WorldWideScience

Sample records for 2df redshift survey

  1. BLAST: the Redshift Survey

    Eales, Stephen; Devlin, Mark J; Dye, Simon; Halpern, Mark; Hughes, David H; Marsden, Gaelen; Mauskopf, Philip; Moncelsi, Lorenzo; Netterfield, Calvin B; Pascale, Enzo; Patanchon, Guillaume; Raymond, Gwenifer; Rex, Marie; Scott, Douglas; Semisch, Christopher; Siana, Brian; Truch, Matthew D P; Viero, Marco P

    2009-01-01

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) has recently surveyed ~=8.7 deg^2 centered on GOODS-South at 250, 350 and 500 microns. In Dye et al. (2009) we presented the catalogue of sources detected at $\\rm 5\\sigma$ in at least one band in this field and the probable counterparts to these sources in other wavebands. In this paper, we present the results of a redshift survey in which we succeeded in measuring redshifts for 83 of these counterparts. We have used the spectroscopic redshifts to carry out a test of the ability of photometric redshift methods to estimate the redshifts of dusty galaxies. We have also investigated the cases where there are two possible counterparts to the BLAST source, finding that in at least half of these there is evidence that the two galaxies are physically associated, either because they are interacting or because they are in the same large-scale structure. Finally, we have made the first direct measurements of the luminosity function in the three BLAST band...

  2. Cosmology with photometric redshift surveys

    Blake, C; Blake, Chris; Bridle, Sarah

    2004-01-01

    We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform two complementary types of analysis: (1) We quantify the statistical confidence and accuracy with which such surveys will be able to detect and measure characteristic features in the clustering power spectrum such as the acoustic oscillations and the turnover, in a model-independent fashion. For example, we show that a 10000 sq deg imaging survey with depth r = 22.5 and photometric redshift accuracy dz/(1+z) = 0.03 will detect the acoustic oscillations with 99.9% confidence, measuring the associated cosmological scale with 2% precision. Such a survey will also detect the turnover with 95% confidence, determining the corresponding scale with 20% accuracy. (2) By assuming a Lambda-CDM cosmology we calculate the confidence with which a non-zero baryon fraction can be deduced from such future surveys. After margi...

  3. Measuring Galaxy Environments with Deep Redshift Surveys

    Cooper, M C; Madgwick, D S; Gerke, B F; Yan, R; Davis, M; Cooper, Michael C.; Newman, Jeffrey A.; Madgwick, Darren S.; Gerke, Brian F.; Yan, Renbin; Davis, Marc

    2005-01-01

    We study the applicability of several galaxy environment measures (n^th-nearest-neighbor distance, counts in an aperture, and Voronoi volume) within deep redshift surveys. Mock galaxy catalogs are employed to mimic representative photometric and spectroscopic surveys at high redshift (z ~ 1). We investigate the effects of survey edges, redshift precision, redshift-space distortions, and target selection upon each environment measure. We find that even optimistic photometric redshift errors (\\sigma_z = 0.02) smear out the line-of-sight galaxy distribution irretrievably on small scales; this significantly limits the application of photometric redshift surveys to environment studies. Edges and holes in a survey field dramatically affect the estimation of environment, with the impact of edge effects depending upon the adopted environment measure. These edge effects considerably limit the usefulness of smaller survey fields (e.g. the GOODS fields) for studies of galaxy environment. In even the poorest groups and c...

  4. Lensing convergence in galaxy redshift surveys

    Cardona, Wilmar; Kunz, Martin; Montanari, Francesco

    2016-01-01

    In this letter we demonstrate the importance of including the lensing contribution in galaxy clustering analyses with large galaxy redshift surveys. It is well known that radial cross-correlations between different redshift bins of galaxy surveys are dominated by lensing. But we show here that also neglecting lensing in the auto-correlations within one bin severely biases cosmological parameter estimation with redshift surveys. It leads to significant shifts for several cosmological parameters, most notably the scalar amplitude, the scalar spectral index and in particular the neutrino mass scale. Especially the latter parameter is one of the main targets of future galaxy surveys.

  5. Measuring our Universe from Galaxy Redshift Surveys

    Lahav Ofer

    2004-07-01

    Full Text Available Galaxy redshift surveys have achieved significant progress over the last couple of decades. Those surveys tell us in the most straightforward way what our local Universe looks like. While the galaxy distribution traces the bright side of the Universe, detailed quantitative analyses of the data have even revealed the dark side of the Universe dominated by non-baryonic dark matter as well as more mysterious dark energy (or Einstein's cosmological constant. We describe several methodologies of using galaxy redshift surveys as cosmological probes, and then summarize the recent results from the existing surveys. Finally we present our views on the future of redshift surveys in the era of precision cosmology.

  6. Photometric Redshifts in the IRAC Shallow Survey

    Brodwin, M; Brown, M; Ashby, M; Bian, C; Brand, K; Dey, A; Eisenhardt, P; Eisenstein, D; Gonzalez, A; Huang, J; Kochanek, C; McKenzie, E; Pahre, M; Smith, H; Soifer, B; Stanford, S; Stern, D; Elston, R

    2006-06-13

    Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of {approx} 13 {micro}Jy in the 8.5 deg{sup 2} Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural-net and template-fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of {sigma} = 0.06 (1+z) is achieved for 95% of galaxies at 0 < z < 1.5. The accuracy is {sigma} = 0.12 (1 + z) for 95% of AGN at 0 < z < 3. Redshift probability functions, central to several ongoing studies of the galaxy population, are computed for the full sample. We demonstrate that these functions accurately represent the true redshift probability density, allowing the calculation of valid confidence intervals for all objects. These probability functions have already been used to successfully identify a population of Spitzer-selected high redshift (z > 1) galaxy clusters. We present one such spectroscopically confirmed cluster at = 1.24, ISCS J1434.2+3426. Finally, we present a measurement of the 4.5 {micro}m-selected galaxy redshift distribution.

  7. The Southern Sky Redshift Survey

    da Costa, L. Nicolaci; Willmer, C. N. A.; Pellegrini, P. S.; Chaves, O. L.; Rité, C.; Maia, M. A. G.; Geller, M. J.; Latham, D. W.; Kurtz, M. J.; Huchra, J. P.; Ramella, M.; Fairall, A. P.; Smith, C.; Lípari, S.

    1998-07-01

    We report redshifts, magnitudes, and morphological classifications for 5369 galaxies with m_B Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan; the European Southern Observatory, La Silla, Chile, partially under the bilateral ESO-Observatório Nacional agreement; Fred Lawrence Whipple Observatory; Laboratório Nacional de Astrofísica, Brazil; and the South African Astronomical Observatory.

  8. Photometric redshifts in the SWIRE Survey

    Rowan-Robinson, Michael; Oliver, Seb; Trichas, Markos; Berta, Stefano; Lonsdale, Carol; Smith, Gene; Shupe, David; Surace, Jason; Arnouts, Stephane; LeFevre, Olivier; Afonso-Luis, Alejandro; Perez-Fournon, Ismael; Hatziminaoglou, Evanthia; Polletta, Maria; Farrah, Duncan; Vaccari, Mattia

    2008-01-01

    We present the SWIRE Photometric Redshift Catalogue, 1024750 redshifts of unprecedented reliability and accuracy. Our method is based on fixed galaxy and QSO templates applied to data at 0.36-4.5 mu, and on a set of 4 infrared emission templates fitted to infrared excess data at 3.6-170 mu. The code involves two passes through the data, to try to optimize recognition of AGN dust tori. A few carefully justified priors are used and are the key to supression of outliers. Extinction, A_V, is allowed as a free parameter. We use a set of 5982 spectroscopic redshifts, taken from the literature and from our own spectroscopic surveys, to analyze the performance of our method as a function of the number of photometric bands used in the solution and the reduced chi^2. For 7 photometric bands the rms value of (z_{phot}-z_{spec})/(1+z_{spec}) is 3.5%, and the percentage of catastrophic outliers is ~1%. We discuss the redshift distributions at 3.6 and 24 mu. In individual fields, structure in the redshift distribution corr...

  9. Redshift Surveys and the Value of $\\Omega$

    Feldman, H A; Feldman, Hume A.; Melott, Adrian L.

    1999-01-01

    We compare the statistical properties of structures normal and transverse to the line of sight which appear in observational data from redshift surveys. We present a statistic which can quantify this effect in a conceptually different way from standard analyses of distortions of the power-spectrum or correlation function. From tests with N-body experiments, we argue that this statistic represents a new, more direct and potentially powerful diagnostic of the cosmological density parameter Omega.

  10. Bayesian redshift-space distortions correction from galaxy redshift surveys

    Kitaura, Francisco-Shu; Angulo, Raul E; Chuang, Chia-Hsun; Rodriguez-Torres, Sergio; Monteagudo, Carlos Hernandez; Prada, Francisco; Yepes, Gustavo

    2015-01-01

    We present a Bayesian reconstruction method which maps a galaxy distribution from redshift-space to real-space inferring the distances of the individual galaxies. The method is based on sampling density fields assuming a lognormal prior with a likelihood given by the negative binomial distribution function modelling stochastic bias. We assume a deterministic bias given by a power law relating the dark matter density field to the expected halo or galaxy field. Coherent redshift-space distortions are corrected in a Gibbs-sampling procedure by moving the galaxies from redshift-space to real-space according to the peculiar motions derived from the recovered density field using linear theory with the option to include tidal field corrections from second order Lagrangian perturbation theory. The virialised distortions are corrected by sampling candidate real-space positions (being in the neighbourhood of the observations along the line of sight), which are compatible with the bulk flow corrected redshift-space posi...

  11. The CNOC2 Field Galaxy Redshift Survey

    Carlberg, R G; Morris, S L; Lin, H; Sawicki, M; Wirth, G; Patton, D; Shepherd, C W; Ellingson, E; Schade, D J; Pritchet, C J; Hartwick, F D A

    1998-01-01

    The CNOC2 field galaxy redshift survey is designed to provide measurements of the evolution of galaxies and their clustering over the redshift range 0 to 0.7. The sample is spread over four sky patches with a total area of about 1.5 square degrees. Here we report preliminary results based on two of the sky patches, and the redshift range of 0.15 to 0.55. We find that galaxy evolution can be statistically described as nearly pure luminosity evolution of early and intermediate SED types, and nearly pure density evolution of the late SED types. The correlation of blue galaxies relative to red galaxies is similar on large scales but drops by a factor of three on scales less than about 0.3/h mpc, approximately the mean scale of virialization. There is a clear, but small, 60%, change in clustering with 1.4 mag of luminosity. To minimize these population effects in our measurement of clustering evolution, we choose galaxies with M_r^{k,e}<= -20 mag as a population whose members are most likely to be conserved wit...

  12. Survey For Very High-Redshift Quasars

    Lemley, S.; MacAlpine, G.

    1997-12-01

    I will present the results from the deep, three color survey for very high redshift quasars. The survey involved direct imaging through Gunn gri filters using a 2048 x 2048 STIS ccd chip and Cerro Tololo's Curtis Scmidt Telescope. Quasar candidates in the range 4.0 < z < 5.4 were selected based on the detection of the Lyman alpha line and the strong drop in the spectrum blueward of this. Because of this response, quasars are clearly located away from the stellar locus on g - r vs. r - i diagrams. Quasar candidates in this redshift range have large values of g - r and small values of r - i. To confirm the candidates as quasars, the multi-fiber spectroscope Hydra, located on the WIYN telescope, was used. To date, spectral confirmation has been completed for ten degrees out of the approximately fifteen square degress of survey area. Several quasars were discovered, and I will present their spectra and information on the viability of this technique.

  13. Searching for X-ray luminous 'normal' galaxies in 2dfGRS

    Tzanavaris, P; Georgakakis, A

    2006-01-01

    We cross-correlated the Chandra XASSIST and XMM-Newton Serendipitous Source Catalogues with the 2 degree Field Galaxy Redshift Survey (2dfGRS) database. Our aim was to identify the most X-ray luminous (L_X > 10^42 erg s^-1) examples of galaxies in the local Universe whose X-ray emission is dominated by stellar processes rather than AGN activity ('normal' galaxies) as well as to test the empirical criterion log(f_X/f_O) -2. We performed a similar search in two nearby-galaxy samples from the literature. All 44 galaxies in the Zezas (2001) sample have log(f_X/f_O) -2, the majority of which are massive ellipticals. Three of these have L_X > 10^42 erg s^-1 .

  14. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    Leistedt, Boris; Peiris, Hiranya V

    2016-01-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometri...

  15. Color-redshift Relations and Photometric Redshift Estimations of Quasars in Large Sky Surveys

    Wu, X B; Zhou, X; Wu, Xue-Bing; Zhang, Wei; Zhou, Xu

    2004-01-01

    With a recently constructed composite quasar spectrum and the \\chi^2 minimization technique, we demonstrated a general method to estimate the photometric redshifts of a large sample of quasars by deriving the theoretical color-redshift relations and comparing the theoretical colors with the observed ones. We estimated the photometric redshifts from the 5-band SDSS photometric data of 18678 quasars in the first major data release of SDSS and compare them with the spectroscopic redshifts. The redshift difference is smaller than 0.1 for 47% of quasars and 0.2 for 68 % of them. Based on the calculation of the theoretical color-color diagrams of stars, galaxies and quasars in both the SDSS and BATC photometric systems, we expected that with the BATC system of 15 intermediate filters we would be able to select candidates of high redshift quasars more efficiently than in the SDSS, provided the BATC survey could detect objects with magnitude fainter than 21.

  16. Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys

    Masters, Daniel; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Coupon, Jean; Steinhardt, Charles; Speagle, Josh; Faisst, Andreas; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-01-01

    Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where - in galaxy color space - redshifts from current spectroscopic surveys exist and whe...

  17. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Newman, Jeffrey A.; Kassin, Susan A.; Noeske, K. G.; Lotz, Jennifer M.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = −20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg^2 divided into four separate fields observed to a l...

  18. Color-Redshift Relations and Photometric Redshift Estimations of Quasars in Large Sky Surveys

    Xue-Bing Wu; Wei Zhang; Xu Zhou

    2004-01-01

    With a recently constructed composite quasar spectrum and the χ2 minimization technique, we describe a general method for estimating the photometric redshifts of a large sample of quasars by deriving theoretical color-redshift relations and comparing the theoretical colors with the observed ones. We estimated the photometric redshifts from the 5-band SDSS photometric data of 18678 quasars in the first major data release of SDSS and compared them with their spectroscopic redshifts. The difference is less than 0.1 for 47% of the quasars and less than 0.2for 68%. Based on the calculation of the theoretical color-color diagrams of stars,galaxies and quasars both on the SDSS system and on the BATC system, we expect that we would be able to select candidates of high redshift quasars more efficaciously with the latter than with the former, provided the BATC survey can detect objects with magnitudes fainter than 21.

  19. MAPPING THE GALAXY COLOR–REDSHIFT RELATION: OPTIMAL PHOTOMETRIC REDSHIFT CALIBRATION STRATEGIES FOR COSMOLOGY SURVEYS

    Masters, Daniel; Steinhardt, Charles; Faisst, Andreas [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Capak, Peter [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel; Rhodes, Jason [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Ilbert, Olivier [Aix Marseille Universite, CNRS, LAM (Laboratoire dAstrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Salvato, Mara [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Schmidt, Samuel [Department of Physics, University of California, Davis, CA 95616 (United States); Longo, Giuseppe [Department of Physics, University Federico II, via Cinthia 6, I-80126 Napoli (Italy); Paltani, Stephane; Coupon, Jean [Department of Astronomy, University of Geneva ch. dcogia 16, CH-1290 Versoix (Switzerland); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Hoekstra, Henk [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA, Leiden (Netherlands); Hildebrandt, Hendrik [Argelander-Institut für Astronomie, Universität Bonn, Auf dem H’´ugel 71, D-53121 Bonn (Germany); Speagle, Josh [Department of Astronomy, Harvard University, 60 Garden Street, MS 46, Cambridge, MA 02138 (United States); Kalinich, Adam [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Brodwin, Mark [Department of Physics and Astronomy, University of Missouri, Kansas City, MO 64110 (United States); Brescia, Massimo; Cavuoti, Stefano [Astronomical Observatory of Capodimonte—INAF, via Moiariello 16, I-80131, Napoli (Italy)

    2015-11-01

    Calibrating the photometric redshifts of ≳10{sup 9} galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  20. The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey

    2006-01-01

    We consider using future redshift surveys with the Large Sky Area MultiObject Fiber Spectroscopic Telescope (LAMOST) to constrain the equation of state of dark energy ω. We analyze the Alcock & Paczynski (AP) effect imprinted on the two-point correlation function of galaxies in redshift space. The Fisher matrix analysis is applied to estimate the expected error bounds of ω0 and ωa from galaxy redshift surveys, ω0 and ωa being the two parameters in the equation of state parametrization ω(z) = ω0 + ωaz/(1 -+ z). Strong degeneracies between ω0 and ωa are found. The direction of the degeneracy in ω0 - ωa plane, however, rotates counter-clockwise as the redshift increases. LAMOST can potentially contribute in the redshift range up to 0.5. In combination with other high redshift surveys, such as the proposed KiloAperture Optical Spectrograph project (KAOS), the joint constraint derived from galaxy surveys at different redshift ranges is likely to efficiently break the degeneracy of ω0 and ωa. We do not anticipate that the nature of dark energy can be well constrained with LAMOST alone, but it may help to reduce the error bounds expected from other observations, such as the Supernova/Acceleration Probe (SNAP).

  1. The redshift distribution of the TOUGH survey

    Jakobsson, P.; Hjorth, J.; Malesani, D.;

    2013-01-01

    to a maximum of 14% (5%) for z > 6 (z > 7). The mean redshift of the host sample is assessed to be. Using this more complete sample, we confirm previous findings that the GRB rate at high redshift () appears to be in excess of predictions based on assumptions that it should follow conventional determinations...... of the star formation history of the universe, combined with an estimate of its likely metallicity dependence. This suggests that either star formation at high redshifts has been significantly underestimated, for example due to a dominant contribution from faint, undetected galaxies, or that GRB production...... is enhanced in the conditions of early star formation, beyond those usually ascribed to lower metallicity. © EAS, EDP Sciences 2013....

  2. Spectral Confusion for Cosmological Surveys of Redshifted C II Emission

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-01-01

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencilbeam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150-1300 µm wavelength region corresponding to redshifts 0 C II] line and other lines. Although the [C II] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C II] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20? and 10', sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  3. Correcting cosmological parameter biases for all redshift surveys induced by estimating and reweighting redshift distributions

    Rau, Markus Michael; Hoyle, Ben; Paech, Kerstin; Seitz, Stella

    2017-04-01

    Photometric redshift uncertainties are a major source of systematic error for ongoing and future photometric surveys. We study different sources of redshift error caused by choosing a suboptimal redshift histogram bin width and propose methods to resolve them. The selection of a too large bin width is shown to oversmooth small-scale structure of the radial distribution of galaxies. This systematic error can significantly shift cosmological parameter constraints by up to 6σ for the dark energy equation-of-state parameter w. Careful selection of bin width can reduce this systematic by a factor of up to 6 as compared with commonly used current binning approaches. We further discuss a generalized resampling method that can correct systematic and statistical errors in cosmological parameter constraints caused by uncertainties in the redshift distribution. This can be achieved without any prior assumptions about the shape of the distribution or the form of the redshift error. Our methodology allows photometric surveys to obtain unbiased cosmological parameter constraints using a minimum number of spectroscopic calibration data. For a DES-like galaxy clustering forecast, we obtain unbiased results with respect to errors caused by suboptimal histogram bin width selection, using only 5k representative spectroscopic calibration objects per tomographic redshift bin.

  4. Correcting cosmological parameter biases for all redshift surveys induced by estimating and reweighting redshift distributions

    Rau, Markus Michael; Paech, Kerstin; Seitz, Stella

    2016-01-01

    Photometric redshift uncertainties are a major source of systematic error for ongoing and future photometric surveys. We study different sources of redshift error caused by common suboptimal binning techniques and propose methods to resolve them. The selection of a too large bin width is shown to oversmooth small scale structure of the radial distribution of galaxies. This systematic error can significantly shift cosmological parameter constraints by up to $6 \\, \\sigma$ for the dark energy equation of state parameter $w$. Careful selection of bin width can reduce this systematic by a factor of up to 6 as compared with commonly used current binning approaches. We further discuss a generalised resampling method that can correct systematic and statistical errors in cosmological parameter constraints caused by uncertainties in the redshift distribution. This can be achieved without any prior assumptions about the shape of the distribution or the form of the redshift error. Our methodology allows photometric surve...

  5. EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS

    Matthews, Daniel J.; Newman, Jeffrey A. [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Coil, Alison L. [Department of Physics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Gwyn, Stephen D. J., E-mail: djm70@pitt.edu, E-mail: janewman@pitt.edu, E-mail: acoil@ucsd.edu, E-mail: m.cooper@uci.edu, E-mail: Stephen.Gwyn@nrc-cnrc.gc.ca [Canadian Astronomical Data Centre, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, British Columbia V9E 2E7 (Canada)

    2013-02-15

    This paper describes a new catalog that supplements the existing DEEP2 Galaxy Redshift Survey photometric and spectroscopic catalogs with ugriz photometry from two other surveys: the Canada-France-Hawaii Legacy Survey (CFHTLS) and the Sloan Digital Sky Survey (SDSS). Each catalog is cross-matched by position on the sky in order to assign ugriz photometry to objects in the DEEP2 catalogs. We have recalibrated the CFHTLS photometry where it overlaps DEEP2 in order to provide a more uniform data set. We have also used this improved photometry to predict DEEP2 BRI photometry in regions where only poorer measurements were available previously. In addition, we have included improved astrometry tied to SDSS rather than USNO-A2.0 for all DEEP2 objects. In total this catalog contains {approx}27, 000 objects with full ugriz photometry as well as robust spectroscopic redshift measurements, 64% of which have r > 23. By combining the secure and accurate redshifts of the DEEP2 Galaxy Redshift Survey with ugriz photometry, we have created a catalog that can be used as an excellent testbed for future photo-z studies, including tests of algorithms for surveys such as LSST and DES.

  6. Galaxy clustering with photometric surveys using PDF redshift information

    Asorey, J; Sevilla-Noarbe, I; Brunner, R J; Thaler, J

    2016-01-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are $\\Delta z=0.1$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.

  7. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    Newman, Jeffrey A. [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697 (United States); Davis, Marc [Department of Astronomy and Physics, University of California, 601 Campbell Hall, Berkeley, CA 94720 (United States); Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson [UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Coil, Alison L. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Dutton, Aaron A. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden St., Cambridge, MA 02138 (United States); Gerke, Brian F. [Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., MS 90R4000, Berkeley, CA 94720 (United States); Rosario, David J. [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Weiner, Benjamin J.; Willmer, C. N. A. [Steward Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721-0065 (United States); Yan Renbin [Department of Physics and Astronomy, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055 (United States); Kassin, Susan A. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Konidaris, N. P., E-mail: janewman@pitt.edu, E-mail: djm70@pitt.edu, E-mail: m.cooper@uci.edu, E-mail: mdavis@berkeley.edu, E-mail: faber@ucolick.org, E-mail: koo@ucolick.org, E-mail: raja@ucolick.org, E-mail: phillips@ucolick.org [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2013-09-15

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z {approx} 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M{sub B} = -20 at z {approx} 1 via {approx}90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg{sup 2} divided into four separate fields observed to a limiting apparent magnitude of R{sub AB} = 24.1. Objects with z {approx}< 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted {approx}2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z {approx} 1.45, where the [O II] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm{sup -1} grating used for the survey delivers high spectral resolution (R {approx} 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or

  8. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Connolly, A. J.; Kaiser, N.; Kirby, Evan N.; Lemaux, Brian C.; Lin, Lihwai; Lotz, Jennifer M.; Luppino, G. A.; Marinoni, C.; Matthews, Daniel J.; Metevier, Anne; Schiavon, Ricardo P.

    2013-09-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg2 divided into four separate fields observed to a limiting apparent magnitude of R AB = 24.1. Objects with z 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O II] 3727 Å doublet lies in the infrared. The DEIMOS 1200 line mm-1 grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is

  9. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Wilmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Kirby, Evan N.; Lotz, Jennifer M.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed

  10. The DEEP Groth Strip Galaxy Redshift Survey. III. Redshift Catalog and Properties of Galaxies

    Weiner, B J; Faber, S M; Willmer, C N A; Vogt, N P; Simard, L; Gebhardt, K; Im, M; Koo, D C; Sarajedini, V L; Wu, K L; Forbes, D A; Gronwall, C; Groth, E J; Illingworth, G D; Kron, R G; Rhodes, J; Szalay, A S; Takamiya, M; Weiner, Benjamin J.; Phillips, Andrew C.; Willmer, Christopher N.A.; Vogt, Nicole P.; Simard, Luc; Gebhardt, Karl; Im, Myungshin; Sarajedini, Vicki L.; Wu, Katherine L.; Forbes, Duncan A.; Gronwall, Caryl; Groth, Edward J.; Rhodes, Jason

    2004-01-01

    The Deep Extragalactic Evolutionary Probe (DEEP) is a series of spectroscopic surveys of faint galaxies, targeted at the properties and clustering of galaxies at redshifts z ~ 1. We present the redshift catalog of the DEEP 1 GSS pilot phase of this project, a Keck/LRIS survey in the HST/WFPC2 Groth Survey Strip. The redshift catalog and data, including reduced spectra, are publicly available through a Web-accessible database. The catalog contains 658 secure galaxy redshifts with a median z=0.65, and shows large-scale structure walls to z = 1. We find a bimodal distribution in the galaxy color-magnitude diagram which persists to z = 1. A similar color division has been seen locally by the SDSS and to z ~ 1 by COMBO-17. For red galaxies, we find a reddening of only 0.11 mag from z ~ 0.8 to now, about half the color evolution measured by COMBO-17. We measure structural properties of the galaxies from the HST imaging, and find that the color division corresponds generally to a structural division. Most red galaxi...

  11. Photometric redshifts for supernovae Ia in the Supernova Legacy Survey

    Palanque-Delabrouille, Nathalie; Pascal, S; Rich, J; Guy, J; Bazin, G; Astier, P; Balland, C; Basa, S; Carlberg, R G; Conley, A; Fouchez, D; Hardin, D; Hook, I M; Howell, D A; Pain, R; Perrett, K; Pritchet, C J; Regnault, N; Sullivan, M

    2009-01-01

    We present a method using the SALT2 light curve fitter to determine the redshift of Type Ia supernovae in the Supernova Legacy Survey (SNLS) based on their photometry in g', r', i' and z'. On 289 supernovae of the first three years of SNLS data, we obtain a precision $\\sigma_{\\Delta z/(1+z)} = 0.022$ on average up to a redshift of 1.0, with a higher precision of 0.016 for z0.45. The rate of events with $|\\Delta z|/(1+z)>0.15$ (catastrophic errors) is 1.4%. Both the precision and the rate of catastrophic errors are better than what can be currently obtained using host galaxy photometric redshifts. Photometric redshifts of this precision may be useful for future experiments which aim to discover up to millions of supernovae Ia but without spectroscopy for most of them.

  12. SPECTRAL CONFUSION FOR COSMOLOGICAL SURVEYS OF REDSHIFTED C II EMISSION

    Kogut, A.; Dwek, E.; Moseley, S. H., E-mail: Alan.J.Kogut@nasa.gov [Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-06-20

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencil-beam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150–1300 μm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 μm [C ii] line and other lines. Although the [C ii] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C ii] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20″ and 10′, sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  13. Spectral Confusion for Cosmological Surveys of Redshifted C II Emission

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-01-01

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencilbeam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150-1300 µm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 µm [C II] line and other lines. Although the [C II] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C II] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20? and 10', sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  14. A Survey for Very High-Redshift Quasars

    Lemley, Shelley R.

    1995-12-01

    I have been conducting a deep, three color survey for very high redshift quasars and will present information on how my candidates, which are awaiting spectroscopic confirmation, have been selected. The survey involves direct imaging through Gunn gri filters using a 2048 x 2048 STIS ccd chip and Cerro Tololo's Curtis Scmidt Telescope. Quasar candidates in the range 4.2 5 candidates have large r - i values and g - r values near zero. Before beginning the survey, test observations using this selection method were made of two known quasars with redshifts of 4.5 and 4.7. The quasars were successfully relocated by the technique and several candidates, which will also be observed for spectroscopic confirmation, were selected from those two fields. To date, 13 square degrees have been surveyed.

  15. Power Spectrum Analysis of Three-Dimensional Redshift Surveys

    Feldman, H A; Peacock, J A; Feldman, Hume A.; Kaiser, Nick; Peacock, John A.

    1994-01-01

    We develop a general method for power spectrum analysis of three dimensional redshift surveys. We present rigorous analytical estimates for the statistical uncertainty in the power and we are able to derive a rigorous optimal weighting scheme under the reasonable (and largely empirically verified) assumption that the long wavelength Fourier components are Gaussian distributed. We apply the formalism to the updated 1-in-6 QDOT IRAS redshift survey, and compare our results to data from other probes: APM angular correlations; the CfA and the Berkeley 1.2Jy IRAS redshift surveys. Our results bear out and further quantify the impression from e.g.\\ counts-in-cells analysis that there is extra power on large scales as compared to the standard CDM model with $\\Omega h\\simeq 0.5$. We apply likelihood analysis using the CDM spectrum with $\\Omega h$ as a free parameter as a phenomenological family of models; we find the best fitting parameters in redshift space and transform the results to real space. Finally, we calcul...

  16. High redshift galaxies in the ALHAMBRA survey: I. selection method and number counts based on redshift PDFs

    Viironen, K; López-Sanjuan, C; Varela, J; Chaves-Montero, J; Cristóbal-Hornillos, D; Molino, A; Fernández-Soto, A; Ascaso, B; Cenarro, A J; Cerviño, M; Cepa, J; Ederoclite, A; Márquez, I; Masegosa, J; Moles, M; Oteo, I; Pović, M; Aguerri, J A L; Alfaro, E; Aparicio-Villegas, T; Benítez, N; Broadhurst, T; Cabrera-Caño, J; Castander, J F; Del Olmo, A; Delgado, R M González; Husillos, C; Infante, L; Martínez, V J; Perea, J; Prada, F; Quintana, J M

    2015-01-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in the study of the brightest, less frequent, high redshift galaxies. Methods. The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reach...

  17. Redshift

    Clark, Stuart

    1997-01-01

    The light emitted by celestial objects can have its wavelength "stretched" in different ways before it is observed by astronomers. These stretching phenomena are collectively called "redshift". They influence virtually all aspects of astronomy and even underpin the "Big Bang" theory of the creation of the universe. This book details the types of redshift and explains their myriad of uses. It begins by introducing the nature of light and the problems involved in measuring its properties. After explaining the redshift phenomena and their uses, the book touches on the age and size of the universe; two subjects embroiled in controversy because of our current interpretation of the redshift. Less conventional theories are then expressed. As a by-product of the explanation of redshift, the book offers the reader a basic understanding of Einstein's theory of relativity. Mathematical treatments of the concepts introduced in the text are boxed off and should not detract from the book's readibility, but allow it to be u...

  18. Comparing Dense Galaxy Cluster Redshift Surveys with Weak Lensing Maps

    Hwang, Ho Seong; Diaferio, Antonaldo; Rines, Kenneth J; Zahid, H Jabran

    2014-01-01

    We use dense redshift surveys of nine galaxy clusters at $z\\sim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{\\rm cl}$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing th...

  19. The 2MASS Redshift Survey - Description and Data Release

    Huchra, John P; Masters, Karen L; Jarrett, Thomas H; Berlind, Perry; Calkins, Michael; Crook, Aidan C; Cutri, Roc; Erdogdu, Pirin; Falco, Emilio; George, Teddy; Hutcheson, Conrad M; Lahav, Ofer; Mader, Jeff; Mink, Doug; Martimbeau, Nathalie; Schneider, Stephen; Skrutskie, Michael; Tokarz, Susan; Westover, Michael

    2011-01-01

    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby Universe. The 2 Micron All-Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available on-line. The 2MASS XSC contains nearly a million galaxies with Ks =5 deg (>= 8 deg towards the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 10,882 galaxies and used previously-obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 Mpc, detected galaxy groups, and estimated the values...

  20. Can A Galaxy Redshift Survey Measure Dark Energy Clustering?

    Takada, M

    2006-01-01

    (abridged) A wide-field galaxy redshift survey allows one to probe galaxy clustering at largest spatial scales, which carries an invaluable information on horizon-scale physics complementarily to the cosmic microwave background (CMB). Assuming the planned survey consisting of z~1 and z~3 surveys with areas of 2000 and 300 square degrees, respectively, we study the prospects for probing dark energy clustering from the measured galaxy power spectrum, assuming the dynamical properties of dark energy are specified in terms of the equation of state and the effective sound speed c_e in the context of an adiabatic cold dark matter (CDM) model. The dark energy clustering adds a power to the galaxy power spectrum amplitude at spatial scales greater than the sound horizon, and the enhancement is sensitive to redshift evolution of the net dark energy density, i.e. the equation of state. We find that the galaxy survey, when combined with Planck, can distinguish dark energy clustering from a smooth dark energy model such ...

  1. ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

    Weiss, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); De Breuck, C.; Aravena, M.; Biggs, A. D. [European Southern Observatory, Karl-Schwarzschild Strasse, D-85748 Garching bei Muenchen (Germany); Marrone, D. P.; Bothwell, M. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Vieira, J. D.; Bock, J. J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Aguirre, J. E. [University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Aird, K. A. [University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ashby, M. L. N.; Bayliss, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L. [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bethermin, M. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu - CNRS - Universite Paris Diderot, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Bradford, C. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Brodwin, M. [Department of Physics and Astronomy, University of Missouri, 5110 Rockhill Road, Kansas City, MO 64110 (United States); Chapman, S. C. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 3J5 Canada (Canada); and others

    2013-04-10

    Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S{sub 1.4{sub mm}} > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S{sub 843{sub MHz}} < 6 mJy) or far-infrared counterparts (S{sub 100{sub {mu}m}} < 1 Jy, S{sub 60{sub {mu}m}} < 200 mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of {sup 12}CO, {sup 13}CO, C I, H{sub 2}O, and H{sub 2}O{sup +}. We find one or more spectral features in 23 sources yielding a {approx}90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for {approx}70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7 < z < 2.0. The resulting mean redshift of our sample is z-bar = 3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of z-bar = 2.3 and for which only 10%-15% of the population is expected to be at z > 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  2. The DEEP2 Galaxy Redshift Survey: Redshift Identification of Single-Line Emission Galaxies

    Kirby, E N; Faber, S M; Koo, D C; Weiner, B J; Cooper, M C

    2007-01-01

    We present two methods for determining spectroscopic redshifts of galaxies in the \\deep survey which display only one identifiable feature, an emission line, in the observed spectrum ("single-line galaxies"). First, we assume each single line is one of the four brightest lines accessible to DEEP2: Halpha, [OIII] 5007, Hbeta, or [OII] 3727. Then, we supplement spectral information with BRI photometry. The first method, parameter space proximity (PSP), calculates the distance of a single-line galaxy to galaxies of known redshift in (B-R), (R-I), R, observed wavelength parameter space. The second method is an artificial neural network (ANN). Prior information, such as allowable line widths and ratios, rules out one or more of the four lines for some galaxies in both methods. Based on analyses of evaluation sets, both methods are nearly perfect at identifying blended [OII] doublets. Of the lines identified as Halpha in the PSP and ANN methods, 91.4% and 94.2% respectively are accurate. Although the methods are no...

  3. ALMA redshifts of millimeter-selected galaxies from the SPT survey: The redshift distribution of dusty star-forming galaxies

    Weiss, A; Marrone, D P; Vieira, J D; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Bethermin, M; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Chapman, S C; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Downes, T P; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Halverson, N W; Hezaveh, Y D; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Husband, K; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Murphy, E J; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Rosenman, M; Ruel, J; Ruhl, J E; Schaffer, K K; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-01-01

    Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensd dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope (SPT). The sources were selected to have S_1.4mm>20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S_843MHz=3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of =2.3 and for which only 10-15% of the population is expected to be at z>3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  4. Probing neutrino masses with future galaxy redshift surveys

    Lesgourgues, Julien; Perotto, Laurence; Lesgourgues, Julien; Pastor, Sergio; Perotto, Laurence

    2004-01-01

    We perform a new study of future sensitivities of galaxy redshift surveys to the free-streaming effect caused by neutrino masses, adding the information on cosmological parameters from measurements of primary anisotropies of the cosmic microwave background (CMB). Our reference cosmological scenario has nine parameters and three different neutrino masses, with a hierarchy imposed by oscillation experiments. Within the present decade, the combination of the Sloan Digital Sky Survey (SDSS) and CMB data from the PLANCK experiment will have a 2-sigma detection threshold on the total neutrino mass close to 0.2 eV. This estimate is robust against the inclusion of extra free parameters in the reference cosmological model. On a longer term, the next generation of experiments may reach values of order sum m_nu = 0.1 eV at 2-sigma, or better if a galaxy redshift survey significantly larger than SDSS is completed. We also discuss how the small changes on the free-streaming scales in the normal and inverted hierarchy sche...

  5. A faint galaxy redshift survey behind massive clusters

    Frye, Brenda

    1999-12-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of {approximately}20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  6. A faint galaxy redshift survey behind massive clusters

    Frye, Brenda Louise [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of ~20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  7. THE 2MASS REDSHIFT SURVEY-DESCRIPTION AND DATA RELEASE

    Huchra, John P.; Berlind, Perry; Calkins, Michael; Falco, Emilio; Mink, Jessica D.; Tokarz, Susan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Macri, Lucas M. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 TAMU, College Station, TX 77843 (United States); Masters, Karen L. [Institute for Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Jarrett, Thomas H. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S Wilson Ave., Pasadena, CA 91125 (United States); Crook, Aidan C. [Microsoft Corp., 1 Microsoft Way, Redmond, WA 98052 (United States); Cutri, Roc [SEPNet (South East Physics Network) (United Kingdom); Erdogdu, Pirin; Lahav, Ofer [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); George, Teddy [Canada-France-Hawaii Telescope, 65-1238 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Hutcheson, Conrad M. [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94309 (United States); Mader, Jeff [Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Martimbeau, Nathalie [Planetarium de Montreal, 1000 rue Saint-Jacques, Montreal, Quebec H3C 1G7 (Canada); Schneider, Stephen [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Skrutskie, Michael [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Westover, Michael, E-mail: lmacri@tamu.edu, E-mail: karen.masters@port.ac.uk [McKinsey and Co., 1420 Fifth Ave., Ste 3100, Seattle, WA 98101 (United States)

    2012-04-01

    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with K{sub s} {<=} 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5 Degree-Sign for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44,599 2MASS galaxies with K{sub s} {<=} 11.75 mag and |b| {>=} 5 Degree-Sign ({>=}8 Degree-Sign toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 h{sup -1} Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20,860 galaxies with K{sub s} {<=} 11.25 mag and |b| {>=} 10 Degree-Sign .

  8. Effective Theory of Dark Energy at Redshift Survey Scales

    Gleyzes, Jérôme; Mancarella, Michele; Vernizzi, Filippo

    2016-01-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with $\\Lambda$CDM as fiducial model and a specific choice for the time dependence of our effective functions, we perform a Fisher matrix analysis and find that the unmarginalized $68\\%$ CL errors on the parameters describing the modifications of gravity are of order $\\sigma\\sim10^{-2}$--$10^{-3}$. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravit...

  9. A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: The Redshift Catalog

    Momcheva, Ivelina; Cool, Richard J; Keeton, Charles R; Zabludoff, Ann I

    2015-01-01

    We present the spectroscopic redshift catalog from a wide-field survey of the fields of 28 galaxy-mass strong gravitational lenses. We discuss the acquisition and reduction of the survey data, collected over 40 nights of 6.5m MMT and Magellan time, employing four different multi-object spectrographs. We determine that no biases are introduced by combining datasets obtained with different instrument/spectrograph combinations. Special care is taken to determine redshift uncertainties using repeat observations. The redshift catalog consists of 9768 new and unique galaxy redshifts. 82.4% of the catalog redshifts are between z=0.1 and z=0.7, and the catalog median redshift is z=0.36. The data from this survey will be used to study the lens environments and line-of-sight structures to gain a better understanding of the effects of large scale structure on lens statistics and lens-derived parameters.

  10. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    Hsieh, Bau-Ching; /Taiwan, Natl. Central U. /Taipei, Inst. Astron. Astrophys.; Yee, H.K.C.; /Toronto U., Astron. Dept.; Lin, H.; /Fermilab; Gladders, M.D.; /Carnegie Inst.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) < 0.06 within the redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.

  11. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  12. Quantifying the Cosmic Web in the New Era of Redshift Surveys

    Lahav, O

    2004-01-01

    Two main strategies have been implemented in mapping the local universe: whole-sky 'shallow' surveys and 'deep' surveys over limited parts of the sky. The two approaches complement each other in studying cosmography and statistical properties of the Universe. We summarise some results on the power spectrum of fluctuations and Wiener reconstruction of the density field from the 2dF Galaxy Redshift Survey (2dFGRS) of 230,000 redshifts. We then discuss future challenges in quantifying the web of cosmic structure in the on-going redshift surveys.

  13. Galaxy groups in the 2MASS Redshift Survey

    Lu, Yi; Shi, Feng; Mo, H J; Tweed, Dylan; Wang, Huiyuan; Zhang, Youcai; Li, Shijie; Lim, S H

    2016-01-01

    A galaxy group catalog is constructed from the 2MASS Redshift Survey (2MRS) with the use of a halo-based group finder. The halo mass associated with a group is estimated using a `GAP' method based on the luminosity of the central galaxy and its gap with other member galaxies. Tests using mock samples shows that this method is reliable, particularly for poor systems containing only a few members. On average 80% of all the groups have completeness >0.8, and about 65% of the groups have zero contamination. Halo masses are estimated with a typical uncertainty $\\sim 0.35\\,{\\rm dex}$. The application of the group finder to the 2MRS gives 29,904 groups from a total of 43,246 galaxies at $z \\leq 0.08$, with 5,286 groups having two or more members. Some basic properties of this group catalog is presented, and comparisons are made with other groups catalogs in overlap regions. With a depth to $z\\sim 0.08$ and uniformly covering about 91% of the whole sky, this group catalog provides a useful data base to study galaxies...

  14. The Next Generation Virgo Cluster Survey. XV. The Photometric Redshift Estimation for Background Sources

    Raichoor, A.; Mei, S.; Erben, T.; Hildebrandt, H.; Huertas-Company, M.; Ilbert, O.; Licitra, R.; Ball, N. M.; Boissier, S.; Boselli, A.; Chen, Y.-T.; Côté, P.; Cuillandre, J.-C.; Duc, P. A.; Durrell, P. R.; Ferrarese, L.; Guhathakurta, P.; Gwyn, S. D. J.; Kavelaars, J. J.; Lançon, A.; Liu, C.; MacArthur, L. A.; Muller, M.; Muñoz, R. P.; Peng, E. W.; Puzia, T. H.; Sawicki, M.; Toloba, E.; Van Waerbeke, L.; Woods, D.; Zhang, H.

    2014-12-01

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg2 centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i AB = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag outliers, a scatter σoutl.rej., and an individual error on z phot that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 outliers, and z phot.err. ~ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  15. The High-Redshift Clusters Occupied by Bent Radio AGN (COBRA) Survey

    Paterno-Mahler, R; Ashby, M L N; Brodwin, M; Wing, J D; Anand, G; Decker, B; Golden-Marx, E

    2016-01-01

    We present 238 high-redshift galaxy cluster candidates based on galaxy overdensities in the Spitzer/IRAC imaging of the fields surrounding 646 bent, double-lobed radio sources drawn from the Clusters Occupied by Bent Radio AGN (COBRA) Survey. The COBRA sources were chosen as objects in the VLA FIRST survey that lack optical counterparts in the Sloan Digital Sky Survey (SDSS) to a limit of $m_r=22$, making them likely to lie at high redshift. This is confirmed by our observations: the redshift distribution of COBRA sources with estimated redshifts peaks near $z=1$, and extends out to $z\\approx3$. Cluster candidates were identified by comparing our sources to a background field and searching for overdensities. Forty-one of these sources are quasars with known spectroscopic redshifts, which may be tracers of some of the most distant clusters known.

  16. Spectroscopic failures in photometric redshift calibration: cosmological biases and survey requirements

    Cunha, Carlos E. [KIPAC, Menlo Park; Huterer, Dragan [Michigan U.; Lin, Huan [Fermilab; Busha, Michael T. [Zurich U.; Wechsler, Risa H. [SLAC

    2014-10-11

    We use N-body-spectro-photometric simulations to investigate the impact of incompleteness and incorrect redshifts in spectroscopic surveys to photometric redshift training and calibration and the resulting effects on cosmological parameter estimation from weak lensing shear-shear correlations. The photometry of the simulations is modeled after the upcoming Dark Energy Survey and the spectroscopy is based on a low/intermediate resolution spectrograph with wavelength coverage of 5500{\\AA} < {\\lambda} < 9500{\\AA}. The principal systematic errors that such a spectroscopic follow-up encounters are incompleteness (inability to obtain spectroscopic redshifts for certain galaxies) and wrong redshifts. Encouragingly, we find that a neural network-based approach can effectively describe the spectroscopic incompleteness in terms of the galaxies' colors, so that the spectroscopic selection can be applied to the photometric sample. Hence, we find that spectroscopic incompleteness yields no appreciable biases to cosmology, although the statistical constraints degrade somewhat because the photometric survey has to be culled to match the spectroscopic selection. Unfortunately, wrong redshifts have a more severe impact: the cosmological biases are intolerable if more than a percent of the spectroscopic redshifts are incorrect. Moreover, we find that incorrect redshifts can also substantially degrade the accuracy of training set based photo-z estimators. The main problem is the difficulty of obtaining redshifts, either spectroscopically or photometrically, for objects at z > 1.3. We discuss several approaches for reducing the cosmological biases, in particular finding that photo-z error estimators can reduce biases appreciably.

  17. The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey III. Optical Identifications and New Redshifts

    Pursimo, Tapio; Jauncey, David L; Rickett, Barney J; Dutka, Michael S; Koay, Jun Yi; Lovell, James E J; Bignall, Hayley E; Kedziora-Chudczer, Lucyna; Macquart, Jean-Pierre

    2013-01-01

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FS...

  18. The Merger Rate to Redshift One from Kinematic Pairs Caltech Faint Galaxy Redshift Survey XI

    Carlberg, R G; Patton, D R; Blandford, R D; Hogg, D W; Yee, H K C; Morris, S L; Lin, H; Cowie, L L; Hu, E; Songaila, A; Cohen, Judith G.; Blandford, Roger; Hogg, David W.; Cowie, Lennox L.; Hu, Esther; Songaila, Antoinette

    2000-01-01

    The rate of mass accumulation due to galaxy merging depends on the mass, density, and velocity distribution of galaxies in the near neighborhood of a host galaxy. The fractional luminosity in kinematic pairs combines all of these effects in a single estimator which is relatively insensitive to population evolution. Here we use a k-corrected and evolution compensated volume-limited sample drawing about 300 redshifts from CFGRS and 3000 from CNOC2 to measure the rate and redshift evolution of merging. We identify kinematic pairs with projected separations less than either 50 or 100 \\hkpc and rest-frame velocity differences of less than 1000\\kms. The fractional luminosity in pairs is modeled as f_L(Delta v,r_p,M_r^{ke})(1+z)^{m_L} where [f_L,m_L] are [0.14+/-0.07,0+/-1.4] and [0.37+/-0.7,0.1+/-0.5] for r_p= 0.2 M*) is 0.02+/-0.01(1+z)^{0.1+/-0.5} M*~Gyr^{-1}. Present day high-luminosity galaxies therefore have accreted approximately 0.15M* of their mass over the approximately 7 Gyr to redshift one. (abridged)

  19. The DEEP2 Galaxy Redshift Survey: The Red Sequence AGN Fraction and its Environment and Redshift Dependence

    Montero-Dorta, Antonio D; Yan, Renbin; Cooper, Michael C; Newman, Jeffery A; Georgakakis, Antonis; Prada, Francisco; Davis, Marc; Nandra, Kirpal; Coil, Alison

    2008-01-01

    We measure the dependence of the AGN fraction on local environment at z~1, using spectroscopic data taken from the DEEP2 Galaxy Redshift Survey, and Chandra X-ray data from the All-Wavelength Extended Groth Strip International Survey (AEGIS). To provide a clean sample of AGN we restrict our analysis to the red sequence population; this also reduces additional colour-environment correlations. We find evidence that high redshift LINERs in DEEP2 tend to favour higher density environments relative to the red population from which they are drawn. In contrast, Seyferts and X-ray selected AGN at z~1 show little (or no) environmental dependencies within the same underlying population. We compare these results with a sample of local AGN drawn from the SDSS. Contrary to the high redshift behaviour, we find that both LINERs and Seyferts in the SDSS show a slowly declining red sequence AGN fraction towards high density environments. Interestingly, at z~1 red sequence Seyferts and LINERs are approximately equally abundant...

  20. The effects of spatial resolution on Integral Field Spectrograph surveys at different redshifts. The CALIFA perspective

    Mast, D; Sanchez, S F; Vílchez, J M; Iglesias-Paramo, J; Walcher, C J; Husemann, B; Marquez, I; Marino, R A; Kennicutt, R C; Monreal-Ibero, A; Galbany, L; de Lorenzo-Caceres, A; Mendez-Abreu, J; Kehrig, C; del Olmo, A; Relano, M; Wisotzki, L; Marmol-Queralto, E; Bekeraite, S; Papaderos, P; Wild, V; Aguerri, J A L; Falcon-Barroso, J; Bomans, D J; Ziegler, B; García-Lorenzo, B; Bland-Hawthorn, J; Lopez-Sanchez, A R; van de Ven, G

    2013-01-01

    Over the past decade, 3D optical spectroscopy has become the preferred tool for understanding the properties of galaxies and is now increasingly used to carry out galaxy surveys. Low redshift surveys include SAURON, DiskMass, ATLAS3D, PINGS and VENGA. At redshifts above 0.7, surveys such as MASSIV, SINS, GLACE, and IMAGES have targeted the most luminous galaxies to study mainly their kinematic properties. The on-going CALIFA survey ($z\\sim0.02$) is the first of a series of upcoming Integral Field Spectroscopy (IFS) surveys with large samples representative of the entire population of galaxies. Others include SAMI and MaNGA at lower redshift and the upcoming KMOS surveys at higher redshift. Given the importance of spatial scales in IFS surveys, the study of the effects of spatial resolution on the recovered parameters becomes important. We explore the capability of the CALIFA survey and a hypothetical higher redshift survey to reproduce the properties of a sample of objects observed with better spatial resolut...

  1. Southern Sky Redshift Survey: Clustering of Local Galaxies

    Willmer, Christopher N. A.; da Costa, Luiz Nicolaci; Pellegrini, Paulo S.

    1998-03-01

    We use the two-point correlation function to calculate the clustering properties of the recently completed SSRS2 survey, which probes two well-separated regions of the sky, allowing one to evaluate the sensitivity of sample-to-sample variations. Taking advantage of the large number of galaxies in the combined sample, we also investigate the dependence of clustering on the internal properties of galaxies. The redshift-space correlation function for the combined magnitude-limited sample of the SSRS2 is given by xi(s) = [s/(5.85 h^-1 Mpc)]^-1.60 for separations in the range 2 h^-1 Mpc b b is the linear biasing factor for optical galaxies. We have used the SSRS2 sample to study the dependence of xi on the internal properties of galaxies, such as luminosity, morphology, and color. We confirm earlier results that luminous galaxies (L > L^*) are more clustered than sub-L^* galaxies and that the luminosity segregation is scale-independent. We also find that early types are more clustered than late types. However, in the absence of rich clusters, the relative bias between early and late types in real space, b_E+S0/b_S ~ 1.2, is not as strong as previously estimated. Furthermore, both morphologies present a luminosity-dependent bias, with the early types showing a slightly stronger dependence on luminosity. We also find that red galaxies are significantly more clustered than blue ones, with a mean relative bias of b_R/b_B ~ 1.4, stronger than that observed for morphology. Finally, by comparing our results with the measurements obtained from the infrared-selected galaxies, we determine that the relative bias between optical and IRAS galaxies in real space is b_o/b_I ~ 1.4. Based on observations obtained at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation; Complejo Astronómico El Leoncito, operated

  2. The PRIsm MUlti-object Survey (PRIMUS). II. Data Reduction and Redshift Fitting

    Cool, Richard J; Blanton, Michael R; Burles, Scott M; Coil, Alison L; Eisenstein, Daniel J; Wong, Kenneth C; Zhu, Guangtun; Aird, James; Bernstein, Rebecca A; Bolton, Adam S; Hogg, David W; Mendez, Alexander J

    2013-01-01

    The PRIsm MUti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z~1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of ~2,500 objects over 0.18 square degrees. The final PRIMUS catalog includes ~130,000 robust redshifts over 9.1 sq. deg. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al 2010. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of sigma_z/(1+z)=0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between AGNs and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over t...

  3. Photometric redshifts for the Dark Energy Survey and VISTA and implications for large-scale structure

    Banerji, Manda; Abdalla, Filipe B.; Lahav, Ofer; Lin, Huan

    2008-05-01

    We conduct a detailed analysis of the photometric redshift requirements for the proposed Dark Energy Survey (DES) using two sets of mock galaxy simulations and an artificial neural network code - ANNZ. In particular, we examine how optical photometry in the DES grizY bands can be complemented with near-infrared photometry from the planned VISTA Hemisphere Survey (VHS) in the JHKs bands. We find that the rms scatter on the photometric redshift estimate over 1 neural network code, calculate the extinction, Av for these reddened galaxies. We also look at the impact of using different training sets when calculating photometric redshifts. In particular, we find that using the ongoing DEEP2 and VVDS-Deep spectroscopic surveys to calibrate photometric redshifts for DES, will prove effective. However, we need to be aware of uncertainties in the photometric redshift bias that arise when using different training sets as these will translate into errors in the dark energy equation of state parameter, w. Furthermore, we show that the neural network error estimate on the photometric redshift may be used to remove outliers from our samples before any kind of cosmological analysis, in particular for large-scale structure experiments. By removing all galaxies with a neural network photo-z error estimate of greater than 0.1 from our DES + VHS sample, we can constrain the galaxy power spectrum out to a redshift of 2 and reduce the fractional error on this power spectrum by ~15-20 per cent compared to using the entire catalogue. Output tables of spectroscopic redshift versus photometric redshift used to produce the results in this paper can be found at http://www.star.ucl.ac.uk/~mbanerji/DESdata.

  4. A Photometric Redshift Galaxy Catalog from the Red-Sequence Cluster Survey

    Hsieh, B C; Lin, H; Gladders, M D

    2005-01-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the $z'$ and $R_c$ bands for ~90 square degrees of sky, and supplemental $V$ and $B$ data have been obtained for 33.6 deg$^{2}$. We compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts $< 1.5$ and $R_c < 24$, giving an rms scatter $\\sigma(\\Delta{z}) < 0.06$ within the redshift range $0.2 < z < 0.5$ and $\\sigma(\\Delta{z}) < 0.11$ for galaxies at $0.0 < z < 1.5$. We describe the empirical quadratic polynomial photometric redshift fitting technique which we use to determine the relation between redshift and photometry. A kd-tree algorithm is used to divide up our sample to improve the accuracy of our cat...

  5. The 160 Square Degree ROSAT Survey: The revised catalog of 201 clusters with spectroscopic redshifts

    Mullis, C.R.; McNamara, B.R.; Quintana, H.;

    2003-01-01

    We present the revised catalog of galaxy clusters detected as extended X-ray sources in the 160 Square Degree ROSAT Survey, including spectroscopic redshifts and X-ray luminosities for 200 of the 201 members. The median redshift is z(median) = 0.25, and the median X-ray luminosity is L-X,L-median......We present the revised catalog of galaxy clusters detected as extended X-ray sources in the 160 Square Degree ROSAT Survey, including spectroscopic redshifts and X-ray luminosities for 200 of the 201 members. The median redshift is z(median) = 0.25, and the median X-ray luminosity is L...

  6. Measuring redshift-space distortions with future SKA surveys

    Raccanelli, Alvise; Camera, Stefano; Bacon, David; Blake, Chris; Dore, Olivier; Ferreira, Pedro; Maartens, Roy; Santos, Mario; Viel, Matteo; Zhao, Gong-bo

    2015-01-01

    The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-of-sight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measu...

  7. Quantifying the Cosmic Web in the New Era of Redshift Surveys

    Lahav, Ofer

    2004-01-01

    Two main strategies have been implemented in mapping the local universe: whole-sky 'shallow' surveys and 'deep' surveys over limited parts of the sky. The two approaches complement each other in studying cosmography and statistical properties of the Universe. We summarise some results on the power spectrum of fluctuations and Wiener reconstruction of the density field from the 2dF Galaxy Redshift Survey (2dFGRS) of 230,000 redshifts. We then discuss future challenges in quantifying the web of...

  8. zCOSMOS : A large VLT/VIMOS redshift survey covering 0

    Lilly, S. J.; Le Fevre, O.; Renzini, A.; Zamorani, G.; Scodeggio, M.; Contini, T.; Carollo, C. M.; Hasinger, G.; Kneib, J.-P.; Iovino, A.; Le Brun, V.; Maier, C.; Mainieri, V.; Mignoli, M.; Silverman, J.; Tasca, L. A. M.; Bolzonella, M.; Bongiorno, A.; Bottini, D.; Capak, P.; Caputi, K.; Cimatti, A.; Cucciati, O.; Daddi, E.; Feldmann, R.; Franzetti, P.; Garilli, B.; Guzzo, L.; Ilbert, O.; Kampczyk, P.; Kovac, K.; Lamareille, F.; Leauthaud, A.; Le Borgne, J.-F.; McCracken, H. J.; Marinoni, C.; Pello, R.; Ricciardelli, E.; Scarlata, C.; Vergani, D.; Sanders, D. B.; Schinnerer, E.; Scoville, N.; Taniguchi, Y.; Arnouts, S.; Aussel, H.; Bardelli, S.; Brusa, M.; Cappi, A.; Ciliegi, P.; Finoguenov, A.; Foucaud, S.; Franceschini, R.; Halliday, C.; Impey, C.; Knobel, C.; Koekemoer, A.; Kurk, J.; Maccagni, D.; Maddox, S.; Marano, B.; Marconi, G.; Meneux, B.; Mobasher, B.; Moreau, C.; Peacock, J. A.; Porciani, C.; Pozzetti, L.; Scaramella, R.; Schiminovich, D.; Shopbell, P.; Smail, I.; Thompson, D.; Tresse, L.; Vettolani, G.; Zanichelli, A.; Zucca, E.

