, T.

    2006-08-01

    New developments in instrumentation have recently allowed photoemission measurements to be performed with very high energy and momentum resolution.[1] This has allowed detailed studies of the self-energy corrections to the lifetime and mass renormalization of excitations in the vicinity of the Fermi level. These developments come at an opportune time. Indeed the discovery of high temperature superconductivity in the cuprates and related systems is presenting a range of challenges for condensed matter physics.[2] Does the mechanism of high T{sub c} superconductivity represent new physics? Do we need to go beyond Landau's concept of the Fermi liquid?[3] What, if any, is the evidence for the presence or absence of quasiparticles in the excitation spectra of these complex oxides? The energy resolution of the new instruments is comparable to or better than the energy or temperature scale of superconductivity and the energy of many collective excitations. As such, photoemission has again become recognized as an important probe of condensed matter. Studies of the high T{sub c} superconductors and related materials are aided by the observation that they are two dimensional. To understand this, we note that the photoemission process results in both an excited photoelectron and a photohole in the final state. Thus the experimentally measured photoemission peak is broadened to a width reflecting contributions from both the finite lifetime of the photohole and the momentum broadening of the outgoing photoelectron.

  14. Absorption enhancement in metal nanoparticles for photoemission current for solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Novitsky, Andrey; Malureanu, Radu

    2012-01-01

    In order to improve the photoconversion efficiency, we consider the possibility of increasing the photocurrent in solar cells exploiting the electron photoemission from small metal nanoparticles into a semiconductor. The effect is caused by the absorption of photons and generation of local surfac...

  15. A vacuum photoemission detector for X-ray tomography on the ITER facility

    NARCIS (Netherlands)

    Barykov, IA; Gott, YV; Stepanenko, MM

    2004-01-01

    A vacuum photoemission detector designed for plasma tornography in X rays on the ITER facility is described. Such detectors allow X rays to be detected in the presence of intense neutron and gamma-photon fluxes. The results of tests of a prototype of this detector on a Co-60 source of gamma rays, it

  16. Hot Electron Photoemission from Plasmonic Nanoparticles: Role of Transient Absorption in Surface Mechanism

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Protsenko, Igor E.; Ikhsanov, Renat S.;

    2014-01-01

    We analyze and compare surface- and vol ume-based internal photoelectric effects from spherical nanoparticles, obtaining analytical expression s for the photoemission rate in both cases. Similar to results for a flat metal surface, one can show that the surface mechanism preva ils, since...

  17. Synchrotron photoemission study of (Zn,Co)O films with uniform Co distribution

    Energy Technology Data Exchange (ETDEWEB)

    Guziewicz, E., E-mail: guzel@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Lukasiewicz, M.I.; Wachnicki, L.; Kopalko, K. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Kovacs, A.; Dunin-Borkowski, R.E. [Center for Electron Nanoscopy, Technical University of Denmark, Lyngby 2800 (Denmark); Witkowski, B.S.; Kowalski, B.J. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Sadowski, J. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); MAX-Lab, Lund University, Box 118, SE-22100 Lund (Sweden); Sawicki, M.; Jakiela, R. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Wyszynski University, 01-815 Warsaw (Poland)

    2011-10-15

    We present results of a resonant photoemission study of (Zn,Co)O films with Co content between 2% and 7%. The films were grown by Atomic Layer Deposition (ALD) at low temperature of 160 deg. C, and show fully paramagnetic behavior. The Co ions are uniformly distributed in the ZnO matrix and are free of foreign phases and metal accumulations as indicated by TEM data. The electronic structure of (Zn,Co)O films was studied by Resonant Photoemission Spectroscopy across the Co3p-Co3d photoionization threshold. We have observed that the resonant enhancement of the photoemission intensity from the Co3d shell is not the same for samples with different cobalt content. We suggest that the Co3d contribution to the valence band depends on both Co and H content. - Highlights: > (Zn,Co)O films with uniform Co distribution were studied by Resonant Photoemission. > Resonant PES enhancement from the Co3d shell is not the same for samples with different Co contents. > Observed Co3d distributions depend on both cobalt and hydrogen content.

  18. MULTIPLET FINE-STRUCTURE IN THE PHOTOEMISSION OF THE GADOLINIUM AND TERBIUM 5P LEVELS

    NARCIS (Netherlands)

    THOLE, BT; WANG, XD; HARMON, BN; LI, DQ; DOWBEN, PA

    1993-01-01

    Fine structure is observed in the photoemission of the gadolinium and terbium 5p levels. The 5p levels are split into multiplets due to spin-orbit splitting and to Coulomb and exchange interactions with the f shell. The calculated theoretical spectra are in good agreement with the experimental resul

  19. Chemical analysis of particles and semiconductor microstructures by synchrotron radiation soft x-rays photoemission spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gozzo, F.; Triplett, B.; Fujimoto, H. [Intel Corp., Santa Clara, CA (United States). Dept. of Components Research] [and others

    1998-12-31

    Chemical analysis on a microscopic scale was performed on a TiN particle sample on silicon and on two patterned samples using a synchrotron source scanning photoemission microscope. For all the experiments, they exploit the ability, developed in the experimental system, to reach specific locations on the wafer and analyze the local chemical state.

  20. Effect of wave-function localization on the time delay in photoemission from surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.-H.; Thumm, U. [Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States)

    2011-12-15

    We investigate streaking time delays in the photoemission from a solid model surface as a function of the degree of localization of the initial-state wave functions. We consider a one-dimensional slab with lattice constant a{sub latt} of attractive Gaussian-shaped core potentials of width {sigma}. The parameter {sigma}/a{sub latt} thus controls the overlap between adjacent core potentials and localization of the electronic eigenfunctions on the lattice points. Small values of {sigma}/a{sub latt}<<1 yield lattice eigenfunctions that consist of localized atomic wave functions modulated by a ''Bloch-envelope'' function, while the eigenfunctions become delocalized for larger values of {sigma}/a{sub latt} > or approx 0.4. By numerically solving the time-dependent Schroedinger equation, we calculate photoemission spectra from which we deduce a characteristic bimodal shape of the band-averaged photoemission time delay: as the slab eigenfunctions become increasingly delocalized, the time delay quickly decreases near {sigma}/a{sub latt}=0.3 from relatively large values below {sigma}/a{sub latt}{approx}0.2 to much smaller delays above {sigma}/a{sub latt}{approx}0.4. This change in wave-function localization facilitates the interpretation of a recently measured apparent relative time delay between the photoemission from core and conduction-band levels of a tungsten surface.

  1. Correlation versus surface effects in photoemission of quasi-1D organic conductors

    DEFF Research Database (Denmark)

    Claessen, R.; Schwingenschlogl, U.; Sing, M.;

    2002-01-01

    The absence of spectral weight at the Fermi level in photoemission spectra of quasi-1D organic conductors has been interpreted as possible evidence for an unusual many-body state. We demonstrate that great care must be exercised to draw this conclusion exclusively on the basis of a pseudogap...

  2. Two-photon photoemission from a copper cathode in an X -band photoinjector

    Science.gov (United States)

    Li, H.; Limborg-Deprey, C.; Adolphsen, C.; McCormick, D.; Dunning, M.; Jobe, K.; Raubenheimer, T.; Vrielink, A.; Vecchione, T.; Wang, F.; Weathersby, S.

    2016-02-01

    This paper presents two-photon photoemission from a copper cathode in an X -band photoinjector. We experimentally verified that the electron bunch charge from photoemission out of a copper cathode scales with laser intensity (I) square for 400 nm wavelength photons. We compare this two-photon photoemission process with the single photon process at 266 nm. Despite the high reflectivity (R ) of the copper surface for 400 nm photons (R =0.48 ) and higher thermal energy of photoelectrons (two-photon at 200 nm) compared to 266 nm photoelectrons, the quantum efficiency of the two-photon photoemission process (400 nm) exceeds the single-photon process (266 nm) when the incident laser intensity is above 300 GW /cm2 . At the same laser pulse energy (E ) and other experimental conditions, emitted charge scales inversely with the laser pulse duration. A thermal emittance of 2.7 mm-mrad per mm root mean square (rms) was measured on our cathode which exceeds by sixty percent larger compared to the theoretical predictions, but this discrepancy is similar to previous experimental thermal emittance on copper cathodes with 266 nm photons. The damage of the cathode surface of our first-generation X -band gun from both rf breakdowns and laser impacts mostly explains this result. Using a 400 nm laser can substantially simplify the photoinjector system, and make it an alternative solution for compact pulsed electron sources.

  3. Synchrotron photoemission study of (Zn,Co)O films with uniform Co distribution

    DEFF Research Database (Denmark)

    Guziewicz, E.; Lukasiewicz, M. I.; Wachnicki, L.;

    2011-01-01

    We present results of a resonant photoemission study of (Zn,Co)O films with Co content between 2% and 7%. The films were grown by Atomic Layer Deposition (ALD) at low temperature of 160°C, and show fully paramagnetic behavior. The Co ions are uniformly distributed in the ZnO matrix and are free...

  4. Silane photoabsorption spectra near the Si 2p thresholds: the geometry of Si 2p excited SiH4

    Institute of Scientific and Technical Information of China (English)

    张卫华; 许如清; 李家明

    2003-01-01

    Based on the multiple-scattering self-consistent-field method, we have studied the photoabsorption spectra near the Si 2p thresholds of silane. According to our calculations, the clear assignments of the inner-shell photoabsorption spectra are provided. In comparison with the high-resolution experimental spectra, the geometric structure of the Si 2p-excited SiH4** is recommended to be of a C2v symmetry. More specifically, the Si 2p-excited Si4** have two bond lengths of 2.50 a.u. and another two bond lengths of 2.77 a.u., and the corresponding two bond angles are 104.0° and 112.5° respectively.

  5. Measurement and Analysis of P2P IPTV Program Resource

    Directory of Open Access Journals (Sweden)

    Wenxian Wang

    2014-01-01

    Full Text Available With the rapid development of P2P technology, P2P IPTV applications have received more and more attention. And program resource distribution is very important to P2P IPTV applications. In order to collect IPTV program resources, a distributed multi-protocol crawler is proposed. And the crawler has collected more than 13 million pieces of information of IPTV programs from 2009 to 2012. In addition, the distribution of IPTV programs is independent and incompact, resulting in chaos of program names, which obstructs searching and organizing programs. Thus, we focus on characteristic analysis of program resources, including the distributions of length of program names, the entropy of the character types, and hierarchy depth of programs. These analyses reveal the disorderly naming conventions of P2P IPTV programs. The analysis results can help to purify and extract useful information from chaotic names for better retrieval and accelerate automatic sorting of program and establishment of IPTV repository. In order to represent popularity of programs and to predict user behavior and popularity of hot programs over a period, we also put forward an analytical model of hot programs.

  6. P2P Domain Classification using Decision Tree

    CERN Document Server

    Ismail, Anis

    2011-01-01

    In Peer-to-Peer context, a challenging problem is how to find the appropriate peer to deal with a given query without overly consuming bandwidth? Different methods proposed routing strategies of queries taking into account the P2P network at hand. This paper considers an unstructured P2P system based on an organization of peers around Super-Peers that are connected to Super-Super- Peer according to their semantic domains; By analyzing the queries log file, a predictive model that avoids flooding queries in the P2P network is constructed after predicting the appropriate Super-Peer, and hence the peer to answer the query. A challenging problem in a schema-based Peer-to-Peer (P2P) system is how to locate peers that are relevant to a given query. In this paper, architecture, based on (Super-)Peers is proposed, focusing on query routing. The approach to be implemented, groups together (Super-)Peers that have similar interests for an efficient query routing method. In such groups, called Super-Super-Peers (SSP), Su...

  7. Comparing Pedophile Activity in Different P2P Systems

    Directory of Open Access Journals (Sweden)

    Raphaël Fournier

    2014-07-01

    Full Text Available Peer-to-peer (P2P systems are widely used to exchange content over the Internet. Knowledge of pedophile activity in such networks remains limited, despite having important social consequences. Moreover, though there are different P2P systems in use, previous academic works on this topic focused on one system at a time and their results are not directly comparable. We design a methodology for comparing KAD and eDonkey, two P2P systems among the most prominent ones and with different anonymity levels. We monitor two eDonkey servers and the KAD network during several days and record hundreds of thousands of keyword-based queries. We detect pedophile-related queries with a previously validated tool and we propose, for the first time, a large-scale comparison of pedophile activity in two different P2P systems. We conclude that there are significantly fewer pedophile queries in KAD than in eDonkey (approximately 0.09% vs. 0.25%.

  8. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation

    Science.gov (United States)

    Haerle, Rainer; Riedo, Elisa; Pasquarello, Alfredo; Baldereschi, Alfonso

    2002-01-01

    Using a combined experimental and theoretical approach, we address C 1s core-level shifts in amorphous carbon. Experimental results are obtained by x-ray photoelectron spectroscopy (XPS) and electron-energy-loss spectroscopy (EELS) on thin-film samples of different atomic density, obtained by a pulsed-laser deposition growth process. The XPS spectra are deconvoluted into two contributions, which are attributed to sp2- and sp3-hybridized atoms, respectively, separated by 0.9 eV, independent of atomic density. The sp3 hybridization content extracted from XPS is consistent with the atomic density derived from the plasmon energy in the EELS spectrum. In our theoretical study, we generate several periodic model structures of amorphous carbon of different densities applying two schemes of increasing accuracy in sequence. We first use a molecular-dynamics approach, based on an environmental-dependent tight-binding Hamiltonian to quench the systems from the liquid phase. The final model structures are then obtained by further atomic relaxation using a first-principles pseudopotential plane-wave approach within density-functional theory. Within the latter framework, we also calculate carbon 1s core-level shifts for our disordered model structures. We find that the shifts associated to threefold- and fourfold- coordinated carbon atoms give rise to two distinct peaks separated by about 1.0 eV, independent of density, in close agreement with experimental observations. This provides strong support for decomposing the XPS spectra into two peaks resulting from sp2- and sp3-hybridized atoms. Core-hole relaxations effects account for about 30% of the calculated shifts.

  9. Thermal effects on Co/Mo2C multilayer mirrors studied by soft x-ray standing wave enhanced photoemission spectroscopy

    Science.gov (United States)

    Giglia, A.; Mukherjee, S.; Mahne, N.; Nannarone, S.; Jonnard, P.; Le Guen, K.; Yuan, Y.-Y.; André, J.-M.; Wang, Z.-S.; Li, H.-C.; Zhu, J.-T.

    2013-05-01

    Here is presented the spectroscopic study of the evolution of the first buried interfaces of a B4C capped Co/Mo2C multilayer mirror induced by thermal treatment up to 600°C. This kind of study is typically performed to simulate the response of multilayer optics working in extreme conditions, as for instance when irradiated by new high brilliance sources as Free Electron Lasers. In fact, the efficiency of multilayers is related to the optical contrast between the alternating high and low density layers, and then to the degree of interdiffusion and the creation or evolution of interface compounds. The analysis has been performed at the Co L23 edge with different soft x-ray spectroscopic techniques including diffuse and specular reflectivity, total electron and fluorescent yield at the BEAR beamline at Elettra (Trieste) (http://www.elettra.trieste.it/elettra-beamlines/bear.html). The presentation is focused on the spectroscopic results obtained by soft x-ray standing wave enhanced photoemission (XSW) from the Mo 3d, B 1s, C 1s, O 1s core levels by using a photon energy close to the Co L23 edge and corresponding to the first Bragg peak of the multilayer. The experimental results have been compared with simulations to obtain information both on the chemical state (e.g. oxidation state) and interface morphology in terms of profiles of distribution of elements and interdiffusion of B, oxidized B and C in the interface region. In summary, it is possible to conclude in favour of a good stability of the multilayer in the investigated temperature range, as confirmed by the good performance in terms of reflectivity. These results confirm the usefulness of XSW for this kind analysis of multilayer optics.

  10. Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Uskov, Alexander; Gritti, Claudia;

    2014-01-01

    We model the electron photoemission frommetal nanoparticles into a semiconductor in a Schottky diode with a conductive oxide electrode hosting the nanoparticles. We show that plasmonic effects in the nanoparticles lead to a substantial enhancement in photoemission compared with devices with conti....... Such structure can form the dais of the development of plasmonic photoemission enhanced solar cells....... with continuous metal films. Optimally designed metal nanoparticles can provide an effectivemechanismfor the photon absorption in the infrared range below the semiconductor bandgap, resulting in the generation of a photocurrent in addition to the photocurrent from band-to-band absorption in a semiconductor...

  11. Theatrical distribution and P2P movie piracy: a survey of P2P networks in Hungary using transactional data

    NARCIS (Netherlands)

    Bodó, B.; Lakatos, Z.

    2012-01-01

    This article examines what appears to be the most important factor shaping file sharing: the failure of traditional cultural markets to efficiently supply the demand in the online environment. Its findings are based on tracking the traffic of movies on three Hungarian P2P networks. This dataset is t

  12. Supporting Seamless Mobility for P2P Live Streaming

    Directory of Open Access Journals (Sweden)

    Eunsam Kim

    2014-01-01

    Full Text Available With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme.

  13. Supporting seamless mobility for P2P live streaming.

    Science.gov (United States)

    Kim, Eunsam; Kim, Sangjin; Lee, Choonhwa

    2014-01-01

    With advent of various mobile devices with powerful networking and computing capabilities, the users' demand to enjoy live video streaming services such as IPTV with mobile devices has been increasing rapidly. However, it is challenging to get over the degradation of service quality due to data loss caused by the handover. Although many handover schemes were proposed at protocol layers below the application layer, they inherently suffer from data loss while the network is being disconnected during the handover. We therefore propose an efficient application-layer handover scheme to support seamless mobility for P2P live streaming. By simulation experiments, we show that the P2P live streaming system with our proposed handover scheme can improve the playback continuity significantly compared to that without our scheme.

  14. MSPnet: MANAGEABLE SIP P2P MEDIA DISTRIBUTION SYSTEM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The letter proposes a three-layer manageable media distribution network system architecture called MSPnet, which is based on Session Initiation Protocol[1] and Peer to Peer (SIP P2P)technology. MSPnet performs application-level structured DHT routing and resource location among domains and unstructured ones in domain. Except for media distribution, it can be used to support a variety of P2P applications, including video broadcasting, video on demand, VoIP, etc. MSPnet is composed of three layers, namely, the signal control layer, the management layer, and the media transportation layer. The MSPnet prototype consists of the SIP server, the management server, the media server, and the node User Agent (UA). Results from a prototype experiment in a large-scale Internet environment show that MSPnet is feasible, scalable and manageable.

  15. Mobile P2P Trusted On-Demand Video Streaming

    CERN Document Server

    Iyer, Thava; Rizvandi, Nikzad Babaii; Varghese, Benoy; Boreli, Roksana

    2012-01-01

    We propose to demonstrate a mobile server assisted P2P system for on-demand video streaming. Our proposed solution uses a combination of 3G and ad-hoc Wi-Fi connections, to enable mobile devices to download content from a centralised server in a way that minimises the 3G bandwidth use and cost. On the customised GUI, we show the corresponding reduction in 3G bandwidth achieved by increasing the number of participating mobile devices in the combined P2P and ad-hoc Wi- Fi network, while demonstrating the good video playout quality on each of the mobiles. We also demonstrate the implemented trust mechanism which enables mobiles to only use trusted adhoc connections. The system has been implemented on Android based smartphones.

  16. Fine Structure of the Upsilon 2p States.

    Science.gov (United States)

    Lovelock, Dale Michael John

    1990-01-01

    The Columbia-Stony Brook (CUSB) collaboration has measured the photon spectrum resulting from the decays Upsilon (3S)togamma + hadrons using the CUSB-II BGO calorimeter. The spectrum contains the signal from the electromagnetic transitions Upsilon (3S)togammachi _{b,J=0,1,2} (2P). From this signal the masses of the chi_{b}(2P) states were determined to be 10268.0 +/- 0.8, 10255.4 +/- 0.8, and 10233.9 +/- 1.2 MeV for the J = 2, 1, and 0 states respectively. The ratio of the mass splittings, (M_{chi _{b2}} - M_{chi_{b1}} )/(M_{chi_{b1 }} - M_ {chi_{b0}}) imply that the long range confining piece of the inter-quark potential transforms as a Lorentz scalar.

  17. Addressing the P2P Bootstrap Problem for Small Networks

    CERN Document Server

    Wolinsky, David Isaac; Boykin, P Oscar; Figueiredo, Renato

    2010-01-01

    P2P overlays provide a framework for building distributed applications consisting of few to many resources with features including self-configuration, scalability, and resilience to node failures. Such systems have been successfully adopted in large-scale services for content delivery networks, file sharing, and data storage. In small-scale systems, they can be useful to address privacy concerns and for network applications that lack dedicated servers. The bootstrap problem, finding an existing peer in the overlay, remains a challenge to enabling these services for small-scale P2P systems. In large networks, the solution to the bootstrap problem has been the use of dedicated services, though creating and maintaining these systems requires expertise and resources, which constrain their usefulness and make them unappealing for small-scale systems. This paper surveys and summarizes requirements that allow peers potentially constrained by network connectivity to bootstrap small-scale overlays through the use of e...

  18. P2P Networks with IP Based Communication

    OpenAIRE

    Anupriya Koneru; Krishna Prasad MHM

    2012-01-01

    P2P communities can be seen as truly Distributed Computing applications in which group members communicate with one another to exchange information. The authors consider security issues in Peer to Peer Networks. For secure exchange of data between the group members the authors present a cryptography protocol and an Identity mechanism which can able to check even the Trust of the Peers based on the available reputation information. The authors are encapsulating the reputations of both the prov...

  19. Significant relaxation of residual negative carrier in polar Alq3 film directly detected by high-sensitivity photoemission

    Science.gov (United States)

    Kinjo, Hiroumi; Lim, Hyunsoo; Sato, Tomoya; Noguchi, Yutaka; Nakayama, Yasuo; Ishii, Hisao

    2016-02-01

    Tris(8-hydroxyquinoline)aluminum (Alq3) has been widely applied as a good electron-injecting layer (EIL) in organic light-emitting diodes. High-sensitivity photoemission measurement revealed a clear photoemission by visible light, although its ionization energy is 5.7 eV. This unusual photoemission is ascribed to Alq3 anions captured by positive polarization charges. The observed electron detachment energy of the anion was about 1 eV larger than the electron affinity reported by inverse photoemission. This difference suggests that the injected electron in the Alq3 layer is energetically relaxed, leading to the reduction in injection barrier. This nature is one of the reasons why Alq3 worked well as the EIL.

  20. Photoemission study of CuO and Cu sub 2 O single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z. (Stanford Electronics Laboratory, Stanford University, Stanford, CA (USA)); List, R.S. (Los Alamos National Laboratory, Los Alamos, NM (USA)); Dessau, D.S. (Stanford Electronics Laboratory, Stanford University, Stanford, CA (USA)); Parmigiani, F. (IBM Almaden Research Center, San Jose, CA (USA)); Arko, A.J.; Bartlett, R. (Los Alamos National Laboratory, Los Alamos, NM (USA)); Wells, B.O.; Lindau, I.; Spicer, W.E. (Stanford Electronics Laboratory, Stanford University, Stanford, CA (USA))

    1990-11-01

    We present results of resonant-photoemission and high-resolution x-ray-photoemission-spectroscopy (XPS) studies on single-crystalline CuO, which confirms most of the earlier data obtained from polycrystalline samples. However, some minor differences with earlier results were also observed, which are concentrated on a mainly oxygen-related feature. The important first ionization state is much better resolved in our high-resolution XPS data, and is found to have both copper and oxygen orbital character. This is consistent (though not a proof) with the theoretical prediction that the first ionization state is a {sup 1}{ital A}{sub 1{ital g}} singlet with holes on both oxygen and copper sites. The 16-eV satellite is found to show a Cu antiresonance, and is assigned to a {sup 1}{ital A}{sub 1{ital g}} singlet with both holes on the copper sites.

  1. Strongly correlated electron systems: Photoemission and the single-impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Joyce, J.J.; Andrews, A.B.; Thompson, J.D.; Smith, J.L.; Mandrus, D.; Hundley, M.F.; Cornelius, A.L. [Los Alamos National Laboratories, Los Alamos, New Mexico 87545 (United States); Moshopoulou, E.; Fisk, Z. [NHMFL, Florida State University, Tallahassee, Florida 32306-4005 (United States); Canfield, P.C. [Iowa State University/Ames Laboratory, Ames, Iowa 50011 (United States); Menovsky, A. [Natuurkundig Laboratorium, University of Amsterdam, Amsterdam (The Netherlands)

    1997-09-01

    We present high-resolution, angle-resolved photoemission spectra for Ce-based and U-based strongly correlated electron systems. The experimental results are irreconcilable with the long-accepted single-impurity model, which predicts a narrow singlet state, in close proximity to the Fermi energy, whose linewidth and binding energy are a constant determined by a characteristic temperature T{sub K} for the material. We report that both 4f and 5f photoemission features disperse with crystal momentum at temperatures both above and below T{sub K}; these are characteristics consistent with narrow bands but not with the single-impurity model. Inclusion of the lattice must be considered at all temperatures. Variants of the periodic Anderson model are consistent with this approach. {copyright} {ital 1997} {ital The American Physical Society}

  2. Rb-intercalated C{sub 60} compounds studied by photoemission spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, A. [INFM - Dipartimento di Fisica, Politecnico di Milano, p.za L. da Vinci 32, I-20133 Milan (Italy)]. E-mail: alberto.brambilla@polimi.it; Giovanelli, L. [Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, I-34012 Basovizza, Trieste (Italy); Vilmercati, P. [Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, I-34012 Basovizza, Trieste (Italy); Cattoni, A. [INFM - Dipartimento di Fisica, Politecnico di Milano, p.za L. da Vinci 32, I-20133 Milan (Italy); Biagioni, P. [INFM - Dipartimento di Fisica, Politecnico di Milano, p.za L. da Vinci 32, I-20133 Milan (Italy); Goldoni, A. [Sincrotrone Trieste S.C.p.A., Strada Statale 14, Km 163.5, I-34012 Basovizza, Trieste (Italy); Finazzi, M. [INFM - Dipartimento di Fisica, Politecnico di Milano, p.za L. da Vinci 32, I-20133 Milan (Italy); Duo, L. [INFM - Dipartimento di Fisica, Politecnico di Milano, p.za L. da Vinci 32, I-20133 Milan (Italy)

    2005-06-15

    We report on a combined photoemission and inverse photoemission spectroscopy analysis on Rb{sub x}C{sub 60} compounds with different stoichiometries (0-bar x-bar 6). Apart from shifts and broadening of the spectral features associated to the different phase formed, we observe in the RbC{sub 60} phase the presence of the highest occupied molecular orbital (HOMO) shoulder and of its symmetric (with respect to the Fermi level) empty state. According to calculations, the metallicity of this phase and the presence of these electronic states may be taken as a fingerprint of the interplay between electron-electron and electron-phonon interactions in determining the electronic behavior of alkali metal fullerides.

  3. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission

    Science.gov (United States)

    Levy, Uriel; Grajower, Meir; Gonçalves, P. A. D.; Mortensen, N. Asger; Khurgin, Jacob B.

    2017-02-01

    Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene (˜π α =2.3 % ). Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond.

  4. Controlled surface neutralization: A quantitative approach to study surface charging in photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: manabendra.mukherjee@saha.ac.in

    2007-02-15

    Photons when used to probe poorly conducting materials induce emission of secondary electrons that are inadequately compensated from the sample ground giving rise to a phenomenon commonly known as sample charging. In case of photoemission spectroscopy of an insulating material the data obtained from the charged surface are accordingly distorted. Here we have used a controlled neutralization technique to obtain photoemission data from continuously varying equilibrium charging conditions from two dissimilar insulating polymeric systems. A quantitative scheme for data analysis has been developed to demonstrate systematic behavior in the apparently distorted spectra and the charging peak shift has been described by an effective model. It is shown that the neutralization responses are non-linear for both the systems and possess intrinsic similarity. Around a critical electron flux the neutralization of the samples appears to occur through the percolation of homogeneously dispersed surface domains.

  5. Effect of humid air exposure on photoemissive and structural properties of KBr thin film photocathode

    CERN Document Server

    Rai, R; Ghosh, N; Singh, B K

    2014-01-01

    We have investigated the influence of water molecule absorption on photoemissive and structural properties of potassium bromide (KBr) thin film photocathode under humid air exposure at relative humidity (RH) 65%. It is evident from photoemission measurement that the photoelectron yield of KBr photocathode is degraded exponentially with humid air exposed time. Structural studies of the "as-deposited" and "humid air aged" films reveal that there is no effect of RH on film's crystalline face centered cubic (fcc) structure. However, the average crystallite size of "humid air exposed film" KBr film has been increased as compared to "as-deposited". In addition, topographical properties of KBr film are also examined by means of scanning electron microscope (SEM), transmission electron microscope (TEM) and atomic force microscope (AFM) and it is observed that granular characteristic of film has been altered, even for short exposure to humid air.

  6. Photoemission Electron Microscopy as a tool for the investigation of optical near fields

    CERN Document Server

    Cinchetti, M; Nepjiko, S A; Sch"onhense, G; Rochholz, H; Kreiter, M

    2005-01-01

    Photoemission electron microscopy was used to image the electrons photoemitted from specially tailored Ag nanoparticles deposited on a Si substrate (with its native oxide SiO$_{x}$). Photoemission was induced by illumination with a Hg UV-lamp (photon energy cutoff $\\hbar\\omega_{UV}=5.0$ eV, wavelength $\\lambda_{UV}=250$ nm) and with a Ti:Sapphire femtosecond laser ($\\hbar\\omega_{l}=3.1$ eV, $\\lambda_{l}=400$ nm, pulse width below 200 fs), respectively. While homogeneous photoelectron emission from the metal is observed upon illumination at energies above the silver plasmon frequency, at lower photon energies the emission is localized at tips of the structure. This is interpreted as a signature of the local electrical field therefore providing a tool to map the optical near field with the resolution of emission electron microscopy.

