Non-equilibrium critical vortex dynamics of disordered 2D XY-model
Popov, Ivan S.; Prudnikov, Pavel V.; Prudnikov, Vladimir V.
2016-02-01
Vortex dynamics and clustering in non-equilibrium critical relaxation of disordered 2D XY-model are investigated for different initial states. Time dependencies of vortex concentration and clusters sizes are studied for different spin concentrations. The anomalous slow down of clustering in disordered system are explained by pinning of vortices on defects. The calculated temperature dependence of transverse stiffness allows to estimate critical temperature Tbkt and applicability of spin-wave approximation for disordered system.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Energy Technology Data Exchange (ETDEWEB)
Anber, Mohamed M.; Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Rocha, Julio; Mol, Lucas; Costa, Bismarck
2015-03-01
In this work we show that the canonical partition function zeros, the Fisher zeros, can be used to uniquely characterize a transition as being in the Berezinskii-Kosterlitz-Thouless (BKT) class of universality. By studying the zeros map for the 2D XY model we found that its internal border coalesces into the real positive axis in a finite region corresponding to temperatures smaller than the BKT transition temperature. This behavior is consistent with the predicted existence of a line of critical points below the transition temperature, allowing one to distinguish the BKT class of universality from other ones. This work was partially supported by CNPq and Fapemig, Brazilian Agencies.
FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry
International Nuclear Information System (INIS)
1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)
DNTM/R2D, 2-D Transport in X-Y Geometry
International Nuclear Information System (INIS)
1 - Description of program or function: DNTM/R2D solves the neutron transport equation in two-dimensional X-Y geometry by the discrete nodal transport method. Source and eigenvalue problems can be solved. As compared to the two-dimensional nodal transport code DNTM/2D, the following new improved features are included: - Anisotropic scattering is considered. The order of anisotropic scattering is from P0 to P3. - The cross section input format is the same as for ANISN. Multi- group cross section libraries such as DLC-37 and DLC-BUGLE-80 can be used. 2 - Method of solution: DNTM/R2D uses the discrete nodal transport method. Anisotropic scattering is treated using Legendre expansion. Order of interior flux approximation is 2. Plane leakage approximation of surface flux is used. 3 - Restrictions on the complexity of the problem: Maximum number of: anisotropic scattering order = 3; material composition = 20; energy groups = 2; angular quadrature = 8; zones = 30. When coarse-mesh re-balancing is used, the maximum number of coarse meshes is 12 in each direction. If the computer permits some arrays can be enlarged to reduce the above restrictions
Magnetic-field-induced Heisenberg to XY crossover in a quasi-2D quantum antiferromagnet
International Nuclear Information System (INIS)
The magnetic-field-dependent ordering temperature of the quasi-2D quantum Heisenberg antiferromagnet (QHAF) Cu(pz)2(ClO4)2 was determined by calorimetric measurement in applied dc fields up to 33 tesla. The magnetic phase diagram shows a round maximum at 5.95 K and 17.5 T (at ≈ 1/3 of its saturation field), a 40 percent enhancement of the ordering temperature above the zero field value of 4.25 K. The enhancement and reentrance are consistent with predictions of a field-induced Heisenberg to XY crossover behavior for an ideal 2D QHAF system
XY model in small-world networks
Kim, Beom Jun; Hong, H.; Holme, Petter; Jeon, Gun Sang; Minnhagen, Petter; Choi, M. Y.
2001-01-01
The phase transition in the XY model on one-dimensional small-world networks is investigated by means of Monte-Carlo simulations. It is found that long-range order is present at finite temperatures, even for very small values of the rewiring probability, suggesting a finite-temperature transition for any nonzero rewiring probability. Nature of the phase transition is discussed in comparison with the globally-coupled XY model.
XY model on a Sierpinski gasket
International Nuclear Information System (INIS)
Correlation functions and topological excitations of the XY model on a Sierpinski gasket are studied. The energy of a vortex is shown to be finite, so no Berezinskii-Kosterlitz-Thouless transition can be expected to take place. At any temperature the correlation function decays exponentially at large distances. A form of the XY model on a Sierpinski gasket is found that allows for exact renormalization. The results obtained can be applied to superconducting wire networks and tunnel-junction arrays
Ventura, P; Li, L; Sofia, S; Basu, S; Demarque, P
2009-01-01
Understanding the reasons of the cyclic variation of the total solar irradiance is one of the most challenging targets of modern astrophysics. These studies prove to be essential also for a more climatologic issue, associated to the global warming. Any attempt to determine the solar components of this phenomenon must include the effects of the magnetic field, whose strength and shape in the solar interior are far from being completely known. Modelling the presence and the effects of a magnetic field requires a 2D approach, since the assumption of radial symmetry is too limiting for this topic. We present the structure of a 2D evolution code that was purposely designed for this scope; rotation, magnetic field and turbulence can be taken into account. Some preliminary results are presented and commented.
Equivalence between XY and dimerized models
Campos Venuti, Lorenzo; Roncaglia, Marco
2010-06-01
The spin-1/2 chain with XY anisotropic coupling in the plane and the XX isotropic dimerized chain are shown to be equivalent in the bulk. For finite systems, we prove that the equivalence is exact in given parity sectors, after taking care of the precise boundary conditions. The proof is given constructively by finding unitary transformations that map the models onto each other. Moreover, we considerably generalized our mapping and showed that even in the case of fully site-dependent couplings the XY chain can be mapped onto an XX model. This result has potential application in the study of disordered systems.
Equivalence between XY and dimerized models
International Nuclear Information System (INIS)
The spin-1/2 chain with XY anisotropic coupling in the plane and the XX isotropic dimerized chain are shown to be equivalent in the bulk. For finite systems, we prove that the equivalence is exact in given parity sectors, after taking care of the precise boundary conditions. The proof is given constructively by finding unitary transformations that map the models onto each other. Moreover, we considerably generalized our mapping and showed that even in the case of fully site-dependent couplings the XY chain can be mapped onto an XX model. This result has potential application in the study of disordered systems.
CHOLESK, Diffusion Calculation with 2-D Source in X-Y or R-Z Geometry
International Nuclear Information System (INIS)
1 - Description of problem or function: Solution of the diffusion equation with source in two-dimensional geometries x-y or r-z. 2 - Method of solution: The finite-element method of Ritz-Galerkin is applied
Lattice distortion in disordered antiferromagnetic XY models
Institute of Scientific and Technical Information of China (English)
Li Peng-Fei; Cao Hai-Jing
2012-01-01
The behavior of lattice distortion in spin 1/2 antiferromagnetic XY models with random magnetic modulation is investigated with the consideration of spin-phonon coupling in the adiabatic limit.It is found that lattice distortion relies on the strength of the random modulation.For strong or weak enough spin-phonon couplings,the average lattice distortion may decrease or increase as the random modulation is strengthened.This may be the result of competition between the random magnetic modulation and the spin-phonon coupling.
HEMP, 2-D Elastic Plastic Flow in 2-D X-Y or Cylindrical Geometry by Lagrangian Method
International Nuclear Information System (INIS)
1 - Description of problem or function: The HEMP code solves the conservation equations of two-dimensional elastic-plastic flow, in plane x-y coordinates or in cylindrical symmetry around the x- axis. Provisions for calculation of fixed boundaries, free surfaces, pistons, and boundary slide planes have been included, along with other special conditions. 2 - Method of solution: The solution is by the method of finite differences and uses the Lagrangian formulation. The materials within a physical system are divided into quadrilaterals bounded by J and K grid lines. A decoupling of grid lines is allowed along K-lines, and voids may open and close between K-lines. 3 - Restrictions on the complexity of the problem: The maximum number of J's in any K-line is 101. A problem of up to about 10,000 zones may be run
Simulating the classical XY model with a laser network
Tamate, Shuhei; Marandi, Alireza; McMahon, Peter; Utsunomiya, Shoko
2016-01-01
Drawing fair samples from the Boltzmann distribution of a statistical model is a challenging task for modern digital computers. We propose a physical implementation of a Boltzmann sampler for the classical XY model by using a laser network. The XY spins are mapped onto the phases of multiple laser pulses in a fiber ring cavity and the steady-state distribution of phases naturally realizes the Boltzmann distribution of the corresponding XY model. We experimentally implement the laser network by using an actively mode-locked fiber laser with optical delay lines, and demonstrate Boltzmann sampling for a one-dimensional XY ring.
Activated sludge model No. 2d, ASM2d
DEFF Research Database (Denmark)
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...
Multipartite geometric entanglement in finite size XY model
International Nuclear Information System (INIS)
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
One-dimensional XY model: ergodic properties and hydrodynamic limit
International Nuclear Information System (INIS)
The authors prove theorems on convergence to a stationary state in the source of time for the one-dimensional XY model and its generalizations. The key point is the well-known Jordan-Wigner transformation, which maps the XY dynamics onto a group of Bogoliubov transformations on the CAR C*-algebra over Z1. The role of stationary states for Bogoliubov transformations is played by quasifree states and for the XY model by their inverse images with respect to the Jordan-Wigner transformation. The hydrodynamic limit for the one-dimensional XY model is also considered. By using the Jordan-Wigner transformation one reduces the problem to that of constructing the hydrodynamic limit for the group of Bogoliubov transformations. As a result, they obtain an independent motion of normal modes, which is described by a hyperbolic linear differential equation of second order. For the XX model this equation reduces to a first-order transfer equation
Multipartite geometric entanglement in finite size XY model
Energy Technology Data Exchange (ETDEWEB)
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Giampaolo, Salvatore Marco; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2009-06-01
We investigate the behavior of the multipartite entanglement in the finite size XY model by means of the hierarchical geometric measure of entanglement. By selecting specific components of the hierarchy, we study both global entanglement and genuinely multipartite entanglement.
Vortex dynamics for two-dimensional XY models
Kim, Beom Jun; Minnhagen, Petter; Olsson, Peter
1998-01-01
Two-dimensional XY models with resistively shunted junction (RSJ) dynamics and time dependent Ginzburg-Landau (TDGL) dynamics are simulated and it is verified that the vortex response is well described by the Minnhagen phenomenology for both types of dynamics. Evidence is presented supporting that the dynamical critical exponent $z$ in the low-temperature phase is given by the scaling prediction (expressed in terms of the Coulomb gas temperature $T^{CG}$ and the vortex renormalization given b...
International Nuclear Information System (INIS)
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date
SCORE-4, 2-D Removal Diffusion in X-Y or R-Z Geometry for Rectangular Shields
International Nuclear Information System (INIS)
1 - Nature of physical problem solved: The neutron flux is calculated for a shield made up of rectangular regions. The geometry is either x-y or r-z. 2 - Method of solution: Removal fluxes and sources throughout the shield regions are calculated from a given reactor core power distribution using a point kernel method. The diffusion neutron fluxes are obtained from the removal source distribution using an iterative Method of solution. 3 - Restrictions on the complexity of the problem: The amount of fast core required for the program depends on the size of shield being calculated. For example, a 100 by 100 mesh shielding calculation would require approximately 300 k bytes. Larger problems could be solved by increasing the fast storage requirements
International Nuclear Information System (INIS)
In these lectures, I shall focus on the matrix formulation of 2-d gravity. In the first one, I shall discuss the main results of the continuum formulation of 2-d gravity, starting from the first renormalization group calculations which led to the concept of the conformal anomaly, going through the Polyakov bosonic string and the Liouville action, up to the recent results on the scaling properties of conformal field theories coupled to 2-d gravity. In the second lecture, I shall discuss the discrete formulation of 2-d gravity in term of random lattices, and the mapping onto random matrix models. The occurrence of critical points in the planar limit and the scaling limit at those critical points will be described, as well as the identification of these scaling limits with continuum 2-d gravity coupled to some matter field theory. In the third lecture, the double scaling limit in the one matrix model, and its connection with continuum non perturbative 2-d gravity, will be presented. The connection with the KdV hierarchy and the general form of the string equation will be discuted. In the fourth lecture, I shall discuss the non-perturbative effects present in the non perturbative solutions, in the case of pure gravity. The Schwinger-Dyson equations for pure gravity in the double scaling limit are described and their compatibility with the solutions of the string equation for pure gravity is shown to be somewhat problematic
Anomalous elasticity in a disordered layered XY model
International Nuclear Information System (INIS)
We investigate the effects of layered quenched disorder on the behavior of planar magnets, superfluids and superconductors by performing large-scale Monte-Carlo simulations of a three-dimensional randomly layered XY model. Our data provide numerical evidence for the recently predicted anomalously elastic (sliding) intermediate phase between the conventional high-temperature and low-temperature phases. In this intermediate phase, the spin-wave stiffness perpendicular to the layers vanishes in the thermodynamic limit while the stiffness parallel to the layers as well as the spontaneous magnetization are nonzero. In addition, the susceptibility displays unconventional finite-size scaling properties. We compare our Monte-Carlo results with the theoretical predictions, and we discuss possible experiments in ultracold atomic gases, layered superconductors and in nanostructures.
DEFF Research Database (Denmark)
Burcharth, Hans F.; Meinert, Palle; Andersen, Thomas Lykke
This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To identify cross section design which restrict the overtopping to acceptable levels and to record the...
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...
Phase transitions in a frustrated XY model with zig-zag couplings
International Nuclear Information System (INIS)
We study a new generalized version of the square-lattice frustrated XY model where unequal ferromagnetic and antiferromagnetic couplings are arranged in a zig-zag pattern. The ratio between the couplings ρ can be used to tune the system, continuously, from the isotropic square-lattice to the triangular-lattice frustrated XY model. The model can be physically realized as a Josephson-junction array with two different couplings, in a magnetic field corresponding to half-flux quanta per plaquette. Mean-field approximation, Ginzburg-Landau expansion and finite-size scaling of Monte Carlo simulations are used to study the phase diagram and critical behaviour. Depending on the value of ρ, two separate transitions or a transition line in the universality class of the XY-Ising model, with combined Z2 and U(1) symmetries, takes place. In particular, the phase transitions of the standard square-lattice and triangular-lattice frustrated XY models correspond to two different cuts through the same transition line. Estimates of the chiral (Z2) critical exponents on this transition line deviate significantly from the pure Ising values, consistent with that along the critical line of the XY-Ising model. This suggest that a frustrated XY model or Josephson-junction array with a zig-zag coupling modulation can provide a physical realization of the XY-Ising model critical line. (author). 32 refs, 9 figs
The isotropic XY model on the inhomogeneous periodic chain
International Nuclear Information System (INIS)
The static and dynamic properties of the isotropic XY-model (s=12) on the inhomogeneous periodic chain, composed of N segments with n different exchange interactions and magnetic moments, in a transverse field h, are obtained exactly at arbitrary temperatures. The properties are determined by introducing the generalized Jordan-Wigner transformation and by reducing the problem to a diagonalization of a finite matrix of nth order. The diagonalization procedure is discussed in detail and the critical behaviour induced by the transverse field, at T=0, is presented. The quantum transitions are determined by analyzing the behaviour of the induced magnetization, defined as (1/n)-bar m=1nμmj,mz> where μm is the magnetic moment at site m within the segment j, as a function of the field, and the critical fields determined exactly. The dynamic correlations, j,mz(t)Sj',m'z(0)>, and the dynamic susceptibility χqzz(ω) are also obtained at arbitrary temperatures. Explicit results are presented in the limit T=0, where the critical behaviour occurs, for the static susceptibility χqzz(0) as a function of the transverse field h, and for the frequency dependency of dynamic susceptibility χqzz(ω). Also in this limit, the transverse time-correlation j,mx(t)Sj',m'x(0)> and the dynamic and isothermal susceptibilities, χqxx(ω) and χTxx, are obtained for the transverse field greater or equal than the saturation field
Static and dynamical quantum correlations in phases of an alternating field XY model
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; De, Aditi Sen; Sen, Ujjwal
2016-01-01
We investigate the static and dynamical patterns of entanglement in an anisotropic XY model with an alternating transverse magnetic field, which is equivalent to a two-component one-dimensional Fermi gas on a lattice, a system realizable with current technology. Apart from the antiferromagnetic and paramagnetic phases, the model possesses a dimer phase which is not present in the transverse XY model. At zero temperature, we find that the first derivative of bipartite entanglement can detect a...
Effects of Staggered Magnetic Field on Entanglement in the Anisotropic XY Model
Institute of Scientific and Technical Information of China (English)
SUN Zhe; WANG Xiao-Guang
2006-01-01
We investigate effects of staggered magnetic field on thermal entanglement in the anisotropic XY model.The analytic results of entanglement for the two-site cases are obtained. For the general case of even sites, we show that when the anisotropic parameter is zero, the entanglement in the XY model with a staggered magnetic field is the same as that with a uniform magnetic field.
2-D Model Test of Dolosse Breakwater
DEFF Research Database (Denmark)
Burcharth, Hans F.; Liu, Zhou
1994-01-01
The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992). To...... extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment was on the...
Surface modelling for 2D imagery
Lieng, Henrik
2014-01-01
Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...
International Nuclear Information System (INIS)
We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature region. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)
International Nuclear Information System (INIS)
We use Monte Carlo simulations of a layered XY model to study phase fluctuations in high-Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low-temperature regime. This is in agreement with a zero-temperature variational calculation. At temperature just above the two-dimensional (2D) vortex-unbinding temperature, the linear term vanishes and an ordinary 2D vortex behavior is found. This explains the finding that high-Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature
International Nuclear Information System (INIS)
We use Monte Carlo simulations of a layered XY-model to study the phase fluctuations in high Tc superconductors. A vortex-antivortex interaction dominated by a term linear in the vortex separation is found in the low temperature regime. This is in agreement with a zero temperature variational calculation. At temperature just above the 2D vortex unbinding temperature the linear term vanishes and an ordinary 2D vortex behaviour is found. This explains the finding that the High Tc superconductors show 2D properties in the vortex fluctuations responsible for the resistivity transition close to the critical temperature. (orig.)