    2007-01-01

    zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8mVLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cos

  9. Photometric redshifts and cluster tomography in the ESO Distant Cluster Survey

    Pellò, R; De Lucia, G; Simard, L; Clowe, D I; Jablonka, P; Milvang-Jensen, B; Saglia, R P; White, S D M; Aragón-Salamanca, A; Halliday, C; Poggianti, B; Best, P; Dalcanton, J; Dantel-Fort, M; Fort, B; Von der Linden, A; Mellier, Y; Rottgering, H; Zaritsky, D

    2009-01-01

    This paper reports the results obtained on the photometric redshifts measurement and accuracy, and cluster tomography in the ESO Distant Cluster Survey (EDisCS) fields. Photometric redshifts were computed using two independent codes (Hyperz and G. Rudnick's code). The accuracy of photometric redshifts was assessed by comparing our estimates with the spectroscopic redshifts of ~1400 galaxies in the 0.3redshifts is typically sigma(Delta z/(1+z)) ~ 0.05+/-0.01, depending on the field, the filter set, and the spectral type of the galaxies. The quality of the photometric redshifts degrades by a factor of two in sigma(Delta z/(1+z)) between the brightest (I~22) and the faintest (I~24-24.5) galaxies in the EDisCS sample. The photometric determination of cluster redshifts in the EDisCS fields using a sim...

  10. Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys

    Eisenstein, D J

    2003-01-01

    We show that the measurement of the baryonic acoustic oscillations in large high redshift galaxy surveys offers a precision route to the measurement of dark energy. The cosmic microwave background provides the scale of the oscillations as a standard ruler that can be measured in the clustering of galaxies, thereby yielding the Hubble parameter and angular diameter distance as a function of redshift. This, in turn, enables one to probe dark energy. We use a Fisher matrix formalism to study the statistical errors for redshift surveys up to z=3 and report errors on cosmography while marginalizing over a large number of cosmological parameters including a time-dependent equation of state. With redshifts surveys combined with cosmic microwave background satellite data, we achieve errors of 0.037 on Omega_x, 0.10 on w(z=0.8), and 0.28 on dw(z)/dz for cosmological constant model. Models with less negative w(z) permit tighter constraints. We test and discuss the dependence of performance on redshift, survey condition...

  11. THE MICRO-ARCSECOND SCINTILLATION-INDUCED VARIABILITY (MASIV) SURVEY. III. OPTICAL IDENTIFICATIONS AND NEW REDSHIFTS

    Pursimo, Tapio [Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma (Spain); Ojha, Roopesh [NVI Inc./U. S. Naval Observatory, 3450 Massachusetts Ave NW, Washington DC (United States); Jauncey, David L. [CSIRO Astronomy and Space Science and Mount Stromlo Observatory, Canberra ACT 0200 (Australia); Rickett, Barney J. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Dutka, Michael S. [The Catholic University of America, 620 Michigan Ave., N.E., Washington DC 20064 (United States); Koay, Jun Yi; Bignall, Hayley E.; Macquart, Jean-Pierre [ICRAR, Curtin University, Bentley, WA 6845 (Australia); Lovell, James E. J. [School of Mathematics and Physics, University of Tasmania, TAS 7001 (Australia); Kedziora-Chudczer, Lucyna, E-mail: tpursimo@not.iac.es [School of Physics and Astrophysics, UNSW, Sydney NSW 2052 (Australia)

    2013-04-10

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.

  12. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Full spectroscopic data and auxiliary information release (PDR-2)

    Scodeggio, M; Garilli, B; Granett, B R; Bolzonella, M; de la Torre, S; Abbas, U; Adami, C; Arnouts, S; Bottini, D; Cappi, A; Coupon, J; Cucciati, O; Davidzon, I; Franzetti, P; Fritz, A; Iovino, A; Krywult, J; Brun, V Le; Févre, O Le; Maccagni, D; Malek, K; Marchetti, A; Marulli, F; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Bel, J; Branchini, E; De Lucia, G; Ilbert, O; McCracken, H J; Moutard, T; Peacock, J A; Zamorani, G; Burden, A; Fumana, M; Jullo, E; Marinoni, C; Mellier, Y; Moscardini, L; Percival, W J

    2016-01-01

    We present the full public data release (PDR-2) of the VIMOS Public Extragalactic Redshift Survey (VIPERS), performed at the ESO VLT. We release redshifts, spectra, CFHTLS magnitudes and ancillary information (as masks and weights) for a complete sample of 86,775 galaxies (plus 4,732 other objects, including stars and serendipitous galaxies); we also include their full photometrically-selected parent catalogue. The sample is magnitude limited to i_AB = 2 are shown to have a confidence level of 96% or larger and make up 88% of all measured galaxy redshifts (76,552 out of 86,775), constituting the VIPERS prime catalogue for statistical investigations. For this sample the rms redshift error, estimated using repeated measurements of about 3,000 galaxies, is found to be sigma_z = 0.00054(1+z). All data are available at http://vipers.inaf.it and on the ESO Archive.

  13. A blind Green Bank Telescope millimetre-wave survey for redshifted molecular absorption

    Kanekar, N; Carilli, C L; Stocke, J T; Willett, K W

    2013-01-01

    We present the methodology for ``blind'' millimetre-wave surveys for redshifted molecular absorption in the CO/HCO$^+$ rotational lines. The frequency range $30-50$ GHz appears optimal for such surveys, providing sensitivity to absorbers at $z \\gtrsim 0.85$. It is critical that the survey is ``blind'', i.e. based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption towards 36 sources, 3 without known redshifts, over the frequency range $39.6 - 49.5$ GHz. The GBT survey has a total redshift path of $\\Delta z \\approx 24$, mostly at $0.81 < z < 1.91$, and a sensitivity sufficient to detect equivalent ${\\rm H_2}$ column densities $\\gtrsim 3 \\times 10^{21}$ cm$^{-2}$ in absorption at $5\\sigma$ significance (using the CO-to-${\\rm H_2}$ and HCO$^+$-to-${\\rm H_2}$ conversion factors of the Milky Way). The survey yielded no confirmed det...

  14. The Carnegie Supernova Project: The Low-Redshift Survey

    Hamuy, M; Morrell, N I; Phillips, M M; Suntzeff, N B; Persson, S E; Roth, M; González, S; Krzeminski, W; Contreras, C S; Freedman, W L; Murphy, D C; Madore, B F; Wyatt, P; Maza, J; Filippenko, A V; Li, W; Pinto, P A; Hamuy, Mario; Folatelli, Gast\\'on; Morrell, Nidia I.; Phillips, Mark M.; Suntzeff, Nicholas B.; Roth, Miguel; Gonzalez, Sergio; Krzeminski, Wojtek; Contreras, Carlos; Freedman, Wendy L.; Madore, Barry F.; Maza, Jos\\'{e}; Filippenko, Alexei V.; Li, Weidong

    2005-01-01

    Supernovae are essential to understanding the chemical evolution of the Universe. Type Ia supernovae also provide the most powerful observational tool currently available for studying the expansion history of the Universe and the nature of dark energy. Our basic knowledge of supernovae comes from the study of their photometric and spectroscopic properties. However, the presently available data sets of optical and near-infrared light curves of supernovae are rather small and/or heterogeneous, and employ photometric systems that are poorly characterized. Similarly, there are relatively few supernovae whose spectral evolution has been well sampled, both in wavelength and phase, with precise spectrophotometric observations. The low-redshift portion of the Carnegie Supernova Project (CSP) seeks to remedy this situation by providing photometry and spectrophotometry of a large sample of supernovae taken on telescope/filter/detector systems that are well understood and well characterized. During a five-year program w...

  15. Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure

    Banerji, Manda; Lahav, Ofer; Lin, Huan

    2007-01-01

    We conduct a detailed analysis of the photometric redshift requirements for the proposed Dark Energy Survey (DES) using two sets of mock galaxy simulations and an artificial neural network code - ANNz. In particular, we examine how optical photometry in the DES $grizY$ bands can be complemented with near infra-red photometry from the planned VISTA Hemisphere Survey (VHS) in the $JHK_s$ bands in order to improve the photometric redshift estimate by a factor of two at $z>1$. We draw attention to the effects of galaxy formation scenarios such as reddening on the photo-z estimate and using our neural network code, calculate $A_v$ for these reddened galaxies. We also look at the impact of using different training sets when calculating photometric redshifts. In particular, we find that using the ongoing DEEP2 and VVDS-Deep spectroscopic surveys to calibrate photometric redshifts for DES, will prove effective. However we need to be aware of uncertainties in the photometric redshift bias that arise when using differe...

  16. Spectral Classification and Redshift Measurement for the SDSS-III Baryon Oscillation Spectroscopic Survey

    Bolton, Adam S.; Schlegel, David J.; Aubourg, Éric; Bailey, Stephen; Bhardwaj, Vaishali; Brownstein, Joel R.; Burles, Scott; Chen, Yan-Mei; Dawson, Kyle; Eisenstein, Daniel J.; Gunn, James E.; Knapp, G. R.; Loomis, Craig P.; Lupton, Robert H.; Maraston, Claudia; Muna, Demitri; Myers, Adam D.; Olmstead, Matthew D.; Padmanabhan, Nikhil; Pâris, Isabelle; Percival, Will J.; Petitjean, Patrick; Rockosi, Constance M.; Ross, Nicholas P.; Schneider, Donald P.; Shu, Yiping; Strauss, Michael A.; Thomas, Daniel; Tremonti, Christy A.; Wake, David A.; Weaver, Benjamin A.; Wood-Vasey, W. Michael

    2012-11-01

    We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of the survey's ninth data release (DR9), encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected "CMASS" sample of massive galaxies at redshift 0.4 visual inspections of a subset of BOSS galaxies, we find that approximately 0.2% of confidently reported CMASS sample classifications and redshifts are incorrect, and about 0.4% of all CMASS spectra are objects unclassified by the current algorithm which are potentially recoverable. The BOSS pipeline confirms that ~51.5% of the quasar targets have quasar spectra, with the balance mainly consisting of stars and low signal-to-noise spectra. Statistical (as opposed to systematic) redshift errors propagated from photon noise are typically a few tens of km s-1 for both galaxies and quasars, with a significant tail to a few hundreds of km s-1 for quasars. We test the accuracy of these statistical redshift error estimates using repeat observations, finding them underestimated by a factor of 1.19-1.34 for galaxies and by a factor of two for quasars. We assess the impact of sky-subtraction quality, signal-to-noise ratio, and other factors on galaxy redshift success. Finally, we document known issues with the BOSS DR9 spectroscopic data set and describe directions of ongoing development.

  17. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive galaxies

    Siudek, M; Scodeggio, M; Garilli, B; Pollo, A; Haines, C P; Fritz, A; Bolzonella, M; de la Torre, S; Granett, B R; Guzzo, L; Abbas, U; Adami, C; Bottini, D; Cappi, A; Cucciati, O; De Lucia, G; Davidzon, I; Franzetti, P; Iovino, A; Krywult, J; Brun, V Le; Fèvre, O Le; Maccagni, D; Marchetti, A; Marulli, F; Polletta, M; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Arnouts, S; Bel, J; Branchini, E; Ilbert, O; Gargiulo, A; Moscardini, L; Takeuchi, T T; Zamorani, G

    2016-01-01

    We trace the evolution and the star formation history of passive galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). We extracted from the VIPERS survey a sample of passive galaxies in the redshift range 0.4redshift-stellar mass relation for intermediate-redshift passive galaxies. We find that at $z\\sim1$ stellar populations in low-mass passive galaxies are younger than in high-mass passive galaxies, similarly to what is observed at the present epoch. Over the full analyzed redshift and stellar mass range, the...

  18. The Next Generation Virgo Cluster Survey. XV. The photometric redshift estimation for background sources

    Raichoor, A; Erben, T; Hildebrandt, H; Huertas-Company, M; Ilbert, O; Licitra, R; Ball, N M; Boissier, S; Boselli, A; Chen, Y -T; Côté, P; Cuillandre, J -C; Duc, P A; Durrell, P R; Ferrarese, L; Guhathakurta, P; Gwyn, S D J; Kavelaars, J J; Lançon, A; Liu, C; MacArthur, L A; Muller, M; Muñoz, R P; Peng, E W; Puzia, T H; Sawicki, M; Toloba, E; Van Waerbeke, L; Woods, D; Zhang, H

    2014-01-01

    The Next Generation Virgo Cluster Survey is an optical imaging survey covering 104 deg^2 centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz-bands and one third in the r-band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point spread function-homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior which extends to iAB = 12.5 mag. When using the u*griz-bands, our photometric redshifts for 15.5 \\le i \\lesssim 23 mag or zphot \\lesssim 1 galaxies have a bias |\\Delta z| < 0.02, less than 5% outliers, and a scatter \\sigma_{outl.rej.} and an individual error on zphot that increase with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz-bands over the same magnitude and redshift range, the lack of the r-band increases t...

  19. Cosmology with photometric weak lensing surveys: Constraints with redshift tomography of convergence peaks and moments

    Petri, Andrea; May, Morgan; Haiman, Zoltán

    2016-09-01

    Weak gravitational lensing is becoming a mature technique for constraining cosmological parameters, and future surveys will be able to constrain the dark energy equation of state w . When analyzing galaxy surveys, redshift information has proven to be a valuable addition to angular shear correlations. We forecast parameter constraints on the triplet (Ωm,w ,σ8) for a LSST-like photometric galaxy survey, using tomography of the shear-shear power spectrum, convergence peak counts and higher convergence moments. We find that redshift tomography with the power spectrum reduces the area of the 1 σ confidence interval in (Ωm,w ) space by a factor of 8 with respect to the case of the single highest redshift bin. We also find that adding non-Gaussian information from the peak counts and higher-order moments of the convergence field and its spatial derivatives further reduces the constrained area in (Ωm,w ) by factors of 3 and 4, respectively. When we add cosmic microwave background parameter priors from Planck to our analysis, tomography improves power spectrum constraints by a factor of 3. Adding moments yields an improvement by an additional factor of 2, and adding both moments and peaks improves by almost a factor of 3 over power spectrum tomography alone. We evaluate the effect of uncorrected systematic photometric redshift errors on the parameter constraints. We find that different statistics lead to different bias directions in parameter space, suggesting the possibility of eliminating this bias via self-calibration.

  20. The Advanced Camera for Surveys General Catalog: A High Redshift Galaxy Morphology Catalog

    Griffith, Roger; Newman, J.; Cooper, M.; Stern, D.; Moustakas, L.; Davis, M.

    2009-05-01

    We use publicly available data obtained with the Advanced Camera for Surveys (ACS) instrument on the Hubble Space Telescope to construct the ACS General Catalog (ACS-GC). The ACS-GC includes over 370,000 astronomical sources (stars + galaxies) derived from the AEGIS, COSMOS, GEMS, and GOODS surveys. We include publicly available redshifts from the DEEP2, COMBO-17, TKRS, PEARS and zCOSMOS surveys to supply redshifts for a considerable fraction ( 52%) of the imaging sample. GALAPAGOS was used to construct photometric (SExtractor) and morphological (GALFIT) catalogs. The morphological analysis assumes a single Sersic model for each object to derive quantitative structural parameters. Galaxy Zoo will measure visual morphologies for 200,000 of these galaxies. The ACS-GC includes color images, GALFIT residual images, a galaxy atlas, and a photometry + morphology + redshift catalog. We use these data to investigate the size-redshift relationship for both early and late-type galaxies out to z 1. The entire data set will be made publicly available through the NASA Extragalactic Database (NED) and LEVEL5.

  1. The Space Density of High-Redshift QSOs in the GOODS Survey

    Cristiani, S; Bauer, F; Brandt, W N; Chatzichristou, E T; Fontanot, F; Grazian, A; Koekemoer, A M; Lucas, R A; Monaco, P; Nonino, M; Padovani, P; Stern, D; Tozzi, P; Treister, E; Urry, C M; Vanzella, E

    2004-01-01

    We present a sample of 17 high-redshift (3.5Survey, selected in the magnitude range 22.45Surveys onboard the Hubble Space Telescope and the Advanced CCD Imaging Spectrometer onboard the Chandra X-ray Observatory. On the basis of seven spectroscopic and ten photometric redshifts we estimate that the final sample will contain between two and four QSOs with 4redshift, moderate-luminosity (M_{145}=~-23) QSOs is observed with respect to predictions based on a) the extrapolation of the z~2.7 luminosity function (LF), according to a pure luminosity evolution calibrated by the results of the Sloan Digital Sky Survey; and b) a constant universal efficiency in the formation of super-massive black holes (SMBHs) in dark-matter halos. Evidence is gathered in favor of a density evolution of the LF at high redshift and of a suppress...

  2. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; Boselli, A.; Brisbin, D.; Buat, V.; Burgarella, D.; Castro-Rodriquez, N.; Cava, A.; Chanial, P.; Chapin, E.; Chapman, S.; Clements, D. L.; Conley, A.; Conversi, L.; Dowell, C. D.; Dunlop, J. S.; Dwek, E.

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  3. Detection of Large-Scale Structure in a $B<17^{m}$ Galaxy Redshift Survey

    Ratcliffe, A; Broadbent, A J; Parker, Q A; Watson, F G; Oates, A P; Fong, R; Collins, C A

    1996-01-01

    We report on results from the Durham/UKST Galaxy Redshift Survey where we have found large scale ``cellular'' features in the galaxy distribution. These have spatial 2-point correlation function power significantly in excess of the predictions of the standard cold dark matter cosmological model^{1}, supporting the previous observational results from the APM survey^{2,3}. At smaller scales, the 1-D pairwise galaxy velocity dispersion is measured to be \\bf 387^{+96}_{-62} kms^{-1} which is also inconsistent with the prediction of the standard cold dark matter model^{1}. Finally, the survey has produced the most significant detection yet of large scale redshift space distortions due to dynamical infall of galaxies^{4}. An estimate of \\bf \\Omega^{0.6}/b = 0.55 \\pm 0.12 is obtained which is consistent either with a low density Universe or a critical density Universe where galaxies are biased tracers of the mass.

  4. New quasar surveys with WIRO: Searching for high redshift (z~6) quasar candidates

    Haze Nunez, Evan; Bassett, Neil; Deam, Sophie; Dixon, Don; Griffith, Emily; Harvey, William Bradford; Lee, Daniel; Lyke, Bradley; Parziale, Ryan; Witherspoon, Catherine; Myers, Adam D.; Findlay, Joseph; Kobulnicky, Henry A.; Dale, Daniel A.

    2017-01-01

    High redshift quasars (z~6) are of great interest to fundamental astronomy due to the information they hold about the early universe. With their low number density in the sky, however, they are elusive objects. Reported here is our search for these high redshift quasars using the Wyoming Infrared Observatory (WIRO) 2.3m telescope. We search for potential candidates that have been detected by surveys such as WISE, which have been mostly redshifted out of the optical. The main emission feature of these quasars (the Lyman-Alpha line at ~1216 Angstroms rest-frame) would be redshifted to the z-band or beyond. This means that the quasars should have very low levels of i-band flux. These objects are known as i-dropouts. By imaging the quasars in the i-band and running photometric analysis on our fields, candidates can be identified or rejected by whether or not they appear in our fields. We also provide an analysis of the colors of our candidate high-redshift quasars.This work is supported by the National Science Foundation under REU grant AST1560461

  5. Will kinematic Sunyaev-Zel'dovich measurements enhance the science return from galaxy redshift surveys?

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N.

    2017-01-01

    Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of > 0.1 for the typical host halo of galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure f and the expansion rate of the Universe H to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated between the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies τT in the survey is known, we marginalize over τT, to compute constraints on the growth rate f and the expansion rate H. For realistic survey parameters, we find that combining kSZ and galaxy redshift survey data reduces the marginalized 1-σ errors on H and f to ~50-70% compared to the galaxy-only analysis.

  6. Spectral Classification and Redshift Measurement for the SDSS-III Baryon Oscillation Spectroscopic Survey

    Bolton, Adam S; Aubourg, Eric; Bailey, Stephen; Bhardwaj, Vaishali; Brownstein, Joel R; Burles, Scott; Chen, Yan-Mei; Gunn, James E; Dawson, Kyle; Eisenstein, Daniel J; Knapp, G R; Loomis, Craig P; Lupton, Robert H; Maraston, Claudia; Muna, Demitri; Myers, Adam D; Olmstead, Matthew D; Padmanabhan, Nikhil; Paris, Isabelle; Percival, Will J; Petitjean, Patrick; Rockosi, Constance M; Ross, Nicholas P; Schneider, Donald P; Shu, Yiping; Strauss, Michael A; Thomas, Daniel; Tremonti, Christy A; Wake, David A; Weaver, Benjamin A; Wood-Vasey, W Michael

    2012-01-01

    (abridged) We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of Data Release 9, encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected CMASS sample of massive galaxies at redshift 0.4 <~ z <~ 0.8 targeted by BOSS for the purposes of large-scale cosmological measurements, the pipeline achieves an automated classification success rate of 98.7% and confirms 95.4% of unique CMASS targets as galaxies (with the balance being mostly M stars). Based on visual inspections of a subset of BOSS galaxies, we find that ~0.2% of confidently reported CMASS sample classifications and redshifts are...

  7. Photometric redshift analysis in the Dark Energy Survey Science Verification data

    Sánchez, C; Lin, H; Miquel, R; Abdalla, F B; Amara, A; Banerji, M; Bonnett, C; Brunner, R; Capozzi, D; Carnero, A; Castander, F J; da Costa, L A N; Cunha, C; Fausti, A; Gerdes, D; Greisel, N; Gschwend, J; Hartley, W; Jouvel, S; Lahav, O; Lima, M; Maia, M A G; Martí, P; Ogando, R L C; Ostrovski, F; Pellegrini, P; Rau, M M; Sadeh, I; Seitz, S; Sevilla-Noarbe, I; Sypniewski, A; de Vicente, J; Abbot, T; Allam, S S; Atlee, D; Bernstein, G; Bernstein, J P; Buckley-Geer, E; Burke, D; Childress, M J; Davis, T; DePoy, D L; Dey, A; Desai, S; Diehl, H T; Doel, P; Estrada, J; Evrard, A; Fernández, E; Finley, D; Flaugher, B; Gaztanaga, E; Glazebrook, K; Honscheid, K; Kim, A; Kuehn, K; Kuropatkin, N; Lidman, C; Makler, M; Marshall, J L; Nichol, R C; Roodman, A; Sánchez, E; Santiago, B X; Sako, M; Scalzo, R; Smith, R C; Swanson, M E C; Tarle, G; Thomas, D; Tucker, D L; Uddin, S A; Valdés, F; Walker, A; Yuan, F; Zuntz, J

    2014-01-01

    We present results from a study of the photometric redshift performance of the Dark Energy Survey (DES), using the early data from a Science Verification (SV) period of observations in late 2012 and early 2013 that provided science-quality images for almost 200 sq.~deg.~at the nominal depth of the survey. We assess the photometric redshift performance using about 15000 galaxies with spectroscopic redshifts available from other surveys. These galaxies are used, in different configurations, as a calibration sample, and photo-$z$'s are obtained and studied using most of the existing photo-$z$ codes. A weighting method in a multi-dimensional color-magnitude space is applied to the spectroscopic sample in order to evaluate the photo-$z$ performance with sets that mimic the full DES photometric sample, which is on average significantly deeper than the calibration sample due to the limited depth of spectroscopic surveys. Empirical photo-$z$ methods using, for instance, Artificial Neural Networks or Random Forests, y...

  8. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  9. High-redshift clusters from NVSS The TexOx Cluster (TOC) Survey

    Croft, S; Hill, G J; Croft, Steve; Rawlings, Steve; Hill, Gary J.

    2003-01-01

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z ~ 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targetted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  10. Measuring cosmic velocities with 21cm intensity mapping and galaxy redshift survey cross-correlation dipoles

    Hall, Alex

    2016-01-01

    We investigate the feasibility of measuring the effects of peculiar velocities in large-scale structure using the dipole of the redshift-space cross-correlation function. We combine number counts of galaxies with brightness-temperature fluctuations from 21cm intensity mapping, demonstrating that the dipole may be measured at modest significance ($\\lesssim 2\\sigma$) by combining the upcoming radio survey CHIME with the future redshift surveys of DESI and Euclid. More significant measurements ($\\lesssim~10\\sigma$) will be possible by combining intensity maps from the SKA with these of DESI or Euclid, and an even higher significance measurement ($\\lesssim 100\\sigma$) may be made by combining observables completely internally to the SKA. We account for effects such as contamination by wide-angle terms, interferometer noise and beams in the intensity maps, non-linear enhancements to the power spectrum, stacking multiple populations, sensitivity to the magnification slope, and the possibility that number counts and...

  11. Super-Survey Tidal Effect on Redshift-space Power Spectrum

    Akitsu, Kazuyuki; Li, Yin

    2016-01-01

    Long-wavelength matter inhomogeneities contain cleaner information on the nature of primordial perturbations as well as the physics of the early universe. The large-scale coherent overdensity and tidal force, not directly observable for a finite-volume galaxy survey, are both related to the Hessian matrix of large-scale gravitational potential and therefore of equal importance. We show that the coherent tidal force causes a homogeneous anisotropic distortion of the observed distribution of galaxies in all three directions, perpendicular and parallel to the line-of-sight direction. This effect mimics the redshift-space distortion signal of galaxy peculiar velocities, as well as a distortion by the Alcock-Paczynski effect. We quantify its impact on the redshift-space power spectrum to the leading order, and discuss its importance for the ongoing and upcoming galaxy surveys.

  12. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at $z\\sim 1.4$

    Okumura, Teppei; Totani, Tomonori; Tonegawa, Motonari; Okada, Hiroyuki; Glazebrook, Karl; Blake, Chris; Ferreira, Pedro G; More, Surhud; Taruya, Atsushi; Tsujikawa, Shinji; Akiyama, Masayuki; Dalton, Gavin; Goto, Tomotsugu; Ishikawa, Takashi; Iwamuro, Fumihide; Matsubara, Takahiko; Nishimichi, Takahiro; Ohta, Kouji; Shimizu, Ikkoh; Takahashi, Ryuichi; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Yoshida, Naoki

    2015-01-01

    We measure the redshift-space correlation function from a spectroscopic sample of 2830 emission line galaxies from the FastSound survey. The survey, which uses the Subaru Telescope and covers the redshift ranges of $1.19redshifts. We detect clear anisotropy due to redshift-space distortions (RSD) both in the correlation function as a function of separations parallel and perpendicular to the line of sight and its quadrupole moment. RSD has been extensively used to test general relativity on cosmological scales at $z<1$. Adopting a LCDM cosmology, and using the RSD measurements on scales above 8Mpc/h, we obtain the first constraint on the growth rate at the redshift, $f(z)\\sigma_8(z)=0.482\\pm 0.116$ at $z\\sim 1.4$. This corresponds to $4.2\\sigma$ detection of RSD, after marginalizing over the galaxy bias parameter $b(z)\\sigma_8(z)$. Our constraint is consistent with the prediction of general relativity $f\\sigma_8\\sim 0.392$ within the $1-\\sigma$ co...

  13. Large Scale Structures in the Las Campanas Redshift Survey and in Simulations

    Müller, V; Doroshkevich, A. G.; Retzlaff, J.; Turchaninov, V.

    1998-01-01

    The large supercluster structures obvious in recent galaxy redshift surveys are quantified using an one-dimensional cluster analysis (core sampling) and a three-dimensional cluster analysis based on the minimal spanning tree. The comparison with the LCRS reveals promising stable results. At a mean overdensity of about ten, the supercluster systems form huge wall-like structures comprising about 40% of all galaxies. The overdense clusters have a low mean transverse velocity dispersion of about...

  14. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    Gerke, Brian F.; /UC, Berkeley; Newman, Jeffrey A.; /LBNL, NSD; Davis, Marc; /UC, Berkeley /UC, Berkeley, Astron.Dept.; Marinoni, Christian; /Brera Observ.; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; /UC, Berkeley, Astron.Dept.; Faber, S.M.; /Lick Observ.; Finkbeiner, Douglas P.; /Princeton U. Observ.; Guhathakurta, Puragra; /Lick Observ.; Kaiser, Nick; /Hawaii U.; Koo, David C.; Phillips, Andrew C.; /Lick Observ.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  15. Estimating Photometric Redshifts of Quasars via K-nearest Neighbor Approach Based on Large Survey Databases

    Yanxia, Zhang; Nanbo, Peng; Yongheng, Zhao; Xue-bing, Wu

    2013-01-01

    We apply one of lazy learning methods named k-nearest neighbor algorithm (kNN) to estimate the photometric redshifts of quasars, based on various datasets from the Sloan Digital Sky Survey (SDSS), UKIRT Infrared Deep Sky Survey (UKIDSS) and Wide-field Infrared Survey Explorer (WISE) (the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN arrives at the best performance when k is different with a special input pattern for a special dataset. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results show that generally the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. By comparing the performance of various m...

  16. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 relations of D4000 and HδA with stellar mass has not changed significantly with redshift. Assuming a single burst formation, this implies that high-mass passive red galaxies formed their stars at zform 1.7, while low-mass galaxies formed their main stellar populations more recently, at zform 1. The consistency of these results, which were obtained using two independent estimators of the formation redshift (D4000 and HδA), further strengthens a scenario in which star formation proceeds from higher to lower mass systems as time passes, i.e., what has become known as the downsizing picture. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope

  17. The VIMOS Public Extragalactic Redshift Survey: Measuring the growth rate of structure around cosmic voids

    Hawken, A J; Iovino, A; Guzzo, L; Peacock, J A; de la Torre, S; Garilli, B; Bolzonella, M; Scodeggio, M; Abbas, U; Adami, C; Bottini, D; Cappi, A; Cucciati, O; Davidzon, I; Fritz, A; Franzetti, P; Krywult, J; Brun, V Le; Fevre, O Le; Maccagni, D; Małek, K; Marulli, F; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Arnouts, S; Bel, J; Branchini, E; De Lucia, G; Ilbert, O; Moscardini, L; Percival, W J

    2016-01-01

    We identified voids in the completed VIMOS Public Extragalactic Redshift Survey (VIPERS), using an algorithm based on searching for empty spheres. We measured the cross-correlation between the centres of voids and the complete galaxy catalogue. The cross-correlation function exhibits a clear anisotropy in both VIPERS fields (W1 and W4), which is characteristic of linear redshift space distortions. By measuring the projected cross-correlation and then deprojecting it we are able to estimate the undistorted cross-correlation function. We propose that given a sufficiently well measured cross-correlation function one should be able to measure the linear growth rate of structure by applying a simple linear Gaussian streaming model for the redshift space distortions (RSD). Our study of voids in 306 mock galaxy catalogues mimicking the VIPERS fields would suggest that VIPERS is capable of measuring $\\beta$ with an error of around $25\\%$. Applying our method to the VIPERS data, we find a value for the redshift space ...

  18. The redshift distribution of dusty star forming galaxies from the SPT survey

    Strandet, M L; Vieira, J D; de Breuck, C; Aguirre, J E; Aravena, M; Ashby, M L N; Béthermin, M; Bradford, C M; Carlstrom, J E; Chapman, S C; Crawford, T M; Everett, W; Fassnacht, C D; Furstenau, R M; Gonzalez, A H; Greve, T R; Gullberg, B; Hezaveh, Y; Kamenetzky, J R; Litke, K; Ma, J; Malkan, M; Marrone, D P; Menten, K M; Murphy, E J; Nadolski, A; Rotermund, K M; Spilker, J S; Stark, A A; Welikala, N

    2016-01-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3mm spectral scans between 84-114GHz for 15 galaxies and targeted ALMA 1mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI] , [NII] , H_2O and NH_3. We further present APEX [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new mm/submm line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redsh...

  19. Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys

    Hirata, C M; Ishak, M; Seljak, U; Nichol, R; Pimbblet, K A; Ross, N P; Wake, D; Hirata, Christopher M.; Mandelbaum, Rachel; Ishak, Mustapha; Seljak, Uros; Nichol, Robert; Pimbblet, Kevin A.; Ross, Nicholas P.; Wake, David

    2007-01-01

    Correlations between intrinsic shear and the density field on large scales, a potentially important contaminant for cosmic shear surveys, have been robustly detected at low redshifts with bright galaxies in SDSS data. Here we present a more detailed characterization of this effect, which can cause anti-correlations between gravitational lensing shear and intrinsic ellipticity (GI correlations). This measurement uses 36278 Luminous Red Galaxies (LRGs) from the SDSS spectroscopic sample with 0.153sigma detections of the effect for all galaxy subsamples within the SDSS LRG sample; for the 2SLAQ sample, we find a 2sigma detection for a bright subsample, and no detection for a fainter subsample. Fitting formulae are provided for the scaling of the GI correlations with luminosity, transverse separation, and redshift. We estimate contamination in the measurement of sigma_8 for future cosmic shear surveys on the basis of the fitted dependence of GI correlations on galaxy properties. We find contamination to the power...

  20. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The matter density and baryon fraction from the galaxy power spectrum at redshift $0.6

    Rota, S; Bel, J; Guzzo, L; Peacock, J A; Wilson, M J; Pezzotta, A; de la Torre, S; Garilli, B; Bolzonella, M; Scodeggio, M; Abbas, U; Adami, C; Bottini, D; Cappi, A; Cucciati, O; Davidson, I; Franzetti, P; Fritz, A; Iovino, A; Krywult, J; Brun, V Le; Fèvre, O Le; Mascagni, D; Małek, K; Marulli, F; Percival, W J; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Arnouts, S; Branchini, E; Coupon, J; De Lucia, G; Ilbert, O; Moscardini, L; Moutard, T

    2016-01-01

    We use the final catalogue of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to measure the power spectrum of the galaxy distribution at high redshift, presenting results that extend beyond $z=1$ for the first time. We apply an FFT technique to four independent sub-volumes comprising a total of $51,728$ galaxies at $0.6survey). We concentrate here on the shape of the direction-averaged power spectrum in redshift space, explaining the level of modelling of redshift-space anisotropies and the anisotropic survey window function that are needed to deduce this in a robust fashion. We then use covariance matrices derived from a large ensemble of mock datasets in order to fit the spectral data. The results are well matched by a standard $\\Lambda$CDM model, with density parameter $\\Omega_M h =\\smash{0.227^{+0.063}_{-0.050}}$ and baryon fraction $\\smash{f_B=\\Omega_B/\\Omega_M=0.220^{+0.058}_{-0.072}}$. These inferences from the high-$z$ galaxy dis...

  1. Galaxy redshift surveys selected by neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope

    Duffy, Alan R.; Battye, Richard A.; Davies, Rod D.; Moss, Adam; Wilkinson, Peter N.

    2008-01-01

    We discuss the possibility of performing a substantial spectroscopic galaxy redshift survey selected via the 21-cm emission from neutral hydrogen using the Five-hundred metre Aperture Spherical Telescope (FAST) to be built in China. We consider issues related to the estimation of the source counts and optimizations of the survey, and discuss the constraints on cosmological models that such a survey could provide. We find that a survey taking around two years could detect ~107 galaxies with an average redshift of ~0.15 making the survey complementary to those already carried out at optical wavelengths. These conservative estimates have used the z = 0 HI mass function and have ignored the possibility of evolution. The results could be used to constrain Γ = Ωmh to 5 per cent and the spectral index, ns, to 7 per cent independent of cosmic microwave background data. If we also use simulated power spectra from the Planck satellite, we can constrain w to be within 5 per cent of -1.

  2. The Team Keck Redshift Survey 2: MOSFIRE Spectroscopy of the GOODS-North Field

    Wirth, Gregory D; Barro, Guillermo; Guo, Yicheng; Koo, David C; Liu, Fengshan; Kassis, Marc; Lyke, Jim; Rizzi, Luca; Campbell, Randy; Goodrich, Robert W; Faber, S M

    2015-01-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of MOSFIRE, an infrared multi-object spectrometer which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z~2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band. We present a detailed measurement of MOSFIRE's sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z>1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z~2 galaxies suggest the presence o...

  3. THE TEAM KECK REDSHIFT SURVEY 2: MOSFIRE SPECTROSCOPY OF THE GOODS-NORTH FIELD

    Wirth, Gregory D.; Kassis, Marc; Lyke, Jim; Rizzi, Luca; Campbell, Randy; Goodrich, Robert W. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy, Kamuela, HI 96743 (United States); Trump, Jonathan R.; Barro, Guillermo; Guo, Yicheng; Koo, David C.; Liu, Fengshan; Faber, S. M., E-mail: gregory.wirth@gmail.com [University of California Observatories, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2015-11-15

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band. We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra.

  4. The Canada-France redshift survey; 5, global properties of the sample

    Crampton, D S; Lilly, S J; Hammer, F; Crampton, David

    1995-01-01

    The photometric and spectroscopic data of the CFRS survey of objects with 17.5 1 The distributions of magnitudes and colors demonstrate that galaxies at these high redshifts have very similar colors to those observed locally. The survey thus represents a major improvement in our knowledge of field galaxies at large look-back times. Only ~1% of the galaxies are as compact as stars (on images with FWHM ~ 0.9") and comparisons of the photometric and spectroscopic data show that only one galaxy was initially incorrectly classified spectroscopically as a star, and only two stars were misclassified as galaxies. It is demonstrated that the redshift distributions in the five fields are statistically consistent with each other, once the reduction in the effective number of independent galaxies due to small-scale clustering in redshift is taken into account. The photometric properties of the spectroscopically-unidentified objects indicate that most are likely to be galaxies rather than stars. At least half of these mu...

  5. The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

    Riemer--Sørensen, Signe; Parkinson, David; Davis, Tamara M; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren; Drinkwater, Michael J; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, D Christopher; Pimbblet, Kevin; Poole, Gregory B; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted K; Yee, H K C

    2011-01-01

    The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions and galaxy bias than previous surveys. We obtain a upper limit on the sum of neutrino masses of 0.60eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble Parameter and the baryon acoustic oscillation scale gives an upper limit of 0.29eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys.

  6. Large Scale Structures in the Las Campanas Redshift Survey and in Simulations

    Müller, V; Retzlaff, J; Turchaninov, V I

    1998-01-01

    The large supercluster structures obvious in recent galaxy redshift surveys are quantified using an one-dimensional cluster analysis (core sampling) and a three-dimensional cluster analysis based on the minimal spanning tree. The comparison with the LCRS reveals promising stable results. At a mean overdensity of about ten, the supercluster systems form huge wall-like structures comprising about 40% of all galaxies. The overdense clusters have a low mean transverse velocity dispersion of about 400 km/s, i.e. they look quite narrow in redshift space. We performed N-body simulations with large box sizes for six cosmological scenarios. The quantitative analysis shows that the observed structures can be understood best in low density models with $Ømega_m

  7. Large Scale Structures in the Las Campanas Redshift Survey and in Simulations

    Müller, V.; Doroshkevich, A. G.; Retzlaff, J.; Turchaninov, V.

    1999-06-01

    The large supercluster structures obvious in recent galaxy redshift surveys are quantified using an one-dimensional cluster analysis (core sampling) and a three-dimensional cluster analysis based on the minimal spanning tree. The comparison with the LCRS reveals promising stable results. At a mean overdensity of about ten, the supercluster systems form huge wall-like structures comprising about 40% of all galaxies. The overdense clusters have a low mean transverse velocity dispersion of about 400 km/s, i.e. they look quite narrow in redshift space. We performed N-body simulations with large box sizes for six cosmological scenarios. The quantitative analysis shows that the observed structures can be understood best in low density models with Ω_m <= 0.5 with or without a cosmological constant.

  8. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

    Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; Barbera, F. La; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.

    2015-01-01

    We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the O

  9. Autofib Redshift Survey; 2, The Evolution of the Galaxy Luminosity Function by Spectral Type

    Heyl, J S; Ellis, Richard S; Broadhurst, T J; Heyl, Jeremy; Colless, Matthew; Ellis, Richard S.; Broadhurst, Tom

    1996-01-01

    We determine the evolution of the galaxy luminosity function (LF) as a function of spectral type using the Autofib redshift survey, a compendium of over 1700 galaxy redshifts in various magnitude-limited samples spanning b_J=11.5-24.0. To carry out this analysis we have developed a cross-correlation technique which classifies faint galaxy spectra into one of six types based on local galaxy templates. Tests and simulations show that this technique yields classifications correct to within one type for more than 90% of the galaxies in our sample. We have also developed extensions of the step-wise maximum likelihood method and the STY parametric method for estimating LFs which are applicable to recovering an evolving LF from multiple samples. We find that: (i) The spectra and LF of E/S0 galaxies show no appreciable evolution out to at least z ~ 0.5. (ii) Early-type spirals show modest evolution, characterised by a gradual steepening of the faint end of their LF with redshift. (iii) Out to z ~ 0.5, the overall evo...

  10. Planck's Dusty GEMS: Gravitationally lensed high-redshift galaxies discovered with the Planck survey

    Canameras, R; Guery, D; McKenzie, T; Koenig, S; Petitpas, G; Dole, H; Frye, B; Flores-Cacho, I; Montier, L; Negrello, M; Beelen, A; Boone, F; Dicken, D; Lagache, G; Floch, E Le; Altieri, B; Bethermin, M; Chary, R; De Zotti, G; Giard, M; Kneissl, R; Krips, M; Malhotra, S; Martinache, C; Omont, A; Pointecouteau, E; Puget, J -L; Scott, D; Soucail, G; Valtchanov, I; Welikala, N; Yan, L

    2015-01-01

    We present an analysis of 11 bright far-IR/submm sources discovered through a combination of the Planck survey and follow-up Herschel-SPIRE imaging. Each source has a redshift z=2.2-3.6 obtained through a blind redshift search with EMIR at the IRAM 30-m telescope. Interferometry obtained at IRAM and the SMA, and optical/near-infrared imaging obtained at the CFHT and the VLT reveal morphologies consistent with strongly gravitationally lensed sources. Additional photometry was obtained with JCMT/SCUBA-2 and IRAM/GISMO at 850 um and 2 mm, respectively. All objects are bright, isolated point sources in the 18 arcsec beam of SPIRE at 250 um, with spectral energy distributions peaking either near the 350 um or the 500 um bands of SPIRE, and with apparent far-infrared luminosities of up to 3x10^14 L_sun. Their morphologies and sizes, CO line widths and luminosities, dust temperatures, and far-infrared luminosities provide additional empirical evidence that these are strongly gravitationally lensed high-redshift gala...

  11. Subluminous Type Ia Supernovae at High Redshift from the Supernova Legacy Survey

    Gonzalez-Gaitan, S; Sullivan, M; Conley, A; Howell, D A; Carlberg, R G; Astier, P; Balam, D; Balland, C; Basa, S; Fouchez, D; Guy, J; Hardin, D; Hook, I M; Pain, R; Pritchet, C J; Regnault, N; Rich, J

    2010-01-01

    The rate evolution of subluminous Type Ia Supernovae is presented using data from the Supernova Legacy Survey. This sub-sample represents the faint and rapidly-declining light-curves of the observed supernova Ia (SN Ia) population here defined by low stretch values (s<0.8). Up to redshift z=0.6, we find 18 photometrically-identified subluminous SNe Ia, of which six have spectroscopic redshift (and three are spectroscopically-confirmed SNe Ia). The evolution of the subluminous volumetric rate is constant or slightly decreasing with redshift, in contrast to the increasing SN Ia rate found for the normal stretch population, although a rising behaviour is not conclusively ruled out. The subluminous sample is mainly found in early-type galaxies with little or no star formation, so that the rate evolution is consistent with a galactic mass dependent behavior: $r(z)=A\\times M_g$, with $A=(1.1\\pm0.3)\\times10^{-14}$ SNe per year and solar mass.

  12. The Radio Loud \\/ Radio Quiet dichotomy news from the 2dF QSO Redshift Survey

    Cirasuolo, M; Celotti, A; Danese, L

    2003-01-01

    We present a detailed analysis of a sample of radio-detected quasars, obtained by matching together objects from the FIRST and 2dF Quasar Redshift Surveys. The dataset consists of 113 sources, spanning a redshift range 0.3 < z < 2.2, with optical magnitudes 18.25 < b_J < 20.85 and radio fluxes S_{1.4 GHz} < 1 mJy. These objects exhibit properties such as redshift and colour distribution in full agreement with those derived for the whole quasar population, suggestive of an independence of the mechanism(s) controlling the birth and life-time of quasars of their level of radio emission. The long debated question of radio-loud (RL)/radio-quiet (RQ) dichotomy is then investigated for the combined FIRST-2dF and FIRST-LBQS sample, since they present similar selection criteria. We find the fraction of radio detections to increase with magnitude from < 3% at the faintest levels up to 20% for the brightest sources. The classical RL/RQ dichotomy, in which the distribution of radio-to-optical ratios and...

  13. The EGNoG Survey: Molecular Gas in Intermediate-Redshift Star-Forming Galaxies

    Bauermeister, Amber; Bolatto, Alberto D; Bureau, Martin; Leroy, Adam; Ostriker, Eve; Teuben, Peter J; Wong, Tony; Wright, Melvyn C H

    2013-01-01

    We present the Evolution of molecular Gas in Normal Galaxies (EGNoG) survey, an observational study of molecular gas in 31 star-forming galaxies from z=0.05 to z=0.5, with stellar masses of (4-30)x10^10 M_Sun and star formation rates of 4-100 M_Sun yr^-1. This survey probes a relatively un-observed redshift range in which the molecular gas content of galaxies is expected to have evolved significantly. To trace the molecular gas in the EGNoG galaxies, we observe the CO(1-0) and CO(3-2) rotational lines using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detect 24 of 31 galaxies and present resolved maps of 10 galaxies in the lower redshift portion of the survey. We use a bimodal prescription for the CO to molecular gas conversion factor, based on specific star formation rate, and compare the EGNoG galaxies to a large sample of galaxies assembled from the literature. We find an average molecular gas depletion time of 0.76 \\pm 0.54 Gyr for normal galaxies and 0.06 \\pm 0.04 Gyr for star...

  14. Will Kinematic Sunyaev-Zel'dovich Measurements Enhance the Science Return from Galaxy Redshift Surveys?

    Sugiyama, Naonori S; Spergel, David N

    2016-01-01

    Yes. Future CMB experiments such as Advanced ACTPol and CMB-S4 should achieve measurements with S/N of $> 0.1$ for the typical galaxies in redshift surveys. These measurements will provide complementary measurements of the growth rate of large scale structure $f$ and the expansion rate of the Universe $H$ to galaxy clustering measurements. This paper emphasizes that there is significant information in the anisotropy of the relative pairwise kSZ measurements. We expand the relative pairwise kSZ power spectrum in Legendre polynomials and consider up to its octopole. Assuming that the noise in the filtered maps is uncorrelated between the positions of galaxies in the survey, we derive a simple analytic form for the power spectrum covariance of the relative pairwise kSZ temperature in redshift space. While many previous studies have assumed optimistically that the optical depth of the galaxies $\\tau_{\\rm T}$ in the survey is known, we marginalize over $\\tau_{\\rm T}$, to compute constraints on the growth rate $f$ ...

  15. VLP - High-Redshift AGNs and the X-SERVS Survey

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  16. The Sloan Digital Sky Survey Reverberation Mapping Project: Biases in z > 1.46 Redshifts Due to Quasar Diversity

    Denney, K. D.; Horne, Keith; Brandt, W. N.; Grier, C. J.; Ho, Luis C.; Peterson, B. M.; Trump, J. R.; Ge, J.

    2016-12-01

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z > 1.46 to highlight systematic biases in the SDSS- and Baryon Oscillation Spectroscopic Survey (BOSS)-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of He ii λ1640. He ii has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component which, when present (the case for about half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [O ii] to within the He ii and [O ii] centroid measurement uncertainties. The large redshift differences of ˜1000 km s-1, on average, between the BOSS-pipeline and He ii-centroid redshifts, suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the He ii-based redshifts shows that C iv does not exhibit a ubiquitous blueshift for all quasars, given the precision probed by our measurements. Instead, we find a distribution of C iv-centroid blueshifts across our sample, with a dynamic range that (i) is wider than that previously reported for this line, and (ii) spans C iv centroids from those consistent with the systemic redshift to those with significant blueshifts of thousands of kilometers per second. These results have significant implications for measurement and use of high-redshift quasar properties and redshifts, and studies based thereon.

  17. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ˜ 1.4

    Okumura, Teppei; Hikage, Chiaki; Totani, Tomonori; Tonegawa, Motonari; Okada, Hiroyuki; Glazebrook, Karl; Blake, Chris; Ferreira, Pedro G.; More, Surhud; Taruya, Atsushi; Tsujikawa, Shinji; Akiyama, Masayuki; Dalton, Gavin; Goto, Tomotsugu; Ishikawa, Takashi; Iwamuro, Fumihide; Matsubara, Takahiko; Nishimichi, Takahiro; Ohta, Kouji; Shimizu, Ikkoh; Takahashi, Ryuichi; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Yoshida, Naoki

    2016-06-01

    We measure the redshift-space correlation function from a spectroscopic sample of 2783 emission line galaxies from the FastSound survey. The survey, which uses the Subaru Telescope and covers a redshift range of 1.19 parallel and perpendicular to the line of sight and its quadrupole moment. RSD has been extensively used to test general relativity on cosmological scales at z < 1. Adopting a ΛCDM cosmology with the fixed expansion history and no velocity dispersion (σv = 0), and using the RSD measurements on scales above 8 h-1 Mpc, we obtain the first constraint on the growth rate at the redshift, f (z)σ8(z) = 0.482 ± 0.116 at z ˜ 1.4 after marginalizing over the galaxy bias parameter b(z)σ8(z). This corresponds to 4.2 σ detection of RSD. Our constraint is consistent with the prediction of general relativity fσ8 ˜ 0.392 within the 1 σ confidence level. When we allow σv to vary and marginalize over it, the growth rate constraint becomes fσ _8=0.494^{+0.126}_{-0.120}. We also demonstrate that by combining with the low-z constraints on fσ8, high-z galaxy surveys like the FastSound can be useful to distinguish modified gravity models without relying on CMB anisotropy experiments.

  18. Constraining galaxy cluster temperatures and redshifts with eROSITA survey data

    Borm, K.; Reiprich, T. H.; Mohammed, I.; Lovisari, L.

    2014-07-01

    Context. The nature of dark energy is imprinted in the large-scale structure of the Universe and thus in the mass and redshift distribution of galaxy clusters. The upcoming eROSITA instrument will exploit this method of probing dark energy by detecting ~100 000 clusters of galaxies in X-rays. Aims: For a precise cosmological analysis the various galaxy cluster properties need to be measured with high precision and accuracy. To predict these characteristics of eROSITA galaxy clusters and to optimise optical follow-up observations, we estimate the precision and the accuracy with which eROSITA will be able to determine galaxy cluster temperatures and redshifts from X-ray spectra. Additionally, we present the total number of clusters for which these two properties will be available from the eROSITA survey directly. Methods: We simulate the spectra of galaxy clusters for a variety of different cluster masses and redshifts while taking into account the X-ray background as well as the instrumental response. An emission model is then fit to these spectra to recover the cluster temperature and redshift. The number of clusters with precise properties is then based on the convolution of the above fit results with the galaxy cluster mass function and an assumed eROSITA selection function. Results: During its four years of all-sky surveys, eROSITA will determine cluster temperatures with relative uncertainties of ΔT/T ≲ 10% at the 68%-confidence level for clusters up to redshifts of z ~ 0.16 which corresponds to ~1670 new clusters with precise properties. Redshift information itself will become available with a precision of Δz/ (1 + z) ≲ 10% for clusters up to z ~ 0.45. Additionally, we estimate how the number of clusters with precise properties increases with a deepening of the exposure. For the above clusters, the fraction of catastrophic failures in the fit is below 20% and in most cases it is even much smaller. Furthermore, the biases in the best-fit temperatures as

  19. An HST/COS Survey of the Low-Redshift IGM. I. Survey, Methodology, & Overall Results

    Danforth, Charles W; Shull, J Michael; Keeney, Brian A; Stevans, Matthew; Pieri, Matthew M; Stocke, John T; Savage, Blair D; France, Kevin; Syphers, David; Smith, Britton D; Green, James C; Froning, Cynthia; Penton, Steven V; Osterman, Steven N

    2014-01-01

    We use high-quality, medium-resolution HST/COS observations of 75 UV-bright AGN at redshifts $z_{\\rm AGN}10^{13.5}~\\rm cm^{-2}$) absorbers particularly those with metal absorption. The full catalog of absorption lines and fully-reduced spectra is available via MAST as a high-level science product at http://archive.stsci.edu/prepds/igm/.

  20. Spectroscopic confirmation of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey

    Frederiksen, Teddy F; Hjorth, Jens; Maoz, Dan; Poznanski, Dovi

    2012-01-01

    The Subaru Deep Field (SDF) Supernova Survey discovered 10 Type Ia supernovae (SNe Ia) in the redshift range $1.5redshifts of the host galaxies. However, photometric redshifts might be biased, and the SN sample could be contaminated by active galactic nuclei (AGNs). Unfortunately, measuring spectroscopic redshifts of galaxies in the "redshift desert" 1.5 < z < 2.0 is hard because any prominent emission lines get shifted out of the optical and into the near infrared. Here we report the first robust redshift measurement and classification of hSDF0705.25, an SDF SN Ia host galaxy. Using the X-shooter spectrograph on the Very Large Telescope, we measure a spectroscopic redshift of 1.5456 +/- 0.0003, consistent with its photometric redshift of 1.552 +/- 0.018. From the strong emission-line spectrum we are able to rule out AGN activity and show that the SN host galaxy is a low-metallicity, star-burst dwarf galaxy, similar to typical SN Ia hosts at lower red...

  1. VIMOS Public Extragalactic Redshift Survey (VIPERS). The distinct build-up of dense and normal massive passive galaxies

    Gargiulo, A; Scodeggio, M; Krywult, J; De Lucia, G; Guzzo, L; Garilli, B; Grannet, B R; de la Torre, S; Abbas, U; Adami, C; Arnouts, S; Bottini, D; Cappi, A; Cucciati, O; Davidzon, I; Franzetti, P; Fritz, A; Haines, C; Hawken, A; Iovino, A; Brun, V Le; Fèvre, O Le; Maccagni, D; Małek, K; Marulli, F; Moutard, T; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Zamorani, G; Bel, J; Branchini, E; Coupon, J; Ilbert, O; Moscardini, L

    2016-01-01

    We use the final data from the VIPERS redshift survey to extract an unparalleled sample of more than 2000 massive M > 10^11 M_sun passive galaxies (MPGs) at redshift 0.5 2000 M_sun pc^-2) MPGs show a constant comoving number density over this redshift range, whilst this increases by a factor ~ 4 for the least dense objects, defined as having Sigma 10^11 M_sun objects). Such systems observed at z ~ 1 in VIPERS, therefore, represent the most plausible progenitors of the subsequent emerging class of larger MPGs.

  2. The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

    Blake, Chris; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Davis, Tamara; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui

    2011-01-01

    We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic struc...

  3. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars selection. Its application with 27 photometric bands to the COSMOS quasars at 3 6 quasar selection, and it is expected that the first HSC quasar discovery will be in the near future.

  4. The Wide-Field DENIS Near-IR Imaging Survey and 6dF Redshift and Peculiar Velocity Surveys

    Mamon, G A

    1998-01-01

    The DENIS survey is currently imaging the entire southern sky in the I, J, and K wavebands. The current star/galaxy separation algorithm is presented and the galaxy counts are nearly perfectly Euclidean. 95% complete and reliable galaxy samples with better than 0.2 magnitude photometry should include 50,000 (K < 12.0), 500,000 (J < 14.8), and 900,000 (I < 16.5) galaxies, respectively, over the full hemisphere. Two spectroscopic followups of DENIS and 2MASS galaxies are planned on the 6dF robotic multi-object spectroscopic unit, currently under construction at the AAO, and which will be mounted on the UKST Schmidt telescope: a redshift survey of roughly 120,000 NIR selected galaxies and a peculiar velocity survey of roughly 15,000 galaxies (both early-types and inclined spirals) at cz < 10,000 km/s.

  5. Revisiting the Completeness and the Luminosity Function in High-Redshift Low-Luminosity Quasar Surveys

    Niida, Mana; Ikeda, Hiroyuki; Matsuoka, Kenta; Kobayashi, Masakazu A R; Toba, Yoshiki; Taniguchi, Yoshiaki

    2016-01-01

    Recent studies have derived quasar luminosity functions (QLFs) at various redshifts. However, the faint side of the QLF at high redshifts is still too uncertain. An accurate estimate of the survey completeness is essential to derive an accurate QLF for use in studying the luminosity-dependent density evolution of the quasar population. Here we investigate how the luminosity dependence of quasar spectra (the Baldwin effect) and the attenuation model for the inter-galactic medium (IGM) affect the completeness estimates. For this purpose, we revisit the completeness of quasar surveys specifically at $z\\sim4-5$, using the COSMOS images observed with Subaru/Suprime-Cam. As the result, we find that the completeness estimates are sensitive to the luminosity dependence of the quasar spectrum and difference in the IGM attenuation models. At $z\\sim4$, the number density of quasars when we adopt the latest IGM model and take the luminosity dependence of spectra into account are $(3.49\\pm1.62)\\times10^{-7}$ Mpc$^{-3}$ ma...

  6. The 2dF Galaxy Redshift Survey: stochastic relative biasing between galaxy populations

    Wild, V; Lahav, O; Conway, E; Maddox, S; Baldry, I K; Baugh, C M; Bland-Hawthorn, J; Bridges, T; Cannon, R; Cole, S; Colless, M; Collins, C; Couch, W; Dalton, G B; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, Richard S; Frenk, C S; Glazebrook, K; Jackson, C; Lewis, I; Lumsden, S; Madgwick, D; Norberg, P; Peterson, B A; Sutherland, W; Taylor, K

    2004-01-01

    It is well known that the clustering of galaxies depends on galaxy type. Such relative bias complicates the inference of cosmological parameters from galaxy redshift surveys, and is a challenge to theories of galaxy formation and evolution. In this paper we perform a joint counts-in-cells analysis on galaxies in the 2dF Galaxy Redshift Survey, classified by both colour and spectral type, eta, as early or late type galaxies. We fit three different models of relative bias to the joint probability distribution of the cell counts, assuming Poisson sampling of the galaxy density field. We investigate the nonlinearity and stochasticity of the relative bias, with cubical cells of side 10Mpc \\leq L \\leq 45Mpc (h=0.7). Exact linear bias is ruled out with high significance on all scales. Power law bias gives a better fit, but likelihood ratios prefer a bivariate lognormal distribution, with a non-zero `stochasticity' - i.e. scatter that may result from physical effects on galaxy formation other than those from the loca...

  7. The VLT LBG Redshift Survey - IV. Gas and galaxies at z~3 in observations and simulations

    Tummuangpak, P; Bielby, R; Crighton, N H M; Francke, H; Infante, L; Theuns, T

    2013-01-01

    We use observations and simulations to study the relationship between star-forming galaxies and the IGM at z~3. We use redshift data taken from the VLT LBG Redshift Survey (VLRS) and Keck surveys in fields centred on bright background QSOs, whilst the simulated data is taken from GIMIC. In the simulations, we find that the dominant peculiar velocities are in the form of large-scale coherent motions of gas and galaxies. Gravitational infall of galaxies towards each other is also seen, consistent with linear theory. Peculiar velocity pairs with separations smaller than 1Mpc have a smaller dispersion and better explain the simulated z-space correlations. Lyman-alpha auto- and cross-correlations in the simulations appear to show smaller infall than implied by the expected beta_Lyman-alpha ~ 1.3. Galaxy-wide outflows implemented in the simulations may contribute to this effect. When velocity errors are taken into account, the LBG correlation function prefers the high clustering amplitude shown by higher mass galax...