  7. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission

    Directory of Open Access Journals (Sweden)

    Uriel Levy

    2017-02-01

    Full Text Available Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene ( ∼ π α = 2.3 % . Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond.

  8. The Complex Core Level Spectra of CeO2: An Analysis in Terms of Atomic and Charge Transfer Effects

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S; Nelin, Constance J; Ilton, Eugene S; Baron, Martin; Abbott, Heather; Primorac, Elena; Kuhlenbeck, Helmut; Shaikhutdinov, Shamil; Freund, Hans-Joachim

    2010-03-05

    We present a rigorous parameter-free theoretical treatment of the Ce 4s and 5s photoelectron spectra of CeO2. In the currently accepted model the satellite structure in the photoelectron spectra is explained in terms of a mixed valence (Ce 4f0 O 2p6, Ce 4f1 O 2p5, and Ce 4f2 O 2p4) configurations. We show that charge transfer (CT) into Ce 5d as well as configurations involving intra-atomic movement of charge must be considered in addition and compute their contributions to the spectra.

  9. RESONANT PHOTOEMISSION OF BULK CeO2 AND NANO—CeO2 FILMS

    Institute of Scientific and Technical Information of China (English)

    M.I.Abbas; K.Ibrahim; Z.Y.Wu; J.Zhang; F.Q.Liu; H.J.Qian

    2001-01-01

    Photoemission behaviors of nano-CeO2 films with parlicle sizes ranging from 8nm to 50nm and bulk CeO2 in Ce 4d-4f absorption region have been investigated.Resonant enhancements of Ce 4f valance band and Ce 5p bands for nano film and bulk material have been observed.The variation of electron density of Ce 4d-4f resonace.

  10. Random walk search in unstructured P2P

    Institute of Scientific and Technical Information of China (English)

    Jia Zhaoqing; You Jinyuan; Rao Ruonan; Li Minglu

    2006-01-01

    Unstructured P2P has power-law link distribution, and the random walk in power-law networks is analyzed. The analysis results show that the probability that a random walker walks through the high degree nodes is high in the power-law network, and the information on the high degree nodes can be easily found through random walk. Random walk spread and random walk search method (RWSS) is proposed based on the analysis result. Simulation results show that RWSS achieves high success rates at low cost and is robust to high degree node failure.

  11. Efficient Search in P2P File Sharing System

    Institute of Scientific and Technical Information of China (English)

    Xiao Bo; Jin Wei; Hou Mengshu

    2006-01-01

    A new routing algorithm of peer-to-peer file sharing system with routing indices was proposed, in which a node forwards a query to neighbors that are more likely to have answers based on its statistics. The proposed algorithm was tested by creating a P2P simulator and varying the input parameters, and was compared to the search algorithms using flooding (FLD) and random walk (RW). The result shows that with the proposed design, the queries are routed effectively, the network flows are reduced remarkably, and the peer-to-peer file sharing system gains a good expansibility.

  12. Role of 2p-2h MEC excitations in superscaling

    Energy Technology Data Exchange (ETDEWEB)

    De Pace, A. E-mail: depace@to.infn.it; Nardi, M.; Alberico, W.M.; Donnelly, T.W.; Molinari, A

    2004-09-06

    Following recent studies of inclusive electron scattering from nuclei at high energies which focused on two-nucleon emission mediated by meson-exchange currents, in this work the superscaling behavior of such contributions is investigated. Comparisons are made with existing data below the quasielastic peak where at high momentum transfers scaling of the second kind is known to be excellent and scaling of the first kind is good, in the proximity of the peak where both 1p-1h and 2p-2h contributions come into play, and above the peak where inelasticity becomes important and one finds scaling violations of the two kinds.

  13. Core-level binding-energy shifts due to end effects in polymers: A Hartree-Fock Green's-function study

    Science.gov (United States)

    Seel, M.; Ladik, J.

    1985-10-01

    Hartree-Fock Green's-function studies of end effects on the core-level structure of metallic and insulating quasi-one-dimensional model polymers reveal additional core peaks outside the bulk bands. In the metallic case, shifts to both lower (~-150 meV) and higher (~+50 meV) binding energies are observed, whereas in the insulating case, split-off peaks occur only at the lower-binding-energy side (~-150 meV). It is shown that a positive or negative net valence population alone does not determine the direction of the shift. The binding-energy changes are determined by a detailed balance between the energy loss due to a decrease in the electron-nuclear attraction and the energy gain due to a decrease in the electron-electron repulsion experienced by the core electrons of the end atoms. This can probably also explain why for some metal surfaces, shifts towards lower, and for others, shifts towards higher, binding energies are found. In the valence region of the investigated lithium chains, the ends do not produce localized end states.

  14. The Evolution of Ga and As Core Levels in the Formation of Fe/GaAs(001): A High Resolution Soft X-ray Photoelectron Spectroscopic Study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J W; Neal, J R; Shen, T H; Morton, S A; Tobin, J G; Waddill, G D; Matthew, J D; Greig, D; Hopkinson, M

    2006-12-08

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 {angstrom} results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two new As environments of metallic character; one bound to the interfacial region and another which, as confirmed by in-situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three new environments--also metallic in nature. Two of the three are interface-resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical make-up of the Fe/GaAs (001) system.

  15. The evolution of Ga and As core levels in the formation of Fe/GaAs (001):A high resolution soft x-ray photoelectron spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Jamie; Neal, James; Shen, Tiehan; Morton, Simon; Tobin, James; Waddill, George Dan; Matthew, Jim; Greig, Denis; Hopkinson, Mark

    2008-07-14

    A high resolution soft x-ray photoelectron spectroscopic study of Ga and As 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer--a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and As during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and As remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 Angstrom results in major changes in the energy distribution curves (EDCs) of both As and Ga 3d cores. Our quantitative analysis suggests the presence of two additional As environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments--also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system.

  16. Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO{sub 3}/SrTiO{sub 3} Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Eiteneer, D. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Pálsson, G.K., E-mail: gunnar.palsson@physics.uu.se [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Nemšák, S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Julich, 52425 Julich (Germany); Gray, A.X. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kaiser, A.M. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Son, J.; LeBeau, J. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Conti, G. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); and others

    2016-08-15

    Highlights: • Depth resolved electronic structure of LaNiO{sub 3}/SrTiO{sub 3} superlattices is measured. • The structure is determined by x-ray standing wave angle-resolved photoemission. • Similarity to the electronic structure of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} is discussed. - Abstract: LaNiO{sub 3} (LNO) is an intriguing member of the rare-earth nickelates in exhibiting a metal-insulator transition for a critical film thickness of about 4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such thin films also show a transition to a metallic state in superlattices with SrTiO{sub 3} (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to better understand this transition, we have studied a strained LNO/STO superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} substrate using soft x-ray standing-wave-excited angle-resolved photoemission (SWARPES), together with soft- and hard- x-ray photoemission measurements of core levels and densities-of-states valence spectra. The experimental results are compared with state-of-the-art density functional theory (DFT) calculations of band structures and densities of states. Using core-level rocking curves and x-ray optical modeling to assess the position of the standing wave, SWARPES measurements are carried out for various incidence angles and used to determine interface-specific changes in momentum-resolved electronic structure. We further show that the momentum-resolved behavior of the Ni 3d e{sub g} and t{sub 2g} states near the Fermi level, as well as those at the bottom of the valence bands, is very similar to recently published SWARPES results for a related La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} superlattice that was studied using the same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which further validates this experimental approach and our conclusions. Our

  17. Photoemission and the electronic properties of heavy fermions -- limitations of the Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J.; Arko, A.J.; Andrews, A.B. [and others

    1993-09-01

    The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show massive disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give very strong indications of core-like characteristics and compare favorable to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu{sub 2}Si{sub 2}, YbAgCu{sub 4} and YbAl{sub 3} were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl{sub 3}, the heavy fermion materials show no substantive spectroscopic differences from simple 4f levels observed in Yb metal and LuAl{sub 3}. Also, the variation with temperature of the 4f fineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work.

  18. Photoemission and the electronic properties of heavy fermions - limitations of the Kondo model

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.J. [Los Alamos Nat. Lab., NM (United States); Arko, A.J. [Los Alamos Nat. Lab., NM (United States); Andrews, A.B. [Los Alamos Nat. Lab., NM (United States); Blyth, R.I.R. [Los Alamos Nat. Lab., NM (United States); Bartlett, R.J. [Los Alamos Nat. Lab., NM (United States); Thompson, J.D. [Los Alamos Nat. Lab., NM (United States); Fisk, Z. [Los Alamos Nat. Lab., NM (United States); Riseborough, P.S. [Polytechnic Institute of New York, Department of Physics, Brooklyn, NY 11201 (United States); Canfield, P.C. [Ames Laboratory USDOE, Ames, IA 50011 (United States); Olson, C.G. [Ames Laboratory USDOE, Ames, IA 50011 (United States); Benning, P.J. [Ames Laboratory USDOE, Ames, IA 50011 (United States)

    1995-03-01

    The electronic properties of Yb-based heavy fermions have been investigated by means of high resolution synchrotron radiation photoemission and compared with predictions of the Kondo model. The Yb heavy fermion photoemission spectra show significant disagreement with the Kondo model predictions (as calculated within the Gunnarsson-Schonhammer computational method). Moreover, the Yb heavy fermion photoemission spectra give strong indications of core-like characteristics and compare favorably to purely divalent Yb metal and core-like Lu 4f levels. The heavy fermions YbCu{sub 2}Si{sub 2}, YbAgCu{sub 4} and YbAl{sub 3} were measured and shown to have lineshapes much broader and deeper in binding energy than predicted by the Kondo model. The lineshape of the bulk component of the 4f emission for these three heavy fermion materials was compared with that from Yb metal and the Lu 4f levels in LuAl{sub 3}. The heavy fermion materials show no substantive spectroscopic differences from 4f levels observed in Yb metal and LuAl{sub 3}. Also, the variation with temperature of the 4f lineshape was measured for Yb metal and clearly demonstrates that phonon broadening plays a major role in 4f level lineshape analysis and must be accounted for before considerations of correlated electron resonance effects are presumed to be at work. ((orig.)).

  19. X-ray photo-emission and energy dispersive spectroscopy of HA coated titanium

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.L.; Steinberg, A.D. [Univ. of Illinois, Chicago, IL (United States); Krauss, A.R. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    The purpose of this study was to determine the chemical composition changes of hydroxyapatite (HA) coated titanium using surface analysis (x-ray photo-emission) and bulk analysis (energy dispersive spectroscopy). The specimens examined were controls, 30 minutes and 3 hours aged specimens in distilled water or 0.2M sodium phosphate buffer (pH 7.2) at room temperature. Each x-ray photo-emission cycle consisted of 3 scans followed by argon sputtering for 10 minutes for a total of usually 20 cycles, corresponding to a sampling depth of {approximately} 1500 {angstrom}. The energy dispersive spectroscopy analysis was on a 110 by 90 {mu}m area for 500 sec. Scanning electron microscopy examination showed crystal formation (3P{sub 2}O{sub 5}*2CAO*?H{sub 2}O by energy dispersive spectroscopy analysis) on the HA coating for the specimens aged in sodium phosphate buffer. The x-ray photo-emission results indicated the oxidation effect of water on the titanium (as TiO{sub 2}) and the effect of the buffer to increase the surface concentration of phosphorous. No differences in the chemical composition were observed by energy dispersive spectroscopy analysis. The crystal growth was only observed for the sodium phosphate buffer specimens and only on the HA surface.

  20. Photoemission electron microscopy of localized surface plasmons in silver nanostructures at telecommunication wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Mårsell, Erik; Larsen, Esben W.; Arnold, Cord L.; Xu, Hongxing; Mauritsson, Johan; Mikkelsen, Anders, E-mail: anders.mikkelsen@sljus.lu.se [Department of Physics, Lund University, P.O. Box 118, 22 100 Lund (Sweden)

    2015-02-28

    We image the field enhancement at Ag nanostructures using femtosecond laser pulses with a center wavelength of 1.55 μm. Imaging is based on non-linear photoemission observed in a photoemission electron microscope (PEEM). The images are directly compared to ultra violet PEEM and scanning electron microscopy (SEM) imaging of the same structures. Further, we have carried out atomic scale scanning tunneling microscopy on the same type of Ag nanostructures and on the Au substrate. Measuring the photoelectron spectrum from individual Ag particles shows a larger contribution from higher order photoemission processes above the work function threshold than would be predicted by a fully perturbative model, consistent with recent results using shorter wavelengths. Investigating a wide selection of both Ag nanoparticles and nanowires, field enhancement is observed from 30% of the Ag nanoparticles and from none of the nanowires. No laser-induced damage is observed of the nanostructures neither during the PEEM experiments nor in subsequent SEM analysis. By direct comparison of SEM and PEEM images of the same nanostructures, we can conclude that the field enhancement is independent of the average nanostructure size and shape. Instead, we propose that the variations in observed field enhancement could originate from the wedge interface between the substrate and particles electrically connected to the substrate.

  1. Photoemission study on the formation of Mo contacts to CuInSe sub 2

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Niles, D.W.; Kazmerski, L.L. (National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)); Rioux, D.; Patel, R.; Hoechst, H. (Synchrotron Radiation Center, University of Wisconsin-Madison, 3731 Schneider Drive, Stoughton, Wisconsin 53589 (United States))

    1992-08-01

    Synchrotron radiation soft-x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the Mo/CuInSe{sub 2} interface. Mo overlayers were {ital e}-beam deposited in steps on single-crystal {ital n}-type CuInSe{sub 2} at ambient temperature. Photoemission measurements were acquired after each growth in order to observe changes in the valence-band electronic structure as well as changes in the In 4{ital d}, Se 3{ital d}, and Mo 4{ital d} core lines. Photoemission measurements on the valence-band and core lines were also obtained after annealing. The results were used to correlate the interface chemistry with the electronic structure at this interface and to directly determine the maximum possible Schottky barrier height {phi}{sub {ital b}} to be {le}0.2 eV at the Mo/CuInSe{sub 2} junction before annealing, thus showing that this contact is essentially ohmic.

  2. Photoemission-monitored x-ray standing wave studies of molecular adsorbate surface structure

    CERN Document Server

    Lee, J J

    2002-01-01

    The influence of non-dipole photoemission terms on the accuracy of photoemission-monitored NIXSW structure determinations has been studied. An experimental survey has been made of values of the incoherent dipole-quadrupole parameter as a function of energy and atomic number for the Is states of elements between carbon and chlorine inclusive. These values are compared with recent theoretical calculations. The contribution of the coherent dipole-quadrupole interference terms, whose form has been theoretically derived recently, has been experimentally measured for Is photoemission from clean Al(111). The coherent dipole-quadrupole effect is found to be small and easily corrected for, while the previously-known incoherent effect is shown to result in tolerable errors in most cases. Adsorption of methyl thiol (CH sub 3 SH) on Pt(111), followed by annealing to approx 220 K is believed to result in the formation of methyl thiolate (-SCH sub 3). Two structural models are consistent with NIXSW data presented here: co-...

  3. Observation by resonant angle-resolved photoemission of a critical thickness for 2-dimensional electron gas formation in SrTiO{sub 3} embedded in GdTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nemšák, S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany); Conti, G.; Palsson, G. K.; Conlon, C.; Fadley, C. S. [Department of Physics, University of California, 1 Shields Ave, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States); Cho, S.; Rault, J. E.; Avila, J.; Asensio, M.-C. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, 91192 Gif sur Yvette Cedex (France); Jackson, C. A.; Moetakef, P.; Janotti, A.; Bjaalie, L.; Himmetoglu, B.; Van de Walle, C. G.; Stemmer, S. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States); Balents, L. [Department of Physics, University of California, Santa Barbara, California 93106-9530 (United States); Schneider, C. M. [Peter-Grünberg-Institut PGI-6, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2015-12-07

    For certain conditions of layer thickness, the interface between GdTiO{sub 3} (GTO) and SrTiO{sub 3} (STO) in multilayer samples has been found to form a two-dimensional electron gas (2DEG) with very interesting properties including high mobilities and ferromagnetism. We have here studied two trilayer samples of the form [2 nm GTO/1.0 or 1.5 unit cells STO/10 nm GTO] as grown on (001) (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7}, with the STO layer thicknesses being at what has been suggested is the critical thickness for 2DEG formation. We have studied these with Ti-resonant angle-resolved and angle-integrated photoemission and find that the spectral feature in the spectra associated with the 2DEG is present in the 1.5 unit cell sample, but not in the 1.0 unit cell sample. We also observe through core-level spectra additional states in Ti and Sr, with the strength of a low-binding-energy state for Sr being associated with the appearance of the 2DEG, and we suggest it to have an origin in final-state core-hole screening.

  4. Room temperature redox reaction by oxide ion migration at carbon/Gd-doped CeO2 heterointerface probed by an in situ hard x-ray photoemission and soft x-ray absorption spectroscopies

    Directory of Open Access Journals (Sweden)

    Takashi Tsuchiya, Shogo Miyoshi, Yoshiyuki Yamashita, Hideki Yoshikawa, Kazuya Terabe, Keisuke Kobayashi and Shu Yamaguchi

    2013-01-01

    Full Text Available In situ hard x-ray photoemission spectroscopy (HX-PES and soft x-ray absorption spectroscopy (SX-XAS have been employed to investigate a local redox reaction at the carbon/Gd-doped CeO2 (GDC thin film heterointerface under applied dc bias. In HX-PES, Ce3d and O1s core levels show a parallel chemical shift as large as 3.2 eV, corresponding to the redox window where ionic conductivity is predominant. The window width is equal to the energy gap between donor and acceptor levels of the GDC electrolyte. The Ce M-edge SX-XAS spectra also show a considerable increase of Ce3+ satellite peak intensity, corresponding to electrochemical reduction by oxide ion migration. In addition to the reversible redox reaction, two distinct phenomena by the electrochemical transport of oxide ions are observed as an irreversible reduction of the entire oxide film by O2 evolution from the GDC film to the gas phase, as well as a vigorous precipitation of oxygen gas at the bottom electrode to lift off the GDC film. These in situ spectroscopic observations describe well the electrochemical polarization behavior of a metal/GDC/metal capacitor-like two-electrode cell at room temperature.

  5. High temperature thermal stability investigations of ammonium sulphide passivated InGaAs and interface formation with Al{sub 2}O{sub 3} studied by synchrotron radiation based photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit, E-mail: lalit.chauhan2@mail.dcu.ie [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland); Gajula, Durga Rao; McNeill, David [School of Electronics, Electrical Engineering and Computer Science, Queen' s University Belfast (United Kingdom); Hughes, Greg [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2014-10-30

    Highlights: • Sulphur passivation is effective at removing the native oxides from InGaAs surface. • A 700°C anneal of the sulphur passivated surface at leads to the loss of indium. • A 1 nm Al2O3 layer improves the thermal stability of the sulphur passivated InGaAs. - Abstract: High resolution synchrotron radiation core level photoemission measurements have been used to undertake a comparative study of the high temperature thermal stability of the ammonium sulphide passivated InGaAs surface and the same surface following the atomic layer deposition (ALD) of an ultrathin (∼1 nm) Al{sub 2}O{sub 3} layer. The solution based ex situ sulphur passivation was found to be effective at removing a significant amount of the native oxides and protecting the surface against re-oxidation upon air exposure. The residual interfacial oxides which form between sulphur passivated InGaAs and the ultrathin Al{sub 2}O{sub 3} layer can be substantially removed at high temperature (up to 700°C) without impacting on the InGaAs stoichiometry while significant loss of indium was recorded at this temperature on the uncovered sulphur passivated InGaAs surface.

  6. Supporting Personal Semantic Annotations in P2P Semantic Wikis

    Science.gov (United States)

    Torres, Diego; Skaf-Molli, Hala; Díaz, Alicia; Molli, Pascal

    In this paper, we propose to extend Peer-to-Peer Semantic Wikis with personal semantic annotations. Semantic Wikis are one of the most successful Semantic Web applications. In semantic wikis, wikis pages are annotated with semantic data to facilitate the navigation, information retrieving and ontology emerging. Semantic data represents the shared knowledge base which describes the common understanding of the community. However, in a collaborative knowledge building process the knowledge is basically created by individuals who are involved in a social process. Therefore, it is fundamental to support personal knowledge building in a differentiated way. Currently there are no available semantic wikis that support both personal and shared understandings. In order to overcome this problem, we propose a P2P collaborative knowledge building process and extend semantic wikis with personal annotations facilities to express personal understanding. In this paper, we detail the personal semantic annotation model and show its implementation in P2P semantic wikis. We also detail an evaluation study which shows that personal annotations demand less cognitive efforts than semantic data and are very useful to enrich the shared knowledge base.

  7. Photoemission from real iron surfaces and its relationship to light penetration of the overlayer

    Science.gov (United States)

    Momose, Yoshihiro; Suzuki, Daisuke; Sakurai, Takao; Nakayama, Keiji

    2015-02-01

    We report the photoemission from real iron surfaces at elevated temperatures, called thermally assisted photoemission (TAPE), and its relationship to the X-ray photoelectron spectroscopy (XPS) results. TAPE measurements were carried out using a Geiger counter under a gaseous atmosphere of He containing 1 % isobutane vapor at normal atmospheric pressure. A sample was initially heated to temperatures ranging from 25 to 353 °C under light irradiation at a certain wavelength of 200, 210, 220, and 230 nm, and then, wavelength was scanned from 300 to 170 nm at the final temperature. The values of a constant related to electron photoemission probability, αA, where A is identical with the Richardson constant, and photothreshold (photoelectric work function), ϕ, were obtained from a plot of the square root of the electron photoemission intensity against the photon energy; the αA values increased with temperature, and the ϕ values also increased with temperature. From the Arrhenius plot, the αA was found to have an activation energy Δ E αA = 0.096 eV. The activation energies of the surface oxygen component ratio Z = O2-/(OH + O2-) and the surface elemental composition ratio X = Fe/(O + N + C + Fe) obtained from the XPS data were also determined from their Arrhenius plots: Δ E Z = 0.113 eV and Δ E X = 0.039 eV, respectively. From a close resemblance between the latter activation energies and those of the Δ E αA and the Δ E a = 0.112-0.040 eV for the quantum yields (Momose et al. in Appl Phys A. doi: 10.1007/s00339-014-8589-7, 2014), it was found that the increase in the intensity of the TAPE with temperature was strongly associated with the increase in the values of Z and X with temperature. It was therefore concluded that the ability of the surface overlayer to pass the incident light became a rate-determining step to start the photoemission, which was decisively controlled by the temperature-dependent surface oxygen components and surface compositions. The

  8. Many-electron interactions and first-principles studies of spectral functions: spin multiplets and plasmon satellites in photoemission spectra

    Science.gov (United States)

    Lischner, Johannes

    2013-03-01

    The photoemission spectrum of an interacting system is often simply thought to be qualitatively similar to the corresponding non-interacting system: interactions only cause a shift and a broadening of the quasiparticle peak and result in a transfer of spectral weight into an incoherent background. We discuss two cases where this simple quasiparticle picture of photoemission fails and interactions result in a more drastic, qualitative difference from the non-interacting system. For electronic systems with unfilled shells, the coupling of angular momenta results in a multiplet structure in the photoemission spectrum. We describe how accurate calculations of multiplet splittings are possible within the GW approximation and present results for several magnetic molecules and defects, such as the negatively charged nitrogen-vacancy defect (NV-) center in diamond. We also discuss plasmon satellite structures in photoemission spectra. We show for bulk silicon and doped graphene that the ab initioGW approximation overestimates the quasiparticle-satellite separation significantly and falsely predicts a plasmaron excitation. By including significant vertex corrections via the ab initioGW +cumulant approximation, we improve the description of plasmon satellites and find good agreement with experimental photoemission spectra. The work was supported by NSF grant No. DMR10-1006184 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided NERSC and NICS.

  9. Automated angle-scanning photoemission end-station with molecular beam epitaxy at KEK-PF BL-1C

    CERN Document Server

    Ono, K; Horiba, K; Oh, J H; Nakazono, S; Kihara, T; Nakamura, K; Mano, T; Mizuguchi, M; Oshima, M; Aiura, Y; Kakizaki, A

    2001-01-01

    In order to satisfy demands to study the electronic structure of quantum nanostructures, a VUV beamline and a high-resolution and high-throughput photoemission end-station combined with a molecular beam epitaxy (MBE) system have been constructed at the BL-1C of the Photon Factory. An angle-resolved photoemission spectrometer, having high energy- and angular-resolutions; VG Microtech ARUPS10, was installed. The total energy resolution of 31 meV at the 60 eV of photon energy is achieved. For the automated angle-scanning photoemission, the electron spectrometer mounted on a two-axis goniometer can be rotated in vacuum by the computer-controlled stepping motors. Another distinctive feature of this end-station is a connection to a MBE chamber in ultahigh vacuum (UHV). In this system, MBE-grown samples can be transferred into the photoemission chamber without breaking UHV. Photoemission spectra of MBE-grown GaAs(0 0 1) surfaces were measured with high-resolution and bulk and surface components are clearly resolved.

  10. Peer behavior based proactive P2P worm detection%基于节点行为的主动 P2P 蠕虫检测

    Institute of Scientific and Technical Information of China (English)

    朱晖; 李伟华; 史豪斌

    2013-01-01

    Proactive P2P worm propagation is a serious security threat to P2P network and Internet. By researching the peer be-havior of propagating proactive P2P worm, this paper puts forward PBD(Peer Behavior based Detection)to detect proactive P2P worm. On this basis, it designs and implements a PPWDS(Proactive P2P Worm Detection System). This system adopts CUSUM algorithm to carry out real time monitoring to the outbound short link of P2P peers. Experiments show that PBD is an effective method of proactive P2P worm detect.%  主动 P2P 蠕虫的传播会对 P2P 网络以及互联网的安全造成严重威胁。通过研究主动 P2P 蠕虫传播时节点行为,提出一种基于节点行为的主动 P2P 蠕虫检测方法 PBD(Peer Behavior based Detection)。在此基础上设计和实现了一个主动 P2P 蠕虫检测系统 PPWDS(Proactive P2P Worm Detection System),该系统采用 CUSUM 算法对 P2P 节点出站短连接进行实时监控。实验表明,PBD 是检测主动 P2P 蠕虫的一种有效方法。

  11. An Effective Calculation of Reputation in P2P Networks

    Directory of Open Access Journals (Sweden)

    RVVSV Prasad

    2009-07-01

    Full Text Available With the advent of sophisticated networking technologies and the related applications, more and more computers are getting hooked to the Internet. This is mainly for utilizing several services ranging from information sharing to electronic transactions. P2P networks which allow decentralized systems, have posed problems related to trust when transactions have to be carried out. Current literature proposes several solutions for trust management and reputation computation. The solutions base their assessment of reputations on the number of successful transactions or on the similarity of the feedbacks. There are some concerns in the feedback ratings if we are not considering the issues like number of transactions, frequency of transactions with the same peer and different peers, age of transaction, how frequently a given peer attends a common vendor, and the number of common vendors between the pairs. This paper puts forward a reputation computation system addressing these concerns. It implicitly allows detection of malicious peers. It also incorporates a corrective mechanism, if the feedbacks are from more number of malicious peers. The implementations and the results that support our claims are also presented.

  12. Survey on Distributed Data Mining in P2P Networks

    CERN Document Server

    T, Rekha Sunny

    2012-01-01

    The exponential increase of availability of digital data and the necessity to process it in business and scientific fields has literally forced upon us the need to analyze and mine useful knowledge from it. Traditionally data mining has used a data warehousing model of gathering all data into a central site, and then running an algorithm upon that data. Such a centralized approach is fundamentally inappropriate due to many reasons like huge amount of data, infeasibility to centralize data stored at multiple sites, bandwidth limitation and privacy concerns. To solve these problems, Distributed Data Mining (DDM) has emerged as a hot research area. Careful attention in the usage of distributed resources of data, computing, communication, and human factors in a near optimal fashion are paid by distributed data mining. DDM is gaining attention in peer-to-peer (P2P) systems which are emerging as a choice of solution for applications such as file sharing, collaborative movie and song scoring, electronic commerce, an...

  13. Soft X-ray photoemission spectroscopy of selected neurotransmitters in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Maris, Assimo; Melandri, Sonia; Evangelisti, Luca; Caminati, Walther [Dipartimento di Chimica ' G. Ciamician' dell' Universita, Via Selmi 2, I-40126 Bologna (Italy); Giuliano, Barbara M. [Departamento de Quimica da Universidade de Coimbra, 3004-535 Coimbra (Portugal); Plekan, Oksana [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); Feyer, Vitaliy [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); Electronic Properties (PGI-6), Peter Gruenberg Institute, Forschungszentrum Juelich GmbH, Leo-Brandt-Strasse, 52428 Juelich (Germany); Richter, Robert [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); Coreno, Marcello [CNR-IMIP, Montelibretti, I-00016 Rome (Italy); Prince, Kevin C., E-mail: kevin.prince@elettra.trieste.it [Sincrotrone Trieste, in Area Science Park, I-34149 Basovizza, Trieste (Italy); CNR-IOM, Laboratorio TASC, I-34149 Basovizza, Trieste (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Neurotransmitter molecules. Black-Right-Pointing-Pointer Photoelectron spectroscopy. Black-Right-Pointing-Pointer Electronic structure. Black-Right-Pointing-Pointer Weak hydrogen bonding. -- Abstract: The valence molecular orbitals and core levels of tyramine, tryptamine and tryptophol in the gas phase have been studied using X-ray photoelectron spectroscopy (XPS) and theoretical methods. The energies of the outer valence region spectrum are found to be in agreement with previously reported He I spectra, while new data on the inner valence molecular orbitals are reported. The structures in the carbon, nitrogen and oxygen core level spectra of these molecules have been identified and assigned. These compounds are characterised by conformers with hydrogen bonding in which the {pi} systems of the phenol and indole groups act as hydrogen acceptors, but a spectroscopic signature of this hydrogen bond was not observed. This is in contrast with our previous spectra of amino acids, where conformers with specific hydrogen bonding showed strong effects in core level spectra. We attribute the difference to the weaker strength of the {pi}-hydrogen bonding.