Coulomb-gas representation of the two-dimensional XY model on a torus
International Nuclear Information System (INIS)
Superconducting networks and superfluid films in two dimensions are often described by a theoretical model in which the unique microscopic variables are phases. Among these models the XY model with Villain's interaction potential can be mapped exactly onto a lattice Coulomb gas. This is well known, but several questions still have no clear answers: First, what is the meaning of the charge of the Coulomb gas in terms of the original variables of the XY model? Second, how can the helicity modulus be expressed exactly in the Coulomb gas representation on a finite torus? In this paper we answer these questions. The mapping onto a lattice Coulomb gas is done in a way that differs from the usual one. This mapping is applied to a phase model whose partition function has an identical mathematical structure as the one of the XY model with Villain's interaction. For this phase model, contrary to the XY model, the charges of the Coulomb gas describe indeed exactly the topological charges as we can define them in terms of the phase variables. However, this Coulomb gas contains an additional polarization energy and two additional fictitious variables accounting for the specific topological character of the torus. The helicity modulus is exactly the inverse of a dielectric constant which can be defined as the linear response to an external uniform electric field, even on a torus. The meaning of the Coulomb-gas representation is also discussed in terms of the original variables of the XY model
Topological charge order and binding in a frustrated XY model and related systems
International Nuclear Information System (INIS)
We prove the existence of a finite temperature Z2 phase transition for the topological charge ordering within the fully frustrated XY model. Our method enables a proof of the topological charge confinement within the conventional XY models from a rather general vista. One of the complications that we face is the non-exact equivalence of the continuous (angular) XY model and its discrete topological charge dual. In reality, the energy spectra of the various topological sectors are highly nested, much unlike that suggested by the discrete dual models. We surmount these difficulties by exploiting the reflection positivity symmetry that this periodic flux phase model possesses. The techniques introduced here may prove binding of topological charges in numerous models and might be applied to examine transitions associated with various topological defects, e.g., the confinement of disclinations in the isotropic to nematic transition. (paper)
VARI-QUIR-3, 2-D Multigroup Steady-State Neutron Diffusion in X-Y R-Z or R-Theta Geometry
International Nuclear Information System (INIS)
1 - Nature of physical problem solved: The steady-state, multigroup, two-dimensional neutron diffusion equations are solved in x-y, r-z, and r-theta geometry. 2 - Method of solution: A Gauss-Seidel type of solution with inner and outer iterations is used. The source is held constant during the inner iterations
The SU(3)/Z_3 QCD(adj) deconfinement transition via the gauge theory/"affine" XY-model duality
Anber, Mohamed M; Poppitz, Erich
2012-01-01
Earlier, two of us and M. Unsal [arXiv:1112.6389] showed that some 4d gauge theories, compactified on a small spatial circle of size L and considered at temperatures 1/beta near deconfinement, are dual to 2d "affine" XY-spin models. We use the duality to study deconfinement in SU(3)/Z_3 theories with n_f>1 massless adjoint Weyl fermions, QCD(adj) on R^2 x S^1_beta x S^1_L. The"affine" XY-model describes two "spins" - compact scalars taking values in the SU(3) root lattice, with nearest-neighbor interactions and subject to an "external field" preserving the topological Z_3^t and a discrete Z_3^chi subgroup of the chiral symmetry of the 4d gauge theory. The equivalent Coulomb gas representation of the theory exhibits electric-magnetic duality, which is also a high-/low-temperature duality. A renormalization group analysis suggests - but is not convincing, due to the onset of strong coupling - that the self-dual point is a fixed point, implying a continuous deconfinement transition. Here, we study the nature of ...
Global regularity for the 2D Oldroyd-B model in the corotational case
Ye, Zhuan; Xu, Xiaojing
2016-09-01
This paper is dedicated to the Oldroyd-B model with fractional dissipation $(-\\Delta)^{\\alpha}\\tau$ for any $\\alpha>0$. We establish the global smooth solutions to the Oldroyd-B model in the corotational case with arbitrarily small fractional powers of the Laplacian in two spatial dimensions. The methods described here are quite different from the tedious iterative approach used in recent paper \\cite{XY}. Moreover, in the Appendix we provide some a priori estimates to the Oldroyd-B model in the critical case which may be useful and of interest for future improvement. Finally, the global regularity to to the Oldroyd-B model in the corotational case with $-\\Delta u$ replaced by $(-\\Delta)^{\\gamma}u$ for $\\gamma>1$ are also collected in the Appendix. Therefore our result is more closer to the resolution of the well-known global regularity issue on the critical 2D Oldroyd-B model.
Symmetries and solvable models for evaporating 2D black holes
Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.
1997-01-01
We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V
Maximizing entropy of image models for 2-D constrained coding
Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...
Thermal excitations of frustated XY spins in two dimensions
Benakli, M.; Zheng, H.; M. Gabay
1996-01-01
We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square ( FFSQXY) XY models. The novel aspect of our method is tha...
Directory of Open Access Journals (Sweden)
A. Sadeghi
2007-03-01
Full Text Available Using both mean field renormalization group (MFRG and Surface-Bulk MFRG (SBMFRG, we study the critical behavior of the classical Heisenberg and XY models on a simple cubic lattice. Critical temperatures as well as critical exponents, characteristic the universality classes of these two models were calculated, analytically for1, 2, 3 and 4 spin clusters. The results are in good agreement with higher accurate methods such as Monte Carlo and High- temperature series.
Anomalous behavior of the energy gap in the one-dimensional quantum XY model.
Okuyama, Manaka; Yamanaka, Yuuki; Nishimori, Hidetoshi; Rams, Marek M
2015-11-01
We reexamine the well-studied one-dimensional spin-1/2 XY model to reveal its nontrivial energy spectrum, in particular the energy gap between the ground state and the first excited state. In the case of the isotropic XY model, the XX model, the gap behaves very irregularly as a function of the system size at a second order transition point. This is in stark contrast to the usual power-law decay of the gap and is reminiscent of the similar behavior at the first order phase transition in the infinite-range quantum XY model. The gap also shows nontrivial oscillatory behavior for the phase transitions in the anisotropic model in the incommensurate phase. We observe a close relation between this anomalous behavior of the gap and the correlation functions. These results, those for the isotropic case in particular, are important from the viewpoint of quantum annealing where the efficiency of computation is strongly affected by the size dependence of the energy gap. PMID:26651656
Kalman Filter for Generalized 2-D Roesser Models
Institute of Scientific and Technical Information of China (English)
SHENG Mei; ZOU Yun
2007-01-01
The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
Collective modes in quantum lattice or three-dimensional XY model, 2
International Nuclear Information System (INIS)
An external field is applied to the XY model which was studied in a previous paper. With the help of Mori's memory function formalism, two types of collective modes are obtained. One of those, which was previously pointed out to correspond to the first sound in superfluid helium, survives at the critical temperature T sub(c). The other is a new mode, which disappears as a result of symmetry restored above T sub(c). This mode comes about owing to the coupling between the Goldstone mode and the energy fluctuation due to an external field, and is regarded to correspond to the second sound in superfluid helium. The linearized two-fluid hydrodynamic equations for superfluid helium are obtained in the context of the XY model, in which the detailed correspondence to the superfluid helium is clarified. (author)
Thermodynamics of the two-dimensional XY model from functional renormalization
Jakubczyk, Pawel
2016-01-01
We solve the nonperturbative renormalization-group flow equations for the two-dimensional XY model at the truncation level of the (complete) second-order derivative expansion. We compute the thermodynamic properties in the high-temperature phase and compare the non-universal features specific to the XY model with results from Monte Carlo simulations. In particular, we study the position and magnitude of the specific heat peak as a function of temperature. The obtained results compare well with Monte Carlo simulations. We additionally gauge the accuracy of simplified nonperturbative renormalization-group treatments relying on $\\phi^4$-type truncations. Our computation indicates that such an approximation is insufficient in the high-$T$ phase and a correct analysis of the specific heat profile requires account of an infinite number of interaction vertices.
Nagata, H; Žukovič, M.; Idogaki, T.
2013-01-01
The three-dimensional XY model with bilinear-biquadratic exchange interactions $J$ and $J'$, respectively, has been studied by Monte Carlo simulations. From the detailed analysis of the thermal variation of various physical quantities, as well as the order parameter and energy histogram analysis, the phase diagram including two different ordered phases has been determined. There is a single phase boundary from a paramagnetic to a dipole-quadrupole ordered phase, which is of second order in a ...
Susceptibilities of the S = 1/2 XY model on the square lattice at T = 0
International Nuclear Information System (INIS)
For the S = 1/2 XY model at T = 0 four susceptibilities have been calculated exactly on a sequence of finite square lattices and extrapolated to the infinite square lattice. For the ferromagnet chisub(zz) = 0 while chisub(xx) approx. Nsup(2.9); for the antiferromagnet Jchisub(xx)/N(gμsub(B))2 = 0.025 +- 0.002 and Jchisub(zz)/N(gμsub(B))2 = 0.13 +- 0.03. (orig.)
Critical properties of XY model on two-layer Villain-ferromagnetic lattice
Institute of Scientific and Technical Information of China (English)
Wang Yi; R. Quartu; Liu Xiao-Yan; Han Ru-Qi; Horiguchi Tsuyoshi
2004-01-01
We investigate phase transitions of the XY model on a two-layer square lattice which consists of a Villain plane(J) and a ferromagnetic plane (I), using Monte Carlo simulations and a histogram method. Depending on the values of interaction parameters (I, J), the system presents three phases: namely, a Kosterlitz-Thouless (KT) phase in which the two planes are critical for I predominant over J, a chiral phase in which the two planes have a chiral order for J predominant over I and a new phase in which only the Villain plane has a chiral order and the ferromagnetic plane is paramagnetic with a small value of chirality. We clarify the nature of phase transitions by using a finite size scaling method. We find three different kinds of transitions according to the values of (I, J): the KT transition, the Ising transition and an XY-Ising transition with v = 0.849(3). It turns out that the Ising or XY-Ising transition is associated with the disappearance of the chiral order in the Villain plane.
Technical Review of the UNET2D Hydraulic Model
Energy Technology Data Exchange (ETDEWEB)
Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
QSAR Models for P-450 (2D6) Substrate Activity
DEFF Research Database (Denmark)
Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;
2009-01-01
activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....
Markovian evolution of classical and quantum correlations in transverse-field XY model
Pal, A. K.; Bose, I.
2012-08-01
The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information I( ρ AB ), the classical correlations C( ρ AB ) and the quantum correlations Q( ρ AB ), as measured by the quantum discord, in a two-qubit state. The density matrix of this state is given by the nearest-neighbour reduced density matrix obtained from the ground state of the transverse-field XY model in 1d. We assume Markovian dynamics for the time-evolution due to system-environment interactions. The quantum channels considered include the bit-flip, bit-phase-flip and phase-flip channels. Two different types of dynamics are identified for the channels in one of which the quantum correlations are greater in magnitude than the classical correlations in a finite time interval. The origins of the different types of dynamics are further explained. For the different channels, appropriate quantities associated with the dynamics of the correlations are identified which provide signatures of QPTs. We also report results for further-neighbour two-qubit states and finite temperatures.
Dynamical phase transitions and Loschmidt echo in the infinite-range XY model.
Žunkovič, Bojan; Silva, Alessandro; Fabrizio, Michele
2016-06-13
We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition. PMID:27140975
Markovian evolution of classical and quantum correlations in transverse-field XY model
Pal, Amit Kumar
2011-01-01
The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information $I(\\rho_{AB})$, the classical correlations $C(\\rho_{AB})$ and the quantum correlations $Q(\\rho_{...
A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW
Institute of Scientific and Technical Information of China (English)
He Ji-huan
2003-01-01
The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.
Dynamical study of 2D and 3D barred galaxy models
Manos, T
2008-01-01
We study the dynamics of 2D and 3D barred galaxy analytical models, focusing on the distinction between regular and chaotic orbits with the help of the Smaller ALigment Index (SALI), a very powerful tool for this kind of problems. We present briefly the method and we calculate the fraction of chaotic and regular orbits in several cases. In the 2D model, taking initial conditions on a Poincar\\'{e} $(y,p_y)$ surface of section, we determine the fraction of regular and chaotic orbits. In the 3D model, choosing initial conditions on a cartesian grid in a region of the $(x, z, p_y)$ space, which in coordinate space covers the inner disc, we find how the fraction of regular orbits changes as a function of the Jacobi constant. Finally, we outline that regions near the $(x,y)$ plane are populated mainly by regular orbits. The same is true for regions that lie either near to the galactic center, or at larger relatively distances from it.
Transverse susceptibility of the 1D isotropic XY-model at zero temperature
International Nuclear Information System (INIS)
An exact expression is obtained for the dynamic transverse susceptibility Xxx (w,i,j) of the one-dimensional isotropic XY-model both on an open and on a closed chain with arbitrary number of sites at zero temperature, when the transverse field is greater than the absolute value of the exchange constant. The dynamic transverse wave-vector-dependent susceptibility for the closed infinite chain is also determined, and it is shown that in all cases the isothermal susceptibility is identical to the static susceptibility. (Author)
DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM
Directory of Open Access Journals (Sweden)
K. Srinivasan
2010-11-01
Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.
Lattice simulation of 2d Gross-Neveu-type models
International Nuclear Information System (INIS)
Full text: We discuss a Monte Carlo simulation of 2d Gross-Neveu-type models on the lattice. The four-Fermi interaction is written as a Gaussian integral with an auxiliary field and the fermion determinant is included by reweighting. We present results for bulk quantities and correlators and compare them to a simulation using a fermion-loop representation. (author)
2D Models for Dust-driven AGB Star Winds
Woitke, P
2006-01-01
New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...
Modeling 2D and 3D Horizontal Wells Using CVFA
Chen, Zhangxin; Huan, Guanren; Li, Baoyan
2003-01-01
In this paper we present an application of the recently developed control volume function approximation (CVFA) method to the modeling and simulation of 2D and 3D horizontal wells in petroleum reservoirs. The base grid for this method is based on a Voronoi grid. One of the features of the CVFA is that the flux at the interfaces of control volumes can be accurately computed via function approximations. Also, it reduces grid orientation effects and applies to any shape of eleme...
Exactly solvable models for 2D interacting fermions
International Nuclear Information System (INIS)
I discuss many-body models for correlated fermions in two space dimensions which can be solved exactly using group theory. The simplest example is a model of a quantum Hall system: two-dimensional (2D) fermions in a constant magnetic field and a particular non-local four-point interaction. It is exactly solvable due to a dynamical symmetry corresponding to the Lie algebra gl∞ + gl∞. There is an algorithm to construct all energy eigenvalues and eigenfunctions of this model. The latter are, in general, many-body states with spatial correlations. The model also has a non-trivial zero temperature phase diagram. I point out that this QH model can be obtained from a more realistic one using a truncation procedure generalizing a similar one leading to mean field theory. Applying this truncation procedure to other 2D fermion models I obtain various simplified models of increasing complexity which generalize mean field theory by taking into account non-trivial correlations but nevertheless are treatable by exact methods
International Nuclear Information System (INIS)
Highlights: → This paper describes the solution of time-independent neutron transport equation. → Using a novel method based on cellular neural networks (CNNs) coupled with PN method. → Utilize the CNN model to simulate spatial scalar flux distribution in steady state. → The accuracy, stability, and capabilities of CNN model are examined in x-y geometry. - Abstract: This paper describes a novel method based on using cellular neural networks (CNN) coupled with spherical harmonics method (PN) to solve the time-independent neutron transport equation in x-y geometry. To achieve this, an equivalent electrical circuit based on second-order form of neutron transport equation and relevant boundary conditions is obtained using CNN method. We use the CNN model to simulate spatial response of scalar flux distribution in the steady state condition for different order of spherical harmonics approximations. The accuracy, stability, and capabilities of CNN model are examined in 2D Cartesian geometry for fixed source and criticality problems.
1D spin-1/2 XY models as a testing ground for spin systems theory methods
International Nuclear Information System (INIS)
Elementary excitation energy spectrum that gives thermodynamic properties is calculated for few partial non-random and random versions of 1D spin-1/2 XY model. The exact result obtained is compared with the results derived within some well known approximate approaches that permits to understand the region of their validity. (author). 6 refs, 6 figs
2D numerical modelling of meandering channel formation
Indian Academy of Sciences (India)
Y Xiao; G Zhou; F S Yang
2016-03-01
A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-loadtransport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numericalpredictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under differentscenarios and improve understanding of patterning processes.
2D numerical modelling of meandering channel formation
XIAO, Y.; ZHOU, G.; YANG, F. S.
2016-03-01
A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.
Brane Brick Models and 2d (0,2) Triality
Franco, Sebastian; Seong, Rak-Kyeong
2016-01-01
We provide a brane realization of 2d (0,2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
Statistical mechanics of shell models for 2D-Turbulence
Aurell, E; Crisanti, A; Frick, P; Paladin, G; Vulpiani, A
1994-01-01
We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward ...
Finite state models of constrained 2d data
DEFF Research Database (Denmark)
Justesen, Jørn
2004-01-01
This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....
A 2D channel-clogging biofilm model.
Winstanley, H F; Chapwanya, M; Fowler, A C; O'Brien, S B G
2015-09-01
We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term. PMID:25240390
Maximizing entropy of image models for 2-D constrained coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Danieli, Matteo; Burini, Nino;
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848....
Cascading rainfall uncertainties into 2D inundation impact models
Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David
2013-04-01
Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is
Duality Between Spin Networks and the 2D Ising Model
Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.
2016-06-01
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
On the general XY Model: positive and zero temperature, selection and non-selection
Baraviera, A T; Lopes, A O; Mohr, J; Souza, R R
2011-01-01
We consider $(M,d)$ a connected and compact manifold and we denote by $\\mathcal{B}_i$ the Bernoulli space $M^{\\Z}$ of sequences represented by $$x=(... x_{-3},x_{-2},x_{-1},x_0,x_1,x_2,x_3,...),$$ where $x_i$ belongs to the space (alphabet) $M$. The case where $M=\\mathbb{S}^1$, the unit circle, is of particular interest here. The analogous problem in the one-dimensional lattice $\\mathbb{N}$ is also considered. %In this case we consider the potential $A: {\\cal B}=M^\\mathbb{N} \\to \\mathbb{R}.$ Let $A: \\mathcal{B}_i \\rar \\R$ be an {\\it observable} or {\\it potential} defined in the Bernoulli space $\\mathcal{B}_i$. The potential $A$ describes an interaction between sites in the one-dimensional lattice $M^\\mathbb{Z}$. Given a temperature $T$, we analyze the main properties of the Gibbs state $\\hat{\\mu}_{\\frac{1}{T} A}$ which is a certain probability measure over ${\\cal B}_i$. We denote this setting "the general XY model". In order to do our analysis we consider the Ruelle operator associated to $\\frac{1}{T} A$, and...