  8. The VLT LBG Redshift Survey - V. Characterising the z = 3.1 Lyman Alpha Emitter Population

    Bielby, R M; Shanks, T; Francke, H; Crighton, N H M; Bañados, E; González-López, Jorge; Infante, L; Orsi, A

    2016-01-01

    We present a survey of Ly$\\alpha$ emitting galaxies in the fields of the VLT LBG Redshift Survey, incorporating the analysis of narrow band number counts, the rest frame UV luminosity function and the two-point correlation function of Ly$\\alpha$ emitters at $z\\approx3.1$. Our photometric sample consists of 750 LAE candidates, over an area of 1.07 deg$^2$, with estimated equivalent widths of $\\gtrsim65$ \\AA, from 5 fields based on deep Subaru Suprime-Cam imaging data. Added to this we have obtained spectroscopic follow-up observations, which successfully detected Ly$\\alpha$ emission in 35 galaxies. Based on the spectroscopic results, we refined our photometric selection constraints, with the resulting sample having a success rate of $78\\pm18\\%$. We calculate the narrow band number counts for our photometric sample and find these to be consistent with previous studies of LAEs at this redshift. We find the $R$-band continuum luminosity function to be $\\sim10\\times$ lower than the equivalent luminosity function o...

  9. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Never mind the gaps: comparing techniques to restore homogeneous sky coverage

    Cucciati, O; Branchini, E; Marulli, F; Iovino, A; Moscardini, L; Bel, J; Cappi, A; Peacock, J A; de la Torre, S; Bolzonella, M; Guzzo, L; Polletta, M; Fritz, A; Adami, C; Bottini, D; Coupon, J; Davidzon, I; Franzetti, P; Fumana, M; Garilli, B; Krywult, J; Malek, K; Paioro, L; Pollo, A; Scodeggio, M; Tasca, L A M; Vergani, D; Zanichelli, A; Di Porto, C; Zamorani, G

    2014-01-01

    [Abridged] Non-uniform sampling and gaps in sky coverage are common in galaxy redshift surveys but these effects can degrade galaxy counts-in-cells and density estimates. We carry out a comparison of methods that aim to fill the gaps to correct for the systematic effects. Our study is motivated by the analysis of the VIMOS Extragalactic Redshift Survey (VIPERS), a flux-limited survey (i<22.5) based on one-pass observations with VIMOS, with gaps covering 25% of the surveyed area and a mean sampling rate of 35%. Our findings are applicable to other surveys with similar observing strategies. We compare 1) two algorithms based on photometric redshift, that assign redshifts to galaxies based on the spectroscopic redshifts of the nearest neighbours, 2) two Bayesian methods, the Wiener filter and the Poisson-Lognormal filter. Using galaxy mock catalogues we quantify the accuracy of the counts-in-cells measurements on scales of R=5 and 8 Mpc/h after applying each of these methods. We also study how they perform to...

  10. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    Raccanelli, Alvise; Dai, Liang; Kamionkowski, Marc

    2015-01-01

    We investigate the possibility to detect the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies, in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as...

  11. Massive Structures of Galaxies at High Redshifts in the Great Observatories Origins Deep Survey Fields

    Kang, Eugene

    2016-01-01

    If the Universe is dominated by cold dark matter and dark energy as in the currently popular LCDM cosmology, it is expected that large scale structures form gradually, with galaxy clusters of mass M > ~10^14 Msun appearing at around 6 Gyrs after the Big Bang (z ~ 1). Here, we report the discovery of 59 massive structures of galaxies with masses greater than a few x 10^13 Msun at redshifts between z=0.6 and 4.5 in the Great Observatories Origins Deep Survey fields. The massive structures are identified by running top-hat filters on the two dimensional spatial distribution of magnitude-limited samples of galaxies using a combination of spectroscopic and photometric redshifts. We analyze the Millennium simulation data in a similar way to the analysis of the observational data in order to test the LCDM cosmology. We find that there are too many massive structures (M > 7 x 10^13 Msun) observed at z > 2 in comparison with the simulation predictions by a factor of a few, giving a probability of < 1/2500 of the ob...

  12. The DEEP2 Galaxy Redshift Survey: Color and Luminosity Dependence of Galaxy Clustering at z~1

    Coil, Alison L; Croton, Darren; Cooper, Michael C; Davis, Marc; Faber, S M; Gerke, Brian F; Koo, David C; Padmanabhan, Nikhil; Wechsler, Risa H; Weiner, Benjamin J

    2007-01-01

    We present measurements of the color and luminosity dependence of galaxy clustering at z~1 in the DEEP2 Galaxy Redshift Survey. Using volume-limited subsamples in bins of both color and luminosity, we find that: 1) The clustering dependence is much stronger with color than with luminosity and is as strong with color at z~1 as is found locally. We find no dependence of the clustering amplitude on color for galaxies on the red sequence, but a significant dependence on color for galaxies within the blue cloud. 2) For galaxies in the range L/L*~0.7-2, a stronger large-scale luminosity dependence is seen for all galaxies than for red and blue galaxies separately. The small-scale clustering amplitude depends significantly on luminosity for blue galaxies, with brighter samples having a stronger rise on scales r_p<0.5 Mpc/h. 3) Redder galaxies exhibit stronger small-scale redshift-space distortions ("fingers of god"), and both red and blue populations show large-scale distortions in xi(r_p,pi) due to coherent infa...

  13. The DWT Power Spectrum of the two-degree Field Galaxy Redshift Survey

    Cai, Y C; Zhao, Y H; Feng, L L; Fang, L Z; Cai, Yan-Chuan; Pan, Jun; Zhao, Yong-Heng; Feng, Long-Long; Fang, Li-Zhi

    2006-01-01

    The power spectrum of the two-degree Field Galaxy Redshift Survey (2dFGRS) sample is estimated with the discrete wavelet transform (DWT) method. The DWT power spectra within $0.04 redshift distortion parameter $\\beta=\\Omega_m^{0.6}/b$ to the measured DWT power spectrum. Fitting results denotes that in a $\\sigma_8=0.84$ universe the best fitted $\\Omega_m$ given by the three samples are consistent in the range $0.28 \\sim 0.36$, and the best fitted $\\sigma_{pv}$ are $398^{+35}_{-27}$, $475^{+37}_{-29}$ and $550 \\pm 20$km/s for the three samples, respectively. However in the model of $...

  14. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    Krughoff, K.Simon; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  15. The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts

    Mandelbaum, Rachel; Bridle, Sarah; Abdalla, Filipe B; Brough, Sarah; Colless, Matthew; Couch, Warrick; Croom, Scott; Davis, Tamara; Drinkwater, Michael J; Forster, Karl; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, Tornado; Madore, Barry; Martin, Chris; Pimbblet, Kevin; Poole, Gregory B; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted

    2009-01-01

    Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the...

  16. Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations

    Einasto, Jaan; Einasto, M.; Saar, E.; Tago, E.; Liivamagi, L.J.; Joeveer, M.J; Suhhonenko, I.; Hutsi, G.; /Tartu Observ.; Jaaniste, J.; /Estonian U.; Heinamaki, P.; /Tuorla; Muller, V.; Knebe, A.; /Potsdam, Astrophys. Inst.; Tucker, D.; /Fermilab

    2006-04-01

    We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.

  17. VizieR Online Data Catalog: KMOS AGN Survey at High redshift (KASHz) (Harrison+, 2016)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-08-01

    KASHz is designed to ultimately obtain spatially resolved emission-line kinematics of ~(100-200) high-redshift (z~0.6-3.6) AGN. For our target selection we make use of deep X-ray surveys performed in extragalactic fields (COSMOS, see Scoville et al., 2007, Cat. J/ApJS/171/1; CDF-S, see Giacconi et al. 2001ApJ...551..624G and Xue et al., 2011, Cat. J/ApJS/195/10 (CDFS); UDS, SXDS: see Furusawa et al. 2008, Cat. J/ApJS/176/1 (UDS) and SSA22, see Steidel et al. 1998ApJ...492..428S). (1 data file).

  18. VizieR Online Data Catalog: Team Keck Redshift Survey 2 (TKRS2) (Wirth+, 2015)

    Wirth, G. D.; Trump, J. R.; Barro, G.; Guo, Y.; Koo, D. C.; Liu, F.; Kassis, M.; Lyke, J.; Rizzi, L.; Campbell, R.; Goodrich, R. W.; Faber, S. M.

    2016-04-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a spectroscopic survey of 97 distant galaxies exploiting the capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck I telescope at the W. M. Keck Observatory. MOSFIRE features a 2048*2048 pixel HAWAII-2RG HgCdTe detector array from Teledyne Imaging Sensors that couples high quantum efficiency with low noise and low dark current. The operating range of 0.97-2.41μm covers the YJHK infrared passbands, with wavelength coverage of 0.97-1.12μm in Y, 1.15-1.35μm in J, 1.47-1.80μm in H, and 1.95-2.40μm in K. The resolving power for the default slit width of 0.7" is R=3380 in Y, 3310 in J, 3660 in H, and 3620 in K, corresponding to full-width-half-maximum (FWHM) spectral resolutions of 3.1Å in Y, 3.7Å in J, 4.4Å in H, and 6.0Å in K. Our survey targets the south-central region of the GOODS-North survey field (Giavalisco et al. 2004, cat. II/261). We employed MOSFIRE to acquire spectra in the GOODS-North field over a series of partial nights spanning the period from 2012 November to 2013 May. We present the results of our survey in Table3 and on the website (http://arcoiris.ucsc.edu/TKRS2/) devoted to the survey. (1 data file).

  19. Estimating $\\beta$ from redshift-space distortions in the 2dF galaxy survey

    Hatton, S J

    1999-01-01

    Given the failure of existing models for redshift-space distortions to provide a highly accurate measure of the beta-parameter, and the ability of forthcoming surveys to obtain data with very low random errors, it becomes necessary to develop better models for these distortions. Here we review the failures of the commonly used velocity dispersion models and present an empirical method for extracting beta from the quadrupole statistic that has little systematic offset over a wide range of beta and cosmologies. This empirical model is then applied to an ensemble of mock 2dF southern strip catalogues to illustrate the technique and see how accurately we can recover the true value of beta. We compare this treatment with the error we expect to find due to the finite volume of the survey. We find that non-linear effects reduce the range of scales over which beta can be fitted, and introduce covariances between nearby modes in excess of those introduced by the convolution with the survey window function. The result ...

  20. The Sloan Digital Sky Survey Reverberation Mapping Project: Biases in z>1.46 Redshifts due to Quasar Diversity

    Denney, K D; Brandt, W N; Grier, C J; Ho, Luis C; Peterson, B M; Trump, J R; Ge, J

    2016-01-01

    We use the coadded spectra of 32 epochs of Sloan Digital Sky Survey (SDSS) Reverberation Mapping Project observations of 482 quasars with z>1.46 to highlight systematic biases in the SDSS- and BOSS-pipeline redshifts due to the natural diversity of quasar properties. We investigate the characteristics of this bias by comparing the BOSS-pipeline redshifts to an estimate from the centroid of HeII 1640. HeII has a low equivalent width but is often well-defined in high-S/N spectra, does not suffer from self-absorption, and has a narrow component that, when present (the case for about half of our sources), produces a redshift estimate that, on average, is consistent with that determined from [OII] to within 1-sigma of the quadrature sum of the HeII and [OII] centroid measurement uncertainties. The large redshift differences of ~1000 km/s, on average, between the BOSS-pipeline and HeII-centroid redshifts suggest there are significant biases in a portion of BOSS quasar redshift measurements. Adopting the HeII-based ...

  1. The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ~ 3

    Bielby, R; Shanks, T; Crighton, N H M; Infante, L; Bornancini, C G; Francke, H; Heraudeau, P; Lambas, D G; Metcalfe, N; Minniti, D; Padilla, N; Theuns, T; Tummuangpak, P; Weilbacher, P

    2012-01-01

    We present a survey of 2,148 galaxy redshifts from the VLT LBG Redshift Survey (VLRS), a spectroscopic survey of z ~ 3 galaxies in wide fields centred on background QSOs made using the VLT VIMOS instrument. To make a definitive LBG clustering analysis, we have combined the VLRS redshifts with the 813 Keck LBG redshifts of Steidel et al, with the statistical power of VLRS at large scales complementing the accuracy of the Keck sample at small scales. From the semi-projected correlation function for the VLRS and combined surveys, we find that the results are well fit with a single power law model for the real space correlation function with clustering scale lengths of respectively r0 = 3.32 \\pm 0.41 and 3.75 \\pm 0.24 Mpc/h. We note that the corresponding combined slope is flatter than for local galaxies at {\\gamma} = 1.55 \\pm 0.09. This flat slope is confirmed by the z-space correlation function and in the range 10 < s < 100 Mpc/h the VLRS shows a 2.5{\\sigma} excess over the {\\Lambda}CDM linear prediction....

  2. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The coevolution of galaxy morphology and colour to z~1

    Krywult, J; Pollo, A; Vergani, D; Bolzonella, M; Davidzon, I; Iovino, A; Gargiulo, A; Haines, C P; Scodeggio, M; Guzzo, L; Zamorani, G; Garilli, B; Granett, B R; de la Torre, S; Abbas, U; Adami, C; Bottini, D; Cappi, A; Cucciati, O; Franzetti, P; Fritz, A; Brun, V Le; Fèvre, O Le; Maccagni, D; Małek, K; Marulli, F; Polletta, M; Tojeiro, R; Zanichelli, A; Arnouts, S; Bel, J; Branchini, E; De Lucia, G; Ilbert, O; McCracken, H J; Moscardini, L; Takeuchi, T T

    2016-01-01

    We explore the evolution of the statistical distribution of galaxy morphological properties and colours over the redshift range $0.5Survey with the large number of redshifts and extended photometry from the VIPERS survey. Galaxy structural parameters are measured by fitting S\\'ersic profiles to $i$-band images and then combined with absolute magnitudes, colours and redshifts, to trace the evolution in a multi-parameter space. We analyse, using a new method, the combination of colours and structural parameters of early- and late-type galaxies in luminosity--redshift space. We found that both the rest-frame colour distributions in the (U-B) vs. (B-V) plane and the S\\'ersic index distributions are well fitted by a sum of two Gaussians, with a remarkable consistency of red-spheroidal and blue-disky galaxy populations, over the explored redshift ($0.5

  3. Superlarge-scale structure in the Durham/UKST Galaxy Redshift Survey

    Doroshkevich, Andrei G.; Fong, Richard; McCracken, Henry J.; Ratcliffe, Andrew; Shanks, Tom; Turchaninov, Victor I.

    2000-07-01

    Several `great walls' are clearly visible in the Durham/UKST Galaxy Redshift Survey (DURS). We make a statistical study of this superlarge-scale structure (SLSS) by applying our core sampling, cluster, inertia tensor and minimal-spanning-tree analyses to the DURS. The results in the main support similar results from the complementary Las Campañas Redshift Survey (LCRS); the DURS is a fully three-dimensional, though shallower, survey, whilst the LCRS was carried out in six thin wedges of space. Because of the one-in-three sparse sampling used for DURS, the galaxy filaments of large-scale structure (LSS) are less clear here; the mean separation of ~25h-1Mpc for the richer filaments is consistent with the LCRS result, but the poorer filaments are not seen in the DURS. In contrast, the analysis clearly picks out SLSS and we find, as with the LCRS, that ~50 per cent of the galaxies lie within the SLSS in regions with overdensities of 5-10 times the mean galaxy density. It quantitatively demonstrates that SLSS is a major component of large-scale structure in the Universe. The SLSS is also confirmed as having statistical parameters similar to those for a sheet-like object, albeit a very irregular one with a highly inhomogeneous inner structure. The `mean-free path', or average separation between SLSS structures, is found to be Ds~50h-1Mpc. The inertia tensor analysis gives mean lengths, widths and thicknesses of ~20-40, 10 and 5h-1Mpc, respectively, for the clusters of SLSS. In particular, the largest great wall in the DURS is found to have a length of ~75h-1Mpc. Unlike the LCRS, the cluster mass function for the three-dimensional DURS has a high mass `tail' such a `tail' would constitute a quantitative signature for the presence of great walls. Finally, theoretical considerations would suggest that the results support arguments for the large-scale biasing of galaxies with respect to dark matter.

  4. A survey of weak MgII absorbers at redshift =1.78

    Lynch, R S; Kim, T S; Lynch, Ryan S.; Charlton, Jane C.; Kim, Tae-Sun

    2006-01-01

    The exact nature of weak MgII absorbers (those with W_r(2796) < 0.3 A) is a matter of debate, but most are likely related to areas of local star formation or supernovae activity outside of giant galaxies. Using 18 QSO spectra obtained with the Ultra-Violet Echelle Spectrograph (UVES) on the Very Large Telescope (VLT), we have conducted a survey for weak MgII absorbers at 1.4 < z < 2.4. We searched a redshift path length of 8.51, eliminating regions badly contaminated by atmospheric absorption so that the survey is close to 100% complete to W_r(2796) = 0.02 A. We found a total of 9 weak absorbers, yielding a number density of absorbers of dN/dz = 1.06 +/- 0.12 for 0.02 <= W_r(2796) < 0.3 A. Narayanan et al. (2005) found dN/dz = 1.00 +/- 0.20 at 0 < z < 0.3 and Churchill et al. (1999) found dN/dz = 1.74 +/- 0.10 at 0.4 < z < 1.4. Therefore, the population of weak MgII absorbers appears to peak at z~1. We explore the expected evolution of the absorber population subject to a changing e...

  5. The ALHAMBRA Survey: Bayesian Photometric Redshifts with 23 bands for 3 squared degrees

    Molino, A; Moles, M; Fernández-Soto, A; Cristóbal-Hornillos, D; Ascaso, B; Jiménez-Teja, Y; Schoenell, W; Arnalte-Mur, P; Pović, M; Coe, D; López-Sanjuan, C; Díaz-García, L A; Varela, J; Matute, I; Masegosa, J; Márquez, I; Perea, J; Del Olmo, A; Husillos, C; Alfaro, E; Aparicio-Villegas, T; Cerviño, M; Huertas-Company, M; Aguerri, A L; Broadhurst, T; Cabrera-Caño, J; Cepa, J; Delgado, R M González; Infante, L; Martínez, V J; Prada, F; Quintana, J M

    2013-01-01

    The ALHAMBRA (Advance Large Homogeneous Area Medium Band Redshift Astronomical) survey has observed 8 different regions of the sky, including sections of the COSMOS, DEEP2, ELAIS, GOODS-N, SDSS and Groth fields using a new photometric system with 20 contiguous ~ $300\\AA$ filters covering the optical range, combining them with deep $JHKs$ imaging. The observations, carried out with the Calar Alto 3.5m telescope using the wide field (0.25 sq. deg FOV) optical camera LAICA and the NIR instrument Omega-2000, correspond to ~700hrs on-target science images. The photometric system was designed to maximize the effective depth of the survey in terms of accurate spectral-type and photo-zs estimation along with the capability of identification of relatively faint emission lines. Here we present multicolor photometry and photo-zs for ~438k galaxies, detected in synthetic F814W images, complete down to I~24.5 AB, taking into account realistic noise estimates, and correcting by PSF and aperture effects with the ColorPro so...

  6. The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: The Clustering of Luminous Red Galaxies Using Photometric Redshifts

    Prakash, Abhishek; SDSS-IV/eBOSS

    2017-01-01

    SDSS-IV/eBOSS survey will allow a ˜1% measurement of the Baryon Acoustic Oscillation (BAO) scale and a 4.0%Redshift Space Distortion (RSD) measurement using a relatively uniform set of luminous, early-type galaxies in the redshift range 0.6 image both wider areas and deeper volumes than would be possible with spectroscopy, allowing one to probe both larger scales and larger volumes. The ability to make precise clustering measurements with photometric data has been well demonstrated by Padmanabhan et al. (2007).

  7. The WiggleZ Dark Energy Survey: Cosmological neutrino mass constraint from blue high-redshift galaxies

    Riemer-Sørensen, Signe; Blake, Chris; Parkinson, David; Davis, Tamara M.; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren; Drinkwater, Michael J.; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl

    2011-01-01

    The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions and galaxy bias than previous surveys. We obtain a upper limit on the sum of neutrino masses of 0.60eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble Parameter and the baryon acoustic oscillat...

  8. The DEEP3 Galaxy Redshift Survey: The Impact of Environment on the Size Evolution of Massive Early-type Galaxies at Intermediate Redshift

    Cooper, Michael C; Newman, Jeffrey A; Coil, Alison L; Davis, Marc; Dutton, Aaron A; Faber, S M; Guhathakurta, Puragra; Koo, David C; Lotz, Jennifer M; Weiner, Benjamin J; Willmer, Christopher N A; Yan, Renbin

    2011-01-01

    Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11) early-type population at 0.4 < z <1.2, we find a significant correlation between local galaxy overdensity (or environment) and galaxy size, such that early-type systems in higher-density regions tend to have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts of equal stellar mass and Sersic index in lower-density environments. This observed size-density relation is consistent with a model of galaxy formation in which the evolution of early-type systems at z < 2 is accelerated in high-density environments such as groups and clusters and in which dry, minor mergers (versus mechanisms such as quasar feedback) play a central role in the structural evolution of the massive, early-type galaxy population.

  9. The VIMOS Public Extragalactic Redshift Survey (VIPERS). PCA-based automatic cleaning and reconstruction of survey spectra

    Marchetti, A.; Garilli, B.; Granett, B. R.; Guzzo, L.; Iovino, A.; Scodeggio, M.; Bolzonella, M.; de la Torre, S.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Davidzon, I.; Franzetti, P.; Fritz, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; Moutard, T.; Moscardini, L.; Zamorani, G.

    2017-03-01

    Context. Identifying spurious reduction artefacts in galaxy spectra is a challenge for large surveys. Aims: We present an algorithm for identifying and repairing spurious residual features in sky-subtracted galaxy spectra by using data from the VIMOS Public Extragalactic Redshift Survey (VIPERS) as a test case. Methods: The algorithm uses principal component analysis (PCA) applied to the galaxy spectra in the observed frame to identify sky line residuals imprinted at characteristic wavelengths. We further model the galaxy spectra in the rest-frame using PCA to estimate the most probable continuum in the corrupted spectral regions, which are then repaired. Results: We apply the method to 90 000 spectra from the VIPERS survey and compare the results with a subset for which careful editing was performed by hand. We find that the automatic technique reproduces the time-consuming manual cleaning in a uniform and objective manner across a large data sample. The mask data products produced in this work are released together with the VIPERS second public data release (PDR-2). based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA at the Canada-France-Hawaii Telescope (CFHT), that is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, which is a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/.

  10. Apples to apples A2 - I. Realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys

    Ascaso, B.; Mei, S.; Benítez, N.

    2015-11-01

    We present new mock catalogues for two of the largest Stage IV next-generation surveys in the optical and infrared: Large Synoptic Sky Telescope (LSST) and Euclid, based on an N-body simulation+semi-analytical cone with a posterior modification with PHOTREAL. This technique modifies the original photometry by using an empirical library of spectral templates to make it more realistic. The reliability of the catalogues is confirmed by comparing the obtained colour-magnitude relation, the luminosity and mass function and the angular correlation function with those of real data. Consistent comparisons between the expected photometric redshifts for different surveys are also provided. Very deep near-infrared surveys such as Euclid will provide very good performance (Δz/(1 + z) ˜ 0.025-0.053) down to H ˜ 24 AB mag and up to z ˜ 3 depending on the optical observations available from the ground, whereas extremely deep optical surveys such as LSST will obtain an overall lower photometric redshift resolution (Δz/(1 + z) ˜ 0.045) down to i ˜ 27.5 AB mag, being considerably improved (Δz/(1 + z) ˜ 0.035) if we restrict the sample down to i ˜ 24 AB mag. Those numbers can be substantially upgraded by selecting a subsample of galaxies with the best quality photometric redshifts. We finally discuss the impact that these surveys will have for the community in terms of photometric redshift legacy. This is the first of a series of papers where we set a framework for comparability between mock catalogues and observations with a particular focus on cluster surveys. The Euclid and LSST mocks are made publicly available.

  11. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  12. Halpha Equivalent Widths from the 3D-HST survey: evolution with redshift and dependence on stellar mass

    Fumagalli, Mattia; Franx, Marijn; Brammer, Gabriel; van Dokkum, Pieter; da Cunha, Elisabete; Kriek, Mariska; Lundgren, Britt; Momcheva, Ivelina; Rix, Hans-Walter; Schmidt, Kasper B; Skelton, Rosalind E; Whitaker, Katherine E; Labbe, Ivo; Nelson, Erica

    2012-01-01

    We investigate the evolution of the Halpha equivalent width, EW(Halpha), with redshift and its dependence on stellar mass, taking advantage of the first data from the 3D-HST survey, a large spectroscopic Treasury program with the Hubble Space Telescope WFC3. Combining our Halpha measurements of 854 galaxies at 0.8surveys at lower and higher redshift, we can consistently determine the evolution of the EW(Halpha) distribution from z=0 to z=2.2. We find that at all masses the characteristic EW(Halpha) is decreasing towards the present epoch, and that at each redshift the EW(Halpha) is lower for high-mass galaxies. We measure a slope of EW(Halpha) ~ (1+z)^(1.8) with little mass dependence. Qualitatively, this measurement is a model-independent confirmation of the evolution of star forming galaxies with redshift. A quantitative conversion of EW(Halpha) to sSFR is very model dependent, because of differential reddening corrections between the continuum SED and the Balmer line...

  13. Actively Star Forming Elliptical Galaxies at Low Redshifts in the Sloan Digital Sky Survey

    Fukugita, M; Turner, E L; Helmboldt, J; Nichol, R C; Fukugita, Masataka; Nakamura, Osamu; Turner, Edwin L.; Helmboldt, Joe

    2004-01-01

    We report discovery of actively star forming elliptical galaxies in a morphologically classified sample of bright galaxies at a low redshift obtained from the Sloan Digital Sky Survey. The emission lines of these galaxies do not show the characteristics of active galactic nuclei, and thus their strong H$\\alpha$ emission is ascribed to star formation with a rate nearly as high as that is seen in typical late spiral galaxies. This is taken as evidence against the traditional view that all elliptical galaxies formed early and now evolve only passively. The frequency of such star forming elliptical galaxies is a few tenths of a percent in the sample, but increases to 3% if we include active S0 galaxies. We may identify these galaxies as probable progenitors of so-called E+A galaxies that show the strong Balmer absorption feature of A stars superimposed on an old star population. The approximate match of the abundance of active elliptical plus S0 galaxies with that of E+A galaxies indicates that the duration of su...

  14. The KMOS Redshift One Spectroscopic Survey (KROSS): The Tully-Fisher Relation at z ~ 1

    Tiley, Alfred L; Swinbank, A M; Bureau, Martin; Harrison, Chris M; Bower, Richard; Johnson, Helen L; Bunker, Andrew J; Jarvis, Matt J; Magdis, Georgios; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip

    2016-01-01

    We present the stellar mass ($M_{*}$), and K-corrected $K$-band absolute magnitude ($M_{K}$) Tully-Fisher relations (TFRs) for sub-samples of the 584 galaxies spatially resolved in H$\\alpha$ emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, $V_{80}$ at a radius equal to the major axis of an ellipse containing 80% of the total integrated H$\\alpha$ flux. The large sample size of KROSS allowed us to select 210 galaxies with well measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion $V_{80}/\\sigma > 3$, where $\\sigma$ is the flux weighted average velocity dispersion. We find the $M_{K}$ and $M_{*}$ TFRs for this sub-sample to be $M_{K} / \\rm{mag}= (-7.3 \\pm 0.9) \\times [(\\log(V_{80}/\\rm{km\\ s^{-1}})-2.25]- 23.4 \\pm 0.2$ , and $\\log(M_{*} / M_{\\odot})= (4.7 \\pm 0.4) \\times [(\\log(V_{80}/\\rm{km\\ s^{-1}}) - 2.25] + 10.0 \\pm 0.3$,...

  15. Large-scale galaxy distribution in the Las Campanas Redshift Survey

    Doroshkevich, A. G.; Tucker, D. L.; Fong, R.; Turchaninov, V.; Lin, H.

    2001-04-01

    We make use of three-dimensional clustering analysis, inertia tensor methods, and the minimal spanning tree technique to estimate some physical and statistical characteristics of the large-scale galaxy distribution and, in particular, of the sample of overdense regions seen in the Las Campanas Redshift Survey (LCRS). Our investigation provides additional evidence for a network of structures found in our core sampling analysis of the LCRS: a system of rich sheet-like structures, which in turn surround large underdense regions criss-crossed by a variety of filamentary structures. We find that the overdense regions contain ~40-50 per cent of LCRS galaxies and have proper sizes similar to those of nearby superclusters. The formation of such structures can be roughly described as a non-linear compression of protowalls of typical cross-sectional size ~20-25h-1Mpc this scale is ~5 times the conventional value for the onset of non-linear clustering - to wit, r0, the autocorrelation length for galaxies. The comparison with available simulations and theoretical estimates shows that the formation of structure elements with parameters similar to those observed is presently possible only in low-density cosmological models, Ωmh~0.2-0.3, with a suitable large-scale bias between galaxies and dark matter.

  16. The zCOSMOS Redshift Survey: How group environment alters global downsizing trends

    Iovino, A; Scodeggio, M; Knobel, C; Kovac, K; Lilly, S; Bolzonella, M; Tasca, L A M; Zamorani, G; Zucca, E; Caputi, K; Pozzetti, L; Oesch, P; Lamareille, F; Halliday, C; Bardelli, S; Finoguenov, A; Guzzo, L; Kampczyk, P; Maier, C; Tanaka, M; Vergani, D; Carollo, C M; Contini, T; Kneib, J -P; Le Fèvre, O; Mainieri, V; Renzini, A; Bongiorno, A; Coppa, G; De la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Le Borgne, J F; Le Brun, V; Mignoli, M; Pellò, R; Peng, Y; Pérez-Montero, E; Ricciardelli, E; Silverman, J D; Tresse, L; Abbas, U; Bottini, D; Cappi, A; Cassata, P; Cimatti, A; Koekemoer, A M; Leauthaud, A; MacCagni, D; Marinoni, C; McCracken, H J; Memeo, P; Meneux, B; Porciani, C; Scaramella, R; Schiminovich, D; Scoville, N

    2009-01-01

    We took advantage of the wealth of information provided by the first ~10000 galaxies of the zCOSMOS-bright survey and its group catalogue to study the complex interplay between group environment and galaxy properties. The classical indicator F_blue (fraction of blue galaxies) proved to be a simple but powerful diagnostic tool. We studied its variation for different luminosity and mass selected galaxy samples. Using rest-frame B-band selected samples, the groups galaxy population exhibits significant blueing as redshift increases, but maintains a lower F_blue with respect both to the global and the isolated galaxy population. However moving to mass selected samples it becomes apparent that such differences are largely due to the biased view imposed by the B-band luminosity selection, being driven by the population of lower mass, bright blue galaxies for which we miss the redder, equally low mass, counterparts. By focusing the analysis on narrow mass bins such that mass segregation becomes negligible we find th...

  17. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations

    Blake, Chris; Beutler, Florian; Davis, Tamara; Parkinson, David; Brough, Sarah; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Croton, Darren; Drinkwater, Michael J; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, Chris; Pimbblet, Kevin; Poole, Gregory; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted; Yee, Howard

    2011-01-01

    We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final dataset of the WiggleZ Dark Energy Survey. We combine our correlation function with lower-redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9-sigma relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) dataset comprising six distance-redshift data points, and compare the results to similar fits to the latest compilation of supernovae (SNe) and Cosmic Microwave Background (CMB) data. The BAO and SNe datasets produce consistent measurements of the equation-of-state w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all datasets we determ...

  18. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z=1.5: I. Description and Methodology

    Kelson, Daniel D; Dressler, Alan; McCarthy, Patrick J; Shectman, Stephen A; Mulchaey, John S; Villanueva, Edward V; Crane, Jeffrey D; Quadri, Ryan F

    2012-01-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer 3.6micron imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z~1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star-formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded 37,000 high quality redshifts in our first 5.3 sq.degs of the SWIRE XMM-LSS field. We use three...

  19. A survey of luminous high-redshift quasars with SDSS and WISE. I. target selection and optical spectroscopy

    Wang, Feige; Fan, Xiaohui; Yang, Jinyi; Yi, Weimin; Bian, Fuyan; McGreer, Ian D; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Jiang, Linhua; Green, Richard; Wang, Shu; Cai, Zheng; Wang, Ran; Yue, Minghao

    2016-01-01

    High-redshift quasars are important tracers of structure and evolution in the early universe. However, they are very rare and difficult to find when using color selection because of contamination from late-type dwarfs. High-redshift quasar surveys based on only optical colors suffer from incompleteness and low identification efficiency, especially at $z\\gtrsim4.5$. We have developed a new method to select $4.7\\lesssim z \\lesssim 5.4$ quasars with both high efficiency and completeness by combining optical and mid-IR Wide-field Infrared Survey Explorer (WISE) photometric data, and are conducting a luminous $z\\sim5$ quasar survey in the whole Sloan Digital Sky Survey (SDSS) footprint. We have spectroscopically observed 99 out of 110 candidates with $z$-band magnitudes brighter than 19.5 and 64 (64.6\\%) of them are quasars with redshifts of $4.4\\lesssim z \\lesssim 5.5$ and absolute magnitudes of $-29\\lesssim M_{1450} \\lesssim -26.4$. In addition, we also observed 14 fainter candidates selected with the same crite...

  20. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

    Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; Barbera, F. La; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.

    2015-09-01

    We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on Δz = (zspec - zphot)/(1 + zspec) is ˜0.03, with a very small average bias of ˜0.001, a normalized median absolute deviation of ˜0.02 and a fraction of catastrophic outliers (|Δz| > 0.15) of ˜0.4 per cent.

  1. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    Gerke, Brian F. [KIPAC, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 29, Menlo Park, CA 94725 (United States); Newman, Jeffrey A. [Department of Physics and Astronomy, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Davis, Marc [Department of Physics and Department of Astronomy, Campbell Hall, University of California-Berkeley, Berkeley, CA 94720 (United States); Coil, Alison L. [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0424, La Jolla, CA 92093 (United States); Cooper, Michael C. [Center for Galaxy Evolution, Department of Physics and Astronomy, University of California-Irvine, Irvine, CA 92697 (United States); Dutton, Aaron A. [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C. [UCO/Lick Observatory, University of California-Santa Cruz, Santa Cruz, CA 95064 (United States); Konidaris, Nicholas; Lin, Lihwai [Astronomy Department, Caltech 249-17, Pasadena, CA 91125 (United States); Noeske, Kai [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Rosario, David J. [Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, 85748 Garching bei Muenchen (Germany); Weiner, Benjamin J.; Willmer, Christopher N. A. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Yan, Renbin [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada)

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  2. Type-Ia Supernova Rates to Redshift 2.4 from CLASH: the Cluster Lensing And Supernova survey with Hubble

    Graur, O; Maoz, D; Riess, A G; Jha, S W; Postman, M; Dahlen, T; Holoien, T W -S; McCully, C; Patel, B; Strolger, L -G; Benitez, N; Coe, D; Jouvel, S; Medezinski, E; Molino, A; Nonino, M; Bradley, L; Koekemoer, A; Balestra, I; Blondin, S; Cenko, S B; Clubb, K I; Dickinson, M E; Filippenko, A V; Frederiksen, T F; Garnavich, P; Hjorth, J; Jones, D O; Leibundgut, B; Matheson, T; Mobasher, B; Rosati, P; Silverman, J M; U, V; Jedruszczuk, K; Li, C; Lin, K; Mirmelstein, M; Neustadt, J; Ovadia, A; Rogers, E H

    2013-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ~11 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 99% significance level.

  3. The Rate of Core Collapse Supernovae to Redshift 2.5 From The CANDELS and CLASH Supernova Surveys

    Strolger, Louis-Gregory; Rodney, Steven A; Graur, Or; Riess, Adam G; McCully, Curtis; Ravindranath, Swara; Mobasher, Bahram; Shahady, A Kristin

    2015-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Cluster Lensing And Supernova survey with Hubble (CLASH) multi-cycle treasury programs with the Hubble Space Telescope (HST) have provided new opportunities to probe the rate of core-collapse supernovae (CCSNe) at high redshift, now extending to $z\\approx2.5$. Here we use a sample of approximately 44 CCSNe to determine volumetric rates, $R_{CC}$, in six redshift bins in the range $0.195\\%$ confidence) with SFRs from IR luminous galaxies, or with SFR models that include simple evolution in the initial mass function over time. This scaling factor is expected if the fraction of the IMF contributing to CCSN progenitors is in the 8 to 50 $M_{\\odot}$ range. It is not supportive, however, of an upper mass limit for progenitors at $<20\\,M_{\\odot}$.

  4. The VIMOS Ultra-Deep Survey: ~10,000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2

    Fevre, O Le; Cassata, P; Garilli, B; Brun, V Le; Maccagni, D; Pentericci, L; Thomas, R; Vanzella, E; Zamorani, G; Zucca, E; Amorin, R; Bardelli, S; Capak, P; Cassara, L; Castellano, M; Cimatti, A; Cuby, J G; Cucciati, O; de la Torre, S; Durkalec, A; Fontana, A; Giavalisco, M; Grazian, A; Hathi, N P; Ilbert, O; Lemaux, B C; Moreau, C; Paltani, S; Ribeiro, B; Salvato, M; Schaerer, D; Scodeggio, M; Sommariva, V; Talia, M; Taniguchi, Y; Tresse, L; Vergani, D; Wang, P W; Charlot, S; Contini, T; Fotopoulo, S; Lopez-Sanjuan, C; Mellier, Y; Scoville, N

    2014-01-01

    We present the VIMOS Ultra Deep Survey (VUDS), a spectroscopic redshift survey of ~10.000 very faint galaxies to study the major phase of galaxy assembly 2survey covers 1 deg^2 in 3 separate fields: COSMOS, ECDFS and VVDS-02h, with targets selection based on an inclusive combination of photometric redshifts and color properties. Spectra covering 3650survey strategy, the target selection, the data processing, as well as the redshift measurement process, emphasizing the specific methods adapted to this high redshift range. The spectra quality and redshift reliability are discussed, and we derive a completeness in redshift measurement of 91%, or 74% for the most reliable measurements, down to i_AB=25, and measurements are performed all the way down to i_AB=27. The redshift distribution of the main sample peaks at z=3-4 and extends over a large redshift range mainly in 2 < z < 6. A...

  5. Galaxy sizes as a function of environment at intermediate redshift from the ESO Distant Cluster Survey

    Kelkar, Kshitija; Gray, Meghan E; Maltby, David; Vulcani, Benedetta; De Lucia, Gabriella; Poggianti, Bianca M; Zaritsky, Dennis

    2015-01-01

    In order to assess whether the environment has a significant effect on galaxy sizes, we compare the mass--size relations of cluster and field galaxies in the $0.4 1$), with early-type/passive galaxies in higher density environments growing earlier. Such dependence disappears at lower redshifts. Therefore, if the reported difference at higher-$z$ is real, the growth of field galaxies has caught up with that of cluster galaxies by $z\\sim1$. Any putative mechanism responsible for galaxy growth has to account for the existence of environmental differences at high redshift and their absence (or weakening) at lower redshifts.

  6. The 2dF Galaxy Redshift Survey: Power-spectrum analysis of the final dataset and cosmological implications

    Cole, S; Peacock, J A; Norberg, P; Baugh, C M; Frenk, C S; Baldry, I K; Bland-Hawthorn, J; Bridges, T; Cannon, R; Colless, M; Collins, C; Couch, W; Cross, N J G; Dalton, G B; Eke, V R; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, Richard S; Glazebrook, K; Jackson, C; Jenkins, A; Lahav, O; Lewis, I; Lumsden, S; Maddox, S; Madgwick, D; Peterson, B A; Sutherland, W; Taylor, K

    2005-01-01

    We present a power spectrum analysis of the final 2dF Galaxy Redshift Survey, employing a direct Fourier method. The sample used comprises 221,414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys which are used to demonstrate that the input cosmological model can be correctly recovered. We are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations' that are predicted in CDM models. Fitting to a CDM model, assuming a primordial...

  7. The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9

    Blake, Chris; Colless, Matthew; Contreras, Carlos; Couch, Warrick; Croom, Scott; Davis, Tamara; Drinkwater, Michael J; Forster, Karl; Gilbank, David; Gladders, Mike; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui; Madore, Barry; Martin, Chris; Pimbblet, Kevin; Poole, Gregory; Pracy, Michael; Sharp, Rob; Wisnioski, Emily; Woods, David; Wyder, Ted; Yee, Howard

    2011-01-01

    We present precise measurements of the growth rate of cosmic structure for the redshift range 0.1 < z < 0.9, using redshift-space distortions in the galaxy power spectrum of the WiggleZ Dark Energy Survey. Our results, which have a precision of around 10% in four independent redshift bins, are well-fit by a flat LCDM cosmological model with matter density parameter Omega_m = 0.27. Our analysis hence indicates that this model provides a self-consistent description of the growth of cosmic structure through large-scale perturbations and the homogeneous cosmic expansion mapped by supernovae and baryon acoustic oscillations. We achieve robust results by systematically comparing our data with several different models of the quasi-linear growth of structure including empirical models, fitting formulae calibrated to N-body simulations, and perturbation theory techniques. We extract the first measurements of the power spectrum of the velocity divergence field, P_vv(k), as a function of redshift (under the assump...

  8. Improving Photometric Redshifts using GALEX Observations for the SDSS Stripe 82 and the Next Generation of SZ Cluster Surveys

    Niemack, Michael D; Verde, Licia; Menanteau, Felipe; Panter, Ben; Spergel, David

    2008-01-01

    Four large-area Sunyaev-Zeldovich (SZ) experiments -- APEX-SZ, SPT, ACT, and Planck -- promise to detect clusters of galaxies through the distortion of Cosmic Microwave Background photons by hot (> 10^6 K) cluster gas (the SZ effect) over thousands of square degrees. A large observational follow-up effort to obtain redshifts for these SZ-detected clusters is under way. Given the large area covered by these surveys, most of the redshifts will be obtained via the photometric redshift (photo-z) technique. Here we demonstrate, in an application using ~3000 SDSS stripe 82 galaxies with r<20, how the addition of GALEX photometry (FUV, NUV) greatly improves the photometric redshifts of galaxies obtained with optical griz or ugriz photometry. In the case where large spectroscopic training sets are available, empirical neural-network-based techniques (e.g., ANNz) can yield a photo-z scatter of $\\sigma_z = 0.018 (1+z)$. If large spectroscopic training sets are not available, the addition of GALEX data makes possible...

  9. The Canada-France redshift survey; 2, spectroscopic program; data for the 0000-00 and 1000+25 fields

    Lefèvre, O; Lilly, S J; Hammer, F; Tresse, L; Crampton, David

    1995-01-01

    This paper describes the methods used to obtain the spectroscopic data and construct redshift catalogs for the Canada-France deep Redshift Survey (CFRS). The full data set consists of more than one thousand spectra, of objects with 17.5 < I_{AB} < 22.5, obtained from deep multi-slit data with the MARLIN and MOS-SIS spectrographs at the CFHT. The final spectroscopic catalog contains 200 stars, 591 galaxies with secure redshifts in the range 0 < z < 1.3, 6 QSOs, and 146 objects with very uncertain or unknown redshifts, leading to an overall success rate of identification of 85%. Additionally, 67 objects affected by observational problems have been placed in a supplemental list. We describe here the instrumental set up, and the observing procedures used to efficiently gather this large data set. New optimal ways of packing spectra on the detector to significantly increase the multiplexing gain offered by multi-slit spectroscopy are described. Dedicated data reduction procedures have been developed un...

  10. The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ˜ 1

    Tiley, Alfred L.; Stott, John P.; Swinbank, A. M.; Bureau, Martin; Harrison, Chris M.; Bower, Richard; Johnson, Helen L.; Bunker, Andrew J.; Jarvis, Matt J.; Magdis, Georgios; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip

    2016-07-01

    We present the stellar mass (M*), and K-corrected K-band absolute magnitude (MK) Tully-Fisher relations (TFRs) for subsamples of the 584 galaxies spatially resolved in H α emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, V80 at a radius equal to the major axis of an ellipse containing 80 per cent of the total integrated H α flux. The large sample size of KROSS allowed us to select 210 galaxies with well-measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion V80/σ > 3, where σ is the flux weighted average velocity dispersion. We find the MK and M* TFRs for this subsample to be MK / {mag}= (-7.3 ± 0.9) × [(log (V_{80}/{km s^{-1}})-2.25]- 23.4 ± 0.2, and log (M_{{ast }} / M_{{⊙}})= (4.7 ± 0.4) × [(log (V_{80}/{km s^{-1}}) - 2.25] + 10.0 ± 0.3, respectively. We find an evolution of the M* TFR zero-point of -0.41 ± 0.08 dex over the last ˜8 billion years. However, we measure no evolution in the MK TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at z ˜ 1 than the present day, yet emitted the same amounts of K-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities.

  11. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Luminosity and Color Dependence and Redshift Evolution

    Guo, Hong; Zheng, Zheng; Weinberg, David H; Berlind, Andreas A; Blanton, Michael; Chen, Yanmei; Eisenstein, Daniel J; Ho, Shirley; Kazin, Eyal; Manera, Marc; Maraston, Claudia; McBride, Cameron K; Nuza, Sebastian E; Padmanabhan, Nikhil; Parejko, John K; Percival, Will J; Ross, Ashley J; Ross, Nicholas P; Samushia, Lado; Sanchez, Ariel G; Schlegel, David J; Schneider, Donald P; Skibba, Ramin A; Swanson, Molly E C; Tinker, Jeremy L; Tojeiro, Rita; Wake, David A; White, Martin; Bahcall, Neta A; Bizyaev, Dmitry; Brewington, Howard; Bundy, Kevin; da Costa, Luiz N A; Ebelke, Garrett; Malanushenko, Viktor; Malanushenko, Elena; Oravetz, Daniel; Rossi, Graziano; Simmons, Audrey; Snedden, Stephanie; Streblyanska, Alina; Thomas, Daniel

    2012-01-01

    We measure the luminosity and color dependence and the redshift evolution of galaxy clustering in the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Ninth Data Release. We focus on the projected two-point correlation function (2PCF) of subsets of its CMASS sample, which includes about 260,000 galaxies over ~3,300 sq. deg in the redshift range 0.43redshift bins, with more luminous and redder galaxies generally exhibiting stronger clustering and steeper 2PCF. The color dependence is also clearly seen for galaxies within the red sequence, consistent with the behavior o...

  12. Peaks in the cosmological density field: parameter constraints from 2dF Galaxy Redshift Survey data

    De, S

    2009-01-01

    We use the number density of peaks in the smoothed cosmological density field taken from the 2dF Galaxy Redshift Survey to constrain parameters related to the power spectrum of mass fluctuations, n (the spectral index), dn/d(lnk) (rolling in the spectral index), and the neutrino mass, m_nu. In a companion paper we use N-body simulations to study how the peak density responds to changes in the power spectrum, the presence of redshift distortions and the relationship between galaxies and dark matter halos. In the present paper we make measurements of the peak density from 2dF Galaxy Redshift Survey data, for a range of smoothing filter scales from 4-33 h^-1 Mpc. We use these measurements to constrain the cosmological parameters, finding n=1.36 (+0.75)(-0.64), m_nu < 1.76 eV, dn/d(lnk)=-0.012 (+0.192)(-0.208), at the 68 % confidence level, where m_nu is the total mass of three massive neutrinos. At 95% confidence we find m_nu< 2.48 eV. These measurements represent an alternative way to constrain cosmologic...

  13. The VIPERS Multi-Lambda Survey. I. UV and near-IR observations, multi-colour catalogues, and photometric redshifts

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Hudelot, P.; Vibert, D.; Comte, V.; Conseil, S.; Davidzon, I.; Guzzo, L.; Llebaria, A.; Martin, C.; McCracken, H. J.; Milliard, B.; Morrison, G.; Schiminovich, D.; Treyer, M.; Van Werbaeke, L.

    2016-05-01

    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet with the GALEX satellite (far- and near-ultraviolet channels) and in the near-infrared with the CFHT/WIRCam camera (Ks band) over an area of 22 and 27 deg2, respectively. The depth of the photometry was optimised to measure the physical properties (e.g., star formation rate, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 ≤ z ≤ 1.2). In this paper, we present the observations, the data reductions, and the build-up of the multi-colour catalogues. The CFHTLS-T0007 (gri-χ2) images are used as reference to detect and measure the Ks-band photometry, while the T0007 u∗-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches NUVAB ~ 25 (at 5σ) and KAB ~ 22 (at 3σ). The large spectroscopic sample (~51 000 spectroscopic redshifts) allows us to highlight the robustness of our star/galaxy separation and the reliability of our photometric redshifts with a typical accuracy of σz ≤ 0.04 and a fraction of catastrophic failures η ≤ 2% down to i ~ 23. We present various tests on the Ks-band completeness and photometric redshift accuracy by comparing our results with existing overlapping deep photometric catalogues. Finally, we discuss the BzK sample of passive and active galaxies at high redshift and the evolution of galaxy morphology in the (NUV-r) vs. (r-Ks) diagram at low redshift (z ≤ 0.25) based on the high image quality of the CFHTLS. The catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A102The images, catalogues, and photometric redshifts for 1.5 million sources (down to NUV

  14. The Subaru FMOS Galaxy Redshift Survey (FastSound). I. Overview of the Survey Targeting on H$\\alpha$ Emitters at $z \\sim 1.4$

    Tonegawa, Motonari; Okada, Hiroyuki; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Maihara, Toshinori; Ohta, Kouji; Shimizu, Ikkoh; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J; Coupon, Jean; Ferreira, Pedro G; Frenk, Carlos S; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Matsubara, Takahiko; More, Surhud; Okumura, Teppei; Percival, Will J; Spitler, Lee R; Szapudi, Istvan

    2015-01-01

    FastSound is a galaxy redshift survey using the near-infrared Fiber Multi-Object Spectrograph (FMOS) mounted on the Subaru Telescope, targeting H$\\alpha$ emitters at $z \\sim 1.18$--$1.54$ down to the sensitivity limit of H$\\alpha$ flux $\\sim 2 \\times 10^{-16} \\ \\rm erg \\ cm^{-2} s^{-1}$. The primary goal of the survey is to detect redshift space distortions (RSD), to test General Relativity by measuring the growth rate of large scale structure and to constrain modified gravity models for the origin of the accelerated expansion of the universe. The target galaxies were selected based on photometric redshifts and H$\\alpha$ flux estimates calculated by fitting spectral energy distribution (SED) models to the five optical magnitudes of the Canada France Hawaii Telescope Legacy Survey (CFHTLS) Wide catalog. The survey started in March 2012, and all the observations were completed in July 2014. In total, we achieved $121$ pointings of FMOS (each pointing has a $30$ arcmin diameter circular footprint) covering $20.6...

  15. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , i.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  16. Measuring the Ultimate Mass of Galaxy Clusters: Redshifts and Mass Profiles from the Hectospec Cluster Survey (HeCS)

    Rines, Kenneth; Diaferio, Antonaldo; Kurtz, Michael J

    2012-01-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a $\\Lambda$CDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these haloes. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1$<$$z$$<$0.3. The survey includes 21,314 unique MMT/Hectospec redshifts for individual galaxies; 10,275 of these galaxies are cluster members. For each cluster we acquired high signal-to-noise spectra for $\\sim 200$ cluster members and a comparable number of foreground/background galaxies. The cluster members trace out infall patterns around the clusters. The members define a very narrow red sequence. The velocity dispersions decline with radius; we demonstrate that the determination of the velocity dispersion is inse...

  17. Very Strong Emission-Line Galaxies in the WISP Survey and Implications for High-Redshift Galaxies

    Atek, H; Scarlata, C; Malkan, M; McCarthy, P; Teplitz, H; Henry, A; Colbert, J; Bridge, C; Bunker, A J; Dressler, A; Fosbury, R; Hathi, N P; Martin, C; Ross, N R; Shim, H

    2011-01-01

    The WFC3 Infrared Spectroscopic Parallel Survey (WISP) uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the Universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin^2 area we analyzed so far. After estimating the AGN fraction in the sample, we show that this population consists of young and low-mass starbursts with higher specific star formation rates than normal star-forming galaxies at any redshift. After spectroscopic follow-up of one of these galaxies with Keck/LRIS, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12+Log(O/H)= 7.47 +- 0.11. The nebular emission-lines can substantially affect the broadband flux density with a median brightening of 0.3 mag, with examples producing...

  18. Clustering of High Redshift ($z\\ge 2.9$) Quasars from the Sloan Digital Sky Survey

    Shen, Y; Oguri, M; Hennawi, J F; Fan, X; Richards, G T; Hall, P B; Gunn, J E; Schneider, D P; Szalay, A S; Thakar, A R; Vanden Berk, D E; Anderson, S F; Bahcall, N A; Connolly, A J; Knapp, G R; Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Gunn, James E.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E. Vanden; Anderson, Scott F.; Bahcall, Neta A.; Connolly, Andrew J.; Knapp, Gillian R.

    2007-01-01

    (Abridged) We study the two-point correlation function of a uniformly selected sample of 4,426 luminous optical quasars with redshift $2.9 \\le z\\le 5.4$ selected over 4041 deg$^2$ from the Fifth Data Release of the Sloan Digital Sky Survey. For a real-space correlation function of the form $\\xi(r)=(r/r_0)^{-\\gamma}$, the fitted parameters in comoving coordinates are $r_0 = 15.2 \\pm 2.7 h^{-1}$ Mpc and $\\gamma = 2.0 \\pm 0.3$, over a scale range $4\\le r_p\\le 150 h^{-1}$ Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their $z \\approx 1.5$ counterparts, which have a comoving clustering length $r_0 \\approx 6.5 h^{-1}$ Mpc. Dividing our sample into two redshift bins: $2.9\\le z\\le 3.5$ and $z\\ge 3.5$, and assuming a power-law index $\\gamma=2.0$, we find a correlation length of $r_0 = 16.9 \\pm 1.7 h^{-1}$ Mpc for the former, and $r_0 = 24.3 \\pm 2.4 h^{-1}$ Mpc for the latter. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifet...

  19. VizieR Online Data Catalog: SHELS: redshift survey of the F1 DLS field (Geller+, 2016)

    Geller, M. J.; Hwang, H. S.; Dell'Antonio, I. P.; Zahid, H. J.; Kurtz, M. J.; Fabricant, D. G.

    2016-07-01

    The Smithsonian Hectospec Lensing Survey (SHELS) redshift survey covers two 4deg2 fields originally selected as part of the Deep Lens Survey (DLS; Wittman et al. 2006ApJ...643..128W). We used the 300-fiber Hectospec instrument on the MMT to acquire spectroscopy for galaxy candidates typically brighter than R=20.6. We observed the F1 field (centered at RA=00:53:25.3 and DEC=12:33:55 (J2000)) in queue mode during dark runs in four periods: 2005 October 24-28; 2006 October 17-November 22; 2012 October 10-December 10; 2014 September 26-November 28. The wavelength range covered by Hectospec in the observer's frame is 3700-9100Å with a resolution of ~5Å. See section 2.2 for further explanations. (4 data files).

  20. The Deep SPIRE HerMES Survey: Spectral Energy Distributions and their Astrophysical Indications at High Redshift

    Brisbin, D; Altieri, B; Amblard, A; Arumugam, V; Aussel, H; Babbedge, T; Blain, A; Bock, J; Boselli, A; Buat, V; Castro-Rodríguez, N; Cava, A; Chanial, P; Clements, D L; Conley, A; Conversi, L; Cooray, A; Dowell, C D; Dwek, E; Eales, S; Elbaz, D; Fox, M; Franceschini, A; Gear, W; Glenn, J; Griffin, M; Halpern, M; Hatziminaoglou, E; Ibar, E; Isaak, K; Ivison, R J; Lagache, G; Levenson, L; Lonsdale, Carol J; Lu, N; Madden, S; Maffei, B; Mainetti, G; Marchetti, L; Morrison, G E; Nguyen, H T; O’Halloran, B; Oliver, S J; Omont, A; Owen, F N; Pannella, M; Panuzzo, P; Papageorgiou, A; Pearson, C P; Pérez-Fournon, I; Pohlen, M; Rizzo, D; Roseboom, I G; Rowan-Robinson, M; Portal, M Sánchez; Schulz, B; Seymour, N; Shupe, D L; Smith, A J; Stevens, J A; Strazzullo, V; Symeonidis, M; Trichas, M; Tugwell, K E; Vaccari, M; Valtchanov, I; Vigroux, L; Wang, L; Ward, R; Wright, G; Xu, C K; Zemcov, M

    2010-01-01

    The Spectral and Photometric Imaging Receiver (SPIRE) on Herschel has been carrying out deep extragalactic surveys, one of whose aims is to establish spectral energy distributions (SED)s of individual galaxies spanning the infrared/submillimeter (IR/SMM) wavelength region. We report observations of the (IR/SMM) emission from the Lockman North field (LN) and Great Observatories Origins Deep Survey field North (GOODS-N). Because galaxy images in the wavelength range covered by Herschel generally represent a blend with contributions from neighboring galaxies, we present sets of galaxies in each field especially free of blending at 250, 350, and 500 microns. We identify the cumulative emission of these galaxies and the fraction of the far infrared cosmic background radiation they contribute. Our surveys reveal a number of highly luminous galaxies at redshift z ∼< 3 and a novel relationship between infrared and visible emission that shows a dependence on luminosity and redshift.

  1. The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts

    Mandelbaum, Rachel; Blake, Chris; Bridle, Sarah; Abdalla, Filipe B.; Brough, Sarah; Colless, Matthew; Couch, Warrick; Croom, Scott; Davis, Tamara; Drinkwater, Michael J.; Forster, Karl; Glazebrook, Karl; Jelliffe, Ben; Jurek, Russell J; Li, I-hui

    2009-01-01

    Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z < 0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z ~ 0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensin...

  2. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Aretxaga, I. [Instituto Nacional de Astrofisica, Optica y Electronica, Aptdo. Postal 51 y 216, 72000 Puebla (Mexico); Auld, R.; Dariush, A. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Barton, E.; Cooke, J.; Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Beelen, A. [Institut d' Astrophysique spatiale bat 121-Universite Paris-Sud, F-91405 Orsay Cedex (France); Bertoldi, F. [Argelander Institute for Astronomy, Bonn University, Auf dem Huegel 71, D-53121 Bonn (Germany); Bock, J. J.; Bradford, C. M. [Jet Propulsion Laboratory, Pasadena, CA 91109 (United States); Bonfield, D. [Centre for Astrophysics Research, Science and Technology Research Centre, University of Hertfordshire, Herts AL10 9AB (United Kingdom); Buttiglione, S.; De Zotti, G. [INAF, Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Cava, A. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, E-38200 La Laguna (Spain); Clements, D. L. [Astrophysics Group, Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ (United Kingdom); Dannerbauer, H. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, DAPNIA/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Dunne, L., E-mail: Roxana.E.Lupu@nasa.gov [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom); and others

    2012-10-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.