  14. A photoemission study of benzotriazole on clean copper and cuprous oxide

    Science.gov (United States)

    Fang, Bo-Shung; Olson, Clifford G.; Lynch, David W.

    1986-11-01

    Photoemission spectra of benzotriazole (BTA) chemisorbed on clean Cu and on cuprous oxide were compared with the spectra of condensed- and gas-phase BTA. Chemisorbed BTA bonds to both Cu and Cu 2O via lone-pair orbitais on the nitrogen ring. The lack of a chemical shift for the π- orbitais indicates that BTA does not lie flat on the surface. We propose a model for the geometry and bonding of chemisorbed BTA which accounts for its corrosion inhibition on Cu, and for the corrosion inhibition, or lack of inhibition, by molecules similar to BTA.

  15. Doppler effect in resonant photoemission from SF6: correlation between Doppler profile and Auger emission anisotropy.

    Science.gov (United States)

    Kitajima, M; Ueda, K; De Fanis, A; Furuta, T; Shindo, H; Tanaka, H; Okada, K; Feifel, R; Sorensen, S L; Gel'mukhanov, F; Baev, A; Agren, H

    2003-11-21

    Fragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame. The Auger anisotropy extracted from the data decreases with an increase in the F-SF5 internuclear distance.

  16. Two-photon Photo-emission of Ultrathin Film PTCDA Morphologies on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aram; Yang, Aram; Shipman, Steven T.; Garrett-Roe, Sean; Johns, James; Strader, Matt; Szymanski, Paul; Muller, Eric; Harris, Charles B.

    2007-11-29

    Morphology- and layer-dependent electronic structure and dynamics at the PTCDA/Ag(111) interface have been studied with angle-resolved two-photon photoemission. In Stranski-Krastanov growth modes, the exposed wetting layer inhibited the evolution of the vacuum level and valence band to bulk values. For layer-by-layer growth, we observed the transition of electron structure from monolayer to bulk values within eight monolayers. Effective masses and lifetimes of the conduction band and the n=1 image potential state were measured to be larger for disordered layers. The effective mass was interpreted in the context of charge mobility measurements.

  17. Imaging of 5f densities of states in resonant photoemission measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Koelling, D.D.; Capasso, C.; del Giudice, M.; Olson, C.G.

    1988-07-15

    Medium-resolution spectra (..delta..E = 0.25 eV) at the 5f Fano resonance in uranium intermetallics are compared to spectra above and below the resonance region to show that the 5f (and 6d) spectral weight obtained from resonant photoemission (RP) compares well to the 5f spectral weight obtained at other photon energies. In well-hybridized systems, the 5f signal from RP gives an excellent representation of the 5f density of states (DOS). In narrow-band and localized systems, a satellite may appear in addition to 5f DOS-like structure, indicative of correlation effects.

  18. RESONANT PHOTOEMISSION OF BULK CeO2 AND NANO-CeO2 FILMS

    Institute of Scientific and Technical Information of China (English)

    M.I. Abbas; K. Ibrahim; Z.Y. Wu; J. Zhang; F.Q. Liu; H.J. Qian

    2001-01-01

    Photoemission behaviors of nano-CeO2 films with particle sizes ranging from 8nm 1o50nm and bulk CeO2 in Ce 4d-4f absorption region have been investigated. Resonantenhancements of Ce 4f valance band and Ce 5p bands for nano film and bulk materialhave been observed. The variation of electron density of states in valance bands ofnano and bulk structures of CeO2 is discussed in terms of Ce 4d-4f resonance.

  19. Electron attachment rate constant measurement by photoemission electron attachment ion mobility spectrometry (PE-EA-IMS)

    Science.gov (United States)

    Su, Desheng; Niu, Wenqi; Liu, Sheng; Shen, Chengyin; Huang, Chaoqun; Wang, Hongmei; Jiang, Haihe; Chu, Yannan

    2012-12-01

    Photoemission electron attachment ion mobility spectrometry (PE-EA-IMS), with a source of photoelectrons induced by vacuum ultraviolet radiation on a metal surface, has been developed to study electron attachment reaction at atmospheric pressure using nitrogen as the buffer gas. Based on the negative ion mobility spectra, the rate constants for electron attachment to tetrachloromethane and chloroform were measured at ambient temperature as a function of the average electron energy in the range from 0.29 to 0.96 eV. The experimental results are in good agreement with the data reported in the literature.

  20. Standing-wave excited soft x-ray photoemission microscopy: application to Co microdot magnetic arrays

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Alexander; Kronast, Florian; Papp, Christian; Yang, See-Hun; Cramm, Stefan; Krug, Ingo P.; Salmassi, Farhad; Gullikson, Eric M.; Hilken, Dawn L.; Anderson, Erik H.; Fischer, Peter; Durr, Hermann A.; Schneider, Claus M.; Fadley, Charles S.

    2010-10-29

    We demonstrate the addition of depth resolution to the usual two-dimensional images in photoelectron emission microscopy (PEEM), with application to a square array of circular magnetic Co microdots. The method is based on excitation with soft x-ray standing-waves generated by Bragg reflection from a multilayer mirror substrate. Standing wave is moved vertically through sample simply by varying the photon energy around the Bragg condition. Depth-resolved PEEM images were obtained for all of the observed elements. Photoemission intensities as functions of photon energy were compared to x-ray optical calculations in order to quantitatively derive the depth-resolved film structure of the sample.

  1. Photoemission studies of Mg and Rb layers on Zn(0 0 0 1)

    Energy Technology Data Exchange (ETDEWEB)

    Suchodolskis, A. E-mail: suchy@uj.pfi.lt; Karpus, V.; Kanski, J.; Ilver, L.; Goethelid, M.; Karlsson, U.O

    2004-07-01

    The electronic structure of the clean Zn(0 0 0 1) surface is studied by angle resolved photoemission. An earlier detected surface state at the surface Brillouin zone centre is confirmed and a new surface state is found at the surface Brilluoin zone boundary. The surface electronic structure of Zn is found to be similar to the that of Cd. Evaporation of thin films of Mg and Rb onto the Zn(0 0 0 1) surface quenches the emission from both surface states and reduces the intensity of the bulk related structures.

  2. Direct observation of the mass renormalization in SrVO3 by angle resolved photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, t.

    2010-05-03

    We have performed an angle-resolved photoemission study of the three-dimensional perovskite-type SrVO{sub 3}. Observed spectral weight distribution of the coherent part in the momentum space shows cylindrical Fermi surfaces consisting of the V 3d t{sub 2g} orbitals as predicted by local-density approximation (LDA) band-structure calculation. The observed energy dispersion shows a moderately enhanced effective mass compared to the LDA results, corresponding to the effective mass enhancement seen in the thermodynamic properties. Contributions from the bulk and surface electronic structures to the observed spectra are discussed based on model calculations.

  3. Vacancy formation in MoO3: hybrid density functional theory and photoemission experiments

    KAUST Repository

    Salawu, Omotayo Akande

    2016-09-29

    Molybdenum oxide (MoO3) is an important material that is being considered for numerous technological applications, including catalysis and electrochromism. In the present study, we apply hybrid density functional theory to investigate O and Mo vacancies in the orthorhombic phase. We determine the vacancy formation energies of different defect sites as functions of the electron chemical potential, addressing different charge states. In addition, we investigate the consequences of defects for the material properties. Ultraviolet photoemission spectroscopy is employed to study the valence band of stoichiometric and O defective MoO3. We show that O vacancies result in occupied in-gap states.

  4. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments.

    Science.gov (United States)

    Boschini, F; Hedayat, H; Dallera, C; Farinello, P; Manzoni, C; Magrez, A; Berger, H; Cerullo, G; Carpene, E

    2014-12-01

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  5. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boschini, F.; Hedayat, H.; Dallera, C.; Cerullo, G. [Dipartimento di Fisica, Politecnico di Milano, 20133 Milan (Italy); Farinello, P. [Dipartimento di Ingegneria Industriale e dell' Informazione, Università di Pavia, 27100 Pavia (Italy); Manzoni, C.; Carpene, E., E-mail: ettore.carpene@polimi.it [IFN-CNR Dipartimento di Fisica, Politecnico di Milano, 20133 Milan (Italy); Magrez, A.; Berger, H. [Institute of Condensed Matter Physics (ICMP), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2014-12-15

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  6. Whispering gallery mode photoemission from self-assembled poly-para-phenylenevinylene microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Kushida, Soh; Yamamoto, Yohei [Division of Materials Science and Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Braam, Daniel; Lorke, Axel [Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, Duisburg, D-47048 (Germany)

    2015-12-31

    Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMOPPV) self-assembles to form well-defined spheres with several micrometers in diameter upon addition of a methanol vapor into a chloroform solution of MDMOPPV. The single sphere of MDMOPPV with 5.7 µm diameter exhibits whispering gallery mode (WGM) photoemission upon excitation with focused laser beam. The periodic emission lines are characterized by transverse electric and magnetic WGMs, and Q-factor reaches ∼345 at the highest.

  7. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum's magnetosome chains.

    Science.gov (United States)

    Keutner, Christoph; von Bohlen, Alex; Berges, Ulf; Espeter, Philipp; Schneider, Claus M; Westphal, Carsten

    2014-10-01

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  8. Interference of spin states in photoemission from Sb/Ag(111) surface alloys

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Fabian; Osterwalder, Juerg; Hugo Dil, J [Physik-Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Petrov, Vladimir [St Petersburg Polytechnical University, 29 Polytechnicheskaya Street, 195251 St Petersburg (Russian Federation); Mirhosseini, Hossein; Henk, Juergen [Max-Planck-Institut fuer Mikrostrukturphysik, D-06120 Halle (Saale) (Germany); Patthey, Luc, E-mail: jan-hugo.dil@psi.ch [Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen (Switzerland)

    2011-02-23

    Using a three-dimensional spin polarimeter we have gathered evidence for the interference of spin states in photoemission from the surface alloy Sb/Ag(111). This system features a small Rashba-type spin splitting of a size comparable to the momentum broadening of the quasiparticles, thus causing an intrinsic overlap between states with orthogonal spinors. Besides a small spin polarization caused by the spin splitting, we observe a large spin polarization component in the plane normal to the quantization axis of the Rashba effect. Strongly suggestive of coherent spin rotation, this effect is largely independent of the photon energy and photon polarization. (fast track communication)

  9. Inverse-photoemission spectroscopy of GaSe and InSe

    Science.gov (United States)

    Sporken, R.; Hafsi, R.; Coletti, F.; Debever, J. M.; Thiry, P. A.; Chevy, A.

    1994-04-01

    The lamellar semiconductors GaSe and InSe have been studied with k-resolved inverse-photoemission spectroscopy along two major symmetry directions (Γ¯ K¯ and Γ¯ M¯) of the surface Brillouin zone. Three bands with well-resolved features are observed from which the dispersion of the conduction bands can be determined with good precision. The minimum of the conduction band is found at M¯ in GaSe and at Γ¯ in InSe. These results are compared with theoretical studies using pseudopotential and tight-binding calculations.

  10. Simple surface structure determination from Fourier transforms of angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)

    1995-02-01

    The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.

  11. Laser-excited photoemission spectroscopy study of superconducting boron-doped diamond

    Directory of Open Access Journals (Sweden)

    K. Ishizaka, R. Eguchi, S. Tsuda, T. Kiss, T. Shimojima, T. Yokoya, S. Shin, T. Togashi, S. Watanabe, C.-T. Chen, C.Q. Zhang, Y. Takano, M. Nagao, I. Sakaguchi, T. Takenouchi and H. Kawarada

    2006-01-01

    Full Text Available We have investigated the low-energy electronic state of boron-doped diamond thin film by the laser-excited photoemission spectroscopy. A clear Fermi-edge is observed for samples doped above the semiconductor–metal boundary, together with the characteristic structures at 150×n meV possibly due to the strong electron–lattice coupling effect. In addition, for the superconducting sample, we observed a shift of the leading edge below Tc indicative of a superconducting gap opening. We discuss the electron–lattice coupling and the superconductivity in doped diamond.

  12. Photoemission from single-crystal EuBa/sub 2/Cu/sub 3/O/sub 6+x/ cleaved below 20K: Metallic-to-insulating surface transformation

    Energy Technology Data Exchange (ETDEWEB)

    List, R.S.; Arko, A.J.; Fisk, Z.; Cheong, S.W.; Conradson, S.D.; Thompson, J.D.; Pierce, C.B.; Peterson, D.E.; Bartlett, R.J.; O' Rourke, J.A.

    1988-01-01

    Valence band ultraviolet photoemission spectra (UPS) of single-crystal EuBa/sub 2/Cu/sub 3/O/sub 6+x/ (x > 0.6) samples cleaved in vacuum at 20 K demonstrate that the metallic superconducting phase undergoes an irreversible transformation via near-surface oxygen loss to an insulating state upon annealing above 50 K. Freshly cleaved surfaces at 20 K exhibit a density of states at the Fermi level comparable to that of copper, and have both O(2p) and Cu(3d) character at E/sub F/ based on the photon energy dependence of the intensity. Reasonably good agreement between band structure calculations and the present data would suggest theoretical models using the band state as a starting point. 18 refs., 2 figs.

  13. THEORETICAL DEPENDENCE OF LONG WAVELENGTH PHOTOEMISSION UPON THE SIZE OF Ag NANOPARTICLES EMBEDDED IN BaO SEMICONDUCTOR THIN FILM

    Institute of Scientific and Technical Information of China (English)

    杨海; 蔡武德; 许北雪; 吴锦雷

    2001-01-01

    The dependence of long wavelength photoemission upon the size of Ag nanoparticles embedded in a BaO semicon- ductor is predicted and discussed theoretically. The calculated results show that the increase in the diameter of the Ag nanoparticle, in the range from 1.5 to 37.0nm, leads to the emergence of a roughly Gaussian form of the photoemission spectra and the peaks become markedly narrower. The results also show that the increase in the diameter of the Agnanoparticle leads to the decrease of the long wavelength threshold. The incident light wavelength corresponding to the peak value of the photoemission gets bigger with the increase of the size of Ag nanoparticles, thus showing a redshift.

  14. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  15. A fermi liquid electric structure and the nature of the carriers in high-T/sub c/ cuprates: A photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Fisk, Z.; Thompson, J.D.; Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C.; Veal, B.W.; Liu, J.Z.; Paulikas, A.P.; Vandervoort, K.; Claus, H.; Campuzano, J.C.; Schirber, J.E.; Shinn, N.D.

    1989-01-01

    We have performed angle-integrated and angle-resolved photoemission measurements at 20 K on well-characterized single crystals of high-T/sub c/ cuprates (both 1:2:3-type and 2:2:1:2-type) cleaved in situ, and find a relatively large, resolution limited Fermi edge which shows large amplitude variations with photon energy, indicative of band structure final state effects. The lineshapes of the spectra of the 1:2:3 materials as a function of photon energy are well reproduced by band structure predictions, indicating a correct mix of 2p and 3d orbitals on the calculations, while the energy positions of the peaks agree with calculated bands only to within /approx/0.5 eV. This may yet prove to reflect the effects of Coulomb correlation. We nevertheless conclude that a Fermi liquid approach to conductivity is appropriate. Angle-resolved data, while still incomplete, suggest agreement with the Fermi surface predicted by the LDA calculations. A BCS-like energy gap is observed in the 2:2:1:2 materials, whose magnitude is twice the weak coupling BCS value (i.e., 2/Delta/ = 7 KT/sub c/). 49 refs., 11 figs.

  16. Theoretical studies of energy photoemission spectra (XPS) of S and SO sub 2 adsorbed on Ni clusters by Hartree-Fock method

    CERN Document Server

    Martínez, E; Rincon, L

    2002-01-01

    Theoretical results of photoemission energy spectral of the atomic sulfur and of the SO sub 2 molecule, adsorbed over surfaces of Ni(110) and Ni(l l l) clusters, are reported in this work. Clusters with 11, 13, 15 and 17 atoms of Ni were used for the model. The calculations were done by Hartree-Fock method, and basis sets of type STO-NG and p-q1G (p3,6; q= 2,3; N= 3,6) were used. The ionization potentials (IP) were interpreted within the Koopmans Theorem. The results obtained for the IP of 1s, 2s and 2p orbitals are 2472.03 eV, 238.14 eV and 173.55 eV, respectively; while for the same orbitals of the sulfur in SO sub 2 these values are 2481.30 eV, 246.61 eV and 182.17 eV. The theoretical results were compared with experimental results reported in the references, and the error ranges are between 5 eV and 30 eV, in agreement with the standard for the Hartree-Fock method. (Author)

  17. Experimental investigation of the electronic structure of Gd5Ge2Si2 by photoemission and x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Bondino, F.; Brinkman, A.; Zangrando, M.; Carbone, F.; Marel, van der D.; Schlagel, D.L.; Lograsso, T.A.; Gschneider Jr., K.A.; Pecharsky, V.K.; Parmigiani, F.

    2007-01-01

    The electronic structure of the magnetic refrigerant Gd5Ge2Si2 has been experimentally investigated by photoemission and x-ray absorption spectroscopy. The resonant photoemission and x-ray absorption measurements performed across the Gd N4,5 and Gd M4,5 edges identify the position of Gd 4f multiplet

  18. Photoemission study of CdS heterojunction formation with binary selenide semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    1995-11-01

    Synchrotron radiation soft x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the CdS/Cu{sub 2{minus}{ital x}}Se and CdS/In{sub 6}Se{sub 7} heterojunction interfaces. Cu{sub 2{minus}{ital x}}Se and In{sub 6}Se{sub 7} layers were deposited on GaAs (100) by physical vapor deposition from Cu{sub 2}Se and In{sub 2}Se{sub 3} sources. CdS overlayers were then deposited {ital in} {ital situ}, at room temperature, in steps on these layers. Photoemission measurements were acquired after each growth to observe changes in the valence-band electronic structure and changes in the In4{ital d} and Cd4{ital d} core lines. The results were used to correlate the interfacial chemistry with the electronic structure and to directly determine the CdS/Cu{sub 2{minus}{ital x}}Se and CdS/In{sub 6}Se{sub 7} heterojunction valence-band discontinuities and the consequent heterojunction band diagrams. These results are compared to the valence-band offset ({Delta}{ital E}{sub {ital v}}) for the CdS/CuInSe{sub 2} heterojunction interface.

  19. Synchrotron-radiation photoemission study of CdS/CuInSe sub 2 heterojunction formation

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A.J.; Gebhard, S. (Solar Energy Research Institute, 1617 Cole Boulevard, Golden, CO (USA)); Rockett, A. (Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL (USA)); Colavita, E. (Department of Physics, University of Calabria, I-87036 Arcavacata di Rende, Cosenza (Italy)); Engelhardt, M.; Hoechst, H. (Synchrotron Radiation Center, University of Wisconsin-Madison, Stoughton, WI (USA))

    1990-10-15

    Synchrotron-radiation soft-x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the CdS/CuInSe{sub 2} heterojunction interface. CdS overlayers were deposited in steps on single-crystal {ital p}- and {ital n}-type CuInSe{sub 2} at 250 {degree}C. Results indicate that the CdS grows in registry with the substrate, initially in a two-dimensional growth mode followed by three-dimensional island growth as is corroborated by reflection high-energy electron-diffraction analysis. Photoemission measurements were acquired after each growth in order to observe changes in the valence-band electronic structure as well as changes in the In 4{ital d}, Se 3{ital d}, Cd 4{ital d}, and S 2{ital p} core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the CdS/CuInSe{sub 2} heterojunction valence-band discontinuity and the consequent heterojunction band diagram. These results show that the Katnani-Margaritondo method is unreliable in determining offsets for heterojunctions where significant Fermi-level pinning may occur and where the local structure and chemistry of the interface depends strongly on the specific heterojunction.

  20. First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra

    Science.gov (United States)

    Perfetto, E.; Sangalli, D.; Marini, A.; Stefanucci, G.

    2016-12-01

    In this work we put forward a first-principles approach and propose an accurate diagrammatic approximation to calculate the time-resolved (TR) and angle-resolved photoemission spectrum of systems with excitons. We also derive an alternative formula to the TR photocurrent which involves a single time-integral of the lesser Green's function. The diagrammatic approximation applies to the relaxed regime characterized by the presence of quasistationary excitons and vanishing polarization. The nonequilibrium self-energy diagrams are evaluated using excited Green's functions; since this is not standard, the analytic derivation is presented in detail. The final result is an expression for the lesser Green's function in terms of quantities that can all be calculated in a first-principles manner. The validity of the proposed theory is illustrated in a one-dimensional model system with a direct gap. We discuss possible scenarios and highlight some universal features of the exciton peaks. Our results indicate that the exciton dispersion can be observed in TR and angle-resolved photoemission.

  1. Time-resolved magnetic imaging in an aberration-corrected, energy-filtered photoemission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, F., E-mail: fl.nickel@fz-juelich.de [Peter Grünberg Institut PGI-6 “Electronic Properties”, Research Center Jülich, 52425 Jülich (Germany); Gottlob, D.M. [Peter Grünberg Institut PGI-6 “Electronic Properties”, Research Center Jülich, 52425 Jülich (Germany); Fakultät für Physik und Center for Nanointegration Duisburg-Essen (CeNIDE), Universität Duisburg-Essen, 47048 Duisburg (Germany); Krug, I.P.; Doganay, H.; Cramm, S. [Peter Grünberg Institut PGI-6 “Electronic Properties”, Research Center Jülich, 52425 Jülich (Germany); Kaiser, A.M. [SPECS Surface Nano Analysis GmbH, Voltastraße 5, 13355 Berlin (Germany); Lin, G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden (Germany); Material Systems for Nanoelectronics, Chemnitz University of Technology, Reichenhainer Strasse 70, 09107 Chemnitz (Germany); Makarov, D.; Schmidt, O.G. [Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden (Germany); and others

    2013-07-15

    We report on the implementation and usage of a synchrotron-based time-resolving operation mode in an aberration-corrected, energy-filtered photoemission electron microscope. The setup consists of a new type of sample holder, which enables fast magnetization reversal of the sample by sub-ns pulses of up to 10 mT. Within the sample holder current pulses are generated by a fast avalanche photo diode and transformed into magnetic fields by means of a microstrip line. For more efficient use of the synchrotron time structure, we developed an electrostatic deflection gating mechanism capable of beam blanking within a few nanoseconds. This allows us to operate the setup in the hybrid bunch mode of the storage ring facility, selecting one or several bright singular light pulses which are temporally well-separated from the normal high-intensity multibunch pulse pattern. - Highlights: • A new time-resolving operation mode in photoemission electron microscopy is shown. • Our setup works within an energy-filtered, aberration-corrected PEEM. • A new gating system for bunch selection using synchrotron radiation is developed. • An alternative magnetic excitation system is developed. • First tr-imaging using an energy-filtered, aberration-corrected PEEM is shown.

  2. Vacuum ultraviolet photon detector with continuously adjustable resolution for inverse photoemission spectroscopy

    CERN Document Server

    Liu, Shu-Hu; Zhao, Yi-Dong; Geng, Dong-Ping; Zhen, Lei; Zhao, Xiao-Liang; Li, Hua-Peng

    2014-01-01

    We present a vacuum ultraviolet (VUV) band-pass photon detector for inverse photoemission spectroscopy. A SrF2 window is used due to its high-energy cutoff of the optical transmission being 9.7eV, and acetone is selected as filling gas with the photoionization threshold also being 9.7eV. The structure of the detector described in detail is based on a Geiger-M\\"uller type counter with an MgF2 window and argon as amplification gas. Its energy resolution can be tuned continuously from 46meV with a normal temperature situation to 105meV at 215K. Meanwhile, the signal intensity of the detector is adjusted accordingly to find an optimal operation program for our inverse photoemission system which is being constructed. The ratio of acetone vapor and argon is varied carefully. Background signals and the response of time are analyzed. The detector is normalized by deuterium lamp in combination with a grating monochromator.

  3. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary

    Science.gov (United States)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M. P.; Asensio, Maria C.; Batzill, Matthias

    2017-02-01

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  4. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Yu; Vishik, Inna M.; Yi, Ming; Yang, Shuolong; Lee, James J.; Chen, Sudi; Rebec, Slavko N.; Leuenberger, Dominik; Shen, Zhi-Xun [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Liu, Zhongkai [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Zong, Alfred [Department of Physics, Stanford University, Stanford, California 94305 (United States); Jefferson, C. Michael; Merriam, Andrew J. [Lumeras LLC, 207 McPherson St, Santa Cruz, California 95060 (United States); Moore, Robert G.; Kirchmann, Patrick S. [SIMES, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.

  5. High Resolution Angle Resolved Photoemission with Tabletop 11eV Laser

    CERN Document Server

    He, Yu; Yi, Ming; Yang, Shuolong; Liu, Zhongkai; Lee, James; Chen, Sudi; Rebec, Slavko; Leuenberger, Dominik; Zong, Alfred; Jefferson, Michael; Moore, Robert; Kirchmann, Patrick; Merriam, Andrew; Shen, Zhixun

    2015-01-01

    We developed a table-top vacuum ultraviolet (VUV) laser with $113.778$nm wavelength (10.897eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10MHz, provides a flux of 2$\\times$10$^{12}$ photons/second, and enables photoemission with energy and momentum resolutions better than 2meV and 0.012\\AA$^{-1}$, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2meV. The setup reaches electron momenta up to 1.2\\AA$^{-1}$, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source, and sho...

  6. High-resolution x-ray photoemission electron microscopy at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Stammler, T.; Anders, S.; Padmore, H.A. [Lawrence Berkeley National Lab., CA (United States); Stoehr, J. [IBM Almaden Research Center, San Jose, CA (United States); Scheinfein, M. [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics and Astronomy; Ade, H. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics

    1998-12-31

    X-ray Photoemission Electron Microscopy (X-PEEM) is a full-field imaging technique where the sample is illuminated by an x-ray beam and the photoemitted electrons are imaged on a screen by means of an electron optics. It therefore combines two well-established materials analysis techniques--photoemission electron microscopy (PEEM) and x-ray spectroscopy such as near edge x-ray absorption fine structure (NEXAFS) spectroscopy. This combination opens a wide field of new applications in materials research and has proven to be a powerful tool to investigate simultaneously topological, elemental, chemical state, and magnetic properties of surfaces, thin films, and multilayers at high spatial resolution. A new X-PEEM installed at the bend magnet beamline 7.3.1.1 at the Advanced Light Source (ALS) is designed for a spatial resolution of 20 nm and is currently under commissioning. An overview of the ongoing experimental program using X-PEEM in the field of materials research at the ALS is given by elemental and chemical bonding contrast imaging of hard disk coatings and sliders, field emission studies on diamond films as possible candidates for field-emission flat-panel displays, and the study of dewetting and decomposition phenomena of thin polymer blends and bilayers.

  7. On the angular dependence of the photoemission time delay in helium

    CERN Document Server

    Ivanov, I A; Lindroth, E; Kheifets, A S

    2016-01-01

    We investigate an angular dependence of the photoemission time delay in helium as measured by the RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) technique. The measured time delay $ \\tau_a=\\tau_W+\\tau_{cc} $ contains two distinct components: the Wigner time delay $\\tau_W$ and the continuum-continuum CC) correction $\\tau_{cc}$. In the case of helium with only one $1s\\to Ep$ photoemission channel, the Wigner time delay $\\tau_W$ does not depend on the photoelectron detection angle relative to the polarization vector. However, the CC correction $\\tau_{cc}$ shows a noticeable angular dependence. We illustrate these findings by performing two sets of calculations. In the first set, we solve the time-dependent Schr\\"odinger equation for the helium atom ionized by an attosecond pulse train and probed by an IR pulse. In the second approach, we employ the lowest order perturbation theory which describes absorption of the XUV and IR photons. Both calculations produce close resul...

  8. Interaction of light and surface plasmon polaritons in Ag Islands studied by nonlinear photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Buckanie, N.M.; Kirschbaum, P.; Sindermann, S.; Heringdorf, F.-J. Meyer zu, E-mail: meyerzh@uni-due.de

    2013-07-15

    Two photon photoemission microscopy was used to study the interaction of femtosecond laser pulses with Ag islands prepared using different strategies on Si(111) and SiO{sub 2}. The femtosecond laser pulses initiate surface plasmon polariton (SPP) waves at the edges of the island. The superposition of the electrical fields of the femtosecond laser pulses with the electrical fields of the SPP results in a moiré pattern that is comparable despite the rather different methods of preparation and that gives access to the wavelength and direction of the SPP waves. If the SPPs reach edges of the Ag islands, they can be converted back into light waves. The incident and refracted light waves result in an interference pattern that can again be described with a moiré pattern, demonstrating that Ag islands can be used as plasmonic beam deflectors for light. - Highlights: • Surface plasmon polaritons were studied on Ag islands in two photon photoemission microscopy. • Ag islands were prepared using self-assembly, electron beam lithography, and a focused ion beam. • The SPP pattern on Ag islands can be described with a simple moiré concept. • SPP output coupling results in a pattern that can again be described by the moiré effect.