International Nuclear Information System (INIS)
Within the variational method in statistical mechanics, dynamical and thermodynamical properties of anharmonic crystal are discussed, in particular the thermal behavior of the crystalline expasion, phonons spectrum, specific heat and Debye-Weller factor (which satisfctorily describes the experimental data). Through the temperature dependent Green functions framework, dynamical and thermodynamical properties associated with the spin-Peierls transition in the magnetostrictive XY model (with one-dimensional magnetic interactions but structurally three-dimensional) are also discussed. Emphasis is given to the influence of an external magnetic field (along the z-axis) on the structural order parameter, phase diagram, specific heat, magnetization, magnetic susceptibility and phonons spectrun (acoustic and optic branches). Results are extended and new ons are exhibited such as: a) a structural Lifshitz point, which separates the uniform (U), dimerized (D) and modulated (M) phases in the T-H phase diagram; b) another special point is detected for high magnetic fields; c) the D-M first-order frontier and the metastability limits are obtained; d) for high elastic constants, fixed temperature and increasing magnetic field, the unusual sequence non uniform-uniform - non uniform-uniform is possible; e) the thermal dependence of the sound velocity presents a gap at the critical temperature. The present results have provided a quite satisfactory qualitative (and partially quantitative) description of the experiments on the TTF-BDT and MEM-(TCNQ)2; this fact enables us to hope that several of our predictions indeed occur in nature. (Author)
Effects of Agent's Repulsion in 2d Flocking Models
Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya
In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.
Brownian regime of finite-N corrections to particle motion in the XY hamiltonian mean field model
Ribeiro, Bruno V; Elskens, Yves
2016-01-01
We study the dynamics of the N-particle system evolving in the XY hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent brownian noises over a time scale diverging not slower than $N^{2/5}$ as $N \\to \\infty$, which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.
Brownian regime of finite-N corrections to particle motion in the XY Hamiltonian mean field model
Ribeiro, Bruno V.; Amato, Marco A.; Elskens, Yves
2016-08-01
We study the dynamics of the N-particle system evolving in the XY Hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent Brownian noises over a time scale diverging not slower than {N}2/5 as N\\to ∞ , which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.
Ab initio modeling of 2D layered organohalide lead perovskites
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-01
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.
International Nuclear Information System (INIS)
In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two distinct QMC for the given family of interaction operators {K}. (author)
VAM2D: Variably saturated analysis model in two dimensions
International Nuclear Information System (INIS)
This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs
Importance of Overpressure in 2D Gas Hydrate Modeling
Hauschildt, J.; Unnithan, V.
2005-12-01
Numerical models for sub-seafloor gas hydrate formation [1],[2],[3] which describe the driving fluid transport processes only in the vertical direction, restrict the computationally expensive problem to one dimension. This assumption is only valid in regions where permeable sediments induce no overpressure and where there is little lateral variation of physical properties and boundary conditions. Local accumulations of gas hydrates or authigenic carbonates can significantly reduce the porosity and permeability. In combination with topographic and structural features, subtle but important deviations from the 1D model are considered to occur. This poster shows results obtained from a 2D finite difference model developed for describing the evolution of the gas hydrate zone in structurally complex areas. The discretisation of the terms governing the thermodynamic and transport processes is implemented explicitely in time for the advection and diffusion processes, but implicitely for phase transitions. Although the time scales for transport and phase transitions can differ by several orders of magnitude, this scheme allows for an efficient computation for model runs both over the system's equilibration period in the order of 107 yr or to resolve the effects of sea-level changes within 103 yr. A sensitivity analysis confines the parameter space relevant for hydrate formation influenced by lateral fluid flow, and results for the predicted deviations from a multi-1D model for high gas hydrate fractions and fluid flow rates are presented. References [1] M.K. Davie and B.A. Buffett. Sources of methane for marine gas hydrate: inferences from a comparison of observations and numerical models. Earth and Planetary Science Letters, 206:51-63, 2003. [2] W. Xu and C. Ruppell. Predicting the occurrence, distribution, and evolution of methane hydrate in porous marine sediments. Journal of Geohphysical Research, (B3):5081-5095, 1999. [3] J.B. Klauda and S.I. Sandler. Predictions of
Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model
Institute of Scientific and Technical Information of China (English)
SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian
2007-01-01
By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.
A 2D simulation model for urban flood management
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
XY Systems' project management office
Hayley, David
2005-01-01
XY Systems' (XY) competitive advantage stems from reputation and an ability to build long-term relationships. Both XY and its clients benefit from their long-standing relationships. The technology industry is highly competitive and competitors will use every opportunity to tarnish XY's reputation. Recently, XY's clients expressed dissatisfaction at XY's lack of Project Management (PM) skills. In addition, XY's management cannot understand the status of all XY's projects because of XY's rapid ...
Characteristics of two-dimensional vortex dynamics from XY-type models with Ginzburg-Landau dynamics
International Nuclear Information System (INIS)
The characteristic features of vortex dynamics corresponding to two-dimensional XY-type models with Ginzburg-Landau dynamics are extracted from simulations. The cases covered are with and without frustration, as well as above and below the Kosterlitz-Thouless transition. Most of the results are very well described by a phenomenological response function. The dependence of the characteristic frequency for this response function on the vortex density, frustration, correlation length, and temperature is obtained. A critical behavior for vortex dynamics at the Kosterlitz-Thouless transition is suggested by the simulations. The agreements with experiments and other simulations are discussed. copyright 1997 The American Physical Society
Critical behavior of the Higgs- and Goldstone-mass gaps for the two-dimensional S=1 XY model
Directory of Open Access Journals (Sweden)
Yoshihiro Nishiyama
2015-08-01
Full Text Available Spectral properties for the two-dimensional quantum S=1 XY model were investigated with the exact diagonalization method. In the symmetry-broken phase, there appear the massive Higgs and massless Goldstone excitations, which correspond to the longitudinal and transverse modes of the spontaneous magnetic moment, respectively. The former excitation branch is embedded in the continuum of the latter, and little attention has been paid to the details, particularly, in proximity to the critical point. The finite-size-scaling behavior is improved by extending the interaction parameters. An analysis of the critical amplitude ratio for these mass gaps is made.
The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension
Rayanto, Yudi Hari; Rusmawan, Putu Ngurah
2016-01-01
The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
The selection of soil models parameters in Plaxis 2D
Directory of Open Access Journals (Sweden)
O.V. Sokolova
2014-06-01
Full Text Available Finite element method is often used to solve complex geotechnical problems. The application of FEM-based programs demands special attention to setting models parameters and simulating soil behavior. The paper considers the problem of the model selection to describe the behavior of soils when calculating soil settlement in the check task, referring to complicated geotechnical conditions of Saint Petersburg. The obtained settlement values in Linear Elastic model, Mohr – Coulomb model, Hardening Soil model and Hardening Soil Small model were compared. The paper presents results of calibrating parameters for a geotechnical model obtained on the data of compression testing. The necessity of prior calculations to evaluate the accuracy of a soil model is confirmed.
Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis
DEFF Research Database (Denmark)
Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.
2015-01-01
This paper describes a technique for modeling overlapping laminations in magnetic core materials using two-dimensional finite-element (2-D FE) analysis. The magnetizing characteristic of the overlapping region is captured using a simple 2-D FE model of the periodic overlapping geometry and a comp...
2D semiclassical model for high harmonic generation from gas
Institute of Scientific and Technical Information of China (English)
陈黎明; 余玮; 张杰; 陈朝阳; 江文勉
2000-01-01
The electron behavior in laser field is described in detail. Based on the 1D semiclassical model, a 20 semiclassical model is proposed analytically using 3D DC-tunneling ionization theory. Lots of harmonic features are explained by this model, including the analytical demonstration of the maximum electron energy 3.17 Up. Finally, some experimental phenomena such as the increase of the cutoff harmonic energy with the decrease of pulse duration and the "anomalous" fluctuations in the cutoff region are explained by this model.
2-D Model Test Study of the Suape Breakwater, Brazil
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Burcharth, Hans F.; Sopavicius, A.;
This report deals with a two-dimensional model test study of the extension of the breakwater in Suape, Brazil. One cross-section was tested for stability and overtopping in various sea conditions. The length scale used for the model tests was 1:35. Unless otherwise specified all values given in...
2D modelling and assessment of divertor performance for ITER
International Nuclear Information System (INIS)
The results of the ITER divertor modelling performed during the EDA are summarised in the paper. Studies on the operating window and optimisation of the divertor geometry are presented together with preliminary results on the start-up limiter performance. The issue of model validation against the experimental data which is crucial for extrapolation to ITER is also addressed. (author)
Practical aspects of a 2-D edge-plasma model
International Nuclear Information System (INIS)
The poloidal divertor configuration is considered the most promising solution to the particle and energy exhaust problem for a tokamak reactor. The scrape-off layer plasma surrounding the core and the high-recycling plasma near the divertor plates can be modelled by fluid equations for particle, momentum and energy transport. A numerical code (B2) based on a two-dimensional multi-fluid model has been developed for the study of edge plasmas in tokamaks. In this report we identify some key features of this model as applied to the DIII-D tokamak. 2 refs., 1 fig
Vibration induced flow in hoppers: DEM 2D polygon model
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A two-dimensional discrete element model (DEM) simulation of cohesive polygonal particles has been developed to assess the benefit of point source vibration to induce flow in wedge-shaped hoppers. The particle-particle interaction model used is based on a multi-contact principle.The first part of the study investigated particle discharge under gravity without vibration to determine the critical orifice size (Be) to just sustain flow as a function of particle shape. It is shown that polygonal-shaped particles need a larger orifice than circular particles. It is also shown that Be decreases as the number of particle vertices increases. Addition of circular particles promotes flow of polygons in a linear manner.The second part of the study showed that vibration could enhance flow, effectively reducing Be. The model demonstrated the importance of vibrator location (height), consistent with previous continuum model results, and vibration amplitude in enhancing flow.
Percolation properties of the 2D Heisenberg model
Allès, B; Criado, C; Pepé, M
1999-01-01
We analyze the percolation properties of certain clusters defined on configurations of the 2--dimensional Heisenberg model thermalized at a temperature T=0.5. We find that, given any direction in O(3) space, \\vec{n}, the spins almost perpendicular to \\vec{n} form a percolating cluster. Given a fixed configuration, this is true for any \\vec{n}. We briefly comment on the critical properties of the model.
A fully coupled 2D model of equiaxed eutectic solidification
Energy Technology Data Exchange (ETDEWEB)
Charbon, Ch.; LeSar, R.
1995-12-31
We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.
Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model
Jung, Joon-Hee; Arakawa, Akio
2016-03-01
By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.
Google Earth as a tool in 2-D hydrodynamic modeling
Chien, Nguyen Quang; Keat Tan, Soon
2011-01-01
A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.
Conservation laws and LETKF with 2D Shallow Water Model
Zeng, Yuefei; Janjic, Tijana
2016-04-01
Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.
Point Contacts in Modeling Conducting 2D Planar Structures
Thiel, David V; Hettenhausen, Jan; Lewis, Andrew
2015-01-01
Use of an optimization algorithm to improve performance of antennas and electromagnetic structures usually ends up in planar unusual shapes. Using rectangular conducting elements the proposed structures sometimes have connections with only one single point in common between two neighboring areas. The single point connections (point crossing) can affect the electromagnetic performance of the structure. In this letter, we illustrate the influence of point crossing on dipole and loop antennas using MoM, FDTD, and FEM solvers. Current distribution, radiation pattern, and impedance properties for different junctions are different. These solvers do not agree in the modeling of the point crossing junctions which is a warning about uncertainty in using such junctions. However, solvers agree that a negligible change in the junction would significantly change the antenna performance. We propose that one should consider both bridging and chamfering of the conflicting cells to find optimized structures. This reduces the ...
2D modelling of polycrystalline silicon thin film solar cells
Directory of Open Access Journals (Sweden)
Leendertz Caspar
2013-07-01
Full Text Available The influence of grain boundary (GB properties on device parameters of polycrystalline silicon (poly-Si thin film solar cells is investigated by two-dimensional device simulation. A realistic poly-Si thin film model cell composed of antireflection layer, (n+-type emitter, thick p-type absorber, and (p+-type back surface field was created. The absorber consists of a low-defect crystalline Si grain with an adjacent highly defective grain boundary layer. The performances of a reference cell without GB, one with n-type and one with p-type GB, respectively, are compared. The doping concentration and defect density at the GB are varied. It is shown that the impact of the grain boundary on the poly-Si cell is twofold: a local potential barrier is created at the GB, and a part of the photogenerated current flows within the GB. Regarding the cell performance, a highly doped n-type GB is less critical in terms of the cell’s short circuit current than a highly doped p-type GB, but more detrimental in terms of the cell’s open circuit voltage and fill factor.
An effective depression filling algorithm for DEM-based 2-D surface flow modelling
Zhu, D.; Ren, Q.; Xuan, Y.; Y. Chen; I. D. Cluckie
2013-01-01
The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D) diffusive wave approximation described by grid based digital elevation models (DEMs). However, this approach may cause potential problems when using the 2-D surface flow model which exchanges flows through adjacent cells, with conventional sink removal algorithms which also allow for flow exchange along diagonal directions, due to the existence of artificial dep...
2-D model for pollutant dispersion at the coastal outfall off Paradip
Digital Repository Service at National Institute of Oceanography (India)
Suryanarayana, A.; Babu, M.T.; Vethamony, P.; Gouveia, A.D
Simulation of dispersion of the effluent discharge has been carried out using 2-D Model to verify the advection and diffusion of the pollutant patch of the proposed effluent disposal off Paradip, Orissa, India. The simulation of dispersion...
Ghostine, Rabih
2014-12-01
In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.
Comparison of 1D and 2D modelling with soil erosion model SMODERP
Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan
2013-04-01
The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model
Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and freq...
DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS
Institute of Scientific and Technical Information of China (English)
XU Zu-xin; YIN Hai-long
2004-01-01
Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.
Hemodynamic simulation of the heart using a 2D model and MR data
Adeler, Pernille Thorup; Thomsen, Per Grove; Barker, Vincent A.
2002-01-01
Computational models of the blood flow in the heart are a useful tool for studying the functioning of the heart. The purpose of this thesis is to achieve a better understanding of hemodynamics of the normal and diseased hearts through the use of a computational model and magnetic resonance (MR) data. We present a 2D computational model of the blood flow in the left side of the heart. The work is based on Peskin and McQueen's 2D model dimensioned to data on the dog heart, which we improve and ...
Analysis of vegetation effect on waves using a vertical 2-D RANS model
A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...
Tidal regime in Gulf of Kutch, west coast of India, by 2D model
Digital Repository Service at National Institute of Oceanography (India)
Unnikrishnan, A; Gouveia, A; Vethamony, P.
A 2D barotropic numerical model is developed for the Gulf of Kutch with a view to synthesize available information on tides and currents in the Gulf. A comparison of model results with moored current meter observations shows that the model...
Fast 2D flood modelling using GPU technology - recent applications and new developments
Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul
2010-05-01
In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.
2D Path Solutions from a Single Layer Excitable CNN Model
Karahaliloglu, Koray
2007-01-01
An easily implementable path solution algorithm for 2D spatial problems, based on excitable/programmable characteristics of a specific cellular nonlinear network (CNN) model is presented and numerically investigated. The network is a single layer bioinspired model which was also implemented in CMOS technology. It exhibits excitable characteristics with regionally bistable cells. The related response realizes propagations of trigger autowaves, where the excitable mode can be globally preset and reset. It is shown that, obstacle distributions in 2D space can also be directly mapped onto the coupled cell array in the network. Combining these two features, the network model can serve as the main block in a 2D path computing processor. The related algorithm and configurations are numerically experimented with circuit level parameters and performance estimations are also presented. The simplicity of the model also allows alternative technology and device level implementation, which may become critical in autonomous...
Tao, Li; Guo-Hui, Yang
2015-09-01
Using the concurrence (C) and measurement-induced disturbance (MID) criterions, the quantum correlation properties in two-qubit spin XY model with decoherence environment are investigated in detail. Firstly, the result show that the general feature of the quantum correlation evolutions is oscillating at the beginning time, then reach to the steady value of C and MID. Secondly, the obvious distinction of C and MID is that there is a entanglement sudden death(ESD) in C, but not in MID. One interesting result we must mention is that the time interval of ESD is influenced obviously by the anisotropic parameter Δ, it is prolonged evidently with the decrease of Δ, but it is nearly not effected by the external magnetic field B. Finally, we find that the effect of parameter B and Δ on the SC and SMID are too complicated to get an uniform law, through analyzing the property of the steady C (SC) and steady MID (SMID) values in the limit case t → ∞, we give the reason about it.
How birds fly together long-range order in a two-dimensional dynamical xy model
Tu, Y; Tu, Yuhai; Toner, John
1995-01-01
We propose a non-equilibrium continuum dynamical model for the collective motion of large groups of biological organisms (e.g., flocks of birds, slime molds, etc.) Our model becomes highly non-trivial, and different from the equilibrium model, for d
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (linear systems of equations through Thomas' algorithm.
Universality and Non-Perturbative Definitions of 2D Quantum Gravity from Matrix Models
Miramontes, J. Luis; Guillen, Joaquin Sanchez
1991-01-01
The universality of the non-perturbative definition of Hermitian one-matrix models following the quantum, stochastic, or $d=1$-like stabilization is discussed in comparison with other procedures. We also present another alternative definition, which illustrates the need of new physical input for $d=0$ matrix models to make contact with 2D quantum gravity at the non-perturbative level.
Universality and nonperturbative definitions of 2D quantum gravity from matrix models
International Nuclear Information System (INIS)
The universality of the nonperturbative definition of Hermitian one-matrix models following the quantum stochastic, or d = 1-like stabilization is discussed in comparison with other procedures. The authors also present another alternative definition, which illustrates the need of new physical input for d = 0 matrix models to make contact with 2D quantum gravity at the nonperturbative level
Comparison between 2D turbulence model ESEL and experimental data from AUG and COMPASS tokamaks
DEFF Research Database (Denmark)
Ondac, Peter; Horacek, Jan; Seidl, Jakub;
2015-01-01
In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained...