  3. The Role of Environment in Shaping Galaxy Evolution at High Redshift: Insights from the SpARCS Cluster Survey

    Wilson, Gillian

    2015-08-01

    Between z = 2 and z = 1, the main progenitors of present-day massive clusters undergo rapid collapse, and cluster members transform from active star-forming to quiescent galaxies. The SpARCS survey is one of the largest surveys designed to detect clusters of galaxies at z> 1, and has discovered hundreds of Spitzer IR-selected clusters.I will present results from GCLASS, a 25-night Gemini/GMOS spectroscopic follow-up survey of ten of the most massive SpARCS clusters at z~1, and explain what we are learning about quenching and stellar mass assembly of galaxies in these, the densest of environments, relative to the field population. I will explain how predictions and observations of the stellar mass growth of Brightest Cluster Galaxies, previously controversially divergent, are now coming into agreement, and discuss the evidence for the relative importance of mergers versus in-situ star formation in driving this stellar mass growth as a function of redshift.I will also present a sample of newly-confirmed clusters at z~2 for which we have HST spectroscopy and imaging, and have been targeting with Keck/MOSFIRE. I will conclude by discussing GOGREEN and DEEPDRILL, two new large surveys approved by Gemini & Spitzer, designed to study the effects of environment at lower stellar mass and at higher redshift, respectively. Collectively, these powerful new surveys are beginning to allow us to place constraints on the location and timescale of quenching and, in concert with both hydro-simulations and semi-analytic models, identify the complex role of environment in shaping galaxy evolution over cosmic time.

  4. A Far-Infrared Spectroscopic Survey of Intermediate Redshift (Ultra) Luminous Infrared Galaxies

    Magdis, Georgios E; Hopwood, R; Huang, J -S; Farrah, D; Pearson, C; Alonso-Herrero, A; Bock, J J; Clements, D; Cooray, A; Griffin, M J; Oliver, S; Fournon, Perez; Riechers, D; Swinyard, B M; Scott, D; Thatte, N; Valtchanov, I; Vaccari, M

    2014-01-01

    We present Herschel far-IR photometry and spectroscopy as well as ground based CO observations of an intermediate redshift (0.21 10^11.5L_sun). With these measurements we trace the dust continuum, far-IR atomic line emission, in particular [CII]\\,157.7microns, as well as the molecular gas of z~0.3 (U)LIRGs and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L_CII/L_FIR ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-$z$ star forming galaxies. Using our sample to bridge local and high-z [CII] observations, we find that the majority of galaxies at all redshifts and all luminosities follow a L_CII-L_FIR relation with a slope of unity, from which local ULIRGs and high-z AGN dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L_CII/L_FIR ratio and the far-IR color L_60/L_100 observed in...

  5. Using the 2-MASS photometric redshift survey to optimize LIGO follow-up observations

    Antolini, Elisa; Heyl, Jeremy S.

    2016-10-01

    The initial discovery of Laser Interferometer Gravitational-Wave Observatory (LIGO) on 2015 September 14 was the inspiral merger and ring-down of the black hole binary at a distance of about 500 Mpc or a redshift of about 0.1. The search for electromagnetic counterparts for the inspiral of binary black holes is impeded by coarse initial source localizations and a lack of a compelling model for the counterpart; therefore, rapid electromagnetic follow-up is required to understand the astrophysical context of these sources. Because astrophysical sources of gravitational radiation are likely to reside in galaxies, it would make sense to search first in regions where the LIGO-Virgo probability is large and where the density of galaxies is large as well. Under the assumption that the probability of a gravitational-wave event from a given region of space is proportional to the density of galaxies within the probed volume, one can calculate an improved localization of the position of the source simply by multiplying the LIGO-Virgo skymap by the density of galaxies in the range of redshifts. We propose using the 2-MASS photometric redshift galaxy catalogue for this purpose and demonstrate that using it can dramatically reduce the search region for electromagnetic counterparts.

  6. The VIMOS Public Extragalactic Redshift Survey (VIPERS). The coevolution of galaxy morphology and colour to z 1

    Krywult, J.; Tasca, L. A. M.; Pollo, A.; Vergani, D.; Bolzonella, M.; Davidzon, I.; Iovino, A.; Gargiulo, A.; Haines, C. P.; Scodeggio, M.; Guzzo, L.; Zamorani, G.; Garilli, B.; Granett, B. R.; de la Torre, S.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; Franzetti, P.; Fritz, A.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Tojeiro, R.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.; Takeuchi, T. T.

    2017-02-01

    Context. The study of the separation of galaxy types into different classes that share the same characteristics, and of the evolution of the specific parameters used in the classification are fundamental for understanding galaxy evolution. Aims: We explore the evolution of the statistical distribution of galaxy morphological properties and colours combining high-quality imaging data from the CFHT Legacy Survey with the large number of redshifts and extended photometry from the VIPERS survey. Methods: Galaxy structural parameters were combined with absolute magnitudes, colours and redshifts in order to trace evolution in a multi-parameter space. Using a new method we analysed the combination of colours and structural parameters of early- and late-type galaxies in luminosity-redshift space. Results: We find that both the rest-frame colour distributions in the (U-B) vs. (B-V) plane and the Sérsic index distributions are well fitted by a sum of two Gaussians, with a remarkable consistency of red-spheroidal and blue-disky galaxy populations, over the explored redshift (0.5 statistical description of the structure of galaxies and their evolution. Additionally, the proposed method provides a robust way to split galaxies into early and late types. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programs 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS

  7. The VIMOS Public Extragalactic Redshift Survey (VIPERS). On the recovery of the count-in-cell probability distribution function

    Bel, J.; Branchini, E.; Di Porto, C.; Cucciati, O.; Granett, B. R.; Iovino, A.; de la Torre, S.; Marinoni, C.; Guzzo, L.; Moscardini, L.; Cappi, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bolzonella, M.; Bottini, D.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2016-04-01

    We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this comparison we found that, when the sampling is low (the average number of object per cell is around unity), it is necessary to use a parametric method to model the galaxy distribution. We used a set of mock catalogues of VIPERS to verify if we were able to reconstruct the cell-count probability distribution once the observational strategy is applied. We find that, in the simulated catalogues, the probability distribution of galaxies is better represented by a Gamma expansion than a skewed log-normal distribution. Finally, we correct the cell-count probability distribution function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying galaxy density function in VIPERS from redshift 0.5 to 1.1. We found a very weak evolution of the probability density distribution function and that it is well approximated by a Gamma distribution, independently of the chosen tracers. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  8. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    Magdis, Georgios E.; Rigopoulou, D. [Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Hopwood, R.; Clements, D. [Physics Department, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Huang, J.-S. [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Pearson, C. [RAL Space, Science, and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Alonso-Herrero, Almudena [Instituto de Fisica de Cantabria, CSIC-UC, E-39006 Santander (Spain); Bock, J. J. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Cooray, A. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Griffin, M. J. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Oliver, S. [Astronomy Centre, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Perez Fournon, I. [Instituto de Astrofsica de Canarias (IAC), 38200, La Laguna, Tenerife (Spain); Riechers, D. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Swinyard, B. M.; Thatte, N. [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Athens (Greece); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T1Z1 (Canada); Valtchanov, I. [Herschel Science Centre, European Space Astronomy Centre, Villanueva de la Canada, E-28691 Madrid (Spain); Vaccari, M., E-mail: ipf@iac.es [Astrophysics Group, Physics Department, University of the Western Cape, Private Bag X17, 7535 Bellville, Cape Town (South Africa)

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  9. The VIMOS Ultra Deep Survey First Data Release: spectra and spectroscopic redshifts of 698 objects up to z~6 in CANDELS

    Tasca, L A M; Ribeiro, B; Thomas, R; Moreau, C; Cassata, P; Garilli, B; Brun, V Le; Lemaux, B C; Maccagni, D; Pentericci, L; Schaerer, D; Vanzella, E; Zamorani, G; Zucca, E; Amorin, R; Bardelli, S; Cassara, L P; Castellano, M; Cimatti, A; Cucciati, O; Durkalec, A; Fontana, A; Giavalisco, M; Grazian, A; Hathi, N P; Ilbert, O; Paltani, S; Pforr, J; Scodeggio, M; Sommariva, V; Talia, M; Tresse, L; Vergani, D; Capak, P; Charlot, S; Contini, T; de la Torre, S; Dunlop, J; Fotopoulou, S; Guaita, L; Koekemoer, A; Lopez-Sanjuan, C; Mellier, Y; Salvato, M; Scoville, N; Taniguchi, Y; Wang, P W

    2016-01-01

    This paper describes the first data release (DR1) of the VIMOS Ultra Deep Survey (VUDS). The DR1 includes all low-resolution spectroscopic data obtained in 276.9 arcmin2 of the CANDELS-COSMOS and CANDELS-ECFDS survey areas, including accurate spectroscopic redshifts z_spec and individual spectra obtained with VIMOS on the ESO-VLT. A total of 698 objects have a measured redshift, with 677 galaxies, two type-I AGN and a small number of 19 contaminating stars. The targets of the spectroscopic survey are selected primarily on the basis of their photometric redshifts to ensure a broad population coverage. About 500 galaxies have z_spec>2, 48 with z_spec>4, and the highest reliable redshifts reach beyond z_spec=6. This dataset approximately doubles the number of galaxies with spectroscopic redshifts at z>3 in these fields. We discuss the general properties of the sample in terms of the spectroscopic redshift distribution, the distribution of Lyman-alpha equivalent widths, and physical properties including stellar m...

  10. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular gas reservoirs in high-redshift galaxies

    Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-01-01

    We study the molecular gas properties of high-$z$ galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets a $\\sim1$ arcmin$^2$ region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3mm and 1mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities $L_{\\rm{}IR}>10^{11}$ L$_\\odot$, i.e. a detection in CO emission was expected. Out these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than typically found in starburst/SMG/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in context of previous molecular gas observations at high redshift (star-formation law, gas depletion times, gas fractions): The CO-detected galaxies in the U...

  11. The ALMA Redshift 4 Survey (AR4S): I. The massive end of the z=4 main sequence of galaxies

    Schreiber, C; Leiton, R; Elbaz, D; Wang, T; Okumura, K; Labbé, I

    2016-01-01

    We introduce the ALMA Redshift 4 Survey (AR4S), a systematic ALMA survey of all the known galaxies with stellar mass (M*) larger than 5e10 Msun at 3.5redshifts, which is proof that the main ...

  12. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    Toba, Y.; Matsuhara, H. [Department of Space and Astronautical Science, the Graduate University for Advanced Studies (Sokendai), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Oyabu, S. [Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan); Malkan, M. A. [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547 (United States); Gandhi, P. [Department of Physics, Durham University, Durham DH1-3LE (United Kingdom); Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Takita, S.; Yano, K. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ohyama, Y. [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617 Taiwan (China); Yamauchi, C., E-mail: toba@ir.isas.jaxa.jp [Misato Observatory, 180 Matsugamine, Misato-cho, Kaiso-gun, Wakayama 640-1366 (Japan)

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.

  13. Star formation trends in high-redshift galaxy surveys: the elephant or the tail?

    Stringer, Martin; Frenk, Carlos S; Stark, Daniel P

    2010-01-01

    Star formation rate and accummulated stellar mass are two fundamental physical quantities that describe the evolutionary state of a forming galaxy. Two recent attempts to determine the relationship between these quantities, by interpreting a sample of star-forming galaxies at redshift of z~4, have led to opposite conclusions. We use a model galaxy population to investigate possible causes for this discrepancy and conclude that minor errors in the conversion from observables to physical quantities can lead to major misrepresentation when applied without awareness of sample selection. We also investigate, in a general way, the physical origin of the correlation between star formation rate and stellar mass within hierarchical galaxy formation theory.

  14. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V; Frieman, Joshua A; Galbany, Lluis; Garnavich, Peter M; Goobar, Ariel; Hopp, Ulrich; Ihara, Yutaka; Jha, Saurabh W; Kessler, Richard; Lampeitl, Hubert; Marriner, John; Miquel, Ramon; Molla, Mercedes; Nichol, Robert C; Nordin, Jakob; Riess, Adam G; Sako, Masao; Schneider, Donald P; Sollerman, Jesper; Wheeler, J Craig; Ostman, Linda; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z \\lesssim 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04+1.61-0.95 % of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used t...

  15. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Strolger, L.-G.; Benitez, N.; Coe, D.; Jouvel, S.; Medezinski, E.; Molino, A.; Nonino, M.; Bradley, L.; Koehemoer, A.; Balestra, I.; Cenko, S. B.; Clubb, K. I.; Dickinson, M. E.; Filippenko, A. V.; Frederiksen, T. F.; Garnavich, P.; Hjorth, J.; Jones, D. O.; Leibundgut, B.; Matheson, T.; Mobasher, B.; Rosati, P.; Silverman, J. M.; U., V.; Jedruszczuk, K.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  16. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications

    Cole, Shaun; Percival, Will J.; Peacock, John A.; Norberg, Peder; Baugh, Carlton M.; Frenk, Carlos S.; Baldry, Ivan; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Cross, Nicholas J. G.; Dalton, Gavin; Eke, Vincent R.; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Jenkins, Adrian; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Maddox, Steve; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2005-09-01

    We present a power-spectrum analysis of the final 2dF Galaxy Redshift Survey (2dFGRS), employing a direct Fourier method. The sample used comprises 221414 galaxies with measured redshifts. We investigate in detail the modelling of the sample selection, improving on previous treatments in a number of respects. A new angular mask is derived, based on revisions to the photometric calibration. The redshift selection function is determined by dividing the survey according to rest-frame colour, and deducing a self-consistent treatment of k-corrections and evolution for each population. The covariance matrix for the power-spectrum estimates is determined using two different approaches to the construction of mock surveys, which are used to demonstrate that the input cosmological model can be correctly recovered. We discuss in detail the possible differences between the galaxy and mass power spectra, and treat these using simulations, analytic models and a hybrid empirical approach. Based on these investigations, we are confident that the 2dFGRS power spectrum can be used to infer the matter content of the universe. On large scales, our estimated power spectrum shows evidence for the `baryon oscillations' that are predicted in cold dark matter (CDM) models. Fitting to a CDM model, assuming a primordial ns= 1 spectrum, h= 0.72 and negligible neutrino mass, the preferred parameters are Ωmh= 0.168 +/- 0.016 and a baryon fraction Ωb/Ωm= 0.185 +/- 0.046 (1σ errors). The value of Ωmh is 1σ lower than the 0.20 +/- 0.03 in our 2001 analysis of the partially complete 2dFGRS. This shift is largely due to the signal from the newly sampled regions of space, rather than the refinements in the treatment of observational selection. This analysis therefore implies a density significantly below the standard Ωm= 0.3: in combination with cosmic microwave background (CMB) data from the Wilkinson Microwave Anisotropy Probe (WMAP), we infer Ωm= 0.231 +/- 0.021.

  17. The MOSDEF Survey: Measurements of Balmer Decrements and the Dust Attenuation Curve at Redshifts z~1.4-2.6

    Reddy, Naveen A; Shapley, Alice E; Freeman, William R; Siana, Brian; Coil, Alison L; Mobasher, Bahram; Price, Sedona H; Sanders, Ryan L; Shivaei, Irene

    2015-01-01

    We present results on the dust attenuation curve of z~2 galaxies using early observations from the MOSFIRE Deep Evolution Field (MOSDEF) survey. Our sample consists of 224 star-forming galaxies with nebular spectroscopic redshifts in the range z= 1.36-2.59 and high S/N measurements of, or upper limits on, the H-alpha and H-beta emission lines obtained with Keck/MOSFIRE. We construct composite SEDs of galaxies in bins of specific SFR and Balmer optical depth in order to directly constrain the dust attenuation curve from the UV through near-IR for typical star-forming galaxies at high redshift. Our results imply an attenuation curve that is very similar to the SMC extinction curve at wavelengths redward of 2500 Angstroms. At shorter wavelengths, the shape of the curve is identical to that of the Calzetti relation, but with a lower normalization (R_V). Hence, the new attenuation curve results in SFRs that are ~20% lower, and log stellar masses that are 0.16 dex lower, than those obtained with the Calzetti attenu...

  18. The DEEP2 Galaxy Redshift Survey: The evolution of the blue fraction in groups and the field

    Gerke, B F; Faber, S M; Cooper, M C; Croton, D J; Davis, M; Willmer, C N A; Yan, R; Coil, A L; Guhathakurta, P; Koo, D C; Weiner, B J; Gerke, Brian F.; Newman, Jeffrey A.; Cooper, Michael C.; Croton, Darren J.; Davis, Marc; Willmer, Christopher N. A.; Yan, Renbin; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Weiner, Benjamin J.

    2006-01-01

    We explore the behavior of the blue galaxy fraction over the redshift range 0.75 <= z <= 1.3 in the DEEP2 Survey, both for field galaxies and for galaxies in groups. The primary aim is to determine the role that groups play in driving the evolution of galaxy colour at high z. The colour segregation observed between local group and field samples is already in place at z ~ 1: DEEP2 groups have a significantly lower blue fraction than the field. At fixed z, there is also a correlation between blue fraction and galaxy magnitude, such that brighter galaxies are more likely to be red, both in groups and in the field. In addition, there is a negative correlation between blue fraction and group richness. In terms of evolution, the blue fraction in groups and the field remains roughly constant from z=0.75 to z ~ 1, but beyond this redshift the blue fraction in groups rises rapidly with z, and the group and field blue fractions become indistinguishable at z ~ 1.3. Careful tests indicate that this effect does not ...

  19. VIMOS Public Extragalactic Redshift Survey (VIPERS). The decline of cosmic star formation: quenching, mass, and environment connections

    Cucciati, O; Bolzonella, M; Granett, B R; De Lucia, G; Branchini, E; Zamorani, G; Iovino, A; Garilli, B; Guzzo, L; Scodeggio, M; de la Torre, S; Abbas, U; Adami, C; Arnouts, S; Bottini, D; Cappi, A; Franzetti, P; Fritz, A; Krywult, J; Brun, V Le; Fevre, O Le; Maccagni, D; Malek, K; Marulli, F; Moutard, T; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Bel, J; Blaizot, J; Coupon, J; Hawken, A; Ilbert, O; Moscardini, L; Peacock, J A; Gargiulo, A

    2016-01-01

    [Abridged] We use the final data of the VIMOS Public Extragalactic Redshift Survey (VIPERS) to investigate the effect of environment on the evolution of galaxies between $z=0.5$ and $z=0.9$. We characterise local environment in terms of the density contrast smoothed over a cylindrical kernel, the scale of which is defined by the distance to the $5^{th}$ nearest neighbour. We find that more massive galaxies tend to reside in higher-density environments over the full redshift range explored. Defining star-forming and passive galaxies through their (NUV$-r$) vs ($r-K$) colours, we then quantify the fraction of star-forming over passive galaxies, $f_{\\rm ap}$, as a function of environment at fixed stellar mass. $f_{\\rm ap}$ is higher in low-density regions for galaxies with masses ranging from $\\log(\\mathcal{M}/\\mathcal{M}_\\odot)=10.38$ (the lowest value explored) to at least $\\log(\\mathcal{M}/\\mathcal{M}_\\odot)\\sim11.3$, although with decreasing significance going from smaller to larger masses. This is the first...

  20. Photometric properties of intermediate redshift Type Ia Supernovae observed by SDSS-II Supernova Survey

    Takanashi, Naohiro; Yasuda, Naoki; Kuncarayakti, Hanindyo; Konishi, Kohki; Schneider, Donald P; Cinabro, David; Marriner, John

    2016-01-01

    We have analyzed multi-band light curves of 328 intermediate redshift (0.05 2.5) don't have a broad light curve width and the SNe Ia which appeared in blue host galaxies (u - r < 2.0) have a variety of light curve widths. The Kolmogorov-Smirnov test shows that the colour distribution of SNe Ia appeared in red / blue host galaxies is different (significance level of 99.9%). We also investigate the extinction law of host galaxy dust. As a result, we find the value of Rv derived from SNe Ia with medium light curve width is consistent with the standard Galactic value. On the other hand, the value of Rv derived from SNe Ia that appeared in red host galaxies becomes significantly smaller. These results indicate that there may be two types of SNe Ia with different intrinsic colours, and they are obscured by host galaxy dust with two different properties.

  1. The high-redshift evolution of the Red Sequence scatter from joint simulations and HAWK-I Cluster Survey

    Romeo, A D; Xi, Kang; Contini, E; Sommer-Larsen, J; Gavignaud, I

    2016-01-01

    We study the evolution of the Red Sequence (RS) scatter in galaxy clusters and groups simultaneously using predictions from our simulations (cosmological hydrodynamic + semi-analytical) as well as observational data from the HAWK-I Cluster Survey (HCS), a sample of galaxy clusters at redshifts $0.8 the correlation found between age and rest-frame colour scatters is quite robust, although all age scatter estimations ultimately depend on the definition of RS as well as on the completeness limits adopted. We find that the age spread of RS galaxies predicted by both hydrodynamical simulations and SAM increases with cosmic epoch, while the ratio between the age spread and the average age remains approximately constant. Both trends are in agreement with observational results from both the HCS and other literature samples.

  2. Mapping the Galactic Halo with blue horizontal branch stars from the 2dF quasar redshift survey

    De Propris, Roberto; Mares, Peter J; CTIO,; University, Cornell

    2010-01-01

    We use 666 blue horizontal branch (BHB) stars from the 2Qz redshift survey to map the Galactic halo in four dimensions (position, distance and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index ~-2.5 in two different directions separated by 150 degrees on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase towards large radii while the stellar velocity distribution is non Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS): Galaxy segregation inside filaments at $z \\simeq 0.7$

    Malavasi, N; Vibert, D; de la Torre, S; Moutard, T; Pichon, C; Davidzon, I; Kraljic, K; Bolzonella, M; Guzzo, L; Garilli, B; Scodeggio, M; Granett, B R; Abbas, U; Adami, C; Bottini, D; Cappi, A; Cucciati, O; Franzetti, P; Fritz, A; Iovino, A; Krywult, J; Brun, V Le; Fèvre, O Le; Maccagni, D; Małek, K; Marulli, F; Polletta, M; Pollo, A; Tasca, L; Tojeiro, R; Vergani, D; Zanichelli, A; Bel, J; Branchini, E; Coupon, J; De Lucia, G; Dubois, Y; Hawken, A; Ilbert, O; Laigle, C; Moscardini, L; Sousbie, T; Treyer, M; Zamorani, G

    2016-01-01

    We present the first quantitative detection of large-scale filamentary structure at $z \\simeq 0.7$ in the large cosmological volume probed by the VIMOS Public Extragalactic Redshift Survey (VIPERS). We use simulations to show the capability of VIPERS to recover robust topological features in the galaxy distribution, in particular the filamentary network. We then investigate how galaxies with different stellar masses and stellar activities are distributed around the filaments and find a significant segregation, with the most massive or quiescent galaxies being closer to the filament axis than less massive or active galaxies. The signal persists even after down-weighting the contribution of peak regions. Our results suggest that massive and quiescent galaxies assemble their stellar mass through successive mergers during their migration along filaments towards the nodes of the cosmic web. On the other hand, low-mass star-forming galaxies prefer the outer edge of filaments, a vorticity rich region dominated by sm...

  4. Errata: A Wide-Field Multicolor Survey for High-Redshift Quasars, Z >= 2.2. III. The Luminosity Function

    Warren, Stephen J.; Hewett, Paul C.; Osmer, Patrick S.

    1995-01-01

    In the paper "A Wide-Field Multicolor Survey for High-Redshift Quasars, z >= 2.2. III. The Luminosity Function" by Stephen. Warren, Paul C. Hewett and Patrick S. Osmer (ApJ, 421,412 [1994]), two equations should be corrected: On page 419, column one, line 11, the expression following the words "the error,, should have an opening parenthesis just before the integral sign, to read: [{SIGMA} 1/({integral} ρ(z)dV_a_)^2^]^1/2^. On page 421, equation (15) is missing the asterisk (*) in the M_c_^*^ term just prior to (β + 1); that is, the exponent in the second term the denominator should read: 0.4(M_c_ - M_c_^*^)(β + 1). The authors wish to draw these errors to the attention of any readers who will be using the expression and equation.

  5. The VIMOS Public Extragalactic Redshift Survey (VIPERS). A support vector machine classification of galaxies, stars, and AGNs

    Małek, K.; Solarz, A.; Pollo, A.; Fritz, A.; Garilli, B.; Scodeggio, M.; Iovino, A.; Granett, B. R.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Guzzo, L.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fevre, O.; Maccagni, D.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: The aim of this work is to develop a comprehensive method for classifying sources in large sky surveys and to apply the techniques to the VIMOS Public Extragalactic Redshift Survey (VIPERS). Using the optical (u∗,g',r',i') and near-infrared (NIR) data (z', Ks), we develop a classifier, based on broad-band photometry, for identifying stars, active galactic nuclei (AGNs), and galaxies, thereby improving the purity of the VIPERS sample. Methods: Support vector machine (SVM) supervised learning algorithms allow the automatic classification of objects into two or more classes based on a multidimensional parameter space. In this work, we tailored the SVM to classifying stars, AGNs, and galaxies and applied this classification to the VIPERS data. We trained the SVM using spectroscopically confirmed sources from the VIPERS and VVDS surveys. Results: We tested two SVM classifiers and concluded that including NIR data can significantly improve the efficiency of the classifier. The self-check of the best optical + NIR classifier has shown 97% accuracy in the classification of galaxies, 97% for stars, and 95% for AGNs in the 5-dimensional colour space. In the test of VIPERS sources with 99% redshift confidence, the classifier gives an accuracy equal to 94% for galaxies, 93% for stars, and 82% for AGNs. The method was applied to sources with low-quality spectra to verify their classification, hence increasing the security of measurements for almost 4900 objects. Conclusions: We conclude that the SVM algorithm trained on a carefully selected sample of galaxies, AGNs, and stars outperforms simple colour-colour selection methods and can be regarded as a very efficient classification method particularly suitable for modern large surveys. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programme 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint

  6. The ALMA Redshift 4 Survey (AR4S). I. The massive end of the z = 4 main sequence of galaxies

    Schreiber, C.; Pannella, M.; Leiton, R.; Elbaz, D.; Wang, T.; Okumura, K.; Labbé, I.

    2017-03-01

    We introduce the ALMA Redshift 4 Survey (AR4S), a systematic ALMA survey of all the known galaxies with stellar mass (M∗) larger than 5 × 1010M⊙ at 3.5 frame) with an on-source integration time of 1.3 min per galaxy. We detected 32% of the sample at more than 3σ significance. Using the stacked ALMA and Herschel photometry, we derived an average dust temperature of 40 ± 2 K for the whole sample, and extrapolate the LIR and SFR for all our galaxies based on their ALMA flux. We then used a forward modeling approach to estimate their intrinsic sSFR distribution, deconvolved of measurement errors and selection effects: we find a linear relation between SFR and M∗, with a median sSFR = 2.8 ± 0.8 Gyr and a dispersion around that relation of 0.28 ± 0.13 dex. This latter value is consistent with that measured at lower redshifts, which is proof that the main sequence of star-forming galaxies was already in place at z = 4, at least among massive galaxies. These new constraints on the properties of the main sequence are in good agreement with the latest predictions from numerical simulations, and suggest that the bulk of star formation in galaxies is driven by the same mechanism from z = 4 to the present day, that is, over at least 90% of the cosmic history. We also discuss the consequences of our results on the population of early quiescent galaxies. This paper is part of a series that will employ these new ALMA observations to explore the star formation and dust properties of the massive end of the z = 4 galaxy population.

  7. Genus Statistics of the Virgo N-body simulations and the 1.2-Jy Redshift Survey

    Springel, V; Colberg, J M; Couchman, H M P; Efstathiou, G P; Frenk, C S; Jenkins, A R; Pearce, F R; Nelson, A H; Peacock, J A; Thomas, P A

    1997-01-01

    We study the topology of the Virgo N-body simulations and compare it to the 1.2-Jy redshift survey of IRAS galaxies by means of the genus statistic. Four high-resolution simulations of variants of the CDM cosmology are considered: a flat standard model (SCDM), a variant of it with more large-scale power (tCDM), and two low density universes, one open (OCDM) and one flat (LCDM). The fully sampled N-body simulations are examined down to strongly nonlinear scales, both with spatially fixed smoothing, and with an adaptive smoothing technique. While the tCDM, LCDM, and OCDM simulations have very similar genus statistics in the regime accessible to fixed smoothing, they can be separated with adaptive smoothing at small mass scales. In order to compare the N-body models with the 1.2-Jy survey, we extract large ensembles of mock catalogues from the simulations. These mock surveys are used to test for systematic effects in the genus analysis and to establish the distribution of errors of the genus curve. We find that ...

  8. The VIMOS Public Extragalactic Redshift Survey (VIPERS). A Support Vector Machine classification of galaxies, stars and AGNs

    Malek, K; Pollo, A; Fritz, A; Garilli, B; Scodeggio, M; Iovino, A; Granett, B R; Abbas, U; Adami, C; Arnouts, S; Bel, J; Bolzonella, M; Bottini, D; Branchini, E; Cappi, A; Coupon, J; Cucciati, O; Davidzon, I; De Lucia, G; de la Torre, S; Franzetti, P; Fumana, M; Guzzo, L; Ilbert, O; Krywult, J; Brun, V Le; Fevre, O Le; Maccagni, D; Marulli, F; McCracken, H J; Paioro, L; Polletta, M; Schlagenhaufer, H; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Burden, A; Di Porto, C; Marchetti, A; Marinoni, C; Mellier, Y; Moscardini, L; Nichol, R C; Peacock, J A; Percival, W J; Phleps, S; Wolk, M; Zamorani, G

    2013-01-01

    The aim of this work is to develop a comprehensive method for classifying sources in large sky surveys and we apply the techniques to the VIMOS Public Extragalactic Redshift Survey (VIPERS). Using the optical (u*, g', r', i') and NIR data (z', Ks), we develop a classifier for identifying stars, AGNs and galaxies improving the purity of the VIPERS sample. Support Vector Machine (SVM) supervised learning algorithms allow the automatic classification of objects into two or more classes based on a multidimensional parameter space. In this work, we tailored the SVM for classifying stars, AGNs and galaxies, and applied this classification to the VIPERS data. We train the SVM using spectroscopically confirmed sources from the VIPERS and VVDS surveys. We tested two SVM classifiers and concluded that including NIR data can significantly improve the efficiency of the classifier. The self-check of the best optical + NIR classifier has shown a 97% accuracy in the classification of galaxies, 97 for stars, and 95 for AGNs ...

  9. Photometric properties of intermediate-redshift Type Ia supernovae observed by the Sloan Digital Sky Survey-II Supernova Survey

    Takanashi, N.; Doi, M.; Yasuda, N.; Kuncarayakti, H.; Konishi, K.; Schneider, D. P.; Cinabro, D.; Marriner, J.

    2017-02-01

    We have analysed multiband light curves of 328 intermediate-redshift (0.05 ≤ z method, which can simply parametrize light-curve shapes and peak brightness without dust extinction models. We found that most of the SNe Ia that appeared in red host galaxies (u - r > 2.5) do not have a broad light-curve width and the SNe Ia that appeared in blue host galaxies (u - r extinction law of host galaxy dust. As a result, we find that the value of Rv derived from SNe Ia with medium light-curve widths is consistent with the standard Galactic value, whereas the value of Rv derived from SNe Ia that appear in red host galaxies becomes significantly smaller. These results indicate that there may be two types of SNe Ia with different intrinsic colours, and that they are obscured by host galaxy dust with two different properties.

  10. Using the 2-MASS Photometric Redshift Survey to optimize LIGO Follow-Up Observations

    Antolini, Elisa

    2016-01-01

    The initial discovery of LIGO on 14 September 2015 was the in-spiral merger and ring-down of the black hole binary at a distance of about 500~Mpc or a redshift of about 0.1. The search for electromagnetic counterparts for the in-spiral of binary black holes is impeded by poor initial source localizations and a lack of a compelling model for the counterpart; therefore, rapid electromagnetic follow-up is required to understand the astrophysical context of these sources. Because astrophysical sources of gravitational radiation are likely to reside in galaxies, it would make sense to search first in regions where the LIGO-Virgo probability is large and where the density of galaxies is large as well. Under the Bayesian prior assumption that the probability of a gravitational-wave event from a given region of space is proportional to the density of galaxies within the probed volume, one can calculate an improved localization of the position of the source simply by multiplying the LIGO-Virgo skymap by the density of...

  11. Weakening gravity on redshift-survey scales with kinetic matter mixing

    D'Amico, Guido; Huang, Zhiqi; Mancarella, Michele; Vernizzi, Filippo

    2017-02-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ8 with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.

  12. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Schrabback, T.; et al.

    2016-11-11

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing magnification on the source redshift distribution, finding that this is particularly relevant for shallower surveys. Finally, we account for biases in the mass modelling caused by miscentring and uncertainties in the mass-concentration relation using simulations. In combination with temperature estimates from Chandra we constrain the normalisation of the mass-temperature scaling relation ln(E(z) M_500c/10^14 M_sun)=A+1.5 ln(kT/7.2keV) to A=1.81^{+0.24}_{-0.14}(stat.) +/- 0.09(sys.), consistent with self-similar redshift evolution when compared to lower redshift samples. Additionally, the lensing data constrain the average concentration of the clusters to c_200c=5.6^{+3.7}_{-1.8}.

  13. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  14. Selection constraints on high redshift quasar searches in the VISTA kilo-degree infrared galaxy survey

    Findlay, J R; Venemans, B P; Reyle, C; Robin, A C; Bonfield, D G; Bruce, V A; Jarvis, M J

    2011-01-01

    The European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) is a 4-m class survey telescope for wide-field near-infrared imaging. VISTA is currently running a suite of six public surveys, which will shortly deliver their first Europe wide public data releases to ESO. The VISTA Kilo-degree Infrared Galaxy Survey (VIKING) forms a natural intermediate between current wide shallow, and deeper more concentrated surveys, by targeting two patches totalling 1500 sq.deg in the northern and southern hemispheres with measured 5-sigma limiting depths of Z ~ 22.4, Y ~ 21.4, J ~ 20.9, H ~ 19.9 and Ks ~19.3 (Vega). This architecture forms an ideal working parameter space for the discovery of a significant sample of 6.5 <= z <= 7.5 quasars. In the first data release priority has been placed on small areas encompassing a number of fields well sampled at many wavelengths, thereby optimising science gains and synergy whilst ensuring a timely release of the first products. For rare...

  15. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Measuring non-linear galaxy bias at z ~ 0.8

    Di Porto, C.; Branchini, E.; Bel, J.; Marulli, F.; Bolzonella, M.; Cucciati, O.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Marinoni, C.; Moscardini, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Martizzi, D.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Viel, M.; Wolk, M.; Zamorani, G.

    2016-10-01

    Aims: We use the first release of the VImos Public Extragalactic Redshift Survey of galaxies (VIPERS) of ~50 000 objects to measure the biasing relation between galaxies and mass in the redshift range z = [ 0.5,1.1 ]. Methods: We estimate the 1-point distribution function [PDF] of VIPERS galaxies from counts in cells and, assuming a model for the mass PDF, we infer their mean bias relation. The reconstruction of the bias relation is performed through a novel method that accounts for Poisson noise, redshift distortions, inhomogeneous sky coverage. and other selection effects. With this procedure we constrain galaxy bias and its deviations from linearity down to scales as small as 4 h-1 Mpc and out to z = 1.1. Results: We detect small (up to 2%) but statistically significant (up to 3σ) deviations from linear bias. The mean biasing function is close to linear in regions above the mean density. The mean slope of the biasing relation is a proxy to the linear bias parameter. This slope increases with luminosity, which is in agreement with results of previous analyses. We detect a strong bias evolution only for z> 0.9, which is in agreement with some, but not all, previous studies. We also detect a significant increase of the bias with the scale, from 4 to 8 h-1 Mpc , now seen for the first time out to z = 1. The amplitude of non-linearity depends on redshift, luminosity, and scale, but no clear trend is detected. Owing to the large cosmic volume probed by VIPERS, we find that the mismatch between the previous estimates of bias at z ~ 1 from zCOSMOS and VVDS-Deep galaxy samples is fully accounted for by cosmic variance. Conclusions: The results of our work confirm the importance of going beyond the over-simplistic linear bias hypothesis showing that non-linearities can be accurately measured through the applications of the appropriate statistical tools to existing datasets like VIPERS. Based on observations collected at the European Southern Observatory, Paranal, Chile

  16. The bispectrum of galaxies from high-redshift galaxy surveys: Primordial non-Gaussianity and non-linear galaxy bias

    Sefusatti, Emiliano; /Fermilab; Komatsu, Eiichiro; /Texas U., Astron. Dept.

    2007-05-01

    The greatest challenge in the interpretation of galaxy clustering data from any surveys is galaxy bias. Using a simple Fisher matrix analysis, we show that the bispectrum provides an excellent determination of linear and non-linear bias parameters of intermediate and high-z galaxies, when all measurable triangle configurations down to mildly non-linear scales, where perturbation theory is still valid, are included. The bispectrum is also a powerful probe of primordial non-Gaussianity. The planned galaxy surveys at z {approx}> 2 should yield constraints on non-Gaussian parameters, f{sub NL}{sup loc.} and f{sub NL}{sup eq.}, that are comparable to, or even better than, those from CMB experiments. We study how these constraints improve with volume, redshift range, as well as the number density of galaxies. Finally we show that a halo occupation distribution may be used to improve these constraints further by lifting degeneracies between gravity, bias, and primordial non-Gaussianity.

  17. The VLT LBG Redshift Survey - I. Clustering and dynamics of ≈1000 galaxies at z≈ 3

    Bielby, R. M.; Shanks, T.; Weilbacher, P. M.; Infante, L.; Crighton, N. H. M.; Bornancini, C.; Bouché, N.; Héraudeau, P.; Lambas, D. G.; Lowenthal, J.; Minniti, D.; Padilla, N.; Petitjean, P.; Theuns, T.

    2011-01-01

    We present the initial imaging and spectroscopic data acquired as part of the Very Large Telescope (VLT) VIMOS Lyman-break galaxy Survey. UBR (or UBVI) imaging covers five ≈36 × 36 arcmin2 fields centred on bright z > 3 quasi-stellar objects (QSOs), allowing ≈21 000 2

  18. Galaxies with Wolf-Rayet signatures in the low-redshift Universe - A survey using the Sloan Digital Sky Survey

    Brinchmann, J; Durret, F

    2008-01-01

    We have carried out a search for Wolf-Rayet galaxies in all galaxies with EW(Hb)>2AA in the SDSS DR6. We identify Wolf-Rayet features using a mixture of automatic and visual classification and find a total of 570 galaxies with significant Wolf-Rayet (WR) features and a further 1115 potential candidates, several times more than even the largest heterogeneously assembled catalogues. We discuss in detail the properties of galaxies showing Wolf-Rayet features with a focus on their empirical properties. We are able to accurately quantify the incidence of Wolf-Rayet galaxies with redshift and show that the likelihood of otherwise similar galaxies showing Wolf-Rayet features increases with increasing metallicity, but that WR features are found in galaxies of a wide range in morphology. The large sample allows us to show explicitly that there are systematic differences in the metal abundances of WR and non-WR galaxies. The most striking result is that, below EW(Hb)=100AA, Wolf-Rayet galaxies show an elevated N/O rela...

  19. Photometric redshifts for the NGVS

    Raichoor, A.; Mei, S.; Erben, T.; Hildebrandt, H.; Huertas-Company, M.; Ilbert, O.; Licitra, R.; Ball, N. M.; Boissier, S.; Boselli, A.; Chen, Y.-T.; Côté, P.; Cuillandre, J.-C.; Duc, P. A.; Durrell, P. R.; Ferrarese, L.; Guhathakurta, P.; Gwyn, S. D. J.; Kavelaars, J. J.; Lancon, A.; Liu, C.; MacArthur, L. A.; Muller, M.; Muñoz, R. P.; Peng, E. W.; Puzia, T. H.; Sawicki, M.; Toloba, E.; Van Waerbeke, L.; Woods, D.; Zhang, H.

    2014-12-01

    We present the photometric redshift catalog for the Next Generation Virgo Cluster Survey (NGVS), a 104 deg^2 optical imaging survey centered on the Virgo cluster in the u^*, g, r ,i, z bandpasses at point source depth of 25-26 ABmag. It already is the new optical reference survey for the study of the Virgo cluster, and will be also used for multiple ancillary programs. To obtain photometric redshifts, we perform accurate photometry, through the PSF-homogenization of our data. We then estimate the photometric redshifts using Le Phare and BPZ codes, adding a new prior extended down to i_{AB}=12.5 mag. We assess the accuracy of our photometric redshifts as a function of magnitude and redshift using ˜80,000 spectroscopic redshifts from public surveys. For i_{AB} outliers.

  20. Machine learning techniques for astrophysical modelling and photometric redshift estimation of quasars in optical sky surveys

    Kumar, N Daniel

    2008-01-01

    Machine learning techniques are utilised in several areas of astrophysical research today. This dissertation addresses the application of ML techniques to two classes of problems in astrophysics, namely, the analysis of individual astronomical phenomena over time and the automated, simultaneous analysis of thousands of objects in large optical sky surveys. Specifically investigated are (1) techniques to approximate the precise orbits of the satellites of Jupiter and Saturn given Earth-based observations as well as (2) techniques to quickly estimate the distances of quasars observed in the Sloan Digital Sky Survey. Learning methods considered include genetic algorithms, particle swarm optimisation, artificial neural networks, and radial basis function networks. The first part of this dissertation demonstrates that GAs and PSOs can both be efficiently used to model functions that are highly non-linear in several dimensions. It is subsequently demonstrated in the second part that ANNs and RBFNs can be used as ef...

  1. Tracing High Redshift Starformation in the Current and Next Generation of Radio Surveys

    Seymour, Nick

    2009-01-01

    The current deepest radio surveys detect hundreds of sources per square degree below 0.1mJy. There is a growing consensus that a large fraction of these sources are dominated by star formation although the exact proportion has been debated in the literature. However, the low luminosity of these galaxies at most other wavelengths makes determining the nature of individual sources difficult. If future, deeper surveys performed with the next generation of radio instrumentation are to reap high scientific reward we need to develop reliable methods of distinguishing between radio emission powered by active galactic nuclei (AGN) and that powered by star formation. In particular, we believe that such discriminations should be based on purely radio, or relative to radio, diagnostics. These diagnostics include radio morphology, radio spectral index, polarisation, variability, radio luminosity and flux density ratios with non-radio wavelengths e.g. with different parts of the infrared (IR) regime. We discuss the advant...

  2. Simulations of the cosmic infrared and submillimeter background for future large surveys: II. Removing the low-redshift contribution to the anisotropies using stacking

    Fernandez-Conde, N; Puget, J-L; Dole, H; 10.1051/0004-6361/200912924

    2010-01-01

    Herschel and Planck are surveying the sky at unprecedented angular scales and sensitivities over large areas. But both experiments are limited by source confusion in the submillimeter. The high confusion noise in particular restricts the study of the clustering properties of the sources that dominate the cosmic infrared background. At these wavelengths, it is more appropriate to consider the statistics of the unresolved component. In particular, high clustering will contribute in excess of Poisson noise in the power spectra of CIB anisotropies. These power spectra contain contributions from sources at all redshift. We show how the stacking technique can be used to separate the different redshift contributions to the power spectra. We use simulations of CIB representative of realistic Spitzer, Herschel, Planck, and SCUBA-2 observations. We stack the 24um sources in longer wavelengths maps to measure mean colors per redshift and flux bins. The information retrieved on the mean spectral energy distribution obtai...

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Luminosity and stellar mass dependence of galaxy clustering at 0.5

    Marulli, F; Branchini, E; Davidzon, I; de la Torre, S; Granett, B R; Guzzo, L; Iovino, A; Moscardini, L; Pollo, A; Abbas, U; Adami, C; Arnouts, S; Bel, J; Bottini, D; Cappi, A; Coupon, J; Cucciati, O; De Lucia, G; Fritz, A; Franzetti, P; Fumana, M; Garilli, B; Ilbert, O; Krywult, J; Brun, V Le; Fevre, O Le; Maccagni, D; Malek, K; McCracken, H J; Paioro, L; Polletta, M; Schlagenhaufer, H; Scodeggio, M; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Burden, A; Di Porto, C; Marchetti, A; Marinoni, C; Mellier, Y; Nichol, R C; Peacock, J A; Percival, W J; Phleps, S; Wolk, M; Zamorani, G

    2013-01-01

    We investigate the dependence of galaxy clustering on luminosity and stellar mass, in the redshift range 0.5redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). To characterize the spatial properties of the VIPERS galaxies, we measure the redshift-space two-point correlation functions (2PCF), and the projected correlation function, in samples covering different ranges of B-band absolute magnitudes and stellar masses. We consider both threshold and binned galaxy samples, with median B-band absolute magnitudes -21.6redshift, assuming a flat {\\Lambda} cold dark matter model to derive the dark matter 2PCF. We provide the best-fit parameters ...

  4. Clusters and groups of galaxies in the 2dF galaxy redshift survey

    Tago, E; Einasto, M; Saar, E

    2005-01-01

    We create a new catalogue of groups and clusters for the 2dF GRS final release sample. We show that the variable linking length friends-of-friends (FoF) algorithms used so far yield groups with sizes that grow systematically with distance from the observer, but FoF algorithms with a constant linking length are free from this fault. We apply the FoF algorithm with a constant linking length for the 2dF GRS, compare for each group its potential and kinetic energies and remove galaxies with excess random velocities. Our sample contains 7657 groups in the Northern part, and 10058 groups in the Southern part of the 2dF survey with membership Ng >= 2. We analyze selection effects of the catalogue and compare our catalogue of groups with other recently published catalogues based on the 2dF GRS. We also estimate the total luminosities of our groups, correcting for group members fainter than the observational limit of the survey. The cluster catalogues are available at our web-site (http://www.aai.ee/~maret/2dfgr.html)

  5. Herschel Survey of the Palomar-Green QSOs at Low Redshift

    Petric, Andreea O; Flagey, Nicolas J M; Scoville, Nicholas Z

    2015-01-01

    We investigate the global cold dust properties of 85 nearby (z < 0.5) QSOs, chosen from the Palomar-Green sample of optically luminous quasars. We determine their infrared spectral energy distributions and estimate their rest-frame luminosities by combining Herschel data from 70 to 500 microns with near-infrared and mid-infrared measurements from the Two Micron All Sky Survey (2MASS) and the Wide-Field Infrared Survey Explorer (WISE). In most sources the far-infrared (FIR) emission can be attributed to thermally heated dust. Single temperature modified black body fits to the FIR photometry give an average dust temperature for the sample of 33~K, with a standard deviation of 8~K, and an average dust mass of 7E6 Solar Masses with a standard deviation of 9E6 Solar Masses. Estimates of star-formation that are based on the FIR continuum emission correlate with those based on the 11.3 microns PAH feature, however, the star-formation rates estimated from the FIR continuum are higher than those estimated from the ...

  6. Spherical Redshift Distortions

    1995-01-01

    Peculiar velocities induce apparent line of sight displacements of galaxies in redshift space, distorting the pattern of clustering in the radial versus transverse directions. On large scales, the amplitude of the distortion yields a measure of the dimensionless linear growth rate $\\beta \\approx \\Omega^{0.6}/b$, where $\\Omega$ is the cosmological density and $b$ the linear bias factor. To make the maximum statistical use of the data in a wide angle redshift survey, and for the greatest accura...

  7. Selection constraints on high-redshift quasar searches in the VISTA Kilo-degree Infrared Galaxy survey

    Findlay, J. R.; Sutherland, W. J.; Venemans, B. P.; Reylé, C.; Robin, A. C.; Bonfield, D. G.; Bruce, V. A.; Jarvis, M. J.

    2012-02-01

    The European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) is a 4-m class survey telescope for wide-field near-infrared imaging. VISTA is currently running a suite of six public surveys, which will shortly deliver their first Europe wide public data releases to ESO. The VISTA Kilo-degree Infrared Galaxy survey (VIKING) forms a natural intermediate between current wide shallow and deeper more concentrated surveys, by targeting two patches totalling 1500 deg2 in the Northern and Southern hemispheres with measured 5σ limiting depths of Z≃ 22.4, Y≃ 21.4, J≃ 20.9, H≃ 19.9 and Ks≃ 19.3 (Vega). This architecture forms an ideal working parameter space for the discovery of a significant sample of 6.5 ≤ z ≤ 7.5 quasars. In the first data release, priority has been placed on small areas encompassing a number of fields well sampled at many wavelengths, thereby optimizing science gains and synergy whilst ensuring a timely release of the first products. For rare object searches, e.g. high-z quasars, this policy is not ideal since photometric selection strategies generally evolve considerably with the acquisition of data. Without a reasonably representative data set sampling many directions on the sky, it is not clear how a rare object search can be conducted in a highly complete and efficient manner. In this paper, we alleviate this problem by supplementing initial data with a realistic model of the spatial, luminosity and colour distributions of sources known to heavily contaminate photometric quasar selection spaces, namely dwarf stars of spectral types M, L and T. We use this model along with a subset of available data to investigate contamination of quasar selection space by cool stars and galaxies and lay down a set of benchmark selection constraints that limit contamination to reasonable levels whilst maintaining high completeness as a function of both magnitude and redshift. We review recent follow-up imaging of

  8. Cosmic flow from 2MASS redshift survey: The origin of CMB dipole and implications for LCDM cosmology

    Lavaux, G; Mohayaee, R; Colombi, S

    2008-01-01

    We generate the peculiar velocity field for the 2MASS Redshift Survey (2MRS) catalog using an orbit-reconstruction algorithm. The reconstructed velocities of individual objects in 2MRS are well-correlated with the peculiar velocities obtained from high-precision observed distances within 3,000 km/s. We estimate the mean matter density to be 0.31 +/- 0.05 by comparing observed to reconstructed velocities in this volume. The reconstructed motion of the Local Group in the rest frame established by distances within 3,000 km/s agrees with the observed motion and is generated by fluctuations within this volume, in agreement with observations. Then, we reconstruct the velocity field of 2MRS in successively larger radii, to study the problem of convergence towards the CMB dipole. We find that less than half of the amplitude of the CMB dipole is generated within a volume enclosing the Hydra-Centaurus-Norma supercluster at around 40 Mpc/h. Although most of the amplitude of the CMB dipole seems to be recovered by 120 Mp...

  9. Baryon Cycling in the Low-Redshift Circumgalactic Medium: A Comparison of Simulations to the COS-Halos Survey

    Ford, Amanda Brady; Dave, Romeel; Tumlinson, Jason; Bordoloi, Rongmon; Katz, Neal; Kollmeier, Juna A; Oppenheimer, Benjamin D; Peeples, Molly S; Prochaska, Jason X; Weinberg, David H

    2015-01-01

    We analyze the low-redshift (z~0.2) circumgalactic medium by comparing absorption-line data from the COS-Halos Survey to absorption around a matched galaxy sample from two cosmological hydrodynamic simulations. The models include different prescriptions for galactic outflows, namely hybrid energy/momentum driven wind (ezw), and constant winds (cw). We extract for comparison direct observables including equivalent widths, covering factors, ion ratios, and kinematics. Both wind models are generally in good agreement with these observations for HI and certain low ionization metal lines, but show poorer agreement with higher ionization metal lines including SiIII and OVI that are well-observed by COS-Halos. These discrepancies suggest that both wind models predict too much cool, metal-enriched gas and not enough hot gas, and/or that the metals are not sufficiently well-mixed. This may reflect our model assumption of ejecting outflows as cool and unmixing gas. Our ezw simulation includes a heuristic prescription t...

  10. The VIPERS Multi-Lambda Survey - I: UV and NIR Observations, multi-color catalogs and photometric redshifts

    Moutard, T; Ilbert, O; Coupon, J; Hudelot, P; Vibert, D; Comte, V; Conseil, S; Davidzon, I; Guzzo, L; Llebaria, A; Martin, C; McCracken, H J; Milliard, B; Morrison, G E; Schiminovich, D; Treyer, M; Van Werbaeke, L

    2016-01-01

    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet (UV) with the GALEX satellite (far and near UV channels) and the near infrared with the CFHT/WIRCam camera ($K_s$-band) over an area of 22 and 27 deg$^2$, respectively. The depth of the photometry was optimized to measure the physical properties (e.g., SFR, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 < z < 1.2). In this paper, we present the observations, the data reductions and the build-up of the multi-color catalogs. The CFHTLS-T0007 (gri-{\\chi}^2) images are used as reference to detect and measure the $K_s$-band photometry, while the T0007 u-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches $NUV_{AB}$~25 (at 5{\\sigma})...

  11. A photometric survey for Lyalpha-HeII dual emitters: Searching for Population III stars in high-redshift galaxies

    Nagao, Tohru; Maiolino, Roberto; Grady, Celestine; Kashikawa, Nobunari; Ly, Chun; Malkan, Matthew; Motohara, Kentaro; Murayama, Takashi; Schaerer, Daniel; Shioya, Yasuhiro; Taniguchi, Yoshiaki

    2008-01-01

    We present a new photometric search for high-z galaxies hosting Population III (PopIII) stars based on deep intermediate-band imaging observations obtained in the Subaru Deep Field (SDF), by using Suprime-Cam on the Subaru Telescope. By combining our new data with the existing broad-band and narrow-band data, we searched for galaxies which emit strongly both in Ly_alpha and in HeII 1640 (``dual emitters'') that are promising candidates for PopIII-hosting galaxies, at 3.93 2 Msun/yr was found by our photometric search in 4.03 x 10^5 Mpc^3 in the SDF. This result disfavors low feedback models for PopIII star clusters, and implies an upper-limit of the PopIII SFR density of SFRD_PopIII < 5 x 10^-6 Msun/yr/Mpc^3. This new selection method to search for PopIII-hosting galaxies should be useful in future narrow-band surveys to achieve the first observational detection of PopIII-hosting galaxies at high redshifts.

  12. The Atacama Cosmology Telescope: The LABOCA/ACT Survey of Clusters at All Redshifts

    Lindner, Robert R; Baker, Andrew J; Bond, J Richard; Crichton, Devin; Devlin, Mark J; Essinger-Hileman, Thomas; Hilton, Matt; Hincks, Adam D; Huffenberger, Kevin M; Hughes, John P; Infante, Leopoldo; Lima, Marcos; Marriage, Tobias A; Menanteau, Felipe; Niemack, Michael D; Page, Lyman A; Schmitt, Benjamin L; Sehgal, Neelima; Sievers, J L; Sifón, Cristóbal; Staggs, Suzanne T; Swetz, Daniel; Weiß, Axel; Wollack, Edward J

    2014-01-01

    We present a multi-wavelength analysis of eleven Sunyaev Zel'dovich effect (SZE)-selected galaxy clusters (ten with new data) from the Atacama Cosmology Telescope (ACT) southern survey. We have obtained new imaging from the Large APEX Bolometer Camera (345GHz; LABOCA) on the Atacama Pathfinder EXperiment (APEX) telescope, the Australia Telescope Compact Array (2.1GHz; ATCA), and the Spectral and Photometric Imaging Receiver (250, 350, and $500\\,\\rm\\mu m$; SPIRE) on the Herschel Space Observatory. Spatially-resolved 345GHz SZE increments with integrated S/N > 5 are found in six clusters. We compute 2.1GHz number counts as a function of cluster-centric radius and find significant enhancements in the counts of bright sources at projected radii $\\theta < \\theta_{2500}$. By extrapolating in frequency, we predict that the combined signals from 2.1GHz-selected radio sources and 345GHz-selected SMGs contaminate the 148GHz SZE decrement signal by ~5% and the 345GHz SZE increment by ~18%. After removing radio source...

  13. The 2dF QSO Redshift Survey - X. Lensing of Background QSOs by Galaxy Groups

    Myers, A D; Shanks, T; Boyle, B J; Croom, S M; Loaring, N S; Miller, L; Smith, R J

    2003-01-01

    We cross-correlate QSOs from the 2dF Survey with galaxy groups. The galaxy samples are limited to B < 20.5. We use an objective algorithm to detect galaxy groups. A 3sigma anti-correlation is observed between QSOs and galaxy groups. This paucity of faint QSOs around groups is neither a selection effect nor due to restrictions on the placement of 2dF fibres. By observing the colours of QSOs on the scales of the anti-correlation, we limit dust in galaxy groups, finding a maximum reddening of E(b_j-r) < 0.012 at the 95% level. The small amount of dust thus inferred is insufficient to cause the anti-correlation, supporting the suggestion by Croom & Shanks that the signal is due to gravitational lensing. The possibility remains that tailored dust models, such as grey dust, heavy patches of radially distributed dust or a combination of dust and lensing, could explain the anti-correlation. Assuming the signal is caused by lensing rather than dust, we measure the average velocity dispersion of a Singular Is...

  14. A New Determination of the High Redshift Type Ia Supernova Rateswith the Hubble Space Telescope Advanced Camera for Surveys

    Kuznetsova, N.; Barbary, K.; Connolly, B.; Kim, A.G.; Pain, R.; Roe, N.A.; Aldering, G.; Amanullah, R.; Dawson, K.; Doi, M.; Fadeyev, V.; Fruchter, A.S.; Gibbons, R.; Goldhaber, G.; Goober, A.; Gude, A.; Knop,R.A.; Kowalski, M.; Lidman, C.; Morokuma, T.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D.J.; Spadafora, A.L.; Stanishev, V.; Strovink, M.; Suzuki, N.; Wang, L.; Yasuda, N.

    2007-10-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift {approx} 1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.

  15. The COS-Halos Survey: Metallicities in the Low-redshift Circumgalactic Medium

    Prochaska, J. Xavier; Werk, Jessica K.; Worseck, Gábor; Tripp, Todd M.; Tumlinson, Jason; Burchett, Joseph N.; Fox, Andrew J.; Fumagalli, Michele; Lehner, Nicolas; Peeples, Molly S.; Tejos, Nicolas

    2017-03-01

    We analyze new far-ultraviolet spectra of 13 quasars from the z∼ 0.2 COS-Halos survey that cover the H i Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measurements on the H i column densities {N}{{H}{{I}}}. We then apply a Monte-Carlo Markov chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T∼ {10}4 K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining H i surface density with impact parameter {R}\\perp (at > 99.5 % confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70 ± 7% (3) the metallicity distribution function of the cool CGM is unimodal with a median of {10}-0.51 {Z}ȯ and a 95% interval ≈ 1/50 {Z}ȯ to > 3 {Z}ȯ ; the incidence of metal-poor ( 99.9 % confidence) and, therefore, also with increasing {R}\\perp ; the high metallicity at large radii implies early enrichment; and (5) a non-parametric estimate of the cool CGM gas mass is {M}{CGM}{cool}=(9.2+/- 4.3)× {10}10 {M}ȯ , which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 13033 and 11598.

  16. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z=1.5: I. Description and Methodology and More!

    Kelson, Daniel D; Dressler, Alan; McCarthy, Patrick J; Shectman, Stephen A; Mulchaey, John S; Villanueva, Edward V; Crane, Jeffrey D; Quadri, Ryan F

    2014-01-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with IMACS on Magellan-Baade. CSI uses a flux-limited sample of galaxies in Spitzer IRAC 3.6micron imaging of SWIRE fields to efficiently trace the stellar mass of average galaxies to z~1.5. This paper provides an overview of the survey selection, observations, and processing of the photometry and spectrophotometry. We also describe the analysis of the data: new methods of fitting synthetic SEDs are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star-formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high quality redshifts for 43,347 galaxies in our first 5.3 sq. degs of the SWIRE XMM-LSS field. A new approach to assessing data quality is also described, and three different approaches are used to es...