  9. Molecular Frame Photoemission: Probe of the Photoionization Dynamics for Molecules in the Gas Phase

    Institute of Scientific and Technical Information of China (English)

    D. Dowek; Y. J. Picard; P. Billaud; C. Elkharrat; J. C. Houver

    2009-01-01

    Molecular frame photoemission is a very sensitive probe of the photoionization (PI) dynamics of molecules. This paper reports a comparative study of non-resonant and resonant photoionization of D2 induced by VUV circularly polarized synchrotron radiation at SOLEIL at the level of the molecular frame photoelectron angular distributions (MFPADs). We use the vector correlation method which combines imaging and time-of-flight resolved electron-ion coincidence techniques, and a generalized formalism for the expression of the I(X, θe,φe)MFPADs.where X is the orientation of the molecular axis with respect to the light quantization axis and (θe,φe) the electron emission direction in the molecular frame. Selected MFPADs for a molecule aligned parallel or perpendicular to linearly polarized light, or perpendicular to the propagation axis of circularly polarizcd light, are presented for dissociative photoionization (DPI) of D2 at two photon excitation energies, hv=19 eV, where direct PI is the only channel opened, and hv=32.5 eV, i.e. in the region involving resonant excitation of Q1 and Q2 doubly excited state series. We discuss in particular the properties of the circular dichroism characterizing photoemission in the molecular frame for direct and resonant PI. In the latter case, a remarkable behavior is observed which may be attributed to the interference occurring between undistinguishable autoionization decay channels.

  10. Ligand field splittings in core level transitions for transition metal (TM) oxides: Tanabe-Sugano diagrams and (TM) dangling bonds in vacated O-atom defects

    Science.gov (United States)

    Lucovsky, Gerry; Wu, Kun; Pappas, Brian; Whitten, Jerry

    2013-04-01

    Defect states in the forbidden band-gap below the conduction band edge are active as electron traps in nano-grain high-) transition metal (TM) oxides with thickness >0.3 nm, e.g., ZrO2 and HfO2. These oxides have received considerable attention as gate-dielectrics in complementary metal oxide semiconductor (CMOS) devices, and more recently are emerging as candidates for charge storage and memory devices. To provide a theoretical basis for device functionality, ab-initio many-electron theory is combined with X-ray absorption spectroscopy (XAS) to study O K edge and TM core level transitions. These studies identify ligand field splittings (ΔLF) for defect state features,. When compared with those obtained from O-atom and TM-atom core spectroscopic transitions, this provides direct information about defect state sun-nm bonding arrangements. comparisons are made for (i) elemental TiO2 and Ti2O3 with different formal ionic charges, Ti4+ and Ti3+ and for (ii) Magneli Phase alloys, TinO2n-1, n is an integer 9>=n>3, and (TiO2)x(HfO2)1-x alloys. The alloys display multi-valent behavior from (i) different ionic-charge states, (ii} local bond-strain, and (iii) metallic hopping transport. The intrinsic bonding defects in TM oxides are identified as pairs of singly occupied dangling bonds. For 6-fold coordinated Ti-oxides defect excited states in 2nd derivative O K pre-edge spectra are essentially the same as single Ti-atom d2 transitions in Tanabe-Sugano (T-S) diagrams. O-vacated site defects in 8-fold coordinated ZrO2 and HfO2 are described by d8 T-S diagrams. T-S defect state ordering and splittings are functions of the coordination and symmetry of vacated site bordering TM atoms. ΔLF values from the analysis of T-S diagrams indicate medium range order (MRO) extending to 3rd and 4th nearest-neighbor (NN) TM-atoms. Values are different for 6-fold Ti, and 8-fold ZrO2 and HfO2, and scale inversely with differences in respective formal ionic radii. O-vacated site bonding

  11. Effect of Fe2P in LiFePO4/Fe2P composite on electrochemical properties synthesized by MA and control of heat condition

    Institute of Scientific and Technical Information of China (English)

    PARK Jong Suk; LEE Kyung Tae; LEE Kyung Sub

    2006-01-01

    In order to control the size and distribution of the high conductive Fe2P in LiFePO4/Fe2P composite, two different cooling rates (Fast: 15 ℃·min-1, Slow: 2 ℃·min-1) were employed after mechanical alloying.The discharge capacity of the fast cooled was 83 mAh·g-1 and the slow cooled 121 mAh·g-1.The particle size of the synthesized powder was examined by transmission electron microscopy and distribution of Fe2P was characterized using scanning electron microscopy (SEM).In addition, two-step heat treatment was carried out for better distribution of Fe2P.X-ray diffraction (XRD) and Rietveld refinement reveal that LiFePO4/Fe2P composite consists of 95.77% LiFePO4 and 4.33% of Fe2P.

  12. Non-P2P network applicationautomatic feature recognition%非 P2P 网络应用自动化特征提取

    Institute of Scientific and Technical Information of China (English)

    丁斌; 焦素云; 闫晓亮

    2015-01-01

    在对流量进行分类的基础上,应用Apriori算法分析分类以后的非P2P流,能够更准确地分析出非P2 P的网络应用特征。%Based on the classified traffic flow between P2P and non‐P2P ,Apriori algorithm is used to analyzing the non‐P2P flow to get the high precise characteristics of non‐P2P network application .

  13. On the excess photon noise in single-beam measurements with photo-emissive and photo-conductive cells

    NARCIS (Netherlands)

    Alkemade, C.T.J.

    1959-01-01

    In this paper the so-called excess photon noise is theoretically considered with regard to noise power measurements with a single, illumined photo-emissive or photo-conductive cell. Starting from a modification of Mandel's stochastic association of the emission of photo-electrons with wave intensity

  14. Photoemission spectroscopy studies of SrTiO{sub 3} and its interface to gold

    Energy Technology Data Exchange (ETDEWEB)

    Wintz, Susi; Grobosch, Mandy; Knupfer, Martin [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); Seibt, Juliane; Hanzig, Florian; Stoecker, Hartmut; Meyer, Dirk C. [Institut fuer Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Str. 23, 09596 Freiberg (Germany)

    2011-07-01

    Motivated by applications of strontium titanate (SrTiO{sub 3}, STO) in non-volatile memory devices we studied the surface of STO by means of x-ray and ultra violet photoemission spectroscopy. The focus of the analysis was purity, doping and the annealing time. It could be demonstrated that a surface contamination layer consisting of carbonates and hydroxides exists on surfaces prepared under ambient conditions. In addition, the interface between STO and gold was investigated. We show that there is a weak interaction of these materials, however a Schottky-type Au/SrTiO{sub 3} junction is formed. Finally the work function of all STO samples was determined. The work function depends on the modification of the STO surface. This fact should considered for the formation of such a Schottky-type junction.

  15. Retention Characteristics of CBTi144 Thin Films Explained by Means of X-Ray Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Biasotto

    2010-01-01

    Full Text Available CaBi4Ti4O15 (CBTi144 thin films were grown on Pt/Ti/SiO2/Si substrates using a soft chemical solution and spin-coating method. Structure and morphology of the films were characterized by the X-ray Diffraction (XRD, Fourier-transform infrared spectroscopy (FT-IR, Raman analysis, X-ray photoemission spectroscopy (XPS, and transmission electron microscopy (TEM. The films present a single phase of layered-structured perovskite with polar axis orient. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. XPS measurements were employed to understand the nature of defects on the retention behavior of CBTi144 films. We have observed that the main source of retention-free characteristic of the capacitors is the oxygen environment in the CBTi144 lattice.

  16. Enhancement of ultrafast electron photoemission from metallic nano antennas excited by a femtosecond laser pulse

    CERN Document Server

    Gubko, M A; Ionin, A A; Kudryashov, S I; Makarov, S V; Nathala, C S R; Rudenko, A A; Seleznev, L V; Sinitsyn, D V; Treshin, I V

    2013-01-01

    We have demonstrated for the first time that an array of nanoantennas (central nanotips inside sub-micron pits) on an aluminum surface, fabricated using a specific double-pulse femtosecond laser irradiation scheme, results in a 28-fold enhancement of the non-linear (three-photon) electron photoemission yield, driven by a third intense IR femtosecond laser pulse. The supporting numerical electrodynamic modeling indicates that the electron emission is increased not owing to a larger effective aluminum surface, but due to instant local electromagnetic field enhancement near the nanoantenna, contributed by both the tip's lightning rod effect and the focusing effect of the pit as a microreflector and annular edge as a plasmonic lens.

  17. Improvement of photoemission performance of a gradient-doping transmission-mode GaAs photocathode

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi-Jun; Niu Jun; Zhao Jing; Xiong Ya-Juan; Ren Ling; Chang Ben-Kang; Qian Yun-Sheng

    2011-01-01

    Two types of transmission-mode GaAs photocathodes grown by molecular beam epitaxy are compared in terms of activation process and spectral response,one has a gradient-doping structure and the other has a uniform-doping structure.The experimental results show that the gradient-doping photocathode can obtain a higher photoemission capability than the uniform-doping one. As a result of the downward graded band-bending structure,the cathode performance parameters,such as the electron average diffusion length and the surface electron escape probability obtained by fitting quantum yield curves,are greater for the gradient-doping photocathode.The electron diffusion length is within a range of from 2.0 to 5.4 μm for doping concentration varying from 1019 to 1018 cm-3 and the electron average diffusion length of the gradient-doping photocathode achieves 3.2 μm.

  18. High-order harmonic generation driven by metal nanotip photoemission: theory and simulations

    CERN Document Server

    Ciappina, M F; Lewenstein, M; Krüger, M; Hommelhoff, P

    2014-01-01

    We present theoretical predictions of high-order harmonic generation (HHG) resulting from the interaction of short femtosecond laser pulses with metal nanotips. It has been demonstrated that high energy electrons can be generated using nanotips as sources; furthermore the recollision mechanism has been proven to be the physical mechanism behind this photoemission. If recollision exists, it should be possible to convert the laser-gained energy by the electron in the continuum in a high energy photon. Consequently the emission of harmonic radiation appears to be viable, although it has not been experimentally demonstrated hitherto. We employ a quantum mechanical time dependent approach to model the electron dipole moment including both the laser experimental conditions and the bulk matter properties. The use of metal tips shall pave a new way of generating coherent XUV light with a femtosecond laser field.

  19. Synchrotron radiation photoemission spectrum study on K3C60 film

    Institute of Scientific and Technical Information of China (English)

    李宏年; 徐亚伯; 鲍世宁; 李海洋; 何丕模; 钱海杰; 刘风琴; 奎热西·易卜拉欣

    2000-01-01

    K3C60 single crystal film was prepared on the cleaved (111) surface of C60 single crystal. Synchrotron radiation angle-resolved photoemission spectra were measured at normal emission with sample temperature at - 150K. Up to four subpeaks of LUMO-derived band were observed. These sub-peaks exhibit distinct energy dispersions which resemble in general the theoretical ones calculated for K3C60 at low temperature with the so-called one-dimensional disordered structure. But there is large deviation of experimental sub-band intervals from the theoretical values. This result is meaningful for the studies of the physical properties of alkali-doped C60 solids, e.g. the mechanism for superconductivity.

  20. Characterization of a circular optical nanoantenna by nonlinear photoemission electron microscopy

    CERN Document Server

    Kaiser, Thomas; Qi, Jing; Klein, Angela; Steinert, Michael; Menzel, Christoph; Rockstuhl, Carsten; Pertsch, Thomas

    2015-01-01

    We report on the investigation of an advanced circular plasmonic nanoantenna under ultrafast excitation using nonlinear photoemission electron microscopy (PEEM) under near-normal incidence. The circular nanoantenna is enhanced in its performance by a supporting grating and milled out from a gold film. The considered antenna shows a sophisticated physical resonance behavior that is ideal to demonstrate the possibilities of PEEM for the experimental investigations of plasmonic effects on the nanoscale. Field profiles of the antenna resonance for both possible linear polarizations of the incident field are measured with high spatial resolution. In addition, outward propagating Hankel plasmons, which are also excited by the structure, are measured and analyzed. We compare our findings to measurements of an isolated plasmonic nanodisc resonator and scanning near-field optical microscopy (SNOM) measurements of both structures. All results are in very good agreement with numerical simulations as well as analytial mo...

  1. Imaging and characterization of conducting ferroelectric domain walls by photoemission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaab, J.; Meier, D., E-mail: dennis.meier@mat.ethz.ch [Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich (Switzerland); Krug, I. P. [Institut für Optik und Atomare Physik, TU Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Forschungszentrum Jülich Peter Grünberg Institute (PGI-6), Leo-Brandt-Strasse, 52425 Jülich (Germany); Nickel, F.; Gottlob, D. M.; Doğanay, H.; Schneider, C. M. [Forschungszentrum Jülich Peter Grünberg Institute (PGI-6), Leo-Brandt-Strasse, 52425 Jülich (Germany); Cano, A. [CNRS, Univ. Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Hentschel, M. [4th Physics Institute and Research Center SCoPE, University of Suttgart, Pfaffenwaldring 57, 70659 Stuttgart (Germany); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Yan, Z.; Bourret, E. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ramesh, R. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States)

    2014-06-09

    High-resolution X-ray photoemission electron microscopy (X-PEEM) is a well-established method for imaging ferroelectric domain structures. Here, we expand the scope of application of X-PEEM and demonstrate its capability for imaging and investigating domain walls in ferroelectrics with high spatial resolution. Using ErMnO{sub 3} as test system, we show that ferroelectric domain walls can be visualized based on photo-induced charging effects and local variations in their electronic conductance can be mapped by analyzing the energy distribution of photoelectrons. Our results open the door for non-destructive, contact-free, and element-specific studies of the electronic and chemical structure at domain walls in ferroelectrics.

  2. Design of a High-bunch-charge 112-MHz Superconducting RF Photoemission Electron Source

    CERN Document Server

    Xin, T; Belomestnykh, Sergey A; Ben-Zvi, I; Boulware, C H; Grimm, T L; Hayes, T; Litvinenko, Vladimir N; Mernick, K; Narayan, G; Orfin, P; Pinayev, I; Rao, T; Severino, F; Skaritka, J; Smith, K; Than, R; Tuozzolo, J; Wang, E; Xiao, B; Xie, H; Zaltsman, A

    2016-01-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. The gun utilizes a quarter-wave resonator (QWR) geometry for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.

  3. Interferometer-controlled soft X-ray scanning photoemission microscope at SOLEIL

    CERN Document Server

    Avila, José; Lorcy, Stephane; Giorgetta, Jean-Luc; Polack, François; Asensio, María C

    2013-01-01

    ANTARES beamline (BL), a new soft X-ray scanning photoemission microscope located at the SOLEIL synchrotron storage ring has been recently designed, built and commissioned. The implemented interferometer control allows the accurate measurement of the transverse position of the Fresnel zone plate (FZP) relative to the sample. An effective sample position feedback has been achieved during experiments in static mode, with a fixed FZP position required to perform nano Angle-Resolved Photoelectron Spectroscopy (Nano-ARPES) measurements. Likewise, long-term stability has been attained for the FZP position relative to the sample during the translation of the FZP when performing typical X-ray absorption experiments around the absorption edges of light elements. Moreover, a fully automatic feedback digital control of the interferometric system provides extremely low orthogonal distortion of the recorded two-dimensional images. The microscope is diffraction limited with the resolution set to several tens of nanometers ...

  4. Tunable VUV laser based spectrometer for Angle Resolved Photoemission Spectroscopy (ARPES)

    CERN Document Server

    Jiang, Rui; Wu, Yun; Huang, Lunan; McMillen, Colin D; Kolis, Joseph; Giesber, Henry G; Egan, John J; Kaminski, Adam

    2014-01-01

    We have developed an angle-resolved photoemission spectrometer with tunable VUV laser as a photon source. The photon source is based on the fourth harmonic generation of a near IR beam from a Ti:sapphire laser pumped by a CW green laser and tunable between 5.3eV and 7eV. The most important part of the set-up is a compact, vacuum enclosed fourth harmonic generator based on KBBF crystals, grown hydrothermally in the US. This source can deliver a photon flux of over 10^14 photons/s. We demonstrate that this energy range is sufficient to measure the kz dispersion in an iron arsenic high temperature superconductor, which was previously only possible at synchrotron facilities.

  5. Angle-resolved photoemission study of quasi one-dimensional TlInSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Kojiro [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan)], E-mail: mimura@ms.osakafu-u.ac.jp; Wakita, Kazuki [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Arita, Masashi [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan); Mamedov, Nazim; Orudzhev, Guseyn [Institute of Physics, Azerbaijan National Academy of Science, Baku, AZ-1143 (Azerbaijan); Taguchi, Yukihiro; Ichikawa, Kouichi [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Namatame, Hirofumi; Taniguchi, Masaki [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-0046 (Japan)

    2007-05-15

    TlInSe{sub 2} with a quasi one-dimensional chain structure and a giant Seebeck coefficient of more than 10{sup 6} {mu}V/K below 140 {sup o}C has been investigated by means of angle-resolved photoemission spectroscopy at 50 K and 280 K. The obtained energy bands favorably agree with the calculated band structure and show quite noticeable dispersion in the direction normal to the chains. A rigid shift toward lower binding energies, a splitting and the formation of the mini-gap-like structures are clearly observed in the experimental electronic bands with the temperature reduced to 50 K. These features are indicative of an incommensurate superlattice phase emerging in TlInSe{sub 2} with temperature, and causing the record-breaking values of Seebeck coefficient.

  6. Angle-resolved photoemission studies of the superconducting gap symmetry in Fe-based superconductors

    Directory of Open Access Journals (Sweden)

    Y.-B. Huang

    2012-12-01

    Full Text Available The superconducting gap is the fundamental parameter that characterizes the superconducting state, and its symmetry is a direct consequence of the mechanism responsible for Cooper pairing. Here we discuss about angle-resolved photoemission spectroscopy measurements of the superconducting gap in the Fe-based high-temperature superconductors. We show that the superconducting gap is Fermi surface dependent and nodeless with small anisotropy, or more precisely, a function of the momentum location in the Brillouin zone. We show that while this observation seems inconsistent with weak coupling approaches for superconductivity in these materials, it is well supported by strong coupling models and global superconducting gaps. We also suggest that a smaller lifetime of the superconducting Cooper pairs induced by the momentum dependent interband scattering inherent to these materials could affect the residual density of states at low energies, which is critical for a proper evaluation of the superconducting gap.

  7. Dynamic screening of a localized hole during photoemission from a metal cluster

    CERN Document Server

    Koval, N E; Borisov, A G; Muiño, R Díez

    2012-01-01

    Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. We here study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with Time Dependent Density Functional Theory and the motion of the photoemitted electron is described classically. We show that the dynamic screening of the hole by the cluster electrons affects the motion of the photoemitted electron. At the very beginning of the photoemission process, the emitted electron is accelerated by the cluster electrons that pile up to screen the hole. This is a velocity dependent effect that needs to be accounted for when calculating the energy lost by the electron due to inelastic processes.

  8. Emergence of anisotropic heavy fermions in antiferromagnetic Kondo lattice CeIn3 revealed by photoemission

    Science.gov (United States)

    Zhang, Yun; Lu, Haiyan; Zhu, Xiegang; Tan, Shiyong; Chen, Qiuyun; Feng, Wei; Xie, Donghua; Luo, Lizhu; Zhang, Wen; Lai, Xinchun; Donglai Feng Team; Huiqiu Yuan Team

    One basic concept in heavy fermions systems is the entanglement of localized spin state and itinerant electron state. It can be tuned by two competitive intrinsic mechanisms, Kondo effect and Ruderman-Kittel-Kasuya-Yosida interaction, with external disturbances. The key issue regarding heavy fermions properties is how the two mechanisms work in the same phase region. To investigate the relation of the two mechanisms, the cubic antiferromagnetic heavy fermions compound CeIn3 was investigated by soft x-ray angle resolved photoemission spectroscopy. The hybridization between f electrons and conduction bands in the paramagnetic state was observed directly, providing compelling evidence for Kondo screening scenario and coexistence of two mechanisms. The hybridization strength shows slight and regular anisotropy in K space, implying that the two mechanisms are competitive and anisotropic. This work illuminates the concomitant and competitive relation between the two mechanisms and supplies some evidences for the anisotropic superconductivity of CeIn3

  9. Polaron dynamics in thin polythiophene films studied with time-resolved photoemission

    Science.gov (United States)

    Varene, Erwan; Tegeder, Petra

    2012-04-01

    Femtosecond time-resolved two-photon photoemission spectroscopy is employed to study the dynamics of an excited state in a thin regioregular poly(3-hexylthiophene) (RR-P3HT) film deposited on a conducting polymer poly(3,4-ethylene-dioxythiophene): poly-(styrenesulfonate) (PEDT:PSS) electrode following optical excitation at 2.1 eV. We found that the biexponential decay of this excited state has a fast component (2.6 ps) assigned to bound polaron pairs which recombine quickly or separate to be added to the slow component (7.6 ps). The latter is attributed to polarons generated via charge transfer between adjacent polymer chains.

  10. Photoemission electron microscopy of arrays of submicron nickel rods in a silicon dioxide matrix

    Science.gov (United States)

    Turishchev, S. Yu.; Parinova, E. V.; Kronast, F.; Ovsyannikov, R.; Malashchenok, N. V.; Streltsov, E. A.; Ivanov, D. K.; Fedotov, A. K.

    2014-09-01

    Arrays of Ni rods (˜500 nm diameter) formed by the ion-track technology in combination with electrochemical deposition into a SiO2 matrix on the surface of single-crystal silicon plates have been investigated using photoemission electron microscopy with high-intensity synchrotron (undulator) radiation. An analysis of the Ni L 2,3 X-ray absorption near-edge structure (XANES) spectra has demonstrated that rod-like structures in pores and connecting bridges between the rods are formed by a metallic nickel phase, which is stable to oxidation by atmospheric oxygen. No formation of intermediate compound phases (nickel silicides and oxides) is observed at the Ni/SiO2 heterojunction, whereas oxidized nickel(II) species are identified on the surface of the SiO2 matrix, which presumably can be attributed to nickel silicate and hydroxide compounds formed upon nickel(II) chemisorption in electrochemical deposition electrolytes.

  11. Interaction of light and surface plasmon polaritons in Ag islands studied by nonlinear photoemission microscopy.

    Science.gov (United States)

    Buckanie, N M; Kirschbaum, P; Sindermann, S; Meyer zu Heringdorf, F-J

    2013-07-01

    Two photon photoemission microscopy was used to study the interaction of femtosecond laser pulses with Ag islands prepared using different strategies on Si(111) and SiO₂. The femtosecond laser pulses initiate surface plasmon polariton (SPP) waves at the edges of the island. The superposition of the electrical fields of the femtosecond laser pulses with the electrical fields of the SPP results in a moiré pattern that is comparable despite the rather different methods of preparation and that gives access to the wavelength and direction of the SPP waves. If the SPPs reach edges of the Ag islands, they can be converted back into light waves. The incident and refracted light waves result in an interference pattern that can again be described with a moiré pattern, demonstrating that Ag islands can be used as plasmonic beam deflectors for light.

  12. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    Science.gov (United States)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  13. Modeling angle-resolved photoemission of graphene and black phosphorus nano structures.

    Science.gov (United States)

    Park, Sang Han; Kwon, Soonnam

    2016-05-10

    Angle-resolved photoemission spectroscopy (ARPES) data on electronic structure are difficult to interpret, because various factors such as atomic structure and experimental setup influence the quantum mechanical effects during the measurement. Therefore, we simulated ARPES of nano-sized molecules to corroborate the interpretation of experimental results. Applying the independent atomic-center approximation, we used density functional theory calculations and custom-made simulation code to compute photoelectron intensity in given experimental setups for every atomic orbital in poly-aromatic hydrocarbons of various size, and in a molecule of black phosphorus. The simulation results were validated by comparing them to experimental ARPES for highly-oriented pyrolytic graphite. This database provides the calculation method and every file used during the work flow.

  14. Photoemission Electron Microscopy for Analysis of Dielectric Structures and the Goos-Hanchen Shift

    Science.gov (United States)

    Stenmark, Theodore Axel

    Photoemission Electron Microscopy (PEEM) is a versatile tool that relies on the photoelectric effect to produce high-resolution electron images. Ultrafast pulse lasers allow for multi-photon PEEM where multiple visible or IR photons excite a single electron in a nonlinear process. The photoelectron yield in both cases is related to the near-field region of electromagnetic fields at the surface of the sample. We use this ability here to analyze wave propagation in a linear dielectric waveguide with wavelengths of 410 nm and 780 nm. The propagation constant of the waveguide can be extracted from interference patterns created by light propagating in the waveguide and incident light. Various properties like the polarization dependence of the propagation can be analyzed. The electromagnetic field interaction at the boundaries can then be deduced, which is essential to understand power flow in wave guiding structures. These results match well with simulations using finite element techniques as well as electromagnetic theory.

  15. Spin-polarized photoemission of Fe{sub 80}B{sub 20}

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.B.; Walker, C.G.H.; Greig, D. [Department of Physics, University of Leeds, Leeds (United Kingdom); Seddon, E.A.; Kirkman, L.W.; Quinn, F.M. [Daresbury Laboratory, Daresbury, Warrington, Cheshire (United Kingdom); Matthew, J.A.D. [Department of Physics, University of York, Heslington, York (United Kingdom)

    1996-03-04

    The first spin-resolved photoemission experiment on an iron - boron amorphous alloy using a synchrotron source is presented. The experimental spin polarization of the d band of Fe{sub 80}B{sub 20} has been compared with three theoretical predictions and found to be in best agreement with self-consistent spin-polarized calculations based on a supercell LMTO approach. The observed average spin polarization of the valence band is approximately twice that of 10 eV secondary electrons. Hysteresis loops for Fe{sub 80}B{sub 20} determined from the 1 eV and 20 eV secondary-electron asymmetry are similar to those determined using the magnetooptic Kerr effect, but show a lower coercivity. The differences are attributed to a combination of different sampling depths of the two techniques and to the surface inhomogeneity of the sample. (author)

  16. Common Features in Electronic Structure of the Oxypnictide Superconductors from Photoemission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-Wen; CHEN Xian-Hui; REN Zhi-An; YI Wei; CHE Guang-Can; CHEN Gen-Fu; WANG Nan-Lin; WANG Gui-Ling; ZHOU Yong; ZHU Yong; WANG Xiao-Yang; LIU Hai-Yun; ZHAO Zhong-Xian; XU Zu-Yan; CHEN Chuang-Tian; ZHOU Xing-Jiang; ZHANG Wen-Wao; ZHAO Lin; MENG Jian-Qiao; LIU Guo-Dong; DONG Xiao-Li; WU Gang; LIU Rong-Hua

    2008-01-01

    High resolution photoemission measurements are carried out on non-superconducting LaFeAsO parent compound and various superconducting RFeAs(O1-xFx) (R=La, Ce and Pr) compounds. It is found that the parent LaFeAsO compound shows a metallic character. By extensive measurements, several common features are identified in the electronic structure of these Fe-based compounds: (1) 0.2eV feature in the valence band, (2) a universal 13-16meV feature, (3) near EF spectral weight suppression with decreasing temperature. These universal features can provide important information about band structure, superconducting gap and pseudogap in these Fe-based materials.

  17. Data of evolutionary structure change: 1Q95E-2P2GD [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1Q95E-2P2GD 1Q95 2P2G E D ANPLYQKHIISINDLSRDDLNLVLATAAKLKANP-QPEL...LKH-KVIASCFFEASTRTRLSFETSMHRLGASVVGFSDSANTSLGKKGETLADTISVISTYVDAIVMRHPQEGAARLATEFSGNVPVLNAGDGSNQHPTQTLLDLFTIQETQGRLDNLHVAMVGD...RLDAMASVAT-VPVINALSD-EFHPCQVLADLQTIAERKGALRGLRLSYFGDGAN-NMAHSLLLGGVTAG-IHVTVAAPEGFLPDPSVRAAAERRAQDTGASVTVTAD...AHAAAAGADVLVTDTWV-----KPFRPF-----QLNSRLLALADSDAIVLHCLPAHRGDEITDAVMDGPASAVWDEAENRL.../pdbID> D 2P2GD RPLQG

  18. Electronic structure investigation of atomic layer deposition ruthenium(oxide) thin films using photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Schlaf, Rudy, E-mail: mvschaefer@mail.usf.edu, E-mail: schlaf@mail.usf.edu [Department of Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States)

    2015-08-14

    Analyzing and manipulating the electronic band line-up of interfaces in novel micro- and nanoelectronic devices is important to achieve further advancement in this field. Such band alignment modifications can be achieved by introducing thin conformal interfacial dipole layers. Atomic layer deposition (ALD), enabling angstrom-precise control over thin film thickness, is an ideal technique for this challenge. Ruthenium (Ru{sup 0}) and its oxide (RuO{sub 2}) have gained interest in the past decade as interfacial dipole layers because of their favorable properties like metal-equivalent work functions, conductivity, etc. In this study, initial results of the electronic structure investigation of ALD Ru{sup 0} and RuO{sub 2} films via photoemission spectroscopy are presented. These experiments give insight into the band alignment, growth behavior, surface structure termination, and dipole formation. The experiments were performed in an integrated vacuum system attached to a home-built, stop-flow type ALD reactor without exposing the samples to the ambient in between deposition and analysis. Bis(ethylcyclopentadienyl)ruthenium(II) was used as precursor and oxygen as reactant. The analysis chamber was outfitted with X-ray photoemission spectroscopy (LIXPS, XPS). The determined growth modes are consistent with a strong growth inhibition situation with a maximum average growth rate of 0.21 Å/cycle for RuO{sub 2} and 0.04 Å/cycle for Ru.{sup 0} An interface dipole of up to −0.93 eV was observed, supporting the assumption of a strongly physisorbed interface. A separate experiment where the surface of a RuO film was sputtered suggests that the surface is terminated by an intermediate, stable, non-stoichiometric RuO{sub 2}/OH compound whose surface is saturated with hydroxyl groups.