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
International Nuclear Information System (INIS)
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
González, A.; Gomez-Iradi, S.; Munduate, X.
2014-06-01
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.
Spin superfluidity in the anisotropic XY model in the triangular lattice
Lima, L. S.
2016-07-01
We use the SU(3) Schwinger's boson theory to study the spin transport properties in the two-dimensional anisotropic frustrated Heisenberg model in the triangular lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents an single-ion anisotropy. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = = t . Our results show a metallic spin transport for ω > 0 and a superfluid spin transport in the limit of DC conductivity, ω → 0 , where σ(ω) tends to infinity in this limit of ω.
XY-sliding phases - mirage of the Renormalization Group
Vayl, Steven; Kuklov, Anatoly; Oganesyan, Vadim
The so called sliding XY phases in layered systems are predicted to occur if the one loop renormalization group (RG) flow renders the interlayer Josephson coupling irrelevant, while each layer still features broken U(1) symmetry. In other words, such a layered system remains essentially two-dimensional despite the presence of inter-layer Josephson coupling. We have analyzed numerically a layered system consisting of groups of asymmetric layers where the RG analysis predicts sliding phases to occur. Monte Carlo simulations of such a system have been conducted in the dual representation by Worm Algorithm in terms of the closed loops of J-currents for layer sizes varying from 4 ×4 to 640 ×640 and the number of layers - from 2 to 40. The resulting flow of the inter-layer XY-stiffness has been found to be inconsistent with the RG prediction and fully consistent with the behavior of the 3D standard XY model where the bare inter-layer Josephson coupling is much smaller than the intra-layer stiffness. This result emphasizes the importance of the compactness of the U(1) variable for 2D to 3D transformation. This work was supported by the NSF Grant PHY1314469.
The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis
Energy Technology Data Exchange (ETDEWEB)
Shaheen, Eman, E-mail: eman.shaheen@uzleuven.be; De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); Dance, David R.; Young, Kenneth C. [National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford GU2 7XX, United Kingdom and Department of Physics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH (United Kingdom)
2014-08-15
Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly
The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis
International Nuclear Information System (INIS)
Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly
Impact of high speed civil transports on stratospheric ozone. A 2-D model investigation
Energy Technology Data Exchange (ETDEWEB)
Kinnison, D.E.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States)
1997-12-31
This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored. (author) 7 refs.
Fluctuations of the front in a one dimensional model of X+Y-->2X
Comets, Francis; Quastel, Jeremy; Ramirez, Alejandro
2006-01-01
We consider a model of the reaction $X+Y\\to 2X$ on the integer lattice in which $Y$ particles do not move while $X$ particles move as independent continuous time, simple symmetric random walks. $Y$ particles are transformed instantaneously to $X$ particles upon contact. We start with a fixed number $a\\ge 1$ of $Y$ particles at each site to the right of the origin, and define a class of configurations of the $X$ particles to the left of the origin having a finite $l^1$ norm with a specified ex...
Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry
Beran, Pavel
2016-06-01
3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.
Computational modeling of hypersingular integral equations for 2D pre-cantor scattering structure
Directory of Open Access Journals (Sweden)
Kateryna Nesvit
2015-11-01
Full Text Available This paper presents the investigative study to derive a computational model based on hypersingular integral equations for the pre-Cantor plane-parallel diffraction structure. Such structure consists of finite numbers of the thin impedance strips located in the XY plane. A plane transverse magnetic wave is incident from infinity on considered diffraction structure at an angle and need to find the total field resulting from the scattering. The model which is considered in this work is an approximation of real fractal antennas in two-dimensional case. Pre-fractal properties of grating allow producing the newest antennas for modern mobile devices due to their compact size and broadband properties. The purpose of this work is to develop computer model their structure using parametric representation of hypersingular integral operator, Nystrom method with specific quadrature formulas. The numerical results have been obtained and investigated for pre-Cantor structures for calculating physics characteristics. These results have been compared and analyzed in different mathematical models and softwares.
Global 6DOF Pose Estimation from Untextured 2D City Models
Arth, Clemens; Pirchheim, Christian; Ventura, Jonathan; Lepetit, Vincent
2015-01-01
We propose a method for estimating the 3D pose for the camera of a mobile device in outdoor conditions, using only an untextured 2D model. Previous methods compute only a relative pose using a SLAM algorithm, or require many registered images, which are cumbersome to acquire. By contrast, our method returns an accurate, absolute camera pose in an absolute referential using simple 2D+height maps, which are broadly available, to refine a first estimate of the pose provided by the device's senso...
N=2, D=4 supersymmetric σ-models and Hamiltonian mechanics
International Nuclear Information System (INIS)
A deep similarity is established between the Hamiltonian mechanics of point particle and supersymmetric N=2, D=4 σ-models formulated within harmonic superspace. An essential part of the latter, the sphere S2, comes out as a counterpart of the time variable. (author). 7 refs
A simple model for 2D image upconversion of incoherent light
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
We present a simple theoretical model for 2 dimensional (2-D) image up-conversion of incoherent light. While image upconversion has been known for more than 40 years, the technology has been hindered by very low conversion quantum efficiency (~10-7). We show that our implementation compared to...
Park, Elisa L.
2009-01-01
The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…
Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units
This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...
Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches
DEFF Research Database (Denmark)
Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko;
2015-01-01
mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo...
Structure of a model salt bridge in solution investigated with 2D-IR spectroscopy
Huerta-Viga, Adriana; Amirjalayer, Saeed; Woutersen, Sander
2013-01-01
Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in solution. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-) using two-dimensional vibrational (2D-IR) spectroscopy. We find that as a result of salt bridging the infrared response of Gdm+ and Ac- change significantly, and in the 2D-IR spectrum, salt bridging of the molecules appears as cross peaks. From the 2D-IR spectrum we determine the relative orientation of the transition-dipole moments of the vibrational modes involved in the salt bridge, as well as the coupling between them. In this manner we reconstruct the geometry of the solvated salt bridge.
Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan
2016-10-01
The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769
Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model
Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry
2015-05-01
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
The 2dF Galaxy Redshift Survey: Voids and hierarchical scaling models
Croton, D J; Gaztañaga, E; Baugh, C M; Norberg, P; Baldry, I K; Bland-Hawthorn, J; Bridges, T J; Cannon, R; Cole, S; Collins, C; Couch, W; Dalton, G B; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, Richard S; Frenk, C S; Glazebrook, K; Jackson, C; Lahav, O; Lewis, I; Lumsden, S; Maddox, S; Madgwick, D; Peacock, J A; Peterson, B A; Sutherland, W; Taylor, K
2004-01-01
We study the void distribution in the completed 2dFGRS using counts-in-cells to measure the reduced void probability function (VPF). Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. This scaling results in a universal form for the VPF when plotted as a function of $\\Nbar\\xibar_2$, where $\\Nbar$ is the expected mean number of galaxies and $\\bar{\\xi_2}$ is the volume-averaged 2-point correlation function. Models of galaxy clustering which display hierarchical scaling yield different predictions for the reduced VPF. The accuracy of our measurement of the VPF from the 2dFGRS is such that we can rule out, at a very high significance, popular models for clustering, such as the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range ...
The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models
Croton, Darren J.; Colless, Matthew; Gaztañaga, Enrique; Baugh, Carlton M.; Norberg, Peder; Baldry, I. K.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Collins, C.; Couch, W.; Dalton, G.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Maddox, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Sutherland, W.; Taylor, K.
2004-08-01
We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ-5log10h=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a Λ cold dark matter (ΛCDM) universe does appear to be lognormal on small scales but deviates significantly beyond ~4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.
Reliability of a Novel Model for Drug Release from 2D HPMC-Matrices
Directory of Open Access Journals (Sweden)
Rumiana Blagoeva
2010-04-01
Full Text Available A novel model of drug release from 2D-HPMC matrices is considered. Detailed mathematical description of matrix swelling and the effect of the initial drug loading are introduced. A numerical approach to solution of the posed nonlinear 2D problem is used on the basis of finite element domain approximation and time difference method. The reliability of the model is investigated in two steps: numerical evaluation of the water uptake parameters; evaluation of drug release parameters under available experimental data. The proposed numerical procedure for fitting the model is validated performing different numerical examples of drug release in two cases (with and without taking into account initial drug loading. The goodness of fit evaluated by the coefficient of determination is presented to be very good with few exceptions. The obtained results show better model fitting when accounting the effect of initial drug loading (especially for larger values.
Stochastic 2-D Models of Galaxy Disk Evolution. The Galaxy M33
Mineikis, Tadas; Vansevičius, Vladas
2015-01-01
We have developed a fast numerical 2-D model of galaxy disk evolution (resolved along the galaxy radius and azimuth) by adopting a scheme of parameterized stochastic self-propagating star formation. We explore the parameter space of the model and demonstrate its capability to reproduce 1-D radial profiles of the galaxy M33: gas surface density, surface brightness in the i and GALEX FUV passbands, and metallicity.
Nishimori point in random-bond Ising and Potts models in 2D
A. Honecker; Jacobsen, J. L.; Picco, M.; Pujol, P.
2001-01-01
We study the universality class of the fixed points of the 2D random bond q-state Potts model by means of numerical transfer matrix methods. In particular, we determine the critical exponents associated with the fixed point on the Nishimori line. Precise measurements show that the universality class of this fixed point is inconsistent with percolation on Potts clusters for q=2, corresponding to the Ising model, and q=3
A U(1) Current Algebra Model Coupled to 2D-Gravity
Stoilov, M.; Zaikov, R.
1993-01-01
We consider a simple model of a scalar field with $U(1)$ current algebra gauge symmetry coupled to $2D$-gravity in order to clarify the origin of Stuckelberg symmetry in the $w_{\\infty}$-gravity theory. An analogous symmetry takes place in our model too. The possible central extension of the complete symmetry algebra and the corresponding critical dimension have been found. The analysis of the Hamiltonian and the constraints shows that the generators of the current algebra, the reparametrizat...
Ice shelf flexures modeled with a 2-D elastic flow line model
Directory of Open Access Journals (Sweden)
Y. V. Konovalov
2011-10-01
Full Text Available Ice shelf flexures modeling was performed using a 2-D finite-difference elastic model, which takes into account sub-ice-shelf sea water flow. The sub-ice water flow was described by the wave equation for the sub-ice-shelf pressure perturbations (Holdsworth and Glynn, 1978. In the model ice shelf flexures result from variations in ocean pressure due to changes in prescribed sea levels. The numerical experiments were performed for a flow line down one of the fast flowing ice streams of the Academy of Sciences Ice Cap. The profile includes a part of the adjacent ice shelf. The numerical experiments were carried out for harmonic incoming pressure perturbations P' and the ice shelf flexures were obtained for a wide spectrum of the pressure perturbations frequencies, ranging from tidal periods down to periods of a few seconds (0.004..0.02 Hz. The amplitudes of the ice shelf deflections obtained by the model achieve a maxima at about T ≈ 165 s in concordance with previous investigations of the impact of waves on Antarctic ice shelves (Bromirski et al., 2010. The explanation of the effect is found in the solution of the corresponding eigenvalue problem revealing the existence of a resonance at these high frequencies.
Cluster Model for Wave-Like Motions of a 2D Vertically Vibrated Granular System
International Nuclear Information System (INIS)
The fact that trapezoid clusters exist in 2D vertically vibrated granular systems leads us to construct a cluster model, in which wave-like motions are explained as the result of cluster-plate and cluster-cluster collisions. By analyzing the collision of one cluster with the plate in detail, we deduce a basic equation from velocity relationship, which could be separated into two correlative equations: one relates wave-like motion with exciting acceleration, and we call it the excitation condition; the other relates wavelength with exciting frequency, viz., the dispersion relation. The theoretical results are in agreement with the experimental ones, which supports the idea of the cluster model. Moreover, from the cluster model, we also predict a possibility of abnormal dispersion relation of a 2D granular system. (fundamental areas of phenomenology(including applications))
Numerical Methods and Comparisons for 1D and Quasi 2D Streamer Propagation Models
Huang, Mengmin; Guan, Huizhe; Zeng, Rong
2016-01-01
In this work, we propose four different strategies to simulate the one-dimensional (1D) and quasi two-dimensional (2D) model for streamer propagation. Each strategy involves of one numerical method for solving Poisson's equation and another method for solving continuity equations in the models, and a total variation diminishing three-stage Runge-Kutta method in temporal discretization. The numerical methods for Poisson's equation include finite volume method, discontinuous Galerkin methods, mixed finite element method and least-squared finite element method. The numerical method for continuity equations is chosen from the family of discontinuous Galerkin methods. The accuracy tests and comparisons show that all of these four strategies are suitable and competitive in streamer simulations from the aspects of accuracy and efficiency. By applying any strategy in real simulations, we can study the dynamics of streamer propagations and influences due to the change of parameters in both of 1D and quasi 2D models. T...
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
COMPARISON BETWEEN 2D TURBULENCE MODEL ESEL AND EXPERIMENTAL DATA FROM AUG AND COMPASS TOKAMAKS
Directory of Open Access Journals (Sweden)
Peter Ondac
2015-04-01
Full Text Available In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained by reciprocating probe measurements from the two machines. Agreements were found in radial profiles of mean plasma potential and temperature, and in a level of density fluctuations. Disagreements, however, were found in the level of plasma potential and temperature fluctuations. This implicates a need for an extension of the ESEL model from 2D to 3D to fully resolve the parallel dynamics, and the coupling from the plasma to the sheath.
2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge
Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.
2011-11-01
We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we
Institute of Scientific and Technical Information of China (English)
罗孟波; 陈庆虎; 焦正宽
2002-01-01
We investigate the influence of the boundary condition on the short-time dynamic behaviour of the Ising-like phase transition in square-lattice fully frustrated (FF) XY models with periodic and fluctuating twist boundary conditions. The transition temperature Tc and the dynamic and static critical exponents z, 2β/v and v are estimated for both cases using short-time dynamic scaling analysis. The results show that both models have the same critical exponents, indicating that the boundary condition has nearly no effect on the short-time dynamic behaviour of the FFXY model.
An effective depression filling algorithm for DEM-based 2-D surface flow modelling
Directory of Open Access Journals (Sweden)
D. Zhu
2013-02-01
Full Text Available The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D diffusive wave approximation described by grid based digital elevation models (DEMs. However, this approach may cause potential problems when using the 2-D surface flow model which exchanges flows through adjacent cells, with conventional sink removal algorithms which also allow for flow exchange along diagonal directions, due to the existence of artificial depression in DEMs. In this paper, we propose an effective method for filling artificial depressions in DEM so that the problem can be addressed. We firstly analyse two types of depressions in DEMs and demonstrate the issues caused by the current depression filling algorithms using the surface flow simulations from the MIKE SHE model built for a medium-sized basin in Southeast England. The proposed depression-filling algorithm for 2-D overland flow modelling is applied and evaluated by comparing the simulated flows at the outlet of the catchment represented by DEMs at various resolutions (50 m, 100 m and 200 m. The results suggest that the existence of depressions in DEMs can substantially influence the overland flow estimation and the new depression filling algorithm is shown to be effective in tackling this issue based upon the comparison of simulations for sink-dominated and sink-free DEMs, especially in the areas with relatively flat topography.
TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment
Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano
2016-04-01
Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
Parameterising root system growth models using 2D neutron radiography images
Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel
2013-04-01
Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary
2D axisymmetric model of particle acceleration in colliding shock flows system
Gladilin, P. E.; Bykov, A. M.; Osipov, S. M.; Romanskiy, V. I.
2015-12-01
We present the 2D axisymmetric model of particle acceleration at colliding shocks from supernova remnant and stellar wind from the nearby star. The model is the expansion of the previously developed plane-parallel model and takes into account three three-dimensional structure of the stellar wind and the supernova remnant shock. Numerical and analytical calculations provides the energetic and spatial distributions of the particles accelerated by colliding shock flows system. The presented model can be used in calculations of the emission spectra of different stellar associations and star clusters with colliding shock flows.
Dotsenko, V S; Pujol, P; Dotsenko, Vladimir; Picco, Marco; Pujol, Pierre
1995-01-01
We find the cross-over behavior for the spin-spin correlation function for the 2D Ising and 3-states Potts model with random bonds at the critical point. The procedure employed is the renormalisation approach of the perturbation series around the conformal field theories representing the pure models. We obtain a crossover in the amplitude for the correlation function for the Ising model which doesn't change the critical exponent, and a shift in the critical exponent produced by randomness in the case of the Potts model. A comparison with numerical data is discussed briefly.
2D edge plasma modeling extended up to the main chamber
Energy Technology Data Exchange (ETDEWEB)
Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)
2011-08-01
Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.
Hybrid 2D-3D modelling of GTA welding with filler wire addition
Traidia, Abderrazak
2012-07-01
A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.
A Neural-FEM tool for the 2-D magnetic hysteresis modeling
Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.
2016-04-01
The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.
Exotic magnetisation plateaus in a quasi-2D Shastry-Sutherland model
Foltin, G. R.; Manmana, S. R.; Schmidt, K. P.
2014-01-01
We find unconventional Mott insulators in a quasi-2D version of the Shastry-Sutherland model in a magnetic field. In our realization on a 4-leg tube geometry, these are stabilized by correlated hopping of localized magnetic excitations. Using perturbative continuous unitary transformations (pCUTs, plus classical approximation or exact diagonalization) and the density matrix renormalisation group method (DMRG), we identify prominent magnetization plateaus at magnetizations M=1/8, M=3/16, M=1/4...
Anisotropy effects and friction maps in the framework of the 2d PT model
Energy Technology Data Exchange (ETDEWEB)
Fajardo, O.Y. [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Gnecco, E. [Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, 28049 Madrid (Spain); Mazo, J.J., E-mail: juanjo@unizar.es [Instituto de Ciencia de Materiales de Aragón and Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2014-12-15
We present a series of numerical simulations on the friction–anisotropy behavior and stick–slip dynamics of a point mass in the framework of a 2d Prandtl–Tomlinson model. Results for three representative surface lattice are shown: square, hexagonal and honeycomb. Curves for scan angle dependence of static friction force, and kinetic one at T=0 K and T=300 K are shown. Friction force maps are computed at different directions.