  17. Mass Calibration of Galaxy Clusters at Redshift 0.1-1.0 using Weak Lensing in the Sloan Digital Sky Survey Stripe 82 Co-add

    Wiesner, Matthew P; Soares-Santos, Marcelle

    2015-01-01

    We present mass-richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass-richness relations are presented for four redshift bins, $0.1 < z \\leq 0.4$, $0.4 < z \\leq 0.7$, $0.7 < z \\leq 1.0$ and $0.1 < z \\leq 1.0$. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi Tessellation cluster finder. We fit an NFW profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass $(M_{200})$. We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass-richness relations using richness measure $N_{VT}$ with each of these effects considered separately as well as considered altogether. We present values fo...

  18. Cluster Mass Calibration at High Redshift: HST Weak Lensing Analysis of 13 Distant Galaxy Clusters from the South Pole Telescope Sunyaev-Zel'dovich Survey

    Schrabback, T; Dietrich, J P; Hoekstra, H; Bocquet, S; Gonzalez, A H; von der Linden, A; McDonald, M; Morrison, C B; Raihan, S F; Allen, S W; Bayliss, M; Benson, B A; Bleem, L E; Chiu, I; Desai, S; Foley, R J; de Haan, T; High, F W; Hilbert, S; Mantz, A B; Massey, R; Mohr, J; Reichardt, C L; Saro, A; Simon, P; Stern, C; Stubbs, C W; Zenteno, A

    2016-01-01

    We present an HST/ACS weak gravitational lensing analysis of 13 massive high-redshift (z_median=0.88) galaxy clusters discovered in the South Pole Telescope (SPT) Sunyaev-Zel'dovich Survey. This study is part of a larger campaign that aims to robustly calibrate mass-observable scaling relations over a wide range in redshift to enable improved cosmological constraints from the SPT cluster sample. We introduce new strategies to ensure that systematics in the lensing analysis do not degrade constraints on cluster scaling relations significantly. First, we efficiently remove cluster members from the source sample by selecting very blue galaxies in V-I colour. Our estimate of the source redshift distribution is based on CANDELS data, where we carefully mimic the source selection criteria of the cluster fields. We apply a statistical correction for systematic photometric redshift errors as derived from Hubble Ultra Deep Field data and verified through spatial cross-correlations. We account for the impact of lensing...

  19. Galaxy Clusters in the Line of Sight to Background Quasars: I. Survey Design and Incidence of MgII Absorbers at Cluster Redshifts

    López, S; Lira, P; Padilla, N; Gilbank, D G; Gladders, M D; Maza, J; Tejos, N; Vidal, M; Yee, H K C

    2008-01-01

    We describe the first optical survey of absorption systems associated with galaxy clusters at z= 0.3-0.9. We have cross-correlated SDSS DR3 quasars with high-redshift cluster/group candidates from the Red-Sequence Cluster Survey. We have found 442 quasar-cluster pairs for which the MgII doublet might be detected at a transverse (physical) distance d2.0 Ang.) near cluster redshifts shows a significant (>3 sigma) overabundance (up to a factor of 15) when compared with the 'field' population; (2) the overabundance is more evident at smaller distances (d<1 Mpc) than larger distances (d<2 Mpc) from the cluster center; and, (3) the population of weak MgII systems (W_0<0.3 Ang.) near cluster redshifts conform to the field statistics. Unlike in the field, this dichotomy makes n(W) in clusters appear flat and well fitted by a power-law in the entire W-range. A sub-sample of the most massive clusters yields a stronger and still significant signal. Since either the absorber number density or filling-factor/cros...

  20. The zCOSMOS Redshift Survey: the role of environment and stellar mass in shaping the rise of the morphology-density relation from z~1

    Tasca, L A M; Iovino, A; Le Fèvre, O; Kovac, K; Bolzonella, M; Lilly, S J; Abraham, R G; Cassata, P; Cucciati, O; Guzzo, L; Tresse, L; Zamorani, G; Capak, P; Garilli, B; Scodeggio, M; Sheth, K; Vergani, D; Zucca, E; Carollo, C M; Contini, T; Mainieri, V; Renzini, A; Bardelli, S; Bongiorno, A; Caputi, K; Coppa, G; De la Torre, S; de Ravel, L; Franzetti, P; Kampczyk, P; Knobel, C; Koekemoer, A; Lamareille, F; Le Borgne, J F; Le Brun, V; Maier, C; Mignoli, M; Pellò, R; Peng, Y; Montero, E Perez; Ricciardelli, E; Silverman, J D; Tanaka, M; Abbas, U; Bottini, D; Cappi, A; Cimatti, A; Ilbert, O; Leauthaud, A; MacCagni, D; Marinoni, C; McCracken, H J; Memeo, P; Meneux, B; Oesch, P; Porciani, C; Pozzetti, L; Scaramella, R; Scarlata, C

    2009-01-01

    For more than two decades we have known that galaxy morphological segregation is present in the Local Universe. It is important to see how this relation evolves with cosmic time. To investigate how galaxy assembly took place with cosmic time, we explore the evolution of the morphology-density relation up to redshift z~1 using about 10000 galaxies drawn from the zCOSMOS Galaxy Redshift Survey. Taking advantage of accurate HST/ACS morphologies from the COSMOS survey, of the well-characterised zCOSMOS 3D environment, and of a large sample of galaxies with spectroscopic redshift, we want to study here the evolution of the morphology-density relation up to z~1 and its dependence on galaxy luminosity and stellar mass. The multi-wavelength coverage of the field also allows a first study of the galaxy morphological segregation dependence on colour. We further attempt to disentangle between processes that occurred early in the history of the Universe or late in the life of galaxies. The zCOSMOS field benefits of high-...

  1. Calibrating Photometric Redshifts of Luminous Red Galaxies

    Padmanabhan, N; Schlegel, D J; Bridges, T J; Brinkmann, J; Cannon, R; Connolly, A J; Croom, S M; Csabai, I; Drinkwater, M; Eisenstein, D J; Hewett, P C; Loveday, J; Nichol, R C; Pimbblet, K A; De Propris, R; Schneider, D P; Scranton, R; Seljak, U; Shanks, T; Szapudi, I; Szalay, A S; Wake, D; Padmanabhan, Nikhil; Budavari, Tamas; Schlegel, David J.; Bridges, Terry; Brinkmann, Jonathan; Cannon, Russell; Connolly, Andrew J.; Croom, Scott M.; Csabai, Istvan; Drinkwater, Michael; Eisenstein, Daniel J.; Hewett, Paul C.; Loveday, Jon; Nichol, Robert C.; Pimbblet, Kevin A.; Propris, Roberto De; Schneider, Donald P.; Scranton, Ryan; Seljak, Uros; Shanks, Tom; Szapudi, Istvan; Szalay, Alexander S.; Wake, David

    2004-01-01

    We discuss the construction of a photometric redshift catalogue of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue -- (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, (iii) and estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS-2dF spectroscopic surveys, we find that the photometric redshift accuracy is $\\sigma \\sim 0.03$ for redshifts less than 0.55 and worsens at higher redshift ($\\sim 0.06$). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves, and photometric zeropoints. We also parametrize the photometric redshift error distribution with a sum of Gaussians, and use this model to deconvolve the errors from the measured photometric redshift distribution to est...

  2. The K20 survey. IV. The redshift distribution of Ks<20 galaxies a test of galaxy formation models

    Cimatti, A; Mignoli, M; Daddi, E; Menci, N; Poli, F; Fontana, A; Renzini, A; Zamorani, G; Broadhurst, T J; Cristiani, S; D'Odorico, S; Giallongo, E; Gilmozzi, R

    2002-01-01

    We present the redshift distribution of a complete sample of 480 galaxies with Ks1 and z>1.5 respectively. A ``blind'' comparison is made with the predictions of a set of the most recent LambdaCDM hierarchical merging and pure luminosity evolution (PLE) models. The hierarchical merging models overpredict and underpredict the number of galaxies at low-z and high-z respectively, whereas the PLE models match the median redshift and the low-z distribution, still being able to follow the high-z tail of N(z). We briefly discuss the implications of this comparison and the possible origins of the observed discrepancies. We make the redshift distribution publicly available.

  3. Spectroscopy of clusters in the ESO distant cluster survey (EDisCS). II.. Redshifts, velocity dispersions, and substructure for clusters in the last 15 fields

    Milvang-Jensen, B.; Noll, S.; Halliday, C.; Poggianti, B. M.; Jablonka, P.; Aragón-Salamanca, A.; Saglia, R. P.; Nowak, N.; von der Linden, A.; De Lucia, G.; Pelló, R.; Moustakas, J.; Poirier, S.; Bamford, S. P.; Clowe, D. I.; Dalcanton, J. J.; Rudnick, G. H.; Simard, L.; White, S. D. M.; Zaritsky, D.

    2008-05-01

    Aims: We present spectroscopic observations of galaxies in 15 survey fields as part of the ESO Distant Cluster Survey (EDisCS). We determine the redshifts and velocity dispersions of the galaxy clusters located in these fields, and we test for possible substructure in the clusters. Methods: We obtained multi-object mask spectroscopy using the FORS2 instrument at the VLT. We reduced the data with particular attention to the sky subtraction. We implemented the method of Kelson for performing sky subtraction prior to any rebinning/interpolation of the data. From the measured galaxy redshifts, we determine cluster velocity dispersions using the biweight estimator and test for possible substructure in the clusters using the Dressler-Shectman test. Results: The method of subtracting the sky prior to any rebinning/interpolation of the data delivers photon-noise-limited results, whereas the traditional method of subtracting the sky after the data have been rebinned/interpolated results in substantially larger noise for spectra from tilted slits. Redshifts for individual galaxies are presented and redshifts and velocity dispersions are presented for 21 galaxy clusters. For the 9 clusters with at least 20 spectroscopically confirmed members, we present the statistical significance of the presence of substructure obtained from the Dressler-Shectman test, and substructure is detected in two of the clusters. Conclusions: Together with data from our previous paper, spectroscopy and spectroscopic velocity dispersions are now available for 26 EDisCS clusters with redshifts in the range 0.40-0.96 and velocity dispersions in the range 166 km s-1-1080 km s-1. Based on observations collected at the European Southern Observatory, Chile, as part of large programme 166.A-0162 (the ESO Distant Cluster Survey). Full Table 4 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/482/419

  4. VERY STRONG EMISSION-LINE GALAXIES IN THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY AND IMPLICATIONS FOR HIGH-REDSHIFT GALAXIES

    Atek, H.; Colbert, J.; Shim, H. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Siana, B.; Bridge, C. [Department of Astronomy, Caltech, Pasadena, CA 91125 (United States); Scarlata, C. [Department of Astronomy, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California, Los Angeles, CA (United States); McCarthy, P.; Dressler, A.; Hathi, N. P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Teplitz, H. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); Henry, A.; Martin, C. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Bunker, A. J. [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Fosbury, R. A. E. [Space Telescope-European Coordinating Facility, Garching bei Muenchen (Germany)

    2011-12-20

    The WFC3 Infrared Spectroscopic Parallel Survey uses the Hubble Space Telescope (HST) infrared grism capabilities to obtain slitless spectra of thousands of galaxies over a wide redshift range including the peak of star formation history of the universe. We select a population of very strong emission-line galaxies with rest-frame equivalent widths (EWs) higher than 200 A. A total of 176 objects are found over the redshift range 0.35 < z < 2.3 in the 180 arcmin{sup 2} area that we have analyzed so far. This population consists of young and low-mass starbursts with high specific star formation rates (sSFR). After spectroscopic follow-up of one of these galaxies with Keck/Low Resolution Imaging Spectrometer, we report the detection at z = 0.7 of an extremely metal-poor galaxy with 12 + log(O/H) =7.47 {+-} 0.11. After estimating the active galactic nucleus fraction in the sample, we show that the high-EW galaxies have higher sSFR than normal star-forming galaxies at any redshift. We find that the nebular emission lines can substantially affect the total broadband flux density with a median brightening of 0.3 mag, with some examples of line contamination producing brightening of up to 1 mag. We show that the presence of strong emission lines in low-z galaxies can mimic the color-selection criteria used in the z {approx} 8 dropout surveys. In order to effectively remove low-redshift interlopers, deep optical imaging is needed, at least 1 mag deeper than the bands in which the objects are detected. Without deep optical data, most of the interlopers cannot be ruled out in the wide shallow HST imaging surveys. Finally, we empirically demonstrate that strong nebular lines can lead to an overestimation of the mass and the age of galaxies derived from fitting of their spectral energy distribution (SED). Without removing emission lines, the age and the stellar mass estimates are overestimated by a factor of 2 on average and up to a factor of 10 for the high-EW galaxies

  5. Cl 1103.7-1245 at z=0.96: the highest redshift galaxy cluster in the EDisCS survey

    Vulcani, Benedetta; Poggianti, Bianca M; Milvang-Jensen, Bo; von der Linden, Anja; Fritz, Jacopo; Jablonka, Pascale; Johnson, Olivia; Zaritsky, Dennis

    2012-01-01

    We present new spectroscopic observations in a field containing the highest redshift cluster of the ESO Distant Cluster Survey (EDisCS). We measure galaxy redshifts and determine the velocity dispersions of the galaxy structures located in this field. Together with the main cluster Cl1103.7$-$1245 (z=0.9580; sigma_{clus} = 522 +/- 111 km/s) we find a secondary structure at z=0.9830, Cl1103.7-1245c. We then characterize the galaxy properties in both systems, and find that they contain very different galaxy populations. The cluster Cl1103.7-1245 hosts a mixture of passive elliptical galaxies and star-forming spirals and irregulars. In the secondary structure Cl1103.7-1245c all galaxies are lower-mass star-forming irregulars and peculiars. In addition, we compare the galaxy populations in the Cl1103.7-1245 z=0.9580 cluster with those in lower redshift EDisCS clusters with similar velocity dispersions. We find that the properties of the galaxies in Cl1103.7-1245 follow the evolutionary trends found at lower redsh...

  6. The DEEP2 Galaxy Redshift Survey: Evolution of the Color-Density Relation at 0.4 < z < 1.35

    Cooper, M C; Coil, A L; Croton, D J; Gerke, B F; Yan, R; Davis, M; Guhathakurta, P; Koo, D C; Weiner, B J; Cooper, Michael C.; Newman, Jeffrey A.; Coil, Alison L.; Croton, Darren J.; Gerke, Brian F.; Yan, Renbin; Davis, Marc; Guhathakurta, Puragra; Koo, David C.; Weiner, Benjamin J.

    2006-01-01

    Using a sample of 19,464 galaxies drawn from the DEEP2 Galaxy Redshift Survey, we study the relationship between galaxy color and environment at 0.4 1, being larger in regions of greater galaxy density. At all epochs probed, we also find a small population of red, morphologically early-type galaxies residing in regions of low measured overdensity. The observed correlations between the red fraction and local overdensity are highly significant, with the trend at z > 1 detected at a greater than 5-\\sigma level. Over the entire redshift regime studied, we find that the color-density relation evolves continuously, with red galaxies more strongly favoring overdense regions at low z relative to their red-sequence counterparts at high redshift. At z ~ 1.3, the red fraction only weakly correlates with overdensity, implying that any color dependence to the clustering of ~ L* galaxies at that epoch must be small. Our findings add weight to existing evidence that the build-up of galaxies on the red sequence has occurred...

  7. Overconfidence in Photometric Redshift Estimation

    Wittman, David; Tobin, Ryan

    2016-01-01

    We describe a new test of photometric redshift performance given a spectroscopic redshift sample. This test complements the traditional comparison of redshift {\\it differences} by testing whether the probability density functions $p(z)$ have the correct {\\it width}. We test two photometric redshift codes, BPZ and EAZY, on each of two data sets and find that BPZ is consistently overconfident (the $p(z)$ are too narrow) while EAZY produces approximately the correct level of confidence. We show that this is because EAZY models the uncertainty in its spectral energy distribution templates, and that post-hoc smoothing of the BPZ $p(z)$ provides a reasonable substitute for detailed modeling of template uncertainties. Either remedy still leaves a small surplus of galaxies with spectroscopic redshift very far from the peaks. Thus, better modeling of low-probability tails will be needed for high-precision work such as dark energy constraints with the Large Synoptic Survey Telescope and other large surveys.

  8. The KMOS Redshift One Spectroscopic Survey (KROSS): Dynamical properties, gas and dark matter fractions of typical z~1 star-forming galaxies

    Stott, John P; Johnson, Helen L; Tiley, Alfie; Magdis, Georgios; Bower, Richard; Bunker, Andrew J; Bureau, Martin; Harrison, Chris M; Jarvis, Matt J; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip; Cirasuolo, Michele

    2016-01-01

    The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO guaranteed time survey of 795 typical star-forming galaxies in the redshift range z=0.8-1.0 with the KMOS instrument on the VLT. In this paper we present resolved kinematics and star formation rates for 584 z~1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z~1 to date. We demonstrate the success of our selection criteria with 90% of our targets found to be Halpha emitters, of which 81% are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83$\\pm$5%. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ~35%, and the majority are consistent with being marginally unstable (Toomre Q~1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbule...

  9. THE STAR FORMATION HISTORY OF BCGs TO z = 1.8 FROM THE SpARCS/SWIRE SURVEY: EVIDENCE FOR SIGNIFICANT IN SITU STAR FORMATION AT HIGH REDSHIFT

    Webb, Tracy M. A.; Bonaventura, Nina [McGill University, 3600 rue University, Montreal, QC H3A 2T8 (Canada); Muzzin, Adam [Leiden Observatory, University of Leiden, P.O. Box 9514, 2300 RA Leiden (Netherlands); Noble, Allison; Yee, H. K. C. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Geach, James [Centre for Astrophysics Research, University of Hertfordshire, Hatfield, Hertfordshire AL109AB (United Kingdom); Hezevah, Yashar [Kavli Institue for Particle Physics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305-4085 (United States); Lidman, Chris [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Wilson, Gillian [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Shupe, David [NASA Herschel Science Center, IPAC, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (N{sub gal} > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of L{sub IR} > 10{sup 12} L{sub ⊙}, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  10. Astrometric Redshifts for Quasars

    Kaczmarczik, Michael C; Mehta, Sajjan S; Schlegel, David J

    2009-01-01

    The wavelength dependence of atmospheric refraction causes differential chromatic refraction (DCR), whereby objects imaged at different optical/UV wavelengths are observed at slightly different positions in the plane of the detector. Strong spectral features induce changes in the effective wavelengths of broad-band filters that are capable of producing significant positional offsets with respect to standard DCR corrections. We examine such offsets for broad-emission-line (type 1) quasars from the Sloan Digital Sky Survey (SDSS) spanning 0redshift and airmass. This astrometric information can be used to break degeneracies in photometric redshifts of quasars (or other emission-line sources) and, for extreme cases, may be suitable for determining "astrometric redshifts". On the SDSS's southern equatorial stripe, where it is pos...

  11. A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys

    Kuznetsova, N; Connolly, B; Kim, A G; Pain, R; Roe, N A; Aldering, G; Amanullah, R; Dawson, K; Doi, M; Fadeev, V; Fruchter, A S; Gibbons, R; Goldhaber, G; Goobar, A; Gude, A; Knop, R A; Kowalski, M; Lidman, C; Morokuma, T; Meyers, J; Perlmutter, S; Rubin, D; Schlegel, D J; Spadafora, A L; Stanishev, V; Strovink, M; Suzuki, N; Wang, L; Yasuda, N

    2007-01-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of pos...

  12. Cosmological Parameters from Redshift-Space Correlations

    Matsubara, T; Matsubara, Takahiko; Szalay, Alexander S.

    2002-01-01

    We estimate how clustering in large-scale redshift surveys can constrain various cosmological parameters. Depth and sky coverage of modern redshift surveys are greater than ever, opening new possibilities for statistical analysis. We have constructed a novel maximum likelihood technique applicable to deep redshift surveys of wide sky coverage by taking into account the effects of both curvature and linear velocity distortions. The Fisher information matrix is evaluated numerically to show the bounds derived from a given redshift sample. We find that intermediate-redshift galaxies, such as the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey, can constrain cosmological parameters, including the cosmological constant, unexpectedly well. The importance of the dense as well as deep sampling in designing redshift surveys is emphasized.

  13. Spectroscopy of clusters in the ESO distant cluster survey (EDisCS).II. Redshifts, velocity dispersions, and substructure for clusters in the last 15 fields

    Milvang-Jensen, Bo; Halliday, Claire; Poggianti, Bianca M; Jablonka, Pascale; Aragon-Salamanca, Alfonso; Saglia, Roberto P; Nowak, Nina; von der Linden, Anja; De Lucia, Gabriella; Pello, Roser; Moustakas, John; Poirier, Sebastien; Bamford, Steven P; Clowe, Douglas I; Dalcanton, Julianne J; Rudnick, Gregory H; Simard, Luc; White, Simon D M; Zaritsky, Dennis

    2008-01-01

    AIMS. We present spectroscopic observations of galaxies in 15 survey fields as part of the ESO Distant Cluster Survey (EDisCS). We determine the redshifts and velocity dispersions of the galaxy clusters located in these fields, and we test for possible substructure in the clusters. METHODS. We obtained multi-object mask spectroscopy using the FORS2 instrument at the VLT. We reduced the data with particular attention to the sky subtraction. We implemented the method of Kelson for performing sky subtraction prior to any rebinning/interpolation of the data. From the measured galaxy redshifts, we determine cluster velocity dispersions using the biweight estimator and test for possible substructure in the clusters using the Dressler-Shectman test. RESULTS. The method of subtracting the sky prior to any rebinning/interpolation of the data delivers photon-noise-limited results, whereas the traditional method of subtracting the sky after the data have been rebinned/interpolated results in substantially larger noise f...

  14. A survey of luminous high-redshift quasars with SDSS and WISE II. the bright end of the quasar luminosity function at z ~ 5

    Yang, Jinyi; Wu, Xue-Bing; Fan, Xiaohui; McGreer, Ian D; Bian, Fuyan; Yi, Weimin; Yang, Qian; Ai, Yanli; Dong, Xiaoyi; Zuo, Wenwen; Green, Richard; Jiang, Linhua; Wang, Shu; Wang, Ran; Yue, Minghao

    2016-01-01

    This is the second paper in a series on a new luminous z ~ 5 quasar survey using optical and near-infrared colors. Here we present a new determination of the bright end of the quasar luminosity function (QLF) at z ~ 5. Combined our 45 new quasars with previously known quasars that satisfy our selections, we construct the largest uniform luminous z ~ 5 quasar sample to date, with 99 quasars in the range 4.7 <= z < 5.4 and -29 < M1450 <= -26.8, within the Sloan Digital Sky Survey (SDSS) footprint. We use a modified 1/Va method including flux limit correction to derive a binned QLF, and we model the parametric QLF using maximum likelihood estimation. With the faint-end slope of the QLF fixed as alpha = -2.03 from previous deeper samples, the best fit of our QLF gives a flatter bright end slope beta = -3.58+/-0.24 and a fainter break magnitude M*1450 = -26.98+/-0.23 than previous studies at similar redshift. Combined with previous work at lower and higher redshifts, our result is consistent with a lum...

  15. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low redshift sample of Data Release 11

    Tojeiro, Rita; Burden, Angela; Samushia, Lado; Manera, Marc; Percival, Will J; Beutler, Florian; Cuesta, Antonio J; Dawson, Kyle; Eisenstein, Daniel J; Ho, Shirley; Howett, Cullan; McBride, Cameron K; Montesano, Francisco; Parejko, John K; Reid, Beth; Sánchez, Ariel G; Schlegel, David J; Schneider, Donald P; Tinker, Jeremy L; Magaña, Mariana Vargas; White, Martin

    2014-01-01

    We present the distance measurement to z = 0.32 using the 11th data release of the Sloan Digital Sky Survey-III Baryon Acoustic Oscillation Survey (BOSS). We use 313,780 galaxies of the low-redshift (LOWZ) sample over 7,341 square-degrees to compute $D_V = (1264 \\pm 25)(r_d/r_{d,fid})$ - a sub 2% measurement - using the baryon acoustic feature measured in the galaxy two-point correlation function and power-spectrum. We compare our results to those obtained in DR10. We study observational systematics in the LOWZ sample and quantify potential effects due to photometric offsets between the northern and southern Galactic caps. We find the sample to be robust to all systematic effects found to impact on the targeting of higher-redshift BOSS galaxies, and that the observed north-south tensions can be explained by either limitations in photometric calibration or by sample variance, and have no impact on our final result. Our measurement, combined with the baryonic acoustic scale at z = 0.57, is used in Anderson et a...

  16. A New 2MASS/2df Selected Sample of Pairs of Galaxies and Calibration of Merging Rate in the Local Universe

    孙艳春; 徐聪; 何香涛

    2003-01-01

    We present a new sample of 37 close major-merger galaxy pairs, selected from the 2-degree field redshift survey of the two-micron all-sky survey (2MASS) galaxies. The selection criteria for our near-infrared pairs are more closely related to galaxy mass (a very important parameter in galaxy evolution models) than those for optical selected samples. Our sample benefits enormously from the high homogeneity and accuracy of the 2MASS database, and false matchings are minimized by the essentially three-dimensional selection procedure. Taking into account the biases, we find that 1.96 (±0.4)% of galaxies are in close major-merger pairs. This indicates a local merging rate of 1.0%, in good agreement with the results in recent studies of optical selected pairs in the local universe. The results derived with our sample have high confidence.

  17. The Hubble Space Telescope Cluster Supernova Survey: The Type Ia Supernova Rate in High-Redshift Galaxy Clusters

    Barbary, K; Amanullah, R; Brodwin, M; Connolly, N; Dawson, K S; Doi, M; Eisenhardt, P; Faccioli, L; Fadeyev, V; Fakhouri, H K; Fruchter, A S; Gilbank, D G; Gladders, M D; Goldhaber, G; Goobar, A; Hattori, T; Hsiao, E; Huang, X; Ihara, Y; Kashikawa, N; Koester, B; Konishi, K; Kowalski, M; Lidman, C; Lubin, L; Meyers, J; Morokuma, T; Oda, T; Panagia, N; Perlmutter, S; Postman, M; Ripoche, P; Rosati, P; Rubin, D; Schlegel, D J; Spadafora, A L; Stanford, S A; Strovink, M; Suzuki, N; Takanashi, N; Tokita, K; Yasuda, N

    2010-01-01

    We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 0.9 SNe. Finding 8 +/- 1 cluster SNe Ia, we determine a SN Ia rate of 0.50 +0.23-0.19 (stat) +0.10-0.09 (sys) SNuB (SNuB = 10^-12 SNe L_{sun,B}^-1 yr^-1). In units of stellar mass, this translates to 0.36 +0.16-0.13 (stat) +0.07-0.06 (sys) SNuM (SNuM = 10^-12 SNe M_sun^-1 yr^-1). This represents a factor of approximately 5 +/- 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution with a power law (proportional to t^s). Under the assumption of a cluster formation redshift of z_f = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.31 +0.55-0.40, consistent with measurements of the delay time distribution in the field. This measurement is also consistent with the value of s ~ -1 typically expected for the "double degenerate" SN Ia progenitor scenario, and inconsistent with some models for the "single degenerat...

  18. The KMOS Redshift One Spectroscopic Survey (KROSS): dynamical properties, gas and dark matter fractions of typical z ˜ 1 star-forming galaxies

    Stott, John P.; Swinbank, A. M.; Johnson, Helen L.; Tiley, Alfie; Magdis, Georgios; Bower, Richard; Bunker, Andrew J.; Bureau, Martin; Harrison, Chris M.; Jarvis, Matt J.; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip; Cirasuolo, Michele

    2016-04-01

    The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO-guaranteed time survey of 795 typical star-forming galaxies in the redshift range z = 0.8-1.0 with the KMOS instrument on the Very Large Telescope. In this paper, we present resolved kinematics and star formation rates for 584 z ˜ 1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z ˜ 1 to date. We demonstrate the success of our selection criteria with 90 per cent of our targets found to be H α emitters, of which 81 per cent are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83 ± 5 per cent. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ˜35 per cent, and the majority are consistent with being marginally unstable (Toomre Q ˜ 1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbulence. We postulate that it is the ubiquity of high (likely molecular) gas fractions and the associated gravitational instabilities that drive the elevated star formation rates in these typical z ˜ 1 galaxies, leading to the 10-fold enhanced star formation rate density. Finally, by comparing the gas masses obtained from inverting the star formation law with the dynamical and stellar masses, we infer an average dark matter to total mass fraction within 2.2re (9.5 kpc) of 65 ± 12 per cent, in agreement with the results from hydrodynamic simulations of galaxy formation.

  19. The VIMOS VLT Deep Survey: the redshift distribution N(z) of magnitude-limited samples down to iAB=24.75 and KsAB=22

    Fevre, O Le; Cucciati, O; de la Torre, S; Garilli, B; Ilbert, O; Brun, V Le; Maccagni, D; Tresse, L; Zamorani, G; Bardelli, S; Bolzonella, M; Contini, T; Iovino, A; Lopez-Sanjuan, C; McCracken, H J; Pollo, A; Pozzetti, L; Scodeggio, M; Tasca, L; Vergani, D; Zanichelli, A; Zucca, E

    2013-01-01

    We measure and analyse the redshift distribution N(z) of magnitude-selected samples using spectroscopic redshift measurement from the magnitude-selected VIMOS VLT Deep Survey (VVDS) with 172. Down to iAB2 than in colour-colour selected samples, and we use the magnitude-selected VVDS to emphasize the large uncertainties associated to other surveys using colour or colour-colour selected samples. Our results further demonstrate that semi-analytical models on dark matter simulations have yet to find the right balance of physical processes and time-scales to properly reproduce a fundamental galaxy population property like the observed N(z).

  20. Where do Wet, Dry, and Mixed Galaxy Mergers Occur? A Study of the Environments of Close Galaxy Pairs in the DEEP2 Galaxy Redshift Survey

    Lin, Lihwai; Jian, Hung-Yu; Koo, David C; Patton, David R; Yan, Renbin; Willmer, Christopher N A; Coil, Alison L; Chiueh, Tzihong; Croton, Darren J; Gerke, Brian F; Lotz, Jennifer; Guhathakurta, Puragra; Newman, Jeffrey A

    2010-01-01

    We study the environment of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of mixed and dry merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (Nc) is observed to increase with overdensity, using N-body simulations we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the fractional merger rate for wet mergers over the redshift range we have probed. On the other hand, the fractional dry merger rate increases rapidly with local density due to the increased population of red galaxies in dense environments. We also find that the environment distribution of K+A galaxies is similar to tha...

  1. An HST/COS legacy survey of intervening SiIII absorption in the extended gaseous halos of low-redshift galaxies

    Richter, P; Fechner, C; Herenz, P; Tepper-Garcia, T; Fox, A J

    2015-01-01

    Doubly ionized silicon (SiIII) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening SiIII- selected absorbers and their relation to the circumgalactic medium (CGM) of galaxies at low redshift (z12.2. We develop a geometrical model for the absorption-cross section of the CGM around the local galaxy population and find excellent agreement between the model predictions and the observations. We further compare redshifts and positions of the absorbers with that of ~64,000 galaxies using archival galaxy-survey data. For the majority of the absorbers we identify possible L>0.5L* host galaxies within 300 km/s of the absorbers and derive impact parameters rho<200 kpc, demonstrating that the spatial distributions of SiIII absorbers and galaxies are highly correlated. Our study indicates that the majority of SiIII-selected abs...

  2. The XMM Cluster Survey: Evidence for energy injection at high redshift from evolution of the X-ray luminosity-temperature relation

    Hilton, Matt; Kay, Scott T; Mehrtens, Nicola; Lloyd-Davies, E J; Thomas, Peter A; Short, Chris J; Mayers, Julian A; Rooney, Philip J; Stott, John P; Collins, Chris A; Harrison, Craig D; Hoyle, Ben; Liddle, Andrew R; Mann, Robert G; Miller, Christopher J; Sahlen, Martin; Viana, Pedro T P; Davidson, Michael; Hosmer, Mark; Nichol, Robert C; Sabirli, Kivanc; Stanford, S A; West, Michael J

    2012-01-01

    We measure the evolution of the X-ray luminosity-temperature (L_X-T) relation since z~1.5 using a sample of 211 serendipitously detected galaxy clusters with spectroscopic redshifts drawn from the XMM Cluster Survey first data release (XCS-DR1). This is the first study spanning this redshift range using a single, large, homogeneous cluster sample. Using an orthogonal regression technique, we find no evidence for evolution in the slope or intrinsic scatter of the relation since z~1.5, finding both to be consistent with previous measurements at z~0.1. However, the normalisation is seen to evolve negatively with respect to the self-similar expectation: we find E(z)^{-1} L_X = 10^{44.67 +/- 0.09} (T/5)^{3.04 +/- 0.16} (1+z)^{-1.5 +/- 0.5}, which is within 2 sigma of the zero evolution case. We see milder, but still negative, evolution with respect to self-similar when using a bisector regression technique. We compare our results to numerical simulations, where we fit simulated cluster samples using the same metho...

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS): Downsizing of the blue cloud and the influence of galaxy size on mass quenching over the last eight billion years

    Haines, C P; Guzzo, L; Davidzon, I; Bolzonella, M; Garilli, B; Scodeggio, M; Granett, B R; de la Torre, S; De Lucia, G; Abbas, U; Adami, C; Arnouts, S; Bottini, D; Cappi, A; Cucciati, O; Franzetti, P; Fritz, A; Gargiulo, A; Brun, V Le; Fevre, O Le; Maccagni, D; Malek, K; Marulli, F; Moutard, T; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Zamorani, G; Bel, J; Branchini, E; Coupon, J; Ilbert, O; Moscardini, L; Peacock, J A; Siudek, M

    2016-01-01

    We use the full VIPERS redshift survey in combination with SDSS-DR7 to explore the relationships between star-formation history (using d4000), stellar mass and galaxy structure, and how these relationships have evolved since z~1. We trace the extents and evolutions of both the blue cloud and red sequence, by fitting double Gaussians to the d4000 distribution of galaxies in narrow stellar mass bins, for four redshift intervals over 010^11Msun, d4000<1.55) drops sharply by a factor five between z~0.8 and z~0.5. These galaxies are becoming quiescent at a rate that largely matches the increase in the numbers of massive passive galaxies seen over this period. We examine the size-mass relation of blue cloud galaxies, finding that its high-mass boundary runs along lines of constant M*/r_e or equivalently inferred velocity dispersion. Larger galaxies can continue to form stars to higher stellar masses than smaller galaxies. As blue cloud galaxies approach this high-mass limit, they start to be quenched, their d400...

  4. Spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. I. An improved classification for high redshift galaxies

    Lamareille, Fabrice

    2009-01-01

    We study the spectral classification of emission-line galaxies as star-forming galaxies or Active Galactic Nuclei (AGNs). From the Sloan Digital Sky Survey (SDSS) high quality data, we define an improved classification to be used for high redshift galaxies. We classify emission-line galaxies of the SDSS according to the latest standard recipe using [Oiii]5007, [Nii]6584, [Sii]6717+6731, H, and H emission lines. We obtain four classes: star-forming galaxies, Seyfert 2, LINERs, and composites. We then examine where these galaxies fall in the blue diagram used at high redshift (i.e. log([Oiii]5007/H) vs. log([Oii]3726+3729/H).We define new improved boundaries in the blue diagram for star-forming galaxies, Seyfert 2, LINERs, SF/Sy2, and SF-LIN/comp classes. We maximize the success rate to 99.7% for the detection of star-forming galaxies, to 86% for the Seyfert 2 (including the SF/Sy2 region), and to 91% for the LINERs. We also minimize the contamination to 16% in the region of star-forming galaxies. We cannot rel...

  5. Spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. I. An improved classification for high-redshift galaxies

    Lamareille, F.

    2010-01-01

    Aims: We study the spectral classification of emission-line galaxies as starforming galaxies or active galactic nuclei (AGNs). With the high-quality data from the Sloan Digital Sky Survey (SDSS) we define an improved classification to be used for high-redshift galaxies. Methods: We classify emission-line galaxies of the SDSS according to the latest standard recipe using [Oiii]λ5007, [Nii]λ6584, [Sii]λ6717+6731, Hα, and Hβ emission lines. We obtain four classes: starforming galaxies, Seyfert 2, LINERs, and composites. We then examine where these galaxies fall in the blue diagram used at high redshift (i.e. log([Oiii]λ5007/Hβ) vs. log([Oii]λλ3726+3729/Hβ). Results: We define new improved boundaries in the blue diagram for starforming galaxies, Seyfert 2, LINERs, SF/Sy2, and SF-LIN/comp classes. We maximize the success rate to 99.7% for the detection of starforming galaxies to 86% for the Seyfert 2 (including the SF/Sy2 region) and to 91% for the LINERs. We also minimize the contamination to 16% in the region of starforming galaxies. We cannot reliably separate composites from starforming galaxies and LINERs, but we define an SF-LIN/comp region where most of them fall (64%).

  6. Evidence for a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field

    Castellano, M; Boutsia, K; Grazian, A; Pentericci, L; Bouwens, R; Dickinson, M; Giavalisco, M; Santini, P; Cristiani, S; Fiore, F; Gallozzi, S; Giallongo, E; Maiolino, R; Mannucci, F; Menci, N; Moorwood, A; Nonino, M; Paris, D; Renzini, A; Rosati, P; Salimbeni, S; Vanzella, E

    2009-01-01

    We perform a deep search for galaxies in the redshift range 6.51, Y-J6 (M_1500 ~- 19.5 to -21.5). After accounting for the expected incompleteness, we rule out at a 99% confidence level a Luminosity Function constant from z=6 to z=7, even including the effects of cosmic variance. For galaxies brighter than M_1500=-19.0 we derive a luminosity density rho_UV=1.5^{+2.0}_{-0.9} 10^25 erg/s/Hz/Mpc3, implying a decrease by a factor 3.5 from z=6 to z~6.8. On the basis of our findings, we make predictions for the surface densities expected in future surveys, either based on ULTRA-VISTA or on HST-WFC3, evaluating the best observational strategy to maximise their impact.

  7. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  8. Novel Methods for Predicting Photometric Redshifts

    National Aeronautics and Space Administration — We calculate photometric redshifts from the Sloan Digital Sky Survey Main Galaxy Sample, The Galaxy Evolution Explorer All Sky Survey, and The Two Micron All Sky...

  9. The XMM Cluster Survey: The build up of stellar mass in Brightest Cluster Galaxies at high redshift

    Stott, J P; Sahlen, M; Hilton, M; Lloyd-Davies, E; Capozzi, D; Hosmer, M; Liddle, A R; Mehrtens, N; Miller, C J; Romer, A K; Stanford, S A; Viana, P T P; Davidson, M; Hoyle, B; Kay, S T; Nichol, R C

    2010-01-01

    We present deep J and Ks band photometry of 20 high redshift galaxy clusters between z=0.8-1.5, 19 of which are observed with the MOIRCS instrument on the Subaru Telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ~9e11MSol since z~1.5. We investigate the effect on this result of differing star formation histories generated by three well known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar ma...

  10. An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies

    Richter, P.; Wakker, B. P.; Fechner, C.; Herenz, P.; Tepper-García, T.; Fox, A. J.

    2016-05-01

    Aims: Doubly ionized silicon (Si iii) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening Si iii-selected absorbers and study the properties of the warm circumgalactic medium (CGM) around low-redshift (z ≤ 0.1) galaxies. Methods: We analyzed the UV absorption spectra of 303 extragalactic background sources, as obtained with the Cosmic Origins Spectrograph (COS) on-board the Hubble Space Telescope (HST). We developed a geometrical model for the absorption-cross section of the CGM around the local galaxy population and compared the observed Si iii absorption statistics with predictions provided by the model. We also compared redshifts and positions of the absorbers with those of ~64 000 galaxies using archival galaxy-survey data to investigate the relation between intervening Si iii absorbers and the CGM. Results: Along a total redshift path of Δz ≈ 24, we identify 69 intervening Si iii systems that all show associated absorption from other low and high ions (e.g., H i, Si ii, Si iv, C ii, C iv). We derive a bias-corrected number density of dN/dz(Si iii)= 2.5 ± 0.4 for absorbers with column densities log N(Si iii) > 12.2, which is ~3 times the number density of strong Mg ii systems at z = 0. This number density matches the expected cross section of a Si iii absorbing CGM around the local galaxy population with a mean covering fraction of ⟨ fc ⟩ = 0.69. For the majority (~60 percent) of the absorbers, we identify possible host galaxies within 300 km s-1 of the absorbers and derive impact parameters ρ files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A68

  11. Cosmological Constraints with Clustering-Based Redshifts

    Kovetz, Ely D; Rahman, Mubdi

    2016-01-01

    We demonstrate that observations lacking reliable redshift information, such as photometric and radio continuum surveys, can produce robust measurements of cosmological parameters when empowered by clustering-based redshift estimation. This method infers the redshift distribution based on the spatial clustering of sources, using cross-correlation with a reference dataset with known redshifts. Applying this method to the existing SDSS photometric galaxies, and projecting to future radio continuum surveys, we show that sources can be efficiently divided into several redshift bins, increasing their ability to constrain cosmological parameters. We forecast constraints on the dark-energy equation-of-state and on local non-gaussianity parameters. We explore several pertinent issues, including the tradeoff between including more sources versus minimizing the overlap between bins, the shot-noise limitations on binning, and the predicted performance of the method at high redshifts. Remarkably, we find that, once this ...

  12. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 grism spectra, redshifts, and emission line measurements for $\\sim 100,000$ galaxies

    Momcheva, Ivelina G; van Dokkum, Pieter G; Skelton, Rosalind E; Whitaker, Katherine E; Nelson, Erica J; Fumagalli, Mattia; Maseda, Michael V; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Schreiber, Natascha M Förster; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Lange, Johannes Ulf; Lundgren, Britt F; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G; Price, Sedona; Tal, Tomer; Wake, David A; van der Wel, Arjen; Wuyts, Stijn

    2015-01-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 $H_{140}$ imaging, parallel ACS G800L spectroscopy, and parallel $I_{814}$ imaging. In a previous paper (Skelton et al. 2014) we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N. The data analysis is complicated by the fact that no slits are used: all objects in the WFC3 field are dispersed, and many spectra overlap. We developed software to automatically and optimally extract interlaced 2D and 1D spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxie...

  13. HerMES: A search for high-redshift dusty galaxies in the HerMES Large Mode Survey - Catalogue, number counts and early results

    Asboth, V; Sayers, J; Bethermin, M; Chapman, S C; Clements, D L; Cooray, A; Dannerbauer, H; Farrah, D; Glenn, J; Golwala, S R; Halpern, M; Ibar, E; Ivison, R J; Maloney, P R; Marques-Chaves, R; Martinez-Navajas, P I; Oliver, S J; Perez-Fournon, I; Riechers, D A; Rowan-Robinson, M; Scott, Douglas; Siegel, S R; Vieira, J D; Viero, M; Wang, L; Wardlow, J; Wheeler, J

    2016-01-01

    Selecting sources with rising flux densities towards longer wavelengths from Herschel/SPIRE maps is an efficient way to produce a catalogue rich in high-redshift (z > 4) dusty star-forming galaxies. The effectiveness of this approach has already been confirmed by spectroscopic follow-up observations, but the previously available catalogues made this way are limited by small survey areas. Here we apply a map-based search method to 274 deg$^2$ of the HerMES Large Mode Survey (HeLMS) and create a catalogue of 477 objects with SPIRE flux densities $S_{500} > S_{350} >S_{250}$ and a 5 \\sigma cut-off $S_{500}$ > 52 mJy. From this catalogue we determine that the total number of these "red" sources is at least an order of magnitude higher than predicted by galaxy evolution models. These results are in agreement with previous findings in smaller HerMES fields; however, due to our significantly larger sample size we are also able to investigate the shape of the red source counts for the first time. We examine the 500 $...

  14. The Subaru-XMM-Newton Deep Survey (SXDS) VIII.: Multi-wavelength Identification, Optical/NIR Spectroscopic Properties, and Photometric Redshifts of X-ray Sources

    Akiyama, Masayuki; Watson, Mike G; Furusawa, Hisanori; Takata, Tadafumi; Simpson, Chris; Morokuma, Tomoki; Yamada, Toru; Ohta, Kouji; Iwamuro, Fumihide; Yabe, Kiyoto; Tamura, Naoyuki; Moritani, Yuuki; Takato, Naruhisa; Kimura, Masahiko; Maihara, Toshinori; Dalton, Gavin; Lewis, Ian; Lee, Hanshin; Lake, Emma Curtis; Macaulay, Edward; Clarke, Frazer; Silverman, John D; Croom, Scott; Ouchi, Masami; Hanami, Hitoshi; Tello, J Diaz; Yoshikawa, Tomohiro; Fujishiro, Naofumi; Sekiguchi, Kazuhiro

    2015-01-01

    We report the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV to the mid-IR. We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6micron, near-UV, and 24micron source catalogs as well as matching catalogs of AGN candidates selected in 1.4GHz radio and i'-band variability surveys. Once candidates of Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65\\% of the X-ray AGN candidates are spectroscopically-identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilising the multi-wavelength photometric data of the large sample of X-ray selected AGNs, w...

  15. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionised outflows in the host galaxies of X-ray AGN

    Harrison, C M; Mullaney, J R; Stott, J P; Swinbank, A M; Arumugam, V; Bauer, F E; Bower, R G; Bunker, A J; Sharples, R M

    2015-01-01

    We present the first results from the KMOS AGN Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic survey of z>0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (Lx=10^42-10^45 erg/s), for which we observed [O III] (z=1.1-1.7) or Halpha emission (z=0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ~50 per cent have ionised gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e., overall line-widths >~600 km/s). The most luminous half (i.e., Lx>6x10^43 erg/s) have a >~2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z<0.4 AGN. This implies little ev...

  16. The Lenses Structure and Dynamics Survey: luminous and dark matter in high redshift early-type galaxies

    Treu, T.; Koopmans, L.

    2003-01-01

    I will present the latest results from the Lenses Structure and Dynamics (LSD) Survey. Using ESI on the Keck Telescope, we have measured spatially resolved stellar kinematics for a sample of 11 early-type galaxies (E/S0s) in the range z=0.1-1, selected as gravitational lenses. By combining lensing a

  17. The VLT LBG Redshift Survey - I. Clustering and dynamics of approximate to 1000 galaxies at z approximate to 3

    Bielby, R. M.; Shanks, T.; Weilbacher, P. M.; Infante, L.; Crighton, N. H. M.; Bornancini, C.; Bouche, N.; Heraudeau, P.; Lambas, D. G.; Lowenthal, J.; Minniti, D.; Padilla, N.; Petitjean, P.; Theuns, T.

    2011-01-01

    We present the initial imaging and spectroscopic data acquired as part of the Very Large Telescope (VLT) VIMOS Lyman-break galaxy Survey. UBR (or UBVI) imaging covers five approximate to 36 x 36 arcmin(2) fields centred on bright z > 3 quasi-stellar objects (QSOs), allowing approximate to 21 000 2 <

  18. QSOs in the ALHAMBRA survey. I. Photometric redshift accuracy through a 23 optical-NIR filter photometry

    Matute, I; Masegosa, J; Husillos, C; del Olmo, A; Perea, J; Alfaro, E J; Fernández-Soto, A; Moles, M; Aguerri, J A L; Aparicio-Villegas, T; Benítez, N; Broadhurst, T; Cabrera-Cano, J; Castander, F J; Cepa, J; Cerviño, M; Cristóbal-Hornillos, D; Infante, L; Delgado, R M González; Martínez, V J; Molino, A; Prada, F; Quintana, J M

    2012-01-01

    We characterize the ability of the ALHAMBRA survey to assign accurate photo-z's to BLAGN and QSOs based on their ALHAMBRA very-low-resolution optical-NIR spectroscopy. A sample of 170 spectroscopically identified BLAGN and QSOs have been used together with a library of templates (including SEDs from AGN, normal, starburst galaxies and stars) in order to fit the 23 photometric data points provided by ALHAMBRA in the optical and NIR (20 medium-band optical filters plus the standard JHKs). We find that the ALHAMBRA photometry is able to provide an accurate photo-z and spectral classification for ~88% of the spectroscopic sources over 2.5 deg^2 in different areas of the survey, all of them brighter than m678=23.5 (equivalent to r(SLOAN)~24.0). The derived photo-z accuracy is better than 1% and comparable to the most recent results in other cosmological fields. The fraction of outliers (~12%) is mainly caused by the larger photometric errors for the faintest sources and the intrinsic variability of the BLAGN/QSO p...

  19. The zCOSMOS redshift survey: the three-dimensional classification cube and bimodality in galaxy physical properties

    Mignoli, M; Scodeggio, M; Cimatti, A; Halliday, C; Lilly, S J; Pozzetti, L; Vergani, D; Carollo, C M; Contini, T; Le Fèvre, O; Mainieri, V; Renzini, A; Bardelli, S; Bolzonella, M; Bongiorno, A; Caputi, K; Coppa, G; Cucciati, O; De la Torre, S; de Ravel, L; Franzetti, P; Garilli, B; Iovino, A; Kampczyk, P; Kneib, J -P; Knobel, C; Kovac, K; Lamareille, F; Le Borgne, J F; Le Brun, V; Maier, C; Pellò, R; Peng, Y; Montero, E Perez; Ricciardelli, E; Scarlata, C; Silverman, J D; Tanaka, M; Tasca, L; Tresse, L; Zucca, E; Abbas, U; Bottini, D; Capak, P; Cappi, A; Cassata, P; Fumana, M; Guzzo, L; Leauthaud, A; MacCagni, D; Marinoni, C; McCracken, H J; Memeo, P; Meneux, B; Oesch, P; Porciani, C; Scaramella, R; Scoville, N

    2008-01-01

    Aims. We investigate the relationships between three main optical galaxy observables (spectral properties, colours, and morphology), exploiting the data set provided by the COSMOS/zCOSMOS survey. The purpose of this paper is to define a simple galaxy classification cube, using a carefully selected sample of around 1000 galaxies. Methods. Using medium resolution spectra of the first 1k zCOSMOS-bright sample, optical photometry from the Subaru/COSMOS observations, and morphological measurements derived from ACS imaging, we analyze the properties of the galaxy population out to z~1. Applying three straightforward classification schemes (spectral, photometric, and morphological), we identify two main galaxy types, which appear to be linked to the bimodality of galaxy population. The three parametric classifications constitute the axes of a "classification cube". Results. A very good agreement exists between the classification from spectral data (quiescent/star-forming galaxies) and that based on colours (red/blue...

  20. An ESO\\/VLT survey of NIR (Z<=25) selected galaxies at redshifts 4.5

    Fontana, A; Menci, N; Nonino, M; Giallongo, E; Cristiani, S; D'Odorico, S

    2002-01-01

    We present the results of a VLT and HST imaging survey aimed at the identification of 4.54.5 galaxies. The resulting integral surface density of the Z4.5z is in the range 0.13-0.44/arcmin^2 and that in the highest redshift bin 5

  1. The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass-metallicity relation and the fundamental metallicity relation at $z\\sim1.4$

    Yabe, Kiyoto; Akiyama, Masayuki; Bunker, Andrew; Dalton, Gavin; Ellis, Richard; Glazebrook, Karl; Goto, Tomotsugu; Imanishi, Masatoshi; Iwamuro, Fumihide; Okada, Hiroyuki; Shimizu, Ikkoh; Takato, Naruhisa; Tamura, Naoyuki; Tonegawa, Motonari; Totani, Tomonori

    2015-01-01

    We present the results from a large near-infrared spectroscopic survey with Subaru/FMOS (\\textit{FastSound}) consisting of $\\sim$ 4,000 galaxies at $z\\sim1.4$ with significant H$\\alpha$ detection. We measure the gas-phase metallicity from the [N~{\\sc ii}]$\\lambda$6583/H$\\alpha$ emission line ratio of the composite spectra in various stellar mass and star-formation rate bins. The resulting mass-metallicity relation generally agrees with previous studies obtained in a similar redshift range to that of our sample. No clear dependence of the mass-metallicity relation with star-formation rate is found. Our result at $z\\sim1.4$ is roughly in agreement with the fundamental metallicity relation at $z\\sim0.1$ with fiber aperture corrected star-formation rate. We detect significant [S~{\\sc ii}]$\\lambda\\lambda$6716,6731 emission lines from the composite spectra. The electron density estimated from the [S~{\\sc ii}]$\\lambda\\lambda$6716,6731 line ratio ranges from 10 -- 500 cm$^{-3}$, which generally agrees with that of lo...

  2. Comparison of HI and optical redshifts of galaxies - The impact of redshift uncertainties on spectral line stacking

    Maddox, Natasha; Blyth, S -L; Jarvis, M J

    2013-01-01

    Accurate optical redshifts will be critical for spectral co-adding techniques used to extract detections from below the noise level in ongoing and upcoming surveys for HI, which will extend our current understanding of gas reservoirs in galaxies to lower column densities and higher redshifts. We have used existing, high quality optical and radio data from the SDSS and ALFALFA surveys to investigate the relationship between redshifts derived from optical spectroscopy and neutral hydrogen (HI) spectral line observations. We find that the two redshift measurements agree well, with a negligible systematic offset and a small distribution width. Employing simple simulations, we determine how the width of an ideal stacked HI profile depends on these redshift offsets, as well as larger redshift errors more appropriate for high redshift galaxy surveys. The width of the stacked profile is dominated by the width distribution of the input individual profiles when the redshift errors are less than the median width of the ...

  3. Redshift uncertainties and baryonic acoustic oscillations

    Chaves-Montero, Jonás; Hernández-Monteagudo, Carlos

    2016-01-01

    In the upcoming era of high-precision galaxy surveys, it becomes necessary to understand the impact of uncertain redshift estimators on cosmological observables. In this paper we present a detailed exploration of the galaxy clustering and baryonic acoustic oscillation (BAO) signal under the presence of redshift errors. We provide analytic expressions for how the monopole and the quadrupole of the redshift-space power spectrum (together with their covariances) are affected. Additionally, we discuss the modifications in the shape, signal to noise, and cosmological constraining power of the BAO signature. We show how and why the BAO contrast is $\\mathit{enhanced}$ with small redshift uncertainties, and explore in detail how the cosmological information is modulated by the interplay of redshift-space distortions, redshift errors, and the number density of the sample. We validate our results by comparing them with measurements from a ensemble of $N$-body simulations with $8100h^{-3}\\text{Gpc}^3$ aggregated volume....

  4. New Techniques for Relating Dynamically Close Galaxy Pairs to Merger and Accretion Rates Application to the SSRS2 Redshift Survey

    Patton, D R; Marzke, R O; Pritchet, C J; Da Costa, L N; Pellegrini, P S

    2000-01-01

    We introduce two new pair statistics, which relate close galaxy pairs to the merger and accretion rates. We demonstrate the importance of correcting these (and other) pair statistics for selection effects related to sample depth and completeness. In particular, we highlight the severe bias that can result from the use of a flux-limited survey. The first statistic, denoted N_c, gives the number of companions per galaxy, within a specified range in absolute magnitude. N_c is directly related to the galaxy merger rate. The second statistic, called L_c, gives the total luminosity in companions, per galaxy. This quantity can be used to investigate the mass accretion rate. Both N_c and L_c are related to the galaxy correlation function and luminosity function in a straightforward manner. We outline techniques which account for various selection effects, and demonstrate the success of this approach using Monte Carlo simulations. If one assumes that clustering is independent of luminosity (which is appropriate for re...

  5. The Subaru FMOS Galaxy Redshift Survey (FastSound). II. The Emission Line Catalog and Properties of Emission Line Galaxies

    Okada, Hiroyuki; Tonegawa, Motonari; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Ohta, Kouji; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Okumura, Teppei; Shimizu, Ikkoh

    2015-01-01

    We present basic properties of $\\sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$\\alpha$ emitters at $z \\sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$\\alpha$ flux sensitivity limit of $\\sim 1.6 \\times 10^{-16} \\rm erg \\ cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$\\alpha$ emitters, which have H$\\alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_\\odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_\\odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $\\sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$\\alpha$ lines is about 4% in the single-line emission galaxies, which are m...

  6. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM

    Werk, Jessica K.; Prochaska, J. Xavier [UCO/Lick Observatory, University of California, Santa Cruz, CA (United States); Thom, Christopher; Tumlinson, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD (United States); Tripp, Todd M. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); O' Meara, John M. [Department of Chemistry and Physics, Saint Michael' s College, Colchester, VT (United States); Peeples, Molly S., E-mail: jwerk@ucolick.org [Department of Physics and Astronomy, University of California, Los Angles, CA (United States)

    2013-02-15

    We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R < 160 kpc to the targeted galaxies. The data show significant metal-line absorption for 33 of the 44 galaxies, including quiescent systems, revealing the common occurrence of a cool (T Almost-Equal-To 10{sup 4}-10{sup 5} K), metal-enriched CGM. The detection rates and column densities derived for these metal lines decrease with increasing impact parameter, a trend we interpret as a declining metal surface density profile for the CGM. A comparison of the relative column densities of adjacent ionization states indicates that the gas is predominantly ionized. The large surface density in metals demands a large reservoir of metals and gas in the cool CGM (very conservatively, M {sup cool} {sub CGM} > 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that the cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.

  7. An ALMA Survey of Submillimeter Galaxies in the Extended Chandra Deep Field South: The Redshift Distribution and Evolution of Submillimeter Galaxies

    Simpson, James; Smail, Ian; Alexander, Dave; Brandt, Niel; Bertoldi, Frank; de Breuck, Carlos; Chapman, Scott; Coppin, Kristen; da Cunha, Elisabete; Danielson, Alice; Dannerbauer, Helmut; Greve, Thomas; Hodge, Jackie; Ivison, Rob; Karim, Alex; Knudsen, Kirsten; Poggianti, Bianca; Schinnerer, Eva; Thomson, Alasdair; Walter, Fabian; Wardlow, Julie; Weiss, Axel; van der Werf, Paul

    2013-01-01

    We present the first photometric redshift distribution for a large unbiased sample of 870um selected submillimeter galaxies (SMGs) with robust identifications based on observations with the Atacama Large Millimeter Array (ALMA). In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band, optical-near-infrared, photometry. We model the Spectral Energy Distributions (SEDs) for these 77 SMGs, deriving a median photometric redshift of z=2.3+/-0.1. The remaining 19 SMGs have insufficient optical or near-infrared photometry to derive photometric redshifts, but a stacking analysis of IRAC and Herschel observations confirms they are not spurious. Assuming these sources have an absolute H-band magnitude distribution comparable to that of a complete sample of z~1-2 SMGs, we demonstrate that the undetected SMGs lie at higher redshifts, raising the median redshift for SMGs to z=2.5+/-0.2. More critically we show that the proportion of galaxies undergoing an SMG phase at z>3 i...

  8. Searches for High Redshift Clusters

    Dickinson, M

    1996-01-01

    High redshift galaxy clusters have traditionally been a fruitful place to study galaxy evolution. I review various search strategies for finding clusters at z > 1. Most efforts to date have concentrated on the environments of distant AGN. I illustrate these with data on the cluster around 3C 324 (z=1.2) and other, more distant systems, and discuss possibilities for future surveys with large telescopes.