  19. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  20. Observation of the Forbidden Magnetic Dipole Transition 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} in Atomic Thallium

    Science.gov (United States)

    Chu, S.

    1976-10-01

    A measurement of the 6{sup 2}P{sub ½} --> 7{sup 2}P{sub ½} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ½} ground state to the 7{sup 2}P{sub ½} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ½} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ½} and 7{sup 2}P{sub ½} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.

  1. New superhindered polydentate polyphosphine ligands P(CH2CH2P(t)Bu2)3, PhP(CH2CH2P(t)Bu2)2, P(CH2CH2CH2P(t)Bu2)3, and their ruthenium(II) chloride complexes.

    Science.gov (United States)

    Gilbert-Wilson, Ryan; Field, Leslie D; Bhadbhade, Mohan M

    2012-03-05

    The synthesis and characterization of the extremely hindered phosphine ligands, P(CH(2)CH(2)P(t)Bu(2))(3) (P(2)P(3)(tBu), 1), PhP(CH(2)CH(2)P(t)Bu(2))(2) (PhP(2)P(2)(tBu), 2), and P(CH(2)CH(2)CH(2)P(t)Bu(2))(3) (P(3)P(3)(tBu), 3) are reported, along with the synthesis and characterization of ruthenium chloro complexes RuCl(2)(P(2)P(3)(tBu)) (4), RuCl(2)(PhP(2)P(2)(tBu)) (5), and RuCl(2)(P(3)P(3)(tBu)) (6). The bulky P(2)P(3)(tBu) (1) and P(3)P(3)(tBu) (3) ligands are the most sterically encumbered PP(3)-type ligands so far synthesized, and in all cases, only three phosphorus donors are able to bind to the metal center. Complexes RuCl(2)(PhP(2)P(2)(tBu)) (5) and RuCl(2)(P(3)P(3)(tBu)) (6) were characterized by crystallography. Low temperature solution and solid state (31)P{(1)H} NMR were used to demonstrate that the structure of RuCl(2)(P(2)P(3)(tBu)) (4) is probably analogous to that of RuCl(2)(PhP(2)P(2)(tBu)) (5) which had been structurally characterized.

  2. Evolutionary divergence of Ure2pA glutathione transferases in wood degrading fungi.

    Science.gov (United States)

    Roret, Thomas; Thuillier, Anne; Favier, Frédérique; Gelhaye, Eric; Didierjean, Claude; Morel-Rouhier, Mélanie

    2015-10-01

    The intracellular systems of detoxification are crucial for the survival of wood degrading fungi. Within these systems, glutathione transferases could play a major role since this family of enzymes is specifically extended in lignolytic fungi. In particular the Ure2p class represents one third of the total GST number in Phanerochaete chrysosporium. These proteins have been phylogenetically split into two subclasses called Ure2pA and Ure2pB. Ure2pB can be classified as Nu GSTs because of shared structural and functional features with previously characterized bacterial isoforms. Ure2pA can rather be qualified as Nu-like GSTs since they exhibit a number of differences. Ure2pA possess a classical transferase activity, a more divergent catalytic site and a higher structural flexibility for some of them, compared to Nu GSTs. The characterization of four members of this Ure2pA subclass (PcUre2pA4, PcUre2pA5, PcUre2pA6 and PcUre2pA8) revealed specific functional and structural features, suggesting that these enzymes have rapidly evolved and differentiated, probably to adapt to the complex chemical environment associated with wood decomposition.

  3. An agent-based incentive mechanism for P2P systems

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-feng; WANG Ru-chuan

    2006-01-01

    With the increasing uses of peer-to-peer (P2P)systems, the problems of fair information and resources sharing become serious. P2P systems are self-organizing,distributed systems with no centralized authority, such as Free-riding and Tragedy of Commons. Because of the voluntary participation and lack of motivation, the information and resources available in P2P networks are extremely variable and unpredictable. This article studied the problems existing in P2P networks and propose a different method to stimulate the peers in P2P networks to share information and resources,using agents so as to improve the performance of P2P networks.And through simulation experiments and analyzing the results,it can be concluded that this mechanism can effectively solve the problems of fair sharing in P2P systems.

  4. Forbidden 2 P- nP and 2 P- nF transitions in the energy spectrum of ultracold Rydberg lithium-7 atoms

    Science.gov (United States)

    Zelener, B. B.; Saakyan, S. A.; Sautenkov, V. A.; Manykin, E. A.; Zelener, B. V.; Fortov, V. E.

    2016-04-01

    Forbidden 2 P- nP and 2 P- nF transitions in the ranges of the principal quantum number n = 42-114 and n = 38-48 have been detected in the optical spectra of ultracold highly excited lithium-7 atoms. The presence of forbidden transitions is due to induced external electric fields. The quantum defects and ionization energy obtained in various experiments and predicted theoretically have been discussed.

  5. Control of sigma virus multiplication by the ref(2)P gene of Drosophila melanogaster: an in vivo study of the PB1 domain of Ref(2)P.

    Science.gov (United States)

    Carré-Mlouka, A; Gaumer, S; Gay, P; Petitjean, A M; Coulondre, C; Dru, P; Bras, F; Dezélée, S; Contamine, D

    2007-05-01

    Ref(2)P has been described as one of the Drosophila proteins that interacts with the sigma virus cycle. We generated alleles to identify critical residues involved in the restrictive (inhibiting viral multiplication) or permissive (allowing viral multiplication) character of Ref(2)P. We demonstrate that permissive alleles increase the ability of the sigma virus to infect Drosophila when compared to null alleles and we confirm that restrictive alleles decrease this capacity. Moreover, we have created alleles unfunctional in viral cycling while functional for Ref(2)P fly functions. This type of allele had never been observed before and shows that fly- and virus-related activities of Ref(2)P are separable. The viral status of Ref(2)P variants is determined by the amino-terminal PB1 domain polymorphism. In addition, an isolated PB1 domain mimics virus-related functions even if it is similar to a loss of function toward fly-related activities. The evolutionary tree of the Ref(2)P PB1 domain that we could build on the basis of the natural allele sequences is in agreement with an evolution of PB1 domain due to successive transient selection waves.

  6. 非结构化P2P Overlay拓扑结构分析%Analysis of Topology Structure in Unstructured P2P Overlay

    Institute of Scientific and Technical Information of China (English)

    姜卫; 王观玉; 宋世延

    2010-01-01

    一个合理的P2P overlay可以为P2P应用提供更好的支持.非结构化P2P overlay的构建比较简单随意,适合于信息发布、即时通讯等节点随时加入退出的情况.构建具有可扩展性和稳健性的网络拓扑,是非结构化P2P overlay的研究热点之一.文章首先介绍了几种典型的非结构化P2P overlay,然后与以往研究不同,通过GT-ITM建模分析了每种P2P overlay拓扑结构的性能,主要分析了不同拓扑结构节点的度、最短路径分布、节点发现概率及结构的健壮性等,该工作对构造合理的P2P overlay拓扑结构和P2P系统的研究具有重要意义.

  7. Study of photoemission and work function of large surface areas, phase 3, phase 4. [wavelength dependences of photoelectric space probe materials

    Science.gov (United States)

    1973-01-01

    The photoemission of materials which might be used in probe measurements of the exo-atmospheric electric field is considered by evaluating the wavelength dependence of their photoelectric yield for eleven elements over the range 800 to 3200 A. Yield data for zinc, copper beryllium, platinum, cadmium, graphite, carbon, gold, silver, tantalum, and tungsten show that copper-beryllium is a preferred material. Silver has one of the highest photoemissions when exposed to solar radiation.

  8. X-ray photoemission spectra for Al(x)Ga(1-x)As

    Science.gov (United States)

    Ireland, P. J.; Kazmerski, L. L.; Fisher, R. F.

    1984-06-01

    X-ray photoelectron spectroscopy (XPS) is used in both a qualitative and quantitative fashion to study the Al(x)Ga(1-x)As alloy. Gallium and aluminum atoms are always bonded to the arsenic atom. As the concentration of Al increases, a notable shift in the As-3d level could be expected as Ga and Al both have different electronegativities. Spectra taken on molecular beam epitaxially grown samples do not show this shift in the As-3d core level. The composition of the films have been measured with an electron probe, and these results agree very well with the XPS quantitative data. Standard spectra are presented for films with x = 0.16, 0.23, 0.32, 0.46, and 0.65.

  9. Electronic Properties of Layered Oxides:. Pulsed Laser Deposition of YBCO Films for In-Situ Studies by Photoemission Spectroscopy

    Science.gov (United States)

    Pavuna, D.; Ariosa, D.; Berger, H.; Christensen, S.; Frazer, B.; Gatt, R.; Grioni, M.; Margaritondo, G.; Misra, S.; Onellion, M.; Schmauder, T.; Vobornik, I.; Xi, X.; Zacchigna, M.; Zwick, F.

    Due to imperfect surfaces of most cuprate samples, almost all Photoemission studies in the past decade were performed on Bi2Sr2CaCu2O8+x, even though a large fraction of other studies and electronic applications was reported for YBa2Cu3O7-δ (YBCO) family of superconducting compounds. In order to systematically study the gap parameter and the Fermi surface variation in high symmetry directions of YBCO and related oxide films we have constructed a new facility at the Wisconsin Synchrotron Radiation Center. We use the pulsed laser ablation (PLD) system that is directly linked to the photoemission chamber. In our unique approach, the samples never leave the controlled ambient and we oxidize our films, either by molecular oxygen or by ozone. In this paper, we, summarize some of the most relevant recent results on electronic properties of layered oxides and describe our new facility for the study of YBCO and related oxide films.

  10. Comment on ‘Electronic structure of Mo(1-x)Re x alloys studied through resonant photoemission spectroscopy’

    Science.gov (United States)

    Evans, Prescott; Dowben, P. A.

    2017-03-01

    Further analysis of the resonant photoemission data, found within Sundar et al (2016 J. Phys.: Condens. Matter 28 315502), show the intensities do not follow the elemental composition in the Mo1-x Re x alloy. Similar trends are observed in the published data for Gd1-x Ni x alloy films. The analysis of the resonant photoemission intensities suggests that Mo in the Mo1-x Re x alloy and Gd in the Gd1-x Ni x alloy have nearest neighbor bonds to Re and Ni respectively. This means the A-B bond is favored over the average of the A-A bond and the B-B bond in these binary alloys, so that the short range order favors strong local ordering rather than clustering alloys.

  11. Electronic structure of delta-Pu and PuCoGa[sub 3] from photoemission and the mixed level model

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J. J. (John Joseph); Wills, J. M. (John M.); Durakiewicz, T. (Tomasz); Butterfield, M. T. (Martin T.); Guziewicz, E. (Elzbieta); Sarrao, John L.,; Arko, A. J. (Aloysius J.); Moore, D. P. (David P.); Morales, L. A. (Luis A.); Eriksson, O. (Olle)

    2004-01-01

    The electronic structure of {delta}-phase Pu metal and the Pu-based superconductor PuCoGa{sub 5} is explored using photoelectron spectroscopy and a novel theoretical scheme. Excellent agreement between calculation and experiment defines a path forward for understanding electronic structure aspects of Pu-based materials. The photoemission results show two separate regions of 5f electron spectral intensity, one at the Fermi energy and another centered 1.2 eV below the Fermi level. A comparison is made between the photoemission data and five computational schemes for {delta}-Pu. The results for {delta}-Pu and PuCoGa{sub 5} indicate 5f electron behavior on the threshold between localized and itinerant and a broader framework for understanding the fundamental electronic properties of the Pu 5f levels in general within two configurations, one localized and one itinerant.

  12. Method to map one-dimensional electronic wave function by using multiple Brillouin zone angle resolved photoemission

    Directory of Open Access Journals (Sweden)

    Dong-Wook Lee

    2010-10-01

    Full Text Available Angle resolved photoemission spectroscopy (ARPES is a powerful tool to investigate electronic structures in solids and has been widely used in studying various materials. The electronic structure information by ARPES is obtained in the momentum space. However, in the case of one-dimensional system, we here show that we extract the real space information from ARPES data taken over multiple Brillouin zones (BZs. Intensities in the multiple BZs are proportional to the photoemission matrix element which contains information on the coefficient of the Bloch wave function. It is shown that the Bloch wave function coefficients can be extracted from ARPES data, which allows us to construct the real space wave function. As a test, we use ARPES data from proto-typical one-dimensional system SrCuO2 and construct the real space wave function.

  13. Structural and electronic properties of V2O3 ultrathin film on Ag(001): LEED and photoemission study

    Science.gov (United States)

    Kundu, Asish K.; Menon, Krishnakumar S. R.

    2016-05-01

    V2O3 ultrathin films were grown on Ag(001) substrate by reactive evaporation of vanadium (V) metal in presence of oxygen and their structural and electronic properties were studied by Low Energy Electron Diffraction (LEED), X-ray Photo Electron Spectroscopy (XPS) and Angle Resolved Photoemission Spectroscopic (ARPES) techniques, respectively. On top of square symmetry substrate Ag(001), hexagonal surface of V2O3 (0001) is stabilized in the form of two domain structure, rotated by 30°(or 90°)to each other, has been observed by LEED. Rather than epitaxial flat monolayer, formation of well-ordered V2O3 (0001) island has been confirmed from the LEED and the Photoemission Spectroscopic (PES) study. Stoichiometry of the grown film was confirmed by the XPS study. Evolution of valance band electronic structure of V2O3 (0001) surface has been studied as a function of film thickness by ARPES.

  14. Soft X-ray angle-resolved photoemission spectroscopy of heavily boron-doped superconducting diamond films

    Directory of Open Access Journals (Sweden)

    T. Yokoya, T. Nakamura, T. Matushita, T. Muro, H. Okazaki, M. Arita, K. Shimada, H. Namatame, M. Taniguchi, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada and T. Oguchi

    2006-01-01

    Full Text Available We have performed soft X-ray angle-resolved photoemission spectroscopy (SXARPES of microwave plasma-assisted chemical vapor deposition diamond films with different B concentrations in order to study the origin of the metallic behavior of superconducting diamond. SXARPES results clearly show valence band dispersions with a bandwidth of ~23 eV and with a top of the valence band at gamma point in the Brillouin zone, which are consistent with the calculated valence band dispersions of pure diamond. Boron concentration-dependent band dispersions near the Fermi level (EF exhibit a systematic shift of EF, indicating depopulation of electrons due to hole doping. These SXARPES results indicate that diamond bands retain for heavy boron doping and holes in the diamond band are responsible for the metallic states leading to superconductivity at low temperature. A high-resolution photoemission spectroscopy spectrum near EF of a heavily boron-doped diamond superconductor is also presented.

  15. Temperature-dependent photoemission features for overdoped Bi2Sr2CaCu2O8 + x cuprates

    Science.gov (United States)

    Rast, S.; Frazer, B. H.; Onellion, M.; Schmauder, T.; Abrecht, M.; Touzelet, O.; Berger, H.; Margaritondo, G.; Pavuna, D.

    2000-07-01

    We report temperature-dependent angle-resolved photoemission spectra for overdoped Bi2Sr2CaCu2O8 + x single-crystal samples. The data indicate that there is a special temperature (T+) where the spectral function changes intensity, and where the energy difference between the peak and dip features changes. The data also demonstrate that immediately above the superconducting transition temperature, the system exhibits a non-Lorentzian lineshape. We discuss implications of the data.

  16. Electronic properties of layered oxides: Pulsed laser deposition of YBCO films for in-situ studies by photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pavuna, D.; Ariosa, D. (Ecole Polytechnique, Lausanne (Switzerland)); Berger, H. (and others)

    1998-12-20

    Due to imperfect surfaces of most cuprate samples, almost all photoemission studies in the past decade were performed on Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub 8+x], even though a large fraction of other studies and electronic applications was reported for YBa[sub 2]Cu[sub 3]O[sub 7[minus][delta

  17. 镍金属的光电子光谱研究%Photoemission Studies of Metallic Nickel

    Institute of Scientific and Technical Information of China (English)

    江阳

    2002-01-01

    Photoemission experiments have been used to verify theoretical explanation for physical properties of many materials. For example, interesting properties of metallic nickel, i.e. seemingly contradictory nature between electrical conduction and magnetism, which is studied in this paper, could be explained by photoemission experiments. Through photoemission experiments, the 3d- 4s hybridization and very high density of 3d states can be demonstrated clearly. The hybridization results in the contribution of 3d holes to electrical conductivity and the high density of state gives rise to a very high effective mass. These findings verify theoretical explanation for poor electrical conductivity of metallic nickel. In addition, spin - polarized photoemission shows the existence of molecular field, which is the theoretical essence for ferromagnetism. The discrepancies between experimental and theoretical results are alsodiscussed in this paper.%光电子光谱实验对许多材料物理性质的理论解释给予了验证.对于镍金属的电导性与磁场性质给出了实验上的解释.通过试验,清楚的看出镍金属的3d-4s杂化及其非常高的3d态密度.由于杂化使得3d带的空穴参与了导电过程,而高的态密度使其具有极高的有效质量.这些发现都对镍金属弱导电性的理论解释做了支持.此外,从自旋-极化光电子光谱实验也显示了理论上对铁磁性本质解释一分子场(交换场)的存在.并讨论实验与理论结果的差异.

  18. IPTV-RM: A Resources Monitoring Architecture for P2P IPTV Systems

    OpenAIRE

    2012-01-01

    Resources monitoring is an important problem of the overall efficient usage and control of P2P IPTV systems. The resources of IPTV can include all distributing servers, programs and peers. Several researches have tried to address this issue, but most of them illuminated P2P traffic characterization, identification and user behavior. The main contributions of this paper are twofold. Firstly, a resources monitoring architecture for P2P IPTV systems, IPTV-RM, was presented based on previous work...

  19. In vitro phosphorylation and acetylation of the murine pocket protein Rb2/p130.

    Directory of Open Access Journals (Sweden)

    Muhammad Saeed

    Full Text Available The retinoblastoma protein (pRb and the related proteins Rb2/p130 and 107 represent the "pocket protein" family of cell cycle regulators. A key function of these proteins is the cell cycle dependent modulation of E2F-regulated genes. The biological activity of these proteins is controlled by acetylation and phosphorylation in a cell cycle dependent manner. In this study we attempted to investigate the interdependence of acetylation and phosphorylation of Rb2/p130 in vitro. After having identified the acetyltransferase p300 among several acetyltransferases to be associated with Rb2/p130 during S-phase in NIH3T3 cells in vivo, we used this enzyme and the CDK4 protein kinase for in vitro modification of a variety of full length Rb2/p130 and truncated versions with mutations in the acetylatable lysine residues 1079, 128 and 130. Mutation of these residues results in the complete loss of Rb2/p130 acetylation. Replacement of lysines by arginines strongly inhibits phosphorylation of Rb2/p130 by CDK4; the inhibitory effect of replacement by glutamines is less pronounced. Preacetylation of Rb2/p130 strongly enhances CDK4-catalyzed phosphorylation, whereas deacetylation completely abolishes in vitro phosphorylation. In contrast, phosphorylation completely inhibits acetylation of Rb2/p130 by p300. These results suggest a mutual interdependence of modifications in a way that acetylation primes Rb2/p130 for phosphorylation and only dephosphorylated Rb2/p130 can be subject to acetylation. Human papillomavirus 16-E7 protein, which increases acetylation of Rb2/p130 by p300 strongly reduces phosphorylation of this protein by CDK4. This suggests that the balance between phosphorylation and acetylation of Rb2/p130 is essential for its biological function in cell cycle control.

  20. Analysis and Design of Instant Message System Based on P2P

    Institute of Scientific and Technical Information of China (English)

    Shen Zhiwei; Ma Shaowu

    2008-01-01

    By analyzing current development conditions of mainstream Instant Message technologies and services, some detailed discussion about technical solution and formal operation deployment strategies of P2P Instant Message Services based on Interact is made. Several crucial problems of P2P Instant Message System about services management, interconnection with other instant message, security and profit-making mode are analyzed,, and how to develop P2P IM Services is proposed.

  1. OMAN - A Management Architecture for P2P Service Overlay Networks

    OpenAIRE

    Fiorese, Adriano; Simões, Paulo; Boavida, Fernando

    2010-01-01

    International audience; In a world where networking services are increasingly being provided by service overlay networks, management of these services at overlay level is becoming crucially important. This paper presents an architecture for services management in P2P Service Overlay Networks (SON). The architecture, named OMAN, takes into account the formation of the P2P SON comprising several different service providers belonging to several different network domains. It uses P2P mechanisms t...

  2. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2[times]1)CO/Ni(110) and the p(2[times]2)K/Ni(111) adsorption. For the dense p2mg(2[times]1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16[plus minus]2[degree] from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94[plus minus]0.02[Angstrom]. The first- to second-layer spacing of Ni is 1.27[plus minus]0.04[Angstrom], up from 1.10[Angstrom] for the clean Ni(110) surface, but close to the 1.25[Angstrom] Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20[Angstrom] and 15--23[degrees]) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16[Angstrom] and 19[degrees]. This yields an O-O distance of 2.95[Angstrom] for the two nearest CO molecules, (van der Waals' radius [approximately] 1.5 [Angstrom] for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2[times]2)K/Ni(111) overlayer, ARPEFS [chi](k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  3. Structural studies of molecular and metallic overlayers using angle- resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.

    1992-10-01

    Angle-resolved photoemission extended fine structure (ARPEFS) was used to study molecular and metallic overlayers on metal surfaces through analysis of p2mg(2{times}1)CO/Ni(110) and the p(2{times}2)K/Ni(111) adsorption. For the dense p2mg(2{times}1)CO/Ni(110) surface layer, photoemission intensities from C 1s level were measured in three directions at photoelectron kinetic energies 60-400 eV. Using multiple-scattering spherical-wave (MSSW) modeling, it was found that CO molecules are adsorbed on short-bridge sites, with adjacent CO along the [110] direction displaced alternatively in opposite directions towards the [001] azimuths to form a zigzag chain geometry. The tilt angle is 16{plus_minus}2{degree} from the surface normal for the direction linking the C atom and the center of the Ni bridge. The carbon C-Ni interatomic distance was determined to be 1.94{plus_minus}0.02{Angstrom}. The first- to second-layer spacing of Ni is 1.27{plus_minus}0.04{Angstrom}, up from 1.10{Angstrom} for the clean Ni(110) surface, but close to the 1.25{Angstrom} Ni interlayer spacing in the bulk. The C-O bond length and tilt angle were varied within small ranges (1.10--1.20{Angstrom} and 15--23{degrees}) in our MSSW simulations. Best agreement between experiment and simulations was achieved at 1.16{Angstrom} and 19{degrees}. This yields an O-O distance of 2.95{Angstrom} for the two nearest CO molecules, (van der Waals` radius {approximately} 1.5 {Angstrom} for oxygen). Two different partial-wave phase-shifts were used in MSSW, and structural results from both are in very good agreement. For the p(2{times}2)K/Ni(111) overlayer, ARPEFS {chi}(k) curves from K 1s level measured along [111] and [771] at 130K showed that the K atoms are preferentially adsorbed on the atop sites, in agreement with a LEED study of the same system.

  4. TCLM-P2P: Task Collaboration Logic Model Oriented to P2P Community%TCLM-P2P:面向P2P社区的任务协作逻辑模型

    Institute of Scientific and Technical Information of China (English)

    王杨; 王汝传; 严远亭; 韩志杰; 赵保华

    2012-01-01

    P2P网络中广泛存在的“free riding”现象使其在任务协作领域的应用受到了极大制约.为了实现P2P网络环境下的有效任务协作,提出了一种具有激励机制的任务协作逻辑模型.基于Agent理论,首先给出了对等体、半对等体、P2P社区等概念;然后在合同网的框架下提出了面向P2P网络社区的任务协作逻辑模型TCLM-P2P(task collaborative logic model oriented to P2P community).相对于传统的任务协作模型,在合理的前提假设条件下,模型给出了模型公理和协作规则.该模型通过基于虚拟积分的协作算法实现了具有激励机制的P2P网络中的任务分配与协作.原型系统的实现及仿真实验结果表明TCLM-P2P模型具有可行性和有效性:不仅能够激励自利节点主动参与到任务分配与协作中;同时也能在一定程度上抑制节点的free riding行为,从而保障了P2P系统的有序工作.%Traditional P2P networks mainly are applied to file sharing and instant message fields. However, how to perform the task collaboration based on P2P community is a challenging job. The former research work indicated that the task collaboration in P2P network had been greatly restricted by free riding behaviors. To realize effective task allocating and task collaborating in P2P network environment, this paper presents a task collaboration logic model oriented to P2P community. Based on agent and multi-agent theory, the paper firstly introduces some concepts including the peer body, half-peer body and P2P community; then the TCLM-P2P is presented including some collaboration axioms and rulers. In order to enhance the incentive mechanism, virtual score becomes the main goal which each peer endeavor pursues. In addition, based on the contract net protocol, a task collaboration algorithm is presented. The proposed algorithm is composed of two phases. One is the task collaboration and the other is the task second bid when some peers fail

  5. An Optimized and Improved Network Trust Model Based on P2P

    Directory of Open Access Journals (Sweden)

    Li Wei

    2013-10-01

    Full Text Available Because of the spring up of the P2P network application, its open, anonymous and self-organized characteristics has offered a path for the spreading of virus and junk data, and the security has aroused people’s common concern. The traditional network trust model dealt with dishonest node has certain limitation, for this, improved P2P network trust model and applied D-S evidence theory to the trusted computing of trust model. Through simulation experiment, the result showed: the improved P2P network trust model efficiently increased the successful trading rate of P2P network and improved the network environment

  6. Survey of Search and Replication Schemes in Unstructured P2P Networks

    CERN Document Server

    Thampi, Sabu M

    2010-01-01

    P2P computing lifts taxing issues in various areas of computer science. The largely used decentralized unstructured P2P systems are ad hoc in nature and present a number of research challenges. In this paper, we provide a comprehensive theoretical survey of various state-of-the-art search and replication schemes in unstructured P2P networks for file-sharing applications. The classifications of search and replication techniques and their advantages and disadvantages are briefly explained. Finally, the various issues on searching and replication for unstructured P2P networks are discussed.

  7. Phagocytes: A Holistic Defense and Protection Against Active P2P Worms

    OpenAIRE

    Chen, Ruichuan; Lua, Eng Keong; Crowcroft, Jon; Tang, Liyong; Chen, Zhong

    2011-01-01

    Active Peer-to-Peer (P2P) worms present serious threats to the global Internet by exploiting popular P2P applications to perform rapid topological self-propagation. Active P2P worms pose more deadly threats than normal scanning worms because they do not exhibit easily detectable anomalies, thus many existing defenses are no longer effective. We propose an immunity system with Phagocytes --- a small subset of elected P2P hosts that are immune with high probability and specialized in finding an...

  8. What Happened to P2P Systems? A Special Focus on Content Distribution Systems

    OpenAIRE

    Mohammad Fawzi, Ali

    2008-01-01

    Peer-to-Peer (P2P) technology has emerged as a new distributed computing paradigm. P2P technology attempts to "harness the powers of the edges of the Internet" by making efficient and effective use of peers (users) at the "edge" of the Internet, by direct interaction between peers of the system. P2P architecture has witnessed lots of interest and research in the latest years because of the popularity of file-sharing applications based on it. Content distribution is an essential P2P applicati...

  9. Research on P2P Overlay Network Model with Small-world Features

    OpenAIRE

    Liu, Hao; Chen, Zhigang

    2013-01-01

    Topology structure of P2P network decides its system performance. However, the existing P2P network models don’t take clustering and symmetry of nodes into account. Based on the algebra and graph theory method of Cayley graph, this paper proposes a novel P2P overlay network model with small-world features. Its simplicity and symmetry can ensure the self-organization and scalability of P2P network. The results of analysis and experiment shows that this model provides better robustness, h...

  10. Radiation transport in kinetic simulations and the influence of photoemission on electron current in self-sustaining discharges

    Science.gov (United States)

    Fierro, Andrew; Moore, Chris; Scheiner, Brett; Yee, Benjamin T.; Hopkins, Matthew M.

    2017-02-01

    A kinetic description for electronic excitation of helium for principal quantum number n ≤slant 4 has been included into a particle-in-cell (PIC) simulation utilizing direct simulation Monte Carlo (DSMC) for electron-neutral interactions. The excited electronic levels radiate state-dependent photons with wavelengths from the extreme ultraviolet (EUV) to visible regimes. Photon wavelengths are chosen according to a Voigt distribution accounting for the natural, pressure, and Doppler broadened linewidths. This method allows for reconstruction of the emission spectrum for a non-thermalized electron energy distribution function (EEDF) and investigation of high energy photon effects on surfaces, specifically photoemission. A parallel plate discharge with a fixed field (i.e. space charge neglected) is used to investigate the effects of including photoemission for a Townsend discharge. When operating at a voltage near the self-sustaining discharge threshold, it is observed that the electron current into the anode is higher when including photoemission from the cathode than without even when accounting for self-absorption from ground state atoms. The photocurrent has been observed to account for as much as 20% of the total current from the cathode under steady-state conditions.