On a superconducting instability in the 2D repulsive Hubbard model at low occupancy
International Nuclear Information System (INIS)
A Cooper instability for a weakly interacting 2D repulsive Hubbard model on a square lattice is found at low fermion occupancy. The point is that the previously known results concerning superconductivity under the conditions presented claim the absence of both s- and p-pairings when only nearest neighbors are accounted for. Taking into account next-to-nearest hopping terms in the Hamiltonian one can change the situation so that the l=1 partial scattering amplitude becomes singular. (author). 6 refs
Anisotropy effects and friction maps in the framework of the 2d PT model
International Nuclear Information System (INIS)
We present a series of numerical simulations on the friction–anisotropy behavior and stick–slip dynamics of a point mass in the framework of a 2d Prandtl–Tomlinson model. Results for three representative surface lattice are shown: square, hexagonal and honeycomb. Curves for scan angle dependence of static friction force, and kinetic one at T=0 K and T=300 K are shown. Friction force maps are computed at different directions
Effects of vegetation on high waters in 2D hydraulic modeling
Müller, Matej
2009-01-01
Due to increasing impervious surfaces and climate change, the frequency of high water is increasing in recent decades. In parallel, the damage produced by them also increases. The need for preparedness for such events and for constructing flood measures grows. Hydraulic analysis are necessary for the assessment of the flood hazard and for flood extension forecasting. In recent years the development of advanced computers increased the use of complex 2D hydraulic models. The accuracy of such...
TMRPres2D: high quality visual representation of transmembrane protein models.
Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J
2004-11-22
The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184
A 2D wavenumber domain phase model for ground moving vehicles in synthetic aperture radar imagery
International Nuclear Information System (INIS)
In this paper, fundamental phase characteristics of moving vehicles in synthetic aperture radar (SAR) data are reviewed. A 2D phase model for a moving point scatterer is expressed in terms of range and azimuth wavenumbers. The moving point scatterer impulse response is then the 2D Fourier transform of the associated complex sinusoid. Numerical computation of the 2D phase for arbitrary relative radar-point scatter motion is organized as a composition of functions expressing time, frequency and angle in terms of wavenumber vectors. An analytic model for the phase is subsequently derived in the special case that the Doppler cone angle is 90°. With that model it is observed that the map from velocity and acceleration to quadratic phase is not one-to-one and therefore the associated inverse problem is ill-posed. An example of moving vehicle Doppler energy dispersion and corresponding phase measured in clutter suppressed SAR image data is provided. Clutter suppression is achieved by application of spacetime adaptive processing. (paper)
APPLICATION OF MULTIGRID METHOD IN 2-D MATHEMATICAL MODEL IN OPEN CHANNELS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In 2-D mathematical model, one of the important problems is to improve computational speed. The multigrid method is a new rapid iteration method developed in the resent 20 years, and it has been widely used in many fields, but in sediment mathematical model it has been rarely used, especially in plane mathematical model with large scale computational scope. In this paper, the multigrid method is introduced and expected to be used widely in this field. And it is verified that the more layers are adopted, the higher convergent speed will be reached in computation.
Innovative Machine Vision Technique for 2D/3D Complex and Irregular Surfaces Modelling
Directory of Open Access Journals (Sweden)
Shahzad Anwar
2012-09-01
Full Text Available This study propose and demonstrates a novel technique incorporating multilayer perceptron (MLP neural networks for feature extraction with Photometric stereo based image capture techniques for the analysis of complex and irregular 2D profiles and 3D surfaces. In order to develop the method and to ensure that it is capable of modelling non-axisymmetric and complex 2D/3D profiles, the network was initially trained and tested on 2D profiles, and subsequently using objects consisting of between 1 and 4 hemispherical 3D forms. To test the capability of the proposed model, random noise was added to 2D profiles. 3D objects were coated with various degrees of coarsenesses (ranging from low-high. The gradient of each surface normal was quantified in terms of the slant and tilt angles of the vector about the x and y axis respectively. The slant and tilt angles were obtained from the bump maps and these data were subsequently employed for training of a NN that had x and y as inputs and slant and tilt angles as outputs. The network employed had the following architecture: MLP and a Levenberg-Marquardt algorithm (LMA for training the network for 12,000 epochs. At each point on the surface the network was consulted to predict slant and tilt and the actual slant and tilt was subtracted, giving a measure of surface irregularity. The network was able to model the underlying asymmetrical geometry with an accuracy regression analysis R-value of 0.93 for a single 3D hemispheres and 0.90 for four adjacent 3D non-axisymmetric hemispheres.
A simple 2-D inundation model for incorporating flood damage in urban drainage planning
Directory of Open Access Journals (Sweden)
A. Pathirana
2008-11-01
Full Text Available In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects.
The formulation for the two-dimensional (2-D surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language.
This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code.
The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.
Universal behavior of entanglement in 2D quantum critical dimer models
International Nuclear Information System (INIS)
We examine the scaling behavior of the entanglement entropy for the 2D quantum dimer model (QDM) at criticality and derive the universal finite sub-leading correction γQCP. We compute the value of γQCP without approximation working directly with the wavefunction of a generalized 2D QDM at the Rokhsar–Kivelson QCP in the continuum limit. Using the replica approach, we construct the conformal boundary state corresponding to the cyclic identification of n-copies along the boundary of the observed region. We find that the universal finite term is γQCP = lnR − 1/2 where R is the compactification radius of the Bose field theory quantum Lifshitz model, the effective field theory of the 2D QDM at quantum criticality. We also demonstrated that the entanglement spectrum of the critical wavefunction on a large but finite region is described by the characters of the underlying conformal field theory. It is shown that this is formally related to the problems of quantum Brownian motion on n-dimensional lattices or equivalently a system of strings interacting with a brane containing a background electromagnetic field and can be written as an expectation value of a vertex operator
Nested 1D-2D approach for urban surface flood modeling
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers
Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong
2016-02-01
We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.
Complex zeros of the 2 d Ising model on dynamical random lattices
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
1998-04-01
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.
On Spectral Laws of 2D--Turbulence in Shell Models
Frick, Peter; Aurell, Erik
1993-01-01
We consider a class of shell models of 2D-turbulence. They conserve inertially the analogues of energy and enstrophy, two quadratic forms in the shell amplitudes. Inertially conserving two quadratic integrals leads to two spectral ranges. We study in detail the one characterized by a forward cascade of enstrophy and spectrum close to Kraichnan's $k^{-3}$--law. In an inertial range over more than 15 octaves, the spectrum falls off as $k^{-3.05\\pm 0.01}$, with the same slope in all models. We i...
On the 2D zero modes' algebra of the SU(n) WZNW model
Hadjiivanov, Ludmil
2014-01-01
A quantum group covariant extension of the chiral parts of the Wess-Zumino-Novikov-Witten model on a compact Lie group G gives rise to two matrix algebras with non-commutative entries. These are generated by "chiral zero modes" which combine in the 2D model into "Q-operators" which encode information about the internal symmetry and the fusion ring. We review earlier results about the SU(n) WZNW Q-algebra and its Fock representation for n=2 and display the first steps towards their generalization to higher n.
Brane Brick Models, Toric Calabi-Yau 4-Folds and 2d (0,2) Quivers
Franco, Sebastian; Seong, Rak-Kyeong
2015-01-01
We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2d (generically) N=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.
Canonical vs. micro-canonical sampling methods in a 2D Ising model
International Nuclear Information System (INIS)
Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs
Ferromagnetism and d-wave superconductivity in the 2D Hubbard model
International Nuclear Information System (INIS)
By using the functional renormalization group we compute detailed momentum dependencies of the scale-dependent interaction vertex of the 2D (t,t')-Hubbard model. Compared to previous studies we improve accuracy by separating dominant parts from a remainder term. The former explicitly describe, for example, the interaction of Cooper pairs or spin operators. Applying the method to the repulsive Hubbard model we find d-wave superconductivity or ferromagnetism for larger next-to-nearest neighbor hopping amplitude t' at Van Hove Filling. Both ordering tendencies strongly compete with each other.
Thermal excitations of frustrated XY spins in two dimensions
International Nuclear Information System (INIS)
We present a new variational approach to the study of phase transitions in frustrated 2D XY models. In the spirit of Villain's approach for the ferromagnetic case we divide thermal excitations into a low temperature long wavelength part (LW) and a high temperature short wavelength part (SW). In the present work we mainly deal with LW excitations and we explicitly consider the cases of the fully frustrated triangular (FFTXY) and square (FFSQXY) XY models. The novel aspect of our method is that it preserves the coupling between phase (spin angles) and chiral degrees of freedom. LW fluctuations consist of coupled phase and chiral excitations. As a result, we find that for frustrated systems the effective interactions between phase variables is long range and oscillatory in contrast to the unfrustrated problem. Using Monte Carlo (MC) simulations we show that our analytical calculations produce accurate results at all temperature T; this is seen at low T in the spin wave stiffness constant and in the staggered chirality; this is also the case near Tc: transitions are driven by the SW part associated with domain walls and vortices, but the coupling between phase and chiral variables is still relevant in the critical region. In that regime our analytical results yield the correct T dependence for bare couplings (given by the LW fluctuations) such as the Coulomb gas temperature TCG of the frustrated XY models. In particular, we find that TCG tracks chiral rather than phase fluctuations. Our results provide support for a single phase transition scenario in the FFTXY and FFSQXY models. (author). 35 refs, 8 figs
Graphene as a model system for 2D fracture behavior of perfect and defective solids
Directory of Open Access Journals (Sweden)
P. Hess
2015-10-01
Full Text Available A 2D bond-breaking model is presented that allows the extraction of the intrinsic line or edge energy, fracture toughness, and strain energy release rate of graphene from measured and calculated 2D Young’s moduli and 2D pristine strengths. The ideal fracture stress of perfect graphene is compared with the critical fracture stresses of defective graphene sheets containing different types of imperfections. This includes (multiple vacancies in the subnanometer range, grain boundaries, slits in the nanometer region, and artificial pre-cracks with sizes of 30 nm to 1 μm. Independent of the type of defect, a common dependence of the critical fracture strength on the square root of half defect size is observed. Furthermore, the results suggest the applicability of the Griffith relation at length scales of several nanometers. This observation is not consistent with simulations pointing to the existence of a flaw tolerance for defects with nanometer size. According to simulations for quasi-static growth of pre-existing cracks, the atomic mechanism may also consist of an alternating sequence of bond-breaking and bond-rotation steps with a straight extension of the crack path. Independent of the exact atomic failure mechanism brittle fracture of graphene is generally assumed at low temperatures.
2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment
Directory of Open Access Journals (Sweden)
P. Bifulco
2010-01-01
Full Text Available This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.
Methodology for Modeling 2-D Groundwater Motion in a Geographic Information System (GIS)
International Nuclear Information System (INIS)
From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site (SRS) produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. A legacy of this production is groundwater contamination located near previous production sites. This contamination is comprised mainly of heavy metals, organic degreasers, and radionuclides such as tritium. To monitor this contamination, a network of more than 1000 groundwater wells has been established across SRS. As a result of this contamination, extensive remediation activities are ongoing at SRS. Modeling the 3-D flow and transport of groundwater to support these efforts is a time consuming and arduous task involving discretizing a model domain representing geological and hydrogeological surfaces, specifying appropriate boundary conditions, and calibrating the model to measured piezometric and potentiometric data. For SRS areas where the groundwater motion is essentially 2-D with negligible vertical gradients, a simplified modeling capability was developed in a GIS software framework providing the capability to simulate 2-D groundwater motion with results that could be obtained in hours, versus weeks or months often required for a full 3-D model
Comparison of 1D and 2D CSR Models with Application to the FERMI@ELETTRA Bunch Compressors
Energy Technology Data Exchange (ETDEWEB)
Bassi, G.; Ellison, J.A.; Heinemann, K.
2011-03-28
We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces [1]. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi{at}Elettra first bunch compressor with the configuration described in [1].
Comparison of 1D and 2D CSR Models with Application to the FERMI(at)ELETTRA Bunch Compressors
International Nuclear Information System (INIS)
We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces (1). The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi(at)Elettra first bunch compressor with the configuration described in (1).
Heo, Jingu; Savvides, Marios
2012-12-01
In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062
2D cellular automaton model for the evolution of active region coronal plasmas
Fuentes, Marcelo López
2016-01-01
We study a 2D cellular automaton (CA) model for the evolution of coronal loop plasmas. The model is based on the idea that coronal loops are made of elementary magnetic strands that are tangled and stressed by the displacement of their footpoints by photospheric motions. The magnetic stress accumulated between neighbor strands is released in sudden reconnection events or nanoflares that heat the plasma. We combine the CA model with the Enthalpy Based Thermal Evolution of Loops (EBTEL) model to compute the response of the plasma to the heating events. Using the known response of the XRT telescope on board Hinode we also obtain synthetic data. The model obeys easy to understand scaling laws relating the output (nanoflare energy, temperature, density, intensity) to the input parameters (field strength, strand length, critical misalignment angle). The nanoflares have a power-law distribution with a universal slope of -2.5, independent of the input parameters. The repetition frequency of nanoflares, expressed in t...
Sakr, Ahmed Hamdi; Hossain, Ekram
2014-01-01
While cognitive radio enables spectrum-efficient wireless communication, radio frequency (RF) energy harvesting from ambient interference is an enabler for energy-efficient wireless communication. In this paper, we model and analyze cognitive and energy harvesting-based D2D communication in cellular networks. The cognitive D2D transmitters harvest energy from ambient interference and use one of the channels allocated to cellular users (in uplink or downlink), which is referred to as the D2D c...
Verification of Numerical Modeling in 2-D Wave Propagation in Rock
Institute of Scientific and Technical Information of China (English)
LEI Wei-dong; HEFNY Ashraf; TENG Jun; ZHAO Jian; SONG Hong-wei
2005-01-01
Compressional harmonic wave propagation from a cylindrical tunnel or borehole in an intact rock is the basis for investigation of the practical explosion waves in a fractured rock mass. The amplitudes of the radial stress wave obtained from the universal distinct element code (UDEC) were compared with the analytical solutions for two cases with different conditions. Good agreements between the UDEC results and the analytical solutions have been achieved. It indicates that UDEC can model 2-D dynamic problems at a high degree of accuracy.
Nishimori point in the 2D +/- J random-bond Ising model
A. Honecker; Picco, M.; Pujol, P.
2000-01-01
We study the universality class of the Nishimori point in the 2D +/- J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free-energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p_c = 0.1094 +/- 0.0002 and estimate nu = 1.33 +/- 0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464 +/- 0.004. The mai...
Prominence Parameters from 2D Modeling of Lyman Lines Measured with SUMER
Czech Academy of Sciences Publication Activity Database
Gunár, Stanislav; Heinzel, Petr; Schmieder, B.; Anzer, U.
San Francisco: Astronomical Society of the Pacific, 2007 - (Heinzel, P.; Dorotovič, I.; Rutten, R.), s. 317-320. (ASP Conference Series. 368). ISBN 978-1-583812-36-5. [Solar Physics Meeting. Coimbra (PT), 09.10.2006-13.10.2006] Grant ostatní: EU(XE) ESA-PECS project NO. 9030 Institutional research plan: CEZ:AV0Z10030501 Source of funding: V - iné verejné zdroje Keywords : solar prominence * Lyman series lines * 2D modeling Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs
Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.
2015-11-01
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.
Non-Fragile Controller Design for 2-D Discrete Uncertain Systems Described by the Roesser Model
Amit Dhawan
2012-01-01
This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be norm-bounded. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A new linear matrix inequality (LMI) based suf...
Entanglement entropy through conformal interfaces in the 2D Ising model
Brehm, Enrico M
2015-01-01
We consider the entanglement entropy for the 2D Ising model at the conformal fixed point in the presence of interfaces. More precisely, we investigate the situation where the two subsystems are separated by a defect line that preserves conformal invariance. Using the replica trick, we compute the entanglement entropy between the two subsystems. We observe that the entropy, just like in the case without defects, shows a logarithmic scaling behavior with respect to the size of the system. Here, the prefactor of the logarithm depends on the strength of the defect encoded in the transmission coefficient. We also commend on the supersymmetric case.
Fusion of Critical Defect Lines in the 2D Ising Model
Bachas, Costas; Brunner, Ilka; Roggenkamp, Daniel
2013-01-01
Two defect lines separated by a distance delta look from much larger distances like a single defect. In the critical theory, when all scales are large compared to the cutoff scale, this fusion of defect lines is universal. We calculate the universal fusion rule in the critical 2D Ising model and show that it is given by the Verlinde algebra of primary fields, combined with group multiplication in O(1,1)/Z_2. Fusion is in general singular and requires the subtraction of a divergent Casimir ene...
3D reconstruction of femoral shape using a two 2D radiographs and statistical parametric model
International Nuclear Information System (INIS)
In medical imaging, X-ray CT scanner or MRI system are quite useful to acquire 3D shapes of internal organs or bones. However, these apparatuses are generally very expensive and of large size. They also need a prior arrangement, and thus, they are unsuitable for an urgent fracture diagnosis in emergency treatment. This paper proposes a method to estimate a 3D shape of patient's femur from only two radiographs using a parametric femoral model. Firstly, we develop the parametric femoral model utilizing statistical procedure of 3D femoral models by CT images of 51 patients. Then, the pose and shape parameters of the parametric model are estimated from two 2D images using a distance map constructed by the Level Set Method. Experiments using synthesized images and radiographs of a phantom femur are carried out to verify the performance of the proposed technique. (author)
Quasi 2D hydrodynamic modelling of the flooded hinterland due to dyke breaching on the Elbe River
Directory of Open Access Journals (Sweden)
S. Huang
2007-01-01
Full Text Available In flood modeling, many 1D and 2D combination and 2D models are used to simulate diversion of water from rivers through dyke breaches into the hinterland for extreme flood events. However, these models are too demanding in data requirements and computational resources which is an important consideration when uncertainty analysis using Monte Carlo techniques is used to complement the modeling exercise. The goal of this paper is to show the development of a quasi-2D modeling approach, which still calculates the dynamic wave in 1D but the discretisation of the computational units are in 2D, allowing a better spatial representation of the flow in the hinterland due to dyke breaching without a large additional expenditure on data pre-processing and computational time. A 2D representation of the flow and velocity fields is required to model sediment and micro-pollutant transport. The model DYNHYD (1D hydrodynamics from the WASP5 modeling package was used as a basis for the simulations. The model was extended to incorporate the quasi-2D approach and a Monte-Carlo Analysis was used to conduct a flood sensitivity analysis to determine the sensitivity of parameters and boundary conditions to the resulting water flow. An extreme flood event on the Elbe River, Germany, with a possible dyke breach area was used as a test case. The results show a good similarity with those obtained from another 1D/2D modeling study.