  9. Photometric Redshifts for the SDSS Early Data Release

    Csabai, I; Connolly, A J; Szalay, A S; Györy, Z; Benítez, N; Annis, J; Brinkmann, J; Eisenstein, D J; Fukugita, M; Gunn, J; Kent, S; Lupton, R; Nichol, R C; Stoughton, C; Csabai, Istvan; Budavari, Tamas; Connolly, Andrew J.; Szalay, Alexander S.; Gyory, Zsuzsanna; Benitez, Narciso; Annis, Jim; Brinkmann, Jon; Eisenstein, Daniel; Fukugita, Masataka; Gunn, Jim; Kent, Stephen; Lupton, Robert; Nichol, Robert C.; Stoughton, Chris

    2003-01-01

    The Early Data Release from the Sloan Digital Sky survey provides one of the largest multicolor photometric catalogs currently available to the astronomical community. In this paper we present the first application of photometric redshifts to the $\\sim 6$ million extended sources within these data (with 1.8 million sources having $r' < 21$). Utilizing a range of photometric redshift techniques, from empirical to template and hybrid techniques, we investigate the statistical and systematic uncertainties present within the redshift estimates for the EDR data. For $r'<21$ we find that the redshift estimates provide realistic redshift histograms with an rms uncertainty in the photometric redshift relation of 0.035 at $r'<18$ and rising to 0.1 at $r'<21$. We conclude by describing how these photometric redshifts and derived quantities, such as spectral type, restframe colors and absolute magnitudes, are stored within the SDSS database. We provide sample queries for searching on photometric redshifts an...

  10. Photometric Redshifts of Galaxies in COSMOS

    Mobasher, B; Scoville, N Z; Dahlen, T; Salvato, M; Aussel, H; Thompson, D J; Feldmann, R; Tasca, L; Lefèvre, O; Lilly, S; Carollo, C M; Kartaltepe, J S; McCracken, H; Mould, J; Renzini, A; Sanders, D B; Shopbell, P L; Taniguchi, Y; Ajiki, M; Shioya, Y; Contini, T; Giavalisco, M; Ilbert, O; Iovino, A; Le Brun, V; Mainieri, V; Mignoli, M; Scodeggio, M

    2006-01-01

    We measure photometric redshifts and spectral types for galaxies in the COSMOS survey. We use template fitting technique combined with luminosity function priors and with the option to simultaneously estimate dust extinction (i.e. E(B-V)) for each galaxy.Our estimated redshifts are accurate to i<25 and z~1.2. Using simulations with sampling and noise characteristics similar to those in COSMOS, the accuracy and reliability is estimated for the photometric redshifts as a function of the magnitude limits of the sample, S/N ratios and the number of bands used. From the simulations we find that the ratio of derived 95% confidence interval in the redshift probability distribution to the estimated photometric redshift (D95) can be used to identify and exclude the catastrophic failures in the photometric redshift estimates. We compare the derived redshifts with high-reliability spectroscopic redshifts for a sample of 868 normal galaxies with z < 1.2 from zCOSMOS. Considering different scenarios, depending on us...

  11. Dusty Quasars at High Redshifts

    Weedman, Daniel

    2016-01-01

    A population of quasars at z ~ 2 is determined based on dust luminosities vLv(7.8 um) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio vLv(0.25 um)/vLv(7.8 um) = UV/IR, assumed to measure obscuration of UV luminosity by the dust which produces IR luminosity. Quasar counts at rest frame 7.8 um are determined for quasars in the Bootes field of the NOAO Deep Wide Field Survey using 24 um sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest frame 7.8 um, but the ratio Lv(100 um)/Lv(7.8 um) is about three times high...

  12. The DAFT/FADA survey. I.Photometric redshifts along lines of sight to clusters in the z=[0.4,0.9] interval

    Guennou, L.; /Northwestern U. /Marseille, Lab. Astrophys.; Adami, C.; /Marseille, Lab. Astrophys.; Ulmer, M.P.; /Northwestern U. /Marseille, Lab. Astrophys.; LeBrun, V.; /Marseille, Lab. Astrophys.; Durret, F.; /Paris, Inst. Astrophys.; Johnston, D.; /Fermilab; Ilbert, O.; /Marseille, Lab. Astrophys.; Clowe, D.; /Ohio U.; Gavazzi, R.; /Paris, Inst. Astrophys.; Murphy, K.; /Ohio U.; Schrabback, T.; /Leiden Observ. /Fermilab

    2010-08-01

    As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from Weak Lensing Tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. Aims. The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. This project is based on a sample of 91 high redshift (z {ge} 0.4), massive ({approx}> 3 x 10{sup 14} M{sub {circle_dot}}) clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of I{sub AB} = 24./24.5 with the LePhare software. The accuracy in redshift is of the order of 0.05 for the range 0.2 {le} z {le} 1.5. We verified that the technique applied to obtain photometric redshifts works well by comparing our results to with previous works. In clusters, photo-z accuracy is degraded for bright absolute magnitudes and for the latest and earliest type galaxies. The photo-z accuracy also only slightly varies as a function of the spectral type for field galaxies. As a consequence, we find evidence for an environmental dependence of the photo-z accuracy, interpreted as the standard used Spectral Energy Distributions being not very well suited to cluster galaxies. Finally, we modeled the LCDCS 0504 mass with the strong arcs detected along this line of sight.

  13. Gravitational redshifts from large-scale structure

    Croft, Rupert A C

    2013-01-01

    The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak et al. has opened a new observational window on dark matter and modified gravity. By stacking clusters this determination effectively used the line of sight distortion of the cross-correlation function of massive galaxies and lower mass galaxies to estimate the gravitational redshift profile of clusters out to 4 Mpc/h. Here we use a halo model of clustering to predict the distortion due to gravitational redshifts of the cross-correlation function on scales from 1 - 100 Mpc/h. We compare our predictions to simulations and use the simulations to make mock catalogues relevant to current and future galaxy redshift surveys. Without formulating an optimal estimator, we find that the full BOSS survey should be able to detect gravitational redshifts from large-scale structure at the ~4 sigma level. Upcoming redshift surveys will greatly increase the number of galaxies useable in such studies and the BigBOSS and Euclid exper...

  14. A new method to search for high-redshift clusters using photometric redshifts

    Castignani, G.; Celotti, A. [SISSA, Via Bonomea 265, I-34136 Trieste (Italy); Chiaberge, M.; Norman, C., E-mail: castigna@sissa.it [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  15. The DAFT/FADA survey. I.Photometric redshifts along lines of sight to clusters in the z=[0.4,0.9] interval

    Guennou, L; Ulmer, M P; LeBrun, V; Durret, F; Johnston, D; Ilbert, O; Clowe, D; Gavazzi, R; Murphy, K; Schrabback, T; Allam, S; Annis, J; Basa, S; Benoist, C; Biviano, A; Cappi, A; Kubo, J M; Marshall, P; Mazure, A; Rostagni, F; Russeil, D; Slezak, E

    2010-01-01

    As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from Weak Lensing Tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. This project is based on a sample of 91 high redshift (z>0.4), massive clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of I_AB=24/24.5 with the LePhare s...

  16. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data III A Color Selected Sample at i^*<20 in the Fall Equatorial Stripe

    Fan, X; Richards, G T; Newman, J A; Becker, R H; Schneider, D P; Gunn, J E; Davis, M; White, R L; Lupton, R H

    2000-01-01

    This is the third paper in a series aimed at finding high-redshift quasars from five-color (u'g'r'i'z') imaging data taken along the Celestial Equator by the SDSS during its commissioning phase. In this paper, we first present the observations of 14 bright high-redshift quasars (3.66redshift quasars in the same region of the sky. Combined with the quasars presented in previous papers, we define a color-selected flux-limited sample of 39 quasars at 3.6 < z < 5.0 and i^*<20, covering a total effective area of 182 deg^2. From this sample, we estimate the average spectral power law slope in the rest-frame ultraviolet for quasars at z~4 to be -0.79 with a standard deviation of 0.34, and the average rest-frame equivalent width of the Ly alpha+N V emission line to be 69 A with a standard deviation of 18 A. The selection completeness of this multicolor sample is determined from the mo...

  17. The Chandra COSMOS Legacy Survey: Clustering of X-ray selected AGN at 2.9redshift Probability Distribution Functions

    Allevato, V; Finoguenov, A; Marchesi, S; Zamorani, G; Hasinger, G; Salvato, M; Miyaji, T; Gilli, R; Cappelluti, N; Brusa, M; Suh, H; Lanzuisi, G; Trakhtenbrot, B; Griffiths, R; Vignali, C; Schawinski, K; Karim, A

    2016-01-01

    We present the measurement of the projected and redshift space 2-point correlation function (2pcf) of the new catalog of Chandra COSMOS-Legacy AGN at 2.9$\\leq$z$\\leq$5.5 ($\\langle L_{bol} \\rangle \\sim$10$^{46}$ erg/s) using the generalized clustering estimator based on phot-z probability distribution functions (Pdfs) in addition to any available spec-z. We model the projected 2pcf estimated using $\\pi_{max}$ = 200 h$^{-1}$ Mpc with the 2-halo term and we derive a bias at z$\\sim$3.4 equal to b = 6.6$^{+0.60}_{-0.55}$, which corresponds to a typical mass of the hosting halos of log M$_h$ = 12.83$^{+0.12}_{-0.11}$ h$^{-1}$ M$_{\\odot}$. A similar bias is derived using the redshift-space 2pcf, modelled including the typical phot-z error $\\sigma_z$ = 0.052 of our sample at z$\\geq$2.9. Once we integrate the projected 2pcf up to $\\pi_{max}$ = 200 h$^{-1}$ Mpc, the bias of XMM and \\textit{Chandra} COSMOS at z=2.8 used in Allevato et al. (2014) is consistent with our results at higher redshift. The results suggest only...

  18. High-Redshift Cool-Core Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect in the South Pole Telescope Survey

    Semler, D R; Aird, K A; Ashby, M L N; Bautz, M; Bayliss, M; Bazin, G; Bocquet, S; Benson, B A; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Foley, R J; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McDonald, M; McMahon, J J; Mehl, J; Meyer, S S; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-01-01

    We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg^2 observed with the South Pole Telescope (SPT) and followed-up by the Chandra X-ray Observatory. They form an approximately mass-limited sample (> 3 x 10^14 M_sun h^-1_70) spanning redshifts 0.3 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4{\\sigma} level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z cSB distribution for the SPT sample is statistically consistent with that of X-ray--selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and t...

  19. Exploring the SDSS Photometric Galaxies with Clustering Redshifts

    Rahman, Mubdi; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J; Morrison, Christopher B; Budavári, Tamás

    2015-01-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SED). We identify and locate star-forming, quiescent galaxies, and AGN, as well as colour changes due to spectral features, such as the 4000 \\AA{} break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ~ 0.8. While the overall shape agrees with that infer...

  20. Clustering-based redshift estimation: application to VIPERS/CFHTLS

    Scottez, V; Granett, B R; Moutard, T; Kilbinger, M; Scodeggio, M; Garilli, B; Bolzonella, M; de la Torre, S; Guzzo, L; Abbas, U; Adami, C; Arnouts, S; Bottini, D; Branchini, E; Cappi, A; Cucciati, O; Davidzon, I; Fritz, A; Franzetti, P; Iovino, A; Krywult, J; Brun, V Le; Fèvre, O Le; Maccagni, D; Małek, K; Marulli, F; Polletta, M; Pollo, A; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A; Bel, J; Coupon, J; De Lucia, G; Ilbert, O; McCracken, H J; Moscardini, L

    2016-01-01

    We explore the accuracy of the clustering-based redshift estimation proposed by M\\'enard et al. (2013) when applied to VIPERS and CFHTLS real data. This method enables us to reconstruct redshift distributions from measurement of the angular clus- tering of objects using a set of secure spectroscopic redshifts. We use state of the art spectroscopic measurements with iAB 0.5 which allows us to test the accuracy of the clustering-based red- shift distributions. We show that this method enables us to reproduce the true mean color-redshift relation when both populations have the same magnitude limit. We also show that this technique allows the inference of redshift distributions for a population fainter than the one of reference and we give an estimate of the color-redshift mapping in this case. This last point is of great interest for future large redshift surveys which suffer from the need of a complete faint spectroscopic sample.

  1. VIMOS Ultra-Deep Survey (VUDS): IGM transmission towards galaxies with 2.5 < z < 5.5 and the colour selection of high-redshift galaxies

    Thomas, R.; Le Fèvre, O.; Le Brun, V.; Cassata, P.; Garilli, B.; Lemaux, B. C.; Maccagni, D.; Pentericci, L.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Cassarà, L.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Pforr, J.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vanzella, E.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; Cuby, J. G.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2017-01-01

    The observed UV rest-frame spectra of distant galaxies are the result of their intrinsic emission combined with absorption along the line of sight produced by the inter-galactic medium (IGM). Here we analyse the evolution of the mean IGM transmission Tr(Lyα) and its dispersion along the line of sight for 2127 galaxies with 2.5 transmission to the galaxy spectra using the spectral fitting algorithm GOSSIP+. We used these fits to derive the mean IGM transmission towards each galaxy for several redshift slices from z = 2.5 to z = 5.5. We found that the mean IGM transmission defined as Tr(Lyα) = e- τ (with τ as the HI optical depth) is 79%, 69%, 59%, 55%, and 46% at redshifts 2.75, 3.22, 3.70, 4.23, and 4.77, respectively. We compared these results to measurements obtained from quasar lines of sight and found that the IGM transmission towards galaxies is in excellent agreement with quasar values up to redshift z 4. We found tentative evidence for a higher IGM transmission at z ≥ 4 compared to results from QSOs, but a degeneracy between dust extinction and IGM prevents us from firmly concluding whether the internal dust extinction for star-forming galaxies at z > 4 takes a mean value significantly in excess of E(B-V) > 0.15. Most importantly, we found a large dispersion of IGM transmission along the lines of sight towards distant galaxies with 68% of the distribution within 10 to 17% of the median value in δz = 0.5 bins, similar to what is found on the lines of sight towards QSOs. We demonstrate that taking this broad range of IGM transmission into account is important when selecting high-redshift galaxies based on their colour properties (e.g. LBG or photometric redshiftselection) because failing to do so causes a significant incompleteness in selecting high-redshift galaxy populations. We finally discuss the observed IGM properties and speculate that the broad range of observed transmissions might be the result of cosmic variance and clustering along lines of

  2. Uncertain Photometric Redshifts

    Polsterer, Kai Lars; Gieseke, Fabian

    2016-01-01

    Photometric redshifts play an important role as a measure of distance for various cosmological topics. Spectroscopic redshifts are only available for a very limited number of objects but can be used for creating statistical models. A broad variety of photometric catalogues provide uncertain low resolution spectral information for galaxies and quasars that can be used to infer a redshift. Many different techniques have been developed to produce those redshift estimates with increasing precision. Instead of providing a point estimate only, astronomers start to generate probabilistic density functions (PDFs) which should provide a characterisation of the uncertainties of the estimation. In this work we present two simple approaches on how to generate those PDFs. We use the example of generating the photometric redshift PDFs of quasars from SDSS(DR7) to validate our approaches and to compare them with point estimates. We do not aim for presenting a new best performing method, but we choose an intuitive approach t...

  3. Exploring the SDSS photometric galaxies with clustering redshifts

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-07-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  4. Cosmological constraints from Sunyaev-Zeldovich cluster counts: An approach to account for missing redshifts

    Bonaldi, A.; Battye, R. A.; Brown, M. L., E-mail: anna.bonaldi@manchester.ac.uk [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2014-05-10

    The accumulation of redshifts provides a significant observational bottleneck when using galaxy cluster surveys to constrain cosmological parameters. We propose a simple method to allow the use of samples where there is a fraction of the redshifts that are not known. The simplest assumption is that the missing redshifts are randomly extracted from the catalog, but the method also allows one to take into account known selection effects in the accumulation of redshifts. We quantify the reduction in statistical precision of cosmological parameter constraints as a function of the fraction of missing redshifts for simulated surveys, and also investigate the impact of making an incorrect assumption for the distribution of missing redshifts.

  5. Cosmological constraints from Sunyaev-Zeldovich cluster counts: an approach to account for missing redshifts

    Bonaldi, A; Brown, M L

    2014-01-01

    The accumulation of redshifts provides a significant observational bottleneck when using galaxy cluster surveys to constrain cosmological parameters. We propose a simple method to allow the use of samples where there is a fraction of the redshifts that are not known. The simplest assumption is that the missing redshifts are randomly extracted from the catalogue, but the method also allows one to take into account known selection effects in the accumulation of redshifts. We quantify the reduction in statistical precision of cosmological parameter constraints as a function of the fraction of missing redshifts for simulated surveys, and also investigate the impact of making an incorrect assumption for the distribution of missing redshifts.

  6. THE METALLICITY EVOLUTION OF STAR-FORMING GALAXIES FROM REDSHIFT 0 TO 3: COMBINING MAGNITUDE-LIMITED SURVEY WITH GRAVITATIONAL LENSING

    Yuan, T.-T.; Kewley, L. J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Richard, J. [CRAL, Observatoire de Lyon, Universite Lyon 1, 9 Avenue Charles Andre, F-69561 Saint Genis Laval Cedex (France)

    2013-01-20

    We present a comprehensive observational study of the gas-phase metallicity of star-forming galaxies from z {approx} 0 {yields} 3. We combine our new sample of gravitationally lensed galaxies with existing lensed and non-lensed samples to conduct a large investigation into the mass-metallicity (MZ) relation at z > 1. We apply a self-consistent metallicity calibration scheme to investigate the metallicity evolution of star-forming galaxies as a function of redshift. The lensing magnification ensures that our sample spans an unprecedented range of stellar mass (3 Multiplication-Sign 10{sup 7} to 6 Multiplication-Sign 10{sup 10} M {sub Sun }). We find that at the median redshift of z = 2.07, the median metallicity of the lensed sample is 0.35 dex lower than the local SDSS star-forming galaxies and 0.18 dex lower than the z {approx} 0.8 DEEP2 galaxies. We also present the z {approx} 2 MZ relation using 19 lensed galaxies. A more rapid evolution is seen between z {approx} 1 {yields} 3 than z {approx} 0 {yields} 1 for the high-mass galaxies (10{sup 9.5} M {sub Sun} < M {sub *} < 10{sup 11} M {sub Sun }), with almost twice as much enrichment between z {approx} 1 {yields} 3 than between z {approx} 1 {yields} 0. We compare this evolution with the most recent cosmological hydrodynamic simulations with momentum-driven winds. We find that the model metallicity is consistent with the observed metallicity within the observational error for the low-mass bins. However, for higher masses, the model overpredicts the metallicity at all redshifts. The overprediction is most significant in the highest mass bin of 10{sup 10}-10{sup 11} M {sub Sun }.

  7. The-wiZZ: Clustering redshift estimation for everyone

    Morrison, Christopher B; Schmidt, Samuel J; Baldry, Ivan K; Bilicki, Maciej; Choi, Ami; Erben, Thomas; Schneider, Peter

    2016-01-01

    We present The-wiZZ, an open source and user-friendly software for estimating the redshift distributions of photometric galaxies with unknown redshifts by spatially cross-correlating them against a reference sample with known redshifts. The main benefit of The-wiZZ is in separating the angular pair finding and correlation estimation from the computation of the output clustering redshifts allowing anyone to create a clustering redshift for their sample without the intervention of an "expert". It allows the end user of a given survey to select any sub-sample of photometric galaxies with unknown redshifts, match this sample's catalog indices into a value-added data file, and produce a clustering redshift estimation for this sample in a fraction of the time it would take to run all the angular correlations needed to produce a clustering redshift. We show results with this software using photometric data from the Kilo-Degree Survey (KiDS) and spectroscopic redshifts from the Galaxy and Mass Assembly (GAMA) survey ...

  8. Clustering-based redshift estimation: application to VIPERS/CFHTLS

    Scottez, V.; Mellier, Y.; Granett, B. R.; Moutard, T.; Kilbinger, M.; Scodeggio, M.; Garilli, B.; Bolzonella, M.; de la Torre, S.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Branchini, E.; Cappi, A.; Cucciati, O.; Davidzon, I.; Fritz, A.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Bel, J.; Coupon, J.; De Lucia, G.; Ilbert, O.; McCracken, H. J.; Moscardini, L.

    2016-10-01

    We explore the accuracy of the clustering-based redshift estimation proposed by Ménard et al. when applied to VIMOS Public Extragalactic Redshift Survey (VIPERS) and Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) real data. This method enables us to reconstruct redshift distributions from measurement of the angular clustering of objects using a set of secure spectroscopic redshifts. We use state-of-the-art spectroscopic measurements with iAB 0.5 which allows us to test the accuracy of the clustering-based redshift distributions. We show that this method enables us to reproduce the true mean colour-redshift relation when both populations have the same magnitude limit. We also show that this technique allows the inference of redshift distributions for a population fainter than the reference and we give an estimate of the colour-redshift mapping in this case. This last point is of great interest for future large-redshift surveys which require a complete faint spectroscopic sample.

  9. Redshift Properties of MASIV Sources

    2010-06-01

    prerequisite. For optical identification we used mainly the Sloan Digital Sky Survey ( SDSS DR 5 Adelman-McCarthy et aJ. 2007) and GSC 2.3 (Lasker et...aJ. 2008). 165 sources werc identified from the SDSS DR5, which is complcte down to r=22.5 (Aef! rv6230A) with astrometric accuracy about (1.𔃻...than the SDSS . The new redshift were obtained using the 2.56 m Nordic Optical Telescope ·(NOT) which is locatcd at La Palma and the 5 m Palomar Hale

  10. Journeying the Redshift Desert

    Renzini, Alvio

    2009-01-01

    The cosmic star formation rate, AGN activity, galaxy growth, mass assembly and morphological differentiation all culminate at redshift $\\sim 2$. Yet, the redshift interval $1.4\\lsim z\\lsim 3$ is harder to explore than the closer and the more distant Universe. In spite of so much action taking place in this spacetime portion of the Universe, it has been dubbed the ``Redshift Desert'', as if very little was happening within its boundaries. The difficulties encountered in properly mapping the galaxy populations inhabiting the Desert are illustrated in this paper, along with some possible remedy.

  11. The SCUBA-2 Cosmology Legacy Survey: the EGS deep field - I. Deep number counts and the redshift distribution of the recovered cosmic infrared background at 450 and 850 μ m

    Zavala, J. A.; Aretxaga, I.; Geach, J. E.; Hughes, D. H.; Birkinshaw, M.; Chapin, E.; Chapman, S.; Chen, Chian-Chou; Clements, D. L.; Dunlop, J. S.; Farrah, D.; Ivison, R. J.; Jenness, T.; Michałowski, M. J.; Robson, E. I.; Scott, Douglas; Simpson, J.; Spaans, M.; van der Werf, P.

    2017-01-01

    We present deep observations at 450 and 850 μm in the Extended Groth Strip field taken with the SCUBA-2 camera mounted on the James Clerk Maxwell Telescope as part of the deep SCUBA-2 Cosmology Legacy Survey (S2CLS), achieving a central instrumental depth of σ450 = 1.2 mJy beam-1 and σ850 = 0.2 mJy beam-1. We detect 57 sources at 450 μm and 90 at 850 μm with signal-to-noise ratio >3.5 over ˜70 arcmin2. From these detections, we derive the number counts at flux densities S450 > 4.0 mJy and S850 > 0.9 mJy, which represent the deepest number counts at these wavelengths derived using directly extracted sources from only blank-field observations with a single-dish telescope. Our measurements smoothly connect the gap between previous shallower blank-field single-dish observations and deep interferometric ALMA results. We estimate the contribution of our SCUBA-2 detected galaxies to the cosmic infrared background (CIB), as well as the contribution of 24 μm-selected galaxies through a stacking technique, which add a total of 0.26 ± 0.03 and 0.07 ± 0.01 MJy sr-1, at 450 and 850 μm, respectively. These surface brightnesses correspond to 60 ± 20 and 50 ± 20 per cent of the total CIB measurements, where the errors are dominated by those of the total CIB. Using the photometric redshifts of the 24 μm-selected sample and the redshift distributions of the submillimetre galaxies, we find that the redshift distribution of the recovered CIB is different at each wavelength, with a peak at z ˜ 1 for 450 μm and at z ˜ 2 for 850 μm, consistent with previous observations and theoretical models.

  12. The VLT LBG Redshift Survey - VI. Mapping HI in the proximity of $z\\sim3$ LBGs with X-Shooter

    Bielby, R M; Crighton, N H M; Bornancini, C G; Infante, L; Lambas, D G; Minniti, D; Morris, S L; Tummuangpak, P

    2016-01-01

    We present an analysis of the spatial distribution of gas and galaxies using new X-Shooter observations of $z\\sim3-4$ quasars. Adding the X-Shooter data to an existing dataset of high resolution quasar spectroscopy, we use a total sample of 29 quasars alongside $\\sim1700$ Lyman Break Galaxies in the redshift range $2redshift-space cross-correlation, we find $s_0=0.27\\pm0.14h^{-1}$Mpc, with power-law slope $\\gamma=1.1\\pm0.2$. We make a first analysis of the dependence of this clustering length on absorber strength based on cuts in the sightline transmitted flux, finding a clear preference for stronger absorption features to be more strongly clustered around the galaxy population than weaker absorption features. Further, we calculate the projected correlation funct...

  13. Calibrating photometric redshift distributions with cross-correlations

    Schulz, A E

    2009-01-01

    The next generation of proposed galaxy surveys will increase the number of galaxies with photometric redshifts by two orders of magnitude, drastically expanding both redshift range and detection threshold from the current state of the art. Obtaining spectra for a fair sub-sample of this new data could be cumbersome and expensive. However, adequate calibration of the true redshift distribution of galaxies is vital to tapping the potential of these surveys. We examine a promising alternative to direct spectroscopic follow up: calibration of the redshift distribution of photometric galaxies via cross-correlation with an overlapping spectroscopic survey whose members trace the same density field. We review the theory, develop a pipeline, apply it to mock data from N-body simulations, and examine the properties of this redshift distribution estimator. We demonstrate that the method is effective, but the estimator is weakened by two factors. 1) The correlation function of the spectroscopic sample must be measured i...

  14. A New Redshift Interpretation

    Gentry, R V

    1997-01-01

    A nonhomogeneous universe with vacuum energy, but without spacetime expansion, is utilized together with gravitational and Doppler redshifts as the basis for proposing a new interpretation of the Hubble relation and the 2.7K Cosmic Blackbody Radiation.

  15. The Star-Formation History of BCGs to z = 1.8 from the SpARCS/SWIRE Survey: Evidence for significant in-situ star formation at high-redshift

    Webb, Tracy; Noble, Allison; Bonaventura, Nina; Geach, James; Hezevah, Yashar; Lidman, Chris; Wilson, Gillian; Yee, H K C; Surace, Jason; Shupe, David

    2015-01-01

    We present the results of a MIPS-24um study of the Brightest Cluster Galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS), which effectively provides a sample selected on total stellar mass, over 0.2 100uJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (Ngal> 12) increases rapidly with redshift. Above z ~ 1, an average of ~20\\% of the sample have 24um-inferred infrared luminosities of LIR > 10^12 Lsun, while the fraction below z ~ 1 exhibiting such luminosities is < 1 \\%. The Spitzer-IRAC colors indicate the bulk of the 24um-detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by Active Galactic Nuclei (AGN). Simple arguments limit the star-formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below reds...

  16. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Exploring the dependence of the three-point correlation function on stellar mass and luminosity at 0.5

    Moresco, M; Moscardini, L; Branchini, E; Cappi, A; Davidzon, I; Granett, B R; de la Torre, S; Guzzo, L; Abbas, U; Adami, C; Arnouts, S; Bel, J; Bolzonella, M; Bottini, D; Coupon, J; Cucciati, O; De Lucia, G; Franzetti, P; Fritz, A; Fumana, M; Garilli, B; Ilbert, O; Iovino, A; Krywult, J; Brun, V Le; Fèvre, O Le; Małek, K; McCracken, H J; Polletta, M; Pollo, A; Scodeggio, M; Tasca, L A M; Tojeiro, R; Vergani, D; Zanichelli, A

    2016-01-01

    The three-point correlation function (3PCF) is a powerful probe to investigate the clustering of matter in the Universe in a complementary way with respect to lower-order statistics, providing additional information with respect to two-point correlation function and allowing to shed light on biasing, nonlinear processes and deviations from Gaussian statistics. In this paper, we analyse the first data release of the VIMOS Public Extragalactic Redshift Survey (VIPERS), determining the dependence of the three-point correlation function on luminosity and stellar mass at $z=[0.5,1.1]$. We exploit the VIPERS Public Data Release 1, consisting of more than 50000 galaxies with B-band magnitudes in the range $-21.6\\lesssim M_{\\rm B}-5\\log(h)\\lesssim-19.9$ and stellar masses in the range $9.8\\lesssim\\log(M_\\star[h^{-2}\\,M_\\odot])\\lesssim 10.7$. We measure both the connected 3PCF and the reduced 3PCF in redshift space, probing different configurations and scales, in the range $2.5

  17. MARZ: Redshifting Program

    Hinton, Samuel

    2016-05-01

    MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.

  18. Plasma Redshift Cosmology

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  19. A new method to separate star forming from AGN galaxies at intermediate redshift: The submillijansky radio population in the VLA-COSMOS survey

    Smolcic, V; Scodeggio, M; Franzetti, P; Aussel, H; Bondi, M; Brusa, M; Carilli, C L; Capak, P; Charlot, S; Ciliegi, P; Ilbert, O; Ivezic, Z; Jahnke, K; McCracken, H J; Obric, M; Salvato, M; Sanders, D B; Scoville, N; Trump, J R; Tremonti, C; Tasca, L; Walcher, C J; Zamorani, G

    2008-01-01

    We explore the properties of the submillijansky radio population at 20 cm by applying a newly developed optical color-based method to separate star forming (SF) from AGN galaxies at intermediate redshifts (z1.3) galaxies. We find, for the composition of the submillijansky radio population, that SF galaxies are not the dominant population at submillijansky flux levels, as previously often assumed, but that they make up an approximately constant fraction of 30-40% in the flux density range of ~50 microJy to 0.7 mJy. In summary, based on the entire VLA-COSMOS radio population at 20 cm, we find that the radio population at these flux densities is a mixture of roughly 30-40% of SF and 50-60% of AGN galaxies, with a minor contribution (~10%) of QSOs.

  20. AzTEC half square degree survey of the SHADES fields : II. Identifications, redshifts, and evidence for large-scale structure

    Michalowski, Michal J.; Dunlop, J.S.; Ivison, R.J.; Cirasuolo, M.; Caputi, K.I.

    2012-01-01

    The AzTEC 1.1mm survey of the two SCUBA HAlf Degree Extragalactic Survey (SHADES) fields is the largest (0.7 deg2) blank-field millimetre-wavelength survey un- dertaken to date at a resolution of ≃ 18 arcsec and a depth of ≃ 1mJy. We have used the deep optical-to-radio multi-wavelength data in the S

  1. The SINFONI Nearby Elliptical Lens Locator Survey: Discovery of two new low-redshift strong lenses and implications for the initial mass function in giant early-type galaxies

    Smith, Russell J; Conroy, Charlie

    2015-01-01

    We present results from a blind survey to identify strong gravitational lenses among the population of low-redshift early-type galaxies. The SINFONI Nearby Elliptical Lens Locator Survey (SNELLS) uses integral-field infrared spectroscopy to search for lensed emission line sources behind massive lens candidates at $z$300 km/s) and \\alpha-element abundances ([Mg/Fe]>0.3). From the lensing configurations we derive total J-band mass-to-light ratios of 1.8$\\pm$0.1, 2.1$\\pm$0.1 and 1.9$\\pm$0.2 within the $\\sim$2 kpc Einstein radius. Correcting for estimated dark-matter contributions, and comparing to stellar population models with a Milky Way (Kroupa) initial mass function (IMF), we determine the "mass excess factor", \\alpha. Assuming the lens galaxies have "old" stellar populations (10$\\pm$1 Gyr), the average IMF mass factor is $\\langle\\alpha\\rangle$=1.10$\\pm$0.08$\\pm$0.10, where the first error is random and the second is systematic. If we instead fit the stellar populations from 6dF optical survey spectra, all t...

  2. On the gravitational redshift

    Wilhelm, Klaus

    2013-01-01

    The study of the gravitational redshift -- a relative wavelength increase of $\\approx 2 \\times 10^{-6}$ was predicted for solar radiation by Einstein in 1908 -- is still an important subject in modern physics. In a dispute whether or not atom interferometry experiments can be employed for gravitational redshift measurements, two research teams have recently disagreed on the physical cause of the shift. Regardless of any discussion on the interferometer aspect -- we find that both groups of authors miss the important point that the ratio of gravitational to the electrostatic forces is generally very small. For instance, the gravitational force acting on an electron in a hydrogen atom situated in the Sun's photosphere to the electrostatic force between the proton and the electron is approximately $3 \\times 10^{-21}$. A comparison of this ratio with the predicted and observed solar redshift indicates a discrepancy of many orders of magnitude. Here we show, with Einstein's early assumption of the frequency of spe...

  3. Powerful Activity in the Bright Ages. I. A Visible/IR Survey of High Redshift 3C Radio Galaxies and Quasars

    Hilbert, Bryan; Kotyla, JohnPaul; Tremblay, Grant R; Stanghellini, Carlo; Sparks, William B; Baum, Stefi A; Capetti, Alessandro; Macchetto, F Duccio; Miley, George K; O'Dea, Christopher P; Perlman, Eric S; Quillen, Alice C

    2016-01-01

    We present new rest frame UV and visible observations of 22 high-redshift (1 < z < 2.5) 3C radio galaxies and QSOs obtained with the Hubble Space Telescope's (HST) Wide Field Camera 3 (WFC3) instrument. Using a custom data reduction strategy in order to assure the removal of cosmic rays, persistence signal, and other data artifacts, we have produced high-quality science-ready images of the targets and their local environments. We observe targets with regions of UV emission suggestive of active star formation. In addition, several targets exhibit highly distorted host galaxy morphologies in the rest frame visible images. Photometric analyses reveals that brighter QSOs tend to be generally redder than their dimmer counterparts. Using emission line fluxes from the literature, we estimate that emission line contamination is relatively small in the rest frame UV images for the QSOs. Using archival VLA data, we have also created radio map overlays for each of our targets, allowing for analysis of the optical ...

  4. Measuring Gravitational Redshifts in Galaxy Clusters

    Kaiser, Nick

    2013-01-01

    Wojtak {\\it et al} have stacked 7,800 clusters from the SDSS survey in redshift space. They find a small net blue-shift for the cluster galaxies relative to the brightest cluster galaxies, which agrees quite well with the gravitational redshift from GR. Zhao {\\it et al.} have pointed out that, in addition to the gravitational redshift, one would expect to see transverse Doppler (TD) redshifts, and that these two effects are generally of the same order. Here we show that there are other corrections that are also of the same order of magnitude. The fact that we observe galaxies on our past light cone results in a bias such that more of the galaxies observed are moving away from us in the frame of the cluster than are moving towards us. This causes the observed average redshift to be $\\langle \\delta z \\rangle = -\\langle \\Phi \\rangle + \\langle \\beta^2 \\rangle / 2 + \\langle \\beta_x^2 \\rangle$, with $\\beta_x$ is the line of sight velocity. That is if we average over galaxies with equal weight. If the galaxies in ea...

  5. Probing the sparse tails of redshift distributions with Voronoi tessellations

    Granett, B. R.

    2017-01-01

    We introduce an empirical galaxy photometric redshift algorithm based upon the Voronoi tessellation density estimator in the space of redshift and photometric parameters. Our aim is to use sparse survey datasets to estimate the full shape of the redshift distribution that is defined by the degeneracies in galaxy photometric properties and redshift. We describe the algorithm implementation and provide a proof of concept using the first public data release from the VIMOS Public Extragalactic Redshift Survey (VIPERS PDR-1). We validate the method by comparing against the standard empirical redshift distribution code Trees for Photo-Z (TPZ) on both mock and real data. We find that the Voronoi tessellation algorithm accurately recovers the full shape of the redshift distribution quantified by its second moment and inferred redshift confidence intervals. The analysis allows us to properly account for galaxies in the tails of the distributions that would otherwise be classified as catastrophic outliers. The source code is publicly available at http://bitbucket.org/bengranett/tailz.

  6. Sky Mining - Application to Photomorphic Redshift Estimation

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  7. MARZ: Manual and automatic redshifting software

    Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.

    2016-04-01

    The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.

  8. A new method to search for high redshift clusters using photometric redshifts

    Castignani, Gianluca; Celotti, Annalisa; Norman, Colin

    2014-01-01

    We describe a new method (Poisson Probability Method, PPM) to search for high redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for Mpc-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. (2009) sample, that are selected within the COSMOS survey, and on the specific dataset used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. i) We use two z~1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z=2. We find that the PPM detects the cluster candidates up to z=1.5, and it correctly estimates both the redshift and size of the two clusters. ii) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e...

  9. High-Redshift Radio Galaxies from Deep Fields

    C. H. Ishwara-Chandra; S. K. Sirothia; Y. Wadadekar; S. Pal

    2011-12-01

    Most of the radio galaxies with > 3 have been found using the red-shift spectral index correlation.We have started a programme with the Giant Metrewave Radio Telescope (GMRT) to exploit this correlation at flux density levels about 100 times deeper than the known high-redshift radio galaxies, with an aim to detect candidate high-redshift radio galaxies. Here we present results from the deep 150 MHz observations of LBDS-Lynx field, which has been imaged at 327, 610 and 1412 MHz with the Westerbork Synthesis Radio Telescope (WSRT) and at 1400 and 4860 MHz with the Very Large Array (VLA). We find about 150 radio sources with spectra steeper than 1. About two-thirds of these are not detected in Sloan Digital Sky Survey (SDSS), hence are strong candidate high-redshift radio galaxies, which need to be further explored with deep infra-red imaging and spectroscopy to estimate the red-shift.

  10. Feature importance for machine learning redshifts applied to SDSS galaxies

    Hoyle, Ben; Zitlau, Roman; Steiz, Stella; Weller, Jochen

    2014-01-01

    We present an analysis of importance feature selection applied to photometric redshift estimation using the machine learning architecture Random Decision Forests (RDF) with the ensemble learning routine Adaboost. We select a list of 85 easily measured (or derived) photometric quantities (or 'features') and spectroscopic redshifts for almost two million galaxies from the Sloan Digital Sky Survey Data Release 10. After identifying which features have the most predictive power, we use standard artificial Neural Networks (aNN) to show that the addition of these features, in combination with the standard magnitudes and colours, improves the machine learning redshift estimate by 18% and decreases the catastrophic outlier rate by 32%. We further compare the redshift estimate from RDF using the ensemble learning routine Adaboost with those from two different aNNs, and with photometric redshifts available from the SDSS. We find that the RDF requires orders of magnitude less computation time than the aNNs to obtain a m...

  11. High-Redshift Cosmography

    Vitagliano, Vincenzo; Liberati, Stefano; Viel, Matteo

    2009-01-01

    We constrain the parameters describing the kinematical state of the universe using a cosmographic approach, which is fundamental in that it requires a very minimal set of assumptions (namely to specify a metric) and does not rely on the dynamical equations for gravity. On the data side, we consider the most recent compilations of Supernovae and Gamma Ray Bursts catalogs. This allows to further extend the cosmographic fit up to $z=6.6$, i.e. up to redshift for which one could start to resolve the low $z$ degeneracy among competing cosmological models. In order to reliably control the cosmographic approach at high redshifts, we adopt the expansion in the improved parameter $y=z/(1+z)$ (as proposed in Class. Quant. Grav., 24 (2007) 5985). This series has the great advantage to hold also for $z>1$ and hence it is the appropriate tool for handling data including non-nearby distance indicators. We find that Gamma Ray Bursts, probing higher redshifts than Supernovae, have constraining power and do require (and stati...

  12. Tuning target selection algorithms to improve galaxy redshift estimates

    Hoyle, Ben; Rau, Markus Michael; Seitz, Stella; Weller, Jochen

    2015-01-01

    We showcase machine learning (ML) inspired target selection algorithms to determine which of all potential targets should be selected first for spectroscopic follow up. Efficient target selection can improve the ML redshift uncertainties as calculated on an independent sample, while requiring less targets to be observed. We compare the ML targeting algorithms with the Sloan Digital Sky Survey (SDSS) target order, and with a random targeting algorithm. The ML inspired algorithms are constructed iteratively by estimating which of the remaining target galaxies will be most difficult for the machine learning methods to accurately estimate redshifts using the previously observed data. This is performed by predicting the expected redshift error and redshift offset (or bias) of all of the remaining target galaxies. We find that the predicted values of bias and error are accurate to better than 10-30% of the true values, even with only limited training sample sizes. We construct a hypothetical follow-up survey and fi...

  13. The MOSDEF Survey: Metallicity dependence of the PAH emission at High Redshift: Implications for 24 micron-inferred IR luminosities and star formation rates at z~2

    Shivaei, Irene; Shapley, Alice; Siana, Brian; Kriek, Mariska; Mobasher, Bahram; Coil, Alison; Freeman, William; Sanders, Ryan; Price, Sedona; Azadi, Mojegan

    2016-01-01

    We present results on the variation of Polycyclic Aromatic Hydrocarbon (PAH) emission at 7.7 micron in galaxies spanning a wide range in metallicity at z~2. For this analysis, we use rest-frame optical spectra of 476 galaxies at 1.37$\\leq z\\leq$2.61 from the MOSFIRE Deep Evolution Field (MOSDEF) survey to infer metallicities and ionization states. Spitzer/MIPS 24 micron observations are used to derive rest-frame 7.7 micron luminosities (L(7.7)) and far-IR data from Herschel/PACS 100 and 160 micron to measure total IR luminosities (L(IR)). We find significant trends between the ratio of L(7.7) to L(IR) (and to dust-corrected SFR) and both metallicity and [OIII]/[OII] (O$_{32}$) emission-line ratio. The latter is an empirical proxy for the ionization parameter. These trends indicate a paucity of PAH molecules in low metallicity environments with harder and more intense radiation fields. Additionally, L(7.7)/L(IR) is significantly lower in the youngest quartile in our sample (ages of ~ 400 Myr) compared to older...

  14. The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Medium-Band optical imaging and high quality 32-band photometric redshifts in the ECDF-S

    Cardamone, Carolin N; Urry, C Megan; Taniguchi, Yoshi; Gawiser, Eric; Brammer, Gabriel; Taylor, Edward; Damen, Maaike; Treister, Ezequiel; Cobb, Bethany E; Bond, Nicholas; Schawinski, Kevin; Lira, Paulina; Murayama, Takashi; Saito, Tomoki; Sumikawa, Kentaro; 10.1088/0067-0049/189/2/270

    2010-01-01

    We present deep optical 18-medium-band photometry from the Subaru telescope over the ~30' x 30' Extended Chandra Deep Field-South (ECDF-S), as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC BVR image we find ~40,000 galaxies with R_AB 3.5. For 0.1 < z < 1.2, we find a 1 sigma scatter in \\Delta z/(1+z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that ~20% of the red-sequence-galaxies show evidence of dust-emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric red...

  15. Is there a redshift cutoff for submillimetre galaxies?

    Raymond, G; Dye, S; Carlberg, R; Sullivan, M

    2008-01-01

    We present new optical and infrared photometry for a statistically complete sample of seven 1.1 mm selected sources with accurate Submillimetre Array coordinates. We determine photometric redshifts for four of the seven sources of 4.47, 4.50, 1.49 and 0.64. Of the other three sources two are undetected at optical wavelengths down to the limits of very deep Subaru and Canada-France-Hawaii Telescope images ($\\sim$27 mag AB, i band) and the photometry of the remaining source is corrupted by a bright nearby galaxy. The sources with the highest redshifts are at higher redshifts than all but one of the $\\sim$200 sources taken from the largest recent 850 $\\mu$m surveys, which may indicate that 1.1 mm surveys are more efficient at finding sources at very high redshifts than 850 $\\mu$m surveys. We investigate the evolution of the number density with redshift of our sample using a banded $V_{e}/V_{a}$ analysis and find no evidence for a redshift cutoff, although the number of sources is very small. We also perform the ...

  16. Cosmological parameters from a million photometric redshifts of SDSS LRGs

    Blake, C; Bridle, S; Lahav, O; Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2006-01-01

    We analyze MegaZ-LRG, a new photometric-redshift catalogue of Luminous Red Galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains > 10^6 photometric redshifts derived with ANNz, an Artificial Neural Network method, constrained by a spectroscopic sub-sample of ~13,000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4redshift error ~ 0.03(1+z). We present the first cosmological parameter fits to galaxy angular power spectra from a photometric redshift survey. Combining the redshift slices with appropriate covariances, we determine the matter density Omega_m and baryon density Omega_b in the combinations Omega_m h = 0.20+/-0.03 and Omega_b/Omega_m = 0.14+/-0.04. These results are in agreement with and independent of the latest studies of the Cosmic Microwave Background radiation, and their precision is comparable to analyses of conte...

  17. Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method

    Thong, Nguyen Minh; Duong, Tran; Pham, Linh Thuy; Nam, Pham Cam

    2014-10-01

    Theoretical calculations have been performed to predict the antioxidant property of phenolic compounds extracted from Artocarpus altilis. The Osbnd H bond dissociation enthalpy (BDE), ionization energy (IE), and proton dissociation enthalpy (PDE) of the phenolic compounds have been computed. The ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method is able to provide reliable evaluation for the BDE(Osbnd H) in phenolic compounds. An important property of antioxidants is determined via the BDE(Osbnd H) of those compounds extracted from A. altilis. Based on the BDE(Osbnd H), compound 12 is considered as a potential antioxidant with the estimated BDE value of 77.3 kcal/mol in the gas phase.

  18. MARZ: Manual and Automatic Redshifting Software

    Hinton, Samuel R; Lidman, Chris; Glazebrook, Karl; Lewis, Geraint F

    2016-01-01

    The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application Marz with greater usability, flexibility, and the capacity to analyse a wider range of object types than the Runz software package previously used for redshifting spectra from 2dF. Marz is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the Autoz cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automat...

  19. High redshift blazars

    Ghisellini, G

    2013-01-01

    Blazars are sources whose jet is pointing to us. Since their jets are relativistic, the flux is greatly amplified in the direction of motion, making blazars the most powerful persistent objects in the Universe. This is true at all frequencies, but especially where their spectrum peaks. Although the spectrum of moderate powerful sources peaks in the ~GeV range, extremely powerful sources at high redshifts peak in the ~MeV band. This implies that the hard X-ray band is the optimal one to find powerful blazars beyond a redshift of ~4. First indications strongly suggest that powerful high-z blazars harbor the most massive and active early black holes, exceeding a billion solar masses. Since for each detected blazars there must exist hundreds of similar, but misaligned, sources, the search for high-z blazars is becoming competitive with the search of early massive black holes using radio-quiet quasars. Finding how the two populations of black holes (one in jetted sources, the other in radio-quiet objects) evolve i...

  20. Getting started With Amazon Redshift

    Bauer, Stefan

    2013-01-01

    Getting Started With Amazon Redshift is a step-by-step, practical guide to the world of Redshift. Learn to load, manage, and query data on Redshift.This book is for CIOs, enterprise architects, developers, and anyone else who needs to get familiar with RedShift. The CIO will gain an understanding of what their technical staff is working on; the technical implementation personnel will get an in-depth view of the technology, and what it will take to implement their own solutions.

  1. Morphologies at High Redshift from Galaxy Zoo

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  2. Tuning target selection algorithms to improve galaxy redshift estimates

    Hoyle, Ben; Paech, Kerstin; Rau, Markus Michael; Seitz, Stella; Weller, Jochen

    2016-06-01

    We showcase machine learning (ML) inspired target selection algorithms to determine which of all potential targets should be selected first for spectroscopic follow-up. Efficient target selection can improve the ML redshift uncertainties as calculated on an independent sample, while requiring less targets to be observed. We compare seven different ML targeting algorithms with the Sloan Digital Sky Survey (SDSS) target order, and with a random targeting algorithm. The ML inspired algorithms are constructed iteratively by estimating which of the remaining target galaxies will be most difficult for the ML methods to accurately estimate redshifts using the previously observed data. This is performed by predicting the expected redshift error and redshift offset (or bias) of all of the remaining target galaxies. We find that the predicted values of bias and error are accurate to better than 10-30 per cent of the true values, even with only limited training sample sizes. We construct a hypothetical follow-up survey and find that some of the ML targeting algorithms are able to obtain the same redshift predictive power with 2-3 times less observing time, as compared to that of the SDSS, or random, target selection algorithms. The reduction in the required follow-up resources could allow for a change to the follow-up strategy, for example by obtaining deeper spectroscopy, which could improve ML redshift estimates for deeper test data.

  3. Photometric redshifts for the SDSS Data Release 12

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2016-08-01

    We present the methodology and data behind the photometric redshift data base of the Sloan Digital Sky Survey (SDSS) Data Release 12. We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalogue was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of 1976 978 galaxies, and extends up to redshift z ≈ 0.8, with a useful coverage of up to z ≈ 0.6. We provide photometric redshifts and realistic error estimates for the 208 474 076 galaxies of the SDSS primary photometric catalogue. We achieve an average bias of overline{Δ z_{norm}} = {5.84 × 10^{-5}}, a standard deviation of σ(Δznorm) = 0.0205, and a 3σ outlier rate of Po = 4.11 per cent when cross-validating on our training set. The published redshift error estimates and photometric error classes enable the selection of galaxies with high-quality photometric redshifts. We also provide a supplementary error map that allows additional, sophisticated filtering of the data.

  4. The Highest Redshift Radio Galaxies

    Van Breugel, W

    2000-01-01

    At low redshifts powerful radio sources are uniquely associated with massive galaxies, and are thought to be powered by supermassive black holes. Modern 8m -- 10m telescopes may be used used to find their likely progenitors at very high redshifts to study their formation and evolution.

  5. Photometric Redshift with Bayesian Priors on Physical Properties of Galaxies

    Tanaka, Masayuki

    2015-01-01

    We present a proof-of-concept analysis of photometric redshifts with Bayesian priors on physical properties of galaxies. This concept is particularly suited for upcoming/on-going large imaging surveys, in which only several broad-band filters are available and it is hard to break some of the degeneracies in the multi-color space. We construct model templates of galaxies using a stellar population synthesis code and apply Bayesian priors on physical properties such as stellar mass and star formation rate. These priors are a function of redshift and they effectively evolve the templates with time in an observationally motivated way. We demonstrate that the priors help reduce the degeneracy and deliver significantly improved photometric redshifts. Furthermore, we show that a template error function, which corrects for systematic flux errors in the model templates as a function of rest-frame wavelength, delivers further improvements. One great advantage of our technique is that we simultaneously measure redshifts...

  6. The Impact of Foregrounds on Redshift Space Distortion Measurements With the Highly-Redshifted 21 cm Line

    Pober, Jonathan C

    2014-01-01

    The highly redshifted 21 cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ~ 1) up through the Epoch of Reionization (z ~ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21 cm signal, since this approach maximizes the signal-to-noise in the initial measurement. However, like galaxy surveys, the 21 cm signal is effected by redshift space distortion effects, and is inherently anisotropic between the line-of-sight and transverse directions. A full measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects at high redshifts. However, foregrounds also have an anisotropic footprint between the line-of-sight and transverse directions: the so-called foreground "wedge". Although techniques to subtract foregrounds are actively being developed, a "foreground avoidance" approach of simply ignoring cont...

  7. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    Carrasco Kind, Matias [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are crucial

  8. Linear redshift space distortions for cosmic voids based on galaxies in redshift space

    Chuang, Chia-Hsun; Liang, Yu; Font-Ribera, Andreu; Zhao, Cheng; McDonald, Patrick; Tao, Charling

    2016-01-01

    Cosmic voids found in galaxy surveys are defined based on the galaxy distribution in redshift space. We show that the large scale distribution of voids in redshift space traces the fluctuations in the dark matter density field \\delta(k) (in Fourier space with \\mu being the line of sight projected k-vector): \\delta_v^s(k) = (1 + \\beta_v \\mu^2) b^s_v \\delta(k), with a beta factor that will be in general different than the one describing the distribution of galaxies. Only in case voids could be assumed to be quasi-local transformations of the linear (Gaussian) galaxy redshift space field, one gets equal beta factors \\beta_v=\\beta_g=f/b_g with f being the growth rate, and b_g, b^s_v being the galaxy and void bias on large scales defined in redshift space. Indeed, in our mock void catalogs we measure void beta factors being in good agreement with the galaxy one. Further work needs to be done to confirm the level of accuracy of the beta factor equality between voids and galaxies, but in general the void beta factor...

  9. High-Redshift Astrophysics Using Every Photon

    Breysse, Patrick; Kovetz, Ely; Rahman, Mubdi; Kamionkowski, Marc

    2017-01-01

    Large galaxy surveys have dramatically improved our understanding of the complex processes which govern gas dynamics and star formation in the nearby universe. However, we know far less about the most distant galaxies, as existing high-redshift observations can only detect the very brightest sources. Intensity mapping surveys provide a promising tool to access this poorly-studied population. By observing emission lines with low angular resolution, these surveys can make use of every photon in a target line to study faint emitters which are inaccessible using traditional techniques. With upcoming carbon monoxide experiments in mind, I will demonstrate how an intensity map can be used to measure the luminosity function of a galaxy population, and in turn how these measurements will allow us to place robust constraints on the cosmic star formation history. I will then show how cross-correlating CO isotopologue lines will make it possible to study gas dynamics within the earliest galaxies in unprecedented detail.

  10. A catalogue of high redshift clusters

    R. Juncosa

    2007-01-01

    Full Text Available Distant clusters of galaxies provide a powerful method to study the formation and evolution of galaxies and large scale structure of the Universe. However, the number of known clusters at high redshift (z > 0.5 is still limited. As a preparatory work for detailed studies with GTC, we are building a cata- logue of such objects analyzing public deep wide optical and near-IR surveys. In a region of ~9 square degrees, ~100 new clusters (~ 60 of them at z > 0.5 have been detected.

  11. Spectroscopy of moderately high-redshift RCS-1 clusters

    Gilbank, David G; Blindert, K; Ellingson, E; Gladders, M D; Yee, H K C

    2007-01-01

    We present spectroscopic observations of 11 moderately high-redshift (z~0.7- 1.0) clusters from the first Red-Sequence Cluster Survey (RCS-1). We find excellent agreement between the red-sequence estimated redshift and the spectroscopic redshift, with a scatter of 10% at z>0.7. At the high-redshift end (z>~0.9) of the sample, we find two of the systems selected are projections of pairs of comparably rich systems, with red-sequences too close to discriminate in (R-z') colour. In one of these systems, the two components are close enough to be physically associated. For a subsample of clusters with sufficient spectroscopic members, we examine the correlation between B_gcR (optical richness) and the dynamical mass inferred from the velocity dispersion. We find these measurements to be compatible, within the relatively large uncertainties, with the correlation established at lower redshift for the X-ray selected CNOC1 clusters and also for a lower redshift sample of RCS-1 clusters. Confirmation of this and calibra...

  12. Astroinformatics of galaxies and quasars: a new general method for photometric redshifts estimation

    Laurino, Omar; Longo, Giuseppe; Riccio, Giuseppe

    2011-01-01

    With the availability of the huge amounts of data produced by current and future large multi-band photometric surveys, photometric redshifts have become a crucial tool for extragalactic astronomy and cosmology. In this paper we present a novel method, called Weak Gated Experts (WGE), which allows to derive photometric redshifts through a combination of data mining techniques. \

  13. Dissecting Photometric Redshift for Active Galactic Nucleus Using XMM- and Chandra-COSMOS Samples

    Salvato, M.; Ilbert, O.; Hasinger, G.; Rau, A.; Civano, F.; Zamorani, G.; Brusa, M.; Elvis, M.; Vignali, C.; Aussel, H.; Comastri, A.; Fiore, F.; Le Floc'h, E.; Mainieri, V.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; Cappelluti, N.; Carollo, C. M.; Contini, T.; Garilli, B.; Iovino, A.; Fotopoulou, S.; Fruscione, A.; Gilli, R.; Halliday, C.; Kneib, J. -P.; Kakazu, Y.; Kartaltepe, J. S.; Koekemoer, A. M.; Kovac, K.; Ideue, Y.; Ikeda, H.; Impey, C. D.; Le Fevre, O.; Lamareille, F.; Lanzuisi, G.; Le Borgne, J. -F.; Le Brun, V.; Lilly, S.; Maier, C.; Manohar, S.; Masters, D.; McCracken, H.; Messias, H.; Mignoli, M.; Mobasher, B.; Nagao, T.; Pello, R.; Puccetti, S.; Perez-Montero, E.; Renzini, A.; Sargent, M.; Sanders, D. B.; Scodeggio, M.; Scoville, N.; Shopbell, P.; Silvermann, J.; Taniguchi, Y.; Tasca, L.; Tresse, L.; Trump, J. R.; Zucca, E.

    2011-01-01

    In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redsh

  14. Atom gravimeters and gravitational redshift

    Wolf, Peter; Borde, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude; 10.1038/nature09340

    2010-01-01

    In a recent paper, H. Mueller, A. Peters and S. Chu [A precision measurement of the gravitational redshift by the interference of matter waves, Nature 463, 926-929 (2010)] argued that atom interferometry experiments published a decade ago did in fact measure the gravitational redshift on the quantum clock operating at the very high Compton frequency associated with the rest mass of the Caesium atom. In the present Communication we show that this interpretation is incorrect.

  15. Very high redshift radio galaxies

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  16. The Redshift of GRB 970508

    Reichart, D E

    1997-01-01

    GRB 970508 is the second gamma-ray burst (GRB) for which an optical afterglow has been detected. It is the first GRB for which a distance scale has been determined: absorption and emission features in spectra of the optical afterglow place GRB 970508 at a redshift of z >= 0.835 (Metzger et al. 1997a, 1997b). The lack of a Lyman-alpha forest in these spectra further constrains this redshift to be less than approximately 2.3. I show that the spectrum of the optical afterglow of GRB 970508, once corrected for Galactic absorption, is inconsistent with the relativistic blast-wave model unless a second, redshifted source of extinction is introduced. This second source of extinction may be the yet unobserved host galaxy. I determine its redshift to be z = 1.09^{+0.14}_{-0.41}, which is consistent with the observed redshift of z = 0.835. Redshifts greater than z = 1.40 are ruled out at the 3 sigma confidence level.

  17. A sparse Gaussian process framework for photometric redshift estimation

    Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-01-01

    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.

  18. High-redshift SDSS Quasars with Weak Emission Lines

    Diamond-Stanic, Aleksandar M.; Fan, Xiaohui; Brandt, W. N.

    2009-01-01

    We identify a sample of 74 high-redshift quasars (z > 3) with weak emission lines from the Fifth Data Release of the Sloan Digital Sky Survey and present infrared, optical, and radio observations of a subsample of four objects at z > 4. These weak emission-line quasars (WLQs) constitute a promine...

  19. Evolution of Galaxy Luminosity Function Using Photometric Redshifts

    Ramos, B H F; Benoist, C; da Costa, L N; Maia, M A G; Makler, M; Ogando, R L C; de Simoni, F; Mesquita, A A

    2011-01-01

    We examine the impact of using photometric redshifts for studying the evolution of both the global galaxy luminosity function (LF) and that for different galaxy types. To this end we compare LFs obtained using photometric redshifts from the CFHT Legacy Survey (CFHTLS) D1 field with those from the spectroscopic survey VIMOS VLT Deep Survey (VVDS) comprising ~4800 galaxies. We find that for z<2, in the interval of magnitudes considered by this survey, the LFs obtained using photometric and spectroscopic redshifts show a remarkable agreement. This good agreement led us to use all four Deep fields of CFHTLS comprising ~386000 galaxies to compute the LF of the combined fields and estimate directly the error in the parameters based on field-to-field variation. We find that the characteristic absolute magnitude M* of Schechter fits fades by ~0.7mag from z~1.8 to z~0.3, while the characteristic density phi* increases by a factor of ~4 in the same redshift bin. We use the galaxy classification provided by the templ...