  11. Three-dimensional bulk electronic structure of the Kondo lattice CeIn3 revealed by photoemission

    Science.gov (United States)

    Zhang, Yun; Lu, Haiyan; Zhu, Xiegang; Tan, Shiyong; Liu, Qin; Chen, Qiuyun; Feng, Wei; Xie, Donghua; Luo, Lizhu; Liu, Yu; Song, Haifeng; Zhang, Zhengjun; Lai, Xinchun

    2016-09-01

    We show the three-dimensional electronic structure of the Kondo lattice CeIn3 using soft x-ray angle resolved photoemission spectroscopy in the paramagnetic state. For the first time, we have directly observed the three-dimensional topology of the Fermi surface of CeIn3 by photoemission. The Fermi surface has a complicated hole pocket centred at the Γ-Z line and an elliptical electron pocket centred at the R point of the Brillouin zone. Polarization and photon-energy dependent photoemission results both indicate the nearly localized nature of the 4f electrons in CeIn3, consistent with the theoretical prediction by means of the combination of density functional theory and single-site dynamical mean-field theory. Those results illustrate that the f electrons of CeIn3, which is the parent material of CeMIn5 compounds, are closer to the localized description than the layered CeMIn5 compounds.

  12. Silane photoabsorption spectra mear the Si 2p thresholds:the geometry of Si 2p excited SiH4

    Institute of Scientific and Technical Information of China (English)

    张卫华; 李家明; 等

    2003-01-01

    Based on the multiple-scattering self-consistent-field method,we have studied the photoabsorption spectra near the Si 2p thresholds of silane,According to our calculations,the clear assignments of the inner-shell photoabsorption spectra are provided.In comparison with the high-resolution experimental spectra,the geometric structure of the Si 2p-excited SiH4 is recommended to be of a C2v symmetry.More specifically,the Si 2p-excited SiH4** have two bond lengths of 2.50 a.u. and another two bond lengths of 2.77 a.u.,and the corresponding two bond angles are 104.0° and 112.5° respectively.

  13. Institute of Information Network Technology%P2P-SIP融合及P2P-SIP系统设计

    Institute of Scientific and Technical Information of China (English)

    吴亮

    2010-01-01

    随着现代通信技术的不断发展,P2P(对等网络)技术与SIP(会话初始化协议)之间相互融合成为当前研究的一个热点.文章首先介绍了P2P技术和SIP协议,随后研究怎样将P2P架构与SIP系统进行融合,重点讨论了P2P-SIP的实现过程,包括P2P-SIP终端如何使用SIP协议携带P2P消息实现节点的发现、加入、离开和用户注册等过程.

  14. Correlation and relativistic effects in 2p photoelectron spectra of sodium atoms from the initial state 2{p}^{6}3p

    Science.gov (United States)

    Liu, Xiaobin; Shi, Yinglong; Xing, Yongzhong; Lu, Feiping; Chen, Zhanbin

    2017-02-01

    We investigate the 2p photoelectron spectra of sodium atoms with the initial state 2{p}63p at a photon energy of 54 eV. The analysis is performed based on the multi-configuration Dirac–Fock method. Special attention is given to the influences of correlation and relativistic effects on the spectra structures. To explore the nature and importance of such influences, calculations were performed based on detailed analyses of the thresholds, relative intensities and corresponding data calculated in the nonrelativistic limit.

  15. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes) junction for dye sensitized solar cells

    OpenAIRE

    Nguyen Huy Hao; Gobinda Gyawali; Tohru Sekino; Soo Wohn Lee

    2016-01-01

    The dye sensitized solar cell (DSSC), which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one containing a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double...

  16. Ultra-nonlocality in density functional theory for photo-emission spectroscopy.

    Science.gov (United States)

    Uimonen, A-M; Stefanucci, G; van Leeuwen, R

    2014-05-14

    We derive an exact expression for the photocurrent of photo-emission spectroscopy using time-dependent current density functional theory (TDCDFT). This expression is given as an integral over the Kohn-Sham spectral function renormalized by effective potentials that depend on the exchange-correlation kernel of current density functional theory. We analyze in detail the physical content of this expression by making a connection between the density-functional expression and the diagrammatic expansion of the photocurrent within many-body perturbation theory. We further demonstrate that the density functional expression does not provide us with information on the kinetic energy distribution of the photo-electrons. Such information can, in principle, be obtained from TDCDFT by exactly modeling the experiment in which the photocurrent is split into energy contributions by means of an external electromagnetic field outside the sample, as is done in standard detectors. We find, however, that this procedure produces very nonlocal correlations between the exchange-correlation fields in the sample and the detector.

  17. Electronic structure of Co-Ni-Ga Heusler alloys studied by resonant photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Baral, Madhusmita, E-mail: madhusmita@rrcat.gov.in; Banik, Soma, E-mail: madhusmita@rrcat.gov.in; Ganguli, Tapas, E-mail: madhusmita@rrcat.gov.in; Chakrabarti, Aparna, E-mail: madhusmita@rrcat.gov.in; Deb, S. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore-452013 (India); Thamizhavel, A. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Wadikar, Avinash; Phase, D. M. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452017 (India)

    2014-04-24

    The electronic structures of Co{sub 2.01}Ni{sub 1.05}Ga{sub 0.94} and Co{sub 1.76}Ni{sub 1.46}Ga{sub 0.78} Heusler alloys have been investigated by resonant photoemission spectroscopy across the 3p-3d transition of Co and Ni. For the Ni excess composition Co{sub 1.76}Ni{sub 1.46}Ga{sub 0.78}, the valence band peak shows a shift of 0.25 eV as compared to the near stoichiometric composition Co{sub 2.01}N1{sub 1.05}Ga{sub 0.94}. Also an enhancement is observed in the Ni related satellite features in the valence band for the Ni excess composition. Due to hybridization of Co and Ni 3d states in these systems, the Co and Ni 3p-3d resonance energies are found to be higher as compared to Co and Ni metals. Theoretical first principle calculation is performed to understand the features in the valence band and the shape of the resonance profile.

  18. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    Science.gov (United States)

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-01-01

    Spin–orbit interaction entangles the orbitals with the different spins. The spin–orbital-entangled states were discovered in surface states of topological insulators. However, the spin–orbital-entanglement is not specialized in the topological surface states. Here, we show the spin–orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin–orbit interaction. PMID:28232721

  19. CHEMISTRY OF SO{sub 2} ON MODEL METAL AND OXIDE CATALYSTS: PHOTOEMISSION AND XANES STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    RODRIGUEZ,J.A.; JIRSAK,T.; CHATURVEDI,S.; HRBEK,J.; FREITAG,A.; LARESE,J.Z.

    2000-07-09

    High-resolution synchrotron based photoemission and x-ray absorption spectroscopy have been used to study the interaction of SO{sub 2} with a series of metals and oxides. The chemistry of SO{sub 2} on metal surfaces is rich. At low coverages, the molecule fully decomposes into atomic S and O. At large coverages, the formation of SO{sub 3} and SO{sub 4} takes place. The following sequence was found for the reactivity of the metals towards SO{sub 2}: Pt {approx} Rh < Ru < Mo << Zn, Sn, Cs. Alloying can be useful for reducing the chemical affinity of a metal for SO{sub 2} and controlling S poisoning. Pd atoms bonded to Rh and Pt atoms bonded to Sn interact weakly with SO{sub 2}. In general, SO{sub 2} mainly reacts with the O centers of metal oxides. SO{sub 4} is formed on CeO{sub 2} and SO{sub 3} on ZnO. On these systems there is no decomposition of SO{sub 2}. Dissociation of the molecule is observed after introducing a large amount of Ce{sup 3+} sites in ceria, or after depositing Cu or alkali metals on the oxide surfaces. These promote the catalytic activity of the oxides during the destruction of SO{sub 2}.

  20. The band structure of VO2 measured by angle-resolved photoemission

    Science.gov (United States)

    Moreschini, Luca; Chang, Young Jun; Innocenti, Davide; Walter, Andrew L.; Kim, Young Su; Gaines, Geoffrey; Bostwick, Aaron; Denlinger, Jonathan; Rotenberg, Eli

    2011-03-01

    The origin of the 340K metal-insulator transition (MIT) in VO2 is still under debate. the main reason is that no direct experimental verifications of the electronic structure of VO2 exist up to this point. The quality of the available single crystals is not sufficient for ARPES measurements, so that photoemission is limited to angle-integrated mode. New opportunities are offered by oxide films, on which data of equal or even higher quality have been reported (Saeki et al., PRB 2009). WIth the in situ pulsed-laser-deposition (PLD) system available on beamline 7.0.1 at the Advanced Light Source we have grown VO2(001) films on a TiO2 substrate and measured the Fermi surface of the metallic phase. These results will permit a direct comparison with the existing band calculations and open the way to the study of the MIT as a function, e.g., of film thickness or electron doping with Cr. Work supported by U.S. DOE (DE-AC02-05CH11231 for ALS), the Max Planck Society, and the Swiss National Science Foundation (PBELP2-125484).

  1. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-c films

    Indian Academy of Sciences (India)

    Davor Pavuna; Daniel Ariosa; Dominique Cloetta; Claudia Cancellieri; Mike Abrecht

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (< 30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-c superconductors (HTSC) under different degrees of epitaxial (compressive vs. tensile) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≃ 15 nm thin La2-SrCuO4 (LSCO) films we almost double c to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under tensile strain exhibit the dispersion that is three-dimensional, yet c drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO2 plane, enhances the two-dimensional character of the dispersion and increases c, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO2 planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced c.

  2. High-resolution angle-resolved photoemission investigation of potassium and phosphate tungsten bronzes

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sanhita; Kumari, Spriha; Raj, Satyabrata, E-mail: raj@iiserkol.ac.in

    2016-04-15

    Highlights: • Electronic structure of potassium and phosphate tungsten bronzes. • Origin of transport anomalies in bronzes. • Flat segments of Fermi surfaces are connected by a nesting vector, q. • Nesting driven charge-density wave is responsible for the anomalies. - Abstract: We have performed high-resolution angle-resolved photoemission spectroscopy (ARPES) and density functional ab initio theoretical calculation to study the electronic structure of potassium (K{sub 0.25}WO{sub 3}) and phosphate (P{sub 4}W{sub 12}O{sub 44}) tungsten bronzes. We have experimentally determined the band dispersions and Fermi surface topology of these bronzes and compared with our theoretical calculations and a fair agreement has been seen between them. Our experimental as well as theoretical investigation elucidates the origin of transport anomalies in these bronzes. The Fermi surfaces of these bronzes consist of flat patches, which can be connected with each other by a constant nesting wave vector, q. The scattering wave vectors found from diffraction measurements match with these nesting vectors and the anomalies in the transport properties of these bronzes can be well explained by the evolution of charge-density wave with a partial nesting between the flat segments of the Fermi surfaces.

  3. Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects

    Science.gov (United States)

    Zhukovsky, Sergei V.; Babicheva, Viktoriia E.; Uskov, Alexander V.; Protsenko, Igor E.; Lavrinenko, Andrei V.

    2014-09-01

    We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step between the semiconductor layer and an adjacent transparent conductive oxide layer. We show that the presence of refractive index mismatch between media surrounding the nanoparticles disrupts the formation of a narrow absorption peak associated with the Rayleigh anomaly, so the role of collective lattice effects in the formation of plasmonic resonance is diminished. We also show that 5-20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon-based photodetectors and photovoltaic devices. The results may provide clues to designing an experiment where the contributions of surface and volume photoelectric effects to the overall photocurrent would be defined.

  4. New ambient pressure photoemission endstation at Advanced Light Source beamline 9.3.2

    KAUST Repository

    Grass, Michael E.

    2010-01-01

    During the past decade, the application of ambient pressure photoemission spectroscopy (APPES) has been recognized as an important in situ tool to study environmental and materials science, energy related science, and many other fields. Several APPES endstations are currently under planning or development at the USA and international light sources, which will lead to a rapid expansion of this technique. The present work describes the design and performance of a new APPES instrument at the Advanced Light Source beamline 9.3.2 at Lawrence Berkeley National Laboratory. This new instrument, Scienta R4000 HiPP, is a result of collaboration between Advanced Light Source and its industrial partner VG-Scienta. The R4000 HiPP provides superior electron transmission as well as spectromicroscopy modes with 16 μm spatial resolution in one dimension and angle-resolved modes with simulated 0.5° angular resolution at 24° acceptance. Under maximum transmission mode, the electron detection efficiency is more than an order of magnitude better than the previous endstation at beamline 9.3.2. Herein we describe the design and performance of the system, which has been utilized to record spectra above 2 mbar. © 2010 American Institute of Physics.

  5. Study of the P3HT/PCBM interface using photoemission yield spectroscopy

    Science.gov (United States)

    Grzibovskis, Raitis; Vembris, Aivars

    2016-04-01

    Photogeneration efficiency and charge carrier extraction from active layer are the parameters that determine the efficiency of organic photovoltaics (OPVs). Devices made of organic materials often consist of thin (up to 100nm) layers. At this thickness different interface effects become more pronounced. The electron affinity and ionization energy shift can affect the charge carrier transport across metal-organic interface which can affect the performance of the entire device. In the case of multilayer OPVs, energy level compatibility at the organic-organic interface is as important. Photoemission yield spectroscopy was used for organic-organic interface study by ionization energy measurements. In this work we studied "sandwich" type samples of two well-known organic photovoltaic materials- poly(3- hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Ionization energy changes at the P3HT/PCBM interface depending on PCBM layer thickness were studied. P3HT layer was obtained by spin-coating while PCBM was deposited on the P3HT by thermal evaporation in vacuum. No ionization energy shift of P3HT was observed. On the contrary, PCBM at the interface with P3HT created additional 0.40eV barrier for hole transport from PCBM to P3HT.

  6. Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene

    Science.gov (United States)

    Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.

  7. Photon energy dependence of angle-resolved photoemission spectroscopy in graphene

    Science.gov (United States)

    Ayria, Pourya; Nugraha, Ahmad R. T.; Hasdeo, Eddwi H.; Czank, Thomas R.; Tanaka, Shin-ichiro; Saito, Riichiro

    2015-11-01

    The photon energy dependence of angle-resolved photoemission spectroscopy (ARPES) in graphene is investigated experimentally and theoretically. By applying light with energy of around 46 eV , we found an unexpected increase in the ARPES relative intensity of graphene for the p branch (ARPES spectra brightened by the p -polarized light) with respect to the s branch (those brightened by the s -polarized light). The origin of the enhanced p -branch intensity is explained by first-principles calculations, in which we show (1) the optical dipole vector as a function of final-state energies of the excited electron, (2) the absorption intensity as a function of the incident light angle, and (3) the symmetry of the initial and the final states. The calculated results imply that the dipole vector of the excited electron near 46 eV has an exceptionally large component in the normal direction of the graphene surface compared to that within the graphene plane, which could be the main reason for the enhancement of the p -branch intensity.

  8. Growth and photoemission spectroscopic studies of ultrathin noble metal films on graphite

    Indian Academy of Sciences (India)

    S K Mahatha; Krishnakumar S R Menon

    2015-06-01

    Growth of Cu, Ag and Au thin films on graphite(0 0 0 1)surface and possible formation of quantum well (QW) states originating due to the confinement of thin film sp electrons within the band gap of graphite along M symmetry direction are investigated using low-energy electron diffraction (LEED) and angle-resolved photoemission spectroscopy (ARPES). Higher surface diffusivity and surface energy of Cu on graphite surface led to cluster growth and does not reveal any quantum size effect, while Ag and Au films grow epitaxially in spite of large lattice mismatch. However, better surface ordering has been achieved by growing Ag and Au at low temperature (LT), followed by room-temperature (RT) annealing which are evident from LEED and the presence of sharp Shockley-type surface state (SS) at Fermi level (F). ARPES study of Ag films on graphite does not show any QW states, whereas Au films demonstrate a very sharp SS, Au bulk bands and well-resolved QW states or resonances. The observed low in-plane dispersions of these Au QW states or resonances are compared with the dispersions obtained in the previous Au QW state studies as well as for free-standing Au films.

  9. Spin-polarized photoemission study on the temperature dependence of the exchange splitting of Ni

    Science.gov (United States)

    Raue, R.; Hopster, H.; Clauberg, R.

    1984-06-01

    Using spin-polarized photoemission with high energy- and angle resolution (Δ E=100 meV, ΔΘ=±3°) we have investigated the temperature dependence of the exchange splitting of Ni in the temperature range 0.5≦ T/T c≦0.94. At room temperature we find Δ ex=0.18 eV for the exchange splitting of the S 4 band at the X point of the Brillouin zone. With increasing temperature the total (spin-averaged) energy distribution shows a narrowing and merges into one peak. The spin-resolved energy distribution curves approach each other and are strongly broadened. A discussion of the data within current theories of itinerant electron magnetism is given. The spectra indicate that neither the pure Stoner model nor the prediction of local band theory, assuming a temperature independent exchange splitting are justified for Ni. We conclude that the exchange splitting decreases with increasing temperature and that transverse as well as longitudinal spin fluctuations are responsible for the broadening of the spin-resoived energy distribution curves.

  10. Understanding the Unique Electronic Properties of Nano Structures Using Photoemission Theory.

    Science.gov (United States)

    Kwon, Soonnam; Choi, Won Kook

    2015-12-04

    Newly emerging experimental techniques such as nano-ARPES are expected to provide an opportunity to measure the electronic properties of nano-materials directly. However, the interpretation of the spectra is not simple because it must consider quantum mechanical effects related to the measurement process itself. Here, we demonstrate a novel approach that can overcome this problem by using an adequate simulation to corroborate the experimental results. Ab initio calculation on arbitrarily-shaped or chemically ornamented nano-structures is elaborately correlated to photoemission theory. This correlation can be directly exploited to interpret the experimental results. To test this method, a direct comparison was made between the calculation results and experimental results on highly-oriented pyrolytic graphite (HOPG). As a general extension, the unique electronic structures of nano-sized graphene oxide and features from the experimental result of black phosphorous (BP) are disclosed for the first time as supportive evidence of the usefulness of this method. This work pioneers an approach to intuitive and practical understanding of the electronic properties of nano-materials.

  11. The study of transition metal surfaces and thin films with inverse photoemission and scanning tunnelling microscopy

    CERN Document Server

    Wilson, L K

    1997-01-01

    clean Cr(001) and the thick films. This suggests that hybridisation between the substrate bands and the film bands and interface induced states are significant. The spectra taken from sub-monolayer coverages of Fe show marked intensity increase at the Fermi energy, this is a feature of LDOS calculations on Fe atoms at the Fe/Cr interface. Fe growth on surfaces of Cu(100) precovered with c(2x2)N has been studied with scanning tunnelling microscopy. The images show that the Fe does not grow on areas covered with nitrogen. Two different c(2x2)N templates have been used and the shape and size of the Fe islands is seen to be altered. The unoccupied electronic states at the surface of Cr(001) have been observed using k-resolved inverse photoemission. Normal incidence IPE spectra have been taken over a range of incident electron energies (14-24 eV). The spectra show only small variation with incident energy, this is attributed to densities of states effects due to the absence of symmetry allowed initial states at th...

  12. Band alignments in Fe/graphene/Si(001) junctions studied by x-ray photoemission spectroscopy

    Science.gov (United States)

    Le Breton, J.-C.; Tricot, S.; Delhaye, G.; Lépine, B.; Turban, P.; Schieffer, P.

    2016-08-01

    The control of tunnel contact resistance is of primary importance for semiconductor-based spintronic devices. This control is hardly achieved with conventional oxide-based tunnel barriers due to deposition-induced interface states. Manipulation of single 2D atomic crystals (such as graphene sheets) weakly interacting with their substrate might represent an alternative and efficient way to design new heterostructures for a variety of different purposes including spin injection into semiconductors. In the present paper, we study by x-ray photoemission spectroscopy the band alignments and interface chemistry of iron-graphene-hydrogenated passivated silicon (001) surfaces for a low and a high n-doping concentration. We find that the hydrogen passivation of the Si(001) surface remains efficient even with a graphene sheet on the Si(001) surface. For both doping concentrations, the semiconductor is close to flat-band conditions which indicates that the Fermi level is unpinned on the semiconductor side of the Graphene/Si(001):H interface. When iron is deposited on the graphene/Si(001):H structures, the Schottky barrier height remains mainly unaffected by the metallic overlayer with a very low barrier height for electrons, a sought-after property in semiconductor based spintronic devices. Finally, we demonstrate that the graphene layer intercalated between the metal and semiconductor also serves as a protection against iron-silicide formation even at elevated temperatures preventing from the formation of a Si-based magnetic dead layer.

  13. Surface photovoltage investigation of gold chains on Si(111) by two-photon photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Sebastian; Biedermann, Kerstin; Fauster, Thomas [Lehrstuhl fuer Festkoerperphysik, Universitaet Erlangen-Nuernberg, Staudtstr. 7, D-91058 Erlangen (Germany)

    2011-07-01

    We present surface photovoltage measurements on Si(111)-(7 x 7) with monoatomic gold chains. The gold coverage was varied between zero and 0.6 ML, where the Si(111)-(5 x 2)-Au reconstruction covers the surface completely. During the two-photon photoemission experiments the p- or n-doped samples were illuminated by infrared (IR, E{sub IR}=1.55 eV) and ultraviolet (UV, E{sub UV}=4.65 eV) laser pulses. For all coverages the photovoltage was determined for sample temperatures of 90 K and 300 K by variation of the IR and UV laser power. P-doped as well as n-doped Si(111) wafers show a linear dependence of the photovoltage on gold coverage. This stands in contrast to scanning tunneling spectroscopy measurements, which show a coverage-independent photovoltage over a wide coverage range for n-doped wafers. While for p-doped wafers our experimentally determined photovoltage is in agreement with previous reports, for n-doped wafers the observed values are lower than expected.

  14. Two-photon photoemission investigation of electronic and dynamical properties of alkali atoms adsorbed on noble metal surfaces

    Science.gov (United States)

    Sametoglu, Vahit

    We present a systematic time-resolved two-photon photoemission study of the electronic and dynamical properties of Li through Cs adsorbed on Cu(111) and Ag(111) surfaces. A fundamental problem in surface science is how to describe the electronic structure of a chemisorption interface based on the intrinsic properties of the interacting materials. Because of their simple s-electron structure, elements of the alkali atom group comprise paradigmatic adsorbates in many theories of chemisorption, whereas the complementary experimental studies are sparse and incomplete. Through a combination of spectroscopic and femtosecond time-resolved surface measurements, we are able to probe systematically the binding energies, symmetries, and electron and nuclear relaxation dynamics of the initially unoccupied alkali atom resonances. As a prelude, we study the two-photon photoemission process occurring at the bare Ag(111) surface. We develop a quantitative model for two-photon photoemission process, where the nonresonant and k-dependent two-photon absorption between the lower and upper sp-bands is modeled by the optical Bloch equations, and the angle-dependent intensities are described by the Fresnel equations. Our two-photon photoemission spectra of Li through Cs chemisorbed Cu(111) and Ag(111) surfaces reveal two resonances with the m = 0 and m = +/-1 symmetry ('m' is the projection of the orbital angular momentum 'l' onto the surface plane). For the m = 0 resonance, which is derived from the hybridization of the ns and npz orbitals of alkali atoms, we find a binding energy of 1.84--1.99 eV below the vacuum level, which is independent of the alkali atom period, and tunes with coverage in a universal manner. At 0.3--0.7 eV higher energy, we discover and identify the m = +/-1 resonance by its characteristic angular intensity distribution, which derives from the antisymmetry of the npx and npy orbitals. We implement a quantitative model for the alkali atom chemisorption based on the

  15. HFBP: Identifying P2P Traffic by Host Level and Flow Level Behavior Profiles

    Directory of Open Access Journals (Sweden)

    Jinghua Yan

    2013-08-01

    Full Text Available Recently, Peer-to-peer (P2P networks have been widely applied in streaming media, instant messaging, file sharing and other fields, which have occupied more and more network bandwidth. Accurately identify P2P traffic is very important to management and control P2P traffic. In this paper, we introduce HFBP, a novel P2P identification scheme based on the host level and flow level behavior profiles of P2P traffic. HFBP consists of two stages. In the first stage, we calculate the probability that a host takes part in P2P application by matching its behavior with some host level behavior rules. In the second stage, we compute the probability that a flow belonging to P2P application by comparing the statistical features of each flow in the host with several flow feature profiles. We evaluate HFBP using real traffic traces. The identification accuracy achieves 93.1% and 95.1% in terms of flow and byte respectively. The experimental results prove that HFBP obtains satisfactory performance in identifying P2P traffic. 

  16. Phagocytes: A Holistic Defense and Protection Against Active P2P Worms

    CERN Document Server

    Chen, Ruichuan; Crowcroft, Jon; Tang, Liyong; Chen, Zhong

    2011-01-01

    Active Peer-to-Peer (P2P) worms present serious threats to the global Internet by exploiting popular P2P applications to perform rapid topological self-propagation. Active P2P worms pose more deadly threats than normal scanning worms because they do not exhibit easily detectable anomalies, thus many existing defenses are no longer effective. We propose an immunity system with Phagocytes --- a small subset of elected P2P hosts that are immune with high probability and specialized in finding and "eating" worms in the P2P overlay. The Phagocytes will monitor their managed P2P hosts' connection patterns and traffic volume in an attempt to detect active P2P worm attacks. Once detected, local isolation, alert propagation and software patching will take place for containment. The Phagocytes further provide the access control and filtering mechanisms for communication establishment between the internal P2P overlay and the external hosts. We design a novel adaptive and interaction-based computational puzzle scheme at ...

  17. Data of evolutionary structure change: 1BFGA-2P23A [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1BFGA-2P23A 1BFG 2P23 A A ---DPKRLYC-KNGG---FFLRIHPDGRVDGVREKSDPH.../confEVID> 0 1BFG A 1BFG...dex> 1BFG A 1BFGA GS...4 HIS CA 324 SER CA 410 LEU CA 389 1BFG... A 1BFGA GVREKSDPHIK

  18. 29 CFR 1917.22 - Hazardous cargo 2 (See § 1917.2(p)).

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hazardous cargo 2 (See § 1917.2(p)). 1917.22 Section 1917.22 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1917.2(p)). 2 The Department of Transportation and the United States Coast Guard apply...

  19. Data of evolutionary structure change: 1ACMA-2P2GA [Confc[Archive

    Lifescience Database Archive (English)

    Full Text Available 1ACMA-2P2GA 1ACM 2P2G A A ANPLYQKHIISINDLSRDDLNLVLATAAKLKANP-QPEL...HHHHH EEE HHHH HHHHHHHHHHHHHHHHHHHH --- 0 1ACM... A 1ACMA ELLKH-KV...256007194519 1 1ACM... A 1ACMA DMLDE----KGI

  20. 2p3d Resonant X-ray emission spectroscopy of cobalt compounds

    NARCIS (Netherlands)

    van Schooneveld, M.M.

    2013-01-01

    This manuscript demonstrates that 2p3d resonant X-ray emission spectroscopy (RXES) yields unique information on the chemically relevant valence electrons of transition metal atoms or ions. Experimental data on cobalt compounds and several theories were used hand-in-hand. In chapter 1 2p3d RXES was s

  1. 基于爬行器的大规模P2P IPTV测量%Crawler-Based Measurement of Large Scale P2P IPTV Systems 

    Institute of Scientific and Technical Information of China (English)

    姜志宏; 王晖; 樊鹏翼

    2011-01-01

    为了解大规模P2P IPTV系统中的用户行为特征和拓扑结构特征等内在信息,开发和部署了一个多协议P2P IPTV爬行器TVCrawer,对3个主流的P2P IPTV系统--PPLive,PPStream和UUSee进行了大量的主动测量,并对P2P IPTV系统中的用户行为和网络拓扑特征进行了分析和比较.主要发现包括:1)P2P IPTV系统的频道在线人数中,有一半以上位于不可达的NAT或者防火墙后面;2)节点动态性的波动范围随频道人数的增加而增加,但是其取值范围具有幂律上限;3)节点会话长度符合广延指数分布;4)PPLive的入度分布属于具有指数截断的幂次分布,PPStream的入度表现为某种分段幂律函数,UUSee的入度接近威布尔分布;5)P2P IPTV系统都是异配网络;6)P2P IPTV系统都表现为小世界网络;7)PPLive网络具有聚类特征,而PPStream和UUSee则不存在明显聚类特征;8)3个系统都表现出类似于无标度网络的鲁棒性特征,而与其他两个系统比较时,PPLive具有更高的故障容错性和更明显的攻击脆弱性.这些测量研究和发现不仅有助于设计出更符合真实网络应用环境的系统或协议,也是实现对P2P IPTV进行监测,引导,控制等方面的重要依据和基础.%In order to gain insight on the topology characteristics of P2P IPTV systems and their online user behavior characteristics, This paper develop and deploys a multiprotocol P2P IPTV network crawler, called TVCrawler, which enables users to launch an in-depth measurement and comparative research for several well-known P2P IPTV systems, including PPLive, PPStream, and UUSee. This paper presents results from experiments and research efforts on these large-scale P2P IPTV overlay graphs. Major findings include 1) more than 50% of online users are unreachable because they lie behind NAT or firewall; 2) fluctuation range of churn increases with thc increase of the population of channel, and there exists a power-law upper bound for

  2. SPF-A*: Searching Multimedia Data in Heterogeneous Mobile P2P Network

    Directory of Open Access Journals (Sweden)

    Fan Ye

    2009-04-01

    Full Text Available Mobile P2P (MP2P network has been widely used in everyday life combined with the wireless technology development. However, most previous works concentrate on the assumption that the mobile peers are identical of their inner properties in compositing a MP2P network. However, in current network environment, heterogeneous devices are widely used; they may have different storage sizes, data transmission rate, processing ability and even security levels. In such kind of MP2P Network environment, how to make data transmission effectively is challenge. In this paper, we concentrate on how to effectively obtain a queried multimedia resource and generate a path for such data transmission on the overlay MP2P network, so as to make the resource more effectively transmit among the heterogeneous peers. A new path generating algorithm called SPF-A* (Super Peer First A* is devised, and simulation studies are conducted to validate our proposal.