Yan, Bo; Li, Yuguo; Liu, Ying
2016-07-01
In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.
Stochastic dynamics of phase singularities under ventricular fibrillation in 2D Beeler-Reuter model
Directory of Open Access Journals (Sweden)
Akio Suzuki
2011-09-01
Full Text Available The dynamics of ventricular fibrillation (VF has been studied extensively, and the initiation mechanism of VF has been elucidated to some extent. However, the stochastic dynamical nature of sustained VF remains unclear so far due to the complexity of high dimensional chaos in a heterogeneous system. In this paper, various statistical mechanical properties of sustained VF are studied numerically in 2D Beeler-Reuter-Drouhard-Roberge (BRDR model with normal and modified ionic current conductance. The nature of sustained VF is analyzed by measuring various fluctuations of spatial phase singularity (PS such as velocity, lifetime, the rates of birth and death. It is found that the probability density function (pdf for lifetime of PSs is independent of system size. It is also found that the hyper-Gamma distribution serves as a universal pdf for the counting number of PSs for various system sizes and various parameters of our model tissue under VF. Further, it is demonstrated that the nonlinear Langevin equation associated with a hyper-Gamma process can mimic the pdf and temporal variation of the number of PSs in the 2D BRDR model.
EDGE2D modelling of edge profiles obtained in JET diagnostic optimized configuration
Energy Technology Data Exchange (ETDEWEB)
Kallenbach, A [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Andrew, Y [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Beurskens, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Corrigan, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Eich, T [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Jachmich, S [ERM, Brussels (Belgium); Kempenaars, M [FOM-Rijnhuizen, Ass. Euratom-FOM, TEC (Netherlands); Korotkov, A [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Loarte, A [EFDA Close Support Unit, Garching (Germany); Matthews, G [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Monier-Garbet, P [CEA Cadarache (France); Saibene, G [EFDA Close Support Unit, Garching (Germany); Spence, J [EURATOM/UKAEA Fusion Association, Culham (United Kingdom); Suttrop, W [MPI fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany)
2004-03-01
Nine type-I ELMy H-mode discharges in diagnostic optimized configuration in JET are analysed with the EDGE2D/NIMBUS package. EDGE2D solves the fluid equations for the conservation of particles, momentum and energy for hydrogenic and impurity ions, while neutrals are followed with the two-dimensional Monte Carlo module NIMBUS. Using external boundary conditions from the experiment, the perpendicular heat conductivities {chi}{sub i,e} and the particle transport coefficients D, v are varied until good agreement between code result and measured data is obtained. A step-like ansatz is used for the edge transport parameters for the outer core region, the edge transport barrier and the outer scrape-off layer. The time-dependent effect of edge localized modes on the edge profiles is simulated with an ad hoc ELM model based on the repetitive increase of the transport coefficients {chi}{sub i,e} and D. The values of the transport coefficients are matched to experimental data mapped to the outer midplane, in the course of which radial shifts of experimental profiles of the order of 1 cm caused by the accuracy limit of the equilibrium reconstruction are taken into account. Simulated divertor profiles obtained from the upstream transport ansatz and the experimental boundary conditions agree with measurements, except a small region localized at the separatrix strike points which is supposed to be affected by direct ion losses. The integrated analysis using EDGE2D modelling, although still limited by the marginal spatial resolution of individual diagnostics, allows the characterization of profiles in the edge/pedestal region and supplies additional information on the separatrix position. The steep density gradient zone inside the separatrix shrinks compared to the electron temperature with increasing density, indicating the effect of the neutral penetration depth becoming shorter than the region of reduced transport.
Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL
Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.
2009-04-01
Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
Imbert-Gérard, Lise-Marie
2015-01-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
A coupled $2\\times2$D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions
Lemerle, Alexandre
2016-01-01
In this paper we complete the presentation of a new hybrid $2\\times2$D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. 2015 to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship betwe...
Boontian, Nittaya
2012-01-01
Carbon sources are considered as one of the most important factors in the performance of enhanced biological phosphorus removal (EBPR). Disintegrated sludge (DS) can act as carbon source to increase the efficiency of EBPR. This research explores the influence of DS upon phosphorus removal efficiency using mathematical simulation modeling. Activated Sludge Model No. 2d (ASM2d) is one of the most useful of activated sludge (AS) models. This is because ASM2d can express the integrated mechanisms...
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
Modeling floods in a dense urban area using 2D shallow water equations
Mignot, E.; Paquier, A.; Haider, S.
2006-07-01
SummaryA code solving the 2D shallow water equations by an explicit second-order scheme is used to simulate the severe October 1988 flood in the Richelieu urban locality of the French city of Nîmes. A reference calculation using a detailed description of the street network and of the cross-sections of the streets, considering impervious residence blocks and neglecting the flow interaction with the sewer network provides a mean peak water elevation 0.13 m lower than the measured flood marks with a standard deviation between the measured and computed water depths of 0.53 m. Sensitivity analysis of various topographical and numerical parameters shows that globally, the results keep the same level of accuracy, which reflects both the stability of the calculation method and the smoothening of results. However, the local flow modifications due to change of parameter values can drastically modify the local water depths, especially when the local flow regime is modified. Furthermore, the flow distribution to the downstream parts of the city can be altered depending on the set of parameters used. Finally, a second event, the 2002 flood, was simulated with the calibrated model providing results similar to 1988 flood calculation. Thus, the article shows that, after calibration, a 2D model can be used to help planning mitigation measures in a dense urban area.
Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling
Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad
2015-10-01
Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.
2D-hybrid particle model with non-linear electron distribution
International Nuclear Information System (INIS)
A 2D, hybrid (particle-ion, fluid-electron) simulation code characterized by the solution of the non-linear modified Poisson equation, which results assuming the Boltzmann distribution for the electrons, is presented. The field solution is achieved through an iterative procedure. Anyhow a new scheme is considered. The potential is not obtained by directly solving the finite difference equation but via the Green's function method. The procedure begins with the first guess for the potential. This is found through the solution of the linearized modified Poisson equation. The Green's function for this equation, in the 2D case which is considered, can be found analytically in terms of the Newmann functions. Once the potential corresponding to the linearized modified Poisson equation is known, the first approximation of the electron (Boltzmann) distribution can be calculated. This distribution, plus the one given by the (particle) ions, is considered as the source term for the Poisson equation (which now is not modified since the fluid electron component is taken into account in the source term itself). The solution of this Poisson equation gives the second approximation of the electric potential and is still obtained via the Green's function method (as it comes from the Coulomb law, modified for the 2D case). Each time step this procedure can be iterated according to the desired accuracy. The last iteration cycle is different: in fact the direct solution for the electric field can be obtained, without numerical differencing from the potential. It is sufficient in this case to consider the electric field Green's functions (x- and y-component) for the Poisson equation (in place of the electric potential Green's function). The first results obtained with this new code are here presented and compared with previous simulation runs based on a linearized Boltzmann distribution model. 3 refs
Komura, Yukihiro; Okabe, Yutaka
2016-03-01
We present new versions of sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. In this update, we add the method of GPU-based cluster-labeling algorithm without the use of conventional iteration (Komura, 2015) to those programs. For high-precision calculations, we also add a random-number generator in the cuRAND library. Moreover, we fix several bugs and remove the extra usage of shared memory in the kernel functions.
Be2D: A model to understand the distribution of meteoric 10Be in soilscapes
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard
2016-04-01
Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute
Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model
Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan
2014-05-01
Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased
Complex-temperature properties of the Ising model on 2D heteropolygonal lattices
Matveev, V; Matveev, Victor; Shrock, Robert
1995-01-01
Using exact results, we determine the complex-temperature phase diagrams of the 2D Ising model on three regular heteropolygonal lattices, (3 \\cdot 6 \\cdot 3 \\cdot 6) (kagom\\'{e}), (3 \\cdot 12^2), and (4 \\cdot 8^2) (bathroom tile), where the notation denotes the regular n-sided polygons adjacent to each vertex. We also work out the exact complex-temperature singularities of the spontaneous magnetisation. A comparison with the properties on the square, triangular, and hexagonal lattices is given. In particular, we find the first case where, even for isotropic spin-spin exchange couplings, the nontrivial non-analyticities of the free energy of the Ising model lie in a two-dimensional, rather than one-dimensional, algebraic variety in the z=e^{-2K} plane.
SO(3) vortices and disorder in the 2d SU(2) chiral model
Kovács, T G
1995-01-01
We study the correlation function of the 2d SU(2) principal chiral model on the lattice. By rewriting the model in terms of Z(2) degrees of freedom coupled to SO(3) vortices we show that the vortices play a crucial role in disordering the correlations at low temperature. Using a series of exact transformations we prove that, if satisfied, certain inequalities between vortex correlations imply exponential fall-off of the correlation function at arbitrarily low temperatures. We also present some Monte Carlo evidence that these correlation inequalities are indeed satisfied. Our method can be easily translated to the language of 4d SU(2) gauge theory to establish the role of corresponding SO(3) monopoles in maintaining confinement at small couplings.
A VERTICAL 2D MATHEMATICAL MODEL FOR HYDRODYNAMIC FLOWS WITH FREE SURFACE IN σ COORDINATE
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Numerical models with hydrostatic pressure have been widely utilized in studying flows in rivers, estuaries and coastal areas. The hydrostatic assumption is valid for the large-scale surface flows where the vertical acceleration can be ignored, but for some particular cases the hydrodynamic pressure is important. In this paper, a vertical 2D mathematical model with non-hydrostatic pressure was implemented in the σ coordinate. A fractional step method was used to enable the pressure to be decomposed into hydrostatic and hydrodynamic components and the predictor-corrector approach was applied to integration in time domain. Finally, several computational cases were studied to validate the importance of contributions of the hydrodynamic pressure.
2D and 3D numerical modeling of seismic waves from explosion sources
International Nuclear Information System (INIS)
Over the last decade, nonlinear and linear 2D axisymmetric finite difference codes have been used in conjunction with far-field seismic Green's functions to simulate seismic waves from a variety of sources. In this paper we briefly review some of the results and conclusions that have resulted from numerical simulations and explosion modeling in support of treaty verification research at S-CUBED in the last decade. We then describe in more detail the results from two recent projects. Our goal is to provide a flavor for the kinds of problems that can be examined with numerical methods for modeling excitation of seismic waves from explosions. Two classes of problems have been addressed; nonlinear and linear near-source interactions. In both classes of problems displacements and tractions are saved on a closed surface in the linear region and the representation theorem is used to propagate the seismic waves to the far-field
Singularities of the Partition Function for the Ising Model Coupled to 2D Quantum Gravity
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2D quantum gravity for complex magnetic field and real temperature, and for complex temperature and real magnetic field, respectively. We compute the zeros by using the exact solution coming from a two-matrix model and by Monte-Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional curves in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of the singularities near the critical point. Despite the small size of the systems studied, we can obtain a reasonable estimate of the (known) critical exponents.
On Spectral Laws of 2D-Turbulence in Shell Models
Frick, P; Frick, Peter; Aurell, Erik
1993-01-01
We consider a class of shell models of 2D-turbulence. They conserve inertially the analogues of energy and enstrophy, two quadratic forms in the shell amplitudes. Inertially conserving two quadratic integrals leads to two spectral ranges. We study in detail the one characterized by a forward cascade of enstrophy and spectrum close to Kraichnan's $k^{-3}$--law. In an inertial range over more than 15 octaves, the spectrum falls off as $k^{-3.05\\pm 0.01}$, with the same slope in all models. We identify a ``spurious'' intermittency effect, in that the energy spectrum over a rather wide interval adjoing the viscous cut-off, is well approximated by a power-law with fall-off significantly steeper than $k^{-3}$.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-05-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
A New Material Model for 2D FE Analysis of Adhesively Bonded Composite Joints
Directory of Open Access Journals (Sweden)
Libin ZHAO
2014-12-01
Full Text Available Effective and convenient stress analysis techniques play important roles in the analysis and design of adhesively bonded composite joints. A new material model is presented at the level of composite ply according to the orthotropic elastic mechanics theory and plane strain assumption. The model proposed has the potential to reserve nature properties of laminates with ply-to-ply modeling. The equivalent engineering constants in the model are obtained only by the material properties of unidirectional composites. Based on commercial FE software ABAQUS, a 2D FE model of a single-lap adhesively bonded joint was established conveniently by using the new model without complex modeling process and much professional knowledge. Stress distributions in adhesive were compared with the numerical results by Tsai and Morton and interlaminar stresses between adhesive and adherents were compared with the results from a detailed 3D FE analysis. Good agreements in both cases verify the validity of the proposed model. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.5960
2D time-domain finite-difference modeling for viscoelastic seismic wave propagation
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-07-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model
Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2013-08-01
3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.
Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki
2015-05-01
Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The
Coronary arteries motion modeling on 2D x-ray images
Gao, Yang; Sundar, Hari
2012-02-01
During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.
The combined effect of attraction and orientation zones in 2D flocking models
Iliass, Tarras; Cambui, Dorilson
2016-01-01
In nature, many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex motion of these systems, we study the Vicsek model of self-propelled particles (SPP) which is an important tool to investigate the behavior of collective motion of live organisms. This model reproduces the biological behavior patterns in the two-dimensional (2D) space. Within the framework of this model, the particles move with the same absolute velocity and interact locally in the zone of orientation by trying to align their direction with that of the neighbors. In this paper, we model the collective movement of SPP using an agent-based model which follows biologically motivated behavioral rules, by adding a second region called the attraction zone, where each particles move towards each other avoiding being isolated. Our main goal is to present a detailed numerical study on the effect of the zone of attraction on the kinetic phase transition of our system. In our study, the consideration of this zone seems to play an important role in the cohesion. Consequently, in the directional orientation, the zone that we added forms the compact particle group. In our simulation, we show clearly that the model proposed here can produce two collective behavior patterns: torus and dynamic parallel group. Implications of these findings are discussed.
Time domain numerical modeling of wave propagation in 2D acoustic / porous media
Chiavassa, Guillaume
2011-01-01
Numerical methods are developed to simulate the wave propagation in 2D heterogeneous fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach...
Universality Class of the Nishimori Point in the 2D +/-J Random-Bond Ising Model
Honecker, A.; Picco, M.; Pujol, P.
2001-07-01
We study the universality class of the Nishimori point in the 2D +/-J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value pc = 0.1094+/-0.0002 and estimate ν = 1.33+/-0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464+/-0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.
Universality Class of the Nishimori Point in the 2D {+-}J Random-Bond Ising Model
Energy Technology Data Exchange (ETDEWEB)
Honecker, A.; Picco, M.; Pujol, P.
2001-07-23
We study the universality class of the Nishimori point in the 2D {+-}J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p{sub c}=0.1094{+-}0.0002 and estimate {nu}=1.33{+-}0.03 . Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c=0.464{+-}0.004 . The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.
The strong-weak coupling symmetry in 2D Φ4 field models
Directory of Open Access Journals (Sweden)
B.N.Shalaev
2005-01-01
Full Text Available It is found that the exact beta-function β(g of the continuous 2D gΦ4 model possesses two types of dual symmetries, these being the Kramers-Wannier (KW duality symmetry and the strong-weak (SW coupling symmetry f(g, or S-duality. All these transformations are explicitly constructed. The S-duality transformation f(g is shown to connect domains of weak and strong couplings, i.e. above and below g*. Basically it means that there is a tempting possibility to compute multiloop Feynman diagrams for the β-function using high-temperature lattice expansions. The regular scheme developed is found to be strongly unstable. Approximate values of the renormalized coupling constant g* found from duality symmetry equations are in an agreement with available numerical results.
Transition from static to kinetic friction: Insights from a 2D model
Trømborg, Jørgen; Amundsen, David Skålid; Thøgersen, Kjetil; Malthe-Sørenssen, Anders
2013-01-01
We describe a 2D spring-block model for the transition from static to kinetic friction at an elastic slider/rigid substrate interface obeying a minimalistic friction law (Amontons-Coulomb). By using realistic boundary conditions, a number of previously unexplained experimental results on precursory micro-slip fronts are successfully reproduced. From the analysis of the interfacial stresses, we derive a prediction for the evolution of the precursor length as a function of the applied loads, as well as an approximate relationship between microscopic and macroscopic friction coefficients. We show that the stress build-up due to both elastic loading and micro-slip-related relaxations depend only weakly on the underlying shear crack propagation dynamics. Conversely, crack speed depends strongly on both the instantaneous stresses and the friction coefficients, through a non-trivial scaling parameter.
Structure-approximating inverse protein folding problem in the 2D HP model.
Gupta, Arvind; Manuch, Ján; Stacho, Ladislav
2005-12-01
The inverse protein folding problem is that of designing an amino acid sequence which has a particular native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. In this paper, we show that in the 2D HP model of Dill it is possible to solve this problem for a broad class of structures. These structures can be used to closely approximate any given structure. One of the most important properties of a good protein (in drug design) is its stability--the aptitude not to fold simultaneously into other structures. We show that for a number of basic structures, our sequences have a unique fold. PMID:16379538
2D XXZ model ground state properties using an analytic Lanczos expansion
International Nuclear Information System (INIS)
A formalism was developed for calculating arbitrary expectation values for any extensive lattice Hamiltonian system using a new analytic Lanczos expansion, or plaquette expansion, and a recently proved exact theorem for ground state energies. The ground state energy, staggered magnetisation and the excited state gap of the 2D anisotropic antiferromagnetic Heisenberg Model are then calculated using this expansion for a range of anisotropy parameters and compared to other moment based techniques, such as the t-expansion, and spin-wave theory and series expansion methods. It was found that far from the isotropic point all moment methods give essentially very similar results, but near the isotopic point the plaquette expansion is generally better than the others. 20 refs., 6 tabs
Surface delta interaction in the g7/2 - d5/2 model space
Yu, Xiaofei; Zamick, Larry
2016-05-01
Using an attractive surface delta interaction we obtain wave functions for 2 neutrons (or neutron holes) in the g7/2 -d5/2 model space. If we take the single particle energies to be degenerate we find that the g factors for I = 2 , 4 and 6 are all the same G (J) =gl, the orbital g factor of the nucleon. For a free neutron gl = 0, so in this case all 2 particles or 2 holes' g factors are equal to zero. Only the orbital part of the g-factors contributes - the spin part cancels out. We then consider the effects of introducing a single energy splitting between the 2 orbits. We make a linear approximation for all other n values.