  20. Spectroscopic Needs for Calibration of LSST Photometric Redshifts

    Schmidt, Samuel J; Abate, Alexandra

    2014-01-01

    This white paper summarizes the conclusions of the Snowmass White Paper "Spectroscopic Needs for Imaging Dark Energy Experiments" (arXiv:1309.5384) which are relevant to the calibration of LSST photometric redshifts; i.e., the accurate characterization of biases and uncertainties in photo-z's. Any significant miscalibration will lead to systematic errors in photo-z's, impacting nearly all extragalactic science with LSST. As existing deep redshift samples have failed to yield highly-secure redshifts for a systematic 20%-60% of their targets, it is a strong possibility that future deep spectroscopic samples will not solve the calibration problem on their own. The best options in this scenario are provided by cross-correlation methods that utilize clustering with objects from spectroscopic surveys (which need not be fully representative) to trace the redshift distribution of the full sample. For spectroscopy, the eBOSS survey would enable a basic calibration of LSST photometric redshifts, while the expected LSST...

  1. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Jouvel, S; Comparat, J; Carnero, A; Camacho, H; Abdalla, F B; Kneib, J-P; Merson, A; Lima, M; Sobreira, F; da Costa, Luiz; Prada, F; Zhu, G B; Benoit-Levy, A; De La Macora, A; Kuropatkin, N; Lin, H; Abbott, T M C; Allam, S; Banerji, M; Bertin, E; Brooks, D; Capozzi, D; Kind, M Carrasco; Carretero, J; Castander, F J; Cunha, C E; Desai, S; Doel, P; Eifler, T F; Estrada, J; Neto, A Fausti; Flaugher, B; Fosalba, P; Frieman, J; Gaztanaga, E; Gerdes, D W; Gruen, D; Gruendl, R A; Gutierrez, G; Honscheid, K; James, D J; Kuehn, K; Lahav, O; Li, T S; Maia, M A G; March, M; Marshall, J L; Miquel, R; Percival, W J; Plazas, A A; Reil, K; Romer, A K; Roodman, A; Rykoff, E S; Sako, M; Sanchez, E; Santiago, B; Scarpine, V; Sevilla-Noarbe, I; Santos, M Soares; Suchyta, E; Tarle, G; Thaler, J; Thomas, D; Walker, A; Zhang, Y

    2015-01-01

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\\%. We measure a galaxy bias averaged on scales of 1 and 10~...

  2. Exploring the Dark Energy Redshift Desert with the Sandage-Loeb Test

    Corasaniti, P S; Melchiorri, A; Corasaniti, Pier-Stefano; Huterer, Dragan; Melchiorri, Alessandro

    2007-01-01

    We study the prospects for constraining dark energy at very high redshift with the Sandage-Loeb (SL) test - a measurement of the evolution of cosmic redshift obtained by taking quasar spectra at sufficiently separated epochs. This test is unique in its coverage of the ``redshift desert'', corresponding roughly to redshifts between 2 and 5, where other dark energy probes are unable to provide useful information about the cosmic expansion history. Extremely large telescopes planned for construction in the near future, with ultra high resolution spectrographs (such as the proposed CODEX), will indeed be able to measure cosmic redshift variations of quasar Lyman-alpha absorption lines over a period as short as ten years. We find that these measurements can constrain non-standard and dynamical dark energy models with high significance and in a redshift range not accessible with future dark energy surveys. As the cosmic signal increases linearly with time, measurements made over several decades by a generation of p...

  3. Redshift of Galaxy Clusters from the Sunyaev-Zel'dovich effect

    Diego-Rodriguez, J M; Silk, J; Bryan, G

    2002-01-01

    We develop a new method for estimating the redshift of galaxy clusters through resolved images of the Sunyaev-Zel'dovich effect (SZE). Our method is based on morphological observables which can be measured by actual and future SZE experiments. The method is tested using a set of high resolution hydrodynamical simulations of galaxy clusters at different redshifts. The method combines the observables in a principal component analysis. We show how this can give an estimate of the redshift of the galaxy clusters. Although the uncertainty in the redshift estimation is large, the method should be useful for future SZE surveys where hundreds of clusters are expected to be detected. A first preselection of the high redshift candidates could be done using our proposed morphological redshift estimator.

  4. Simultaneous Constraints on Cosmology and Photometric Redshift Bias from Weak Lensing and Galaxy Clustering

    Samuroff, S; Bridle, SL; Zuntz, J; MacCrann, N; Krause, E; Eifler, T; Kirk, D

    2016-01-01

    We investigate the expected cosmological constraints from a combination of weak lensing and large-scale galaxy clustering using realistic redshift distributions. Introducing a systematic bias in the weak lensing redshift distributions (of 0.05 in redshift) produces a $>2\\sigma$ bias in the recovered matter power spectrum amplitude and dark energy equation of state, for preliminary Stage III surveys. We demonstrate that these cosmological errors can be largely removed by marginalising over unknown biases in the assumed weak lensing redshift distributions, if we assume high quality redshift information for the galaxy clustering sample. Furthermore the cosmological constraining power is mostly retained despite removing much of the information on the weak lensing redshift distribution biases. We show that this comes from complementary degeneracy directions between cosmic shear and the combination of galaxy clustering with cross-correlation between shear and galaxy number density. Finally we examine how the self-c...

  5. Simultaneous constraints on cosmology and photometric redshift bias from weak lensing and galaxy clustering

    Samuroff, S.; Troxel, M. A.; Bridle, S. L.; Zuntz, J.; MacCrann, N.; Krause, E.; Eifler, T.; Kirk, D.

    2017-02-01

    We investigate the expected cosmological constraints from a combination of cosmic shear and large-scale galaxy clustering using realistic photometric redshift distributions. Introducing a systematic bias in the lensing distributions (of 0.05 in redshift) produces a >2σ bias in the recovered matter power spectrum amplitude and dark energy equation of state for preliminary Stage III surveys. We demonstrate that cosmological error can be largely removed by marginalizing over biases in the assumed weak-lensing redshift distributions. Furthermore, the cosmological constraining power is retained despite removing much of the information on the lensing redshift biases. This finding relies upon high-quality redshift estimates for the clustering sample, but does not require spectroscopy. All galaxies in this analysis can thus be assumed to come from a single photometric survey. We show that this internal constraint on redshift biases arises from complementary degeneracy directions between cosmic shear and the combination of galaxy clustering and shear-density cross-correlations. Finally we examine a case where the assumed redshift distributions differ from the truth by more than a simple uniform bias. We find that the effectiveness of this self-calibration method will depend on the survey details and the nature of the uncertainties on the estimated redshift distributions.

  6. Redshift Measurement and Spectral Classification for eBOSS Galaxies with the Redmonster Software

    Hutchinson, Timothy A; Dawson, Kyle S; Prieto, Carlos Allende; Bailey, Stephen; Bautista, Julian E; Brownstein, Joel R; Conroy, Charlie; Guy, Julien; Myers, Adam D; Newman, Jeffrey A; Prakash, Abhishek; Carnero-Rosell, Aurelio; Seo, Hee-Jong; Vivek, M; Zhu, Guangtun Ben

    2016-01-01

    We describe the redmonster automated redshift measurement and spectral classification software designed for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). We describe the algorithms, the template standard and requirements, and the newly developed galaxy templates to be used on eBOSS spectra. We present results from testing on early data from eBOSS, where we have found a 90.5% automated redshift and spectral classification success rate for the luminous red galaxy sample (redshifts 0.6 $\\lesssim$ $z$ $\\lesssim$ 1.0). The \\texttt{redmonster} performance meets the eBOSS cosmology requirements for redshift classification and catastrophic failures, and represents a significant improvement over the previous pipeline. We describe the empirical processes used to determine the optimum number of additive polynomial terms in our models and an acceptable $\\Delta\\chi_r^2$ threshold for declaring statistical confidence. Statistical errors on redshift measurement du...

  7. A Low-redshift Sample of E+A Galaxies

    Walker, K. M.; Bergmann, M. P.; Turner, J.

    2004-12-01

    We present the results of a low-redshift survey for E+A galaxies. These galaxies are spectroscopically classified as having strong Balmer and metallic absorption with the absence of any emission. The absorption lines indicate an abundance of A-type stars as well as an old stellar population, while the absence of emission, especially {O ii}, denotes the lack of current star formation. Essential in determining the evolution of early-type galaxies, a low-redshift sample will allow easier morphology observations and further spectroscopic study. Fourteen low-redshift E+A galaxies were found using the Sloan Digital Sky Survey Data Release One following similar criteria as the H-delta strong survey of Goto (2003), except that only galaxies with a redshift lower than z=0.05 were selected. Two of these E+A galaxies were observed with the Cerro Tololo Inter-American Observatory 1.5-m telescope and confirmed to have no emission anywhere along the longslit, including outside the 3" region sampled by the SDSS fibers. This work was supported by the NSF through the CTIO REU program.

  8. Radio-loud high-redshift protogalaxy canidates in Bootes

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  9. Testing the accuracy of redshift space group finding algorithms

    Frederic, J J

    1994-01-01

    Using simulated redshift surveys generated from a high resolution N-body cosmological structure simulation, we study algorithms used to identify groups of galaxies in redshift space. Two algorithms are investigated; both are friends-of-friends schemes with variable linking lengths in the radial and transverse dimensions. The chief difference between the algorithms is in the redshift linking length. The algorithm proposed by Huchra \\& Geller (1982) uses a generous linking length designed to find ``fingers of god'' while that of Nolthenius \\& White (1987) uses a smaller linking length to minimize contamination by projection. We find that neither of the algorithms studied is intrinsically superior to the other; rather, the ideal algorithm as well as the ideal algorithm parameters depend on the purpose for which groups are to be studied. The Huchra/Geller algorithm misses few real groups, at the cost of including some spurious groups and members, while the Nolthenius/White algorithm misses high velocity d...

  10. Redshift determination through weighted phase correlation: a linearithmic implementation

    Delchambre, L.

    2016-08-01

    We present a new algorithm having a time complexity of O(N log N) and designed to retrieve the phase at which an input signal and a set of not necessarily orthogonal templates match best in a weighted chi-squared sense. The proposed implementation is based on an orthogonalization algorithm and thus also benefits from high numerical stability. We apply this method successfully to the redshift determination of quasars from the twelfth Sloan Digital Sky Survey (SDSS) quasar catalogue and derive the proper spectral reduction and redshift selection methods. Derivations of the redshift uncertainty and the associated confidence are also provided. The results of this application are comparable to the performance of the SDSS pipeline, while not having a quadratic time dependence.

  11. A Sparse Gaussian Process Framework for Photometric Redshift Estimation

    Almosallam, Ibrahim A; Jarvis, Matt J; Roberts, Stephen J

    2015-01-01

    Accurate photometric redshift are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Data from a simulated survey was used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementation of most regression algorithms has as the objective the minimization of the sum of squared errors. For redshift inference, however, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper we optimize to directly target minimizing $\\Delta z = (z_\\textrm{s} - z_\\textrm{p})/(1+z_\\textrm{s})$ and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with ot...

  12. Testing subhalo abundance matching from redshift-space clustering

    Yamamoto, Mikito; Hikage, Chiaki

    2015-01-01

    We present a first application of the subhalo abundance matching (SHAM) method to describe the redshift-space clustering of galaxies including the non-linear redshift-space distortion, i.e., the Fingers-of-God. We find that the standard SHAM connecting the luminosity of galaxies to the maximum circular velocity of subhalos well reproduces the luminosity dependence of redshift-space clustering of galaxies in the Sloan Digital Sky Survey in a wide range of scales from 0.3 to 40 Mpc/h. The result indicates that the SHAM approach is very promising for establishing a theoretical model of redshift-space galaxy clustering without additional parameters. We also test color abundance matching using two different proxies for colors: subhalo age and local dark matter density following the method by Masaki et al. (2013b). Observed clustering of red galaxies exhibits much stronger Fingers-of-God effect than blue galaxies. We find that the subhalo age model describes the observed color-dependent redshift-space clustering mu...

  13. Predicting the High Redshift Galaxy Population for JWST

    Flynn, Zoey; Benson, Andrew

    2017-01-01

    The James Webb Space Telescope will be launched in Oct 2018 with the goal of observing galaxies in the redshift range of z = 10 - 15. As redshift increases, the age of the Universe decreases, allowing us to study objects formed only a few hundred million years after the Big Bang. This will provide a valuable opportunity to test and improve current galaxy formation theory by comparing predictions for mass, luminosity, and number density to the observed data. We have made testable predictions with the semi-analytical galaxy formation model Galacticus. The code uses Markov Chain Monte Carlo methods to determine viable sets of model parameters that match current astronomical data. The resulting constrained model was then set to match the specifications of the JWST Ultra Deep Field Imaging Survey. Predictions utilizing up to 100 viable parameter sets were calculated, allowing us to assess the uncertainty in current theoretical expectations. We predict that the planned UDF will be able to observe a significant number of objects past redshift z > 9 but nothing at redshift z > 11. In order to detect these faint objects at redshifts z = 11-15 we need to increase exposure time by at least a factor of 1.66.

  14. The Swift Gamma-Ray Burst redshift distribution: selection biases or rate evolution at high-z?

    Coward, David; Branchesi, Marica; Gendre, Bruce; Stratta, Giulia

    2013-01-01

    We employ realistic constraints on selection effects to model the Gamma-Ray Burst (GRB) redshift distribution using {\\it Swift} triggered redshift samples acquired from optical afterglows and the TOUGH survey. Models for the Malmquist bias, redshift desert, and the fraction of afterglows missing because of host galaxy dust extinction, are used to show how the "true" GRB redshift distribution is distorted to its presently observed biased distribution. Our analysis, which accounts for the missing fraction of redshifts in the two data subsets, shows that a combination of selection effects (both instrumental and astrophysical) can describe the observed GRB redshift distribution. The observed distribution supports the case for dust extinction as the dominant astrophysical selection effect that shapes the redshift distribution.

  15. Photometric Redshift Estimation Using Spectral Connectivity Analysis

    Freeman, P E; Lee, A B; Richards, J W; Schafer, C M

    2009-01-01

    The development of fast and accurate methods of photometric redshift estimation is a vital step towards being able to fully utilize the data of next-generation surveys within precision cosmology. In this paper we apply a specific approach to spectral connectivity analysis (SCA; Lee & Wasserman 2009) called diffusion map. SCA is a class of non-linear techniques for transforming observed data (e.g., photometric colours for each galaxy, where the data lie on a complex subset of p-dimensional space) to a simpler, more natural coordinate system wherein we apply regression to make redshift predictions. As SCA relies upon eigen-decomposition, our training set size is limited to ~ 10,000 galaxies; we use the Nystrom extension to quickly estimate diffusion coordinates for objects not in the training set. We apply our method to 350,738 SDSS main sample galaxies, 29,816 SDSS luminous red galaxies, and 5,223 galaxies from DEEP2 with CFHTLS ugriz photometry. For all three datasets, we achieve prediction accuracies on ...

  16. A WFC3 Grism Emission Line Redshift Catalog in the GOODS-South Field

    Morris, Aaron M; Trump, Jonathan R; Weiner, Benjamin J; Hathi, Nimish P; Barro, Guillermo; Dahlen, Tomas; Faber, Sandra M; Finkelstein, Steven L; Fontana, Adriano; Ferguson, Henry C; Grogin, Norman A; Grützbauch, Ruth; Guo, Yicheng; Hsu, Li-Ting; Koekemoer, Anton M; Koo, David C; Mobasher, Bahram; Pforr, Janine; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn

    2015-01-01

    We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 1.5. In addition, ...

  17. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    Jouvel, S.; et al.

    2015-09-23

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\\%. We measure a galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \\pm 0.1 for the bright sample and of 1.78 \\pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm.

  18. The redshift-distance relation.

    Segal, I E

    1993-06-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F [symbol, see text] (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 +/- 40 Mpc (1 parsec = 3.09 x 10(16) m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered.

  19. Obscured AGN at High Redshift

    Stern, Daniel

    2008-01-01

    This viewgraph presentation reviews the obscured sources of Active Galactic Nuclei (AGN) in the universe at high redshift. The cosmic X-ray background, unified models of AGN and clues to galaxy formation/evolution is the motivation for this study.

  20. Rapid modelling of the redshift-space power spectrum multipoles for a masked density field

    Wilson, M. J.; Peacock, J. A.; Taylor, A. N.; de la Torre, S.

    2017-01-01

    In this work, we reformulate the forward modelling of the redshift-space power spectrum multipole moments for a masked density field, as encountered in galaxy redshift surveys. Exploiting the symmetries of the redshift-space correlation function, we provide a masked-field generalization of the Hankel transform relation between the multipole moments in real and Fourier space. Using this result, we detail how a likelihood analysis requiring computation for a broad range of desired P(k) models may be executed 103-104 times faster than with other common approaches, together with significant gains in spectral resolution. We present a concrete application to the complex angular geometry of the VIMOS Public Extragalactic Redshift Survey PDR-1 release and discuss the validity of this technique for finite-angle surveys.

  1. Photometric redshifts for the SDSS Data Release 12

    Beck, Róbert; Budavári, Tamás; Szalay, Alexander S; Csabai, István

    2016-01-01

    We present the methodology and data behind the photometric redshift database of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalog was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of $1,976,978$ galaxies, and extends up to redshift $z\\approx 0.8$, with a useful coverage of up to $z\\approx 0.6$. We provide photometric redshifts and realistic error estimates for the $208,474,076$ galaxies of the SDSS primary photometric catalog. We achieve an average bias of $\\overline{\\Delta z_{\\mathrm{norm}}} = -0.0012$, a standard deviation of $\\sigma \\left(\\Delta z_{\\mathrm{norm}}\\right)=0.0249$, and a $3\\sigma$ outlier rate of $P_o=1.6\\%$ when cross-validating on our training set. The published...

  2. Clustering in Redshift Space Linear Theory

    Zaroubi, S; Zaroubi, Saleem; Hoffman, Yehuda

    1993-01-01

    The clustering in redshift space is studied here to first order within the framework of gravitational instability. The distortion introduced by the peculiar velocities of galaxies results in anisotropy in the galaxy distribution and mode-mode coupling when analyzed in Fourier space. An exact linear calculation of the full covariance matrix in both the real and Fourier space is presented here. The explicit dependence on $\\Omeg$ and the biasing parameter is calculated and its potential use as a probe of these parameters is analyzed. It is shown that Kaiser's formalism can be applied only to a data set that subtends a small solid angle on the sky, and therefore cannot be used in the case of all sky surveys. The covariance matrix in the real space is calculated explicitly for {\\it CDM} model, where the behavior along and perpendicular to the line of sight is shown.

  3. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  4. Photometric Properties of the Most Massive High-Redshift Galaxies

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  5. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    Li, Xiao-Dong; Forero-Romero, Jaime E; Kim, Juhan

    2014-01-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the Universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter $\\Omega_m$ or the dark energy equation of state $w$ are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the Universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without...

  6. Estimating Luminosities and Stellar Masses of Galaxies Photometrically without Determining Redshifts

    Hsieh, B C

    2014-01-01

    Large direct-imaging surveys usually use a template-fitting technique to estimate photometric redshifts for galaxies, which are then applied to derive important galaxy properties such as luminosities and stellar masses. These estimates can be noisy and suffer from systematic biases because of the possible mis-selection of templates and the propagation of the photometric redshift uncertainty. We introduce an algorithm, the Direct Empirical Photometric method (DEmP), which can be used to directly estimate these quantities using training sets, bypassing photometric redshift determination. DEmP also applies two techniques to minimize the effects arising from the non-uniform distribution of training-set galaxy redshifts from a flux-limited sample. First, for each input galaxy, fitting is performed using a subset of the training-set galaxies with photometry and colors closest to those of the input galaxy. Second, the training set is artificially resampled to produce a flat distribution in redshift, or other propert...

  7. GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshift

    Almosallam, Ibrahim A; Roberts, Stephen J

    2016-01-01

    The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre Array. However, determining accurate variance predictions alongside single point estimates of photometric redshifts is crucial, as they can be used to optimize the sample of galaxies for the specific experiment (e.g. weak lensing, baryon acoustic oscillations, supernovae), trading off between completeness and reliability in the galaxy sample. The various sources of uncertainty (and noise) in measurements of the photometry and redshifts put a lower bound on the accuracy that any model can hope to achieve. The intrinsic uncertainty associated with estimates is often non-uniform and input-dependent. However, existing approaches are susceptible to outliers and do not take into account variance induced by non-uniform da...

  8. Precision Cosmology with a New Probabilistic Photometric Redshifts Approach

    Carrasco Kind, Matias; Brunner, R. J.

    2013-06-01

    A complete understanding of both dark energy and dark matter remains one of most important challenges in astrophysics today. Recent theoretical and numerical computations have made important progress in quantifying the role of these dark components on the formation and evolution of galaxies through cosmic time, but observational verification of these predictions and the development of new, more stringent constraints has not kept pace. It is in this context that, photometric redshifts have become more important with the growth of large imaging surveys, such as DES and LSST, that have been designed to address this issue. But their basic implementation has not changed significantly from their original development, as most techniques provide a single photometric redshift estimate and an associated error for the an extragalactic source. In this work, we present a unique and powerful solution that leverages the full information contained in the photometric data to address this cosmological challenge with a new approach that provides accurate photometric redshift probability density functions (PDF) for galaxies. This new approach, which scales efficiently to massive data, efficiently combines standard template fitting techniques with powerful machine learning methods. Included in this framework is our recently developed technique entitled Trees for PhotoZ (TPZ); a new, robust, parallel photometric redshift code that uses prediction trees and random forests to generate photo-z PDFs in a reliable and fast manner. In addition, our approach also provides ancillary information about the internal structure of the data, including the relative importance of variables used during the redshift estimation, an identification of areas in the training sample that provide poor predictions, and an accurate outlier rejection method. We will also present current results of this approach on a variety of datasets and discuss, by using specific examples, how the full photo-z PDF can be

  9. DNF - Galaxy photometric redshift by Directional Neighbourhood Fitting

    De Vicente, J.; Sánchez, E.; Sevilla-Noarbe, I.

    2016-07-01

    Wide field images taken in several photometric bands allow simultaneous measurement of redshifts for thousands of galaxies. A variety of algorithms to make this measurement have appeared in the last few years, the majority of which can be classified as either template- or training-based methods. Among the latter, nearest neighbour estimators stand out as one of the most successful, in terms of both precision and the quality of error estimation. In this paper we describe the Directional Neighbourhood Fitting (DNF) algorithm based on the following: a new neighbourhood metric (Directional Neighbourhood), a photo-z estimation strategy (Neighbourhood Fitting) and a method for generating the photo-z probability distribution function. We compare DNF with other well-known empirical photometric redshift tools using different public data sets (Sloan Digital Sky Survey, VIMOS VLT Deep Survey and Photo-z Accuracy Testing). DNF achieves high-quality results with reliable error.

  10. Modifying Gravity at Low Redshift

    Brax, Philippe; Davis, Anne-Christine; Shaw, Douglas

    2010-01-01

    We consider the growth of cosmological perturbations in modified gravity models where a scalar field mediates a non-universal Yukawa force between different matter species. The growth of the density contrast is altered for scales below the Compton wave-length of the scalar field. As the universe expands, the Compton wave-length varies in time in such a way that scales which where outside the range of the scalar field force may feel it at a lower redshift. In this case, both the exponent $\\gamma$ measuring the growth of Cold Dark Matter perturbations and the shift function representing the ratio of the two Newtonian potentials $\\psi$ and $\\phi$ may differ from their values in General Relativity at low redshift.

  11. El Universo a alto redshift

    Alonso, M. V.

    The Universe we see today is the result of structures and galaxies that have been evolving since earlier times. Looking the evolution of the galaxy population at z ˜ 1 has emphasized the important role played by high redshift data. This is the case of the morphology - density relationship, where the morphological type of galaxies in distant clusters has given us a clear vision of evolutionary processes, partly led by environmental effects. I review part of the data available at high redshifts that are fundamental today to check the validity of galaxy formation models in reproducing local and basic galaxy properties. Briefly, I will comment about high redshift studies, a still little explored portion of the Universe, and the current strategies that allow us the study. In this sense, the epoch of reionization is essential for understanding the formation of structures because it is the phase where the first protogalaxies were formed, creating stars and enriching the intergalactic medium. Because of the great distances involved in these studies, gamma-ray bursts, quasars and Lyman-α galaxies are the best tools to study these earlier times. FULL TEXT IN SPANISH

  12. Old Galaxies at High Redshift

    Dunlop, J

    1997-01-01

    The most passive galaxies at high redshift are unlikely to be identified by either narrow-band emission-line searches, or by Lyman limit searches (both techniques which have been highlighted at this meeting) simply because such selection methods rely on the presence of a strong ultraviolet component. Selection on the basis of extreme radio power has also proved to yield optically active objects with the majority of high-redshift objects studied to date displaying complex elongated optical/UV morphologies, relatively blue optical-ultraviolet continuum colours, and strong emission lines. These features, coupled with the failure to detect any spectral signatures of old stars at $z > 1$, has led to the suggestion that these galaxies are being observed close to or even during a general epoch of formation. However, we have recently demonstrated that radio selection at significantly fainter (mJy) flux densities can be used to identify apparently passively evolving elliptical galaxies at high redshift. Deep Keck spec...

  13. An Efficient Approach to Obtaining Large Numbers of Distant Supernova Host Galaxy Redshifts

    Lidman, C; Sullivan, M; Myzska, J; Dobbie, P; Glazebrook, K; Mould, J; Astier, P; Balland, C; Betoule, M; Carlberg, R; Conley, A; Fouchez, D; Guy, J; Hardin, D; Hook, I; Howell, D A; Pain, R; Palanque-Delabrouille, N; Perrett, K; Pritchet, C; Regnault, N; Rich, J

    2012-01-01

    We use the wide-field capabilities of the 2dF fibre positioner and the AAOmega spectrograph on the Anglo-Australian Telescope (AAT) to obtain redshifts of galaxies that hosted supernovae during the first three years of the Supernova Legacy Survey (SNLS). With exposure times ranging from 10 to 60 ksec per galaxy, we were able to obtain redshifts for 400 host galaxies in two SNLS fields, thereby substantially increasing the total number of SNLS supernovae with host galaxy redshifts. The median redshift of the galaxies in our sample that hosted photometrically classified Type Ia supernovae (SNe Ia) is 0.77, which is 25% higher than the median redshift of spectroscopically confirmed SNe Ia in the three-year sample of the SNLS. Our results demonstrate that one can use wide-field fibre-fed multi-object spectrographs on 4m telescopes to efficiently obtain redshifts for large numbers of supernova host galaxies over the large areas of sky that will be covered by future high-redshift supernova surveys, such as the Dark...

  14. Redshift Weights for Baryon Acoustic Oscillations : Application to Mock Galaxy Catalogs

    Zhu, Fangzhou; White, Martin; Ross, Ashley J; Zhao, Gongbo

    2016-01-01

    Large redshift surveys capable of measuring the Baryon Acoustic Oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al. (2015), we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We parametrize the distance-redshift relation, relative to a fiducial model, as a quadratic expansion. We measure its coefficients and reconstruct the distance-redshift relation from the expansion. We apply the redshift weighting technique in Zhu et al. (2015) to the clustering of galaxies from 1000 QuickPM (QPM) mock simulations after reconstruction and achieve a 0.75% measurement of the angular diameter distance $D_A$ at $z=0.64$ and the same precision for Hubble parameter H at $z=0.29$. These QPM mock catalogs are designed to mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12). W...

  15. VizieR Online Data Catalog: OmegaWINGS local clusters of galaxies redshifts (Moretti+, 2017)

    Moretti, A.; Gullieuszik, M.; Poggianti, B.; Paccagnella, A.; Couch, W. J.; Vulcani, B.; Bettoni, D.; Fritz, J.; Cava, A.; Fasaano, G.; D'Onofrio, M.; Omizzolo, A.

    2017-02-01

    Redshifts, magnitude/radial completeness, and memberships are given for the 17985 galaxies observed as part of the OmegaWINGS survey of local clusters of galaxies over 1 square degree. Redshifts have been measured using both absorption and emission lines features. The sample magnitude completeness is 80% at V=20. Thanks to the observing strategy, the radial completeness turned out to be relatively constant (90%) within the AAOmega field of view. The success rate in measuring redshifts is 95%, at all radii. Cluster members are flagged 1 or 2, depending on the cluster structure/secondary structure, and 0 if they are not cluster members. (1 data file).

  16. Detecting neutral hydrogen in emission at redshift z ~ 1

    Khandai, Nishikanta; Di Matteo, Tiziana; Croft, Rupert A C; Springel, Volker; Jana, Anirban; Gardner, Jeffrey P

    2010-01-01

    We use a large N-body simulation to examine the detectability of HI in emission at redshift z ~ 1, and the constraints imposed by current observations on the neutral hydrogen mass function of galaxies at this epoch. We consider three different models for populating dark matter halos with HI, designed to encompass uncertainties at this redshift. These models are consistent with recent observations of the detection of HI in emission at z ~ 0.8. Whilst detection of 21 cm emission from individual halos requires extremely long integrations with existing radio interferometers, such as the Giant Meter Radio Telescope (GMRT), we show that the stacked 21 cm signal from a large number of halos can be easily detected. However, the stacking procedure requires accurate redshifts of galaxies. We show that radio observations of the field of the DEEP2 spectroscopic galaxy redshift survey should allow detection of the HI mass function at the 5-12 sigma level in the mass range 10^(11.4) M_sun/h < M_halo < 10^(12.5)M_sun/...

  17. The redshift distribution of submillimeter galaxies at different wavelengths

    Zavala, J A; Hughes, D H

    2014-01-01

    Using simulations we demonstrate that some of the published redshift distributions of Submillimeter Galaxies (SMGs) at different wavelengths, that were previously reported to be statistically different, are consistent with a parent distribution of the same population of galaxies. The redshift distributions which peak at z_med=2.9, 2.6, 2.2, 2.2, and 2.0 for galaxies selected at 2 and 1.1 mm, and 870, 850, and 450 um respectively, can be derived from a single parent redshift distribution, in contrast with previous studies. The differences can be explained through wavelength selection, depth of the surveys, and to a lesser degree, angular resolution. The main differences are attributed to the temperature of the spectral energy distributions, as shorter-wavelength maps select a hotter population of galaxies. Using the same parent distribution and taking into account lensing bias we can also reproduce the redshift distribution of 1.4 mm-selected ultra-bright galaxies, which peaks at z_med=3.4. However, the redshi...

  18. CMB quenching of high-redshift radio-loud AGNs

    Ghisellini, G; Ciardi, B; Sbarrato, T; Gallo, E; Tavecchio, F; Celotti, A

    2015-01-01

    The very existence of a dozen of high-redshift (z>4) blazars indicates that a much larger population of misaligned powerful jetted AGN was already in place when the Universe was <1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High redshift blazars themselves seem to be failing in producing extended radio-lobes, raising questions about the connection between such class and the vaster population of radio-galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high redshift blazars and in their parent population, possibly accounting for the apparently missing misaligned counterparts of high redshift blazars. We then model the spectral energy distribution of blazar lobes following simple prescriptions, finding that most of them should be detectable by low frequency deep radio observations, e.g., by LOw-Frequency ARray for radio as...

  19. Constraints on cosmological models from lens redshift data

    Cao, Shuo

    2011-01-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structures, formations, and evolutions). Now several hundreds of strong lens systems produced by massive galaxies have been discovered, which may form well-defined samples useful for statistical analyses. To collect a relatively complete lens redshift data from various large systematic surveys of gravitationally lensed quasars and check the possibility to use it as a future complementarity to other cosmological probes. We use the distribution of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys, considering a singular isothermal ellipsoid (SIE) model for galactic potentials as well as improved new measurements of the velocity dispersion function of galaxies based on the SDSS DR5 data and recent semi-analytical modeling of galaxy formation, to constrain tw...

  20. Compact Quiescent Galaxies at Intermediate Redshifts

    Hsu, Li-Yen; Shih, Hsin-Yi

    2014-01-01

    From several searches of the area common to the Sloan Digital Sky Survey and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we have identified objects that have properties similar to those of the luminous quiescent compact galaxies found at z > 2. Here we present our results of 22 galaxies between z ~ 0.4 and z ~ 0.9 based on observations with the Keck I, Keck II and Subaru telescopes on Mauna Kea. By exploring sizes, morphologies, and stellar populations of these galaxies, we found that most of the galaxies we identified actually formed most of their stars at z 2 in the literature. Several of these young objects appear to be disk-like or possibly prolate. This lines up with several previous studies, which found that massive quiescent galaxies at high redshifts often have disk-like morphologies. If these galaxies were to be confirmed to be disks, their formation would be more likely caused by gas accretion than by major mergers. On the other hand, if these galaxies were to be confirmed to be...

  1. Measurement of Redshift Space Power Spectrum for BOSS galaxies and the Growth Rate at redshift 0.57

    Li, Zhigang; Zhang, Pengjie; Cheng, Dalong

    2016-01-01

    We present a measurement of two-dimensional (2D) redshift-space power spectrum for the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 11 CMASS galaxies in the North Galactic Cap (NGC) based on the method developed by Jing & Borner (2001). In this method, we first measure the 2D redshift-space correlation function for the CMASS galaxies, and obtain the 2D power spectrum based on Fourier Transform of the correlation function. The method is tested with an N-body mock galaxy catalog, which demonstrates that the method can yield an accurate and unbiased measurement of the redshift-space power spectrum given the input 2D correlation function is correct. Compared with previous measurements in literature that are usually based on direct Fourier Transform in redshift space, our method has the advantages that the window function and shot-noise are fully corrected. In fact, our 2D power spectrum, by its construction, can accurately reproduce the 2D correlation function, and in the meanwhile can reproduc...

  2. High Redshift Gamma Ray Bursts

    Gehrels, Neil

    2012-01-01

    The Swift Observatory has been detecting 100 gamma-ray bursts per year for 7 years and has greatly stimulated the field with new findings. Observations are made of the X-ray and optical afterglow from 1 minute after the burst, continuing for days. GRBs are providing a new tool to study the high redshift universe. Swift has detected several events at z>5 and one at z=9.4 giving information on metallicity, star formation rate and reionization. The talk will present the latest results.

  3. Data-driven, Interpretable Photometric Redshifts Trained on Heterogeneous and Unrepresentative Data

    Leistedt, Boris; Hogg, David W.

    2017-03-01

    We present a new method for inferring photometric redshifts in deep galaxy and quasar surveys, based on a data-driven model of latent spectral energy distributions (SEDs) and a physical model of photometric fluxes as a function of redshift. This conceptually novel approach combines the advantages of both machine learning methods and template fitting methods by building template SEDs directly from the spectroscopic training data. This is made computationally tractable with Gaussian processes operating in flux–redshift space, encoding the physics of redshifts and the projection of galaxy SEDs onto photometric bandpasses. This method alleviates the need to acquire representative training data or to construct detailed galaxy SED models; it requires only that the photometric bandpasses and calibrations be known or have parameterized unknowns. The training data can consist of a combination of spectroscopic and deep many-band photometric data with reliable redshifts, which do not need to entirely spatially overlap with the target survey of interest or even involve the same photometric bands. We showcase the method on the i-magnitude-selected, spectroscopically confirmed galaxies in the COSMOS field. The model is trained on the deepest bands (from SUBARU and HST) and photometric redshifts are derived using the shallower SDSS optical bands only. We demonstrate that we obtain accurate redshift point estimates and probability distributions despite the training and target sets having very different redshift distributions, noise properties, and even photometric bands. Our model can also be used to predict missing photometric fluxes or to simulate populations of galaxies with realistic fluxes and redshifts, for example.

  4. The SDSS Coadd: A Galaxy Photometric Redshift Catalog

    Reis, Ribamar R.R.; /Fermilab /Rio de Janeiro Federal U.; Soares-Santos, Marcelle; /Fermilab /Inst. Geo. Astron., Havana /Sao Paulo U.; Annis, James; /Fermilab; Dodelson, Scott; /Fermilab /Chicago U. /Chicago U., KICP; Hao, Jiangang; /Fermilab; Johnston, David; /Fermilab; Kubo, Jeffrey; /Fermilab; Lin, Huan; /Fermilab; Seo, Hee-Jong; /UC, Berkeley; Simet, Melanie; /Chicago U.

    2011-11-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-z's and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for {approx} 13 million objects classified as galaxies in the coadd with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx} 89, 000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS), the Visible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.036. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  5. 2dFLenS and KiDS: determining source redshift distributions with cross-correlations

    Johnson, Andrew; Blake, Chris; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; McFarland, John; Morrison, Christopher B.; Parkinson, David; Poole, Gregory B.; Radovich, Mario; Wolf, Christian

    2017-03-01

    We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z inferring the redshift distribution.

  6. The New Physics of Cosmic Redshift

    Hebel, Wolfgang

    2011-01-01

    Light rays received on earth from distant stars show redshift, being attributed conventionally to the well-known Doppler-effect of wave dynamics. The present study concludes that cosmic redshift rather is an effect of the quantum mechanical propagation of photons as explained by Nobel Laureate Richard FEYNMAN in his book on QED {2}. This alternative physics of cosmic redshift is fundamentally different from the conventional velocity argument and can therefore do without the controversial big bang idea.

  7. Submegaparsec individual photometric redshift estimation from cosmic web constraints

    Aragon-Calvo, M. A.; Weygaert, Rien van de; Jones, Bernard J. T.; Mobasher, Bahram

    2015-11-01

    We present a method, PhotoWeb, for estimating photometric redshifts of individual galaxies, and their equivalent distance, with megaparsec and even submegaparsec accuracy using the cosmic web as a constraint over photo-z estimates. PhotoWeb redshift errors of individual galaxies are of the order of Δz ≃ 0.0007, compared to errors of Δz ≃ 0.02 for current photo-z techniques. The mean redshift error is of the order of Δz ≃ 5 × 10-5-5 × 10-4 compared to mean errors in the range Δz ≃ 0.001-0.01 for the best available photo-z estimates in the literature. Current photo-z techniques produce redshift estimates with large errors due to the poor constraining power the galaxy's spectral energy distribution and projected clustering can provide. The cosmic web, on the other hand, provides the strongest constraints on the position of galaxies. The network of walls, filaments and voids occupy ˜ 10 per centof the volume of the Universe, yet they contain ˜ 95 per centof galaxies. The cosmic web, being a cellular system with well-defined boundaries, defines a restricted set of intermittent positions a galaxy can occupy along a given line of sight. Using the information in the density field computed from spectroscopic redshifts, we can narrow the possible locations of a given galaxy along the line of sight from a single broad probability distribution (from photo-z) to one or a few narrow peaks. Our first results improve previous photo-z errors by more than one order of magnitude allowing submegaparsec errors in some cases. Such accurate estimates for tens of millions of galaxies will allow unprecedented galaxy-Large Scale Structure (LSS) studies. In this work, we apply our technique to the Sloan Digital Sky Survey photo-z galaxy sample and discuss its performance and future improvements.

  8. Reconstructing the galaxy redshift distribution from angular cross power spectra

    Sun, L; Tao, C

    2015-01-01

    The control of photometric redshift (photo-$z$) errors is a crucial and challenging task for precision weak lensing cosmology. The spacial cross-correlations (equivalently, the angular cross power spectra) of galaxies between tomographic photo-$z$ bins are sensitive to the true redshift distribution $n_i(z)$ of each bin and hence can help calibrate the photo-$z$ error distribution for weak lensing surveys. Using Fisher matrix analysis, we investigate the contributions of various components of the angular power spectra to the constraints of $n_i(z)$ parameters and demonstrate the importance of the cross power spectra therein, especially when catastrophic photo-$z$ errors are present. We further study the feasibility of reconstructing $n_i(z)$ from galaxy angular power spectra using Markov Chain Monte Carlo estimation. Considering an LSST-like survey with $10$ photo-$z$ bins, we find that the underlying redshift distribution can be determined with a fractional precision ($\\sigma(\\theta)/\\theta$ for parameter $\\...

  9. Spectroscopic Needs for Training of LSST Photometric Redshifts

    Abate, Alexandra; Schmidt, Samuel J

    2014-01-01

    This white paper summarizes those conclusions of the Snowmass White Paper "Spectroscopic Needs for Imaging Dark Energy Experiments" (arXiv:1309.5384) which are relevant to the training of LSST photometric redshifts; i.e., the use of spectroscopic redshifts to improve algorithms and reduce photo-z errors. The larger and more complete the available training set is, the smaller the RMS error in photo-z estimates should be, increasing LSST's constraining power. Among the better US-based options for this work are the proposed MANIFEST fiber feed for the Giant Magellan Telescope or (with lower survey speed) the WFOS spectrograph on the Thirty Meter Telescope (TMT). Due to its larger field of view and higher multiplexing, the PFS spectrograph on Subaru would be able to obtain a baseline training sample faster than TMT; comparable performance could be achieved with a highly-multiplexed spectrograph on Gemini with at least a 20 arcmin diameter field of view.

  10. Galaxy Redshifts from Discrete Optimization of Correlation Functions

    Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi

    2016-12-01

    We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.

  11. Spectroscopic redshifts of galaxies within the Frontier Fields

    Ebeling, H; Barrett, E

    2014-01-01

    We present a catalog of 1848 spectroscopic redshifts measured in the fields of the massive galaxy clusters MACSJ0416.1-2403 ($z=0.397$), MACSJ0717.5+3745 ($z=0.546$), and MACSJ1149.5+2223 ($z=0.544$), i.e., three of the four clusters selected by STScI as the targets of the Frontier Fields (FF) initiative for studies of the distant Universe via gravitational lensing. Compiled in the course of the MACS project (Massive Cluster Survey) that detected the FF clusters, this catalog is provided to the community for three purposes: (1) to allow the identification of cluster members for studies of the galaxy population of these extreme systems, (2) to facilitate the removal of unlensed galaxies and thus reduce shear dilution in weak-lensing analyses, and (3) to improve the calibration of photometric redshifts based on both ground- and spacebased observations of the FF clusters.

  12. Kinematics and Formation Mechanisms of High-Redshift Galaxies

    Law, David R; Ellis, Richard S; Erb, Dawn K; Nesvadba, Nicole; Steidel, Charles C; Swinbank, Mark

    2009-01-01

    Recent years have witnessed a substantial increase in our ability to trace the spatially resolved properties of rapidly star-forming galaxies in the high-redshift universe and numerous studies have suggested the importance of turbulent gas-phase kinematics. In this submission to the Astro 2010 Decadal survey we outline some of the major outstanding questions regarding the kinematics and formation history of these galaxies, such as the prevalence of various kinematic models, the relation to lower surface-brightness populations and faint AGN, and the implications for the evolution of gas accretion and cooling mechanisms with redshift. We comment on the capability of future large optical/IR and millimeter wavelength facilities to address these questions.

  13. Galaxy Redshifts from Discrete Optimization of Correlation Functions

    Lee, Benjamin C G; Basu, Amitabh

    2016-01-01

    We propose a new method of constraining the redshifts of individual extragalactic sources based on their celestial coordinates. Techniques from integer linear programming are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but is also readily implementable in off-the-shelf solvers. We adopt Gurobi and use Python to dynamically build the cost function. The preliminary results on simulated data show great promise for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first use of linear programming in astronomy.

  14. Hydrogen 21-cm Intensity Mapping at redshift 0.8

    Chang, Tzu-Ching; Bandura, Kevin; Peterson, Jeffrey B

    2010-01-01

    Observations of 21-cm radio emission by neutral hydrogen at redshifts z ~ 0.5 to ~ 2.5 are expected to provide a sensitive probe of cosmic dark energy. This is particularly true around the onset of acceleration at z ~ 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z=0.24. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the 'cosmic web'. Here we report a three dimensional 21-cm intensity field at z=0.53 to 1.12. We then co-add HI emission from the volumes surrounding about ten thousand galaxies (from the DEEP2 optical galaxy redshift survey. We detect the aggregate 21-cm glow at a significance of ~ 4 sigma.

  15. MegaZ-LRG: A photometric redshift catalogue of one million SDSS Luminous Red Galaxies

    Collister, A A; Blake, C; Cannon, R; Croom, S; Drinkwater, M; Edge, A; Eisenstein, D; Loveday, J; Nichol, R; Pimbblet, K; De Propris, R; Roseboom, I; Ross, N; Schneider, D P; Shanks, T; Wake, D; Collister, Adrian; Lahav, Ofer; Blake, Chris; Cannon, Russell; Croom, Scott; Drinkwater, Michael; Edge, Alastair; Eisenstein, Daniel; Loveday, Jon; Nichol, Robert; Pimbblet, Kevin; Propris, Roberto De; Roseboom, Isaac; Ross, Nic; Schneider, Donald P.; Shanks, Tom; Wake, David

    2006-01-01

    We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one million luminous red galaxies (LRGs) in the redshift range 0.4 < z < 0.7 with limiting magnitude i < 20. The catalogue is selected from the imaging data of the Sloan Digital Sky Survey Data Release 4. The 2dF-SDSS LRG and Quasar (2SLAQ) spectroscopic redshift catalogue of 13,000 intermediate-redshift LRGs provides a photometric redshift training set, allowing use of ANNz, a neural network-based photometric-redshift estimator. The rms photometric redshift accuracy obtained for an evaluation set selected from the 2SLAQ sample is sigma_z = 0.049 averaged over all galaxies, and sigma_z = 0.040 for a brighter subsample (i < 19.0). The catalogue is expected to contain ~5 per cent stellar contamination. The ANNz code is used to compute a refined star/galaxy probability based on a range of photometric parameters; this allows the contamination fraction to be reduced to 2 per cent with negligible loss of genuine galaxies...

  16. The FourStar Galaxy Evolution Survey (ZFOURGE): ultraviolet to far-infrared catalogs, medium-bandwidth photometric redshifts with improved accuracy, stellar masses, and confirmation of quiescent galaxies to z~3.5

    Straatman, Caroline M S; Quadri, Ryan F; Labbe, Ivo; Glazebrook, Karl; Persson, S Eric; Papovich, Casey; Tran, Kim-Vy H; Brammer, Gabriel B; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G; Kawinwanichakij, Lalitwadee; Kelson, Daniel D; Lee, Janice; McCarthy, Patrick J; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E

    2016-01-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of $400\\ \\mathrm{arcmin}^2$ in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising $>70,000$ galaxies, selected from ultradeep $K_s$-band detection images ($25.5-26.5$ AB mag, $5\\sigma$, total), and $>80\\%$ complete to $K_s\\times15$.

  17. 2MASS Photometric Redshift catalog: a comprehensive three-dimensional census of the whole sky

    Bilicki, Maciej; Peacock, John A; Cluver, Michelle E; Steward, Louise

    2014-01-01

    Key cosmological applications require the three-dimensional galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow and testing the Copernican principle. However, the largest all-sky redshift surveys -- the 2MRS and IRAS PSCz -- have median redshifts of only z=0.03 and sample the very local Universe. There exist all-sky galaxy catalogs reaching much deeper -- SuperCOSMOS in the optical, 2MASS in the near-IR and WISE in the mid-IR -- but these lack complete redshift information. At present, the only rapid way towards larger 3D catalogs covering the whole sky is through photometric redshift techniques. In this paper we present the 2MASS Photometric Redshift catalog (2MPZ) containing 1 million galaxies, constructed by cross-matching 2MASS XSC, WISE and SuperCOSMOS all-sky samples and employing the artificial neural network approach (the ANNz algorithm), trained on such redshift surveys as SDSS, 6dFGS and 2dFGRS. T...

  18. Broad Absorption Line Quasars with Redshifted Troughs: High-Velocity Infall or Rotationally Dominated Outflows?

    Hall, Patrick B; Petitjean, P; Paris, I; Ak, N Filiz; Shen, Yue; Gibson, R R; Aubourg, E; Anderson, S F; Schneider, D P; Bizyaev, D; Brinkmann, J; Malanushenko, E; Malanushenko, V; Myers, A D; Oravetz, D J; Ross, N P; Shelden, A; Simmons, A E; Streblyanska, A; Weaver, B A; York, D G

    2013-01-01

    We report the discovery in the Sloan Digital Sky Survey and the SDSS-III Baryon Oscillation Spectroscopic Survey of seventeen broad absorption line (BAL) quasars with high-ionization troughs that include absorption redshifted relative to the quasar rest frame. The redshifted troughs extend to velocities up to v=12,000 km/s and the trough widths exceed 3000 km/s in all but one case. Approximately 1 in 1000 BAL quasars with blueshifted C IV absorption also has redshifted C IV absorption; objects with C IV absorption present only at redshifted velocities are roughly four times rarer. In more than half of our objects, redshifted absorption is seen in C II or Al III as well as C IV, making low-ionization absorption at least ten times more common among BAL quasars with redshifted troughs than among standard BAL quasars. However, the C IV absorption equivalent widths in our objects are on average smaller than those of standard BAL quasars with low-ionization absorption. We consider several possible ways of generatin...

  19. Photometric Properties of Low-Redshift Galaxy Clusters (LOCOS)

    López-Cruz, O

    2000-01-01

    A comprehensive multicolor survey was undertaken to investigate global optical properties of Abell clusters of galaxies. This survey was christened the "Low-Redshift Cluster Optical Survey" (LOCOS). LOCOS was devised to search for patterns of galaxy evolution induced by the environment. The generated data base contains accurate deep CCD photometric measurements (Kron-Cousins R,,B and I) for a sample of 46 low-redshift (0.04 <= z <= 0.18) Abell clusters. This is one of the few large surveys that included the contribution due to dwarf galaxies (about 5.5 mag deeper than the R characteristic magnitude (M*); Ho=50 km/s/Mpc, qo=0). Due to space restrictions only the main results concerning the variations at the bright-end of the luminosity function (LF) are presented here. Other results are presented elsewhere (Lopez-Cruz & Yee 2000a,b). We have detected clear variations at both the bright end and the faint end of the LF. The nature of the variations at the bright end revealed that poor cD clusters have ...

  20. Changing universe model of redshift

    Hodge, J C

    2004-01-01

    The changing universe model (CUM) describes galaxy parameter relationships (SESAPS '03, session EB 2). The CUM must be successfully applied to cosmological scale observations to be considered a cosmological model. A major component of current cosmological models is the Hubble constant $H_\\mathrm{o}$. An equation is derived using the CUM model relating redshift $z$ and the distance $D$ to galaxies and is applied to a sample of 32 spiral galaxies with $D$ calculated using Cepheid variable stars. The equation predicts a galaxy may have $z<0$ in special circumstances. Three elliptical galaxies with peculiar characteristics are discovered to be CUM Sinks. The Sinks give a physical explanation of the ``Virgocentric infall'' and ``Great Attractor'' observations without a large, unobserved mass. At low cosmological distances, the equation reduces to $z \\approx \\exp(KD) -1 \\approx KD$, where $K$ is a constant, positive value. The equation predicts $z$ from galaxies over 23 Gpc distant approaches a constant value on...

  1. Lost Baryons at Low Redshift

    Mathur, Smita; Williams, Rik J

    2007-01-01

    We review our attempts to discover lost baryons at low redshift with ``X-ray forest'' of absorption lines from the warm-hot intergalactic medium. We discuss the best evidence to date along the Mrk 421 sightline. We then discuss the missing baryons in the Local Group and the significance of the z=0 absorption systems in X-ray spectra. We argue that the debate over the Galactic vs. extragalactic origin of the z=0 systems is premature as these systems likely contain both components. Observations with next generation X-ray missions such as Constellation-X and XEUS will be crucial to map out the warm-hot intergalactic medium.

  2. Element abundances at high redshift

    Meyer, D.M.; Welty, D.E.; York, D.G. (Northwestern Univ., Evanston, IL (USA); Chicago Univ., IL (USA))

    1989-08-01

    Abundances of Si(+), S(+), Cr(+), Mn(+), Fe( ), and Zn(+) are considered for two absorption-line systems in the spectrum of the QSO PKS 0528 - 250. Zinc and sulfur are underabundant, relative to H, by a factor of 10 compared to their solar and Galactic interstellar abundances. The silicon-, chromium-, iron-, and nickel-to-hydrogen ratios are less than the solar values and comparable to the local interstellar ratios. A straightforward interpretation is that nucleosynthesis in these high-redshift systems has led to only about one-tenth as much heavy production as in the gas clouds around the sun, and that the amount of the observed underabundances attributable to grain depletion is small. The dust-to-gas ratio in these clouds is less than 8 percent of the Galactic value. 25 refs.

  3. Element abundances at high redshift

    Meyer, David M.; Welty, D. E.; York, D. G.

    1989-01-01

    Abundances of Si(+), S(+), Cr(+), Mn(+), Fe(_), and Zn(+) are considered for two absorption-line systems in the spectrum of the QSO PKS 0528 - 250. Zinc and sulfur are underabundant, relative to H, by a factor of 10 compared to their solar and Galactic interstellar abundances. The silicon-, chromium-, iron-, and nickel-to-hydrogen ratios are less than the solar values and comparable to the local interstellar ratios. A straightforward interpretation is that nucleosynthesis in these high-redshift systems has led to only about one-tenth as much heavy production as in the gas clouds around the sun, and that the amount of the observed underabundances attributable to grain depletion is small. The dust-to-gas ratio in these clouds is less than 8 percent of the Galactic value.

  4. Gamma-ray bursts at high redshift

    R.A.M.J. Wijers

    1999-01-01

    Gamma-ray bursts are much brighter than supernovae, and could therefore possibly probe the Universe to high redshift. The presently established GRB redshifts range from 0.83 to 5, and quite possibly even beyond that. Since most proposed mechanisms for GRB link them closely to deaths of massive stars

  5. High Redshift Lyman-α Hunt

    Kochiashvili, Ia

    constitute the backbone of thisthesis, I investigated the nature of almost 100 emission-line galaxies selected with thenarrow-band selection method. These candidates can be: galaxies with Hα emissionlines at redshift z ∼ 0.6, [Oiii]/Hβ emission-line galaxies at redshift z ∼ 1.15 and [Oii]emitters at z ∼ 1...

  6. Photometric redshifts for the CFHTLS-Wide

    Brimioulle, Fabrice; Seitz, Stella; Bender, Ralf; Snigula, Jan

    2008-01-01

    We want to derive bias free, accurate photometric redshifts for those fields of the CFHTLS-Wide data which are covered in the u*, g', r', i' and z' filters and are public on January 2008. These are 37 square degrees in the W1, W3 and W4 fields with photometric data for a total of 2.597.239 galaxies. We use the photometric redshift code PHOTO-z of Bender et al. (2001). We compare our redshifts for the W1, W3 and W4 fields to about 7500 spectroscopic redshifts from the VVDS therein. For galaxies with 17.5 <= i' AB <= 22.5 the accuracies and outlier rates become sigma=0.033, eta~2 % for W1, sigma=0.037, eta~2% for W3 and sigma=0.035, eta~2.5 % outliers for W4 fields. For the total galaxy sample with about 9000 spectroscopic redshifts from VVDS, DEEP2 or SDSS we obtain a sigma=0.04 and eta~5.7% for the PHOTO-z redshifts. We consider the photometric redshifts of Erben et al. (2008) which were obtained with exactly the same photometric catalog using the BPZ-redshift code and compare them with our computed red...

  7. Testing the Wavelength Dependence of Cosmological Redshift Down to Δz ˜ 10-6

    Ferreras, Ignacio; Trujillo, Ignacio

    2016-07-01

    At the core of the standard cosmological model lies the assumption that the redshift of distant galaxies is independent of photon wavelength. This invariance of cosmological redshift with wavelength is routinely found in all galaxy spectra with a precision of Δz ˜ 10-4. The combined use of approximately half a million high-quality galaxy spectra from the Sloan Digital Sky Survey (SDSS) allows us to explore this invariance down to a nominal precision in redshift of 10-6 (statistical). Our analysis is performed over the redshift interval 0.02 stretching of the lines, prevent our methodology from achieving a precision higher than 10-5, at z > 0.1. Future attempts to constrain this law will require high quality galaxy spectra at higher resolution (R ≳ 10,000).

  8. Testing the wavelength dependence of cosmological redshift down to $\\Delta z \\sim 10^{-6}$

    Ferreras, I

    2016-01-01

    At the core of the standard cosmological model lies the assumption that the redshift of distant galaxies is independent of photon wavelength. This invariance of cosmological redshift with wavelength is routinely found in all galaxy spectra with a precision of $\\Delta$z~10$^{-4}$. The combined use of approximately half a million high-quality galaxy spectra from the Sloan Digital Sky Survey (SDSS) allows us to explore this invariance down to a nominal precision in redshift of one part per million (statistical). Our analysis is performed over the redshift interval 0.020.1. Future attempts to constrain this law will require high quality galaxy spectra at higher resolution (R>10,000).

  9. Galaxy And Mass Assembly (GAMA): Curation and reanalysis of 17.5k redshifts in the G10/COSMOS region

    Davies, L J M; Robotham, A S G; Baldry, I K; Lange, R; Liske, J; Meyer, M; Popping, A; Wright, A H; Wilkins, S M

    2014-01-01

    We discuss the construction of the Galaxy And Mass Assembly (GAMA) 10h region (G10) using publicly available data in the Cosmic Evolution Survey region (COSMOS) in order to extend the GAMA survey to z~1 in a single ~1deg$^2$. In order to obtain the maximum number of high precision spectroscopic redshifts we re-reduce all archival zCOSMOS-bright data and use the GAMA automatic cross-correlation redshift fitting code autoz. We combine autoz redshifts with all other available redshift information (zCOSMOS-bright 10k, PRIMUS, VVDS, SDSS and photometric redshifts) to calculate robust best-fit redshifts for all galaxies and visually inspect all 1D and 2D spectra to confirm automatically assigned redshifts. In total, we obtain 17,466 robust redshifts in the full COSMOS region. We then define the G10 region to be the central ~1deg$^2$ of COSMOS, which has relatively high spectroscopic completeness, and encompasses the CHILES VLA region. We define a combined r < 23.0 mag & i < 22.0 mag G10 sample (selected t...

  10. CuBANz: Photometric redshift estimator

    Samui, Saumyadip; Pal, Shanoli Samui

    2016-09-01

    CuBANz is a photometric redshift estimator code for high redshift galaxies that uses the back propagation neural network along with clustering of the training set, making it very efficient. The training set is divided into several self learning clusters with galaxies having similar photometric properties and spectroscopic redshifts within a given span. The clustering algorithm uses the color information (i.e. u-g, g-r etc.) rather than the apparent magnitudes at various photometric bands, as the photometric redshift is more sensitive to the flux differences between different bands rather than the actual values. The clustering method enables accurate determination of the redshifts. CuBANz considers uncertainty in the photometric measurements as well as uncertainty in the neural network training. The code is written in C.

  11. The kinematic component of the cosmological redshift

    Chodorowski, Michał

    2009-01-01

    It is widely believed that the cosmological redshift is not a Doppler shift. However, Bunn & Hogg have recently pointed out that to settle properly this problem, one has to transport parallelly the velocity four-vector of a distant galaxy to the observer's position. Performing such a transport along the null geodesic of photons arriving from the galaxy, they found that the cosmological redshift is purely kinematic. Here we argue that one should rather transport the velocity four-vector along the geodesic connecting the points of intersection of the world-lines of the galaxy and the observer with the hypersurface of constant COSMIC TIME. We find that the resulting relation between the transported velocity and the redshift of arriving photons is NOT given by a relativistic Doppler formula. Instead, for small redshifts it coincides with the well known non-relativistic decomposition of the redshift into a Doppler (kinematic) component and a gravitational component. We perform such a decomposition for arbitrar...