  3. Solid state synthesis and characterization of iron(Ⅱ)pyrophosphate Fe2P2O7

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Offwhite pure Fe2P2O7 was synthesized through solid phase reaction using Fe2O3 and NH4H2PO4 in argon atmosphere. The reaction products of Fe2O3 and NH4H2PO4 at a series of temperatures from 400 to 900 ℃ were characterized by XRD. Comparison and analysis of XRD patterns of resultant products indicated well-crystallized Fe2P2O7 could be obtained over 630 ℃ and Fe2P2O7 prepared at 700 ℃ was triclinic in cell type. Comparison of the cell parameters proved that the as-prepared Fe2P2O7 belonged to β-Fe2P2O7 in crystal phase and SEM showed its size distribution was 0.5-2 μm.

  4. A Free-Rider Forecasting Model Based on Gray System Theory in P2P Networks

    Directory of Open Access Journals (Sweden)

    He Xu

    2012-11-01

    Full Text Available The aim of this study is to forecast the number of free-riders in P2P networks which can help network managers to know the status of the networks in advance and take appropriate measures to cope with free-riding behavior. Free-riding behavior is common in P2P networks, which has a negative impact on the robustness, availability and stability of the networks. Severe free-riding behavior may lead to the crash of the whole P2P application system. Based on the research of free-riding behavior in P2P networks, this paper constructs a free-rider forecasting model (GST model using Gray System Theory. Simulation experiments show that this model has high feasibility, and can carry out reasonable predictions on the number of free-riders in P2P networks.

  5. Computing and Routing for Trust in Structured P2P Network

    Directory of Open Access Journals (Sweden)

    Biao Cai

    2009-09-01

    Full Text Available Study of trust in P2P network now is focus on how to effectively against various malicious behaviors such as providing fake or misleading feedback about other peers and the management of trust in a P2P environment. But the scotoma of portability that trust peer can join (leave a certain P2P network at anytime and anywhere is seldom discussed. In this paper, a structured topology for trusts management in portable P2P network based on DHT (discrete hash table is proposed first, in which includes trust management strategies and peer operations on certain DHT circle. After that, a novel trust-computing model for the structured P2P network and the main trust decisions in the structured network are introduced too. Effectiveness and practicality of the proposed trust management have been showed in simulation experiments at the end.

  6. A Trust Scheme Based DRM Model for P2P System

    Institute of Scientific and Technical Information of China (English)

    XIAO Shangqin; LU Zhengding; LING Hefei; ZOU Fuhao

    2006-01-01

    With the maturation of P2P technology, there are more and more challenges to the protection of digital rights.DRM for traditional Client/Server model can not satisfy the requirement of digital right protection of P2P network.With practical application of P2P network technology and new generational DRM technology, the article proposes a DRM model for P2P system based on trust degree.The proposed model shares the secret key to the trusty peers and affords necessary security ensure for digital content delivery based on P2P technology.Mathematic analyses and simulations show that, compared to the current DRM model, the proposed model is more robust toleration of transmit and security.

  7. Research on P2P Overlay Network Model with Small-world Features

    Directory of Open Access Journals (Sweden)

    Hao LIU

    2013-09-01

    Full Text Available Topology structure of P2P network decides its system performance. However, the existing P2P network models don’t take clustering and symmetry of nodes into account. Based on the algebra and graph theory method of Cayley graph, this paper proposes a novel P2P overlay network model with small-world features. Its simplicity and symmetry can ensure the self-organization and scalability of P2P network. The results of analysis and experiment shows that this model provides better robustness, higher enquiry efficiency and better load balance than the existing P2P Overlay Network models such as Chord and CAN. Furthermore, it possesses the property of high clustering.

  8. Convergence of Internet and TV: The Commercial Viability of P2P Content Delivery

    Science.gov (United States)

    de Boever, Jorn

    The popularity of (illegal) P2P (peer-to-peer) file sharing has a disruptive impact on Internet traffic and business models of content providers. In addition, several studies have found an increasing demand for bandwidth consuming content, such as video, on the Internet. Although P2P systems have been put forward as a scalable and inexpensive model to deliver such content, there has been relatively little economic analysis of the potentials and obstacles of P2P systems as a legal and commercial content distribution model. Many content providers encounter uncertainties regarding the adoption or rejection of P2P networks to spread content over the Internet. The recent launch of several commercial, legal P2P content distribution platforms increases the importance of an integrated analysis of the Strengths, Weaknesses, Opportunities and Threats (SWOT).

  9. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes) junction for dye sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    Nguyen Huy Hao; Gobinda Gyawali; Tohru Sekino; Soo Wohn Lee

    2016-01-01

    The dye sensitized solar cell (DSSC), which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one con-taining a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double layer structure was a significant improvement in comparison to the DSSC consisting of only a single film layer. The addition of TiO2-P25 in the top layer caused an improvement in the adsorption of dye molecules on the film rather than on the TiO2 nanotubes only. The presence of the TiO2 nanotubes together with TiO2-P25 in the top layer revealed the enhancement in harvesting the incident light and an improvement of electron transport through the film.

  10. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes junction for dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Hao

    2016-08-01

    Full Text Available The dye sensitized solar cell (DSSC, which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one containing a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double layer structure was a significant improvement in comparison to the DSSC consisting of only a single film layer. The addition of TiO2-P25 in the top layer caused an improvement in the adsorption of dye molecules on the film rather than on the TiO2 nanotubes only. The presence of the TiO2 nanotubes together with TiO2-P25 in the top layer revealed the enhancement in harvesting the incident light and an improvement of electron transport through the film.

  11. Functional Diversification of Fungal Glutathione Transferases from the Ure2p Class

    Directory of Open Access Journals (Sweden)

    Anne Thuillier

    2011-01-01

    Full Text Available The glutathione-S-transferase (GST proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to correlate the sequence diversity with the functional diversity of these glutathione transferases. The results show that among the nine isoforms found in P. chrysosporium, two belonging to Ure2pA subclass are exclusively expressed at the transcriptional level in presence of polycyclic aromatic compounds. Moreover, we have highlighted differential catalytic activities and substrate specificities between Ure2pA and Ure2pB isoforms. This diversity of sequence and function suggests that fungal Ure2p sequences have evolved rapidly in response to environmental constraints.

  12. Functional diversification of fungal glutathione transferases from the ure2p class.

    Science.gov (United States)

    Thuillier, Anne; Ngadin, Andrew A; Thion, Cécile; Billard, Patrick; Jacquot, Jean-Pierre; Gelhaye, Eric; Morel, Mélanie

    2011-01-01

    The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to correlate the sequence diversity with the functional diversity of these glutathione transferases. The results show that among the nine isoforms found in P. chrysosporium, two belonging to Ure2pA subclass are exclusively expressed at the transcriptional level in presence of polycyclic aromatic compounds. Moreover, we have highlighted differential catalytic activities and substrate specificities between Ure2pA and Ure2pB isoforms. This diversity of sequence and function suggests that fungal Ure2p sequences have evolved rapidly in response to environmental constraints.

  13. Automated Simulation P2P Botnets Signature Detection by Rule-based Approach

    Directory of Open Access Journals (Sweden)

    Raihana Syahirah Abdullah

    2016-08-01

    Full Text Available Internet is a most salient services in communication. Thus, companies take this opportunity by putting critical resources online for effective business organization. This has given rise to activities of cyber criminals actuated by botnets. P2P networks had gained popularity through distributed applications such as file-sharing, web caching and network storage whereby it is not easy to guarantee that the file exchanged not the malicious in non-centralized authority of P2P networks. For this reason, these networks become the suitable venue for malicious software to spread. It is straightforward for attackers to target the vulnerable hosts in existing P2P networks as bot candidates and build their zombie army. They can be used to compromise a host and make it become a P2P bot. In order to detect these botnets, a complete flow analysis is necessary. In this paper, we proposed an automated P2P botnets through rule-based detection approach which currently focuses on P2P signature illumination. We consider both of synchronisation within a botnets and the malicious behaviour each bot exhibits at the host or network level to recognize the signature and activities in P2P botnets traffic. The rule-based approach have high detection accuracy and low false positive.

  14. Bandwidth Reduction via Localized Peer-to-Peer (P2P Video

    Directory of Open Access Journals (Sweden)

    Ken Kerpez

    2010-01-01

    Full Text Available This paper presents recent research into P2P distribution of video that can be highly localized, preferably sharing content among users on the same access network and Central Office (CO. Models of video demand and localized P2P serving areas are presented. Detailed simulations of passive optical networks (PON are run, and these generate statistics of P2P video localization. Next-Generation PON (NG-PON is shown to fully enable P2P video localization, but the lower rates of Gigabit-PON (GPON restrict performance. Results here show that nearly all of the traffic volume of unicast video could be delivered via localized P2P. Strong growth in video delivery via localized P2P could lower overall future aggregation and core network bandwidth of IP video traffic by 58.2%, and total consumer Internet traffic by 43.5%. This assumes aggressive adoption of technologies and business practices that enable highly localized P2P video.

  15. P2 P 网络借贷的运营与法律监管%Regulation on Online P2P Lending

    Institute of Scientific and Technical Information of China (English)

    樊云慧

    2014-01-01

    The rapid development of online person -to -person lending poses great challenge to its regula-tion.In the United States ,the current regulatory structure for online P 2 P lending involves multiple overseeing agen-cies including the United States Securities and Exchange Commission , various federal bank regulators , the Consum-er Financial Protection Bureau and the state counterparts of all these entities .Under this system , the protection on lenders mainly depends on the securities regulation .From April 2014, P2P lending came under the regulatory man-date of the Financial Conduct Authority.Our country hasn’t started regulation on online P2P lending.Due to the public interests it involves , the necessity for online P2P lending to prevent risk and develop healthily requires its regulation as soon as possible .The sphere of online P2P lending is similar to financial business , so it should be regulated by financial regulatory agency .Under the current financial regulation system in China ,banking regulatory commission should be the authority to regulate on online P 2P lending.%P2P网络借贷的迅猛发展给监管带来了巨大的挑战。在美国,P2P网络借贷实行由证券监管部门、银行监管部门、金融消费者保护局等多个部门共同监管的分散监管体制,对投资者的保护主要是通过证券监管实现的。英国自2014年4月起将P2P网络借贷纳入金融行为局( FCA)的监管范畴。我国尚未对P2P网络借贷予以监管,但P2P行业因涉及公众利益,出于风险防范和其健康发展的需要,监管问题必须尽快予以解决。由于P2 P借贷公司从事的是类金融业务,故应由监管金融业务的机构予以监管。在我国现行的金融监管体制下,对P2 P网络借贷实行统一监管的机构应为银监会。

  16. Functional Diversification of Fungal Glutathione Transferases from the Ure2p Class

    OpenAIRE

    Anne Thuillier; Ngadin, Andrew A.; Cécile Thion; Patrick Billard; Jean-Pierre Jacquot; Eric Gelhaye; Mélanie Morel

    2011-01-01

    The glutathione-S-transferase (GST) proteins represent an extended family involved in detoxification processes. They are divided into various classes with high diversity in various organisms. The Ure2p class is especially expanded in saprophytic fungi compared to other fungi. This class is subdivided into two subclasses named Ure2pA and Ure2pB, which have rapidly diversified among fungal phyla. We have focused our analysis on Basidiomycetes and used Phanerochaete chrysosporium as a model to c...

  17. A Simple FSPN Model of P2P Live Video Streaming System

    OpenAIRE

    Kotevski, Zoran; Mitrevski, Pece

    2011-01-01

    Peer to Peer (P2P) live streaming is relatively new paradigm that aims at streaming live video to large number of clients at low cost. Many such applications already exist in the market, but, prior to creating such system it is necessary to analyze its performance via representative model that can provide good insight in the system’s behavior. Modeling and performance analysis of P2P live video streaming systems is challenging task which requires addressing many properties and issues of P2P s...

  18. Mobility Impact in Initializing Ring-Based P2P Systems over MANETs

    Directory of Open Access Journals (Sweden)

    Wei Ding

    2008-10-01

    Full Text Available With the encouragement from success of P2P systems in real world application, recently we have seen active research on synergy of P2P systems and mobile ad hoc networks. The paper proposes a solution for mobility disturbance problem in initialization of ring-based P2P systems over ad hoc networks. It is a decentralized ring construction protocol in presence of mobility. A Mobile Ring Ad-hoc Networks (MRAN protocol is presented. MRAN is an extension of RAN [1] under the mobile condition. Simulation result shows MRAN works well with mobility. Upper bound of maximum speed of moving nodes is investigated in simulation.

  19. Nodal Quasiparticle Meltdown in Ultra-High Resolution Pump-Probe Angle-Resolved Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Jeff; Jozwiak, Chris; Smallwood, Chris L.; Eisaki, H.; Kaindl, Robert A.; Lee, Dung-Hai; Lanzara, Alessandra

    2011-06-03

    High-T{sub c} cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antin- odal quasiparticle excitations appear only below T{sub c}, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to T{sub c}. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} . We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity. The electronic structures of high-Tc cuprates are strongly momentum-dependent. This is one reason why the momentum-resolved technique of angle-resolved photoemission spectroscopy (ARPES) has been a central tool in the field of high-temperature superconductivity. For example, coherent low energy excitations with momenta near the Brillouin zone face, or antinodal quasiparticles (QPs), are only observed below T{sub c} and have been linked to superfluid density. They have therefore been the primary focus of ARPES studies. In contrast, nodal QPs, with momenta along the Brillouin zone diagonal, have received less attention and are usually regarded as largely immune to the superconducting transition because they seem insensitive to perturbations such as disorder, doping, isotope exchange, charge ordering, and temperature. Clearly

  20. Uranium passivation by C+ implantation: a photoemission and secondary ion mass spectrometry study

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Felter, T E; Wu, K J; Evans, C; Ferreira, J; Siekhaus, W; McLean, W

    2005-01-20

    Implantation of 33 keV C{sup +} ions into polycrystalline U{sup 238} with a dose of 4.3 x 10{sup 17} cm{sup -2} produces a physically and chemically modified surface layer that prevents further air oxidation and corrosion. X-ray photoelectron spectroscopy and secondary ion mass spectrometry were used to investigate the surface chemistry and electronic structure of this C{sup +} ion implanted polycrystalline uranium and a non-implanted region of the sample, both regions exposed to air for more than a year. In addition, scanning electron microscopy was used to examine and compare the surface morphology of the two regions. The U 4f, O 1s and C 1s core-level and valence band spectra clearly indicate carbide formation in the modified surface layer. The time-of-flight secondary ion mass spectrometry depth profiling results reveal an oxy-carbide surface layer over an approximately 200 nm thick UC layer with little or no residual oxidation at the carbide layer/U metal transitional interface.

  1. Direct angle resolved photoemission spectroscopy and superconductivity of strained high-Tc films

    Science.gov (United States)

    Pavuna, Davor; Ariosa, Daniel; Cloetta, Dominique; Cancellieri, Claudia; Abrecht, Mike

    2008-02-01

    Since 1997 we systematically perform direct angle resolved photoemission spectroscopy (ARPES) on in-situ grown thin (<30 nm) cuprate films. Specifically, we probe low-energy electronic structure and properties of high-T_{c} superconductors (HTSC) under different degrees of epitaxial ({compressive vs. tensile}) strain. In overdoped and underdoped in-plane compressed (the strain is induced by the choice of substrate) ≈15 nm thin La_{2-x}Sr_{x}CuO_{4} (LSCO) films we almost double T_{c} to 40 K, from 20 K and 24 K, respectively. Yet the Fermi surface (FS) remains essentially two-dimensional. In contrast, ARPES data under {tensile} strain exhibit the dispersion that is three-dimensional, yet T_{c} drastically decreases. It seems that the in-plane compressive strain tends to push the apical oxygen far away from the CuO_{2} plane, enhances the two-dimensional character of the dispersion and increases T_{c}, while the tensile strain acts in the opposite direction and the resulting dispersion is three-dimensional. We have established the shape of the FS for both cases, and all our data are consistent with other ongoing studies, like EXAFS. As the actual lattice of cuprates is like a `Napoleon-cake', i.e. rigid CuO_{2 } planes alternating with softer `reservoir', that distort differently under strain, our data rule out all oversimplified two-dimensional (rigid lattice) mean field models. The work is still in progress on optimized La-doped Bi-2201 films with enhanced T_{c}.

  2. Universal features in the photoemission spectroscopy of high-temperature superconductors.

    Science.gov (United States)

    Zhao, Junjing; Chatterjee, Utpal; Ai, Dingfei; Hinks, David G; Zheng, Hong; Gu, G D; Castellan, John-Paul; Rosenkranz, Stephan; Claus, Helmut; Norman, Michael R; Randeria, Mohit; Campuzano, Juan Carlos

    2013-10-29

    The energy gap for electronic excitations is one of the most important characteristics of the superconducting state, as it directly reflects the pairing of electrons. In the copper-oxide high-temperature superconductors (HTSCs), a strongly anisotropic energy gap, which vanishes along high-symmetry directions, is a clear manifestation of the d-wave symmetry of the pairing. There is, however, a dramatic change in the form of the gap anisotropy with reduced carrier concentration (underdoping). Although the vanishing of the gap along the diagonal to the square Cu-O bond directions is robust, the doping dependence of the large gap along the Cu-O directions suggests that its origin might be different from pairing. It is thus tempting to associate the large gap with a second-order parameter distinct from superconductivity. We use angle-resolved photoemission spectroscopy to show that the two-gap behavior and the destruction of well-defined electronic excitations are not universal features of HTSCs, and depend sensitively on how the underdoped materials are prepared. Depending on cation substitution, underdoped samples either show two-gap behavior or not. In contrast, many other characteristics of HTSCs, such as the dome-like dependence of on doping, long-lived excitations along the diagonals to the Cu-O bonds, and an energy gap at the Brillouin zone boundary that decreases monotonically with doping while persisting above (the pseudogap), are present in all samples, irrespective of whether they exhibit two-gap behavior or not. Our results imply that universal aspects of high- superconductivity are relatively insensitive to differences in the electronic states along the Cu-O bond directions.

  3. Two-photon Photoemission of Organic Semiconductor Molecules on Ag(111)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Aram [Univ. of California, Berkeley, CA (United States)

    2008-05-01

    Angle- and time-resolved two-photon photoemission (2PPE) was used to study systems of organic semiconductors on Ag(111). The 2PPE studies focused on electronic behavior specific to interfaces and ultrathin films. Electron time dynamics and band dispersions were characterized for ultrathin films of a prototypical n-type planar aromatic hydrocarbon, PTCDA, and representatives from a family of p-type oligothiophenes.In PTCDA, electronic behavior was correlated with film morphology and growth modes. Within a fewmonolayers of the interface, image potential states and a LUMO+1 state were detected. The degree to which the LUMO+1 state exhibited a band mass less than a free electron mass depended on the crystallinity of the layer. Similarly, image potential states were measured to have free electron-like effective masses on ordered surfaces, and the effective masses increased with disorder within the thin film. Electron lifetimes were correlated with film growth modes, such that the lifetimes of electrons excited into systems created by layer-by-layer, amorphous film growth increased by orders of magnitude by only a few monolayers from the surface. Conversely, the decay dynamics of electrons in Stranski-Krastanov systems were limited by interaction with the exposed wetting layer, which limited the barrier to decay back into the metal.Oligothiophenes including monothiophene, quaterthiophene, and sexithiophene were deposited on Ag(111), and their electronic energy levels and effective masses were studied as a function of oligothiophene length. The energy gap between HOMO and LUMO decreased with increasing chain length, but effective mass was found to depend on domains from high- or low-temperature growth conditions rather than chain length. In addition, the geometry of the molecule on the surface, e.g., tilted or planar, substantially affected the electronic structure.

  4. Test of theoretical models for ultrafast heterogeneous electron transfer with femtosecond two-photon photoemission data

    Indian Academy of Sciences (India)

    Lars Gundlach; Tobias Letzig; Frank Willig

    2009-09-01

    The energy distribution of electrons injected into acceptor states on the surface of TiO2 was measured with femtosecond two-photon photoemission. Shape and relative energetic position of these distribution curves with respect to the corresponding donor states, i.e. of perylene chromophores in the first excited singlet state attached via different bridge-anchor groups to the TiO2 surface, were compared with the predictions of different theoretical models for light-induced ultrafast heterogeneous electron transfer (HET). Gerischer’s early scenario for light-induced HET was considered and two recent explicit calculations, i.e. a fully quantum mechanical analytical model and a time-dependent density functional theory model based on molecular dynamics simulations for the vibrational modes were also considered. Based on the known vibrational structure in the photoionization spectrum of perylene in the gas phase and that measured in the linear absorption spectra of the perylene chromophores anchored on the TiO2 surface the energy distribution curves for the injected electrons were fitted assuming the excitation of the dominant 0.17 eV vibrational mode in the ionized perylene chromophore leading to a corresponding Franck-Condon dictated progression in the energy distribution curves. Each individual peak was fitted with a Voigt profile where the Lorentzian contribution was taken from the time-resolved HET data and the Gaussian contribution attributed to inhomogeneous broadening. The measured room temperature energy distribution curves for the injected electrons are explained with the fully quantum mechanical model for light-induced HET with the high energy, 0.17 eV, skeletal stretching mode excited in the ionized perylene chromophore. The corresponding energy distribution of the injected electrons is fully accommodated in acceptor states on the TiO2 surface fulfilling the wide band limit.

  5. Dirac cones, Floquet side bands, and theory of time-resolved angle-resolved photoemission

    Science.gov (United States)

    Farrell, Aaron; Arsenault, A.; Pereg-Barnea, T.

    2016-10-01

    Pump-probe techniques with high temporal resolution allow one to drive a system of interest out of equilibrium and at the same time probe its properties. Recent advances in these techniques open the door to studying new, nonequilibrium phenomena such as Floquet topological insulators and superconductors. These advances also necessitate the development of theoretical tools for understanding the experimental findings and predicting new ones. In the present paper, we provide a theoretical foundation to understand the nonequilibrium behavior of a Dirac system. We present detailed numerical calculations and simple analytic results for the time evolution of a Dirac system irradiated by light. These results are framed by appealing to the recently revitalized notion of side bands [A. Farrell and T. Pereg-Barnea, Phys. Rev. Lett. 115, 106403 (2015), 10.1103/PhysRevLett.115.106403; Phys. Rev. B 93, 045121 (2016), 10.1103/PhysRevB.93.045121], extended to the case of nonperiodic drive where the fast oscillations are modified by an envelope function. We apply this formalism to the case of photocurrent generated by a second probe pulse. We find that, under the application of circularly polarized light, a Dirac point only ever splits into two copies of side bands. Meanwhile, the application of linearly polarized light leaves the Dirac point intact while producing side bands. In both cases the population of the side bands are time dependent through their nonlinear dependence on the envelope of the pump pulse. Our immediate interest in this work is in connection to time- and angle-resolved photoemission experiments, where we find excellent qualitative agreement between our results and those in the literature [Wang et al., Science 342, 453 (2013), 10.1126/science.1239834]. However, our results are general and may prove useful beyond this particular application and should be relevant to other pump-probe experiments.

  6. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects.

    Science.gov (United States)

    Uskov, Alexander V; Protsenko, Igor E; Ikhsanov, Renat S; Babicheva, Viktoriia E; Zhukovsky, Sergei V; Lavrinenko, Andrei V; O'Reilly, Eoin P; Xu, Hongxing

    2014-05-01

    We study the emission of photoelectrons from plasmonic nanoparticles into a surrounding matrix. We consider two mechanisms of electron emission from the nanoparticles--surface and volume ones--and use models for these two mechanisms which allow us to obtain analytical results for the photoelectron emission rate from a nanoparticle. Calculations have been carried out for a step potential at the surface of a spherical nanoparticle, and a simple model for the hot electron cooling has been used. We highlight the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary in the surface mechanism, which leads to a substantial (by ∼5 times) increase of the internal photoelectron emission rate from a nanoparticle compared to the case when such a discontinuity is absent. For a plasmonic nanoparticle, a comparison of the two photoeffect mechanisms was undertaken for the first time which showed that the surface photoeffect can in the general case be larger than the volume one, which agrees with the results obtained for a flat metal surface first formulated by Tamm and Schubin in their pioneering development of a quantum-mechanical theory of photoeffect in 1931. In accordance with our calculations, this possible predominance of the surface effect is based on two factors: (i) effective cooling of hot carriers during their propagation from the volume of the nanoparticle to its surface in the scenario of the volume mechanism and (ii) strengthening of the surface mechanism through the effect of the discontinuity of the dielectric permittivity at the nanoparticle boundary. The latter is stronger at relatively lower photon energies and correspondingly is more substantial for internal photoemission than for an external one. We show that in the general case, it is essential to take both mechanisms into account in the development of devices based on the photoelectric effect and when considering hot electron emission from a plasmonic nanoantenna.

  7. The slope-background for the near-peak regimen of photoemission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Herrera-Gomez, A., E-mail: aherrera@qro.cinvestav.mx [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Bravo-Sanchez, M. [CINVESTAV-Unidad Queretaro, Queretaro 76230 (Mexico); Aguirre-Tostado, F.S. [Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31109 (Mexico); Vazquez-Lepe, M.O. [Departamento de Ingeniería de Proyectos, Universidad de Guadalajara, Jalisco 44430 (Mexico)

    2013-08-15

    Highlights: •We propose a method that accounts for the change in the background slope of XPS data. •The slope-background can be derived from Tougaard–Sigmund's transport theory. •The total background is composed by Shirley–Sherwood and Tougaard type backgrounds. •The slope-background employs one parameter that can be related to REELS spectra. •The slope, in conjunction with the Shirley–Sherwood background, provides better fits. -- Abstract: Photoemission data typically exhibits a change on the intensity of the background between the two sides of the peaks. This step is usually very well reproduced by the Shirley–Sherwood background. Yet, the change on the slope of the background in the near-peak regime, although usually present, is not always as obvious to the eye. However, the intensity of the background signal associated with the evolution of its slope can be appreciable. The slope-background is designed to empirically reproduce the change on the slope. Resembling the non-iterative Shirley method, the proposed functional form relates the slope of the background to the integrated signal at higher electron kinetic energies. This form can be predicted under Tougaard–Sigmund's electron transport theory in the near-peak regime. To reproduce both the step and slope changes on the background, it is necessary to employ the slope-background in conjunction with the Shirley–Sherwood background under the active-background method. As it is shown for a series of materials, the application of the slope-background provides excellent fits, is transparent to the operator, and is much more independent of the fitting range than other background methods. The total area assessed through the combination of the slope and the Shirley–Sherwood backgrounds is larger than when only the Shirley–Sherwood background is employed, and smaller than when the Tougaard background is employed.

  8. Ultrafast Multiphoton Pump-probe Photoemission Excitation Pathways in Rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Argondizzo, Adam; Cui, Xuefeng; Wang, Cong; Sun, Huijuan; Shang, Honghui; Zhao, Jin; Petek, Hrvoje

    2015-04-27

    We investigate the spectroscopy and photoinduced electron dynamics within the conduction band of reduced rutile TiO2(110) surface by multiphoton photoemission (mPP) spectroscopy with wavelength tunable ultrafast (!20 fs) laser pulse excitation. Tuning the mPP photon excitation energy between 2.9 and 4.6 eV reveals a nearly degenerate pair of new unoccupied states located at 2.73 ± 0.05 and 2.85 ± 0.05 eV above the Fermi level, which can be analyzed through the polarization and sample azimuthal orientation dependence of the mPP spectra. Based on the calculated electronic structure and optical transition moments, as well as related spectroscopic evidence, we assign these resonances to transitions between Ti 3d bands of nominally t2g and eg symmetry, which are split by crystal field. The initial states for the optical transition are the reduced Ti3+ states of t2g symmetry populated by formation oxygen vacancy defects, which exist within the band gap of TiO2. Furthermore,we studied the electron dynamics within the conduction band of TiO2 by three-dimensional time-resolved pump-probe interferometric mPP measurements. The spectroscopic and time-resolved studies reveal competition between 2PP and 3PP processes where the t2g-eg transitions in the 2PP process saturate, and are overtaken by the 3PP process initiated by the band-gap excitation from the valence band of TiO2.

  9. The Number of Solutions of the Diophantine Equation x2 + p2 =yn%Diophantine方程x2+p2=yn的解数

    Institute of Scientific and Technical Information of China (English)

    梁明

    2013-01-01

    Let p be a fixed odd prime,and let N(p) denote the number of positive integer solutions (x,y,n) of the equation x2 +p2 =yn satisfying gcd(x,y)=1 and n > 2.In this paper we prove that if p ≠ 7,then N(p) < log p.%对于给定的奇素数p,设N(p)为方程x2+ p2=yn满足gcd(x,y)=1和n>2的正整数解(x,y,n)的个数,本文证明了:当p≠7时,N(p) <log p.

  10. Locating Highly Connected Nodes in P2P Networks with Heterogeneous Structures

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haoxiang; ZHANG Lin; SHAN Xiuming; Victor O. K. LI

    2009-01-01

    Peer-to-peer (P2P) networks aggregate enormous storage and processing resources while mini-mizing entry and scaling costs. Gnutella-like P2P networks are complex heterogeneous networks, in which the underlying overlay topology has a power-law node degree distribution. While scale-free networks have great robustness against random failures, they are vulnerable to deliberate attacks where highly connected nodes are eliminated. Since high degree nodes play an important role in maintaining the connectivity, this paper presents an algorithm based on random walks to locate high degree nodes in P2P networks. Simula-tions demonstrate that the algorithm performs well in various scenarios and that heterogeneous P2P net-works are very sensitive to deliberate attacks.