An application of the distributed hydrologic model CASC2D to a tropical montane watershed
Marsik, Matt; Waylen, Peter
2006-11-01
SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.
Assessment of the Impacts of Compensation Flow Changes Upon Instream Habitat Using 2D Modelling
Mould, D. C.; Lane, S. N.; Christmas, M.
2004-05-01
Many millstone-grit rivers in northern England are impounded. In such cases the water company in the area has to release compensation flows from the reservoirs, traditionally to meet industrial needs: these flows are rarely set with ecology in mind; and have commonly involved constant flow. Dam overtopping may create spates, but spawning in many fish species is prompted by a spate flow in the early autumn when dams are rarely full enough to overtop. Such flows are important for fine sediment flushing and controlling the wetted useable area for spawning. Classical physical habitat modelling for instream habitat has been largely reliant upon 1D approaches, such as the Instream Flow Incremental Methodology (IFIM). Here we use a 2D finite element model (FESWMS), to simulate changes in instream habitat with variations in the compensation flow regimes. The spatial resolution of 2D models can be adapted to the scale of fish habitats so providing better representation of the reach-scale flow processes (such as slack water in the margins, wetting and drying) than the 1D case. The model is applied to the Rivers Rivelin and Loxley in Sheffield, Northern England. At the confluence of the two rivers, the compensation flow level is set at 30.6 Thousand Cubic Metres per Day (TCMD). Due to historical reasons, the compensation is not divided equally, as the Loxley receives 28 TCMD whilst the Rivelin receives only 2.6 TCMD. The model is used to simulate a transfer of 6 TCMD from the Loxley to the Rivelin. After validation, model predictions are combined with available habitat requirement data (e.g. velocity and depth needs) to develop an index of change in habitat suitability in terms of first order variables (e.g. velocity, depth and wetted useable area). This suggests that the change in compensation may significantly improve instream ecology in relation to macroinvertebrates, brown trout (Salmo trutta) and bullhead (Cottus gobio) in the Rivelin without causing detrimental impacts
Graded Poisson-Sigma models and dilaton-deformed 2D supergravity algebra
International Nuclear Information System (INIS)
Supergravity extensions of generic 2d gravity theories obtained from the graded Poisson-Sigma model (gPSM) approach show a large degree of ambiguity. On the other hand, obstructions may reduce the allowed range of fields as given by the bosonic theory, or even prohibit any extension in certain cases. In our present work we relate the finite W-algebras inherent in the gPSM algebra of constraints to supergravity algebras (Neuveu-Schwarz or Ramond algebras resp.), deformed by the presence of the dilaton field. With very straightforward and natural assumptions on them - like the one linking the anti-commutator of certain fermionic charges to the Hamiltonian constraint without deformation - we are able not only to remove the ambiguities but, at the same time, the singularities referred to above. Thus all especially interesting bosonic models (spherically reduced gravity, the Jackiw-Teitelboim model etc.) under these conditions possess a unique fermionic extension and are free from new singularities. The superspace supergravity model of Howe is found as a special case of this supergravity action. For this class of models the relation between bosonic potential and prepotential does not introduce obstructions as well. (author)
Spin Circuit Model for 2D Channels with Spin-Orbit Coupling
Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo
2016-03-01
In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.
Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow
Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani
2015-09-01
Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science
Modelling and Experimental Verification of a DEAP based 2-D rotational positioner
Iskandarani, Yosef; Bilberg, Arne; Sarban, Rahimullah
2010-01-01
A feasibility study into the appropriateness of using a laminated dielectric electro active polymer (DEAP) film, called PolyPowerTM, for two dimensional rotational positioning is reviewed in this work. The maximum strain in the film is limited to 50 % and the maximum applied voltage is currently limited to 3000 V. This work will examine the ability of positioning a shaft coupled to a laser beam pointer in x-y direction which will provide insight into (a) the practicality of using the material...
Secure D2D Communication in Large-Scale Cognitive Cellular Networks: A Wireless Power Transfer Model
Liu, Yuanwei; Wang, Lifeng; Zaidi, Syed Ali Raza; Elkashlan, Maged; Duong, Trung Q.
2015-01-01
In this paper, we investigate secure device-to-device (D2D) communication in energy harvesting large-scale cognitive cellular networks. The energy constrained D2D transmitter harvests energy from multiantenna equipped power beacons (PBs), and communicates with the corresponding receiver using the spectrum of the primary base stations (BSs). We introduce a power transfer model and an information signal model to enable wireless energy harvesting and secure information transmission. In the power...
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Energy Technology Data Exchange (ETDEWEB)
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
A case study of fluid flow in fractured rock mass based on 2-D DFN modeling
Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon
2014-05-01
A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.
Distributed and coupled 2D electro-thermal model of power semiconductor devices
Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles
2014-05-01
The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.
Aespoe Pillar Stability Experiment. Final 2D coupled thermo-mechanical modelling
International Nuclear Information System (INIS)
A site scale Pillar Stability Experiment is planned in the Aespoe Hard Rock Laboratory. One of the experiment's aims is to demonstrate the possibilities of predicting spalling in the fractured rock mass. In order to investigate the probability and conditions for spalling in the pillar 'prior to experiment' numerical simulations have been undertaken. This report presents the results obtained from 2D coupled thermo-mechanical numerical simulations that have been done with the Finite Element based programme JobFem. The 2D numerical simulations were conducted at two different depth levels, 0.5 and 1.5 m below tunnel floor. The in situ stresses have been confirmed with convergence measurements during the excavation of the tunnel. After updating the mechanical and thermal properties of the rock mass the final simulations have been undertaken. According to the modelling results the temperature in the pillar will increase from the initial 15.2 deg up to 58 deg after 120 days of heating. Based on these numerical simulations and on the thermal induced stresses the total stresses are expected to exceed 210 MPa at the border of the pillar for the level at 0.5 m below tunnel floor and might reach 180-182 MPa for the level at 1.5 m below tunnel floor. The stresses are slightly higher at the border of the confined hole. Upon these results and according to the rock mechanical properties the Crack Initiation Stress is exceeded at the border of the pillar already after the excavation phase. These results also illustrate that the Crack Damage Stress is exceeded only for the level at 0.5 m below tunnel floor and after at least 80 days of heating. The interpretation of the results shows that the required level of stress for spalling can be reached in the pillar
A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere
Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.
2004-12-01
Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.
Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.
Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans
2009-11-01
We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna. PMID:19880733
Simulation of abrasive flow machining process for 2D and 3D mixture models
Dash, Rupalika; Maity, Kalipada
2015-12-01
Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a
On the assimilation of SWOT type data into 2D shallow-water models
Frédéric, Couderc; Denis, Dartus; Pierre-André, Garambois; Ronan, Madec; Jérôme, Monnier; Jean-Paul, Villa
2013-04-01
In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet-dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission. [CoMaMoViDaLa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus, K. Larnier. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Computational software http
A 2D Mathematical Model for Sediment Transport by Waves and Tidal Currents
Institute of Scientific and Technical Information of China (English)
LU Yong-jun; ZUO Li-qin; SHAO Xue-jun; WANG Hong-chuan; LI Hao-lin
2005-01-01
In this study, the combined actions of waves and tidal currents in estuarine and coastal areas are considered and a 2D mathematical model for sediment transport by waves and tidal currents has been established in orthogonal curvilinear coordinates. Non-equilibrium transport equations of suspended load and bed load are used in the model. The concept of background concentration is introduced, and the formula of sediment transport capacity of tidal currents for the Oujiang River estuary is obtained. The Dou Guoren formula is employed for the sediment transport capacity of waves. Sediment transport capacity in the form of mud and the intensity of back silting are calculated by use of Luo Zaosen's formula. The calculated tidal stages are in good agreement with the field data, and the calculated velocities and flow directions of 46 vertical lines for 8 cross sections are also in good agreement with the measured data. On such a basis, simulations of back silting after excavation of the waterway with a sand bar under complicated boundary conditions in the navigation channel induced by suspended load, bed load and mud by waves and tidal currents are discussed.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
Kumar, R.; Gupta, S.; Malik, R. P.
2016-01-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
PREDICTION OF BLOOD FLOW VELOCITY AND LEAFLET DEFORMATION VIA 2D MITRAL VALVE MODEL
Directory of Open Access Journals (Sweden)
M.A.H. Mohd Adib
2012-06-01
Full Text Available In the mitral valve, regional variations in structure and material properties combine to affect the biomechanics of the entire valve. From previous studies, we know that the mitral valve leaflet tissue is highly extensible. A two-dimensional model of the mitral valve was generated using an Arbitrary Lagrangian-Eulerian (ALE mesh. A simple approximation of the heart geometry was used and the valve dimensions were based on actual measurements made. Valve opening and closure was simulated using contact equations. The objective of this study was to investigate and predict flow and leaflet phenomena via a simple 2D mitral valve model based on the critical parameter of blood. Two stages of mitral valves analysis were investigated: the systolic and diastolic stages. The results show a linear correlation between the mitral valve leaflet rigidity and the volume of backflow. Additionally, the simulation predicted mitral valve leaflet displacement during closure, which agreed with the results of our previous data analysis and the results for blood flow velocity during systole condition through the mitral valve outlet, as reported in the medical literature. In conclusion, these computational techniques are very useful in the study of both degenerative valve disease and failure of prostheses and will be further developed to investigate heart valve failure and subsequent surgical repair.
T-duality without isometry via extended gauge symmetries of 2D sigma models
Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa
2016-01-01
Target space duality is one of the most profound properties of string theory. However it customarily requires that the background fields satisfy certain invariance conditions in order to perform it consistently; for instance the vector fields along the directions that T-duality is performed have to generate isometries. In the present paper we examine in detail the possibility to perform T-duality along non-isometric directions. In particular, based on a recent work of Kotov and Strobl, we study gauged 2D sigma models where gauge invariance for an extended set of gauge transformations imposes weaker constraints than in the standard case, notably the corresponding vector fields are not Killing. This formulation enables us to follow a procedure analogous to the derivation of the Buscher rules and obtain two dual models, by integrating out once the Lagrange multipliers and once the gauge fields. We show that this construction indeed works in non-trivial cases by examining an explicit class of examples based on step 2 nilmanifolds.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
Kumar, R.; Gupta, S.; Malik, R. P.
2016-06-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
Hammer, Manfred; Honsa, R.; Richter, L.
2003-01-01
Superpositions of two perpendicularly oriented bidirectional eigenmode propagation (BEP) fields, composed of basis modes that satisfy Dirichlet boundary conditions, can establish rigorous semianalytical solutions for problems of 2-D fixed-frequency wave propagation on unbounded, cross-shaped domains
Combining multitracing and 2D-modelling to identify the dynamic of heavy metals during flooding.
Hissler, C.; Hostache, R.; Matgen, P.; Tosheva, Z.; David, E.; Bates, P.; Stille, P.
2012-04-01
to assess the risk of floodplain contamination in heavy metal due to river sediment deposition and to heavy metal partitioning between particulate and dissolved phases. We focus on a multidisciplinary approach combining environmental geochemistry (multitracing) and hydraulic modelling (using TELEMAC-2D). One important single flood event was selected to illustrate this innovative approach. During the entire flood, the river water was sampled every hour in order to collect the particulate and the dissolved fractions. All the tracers were analyzed in both fractions. An important set of hydrological and sedimentological data are used to reach a more efficient calibration of the TELEMAC modelling system. In addition to standard techniques of hydrochemistry, new approaches of in situ suspended sediment transport monitoring will help getting new insights on the hydraulic system behaviour.
Two-dimensional (2-D) pellet-cladding modelling using fem at NRI rex PLC
International Nuclear Information System (INIS)
The method and calculation results of 2-D (r-z) and 2-D (r-φ) contact elasto-thermal solutions of pellet-cladding configuration are presented. Calculations were performed with coupled thermal and mechanical methods with inner sources and appropriate material properties dependent on temperature. Preliminary results of those simulations will be appropriate for advanced Russian TVEL fuel geometry recently delivered to the Dukovany NPP. Validation on experiment will be the subject of further work. (authors)
2D BEM modeling of a singular thermal diffusion free boundary problem with phase change
Nikolayev, Vadim
2016-01-01
We report a 2D Boundary Element Method (BEM) modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated pool boiling. The transient heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater. The heat generated homogeneously in the heater causes evaporation, i. e. the bubble growth. A singularity exists at the point of the triple (liquid-vapor-solid) contact. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater, thus triggering the boiling crisis (Critical Heat Flux phenomenon).
Modeling of two-storey precast school building using Ruaumoko 2D program
Energy Technology Data Exchange (ETDEWEB)
Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D. [Faculty of Civil Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)
2015-05-15
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.
Real-time thermal field theory analyses of 2D Gross-Neveu model
Bang-Rong, Z
2000-01-01
Discrete symmetry breaking and possible restoration at finite temperature $T$ are analysed in 2D Gross-Neveu model by the real-time thermal field theory in the fermion bubble approximation. The dynamical fermion mass $m$ is proven to be scale-independent and this fact indicates the equivalence between the fermion bubble diagram approximation and the mean field approximation used in the auxialiary scalar field approach. Reproducing of the non-zero critical temperature $T_c=0.567 m(0)$, ($m(0)$ is the dynamical fermion mass at T=0), shows the equivalence between the real-time and the imaginary-time thermal field theory in this problem. However, in the real-time formalism, more results including absence of scalar bound state, the equation of criticality curve of chemical potential-temperature and the $\\ln(T_c/T)$ behavior of $m^2$ at $T\\stackrel{<}{\\sim} T_c$ can be easily obtained. The last one indicates the second-order phase transition feature of the symmetry restoration.
Straatsma, Menno; Huthoff, Fredrik
2011-01-01
In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.
A 2D MODELLING OF THERMAL HEAT SINK FOR IMPATT AT HIGH POWER MMW FREQUENCY
Directory of Open Access Journals (Sweden)
Sohom Kumar Mitra
2013-02-01
Full Text Available A very useful method of formulating the Total Thermal Resistance of ordinary mesa structure of DDR IMPATT diode oscillators are presented in this paper. The main aim of this paper is to provide a 2D model for Si and SiC based IMPATT having different heat sinks (Type IIA diamond and copper at high power MMW frequency and study the characteristics of Total thermal resistance versus diode diameter for both the devices. Calculations of Total thermal resistances associated with different DDR IMPATT diodes with different base materials operating at 94 GHz (W-Band are included in this paper using the author’s developed formulation for both type-IIA diamond and copper semi-infinite heat sinks separately. Heat Sinks are designed using both type-IIA diamond and copper for all those diodes to operate near 500 K (which is well below the burn-out temperatures of all those base materials for CW steady state operation. Results are provided in the form of necessary graphs and tables.
Modeling of two-storey precast school building using Ruaumoko 2D program
International Nuclear Information System (INIS)
The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm
GPU computing with OpenCL to model 2D elastic wave propagation: exploring memory usage
Iturrarán-Viveros, Ursula; Molero-Armenta, Miguel
2015-01-01
Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.
2D and 3D multipactor modeling in dielectric-loaded accelerator structures
Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas
2010-11-01
Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an RF electric field under vacuum conditions. MP is a severe problem in modern rf systems and, therefore, theoretical and experimental studies of MP are of great interest to the researchers working in various areas of physics and engineering. In this work we present results of MP studies in dielectric-loaded accelerator (DLA) structures. First, we show simulation results obtained with the use of the 2D self-consistent MP model (O. V. Sinitsyn, et. al., Phys. Plasmas, vol. 16, 073102 (2009)) and compare those to experimental ones obtained during recent extensive studies of DLA structures performed by Argonne National Laboratory, Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs (C. Jing, et al., IEEE Trans. Plasma Sci., vol. 38, pp. 1354-1360 (2010)). Then we present some new results of 3D analysis of MP which include studies of particle trajectories and studies of MP development at the early stage.
D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -
Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.
2011-09-01
In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to
1D and 2D urban dam-break flood modelling in Istanbul, Turkey
Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih
2014-05-01
Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond
Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.
Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung
2016-08-01
A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests. PMID:27244737
Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S.
2015-08-01
The rapid progress of lidar technology has made the acquirement and application of high-resolution digital elevation model (DEM) data increasingly popular, especially in regards to the study of floodplain flow. However, high-resolution DEM data pose several disadvantages for floodplain modeling studies; e.g., the data sets contain many redundant interpolation points, large numbers of calculations are required to work with data, and the data do not match the size of the computational mesh. Two-dimensional (2-D) hydraulic modeling, which is a popular method for analyzing floodplain flow, offers highly precise elevation parameterization for computational mesh while ignoring much of the micro-topographic information of the DEM data itself. We offer a flood simulation method that integrates 2-D hydraulic model results and high-resolution DEM data, thus enabling the calculation of flood water levels in DEM grid cells through local inverse distance-weighted interpolation. To get rid of the false inundation areas during interpolation, it employs the run-length encoding method to mark the inundated DEM grid cells and determine the real inundation areas through the run-length boundary tracing technique, which solves the complicated problem of connectivity between DEM grid cells. We constructed a 2-D hydraulic model for the Gongshuangcha detention basin, which is a flood storage area of Dongting Lake in China, by using our integrated method to simulate the floodplain flow. The results demonstrate that this method can solve DEM associated problems efficiently and simulate flooding processes with greater accuracy than simulations only with DEM.