  12. Real-time cosmography with redshift derivatives

    Martins, C J A P; Calabrese, E; Ramos, M P L P

    2016-01-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the $\\Lambda$CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is $j=1$ for flat $\\Lambda$CDM, while generically $j\

  13. Apparent Clustering of Intermediate-redshift Galaxies as a Probe of Dark Energy

    Matsubara, T; Matsubara, Takahiko; Szalay, Alexander S.

    2002-01-01

    We show the apparent redshift-space clustering of galaxies in redshift range of 0.2-0.4 provides surprisingly useful constraints on dark energy component in the universe, because of the right balance between the density of objects and the survey depth. We apply Fisher matrix analyses to the the Luminous Red Galaxies (LRGs) in the Sloan Digital Sky Survey (SDSS), as a concrete example. Possible degeneracies in the evolution of the equation of state (EOS) and the other cosmological parameters are clarified.

  14. Redshift Measurement and Spectral Classification for eBOSS Galaxies with the redmonster Software

    Hutchinson, Timothy A.; Bolton, Adam S.; Dawson, Kyle S.; Allende Prieto, Carlos; Bailey, Stephen; Bautista, Julian E.; Brownstein, Joel R.; Conroy, Charlie; Guy, Julien; Myers, Adam D.; Newman, Jeffrey A.; Prakash, Abhishek; Carnero-Rosell, Aurelio; Seo, Hee-Jong; Tojeiro, Rita; Vivek, M.; Ben Zhu, Guangtun

    2016-12-01

    We describe the redmonster automated redshift measurement and spectral classification software designed for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV). We describe the algorithms, the template standard and requirements, and the newly developed galaxy templates to be used on eBOSS spectra. We present results from testing on early data from eBOSS, where we have found a 90.5% automated redshift and spectral classification success rate for the luminous red galaxy sample (redshifts 0.6 ≲ z ≲ 1.0). The redmonster performance meets the eBOSS cosmology requirements for redshift classification and catastrophic failures and represents a significant improvement over the previous pipeline. We describe the empirical processes used to determine the optimum number of additive polynomial terms in our models and an acceptable {{Δ }}{χ }r2 threshold for declaring statistical confidence. Statistical errors on redshift measurement due to photon shot noise are assessed, and we find typical values of a few tens of km s-1. An investigation of redshift differences in repeat observations scaled by error estimates yields a distribution with a Gaussian mean and standard deviation of μ ˜ 0.01 and σ ˜ 0.65, respectively, suggesting the reported statistical redshift uncertainties are over-estimated by ˜54%. We assess the effects of object magnitude, signal-to-noise ratio, fiber number, and fiber head location on the pipeline’s redshift success rate. Finally, we describe directions of ongoing development.

  15. Weighing the Giants - II. Improved calibration of photometry from stellar colours and accurate photometric redshifts

    Kelly, Patrick L.; von der Linden, Anja; Applegate, Douglas E.; Allen, Mark T.; Allen, Steven W.; Burchat, Patricia R.; Burke, David L.; Ebeling, Harald; Capak, Peter; Czoske, Oliver; Donovan, David; Mantz, Adam; Morris, R. Glenn

    2014-03-01

    We present improved methods for using stars found in astronomical exposures to calibrate both star and galaxy colours as well as to adjust the instrument flat-field. By developing a spectroscopic model for the Sloan Digital Sky Survey (SDSS) stellar locus in colour-colour space, synthesizing an expected stellar locus, and simultaneously solving for all unknown zero-points when fitting to the instrumental locus, we increase the calibration accuracy of stellar locus matching. We also use a new combined technique to estimate improved flat-field models for the Subaru SuprimeCam camera, forming `star flats' based on the magnitudes of stars observed in multiple positions or through comparison with available measurements in the SDSS catalogue. These techniques yield galaxy magnitudes with reliable colour calibration (≲0.01-0.02 mag accuracy) that enable us to estimate photometric redshift probability distributions without spectroscopic training samples. We test the accuracy of our photometric redshifts using spectroscopic redshifts zs for ˜5000 galaxies in 27cluster fields with at least five bands of photometry, as well as galaxies in the Cosmic Evolution Survey (COSMOS) field, finding σ((zp - zs)/(1 + zs)) ≈ 0.03 for the most probable redshift zp. We show that the full posterior probability distributions for the redshifts of galaxies with five-band photometry exhibit good agreement with redshifts estimated from thirty-band photometry in the COSMOS field. The growth of shear with increasing distance behind each galaxy cluster shows the expected redshift-distance relation for a flat Λ cold dark matter (Λ-CDM) cosmology. Photometric redshifts and calibrated colours are used in subsequent papers to measure the masses of 51 galaxy clusters from their weak gravitational shear and determine improved cosmological constraints. We make our PYTHON code for stellar locus matching publicly available at http://big-macs-calibrate.googlecode.com; the code requires only input

  16. Origin of redshift asymmetries: How LambdaCDM explains anomalous redshift

    Niemi, Sami-Matias

    2008-01-01

    Several authors have found a statistically significant excess of galaxies with higher redshifts relative to the group centre, so called discordant redshifts, in particular in groups where the brightest galaxy, identified in apparent magnitudes, is a spiral. Our aim is to explain the observed redshift excess. We use a semi-analytical galaxy catalogue constructed from the Millennium Simulation to study redshift asymmetries in spiral-dominated groups in the Lambda cold dark matter (LambdaCDM) cosmology. We show that discordant redshifts in small galaxy groups arise when these groups are gravitationally unbound and the dominant galaxy of the group is misidentified. The redshift excess is especially significant when the apparently brightest galaxy can be identified as a spiral, in full agreement with observations. On the other hand, the groups that are gravitationally bound do not show a significant redshift asymmetry. When the dominant members of groups in mock catalogues are identified by using the absolute B-ba...

  17. The FourStar Galaxy Evolution Survey (ZFOURGE): Ultraviolet to Far-infrared Catalogs, Medium-bandwidth Photometric Redshifts with Improved Accuracy, Stellar Masses, and Confirmation of Quiescent Galaxies to z ˜ 3.5

    Straatman, Caroline M. S.; Spitler, Lee R.; Quadri, Ryan F.; Labbé, Ivo; Glazebrook, Karl; Persson, S. Eric; Papovich, Casey; Tran, Kim-Vy H.; Brammer, Gabriel B.; Cowley, Michael; Tomczak, Adam; Nanayakkara, Themiya; Alcorn, Leo; Allen, Rebecca; Broussard, Adam; van Dokkum, Pieter; Forrest, Ben; van Houdt, Josha; Kacprzak, Glenn G.; Kawinwanichakij, Lalitwadee; Kelson, Daniel D.; Lee, Janice; McCarthy, Patrick J.; Mehrtens, Nicola; Monson, Andrew; Murphy, David; Rees, Glen; Tilvi, Vithal; Whitaker, Katherine E.

    2016-10-01

    The FourStar galaxy evolution survey (ZFOURGE) is a 45 night legacy program with the FourStar near-infrared camera on Magellan and one of the most sensitive surveys to date. ZFOURGE covers a total of 400 arcmin2 in cosmic fields CDFS, COSMOS and UDS, overlapping CANDELS. We present photometric catalogs comprising >70,000 galaxies, selected from ultradeep K s -band detection images (25.5-26.5 AB mag, 5σ, total), and >80% complete to K s MIPS and Herschel/PACS data. We derive rest-frame U - V and V - J colors, and illustrate how these correlate with specific SFR and dust emission to z = 3.5. We confirm the existence of quiescent galaxies at z ˜ 3, demonstrating their SFRs are suppressed by > ×15. This paper contains data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas observatory, Chile

  18. Scalar potential model of redshift and discrete redshift

    Hodge, J C

    2006-01-01

    On the galactic scale the universe is inhomogeneous and redshift $z$ is occasionally less than zero. A scalar potential model (SPM) that links the galaxy scale $z$ to the cosmological scale $z$ of the Hubble Law is postulated. Several differences among galaxy types suggest that spiral galaxies are Sources and that early type, lenticular, and irregular galaxies are Sinks of a scalar potential field. The morphology-radius and the intragalactic medium cluster observations support the movement of matter from Source galaxies to Sink galaxies. A cell structure of galaxy groups and clusters is proposed to resolve a paradox concerning the scalar potential like the Olber's paradox concerning light. For the sample galaxies, the ratio of the luminosity of Source galaxies to the luminosity of Sink galaxies approaches $2.7 \\pm 0.1$. An equation is derived from sample data, which is anisotropic and inhomogeneous, relating $z$ of and the distance $D$ to galaxies. The calculated $z$ has a correlation coefficient of 0.88 with...

  19. GASDRA: Galaxy Spectrum Dynamic Range Analysis for Photometric Redshift Filter Partition Optimization

    Vicente, J. de; Sanchez, E.; Sevilla, I.; Castilla, J.; Ponce, R.; Sanchez, F. J.

    2012-04-11

    The photometric redshift is an active area of research. It is becoming the preferred method for redshift measurement above spectroscopy one for large surveys. In these surveys, the requirement in redshift precision is relaxed in benefit of obtaining the measurements of large number of galaxies. One of the more relevant decisions to be taken in the design of a photometric redshift experiment is the number of filters since it affects deeply to the precision and survey time. Currently, there is not a clear method for evaluating the impact in both precision and exposure time of a determined filter partition set and usually it is determined by detailed simulations on the behavior of photo-z algorithms. In this note we describe GASDRA, a new method for extracting the minimal signal to noise requirement, depending on the number of filters needed for preserving the filtered spectrum shape, and hence to make feasible the spectrum identification. The application of this requirement guaranties a determined precision in the spectrum measurement. Although it cannot be translated directly to absolute photometric redshift error, it does provide a method for comparing the relative precision achieved in the spectrum representation by different sets of filters. We foresee that this relative precision is close related to photo-z error. In addition, we can evaluate the impact in the exposure time of any filter partition set with respect to other. (Author) 11 refs.

  20. Understanding redshift space distortions in density-weighted peculiar velocity

    Sugiyama, Naonori S; Spergel, David N

    2015-01-01

    Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of the density-weighted velocity is the change of the sign of infall velocity at small scales due to the nonlinear redshift space distortion. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to $\\sim10\\ h^{-1} {\\rm Mpc}$...

  1. The First High Redshift Quasar from Pan-STARRS

    Morganson, Eric; Decarli, Roberto; Walter, Fabian; Chambers, Ken; McGreer, Ian; Fan, Xiaohui; Burgett, William; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nick; Magnier, Eugene; Price, Paul; Rix, Hans-Walter; Sweeney, Bill; Waters, Christopher

    2011-01-01

    We present the discovery of the first high redshift (z > 5.7) quasar from the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1 or PS1). This quasar was initially detected as an i dropoutout in PS1, confirmed photometrically with the SAO Widefield InfraRed Camera (SWIRC) at Arizona's Multiple Mirror Telescope (MMT) and the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) at the MPG 2.2 m telescope in La Silla. The quasar was verified spectroscopically with the the MMT Spectrograph, Red Channel and the Cassegrain Twin Spectrograph (TWIN) at the Calar Alto 3.5 m telescope. It has a redshift of 5.73, an AB z magnitude of 19.4, a luminosity of 3.8 x 10^47 erg/s and a black hole mass of 6.9 x 10^9 solar masses. It is a Broad Absorption Line quasar with a prominent Ly-beta peak and a very blue continuum spectrum. This quasar is the first result from the PS1 high redshift quasar search that is projected to discover more than a hundred i dropout quasars, and could potentially find more than 10...

  2. The Assembly of Supermassive Black Holes at High Redshifts

    Tanaka, Takamitsu

    2008-01-01

    The supermassive black holes (SMBHs) massive enough (>10^9 Msun) to power the bright redshift z=6 quasars observed in the Sloan Digital Sky Survey (SDSS) are thought to have assembled by mergers and/or accretion from less massive ``seed'' BHs. If the seeds are the 100 Msun remnant BHs of the first generation of stars, they must be in place well before redshift z=6, and must avoid being ejected from their parent proto-galaxies by the large (several 100 km/s) kicks they suffer from gravitational-radiation induced recoil during mergers with other BHs. We simulate the SMBH mass function at redshift z>6 using dark matter (DM) halo merger trees, coupled with a prescription for the halo occupation fraction, accretion histories, and radial recoil trajectories of the growing BHs. Our purpose is (i) to map out plausible scenarios for successful assembly of the z=6 quasar BHs by exploring a wide region of parameter space, and (ii) to predict the rate of low-frequency gravitational wave events detectable by the Laser Int...

  3. Non-Gaussian Minkowski functionals & extrema counts in redshift space

    Codis, Sandrine; Pogosyan, Dmitry; Bernardeau, Francis; Matsubara, Takahiko

    2013-01-01

    In the context of upcoming large-scale structure surveys such as Euclid, it is of prime importance to quantify the effect of peculiar velocities on geometric probes. Hence the formalism to compute in redshift space the geometrical and topological one-point statistics of mildly non-Gaussian 2D and 3D cosmic fields is developed. Leveraging the partial isotropy of the target statistics, the Gram-Charlier expansion of the joint probability distribution of the field and its derivatives is reformulated in terms of the corresponding anisotropic variables. In particular, the cosmic non-linear evolution of the Minkowski functionals, together with the statistics of extrema are investigated in turn for 3D catalogues and 2D slabs. The amplitude of the non-Gaussian redshift distortion correction is estimated for these geometric probes. In 3D, gravitational perturbation theory is implemented in redshift space to predict the cosmic evolution of all relevant Gram-Charlier coefficients. Applications to the estimation of the c...

  4. Dust Attenuation in High Redshift Galaxies -- 'Diamonds in the Sky'

    Scoville, Nick; Capak, Peter; Kakazu, Yuko; Li, Gongjie; Steinhardt, Charles

    2014-01-01

    We use observed optical to near infrared spectral energy distributions (SEDs) of 266 galaxies in the COSMOS survey to derive the wavelength dependence of the dust attenuation at high redshift. All of the galaxies have spectroscopic redshifts in the range z = 2 to 6.5. The presence of the CIV absorption feature, indicating that the rest-frame UV-optical SED is dominated by OB stars, is used to select objects for which the intrinsic, unattenuated spectrum has a well-established shape. Comparison of this intrinsic spectrum with the observed broadband photometric SED then permits derivation of the wavelength dependence of the dust attenuation. The derived dust attenuation curve is similar in overall shape to the Calzetti curve for local starburst galaxies. We also see the 2175 \\AA~bump feature which is present in the Milky Way and LMC extinction curves but not seen in the Calzetti curve. The bump feature is commonly attributed to graphite or PAHs. No significant dependence is seen with redshift between sub-sample...

  5. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    Malloy, Matthew

    2012-01-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here we show that it may nonetheless be possible to {\\em directly identify ionized regions} in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the vo...

  6. The High Redshift Integrated Sachs-Wolfe Effect

    Xia, Jun-Qing; Baccigalupi, Carlo; Matarrese, Sabino

    2009-01-01

    In this paper we rely on the quasar (QSO) catalog of the Sloan Digital Sky Survey Data Release Six (SDSS DR6) of about one million photometrically selected QSOs to compute the Integrated Sachs-Wolfe (ISW) effect at high redshift, aiming at constraining the behavior of the expansion rate and thus the behaviour of dark energy at those epochs. This unique sample significantly extends previous catalogs to higher redshifts while retaining high efficiency in the selection algorithm. We compute the auto-correlation function (ACF) of QSO number density from which we extract the bias and the stellar contamination. We then calculate the cross-correlation function (CCF) between QSO number density and Cosmic Microwave Background (CMB) temperature fluctuations in different subsamples: at high z>1.5 and low z1.5. We focus on the capabilities of the ISW to constrain the behaviour of the dark energy component at high redshift both in the \\LambdaCDM and Early Dark Energy cosmologies, when the dark energy is substantially unco...

  7. IONIZED NITROGEN AT HIGH REDSHIFT

    Decarli, R.; Walter, F. [Max-Planck Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Neri, R.; Cox, P. [IRAM, 300 rue de la piscine, F-38406 Saint-Martin d' Heres (France); Bertoldi, F. [Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany); Carilli, C. [NRAO, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Kneib, J. P. [Laboratoire d' Astrophysique de Marseille, Observatoire d' Astronomie Marseille-Provence, BP 8, F-13376 Marseille (France); Lestrade, J. F. [Observatoire de Paris, CNRS, 61 Av. de l' Observatoire, F-75014 Paris (France); Maiolino, R. [INAF-Osservatorio Astronomico di Roma, via di Frascati 33, I-00040 Monte Porzio Catone (Italy); Omont, A. [Institut d' Astrophysique de Paris, UPMC and CNRS, 98bis Bld. Arago, F-75014 Paris (France); Richard, J. [CRAL, Observatoire de Lyon, Universite Lyon 1, 9 Avenue Ch. Andre, F-69561 Saint Genis Laval Cedex (France); Riechers, D. [Astronomy Department, Caltech, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Thanjavur, K. [Canada-France-Hawaii Telescope Corporation, HI 96743 (United States); Weiss, A., E-mail: decarli@mpia.de [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany)

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  8. Constraining Source Redshift Distributions with Gravitational Lensing

    Wittman, D

    2012-01-01

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that ~40 massive ($\\sigma_v=1200$ km/s) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to ~11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as $N_{lens}^0.5$, but the improvement slows as one is forced to use lenses further ...

  9. Thermodynamics Insights for the Redshift Drift

    Zhang, Ming-Jian; Liu, Wen-Biao

    2015-01-01

    The secular redshift drift is a potential measurement to directly probe the cosmic expansion. Previous study on the redshift drift mainly focused on the model-dependent simulation. Apparently, the physical insights on the redshift drift are very necessary. So in this paper, it is investigated using thermodynamics on the apparent, Hubble and event horizons. Thermodynamics could analytically present the model-independent upper bounds of redshift drift. For specific assumption on the cosmological parameters, we find that the thermodynamics bounds are nearly one order of magnitude larger than the expectation in standard ΛCDM model. We then examine ten observed redshift drift from Green Bank Telescope at redshift 0.09 < z < 0.69, and find that these observational results are inconsistent with the thermodynamics. The size of the errorbars on these measurements is about three orders of magnitude larger than the effect of thermodynamical bounds for the redshift drift. Obviously, we have not yet hit any instrumental systematics at the shift level of 1m s-1 yr-1.

  10. Giving cosmic redshift drift a whirl

    Kim, Alex G.; Linder, Eric V.; Edelstein, Jerry; Erskine, David

    2015-03-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of 10-9 require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 h exposure on a 10-m telescope (1000 h of exposure on a 40-m telescope) potentially capable of measuring the redshift of a galaxy to a precision of 10-8 (few ×10-10). Low-redshift redshift drift also has very strong complementarity with cosmic microwave background measurements, with the combination achieving a dark energy figure of merit of nearly 300 (1400) for 5% (1%) precision on drift.

  11. Subaru FOCAS Spectroscopic Observations of High-Redshift Supernovae

    Morokuma, Tomoki; Lidman, Christopher; Doi, Mamoru; Yasuda, Naoki; Aldering, Greg; Amanullah, Rahman; Barbary, Kyle; Dawson, Kyle; Fadeyev, Vitaliy; Fakhouri, Hannah K; Goldhaber, Gerson; Goobar, Ariel; Hattori, Takashi; Hayano, Junji; Hook, Isobel M; Howell, D Andrew; Furusawa, Hisanori; Ihara, Yutaka; Kashikawa, Nobunari; Knop, Rob A; Konishi, Kohki; Meyers, Joshua; Oda, Takeshi; Pain, Reynald; Perlmutter, Saul; Rubin, David; Spadafora, Anthony L; Suzuki, Nao; Takanashi, Naohiro; Totani, Tomonori; Utsunomiya, Hiroyuki; Wang, Lifan

    2009-01-01

    We present spectra of high-redshift supernovae (SNe) that were taken with the Subaru low resolution optical spectrograph, FOCAS. These SNe were found in SN surveys with Suprime-Cam on Subaru, the CFH12k camera on the Canada-France-Hawaii Telescope (CFHT), and the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). These SN surveys specifically targeted z>1 Type Ia supernovae (SNe Ia). From the spectra of 39 candidates, we obtain redshifts for 32 candidates and spectroscopically identify 7 active candidates as probable SNe Ia, including one at z=1.35, which is the most distant SN Ia to be spectroscopically confirmed with a ground-based telescope. An additional 4 candidates are identified as likely SNe Ia from the spectrophotometric properties of their host galaxies. Seven candidates are not SNe Ia, either being SNe of another type or active galactic nuclei. When SNe Ia are observed within a week of maximum light, we find that we can spectroscopically identify most of them up to z=1.1. Beyond...

  12. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    Tellarini, Matteo; Ross, Ashley J.; Tasinato, Gianmassimo; Wands, David

    2016-06-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter fNL, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including fNL. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of fNL from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σfNL—the accuracy of the determination of local non-linear parameter fNL—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide fNL constraints competitive with Planck, and future surveys could improve them further.

  13. Comparision of approaches to photometric redshift estimation of quasars

    Tu, Yang; Zhang, Yanxia; Zhao, Yongheng; Tian, Haijun

    2015-08-01

    Based on databases from various different band photometric surveys (optical from SDSS, infrared from UKIDSS and WISE), we compare k-nearest neighbor regression based on KD-tree and Ball-tree, LASSO, PLS (Partial Least Squares), SDG, ridge regression and kernel ridge regression applied for photometric redshift estimation of quasars. The experimental result shows that the perfomance order of these methods is KD-tree kNN, Ball-tree kNN, kernal ridge regression, ridge regression, PLS, SGD, LASSO.

  14. Two Type Ia Supernovae at Redshift ~2 : Improved Classification and Redshift Determination with Medium-band Infrared Imaging

    Rodney, Steven A; Scolnic, Daniel M; Jones, David O; Hemmati, Shoubaneh; Molino, Alberto; McCully, Curtis; Mobasher, Bahram; Strolger, Louis-Gregory; Graur, Or; Hayden, Brian; Casertano, Stefano

    2015-01-01

    We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), an HST multi-cycle treasury program. We classify both objects as Type Ia SNe and find redshifts of z = 1.80+-0.02 and 2.26 +0.02 -0.10, the latter of which is the highest redshift Type Ia SN yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard Lambda-CDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector (WFC3-IR), with imaging in both wide- and medium-band filters. We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (lambda/delta lambda ~ 100) which can isolate broad spectral absorption features that differentiate Type Ia SNe from their most common core collapse cousins...

  15. TWO SNe Ia AT REDSHIFT ∼2: IMPROVED CLASSIFICATION AND REDSHIFT DETERMINATION WITH MEDIUM-BAND INFRARED IMAGING

    Rodney, Steven A.; Riess, Adam G.; Jones, David O. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Scolnic, Daniel M. [Department of Physics, The University of Chicago, Chicago, IL 60637 (United States); Hemmati, Shoubaneh; Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Molino, Alberto [Instituto de Astrofísica de Andalucía (CSIC), E-18080 Granada (Spain); McCully, Curtis [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Strolger, Louis-Gregory; Casertano, Stefano [Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Graur, Or [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States); Hayden, Brian, E-mail: srodney@sc.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)

    2015-11-15

    We present two supernovae (SNe) discovered with the Hubble Space Telescope (HST) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, an HST multi-cycle treasury program. We classify both objects as SNe Ia and find redshifts of z = 1.80 ± 0.02 and 2.26{sup +0.02}{sub −0.10}, the latter of which is the highest redshift SN Ia yet seen. Using light curve fitting we determine luminosity distances and find that both objects are consistent with a standard ΛCDM cosmological model. These SNe were observed using the HST Wide Field Camera 3 infrared detector, with imaging in both wide- and medium-band filters. We demonstrate that the classification and redshift estimates are significantly improved by the inclusion of single-epoch medium-band observations. This medium-band imaging approximates a very low resolution spectrum (λ/Δλ ≲ 100) which can isolate broad spectral absorption features that differentiate SNe Ia from their most common core collapse cousins. This medium-band method is also insensitive to dust extinction and (unlike grism spectroscopy) it is not affected by contamination from the SN host galaxy or other nearby sources. As such, it can provide a more efficient—though less precise—alternative to IR spectroscopy for high-z SNe.

  16. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    Bian, Fuyan; Dopita, Michael; Juneau, Stephanie

    2016-01-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [OIII]/H$\\beta$ versus [NII]/H$\\alpha$ nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in $z\\simeq2-3$ galaxies, but higher than those in normal SDSS galaxies by $\\simeq$0.6~dex and $\\simeq$0.9~dex, respectively. The mass-metallicity relation (MZR) in these local analogs shows $-0.2$~dex offset from that in SDSS star-forming galaxies at the low mass end, which is consistent with the MZR of the $z\\sim2-3$ galaxies. We compare the lo...

  17. Redshift drift in a pressure gradient cosmology

    Balcerzak, Adam

    2012-01-01

    We derive the redshift drift formula for the inhomogeneous pressure spherically symmetric Stephani universes which are complementary to inhomogeneous density Lema\\^itre-Tolman-Bondi (LTB) models. We show that there is a clear difference between the redshift drift predictions for these two models. The Stephani models have positive drift values at small redshift and behave qualitatively as the $\\Lambda$CDM models while the drift for LTB models is always negative. This prediction can be tested in future space experiments such as E-ELT, TMT, GMT or CODEX.

  18. Molecular Gas at High Redshift

    Solomon, P M

    2005-01-01

    The Early Universe Molecular Emission Line Galaxies (EMGs) are a population of galaxies with only 36 examples that hold great promise for the study of galaxy formation and evolution at high redshift. The classification, luminosity of molecular line emission, molecular mass, far-infrared (FIR) luminosity, star formation efficiency, morphology, and dynamical mass of the currently known sample are presented and discussed. The star formation rates derived from the FIR luminosity range from about 300 to 5000 M(sun)per year and the molecular mass from 4 x 10^9 to 1 x 10^{11} M(sun). At the lower end, these star formation rates, gas masses, and diameters are similar to those of local ultraluminous infrared galaxies, and represent starbursts in centrally concentrated disks, sometimes, but not always, associated with active galactic nuclei. The evidence for large (> 5 kpc) molecular disks is limited. Morphology and several high angular resolution images suggest that some EMGs are mergers with a massive molecular inter...

  19. The New Redshift Interpretation Affirmed

    Gentry, R V

    1998-01-01

    In late 1997 I reported (Mod. Phys. Lett. A 12 (1997) 2919; astro-ph/9806280) the discovery of A New Redshift Interpretation (NRI) of the Hubble relation and the 2.7K CBR, which showed for the first time that it was possible to explain these phenomena within the framework of a universe governed by Einstein's static-spacetime general relativity (GR) instead of the Friedmann-Lemaitre expanding-spacetime paradigm. More recently Carlip and Scranton (astro-ph/9808021; C&S) claim to find flaws in this discovery, while also claiming the standard cosmology is error free. Their analysis assumes the NRI represents a static cosmological model of the universe. This is wrong. My MPLA report clearly states the NRI encompasses an expanding universe wherein galaxies are undergoing Doppler recession due to vacuum density repulsion. C&S's confusion on this crucial point leads to serious errors in their analysis. Next, in claiming the standard cosmology is error free, C&S fail to respond to the contradictory evidenc...

  20. Probing the accelerating Universe with redshift-space distortions in VIPERS

    de la Torre, Sylvain

    2016-10-01

    We present the first measurement of the growth rate of structure at z=0.8. It has been obtained from the redshift-space distortions observed in the galaxy clustering pattern in the VIMOS Public Redshift survey (VIPERS) first data release. VIPERS is a large galaxy redshift survey probing the large-scale structure at 0.5 Universe, which has been poorly explored until now. We obtain σ8 = 0.47 +/- 0.08 at z = 0.8 that is consistent with the predictions of standard cosmological models based on Einstein gravity. This measurement alone is however not accurate enough to allow the detection of possible deviations from standard gravity.

  1. Two Novel Approaches for Photometric Redshift Estimation based on SDSS and 2MASS

    Dan Wang; Yan-Xia Zhang; Chao Liu; Yong-Heng Zhao

    2008-01-01

    We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the databases of Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey. We probe the performances of SVMs and KR for different input patterns. Our experiments show that with more parameters considered, the accuracy does not always increase, and only when appropriate parameters are chosen, the accuracy can improve. For different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.

  2. Two novel approaches for photometric redshift estimation based on SDSS and 2MASS databases

    Wang, Dan; Liu, Chao; Zhao, Yong-Heng

    2007-01-01

    We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey databases. We probe the performances of SVMs and KR for different input patterns. Our experiments show that the more parameters considered, the accuracy doesn't always increase, and only when appropriate parameters chosen, the accuracy can improve. Moreover for different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Finally the strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.

  3. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  4. Definitive Test of the R_h=ct Universe Using Redshift Drift

    Melia, Fulvio

    2016-01-01

    The redshift drift of objects moving in the Hubble flow has been proposed as a powerful model-independent probe of the underlying cosmology. A measurement of the first and second order redshift derivatives appears to be well within the reach of upcoming surveys using ELT-HIRES and the SKA Phase 2 array. Here we show that an unambiguous prediction of the R_h=ct cosmology is zero drift at all redshifts, contrasting sharply with all other models in which the expansion rate is variable. For example, multi-year monitoring of sources at redshift z=5 with the ELT-HIRES is expected to show a velocity shift Delta v = -15 cm/s/yr due to the redshift drift in Planck LCDM, while Delta v=0 cm/s/yr in R_h=ct. With an anticipated ELT-HIRES measurement error of +/-5 cm/s/yr after 5 years, these upcoming redshift drift measurements might therefore be able to differentiate between R_h=ct and Planck LCDM at ~3 sigma, assuming that any possible source evolution is well understood. Such a result would provide the strongest eviden...

  5. Galaxy and Mass Assembly (GAMA): Colour and luminosity dependent clustering from calibrated photometric redshifts

    Christodoulou, L; Loveday, J; Norberg, P; Baldry, I K; Hurley, P D; Driver, S P; Bamford, S P; Hopkins, A M; Liske, J; Peacock, J A; Bland-Hawthorn, J; Brough, S; Cameron, E; Conselice, C J; Croom, S M; Frenk, C S; Gunawardhana, M; Jones, D H; Kelvin, L S; Kuijken, K; Nichol, R C; Parkinson, H; Pimbblet, K A; Popescu, C C; Prescott, M; Robotham, A S G; Sharp, R G; Sutherland, W J; Taylor, E N; Thomas, D; Tuffs, R J; van Kampen, E; Wijesinghe, D

    2012-01-01

    We measure the two-point angular correlation function of a sample of 4,289,223 galaxies with r < 19.4 mag from the Sloan Digital Sky Survey as a function of photometric redshift, absolute magnitude and colour down to M_r - 5log h = -14 mag. Photometric redshifts are estimated from ugriz model magnitudes and two Petrosian radii using the artificial neural network package ANNz, taking advantage of the Galaxy and Mass Assembly (GAMA) spectroscopic sample as our training set. The photometric redshifts are then used to determine absolute magnitudes and colours. For all our samples, we estimate the underlying redshift and absolute magnitude distributions using Monte-Carlo resampling. These redshift distributions are used in Limber's equation to obtain spatial correlation function parameters from power law fits to the angular correlation function. We confirm an increase in clustering strength for sub-L* red galaxies compared with ~L* red galaxies at small scales in all redshift bins, whereas for the blue populati...

  6. Photometric redshifts and selection of high redshift galaxies in the NTT and Hubble Deep Fields

    Fontana, A; Poli, F; Giallongo, E; Arnouts, S; Cristiani, S; Moorwood, A F M; Saracco, P

    2000-01-01

    We present and compare in this paper new photometric redshift catalogs of the galaxies in three public fields: the NTT Deep Field, the HDF-N and the HDF-S. Photometric redshifts have been obtained for thewhole sample, by adopting a $\\chi^2$ minimization technique on a spectral library drawn from the Bruzual and Charlot synthesis models, with the addition of dust and intergalactic absorption. The accuracy, determined from 125 galaxies with known spectroscopic redshifts, is $\\sigma_z\\sim 0.08 (0.3)$ in the redshift intervals $z=0-1.5 (1.5-3.5)$. The global redshift distribution of I-selected galaxies shows a distinct peak at intermediate redshifts, z~0.6 at I_{AB}5 candidates in the HDF filter set and that the 4 brightest candidates at $z>5$ in the HDF-S are indeed most likely M stars. (ABRIDGED)

  7. Decoding quasars: gravitationally redshifted spectral lines !

    Kantharia, Nimisha G

    2016-01-01

    Further investigation of data on quasars, especially in the ultraviolet band, yields an amazingly coherent narrative which we present in this paper. Quasars are characterised by strong continuum emission and redshifted emission and absorption lines which includes the famous Lyman $\\alpha$ forest. We present irrefutable evidence in support of (1) the entire line spectrum arising in matter located inside the quasar system, (2) the range of redshifts shown by the lines being due to the variable contribution of the gravitational redshift in the observed line velocity, (3) existence of rotating black holes and of matter inside its ergosphere, (4) quasars located within cosmological redshifts $\\sim 3$, (5) $\\gamma$ ray bursts being explosive events in a quasar. These results are significant and a game-changer when we realise that the absorbing gas has been postulated to exist along the line-of-sight to the quasar and observations have accordingly been interpreted. In light of these definitive results which uniquely...

  8. Giving Cosmic Redshift Drift a Whirl

    Kim, Alex G; Edelstein, Jerry; Erskine, David

    2014-01-01

    Redshift drift provides a direct kinematic measurement of cosmic acceleration but it occurs with a characteristic time scale of a Hubble time. Thus redshift observations with a challenging precision of $10^{-9}$ require a 10 year time span to obtain a signal-to-noise of 1. We discuss theoretical and experimental approaches to address this challenge, potentially requiring less observer time and having greater immunity to common systematics. On the theoretical side we explore allowing the universe, rather than the observer, to provide long time spans; speculative methods include radial baryon acoustic oscillations, cosmic pulsars, and strongly lensed quasars. On the experimental side, we explore beating down the redshift precision using differential interferometric techniques, including externally dispersed interferometers and spatial heterodyne spectroscopy. Low-redshift emission line galaxies are identified as having high cosmology leverage and systematics control, with an 8 hour exposure on a 10-meter telesc...

  9. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    Bezanson, Rachel; Brammer, Gabriel B; van Dokkum, Pieter G; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G; Nelson, Erica J; Quadri, Ryan F; Skelton, Rosalind E; Weiner, Benjamin J; Whitaker, Katherine E

    2015-01-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than $H_{F140W} 2$), dusty star-forming galaxies for which the scatter increases to $\\sim0.1(1+z)$. Although the overall photometric redshift accuracy for quiescent galaxies is better than for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to $\\sim0.046(1+z)$ at $H_{F160W}=26$. We demonstrate that photometric redshift accuracy is strongly filter-dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of $\\sim1.1-1.6$, but that uniformly broadening the distributi...

  10. The 2-degree Field Lensing Survey: design and clustering measurements

    Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian

    2016-11-01

    We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.

  11. The luminosity distance-redshift relation up to second order in the Poisson gauge with anisotropic stress

    Marozzi, Giovanni

    2014-01-01

    We present the generalization of previously published results, about the perturbed redshift and the luminosity-redshift relation up to second order in perturbation theory, for the case of the Poisson gauge with anisotropic stress. The results are therefore valid for general dark energy models and (most) modify gravity models. We use an innovative approach based on the recently proposed "geodesic light-cone" gauge. We then compare our finding with other results, which recently appeared in the literature, for the particular case of vanishing anisotropic stress. To arrive at a common accepted expression for the non-linear and relativistic corrections to the redshift and distance-redshift relation is of fundamental importance in view of future cosmological surveys. Thanks to these surveys the Universe will be further probed with high precision and at very different scales, where non-linear and relativistic effects can play a key role.

  12. 2dFLenS and KiDS: Determining source redshift distributions with cross-correlations

    Johnson, Andrew; Amon, Alexandra; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A; McFarland, John; Morrison, Christopher B; Parkinson, David; Poole, Gregory B; Radovich, Mario; Wolf, Christian

    2016-01-01

    We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White (2013). The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z < 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N-body simulations, and comparisons with other techni...

  13. The SCUBA-2 Cosmology Legacy Survey: The EGS deep field I - Deep number counts and the redshift distribution of the recovered Cosmic Infrared Background at 450 and 850 um

    Zavala, J A; Geach, J E; Hughes, D H; Birkinshaw, M; Chapin, E; Chapman, S; Chen, Chian-Chou; Clements, D L; Dunlop, J S; Farrah, D; Ivison, R J; Jenness, T; Michałowski, M J; Robson, E I; Scott, Douglas; Simpson, J; Spaans, M; van der Werf, P

    2016-01-01

    We present deep observations at 450 um and 850 um in the Extended Groth Strip field taken with the SCUBA-2 camera mounted on the James Clerk Maxwell Telescope as part of the deep SCUBA-2 Cosmology Legacy Survey (S2CLS), achieving a central instrumental depth of $\\sigma_{450}=1.2$ mJy/beam and $\\sigma_{850}=0.2$ mJy/beam. We detect 57 sources at 450 um and 90 at 850 um with S/N > 3.5 over ~70 sq. arcmin. From these detections we derive the number counts at flux densities $S_{450}>4.0$ mJy and $S_{850}>0.9$ mJy, which represent the deepest number counts at these wavelengths derived using directly extracted sources from only blank-field observations with a single-dish telescope. Our measurements smoothly connect the gap between previous shallower blank-field single-dish observations and deep interferometric ALMA results. We estimate the contribution of our SCUBA-2 detected galaxies to the cosmic infrared background (CIB), as well as the contribution of 24 um-selected galaxies through a stacking technique, which ...

  14. The Impact of JWST Broadband Filter Choice on Photometric Redshift Estimation

    Bisigello, L.; Caputi, K. I.; Colina, L.;

    2016-01-01

    The determination of galaxy redshifts in the James Webb Space Telescope's (JWST) blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWST's Near-Infrared Camera (NIRCam) at 0.6–5.0 μm and Mid Infrared Instrument (MIRI) at λ 5.0 μm. In this work we analyze ...

  15. FIRST "WINGED" AND X-SHAPED RADIO SOURCE CANDIDATES. II. NEW REDSHIFTS

    Cheung, C. C.; Healey, Stephen E.; Landt, Hermine; Kleijn, Gijs Verdoes; Jordan, Andres

    2009-01-01

    We report optical spectroscopic observations of X-shaped radio sources with the Hobby-Eberly Telescope and Multiple-Mirror Telescope, focused on the sample of candidates from the FIRST survey presented in a previous paper. A total of 27 redshifts were successfully obtained, 21 of which are new, incl

  16. Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    Ganguly, Rajib; Brotherton, Michael S.; Arav, Nahum;

    2007-01-01

    We present low-resolution ultraviolet spectra of 14 low redshift (z zz 1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasar...

  17. An Apparent Redshift Dependence of Quasar Continuum: Implication for Cosmic Dust Extinction?

    Xie, Xiaoyi; Shao, Zhengyi; Yin, Jun

    2015-01-01

    We investigate the luminosity and redshift dependence of the quasar continuum by means of composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., $\\alpha_{\

  18. A cooperative approach among methods for photometric redshifts estimation: an application to KiDS data

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.; La Barbera, F.; Getman, F.; Grado, A.

    2017-04-01

    Photometric redshifts (photo-z) are fundamental in galaxy surveys to address different topics, from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree Survey (KiDS), i.e. the European Southern Observatory (ESO) public survey on the VLT Survey Telescope (VST), provides the unprecedented opportunity to exploit a large galaxy data set with an exceptional image quality and depth in the optical wavebands. Using a KiDS subset of about 25000 galaxies with measured spectroscopic redshifts, we have derived photo-z using (i) three different empirical methods based on supervised machine learning; (ii) the Bayesian photometric redshift model (or BPZ); and (iii) a classical spectral energy distribution (SED) template fitting procedure (LE PHARE). We confirm that, in the regions of the photometric parameter space properly sampled by the spectroscopic templates, machine learning methods provide better redshift estimates, with a lower scatter and a smaller fraction of outliers. SED fitting techniques, however, provide useful information on the galaxy spectral type, which can be effectively used to constrain systematic errors and to better characterize potential catastrophic outliers. Such classification is then used to specialize the training of regression machine learning models, by demonstrating that a hybrid approach, involving SED fitting and machine learning in a single collaborative framework, can be effectively used to improve the accuracy of photo-z estimates.

  19. The redshift of the Einstein ring in MG 1549+305

    Treu, T.; Koopmans, L. V. E.

    2003-01-01

    A deep spectrum taken with the Echelle Spectrograph and Imager (ESI) at the Keck II Telescope as part of the Lenses Structure and Dynamics (LSD) Survey reveals the redshifts of the extremely red source of the radio Einstein ring in the gravitational lens system MG 1549+305 (zs= 1.170 +/- 0.001) and

  20. Hubble Space Telescope Ultraviolet Spectroscopy of Fourteen Low-Redshift Quasars

    Ganguly, Rajib; Brotherton, Michael S.; Arav, Nahum

    2007-01-01

    We present low-resolution ultraviolet spectra of 14 low redshift (z zz 1.4 Large Bright Quasar samples. By design, our objects sample luminosities in between these two surveys, and our four absorbed objects are consistent with the v ~ L^0.62 relation derived by Laor & Brandt (2002). Another quasa...

  1. A very bright i=16.44 quasar in the `redshift desert' discovered by LAMOST

    Wu, Xue-Bing; Jia, Zhendong; Zuo, Wenwen; Zhao, Yongheng; Luo, Ali; Bai, Zhongrui; Chen, Jianjun; Zhang, Haotong; Yan, Hongliang; Ren, Juanjuan; Sun, Shiwei; Wu, Hong; Zhang, Yong; Li, Yeping; Lu, Qishuai; Wang, You; Ni, Jijun; Wang, Hai; Kong, Xu; Shen, Shiyin

    2010-01-01

    The redshift range from 2.2 to 3, is known as the 'redshift desert' of quasars because quasars with redshift in this range have similar optical colors as normal stars and are thus difficult to be found in optical sky surveys. A quasar candidate, SDSS J085543.40-001517.7, which was selected by a recently proposed criterion involving near-IR $Y-K$ and optical $g-z$ colors, was identified spectroscopically as a new quasar with redshift of 2.427 by the LAMOST commissioning observation in December 2009 and confirmed by the observation made with the NAOC/Xinglong 2.16m telescope in March 2010. This quasar was not targeted in the SDSS spectroscopic survey because it locates in the stellar locus of the optical color-color diagrams, while it is clearly separated from stars in the $Y-K$ vs. $g-z$ diagram. Comparing with other SDSS quasars we found this new quasar with $i$ magnitude of 16.44 is apparently the brightest one in the redshift range from 2.3 to 2.7. From the spectral properties we derived its central black h...

  2. The MOSDEF Survey: Metallicity Dependence of PAH Emission at High Redshift and Implications for 24 μm Inferred IR Luminosities and Star Formation Rates at z ∼ 2

    Shivaei, Irene; Reddy, Naveen A.; Shapley, Alice E.; Siana, Brian; Kriek, Mariska; Mobasher, Bahram; Coil, Alison L.; Freeman, William R.; Sanders, Ryan L.; Price, Sedona H.; Azadi, Mojegan; Zick, Tom

    2017-03-01

    We present results on the variation of 7.7 μm polycyclic aromatic hydrocarbon (PAH) emission in galaxies spanning a wide range in metallicity at z ∼ 2. For this analysis, we use rest-frame optical spectra of 476 galaxies at 1.37 ≤ z ≤ 2.61 from the MOSFIRE Deep Evolution Field (MOSDEF) survey to infer metallicities and ionization states. Spitzer/MIPS 24 μm and Herschel/PACS 100 and 160 μm observations are used to derive rest-frame 7.7 μm luminosities ({L}7.7) and total IR luminosities ({L}{IR}), respectively. We find significant trends between the ratio of {L}7.7 to {L}{IR} (and to dust-corrected star formation rate [SFR]) and both metallicity and [O iii]/[O ii] ({{{O}}}32) emission line ratio. The latter is an empirical proxy for the ionization parameter. These trends indicate a paucity of PAH emission in low-metallicity environments with harder and more intense radiation fields. Additionally, {L}7.7/{L}{IR} is significantly lower in the youngest quartile of our sample (ages of ≲500 Myr) compared to older galaxies, which may be a result of the delayed production of PAHs by AGB stars. The relative strength of {L}7.7 to {L}{IR} is also lower by a factor of ∼2 for galaxies with masses {M}* {10}10 {M}ȯ , respectively. Based on the new scaling, the SFR–M * relation has a shallower slope than previously derived. Our results also suggest a higher IR luminosity density at z ∼ 2 than previously measured, corresponding to a ∼30% increase in the SFR density.

  3. Empirical optical k-Corrections for redshifts <= 0.7

    Westra, Eduard; Kurtz, Michael J; Fabricant, Daniel G; Dell'Antonio, Ian; Observatory, Smithsonian Astrophysical; University, Brown

    2010-01-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a magnitude limited spectroscopically complete survey for R<=21.0 covering 4 square degrees. SHELS provides a large sample (15,513) of flux calibrated spectra. The wavelength range covered by the spectra allows empirical determination of k-corrections for the g- and r-band from z=0 to ~0.68 and 0.33, respectively, based on large samples of spectra. We approximate the k-corrections using only two parameters in a standard way: Dn4000 and redshift. We use Dn4000 rather than the standard observed galaxy color because Dn4000 is a redshift independent tracer of the stellar population of the galaxy. Our approximations for the k-corrections using Dn4000 are as good as (or better than) those based on observed galaxy color (g-r) (sigma of the scatter is ~0.08 mag). The approximations for the k-corrections are available in an on-line calculator. Our results agree with previously determined analytical approximations from single stellar population (SSP) models fitted ...

  4. Photometric selection of high-redshift type Ia supernovae

    Sullivan, M; Perrett, K; Nugent, P; Astier, Pierre; Aubourg, E; Balam, D; Basa, S; Carlberg, R; Conley, A; Fabbro, S; Fouchez, D; Guy, J; Hook, I; Lafoux, H; Neill, J D; Pain, R; Palanque-Delabrouille, Nathalie; Pritchet, C; Regnault, N; Rich, J; Taillet, R; Aldering, G; Baumont, S; Bronder, J; Filiol, M; Knop, R; Perlmutter, S; Tao, C

    2005-01-01

    We present a method for selecting high-redshift type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only 2-3 epochs of multi-band real-time photometry, is able to discriminate between SNe Ia and core collapse SNe. Furthermore, for the SNe Ia, the method accurately predicts the redshift, phase and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period May 2004 to January 2005 in the SNLS, 440 SN candidates were discovered of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test dataset, the selection technique ...

  5. The Redshift Evolution of LCDM Halo Parameters

    Muñoz-Cuartas, J C; Gottlöber, Stefan; Dutton, Aaron

    2011-01-01

    We study the mass and redshift dependence of the concentration parameter in Nbody simulations spanning masses from $10^{10} \\hMsun$ to $10^{15} \\hMsun$ and redshifts from 0 to 2. We present a series of fitting formulas that accurately describe the time evolution of the concentration-mass relation since z=2. Using arguments based on the spherical collapse model we study the behaviour of the scale length of the density profile during the assembly history of haloes, obtaining physical insights on the origin of the observed time evolution of the concentration mass relation. We present preliminary results of the implementation of this model in the prediction of the values of the concentration parameter for different masses and redshifts.

  6. Distribution function approach to redshift space distortions

    Seljak, Uros

    2011-01-01

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent on large scales. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum in terms of angle mu between wave vector and line of sight. We show that the dominant term of mu^2 dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative ...

  7. Testing the Gravitational Redshift with Atomic Gravimeters?

    Wolf, Peter; Bordé, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2011-01-01

    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, M\\"uller, Peters and Chu [Nature {\\bf 463}, 926-929 (2010)] argued that atom interferometers also provide a very accurate test of the gravitational redshift (or universality of clock rates). Considering the atom as a clock operating at the Compton frequency associated with the rest mass, they claimed that the interferometer measures the gravitational redshift between the atom-clocks in the two paths of the interferometer at different values of gravitational potentials. In the present paper we analyze this claim in the frame of general relativity and of different alternative theories, and conclude that the interpretation of atom interferometers as testing the gravitational redshift ...

  8. Observations of GRBs at high redshift.

    Tanvir, Nial R; Jakobsson, Páll

    2007-05-15

    The extreme luminosity of gamma-ray bursts and their afterglows means they are detectable, in principle, to very high redshifts. Although the redshift distribution of gamma-ray bursts (GRBs) is difficult to determine, due to incompleteness of present samples, we argue that for Swift-detected bursts, the median redshift is between 2.5 and 3, with a few per cent probably at z>6. Thus, GRBs are potentially powerful probes of the era of reionization and the sources responsible for it. Moreover, it seems probable that they can provide constraints on the star-formation history of the Universe and may also help in the determination of the cosmological parameters.

  9. Photometric redshifts with Quasi Newton Algorithm (MLPQNA). Results in the PHAT1 contest

    Cavuoti, Stefano; Longo, Giuseppe; Mercurio, Amata

    2012-01-01

    Context. Since the advent of modern multiband digital sky surveys, photometric redshifts (photo-z's) have become relevant if not crucial to many fields of observational cosmology, from the characterization of cosmic structures, to weak and strong lensing. Aims. We describe an application to an astrophysical context, namely the evaluation of photometric redshifts, of MLPQNA, a machine learning method based on Quasi Newton Algorithm. Methods. Empirical methods for photo-z's evaluation are based on the interpolation of a priori knowledge (spectroscopic redshifts or SED templates) and represent an ideal test ground for neural networks based methods. The MultiLayer Perceptron with Quasi Newton learning rule (MLPQNA) described here is a computing effective implementation of Neural Networks and is offered to the community through the DAMEWARE (DAta Mining & Exploration Web Application REsource) infrastructure. Results. The PHAT contest (Hildebrandt et al. 2010) provides a standard dataset to test old and new met...

  10. First redshift determination of an optically/UV faint submillimeter galaxy using CO emission lines

    Weiss, A; Downes, D; Walter, F; Cirasuolo, M; Menten, K M

    2009-01-01

    We report the redshift of a distant, highly obscured submm galaxy (SMG), based entirely on the detection of its CO line emission. We have used the newly commissioned Eight-MIxer Receiver (EMIR) at the IRAM 30m telescope, with its 8 GHz of instantaneous dual-polarization bandwidth, to search the 3-mm atmospheric window for CO emission from SMMJ14009+0252, a bright SMG detected in the SCUBA Lens Survey. A detection of the CO(3--2) line in the 3-mm window was confirmed via observations of CO(5--4) in the 2-mm window. Both lines constrain the redshift of SMMJ14009+0252 to z=2.9344, with high precision (dz=2 10^{-4}). Such observations will become routine in determining redshifts in the era of the Atacama Large Millimeter/submillimeter Array (ALMA).

  11. An analytic halo approach to the bispectrum of galaxies in redshift space

    Yamamoto, Kazuhiro; Hikage, Chiaki

    2016-01-01

    We present an analytic formula for the galaxy bispectrum in redshift space on the basis of the halo approach description with the halo occupation distribution of central galaxies and satellite galaxies. This work is an extension of a previous work on the galaxy power spectrum, which illuminated the significant contribution of satellite galaxies to the higher multipole spectrum through the non-linear redshift space distortions of their random motions. Behaviors of the multipoles of the bispectrum are compared with results of numerical simulations assuming a halo occupation distribution of the LOWZ sample of the SDSS-III BOSS survey. Also presented are analytic approximate formulas for the multipoles of the bispectrum, which is useful to understanding their characteristic properties. We demonstrate that the Fingers of God effect is quite important for the higher multipoles of the bispectrum in redshift space, depending on the halo occupation distribution parameters.

  12. TPZ : Photometric redshift PDFs and ancillary information by using prediction trees and random forests

    Kind, M Carrasco

    2013-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. In this paper, we present a new, publicly available, parallel, machine learning algorithm that generates photometric redshift PDFs by using prediction trees and random forest techniques, which we have named TPZ. This new algorithm incorporates measurement errors into the calculation while also dealing efficiently with missing values in the data. In addition, our implementation of this algorithm provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, a quantification of the relative importance of the variables used to con...

  13. Photo-z-SQL: integrated, flexible photometric redshift computation in a database

    Beck, Róbert; Budavári, Tamás; Szalay, Alexander S; Csabai, István

    2016-01-01

    We present a flexible template-based photometric redshift estimation framework, implemented in C#, that can be seamlessly integrated into a SQL database (or DB) server and executed on-demand in SQL. The DB integration eliminates the need to move large photometric datasets outside a database for redshift estimation, and utilizes the computational capabilities of DB hardware. The code is able to perform both maximum likelihood and Bayesian estimation, and can handle inputs of variable photometric filter sets and corresponding broad-band magnitudes. It is possible to take into account the full covariance matrix between filters, and filter zero points can be empirically calibrated using measurements with given redshifts. The list of spectral templates and the prior can be specified flexibly, and the expensive synthetic magnitude computations are done via lazy evaluation, coupled with a caching of results. Parallel execution is fully supported. For large upcoming photometric surveys such as the LSST, the ability t...

  14. SOMz: photometric redshift PDFs with self organizing maps and random atlas

    Kind, M Carrasco

    2013-01-01

    In this paper we explore the applicability of the unsupervised machine learning technique of Self Organizing Maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This technique takes a spectroscopic training set, and maps the photometric attributes, but not the redshifts, to a two dimensional surface by using a process of competitive learning where neurons compete to more closely resemble the training data multidimensional space. The key feature of a SOM is that it retains the topology of the input set, revealing correlations between the attributes that are not easily identified. We test three different 2D topological mapping: rectangular, hexagonal, and spherical, by using data from the DEEP2 survey. We also explore different implementations and boundary conditions on the map and also introduce the idea of a random atlas where a large number of different maps are created and their individual predictions are aggregated to produce a more robust photometric redshift PDF. We a...

  15. Anomalous Redshift of Some Galactic Objects

    Zheng, Yi-Jia

    2013-01-01

    Anomalous redshifts of some galactic objects such as binary stars, early-type stars in the solar neighborhood, and O stars in a star clusters are discussed. It is shown that all these phenomena have a common characteristic, that is, the redshifts of stars increase as the temperature rises. This characteristic cannot be explained by means of the Doppler Effect but can by means of the soft-photon process proposed by Yijia Zheng (arXiv:1305.0427 [astro-ph.HE]).

  16. High Redshift Quasars and Star Formation History

    Dietrich, M; Dietrich, Matthias; Hamann, Fred

    2001-01-01

    Quasars are among the most luminous objects in the universe, and they can be studied in detail up to the highest known redshift. Assuming that the gas associated with quasars is closely related to the interstellar medium of the host galaxy, quasars can be used as tracer of the star formation history in the early universe. We have observed a small sample of quasars at redshifts 3= 10, corresponding to an age of the universe of less than 5*10^8 yrs (H_o = 65 km/s/Mpc, Omega_M = 0.3, Omega_Lambda = 0.7).

  17. -Rays Radiation of High Redshift Fermi Blazars

    W. G. Liu; S. H. Fu; X. Zhang; L. Ma; Y. B. Li; D. R. Xiong

    2014-09-01

    Based on the 31 high redshift ( > 2) Flat Spectral Radio Quasars (FSRQs), which is from the second Fermi-LAT AGNs catalogue (2LAC), we studied the correlation between flux densities (R, K, ) in the radio, infrared and -ray wave bands. We found that there is a significant positive correlation between and R, and a weak anticorrelation between and K in the average state. For high redshift blazars, we argue that the seed photon of -ray emission mainly comes from the jet itself and partially from the dusty torus.

  18. The Hubble Sphere Hydrogen Survey

    Peterson, J B; Pen, U L; Peterson, Jeffrey B.; Bandura, Kevin; Pen, Ue Li

    2006-01-01

    An all sky redshift survey, using hydrogen 21 cm emission to locate galaxies, can be used to track the wavelength of baryon acoustic oscillations imprints from z ~ 1.5 to z = 0. This will allow precise determination of the evolution of dark energy. A telescope made of fixed parabolic cylindrical reflectors offers substantial benefit for such a redshift survey. Fixed cylinders can be built for low cost, and long cylinders also allow low cost fast fourier transform techniques to be used to define thousands of simultaneous beams. A survey made with fixed reflectors naturally covers all of the sky available from it's site with good uniformity, minimizing sample variance in the measurement of the acoustic peak wavelength. Such a survey will produce about a billion redshifts, nearly a thousand times the number available today. The survey will provide a three dimensional mapping of a substantial fraction of the Hubble Sphere.

  19. A luminous quasar at a redshift of z = 7.085

    Mortlock, Daniel J; Venemans, Bram P; Patel, Mitesh; Hewett, Paul C; McMahon, Richard G; Simpson, Chris; Theuns, Tom; Gonzales-Solares, Eduardo A; Adamson, Andy; Dye, Simon; Hambly, Nigel C; Hirst, Paul; Irwin, Mike J; Kuiper, Ernst; Lawrence, Andy; Rottgering, Huub J A

    2011-01-01

    The intergalactic medium was not completely reionized until approximately a billion years after the Big Bang, as revealed by observations of quasars with redshifts of less than 6.5. It has been difficult to probe to higher redshifts, however, because quasars have historically been identified in optical surveys, which are insensitive to sources at redshifts exceeding 6.5. Here we report observations of a quasar (ULAS J112001.48+064124.3) at a redshift of 7.085, which is 0.77 billion years after the Big Bang. ULAS J1120+0461 had a luminosity of 6.3x10^13 L_Sun and hosted a black hole with a mass of 2x10^9 M_Sun (where L_Sun and M_Sun are the luminosity and mass of the Sun). The measured radius of the ionized near zone around ULAS J1120+0641 is 1.9 megaparsecs, a factor of three smaller than typical for quasars at redshifts between 6.0 and 6.4. The near zone transmission profile is consistent with a Ly alpha damping wing, suggesting that the neutral fraction of the intergalactic medium in front of ULAS J1120+064...

  20. Discovery of intermediate redshift galaxy clusters in the ROSAT NEP field. [North Ecliptic Pole

    Burg, R.; Giacconi, R.; Huchra, J.; Mackenty, J.; Mclean, B.; Geller, M.; Hasinger, G.; Marzke, R.; Schmidt, M.; Truemper, J.

    1992-01-01

    We report preliminary results from a program to identify optical counterparts of ROSAT sources in the North Ecliptic Pole (NEP) region. The most striking X-ray feature reported by Hasinger et al. (1991) is an extended low surface brightness region of X-ray emission. Within the two X-ray contours of highest count rate we find a cluster of galaxies at a redshift of 0.09 and an early-type galaxy at a redshift of 0.03. X-ray emission from these objects may provide an explanation for the observed X-ray morphology. We also find evidence that other X-ray sources in this region are coincident with clusters or groups of galaxies at redshifts between 0.08 and 0.09. The presence of at least five X-ray detected clusters or groups in this narrow redshift band within a 1.5 deg radius field seems to indicate the existence of a moderate redshift supercluster. The existence of these clusters will have major implications for the study of large-scale structure through X-ray surveys such as ROSAT.