  11. Pre-Paid Charging System for Sip-P2P Commercial Applications

    Directory of Open Access Journals (Sweden)

    Damian Nowak

    2011-03-01

    Full Text Available The new SIP-P2P approach brings many advantages like the improved reliability and the ease of setup.However, Communications Service Providers (CSPs offering VoIP services seem to be afraid to losetheir profits due to the introduction of SIP-P2P. Claimed is the lack of session establishment controlleading to revenue leakages. In this work we introduce a charging system for SIP-P2P that assures CSPs’revenue from using SIP-based peer-to-peer communications commercially. The proposed solutionconsists of a new “carrier-grade P2P network” concept, software modification of existing equipment andgives some charging application design guidelines. An application prototype was implemented toexamine the concept. Additionally, experiments were done to provide the methodology for systemdimensioning.

  12. Experimental Determination of the Lifetime of the Helium 2P13 1S01 Transition

    Science.gov (United States)

    Dall, R. G.; Baldwin, K. G. H.; Byron, L. J.; Truscott, A. G.

    2008-01-01

    We present the first experimental determination of the 2P13 1S01 transition rate in helium and compare this measurement with theoretical quantum-electrodynamic predictions. The experiment exploits the very long (˜1minute) confinement times obtained for atoms magneto-optically trapped in an apparatus used to create a Bose-Einstein condensate of metastable (2S13) helium. The 2P13 1S01 transition rate is measured directly from the decay rate of the cold atomic cloud following 1083 nm laser excitation from the 2S13 to the 2P13 state, and from accurate knowledge of the 2P13 population. The value obtained is 177±8s-1, which agrees very well with theoretical predictions, and has an accuracy that compares favorably with measurements for the same transition in heliumlike ions higher in the isoelectronic sequence.

  13. A Local Scalable Distributed EM Algorithm for Large P2P Networks

    Data.gov (United States)

    National Aeronautics and Space Administration — his paper describes a local and distributed expectation maximization algorithm for learning parameters of Gaussian mixture models (GMM) in large peer-to-peer (P2P)...

  14. CHC: A Robust P2P Overlay Network with Simple Routing and Small-World Features

    Directory of Open Access Journals (Sweden)

    Wenjun Xiao

    2011-08-01

    Full Text Available Almost all recent researches on P2P systems focus on howto build a highly usable P2P overlay network. Researchersinclude small routing table, short query path and goodrobustness into their design objectives of overlay topology. Inthis paper, we present a general group theory method anddefine a new Cayley graph. Based on this Cayley graph, wepropose a novel P2P overlay network called CHC, which hassimple routing (searching scheme and many other excellentproperties such as short query path, high clustering and goodrobustness because of its symmetry. The performance isevaluated by simulation to show that CHC possesses shorterquery path length and higher clustering and better robustnessthan several popular P2P overlay networks such as Chord andUlysses.

  15. Adaptive Routing Algorithms in Unstructured Peer-to-Peer (P2P Systems

    Directory of Open Access Journals (Sweden)

    Achmad Nizar Hidayanto,

    2011-02-01

    Full Text Available There are a variety of peer-to-peer (P2P systems for sharing documents currently available. According to their data organization, P2P systems are classified into two categories: structured andunstructured P2P systems. In structured P2P systems, peers are organized according to some mapping techniques, e.g. hashing function. Whereas in unstructured P2P system, peers are connected to each others randomly; resources are not moved to other peers but hosted on site. Unstructured P2P systems offer a more flexible and autonomous environment, as they require less control for the placement of resources and peers. This work focuses on experimenting on unstructured P2P systems. The challenge in unstructured P2P system is designing routing strategies that lead the user in finding the documents needed. Routing strategies in unstructured P2P system need to consider the dynamic aspects of P2P systems; peers are dynamic and constantly joining and leaving the system, network load changescontinuously and resources are added and removed over the time. Therefore, the routing strategy must adapt to such changes to maintain its performance. We propose routing strategies that adapt to these changes through learning mechanisms. The learning mechanisms are conducted by observing the internal and external behaviors of the system. Internal behaviors reflect the internal state of peers such as peers’ interest and collection. External behaviors reflect the external state of the system such as network load. In order to measure the performance of the proposed routing algorithms, some common performance measurements are used. These are “response time” and “number of messages generated” or what is commonly referred to as efficiency, “number of answered and satisfied queries” and the “similarity of documents” or what is commonly referred to as effectiveness of retrieval system. The experiment results show that the proposed algorithms are capable of adapting to

  16. Quasi-elastic scattering, RPA, 2p2h and neutrino--energy reconstruction

    CERN Document Server

    Nieves, J; Sanchez, F; Vacas, M J Vicente

    2013-01-01

    We discuss some nuclear effects, RPA correlations and 2p2h (multinucleon) mechanisms, on charged-current neutrino-nucleus reactions that do not produce a pion in the final state. We study a wide range of neutrino energies, from few hundreds of MeV up to 10 GeV. We also examine the influence of 2p2h mechanisms on the neutrino energy reconstruction.

  17. Structure And Function of the Yeast U-Box-Containing Ubiquitin Ligase Ufd2p

    Energy Technology Data Exchange (ETDEWEB)

    Tu, D.; Li, W.; Ye, Y.; Brunger, A.T.

    2009-06-04

    Proteins conjugated by Lys-48-linked polyubiquitin chains are preferred substrates of the eukaryotic proteasome. Polyubiquitination requires an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). Occasionally, these enzymes only assemble short ubiquitin oligomers, and their extension to full length involves a ubiquitin elongating factor termed E4. Ufd2p, as the first E4 identified to date, is involved in the degradation of misfolded proteins of the endoplasmic reticulum and of a ubiquitin-{beta}-GAL fusion substrate in Saccharomyces cerevisiae. The mechanism of action of Ufd2p is unknown. Here we describe the crystal structure of the full-length yeast Ufd2p protein. Ufd2p has an elongated shape consisting of several irregular Armadillo-like repeats with two helical hairpins protruding from it and a U-box domain flexibly attached to its C terminus. The U-box of Ufd2p has a fold similar to that of the RING (Really Interesting New Gene) domain that is present in certain ubiquitin ligases. Accordingly, Ufd2p has all of the hallmarks of a RING finger-containing ubiquitin ligase: it associates with its cognate E2 Ubc4p via its U-box domain and catalyzes the transfer of ubiquitin from the E2 active site to Ufd2p itself or to an acceptor ubiquitin molecule to form unanchored diubiquitin oligomers. Thus, Ufd2p can function as a bona fide E3 ubiquitin ligase to promote ubiquitin chain elongation on a substrate.

  18. Secure Mobile Agent for Telemedicine Based on P2P Networks

    OpenAIRE

    Hsu, Wen-Shin; Pan, Jiann-I

    2013-01-01

    Exploring intelligent mobile agent (MA) technology for assisting medical services or transmitting personal patient-health information in telemedicine applications has been widely investigated. Conversely, peer-to-peer (P2P) networking has become one of the most popular applications used in the Internet because of its benefits for easy-to-manage resources and because it balances workloads. Therefore, constructing an agent-based telemedicine platform based on P2P networking architecture is nece...

  19. An Efficient, Scalable and Robust P2P Overlay for Autonomic Communication

    Science.gov (United States)

    Li, Deng; Liu, Hui; Vasilakos, Athanasios

    The term Autonomic Communication (AC) refers to self-managing systems which are capable of supporting self-configuration, self-healing and self-optimization. However, information reflection and collection, lack of centralized control, non-cooperation and so on are just some of the challenges within AC systems. Since many self-* properties (e.g. selfconfiguration, self-optimization, self-healing, and self-protecting) are achieved by a group of autonomous entities that coordinate in a peer-to-peer (P2P) fashion, it has opened the door to migrating research techniques from P2P systems. P2P's meaning can be better understood with a set of key characteristics similar to AC: Decentralized organization, Self-organizing nature (i.e. adaptability), Resource sharing and aggregation, and Fault-tolerance. However, not all P2P systems are compatible with AC. Unstructured systems are designed more specifically than structured systems for the heterogeneous Internet environment, where the nodes' persistence and availability are not guaranteed. Motivated by the challenges in AC and based on comprehensive analysis of popular P2P applications, three correlative standards for evaluating the compatibility of a P2P system with AC are presented in this chapter. According to these standards, a novel Efficient, Scalable and Robust (ESR) P2P overlay is proposed. Differing from current structured and unstructured, or meshed and tree-like P2P overlay, the ESR is a whole new three dimensional structure to improve the efficiency of routing, while information exchanges take in immediate neighbors with local information to make the system scalable and fault-tolerant. Furthermore, rather than a complex game theory or incentive mechanism, asimple but effective punish mechanism has been presented based on a new ID structure which can guarantee the continuity of each node's record in order to discourage negative behavior on an autonomous environment as AC.

  20. P2P network traffic control mechanism based on global evaluation values

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-long; WANG Ru-chuan

    2009-01-01

    Peer-to-peer (P2P) computing technology has been widely used on the Internet to exchange data. However, it occupies much network bandwidth, and thus greatly influences traditional business on the Interact. Besides, problems about free-riders and 'tragedy of the commons' in the P2P environment estrange from it P2P users who constantly contribute to the network with quality resources. This article proposes a new P2P network traffic control mechanism based on global evaluation values. It aims to help individual users to avoid peak traffic time as much as possible, ease network congestion and protect traditional business on the Interact, as well as differentiating priority grades of peers according to their contributions and stimulating them to share their valuable resources actively. This article first analyzes the current state of network traffic, and then elaborates on P2P network traffic control policies and proposes the peer's priority level differentiation mechanism based on global evaluation values. Finally,after the testing results and analysis of the proposed P2P network traffic control mechanism are discussed, conclusions are drawn.

  1. Fine-grained P2P traffc classifi cation by simply counting flows

    Institute of Scientific and Technical Information of China (English)

    Jie HE; Yue-xiang YANG; Yong QIAO; Wen-ping DENG

    2015-01-01

    The continuous emerging of peer-to-peer (P2P) applications enriches resource sharing by networks, but it also brings about many challenges to network management. Therefore, P2P applications monitoring, in particular, P2P traffic classifi cation, is becoming increasingly important. In this paper, we propose a novel approach for accurate P2P traffic classifi cation at a fi ne-grained level. Our approach relies only on counting some special fl ows that are appearing frequently and steadily in the traffic generated by specifi c P2P applications. In contrast to existing methods, the main contribution of our approach can be summarized as the following two aspects. Firstly, it can achieve a high classifi cation accuracy by exploiting only several generic properties of fl ows rather than complicated features and sophisticated techniques. Secondly, it can work well even if the classifi cation target is running with other high bandwidth-consuming applications, outperforming most existing host-based approaches, which are incapable of dealing with this situation. We evaluated the performance of our approach on a real-world trace. Experimental results show that P2P applications can be classifi ed with a true positive rate higher than 97.22%and a false positive rate lower than 2.78%.

  2. Strategies for P2P connectivity in reconfigurable converged wired/wireless access networks.

    Science.gov (United States)

    Puerto, Gustavo; Mora, José; Ortega, Beatriz; Capmany, José

    2010-12-06

    This paper presents different strategies to define the architecture of a Radio-Over-Fiber (RoF) Access networks enabling Peer-to-Peer (P2P) functionalities. The architectures fully exploit the flexibility of a wavelength router based on the feedback configuration of an Arrayed Waveguide Grating (AWG) and an optical switch to broadcast P2P services among diverse infrastructures featuring dynamic channel allocation and enabling an optical platform for 3G and beyond wireless backhaul requirements. The first architecture incorporates a tunable laser to generate a dedicated wavelength for P2P purposes and the second architecture takes advantage of reused wavelengths to enable the P2P connectivity among Optical Network Units (ONUs) or Base Stations (BS). While these two approaches allow the P2P connectivity in a one at a time basis (1:1), the third architecture enables the broadcasting of P2P sessions among different ONUs or BSs at the same time (1:M). Experimental assessment of the proposed architecture shows approximately 0.6% Error Vector Magnitude (EVM) degradation for wireless services and 1 dB penalty in average for 1 x 10(-12) Bit Error Rate (BER) for wired baseband services.

  3. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    OpenAIRE

    2015-01-01

    Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer M. Dell'Angela, T. Anniyev, M. Beye, R. Coffee, A. Föhlisch, J. Gladh, S. Kaya, T. Katayama, O. Krupin, A. Nilsson, D. Nordlund, W. F. Schlotter, J. A. Sellberg, F. Sorgenfrei, J. J. Turner, H. Öström, H. Ogasawara, M. Wolf, and W. Wurth Citation: Structural Dynamics 2, 025101 (2015); doi: 10.1063/1.4914892 View online: http://dx.doi.org/10.1063/1.4914892 View Table of Co...

  4. Strong-field plasmonic photoemission in the mid-IR at <1 GW/cm2 intensity

    Science.gov (United States)

    Teichmann, S. M.; Rácz, P.; Ciappina, M. F.; Pérez-Hernández, J. A.; Thai, A.; Fekete, J.; Elezzabi, A. Y.; Veisz, L.; Biegert, J.; Dombi, P.

    2015-01-01

    We investigated nonlinear photoemission from plasmonic films with femtosecond, mid-infrared pulses at 3.1 μm wavelength. Transition between regimes of multi-photon-induced and tunneling emission is demonstrated at an unprecedentedly low intensity of <1 GW/cm2. Thereby, strong-field nanophysics can be accessed at extremely low intensities by exploiting nanoscale plasmonic field confinement, enhancement and ponderomotive wavelength scaling at the same time. Results agree well with quantum mechanical modelling. Our scheme demonstrates an alternative paradigm and regime in strong-field physics. PMID:25579608

  5. Strong-field plasmonic photoemission in the mid-IR at <1 GW/cm² intensity.

    Science.gov (United States)

    Teichmann, S M; Rácz, P; Ciappina, M F; Pérez-Hernández, J A; Thai, A; Fekete, J; Elezzabi, A Y; Veisz, L; Biegert, J; Dombi, P

    2015-01-12

    We investigated nonlinear photoemission from plasmonic films with femtosecond, mid-infrared pulses at 3.1 μm wavelength. Transition between regimes of multi-photon-induced and tunneling emission is demonstrated at an unprecedentedly low intensity of <1 GW/cm(2). Thereby, strong-field nanophysics can be accessed at extremely low intensities by exploiting nanoscale plasmonic field confinement, enhancement and ponderomotive wavelength scaling at the same time. Results agree well with quantum mechanical modelling. Our scheme demonstrates an alternative paradigm and regime in strong-field physics.

  6. Photoemission study of 5f localization in UPd/sub 3-//sub x/(Pt,Rh)/sub x/

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Koelling, D.D.; Dunlap, B.D.; Mitchell, A.W.; Capasso, C.; del Giudice, M.

    1988-04-15

    Photoemission measurements in the two systems UPd/sub 3-//sub x/(Pt,Rh)/sub x/ show that the 5f spectra are consistent with localized 5f electrons (peak in spectral weight is below E/sub F/ for all x within the double hexagonal DO/sub 24/ phase) while at both phase transitions the 5f peaks lock in at E/sub F/ consistent with intinerancy. A satellite 5f peak which we attribute to d screening is observed in both localized and itinerant systems.

  7. Photoemission study of 5f localization in UPd/sub 3-x/(Pt,Rh)/sub x/

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; Koelling, D.D.; Dunlap, B.D.; Mitchell, A.W.

    1987-10-01

    Photoemission measurements in the two systems UPd/sub 3-x/(Pt,Rh)/sub x/ show that the 5f spectra are consistent with localized 5f electrons (peak in spectral weight is below E/sub F/ for all x within the double hexagonal DO/sub 24/ phase) while at both phase transitions the 5f peaks lock in at E/sub F/ consistent with intinerancy. A satellite 5f peak representative of d-screening is observed in both localized and itinerant systems. 17 refs., 3 figs.

  8. Domain imaging on multiferroic BiFeO{sub 3}(001) by linear and circular dichroism in threshold photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Sander, Anke; Christl, Maik [Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle(Saale) (Germany); Chiang, Cheng-Tien [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle(Saale) (Germany); Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle(Saale) (Germany); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Widdra, Wolf, E-mail: wolf.widdra@physik.uni-halle.de [Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle(Saale) (Germany); Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle(Saale) (Germany)

    2015-12-14

    We demonstrate ferroelectric domain imaging at BiFeO{sub 3}(001) single crystal surfaces with laser-based threshold photoemission electron microscopy (PEEM). Work function differences and linear dichroism allow for the identification of the eight independent ferroelectric domain configurations in the PEEM images. There, the determined domain structure is consistent with piezoresponse force microscopy of the sample surface and can also be related to the circular dichroic PEEM images. Our results provide a method for efficient mapping of complex ferroelectric domains with laser-excited PEEM and may allow lab-based time-resolved studies of the domain dynamics in the future.

  9. Stoner vs. spin-mixing behavior in the bulk magnetism of Gd: A spin-resolved photoemission study

    Indian Academy of Sciences (India)

    K Maiti; M C Malagoli; A Dallmeyer; C Carbone

    2002-05-01

    The temperature dependence of the rare-earth 2-bulk band has been regarded as an exemplary case which realizes the simple Stoner behavior. We examined the evolution of Gd2 bulk bands with temperature in the range 0.5 ≤ /C ≤ 1 with spin-resolved, photoemission spectroscopy. The direct observation of the spin-dependent spectral line shapes reveals a complex temperature dependence and manifests a clear inadequacy of the Stoner model to the description of the magnetism in rare earths.

  10. Angle Integrated Photoemission Study of SmO0.85F0.15FeAs

    Institute of Scientific and Technical Information of China (English)

    OU Hong-Wei; WU Tao; CHEN Xian-Hui; CHEN Yan; FENG Dong-Lai; ZHAO Jia-Feng; ZHANG Yan; SHEN Da-Wei; ZHOU Bo; YANG Le-Xian; HE Cheng; CHEN Fei; XU Min

    2008-01-01

    The electronic structure of the new superconductor SmO1-xFxFeAs (x = 0.15) is studied by angle-integrated photoemission spectroscopy. Our data show a sharp feature very close to the Fermi energy, and a relative fiat distribution of the density of states between 0.SeV and 3eV binding energy, which agrees well with the band structure calculations considering an antiferromagnetic ground state. No noticeable gap opening is observed at 12 K below the superconducting transition temperature, indicating the existence of large ungapped regions in the Brillouin zone.

  11. Photoemission electron microscopy and scanning electron microscopy of Magnetospirillum magnetotacticum’s magnetosome chains

    Energy Technology Data Exchange (ETDEWEB)

    Keutner, Christoph [Technische Univ. Dortmund, Dortmung (Germany); von Bohlen, Alex [Leibniz-Institut fur Analytische Wissenschaften, Dortmund (Germany); Berges, Ulf [Technische Univ. Dortmund, Dortmung (Germany); Espeter, Philipp [Technische Univ. Dortmund, Dortmung (Germany); Schneider, Claus M. [Peter Grunberg Institut, Julich (Germany); Westphal, Carsten [Technische Univ. Dortmund, Dortmung (Germany)

    2014-10-07

    Magnetotactic bacteria are of great interdisciplinary interest, since a vast field of applications from magnetic recording media to medical nanorobots is conceivable. A key feature for a further understanding is the detailed knowledge about the magnetosome chain within the bacteria. We report on two preparation procedures suitable for UHV experiments in reflective geometry. Further, we present the results of scanning electron microscopy, as well as the first photoemission electron microscopy experiments, both accessing the magnetosomes within intact magnetotactic bacteria and compare these to scanning electron microscopy data from the literature. From the images, we can clearly identify individual magnetosomes within their chains.

  12. Pseudogap and Superconducting Gap in SmFeAs(O1-xFx) Superconductor from Photoemission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-Yun; CHEN Xian-Hui; REN Zhi-An; YI Wei; CHE Guang-Can; CHEN Gen-Fu; WANG Nan-Lin; WANG Gui-Ling; ZHOU Yong; ZHU Yong; WANG Xiao-Yang; JIA Xiao-Wen; ZHAO Zhong-Xian; XU Zu-Yan; CHEN Chuang-Tian; ZHOU Xing-Jiang; ZHANG Wen-Tao; ZHAO Lin; MENG Jian-Qiao; LIU Guo-Dong; DONG Xiao-Li; WU Gang; LIU Rong-Hua

    2008-01-01

    High resolution photoemission measurements are carried out on non-superconducting SmOFeAs parent compound and superconducting SmFeAs(O1-xFx) (x=0.12, and 0.15) compounds. The momentum-integrated spectra exhibit a clear Fermi cutoff that shows little leading-edge shift in the superconducting state. A robust feature at 13 meV is identified in all these samples. Spectral weight suppression near EF with decreasing temperature is observed in both undoped and doped samples that points to a possible existence of a pseudogap in these Fe-based compounds.

  13. Spin- and angle-resolved photoemission spectroscopy study of the Au(1 1 1) Shockley surface state

    Energy Technology Data Exchange (ETDEWEB)

    Muntwiler, Matthias E-mail: m.muntwiler@physik.unizh.ch; Hoesch, Moritz; Petrov, Vladimir N.; Hengsberger, Matthias; Patthey, Luc; Shi Ming; Falub, Mihaela; Greber, Thomas; Osterwalder, Juerg

    2004-07-01

    The spin character of the splitting of the Shockley surface state on Au(111) is directly verified by measurements of the in-plane and out-of-plane spin polarizations in angle-resolved photoemission spectra. The two parabolic sub-bands that are momentum-shifted with respect to each other, reveal a distinct, opposite spin polarization that within the errors lies in the surface plane. The measured in-plane orientation of the spin vectors is consistent with the simple spin structure expected from a nearly-free-electron model, where the polarization axis is tangential to the Fermi surface of the surface state.

  14. Two-photon photoemission study of the coverage-dependent electronic structure of chemisorbed alkali atoms on a Ag(111) surface.

    Science.gov (United States)

    Wang, Lei-Ming; Sametoglu, Vahit; Winkelmann, Aimo; Zhao, Jin; Petek, Hrvoje

    2011-09-01

    We report a systematic investigation of the electronic structure of chemisorbed alkali atoms (Li-Cs) on a Ag(111) surface by two-photon photoemission spectroscopy. Angle-resolved two-photon photoemission spectra are obtained for 0-0.1 monolayer coverage of alkali atoms. The interfacial electronic structure as a function of periodic properties and the coverage of alkali atoms is observed and interpreted assuming ionic adsorbate/substrate interaction. The energy of the alkali atom σ-resonance at the limit of zero coverage is primarily determined by the image charge interaction, whereas at finite alkali atom coverages, it follows the formation of a dipolar surface field. The coverage- and angle-dependent two-photon photoemission spectra provide information on the photoinduced charge-transfer excitation of adsorbates on metal surfaces. This work complements the previous work on alkali/Cu(111) chemisorption [Phys. Rev. B 2008, 78, 085419].

  15. P2P-based botnets: structural analysis, monitoring, and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Guanhua [Los Alamos National Laboratory; Eidenbenz, Stephan [Los Alamos National Laboratory; Ha, Duc T [UNIV AT BUFFALO; Ngo, Hung Q [UNIV AT BUFFALO

    2008-01-01

    Botnets, which are networks of compromised machines that are controlled by one or a group of attackers, have emerged as one of the most serious security threats on the Internet. With an army of bots at the scale of tens of thousands of hosts or even as large as 1.5 million PCs, the computational power of botnets can be leveraged to launch large-scale DDoS (Distributed Denial of Service) attacks, sending spamming emails, stealing identities and financial information, etc. As detection and mitigation techniques against botnets have been stepped up in recent years, attackers are also constantly improving their strategies to operate these botnets. The first generation of botnets typically employ IRC (Internet Relay Chat) channels as their command and control (C&C) centers. Though simple and easy to deploy, the centralized C&C mechanism of such botnets has made them prone to being detected and disabled. Against this backdrop, peer-to-peer (P2P) based botnets have emerged as a new generation of botnets which can conceal their C&C communication. Recently, P2P networks have emerged as a covert communication platform for malicious programs known as bots. As popular distributed systems, they allow bots to communicate easily while protecting the botmaster from being discovered. Existing work on P2P-based hotnets mainly focuses on measurement of botnet sizes. In this work, through simulation, we study extensively the structure of P2P networks running Kademlia, one of a few widely used P2P protocols in practice. Our simulation testbed incorporates the actual code of a real Kademlia client software to achieve great realism, and distributed event-driven simulation techniques to achieve high scalability. Using this testbed, we analyze the scaling, reachability, clustering, and centrality properties of P2P-based botnets from a graph-theoretical perspective. We further demonstrate experimentally and theoretically that monitoring bot activities in a P2P network is difficult

  16. Comparison between laser-induced photoemissions and phototransmission of hard tissues using fibre-coupled Nd:YAG and Er(3+)-doped fibre lasers.

    Science.gov (United States)

    El-Sherif, Ashraf Fathy

    2012-07-01

    During pulsed laser irradiation of dental enamel, laser-induced photoemissions result from the laser-tissue interaction through mechanisms including fluorescence and plasma formation. Fluorescence induced by non-ablative laser light interaction has been used in tissue diagnosis, but the photoemission signal accompanying higher power ablative processes may also be used to provide real-time monitoring of the laser-tissue interaction. The spectral characteristics of the photoemission signals from normal and carious tooth enamel induced by two different pulsed lasers were examined. The radiation sources compared were a high-power extra-long Q-switched Nd:YAG laser operating at a wavelength of 1,066 nm giving pulses (with pulse durations in the range 200-250 μs) in the near infrared and a free-running Er(3+)-doped ZBLAN fibre laser operating at a wavelength near 3 μm with similar pulse durations in the mid-infrared region. The photoemission spectra produced during pulsed laser irradiation of enamel samples were recorded using a high-resolution spectrometer with a CCD array detector that enabled an optical resolution as high as 0.02 nm (FWHM). The spectral and time-dependence of the laser-induced photoemission due to thermal emission and plasma formation were detected during pulsed laser irradiation of hard tissues and were used to distinguish between normal and carious teeth. The use of these effects to distinguish between hard and soft biological tissues during photothermal ablation with a pulsed Nd:YAG laser or an Er fibre laser appears feasible. The real-time spectrally resolved phototransmission spectrum produced during pulsed Nd:YAG laser irradiation of human tooth enamel samples was recorded, with a (normalized) relative transmission coefficient of 1 (100%) for normal teeth and 0.6 (60%) for the carious teeth. The photoemission signal accompanying ablative events may also be used to provide real-time monitoring of the laser-tissue interaction.

  17. Correlation of electronic structures of three cyclic dipeptides with their photoemission spectra

    Science.gov (United States)

    Arachchilage, Anoja P. Wickrama; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C.

    2010-11-01

    We have investigated the electronic structure of three cyclic dipeptides: cyclo(Glycyl-Glycyl) (cGG), cyclo(Leucyl-Prolyl) (cLP), and cyclo(Phenylalanyl-Prolyl) (cPP). These compounds are biologically active and cLP and cPP are derived from cGG (also known as diketopiperazine), by the addition of the respective functional groups of the amino acids, namely, phenyl, alkyl or a fused pyrrolidine ring (proline). Experimental valence and core level spectra have been interpreted in the light of theoretical calculations to identify the basic chemical properties associated with the central ring, and with the additional functional groups in cLP and cPP. The theoretically simulated spectra of all three cyclic dipeptides in both valence and core spaces agreed reasonably well with the experimental spectra. The three molecules displayed similarities in their core spectra, suggesting that the diketopiperazine structure plays an important role in determining the inner shell spectrum. The experimental C 1s spectra of cLP and cPP are analogous but differ from cGG due to the side chains attached to the diketopiperazine structure. Single spectral peaks in the N 1s (and O 1s) spectra of the dipeptides indicate that the chemical environment of the nitrogen atoms (and oxygen atoms) are very similar, although they show a small splitting in the simulated spectra of cPL and cPP, due to the reduction of their point group symmetry. Valence band spectra of the three dipeptides in the frontier orbital region of 9-11 eV exhibit similarities; however theoretical analysis shows that significant changes occur due to the involvement of the side chain in the frontier orbitals of cPP, while lesser changes are found for cLP.

  18. EuCo2P2 : A model molecular-field helical Heisenberg antiferromagnet

    Science.gov (United States)

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.

    2016-07-01

    The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the a b plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ , high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperature T ≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ˜T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2 , respectively. These values are enhanced by a factor of ˜2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the a b plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χa b(T ≤TN) .

  19. Microwave Dielectric Properties of A2P2O7 (A = Ca, Sr, Ba; Mg, Zn, Mn)

    Science.gov (United States)

    Bian, Jian-jiang; Kim, Dong-Wan; Hong, Kug Sun

    2004-06-01

    Microwave dielectric properties of A2P2O7 (A = Ca, Sr, Ba, Mn, Mg, Ba) ceramic materials were investigated by a network analyzer at the frequency of 10 GHz. It was found that A2P2O7 ceramics could be sintered at relatively lower temperature below 1150°C, although the thortveitite type series, Mn2P2O7, α-Mg2P2O7 and α-Zn2P2O7 with smaller ionic radii of A cations were hard to sinter to full density. The dielectric constant of A2P2O7 is lower than 10. The Q× f value increased according to the sequence of δ-Ba2P2O7, α-Sr2P2O7 and β-Ca2P2O7 in dichromatic type series, and the sequence of Mn2P2O7, α-Mg2P2O7 and α-Zn2P2O7 in thortveitite type series, respectively. The temperature coefficient of resonant frequency τf for all samples exhibits negative value. Larger τf for α-Zn2P2O7, α-Mg2P2O7 and δ-Ba2P2O7 is mainly due to their reversible phase transformations. The microwave dielectric properties were discussed from the point view of bond valence.

  20. Tetragonal and collapsed-tetragonal phases of CaFe2As2 : A view from angle-resolved photoemission and dynamical mean-field theory

    Science.gov (United States)

    van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong

    2016-06-01

    We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.