A 2D climate energy balance model coupled with a 3D deep ocean model
Directory of Open Access Journals (Sweden)
J. Ildefonso Diaz
2007-05-01
Full Text Available We study a three dimensional climate model which represents the coupling of the mean surface temperature with the ocean temperature. We prove the existence of a bounded weak solution by a fixed point argument.
Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe
2016-04-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment
Hamerly, Ryan; Inagaki, Takahiro; Takesue, Hiroki; Yamamoto, Yoshihisa; Mabuchi, Hideo
2016-01-01
A network of optical parametric oscillators is used to simulate classical Ising and XY spin chains. The collective nonlinear dynamics of this network, driven by quantum noise rather than thermal fluctuations, seeks out the Ising / XY ground state as the system transitions from below to above the lasing threshold. We study the behavior of this "Ising machine" for three canonical problems: a 1D ferromagnetic spin chain, a 2D square lattice, and problems where next-nearest-neighbor couplings give rise to frustration. If the pump turn-on time is finite, topological defects form (domain walls for the Ising model, winding number and vortices for XY) and their density can be predicted from a numerical model involving a linear "growth stage" and a nonlinear "saturation stage". These predictions are compared against recent data for a 10,000-spin 1D Ising machine.
Modelling thermal stratification in the North Sea: Application of a 2-D potential energy model
DEFF Research Database (Denmark)
Nielsen, Morten Holtegaard; St. John, Michael
2001-01-01
dynamics we have developed and tested a potential energy model of thermal stratification based on the energy equation (for turbulence). The energy equation relates the temporal and spatial changes of turbulent kinetic energy (TKE), the production of TKE and the dissipation of TKE to the change of potential...... forced with wind, dew point temperature from Ekofisk oilfield in the central North Sea, and tidal current and atmospheric radiation. The model is used to simulate the seasonal cycle of stratification in the central North Sea in the years 1988, 1989 and 1990 and is compared to density profiles in these...... years available from the ICES hydrographic database. We find that the model is able to simulate variations in thermal stratification including the seasonal onset and breakdown of stratification, the thermocline depth, and the effects of discrete wind and cooling events. For the years 1988–1990 we find...
Axial turbomachine modelling with a quasi-2-D approach. Application to gas cooled reactor transients
International Nuclear Information System (INIS)
Full text of publication follows: In the frame of the international forum GenIV, CEA has selected two innovative concepts of High Temperature gas cooled Reactor. The first has a fast neutron spectrum, a robust refractory fuel and a direct cycle conversion. The second is a very high temperature reactor with a thermal neutron spectrum. Both concepts make use of technology derived from High Temperature Gas Reactor. Thermal hydraulic performances are a key issue for the design. For transient conditions and decay heat removal situations, the thermal hydraulic performance must remain as high as possible. In this context, all the transient situations, the incidental and accidental scenarios must be evaluated by a validated system code able to correctly describe, in particular, the thermal-hydraulics of the whole plant. With this type of reactor a special emphasis must be laid on turbomachinery modelling. A first step was to compute a HTGR concept using the steady-state characteristics of each element of the turbomachinery with the computer code CATHARE. In a hypothetical transient event (a 10 inches cold duct break of primary loop which causes a rapid depressurization and a decrease of the core mass flow rate) the results seem of great interest (as a forced convection was maintained by the compressors during the entire transient) but not sufficiently justified in the frame of 0D modelling of turbomachinery. A more precise description of the turbomachinery has been developed based on a quasi-two dimensional approach. Although this type of flow analysis is a simplification of a complex three dimensional system, it is able to describe the behaviour of a compressor or a turbine with a better understanding than the models based on component characteristics. This approach consists in the solving of 2D radially averaged Navier-Stokes equations with the hypothesis of circumferentially uniform flow. The assumption of quasi-steady behaviour is made: source terms for the lift and
2D condensation model for the inner Solar Nebula: an enstatite-rich environment
Pignatale, F. C.; Liffman, Kurt; Maddison, Sarah T.; Brooks, Geoffrey
2016-04-01
Infrared observations provide the dust composition in the protoplanetary discs surface layers, but cannot probe the dust chemistry in the mid-plane, where planet formation occurs. Meteorites show that dynamics was important in determining the dust distribution in the Solar Nebula and needs to be considered if we are to understand the global chemistry in discs. 1D radial condensation sequences can only simulate one disc layer at a time and cannot describe the global chemistry or the complexity of meteorites. To address these limitations, we compute for the first time the 2D distribution of condensates in the inner Solar Nebula using a thermodynamic equilibrium model, and derive time-scales for vertical settling and radial migration of dust. We find two enstatite-rich zones within 1 AU from the young Sun: a band ˜0.1 AU thick in the upper optically-thin layer of the disc interior to 0.8 AU, and in the optically-thick disc mid-plane out to ˜0.4 AU. The two enstatite-rich zones support recent evidence that Mercury and enstatite chondrites (ECs) shared a bulk material with similar composition. Our results are also consistent with infrared observation of protoplanetary disc which show emission of enstatite-rich dust in the inner surface of discs. The resulting chemistry and dynamics suggests that the formation of the bulk material of ECs occurred in the inner surface layer of the disc, within 0.4 AU. We also propose a simple alternative scenario in which gas fractionation and vertical settling of the condensates lead to an enstatite-chondritic bulk material.
Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process
Jung, T.; Seebeck, J.; Friedrich, J.
2013-04-01
A global, axisymmetric thermal model of a Czochralski furnace is coupled to an external, local, 3D, time-dependent flow model of the melt via the inclusion of turbulent heat fluxes, extracted from the 3D melt model, into the 2D furnace model. Boundary conditions of the 3D model are updated using results from the 2D model. In the 3D model the boundary layers are resolved by aggressive mesh refinement towards the walls, and the Large Eddy Simulation approach is used to model the turbulent flow in the melt volume on a relatively coarse mesh to minimize calculation times. It is shown that by using this approach it is possible to reproduce fairly good results from Direct Numerical Simulations obtained on much finer meshes, as well as experimental results for interface shape and oxygen concentration in the case of growth of silicon crystals with 210 mm diameter for photovoltaics by the Czochralski method.
The space-scale cube: An integrated model for 2D polygonal areas and scale
Meijers, B.M.; Van Oosterom, P.J.M.
2011-01-01
This paper introduces the concept of a space-scale partition, which we term the space-scale cube – analogous with the space-time cube (first introduced by Hägerstrand, 1970). We take the view of ‘map generalization is extrusion of 2D data into the third dimension’ (as introduced by Vermeij et al., 2
A new approach for assimilation of 2D radar precipitation in a high-resolution NWP model
DEFF Research Database (Denmark)
Korsholm, Ulrik Smith; Petersen, Claus; Sass, Bent Hansen;
2015-01-01
A new approach for assimilation of 2D precipitation in numerical weather prediction models is presented and tested in a case with convective, heavy precipitation. In the scheme a nudging term is added to the horizontal velocity divergence tendency equation. In case of underproduction of precipita...
Kowit Boonrawd; Chatchai Jothityangkoon
2015-01-01
A coupling of a 1-D flood routing model and quasi 2-D floodplain inundation model is applied for mapping spacetime flood extent. The routing model is formulated based on a non-linear storage-discharge relationship which is converted from an observed and synthetic rating curve. To draw the rating curve, required parameters for each reaches are estimated from hydraulic properties, floodplain geometry and vegetation and building cover of compound channels. The shape of the floodplain...
Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.
2014-12-01
In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is
Novel Method Fusing (2D) 2 LDA with Multichannel Model for Face Recognition
Institute of Scientific and Technical Information of China (English)
Xia Liu∗; Yang Cao; Yu Cao; Bo Wang
2015-01-01
A fusion method of Gabor features and (2D)2LDA for face feature extraction is proposed in this paper. Gabor filters are utilized to extract multi⁃direction and multi⁃scale features from facial image to employ its robust performance for illumination, expressional variability and other factors. The extracted features have the defect of high dimension and redundancy data. (2D)2LDA is implemented to reduce the dimension of Gabor features and select effective feature data. Finally, the nearest neighbor classifier is used to classify characteristics and complete face recognition. The experiments are implemented by using ORL database and Yale database respectively. The experimental results show that the proposed method significantly reduces the dimension of Gabor features and decrease the influence of other factors. The proposed method acquires excellent recognition accuracy and has light architectures as well.
Information on the gauge principle from an N=1/2, D=2 supersymmetric model
International Nuclear Information System (INIS)
The gauge principle does not only work to generate interactions. It potentially yields an abundance of gauge-potential fields transforming under the same local symmetry group. In order to show evidences of this property this work gauge-covariantizes an N = 1/2, D = 2 supersymmetric theory. Then, by relaxing the so-called conventional constraint, a second gauge-potential field naturally emerges. (author)
Driven microswimmers on a 2D substrate: A stochastic towed sled model
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-01
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
International Nuclear Information System (INIS)
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques
A 2D Mechanistic Model of Breast Ductal Carcinoma in Situ (DCIS) Morphology and Progression
Norton, Kerri-Ann; Wininger, Michael; Bhanot, Gyan; Ganesan, Shridar; Barnard, Nicola; Shinbrot, Troy
2009-01-01
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumor in which cells proliferate abnormally, but remain confined within a duct. Although four distinguishable DCIS morphologies are recognized, the mechanisms that generate these different morphological classes remain unclear, and consequently the prognostic strength of DCIS classification is not strong. To improve the understanding of the relation between morphology and time course, we have developed a 2D in silico particle mode...
Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models
Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva
2014-07-01
To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.
Statistical coronary motion models for 2D+t/3D registration of X-ray coronary angiography and CTA
DEFF Research Database (Denmark)
Baka, N.; Metz, C.T.; Schultz, C.;
2013-01-01
Accurate alignment of intra-operative X-ray coronary angiography (XA) and pre-operative cardiac CT angiography (CTA) may improve procedural success rates of minimally invasive coronary interventions for patients with chronic total occlusions. It was previously shown that incorporating patient...... motion models to provide constraints for the 2D+t/3D registration. We propose a methodology for building statistical motion models of the coronary arteries from a training population of 4D CTA datasets. We compare the 2D+t/3D registration performance of the proposed statistical models with other motion...... estimates, including the patient specific motion extracted from 4D CTA, the mean motion of a population, the predicted motion based on the cardiac shape. The coronary motion models, constructed on a training set of 150 patients, had a generalization accuracy of 1mm root mean square point-to-point distance...
Rigorous 2D Model for Study of Pulsed and Monochromatic Waves Propagation Near the Earth’s Surface
Sautbekov, Seil S.; Yuriy K. Sirenko; Nataliya P. Yashina; Aleksey A. Vertiy
2014-01-01
A model problem considered in the paper allows solving rather complex 2D problems of the electromagnetic wave propagation with a required accuracy using conventional personal computers. The problems are of great importance for the theory and practical applications. The association of FDTD schemes with exact absorbing conditions makes up the basis for constructing models of the kind. This approach reduces the original open initial boundary value problems to the equivalent closed problems which...
Harman Ajiwibowo
2011-01-01
The effectiveness of a breakwater can be measured by quantifying the transmission coefficient (KT). The smaller the coefficient, the better the performance of the breakwater. A physical modeling on the proposed breakwater was conducted to identify the coefficient of Perforated Skirt Breakwater (PSB). The PSB model was tested in 2-D wave flume at Ocean Wave Research Laboratory FTSL ITB, to obtain the effectiveness of PSB for short-period waves (prototype periods, Tp= 4 second and smaller). The...
Simulating floods : On the application of a 2D-hydraulic model for flood hazard and risk assessment
Alkema, D.
2007-01-01
Over the last decades, river floods in Europe seem to occur more frequently and are causing more and more economic and emotional damage. Understanding the processes causing flooding and the development of simulation models to evaluate countermeasures to control that damage are important issues. This study deals with the application of a 2D hydraulic flood propagation model for flood hazard and risk assessment. It focuses on two components: 1) how well does it predict the spatial-dynamic chara...
A. Caserta; L. Malagnini; A. Rovelli; Marra, F
1995-01-01
The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves) produced in the different areas of the city by a large (M ? 7) potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineerin...
Modeling of Nitrate Leaching from a Potato Field using HYDRUS-2D
DEFF Research Database (Denmark)
Shekofteh, Hosein; Afyuni, Majid; Hajabbasi, Mohammad Ali;
2013-01-01
applied to simulate nitrate leaching from a drip-irrigated sandy agricultural soil for varying emitter discharges and various amounts of fertilizer. It was found that for small emitter discharge values free drainage increased significantly with increase in discharge, whereas the increase was leveled out......Excessive use of nitrogen (N) fertilizers is likely to be responsible for the increasing nitrate in groundwater. Thus, appropriate water and nutrient management is required to minimize groundwater pollution and to maximize the nutrient-use efficiency. In this study HYDRUS-2D software package was...... fertilizer amount, nitrate leaching from a potato field can be minimized even in a sandy soil....
Diego A. Garzón-Alvarado; CARLOS GALEANO; JUAN MANTILLA
2012-01-01
Este articulo presenta distintas pruebas numéricas en dominios que presenta variación de parámetros, de forma espacial, de la ecuación de reacción- difusión en el espacio de Turing. Las pruebas son desarrolladas en cuadrados de lado unitario 2D en el cual se realizan subdivisiones (subdominios). En cada subdomminio se ingresan parámetros que corresponden a los diferentes números de onda, por lo tanto presentan un medio heterogéneo. Cada número de onda fue predicho mediante la teoría lineal de...
Institute of Scientific and Technical Information of China (English)
LI Haifeng; HU Zunhe; LIU Jingtai
2016-01-01
To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map (EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model, and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping (SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.
Spin-spin critical point correlation functions for the 2D random bond Ising and Potts models
Dotsenko, V S; Pujol, P; Vladimir Dotsenko; Marco Picco; Pierre Pujol
1994-01-01
We compute the combined two and three loop order correction to the spin-spin correlation functions for the 2D Ising and q-states Potts model with random bonds at the critical point. The procedure employed is the renormalisation group approach for the perturbation series around the conformal field theories representing the pure models. We obtain corrections for the correlations functions which produce crossover in the amplitude but don't change the critical exponent in the case of the Ising model and which produce a shift in the critical exponent, due to randomness, in the case of the Potts model. Comparison with numerical data is discussed briefly.
Smectic-like phase for modulated XY spins in two dimensions
International Nuclear Information System (INIS)
The row model for frustrated XY spins on a triangular lattice in 2D is used to study incommensurate (IC) and commensurate (C) phases, in the regime where a (C)-(IC) transition may be observed. Thermodynamic quantities for the (IC) state are computed analytically by means of the NSCHA, a new variational method appropriate for frustrated systems. On the commensurate side of the (C)-(IC) boundary, NSCHA predicts an instability of the (C) phase suggesting that this state is in fact spatially inhomogeneous. Detailed Monte-Carlo (MC) simulations using fluctuating boundary conditions and specific histogram techniques show that in this regime the configuration consists of stripes of (C) and (IC) phases alternating in space. This state, which resembles the smectic-A phase of liquid crystals, exists because of the strong coupling between chiral and phase (spin angle) variables. As a result, the transition between the (IC) and the (C) states can only occur at zero temperature T so that the Lifshitz point is at T = 0 for modulated XY spins in 2D. (author)
DEFF Research Database (Denmark)
Mouritsen, Ole G.; Praestgaard, Eigil
1988-01-01
infinite to zero temperature as well as to nonzero temperatures below the ordering transition. The continuous nature of the spin variables causes the domain walls to be ‘‘soft’’ and characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model parameter, P. At zero...... obeys dynamical scaling and the shape of the dynamical scaling function pertaining to the structure factor is found to depend on P. Specifically, this function is described by a Porod-law behavior, q-ω, where ω increases with the wall softness. The kinetic exponent, which describes how the linear domain...... size varies with time, R(t)∼tn, is for both models at zero temperature determined to be n≃0.25, independent of P. At finite temperatures, the growth kinetics is found to cross over to the Lifshitz-Allen-Cahn law characterized by n≃0.50. The results support the idea of two separate zero...
SU-E-T-05: A 2D EPID Transit Dosimetry Model Based On An Empirical Quadratic Formalism
Energy Technology Data Exchange (ETDEWEB)
Tan, Y [University of Glasgow, Glasgow, Scotland (United Kingdom); National University Cancer Institute (Singapore); Metwaly, M; Glegg, M [Beatson West of Scotland Cancer Centre, Glasgow, Scotland (United Kingdom); Baggarley, S [National University Cancer Institute (Singapore); Elliott, A [University of Glasgow, Glasgow, Scotland (United Kingdom)
2014-06-01
Purpose: To describe a 2D electronic portal imaging device (EPID) transit dosimetry model, based on an empirical quadratic formalism, that can predict either EPID or in-phantom dose distribution for comparisons with EPID captured image or treatment planning system (TPS) dose respectively. Methods: A quadratic equation can be used to relate the reduction in intensity of an exit beam to the equivalent path length of the attenuator. The calibration involved deriving coefficients from a set of dose planes measured for homogeneous phantoms with known thicknesses under reference conditions. In this study, calibration dose planes were measured with EPID and ionisation chamber (IC) in water for the same reference beam (6MV, 100mu, 20×20cm{sup 2}) and set of thicknesses (0–30cm). Since the same calibration conditions were used, the EPID and IC measurements can be related through the quadratic equation. Consequently, EPID transit dose can be predicted from TPS exported dose planes and in-phantom dose can be predicted using EPID distribution captured during treatment as an input. The model was tested with 4 open fields, 6 wedge fields, and 7 IMRT fields on homogeneous and heterogeneous phantoms. Comparisons were done using 2D absolute gamma (3%/3mm) and results were validated against measurements with a commercial 2D array device. Results: The gamma pass rates for comparisons between EPID measured and predicted ranged from 93.6% to 100.0% for all fields and phantoms tested. Results from this study agreed with 2D array measurements to within 3.1%. Meanwhile, comparisons in-phantom between TPS computed and predicted ranged from 91.6% to 100.0%. Validation with 2D array device was not possible for inphantom comparisons. Conclusion: A 2D EPID transit dosimetry model for treatment verification was described and proven to be accurate. The model has the advantage of being generic and allows comparisons at the EPID plane as well as multiple planes in-phantom.
Small-amplitude 2D patterns with nontrivial symmetry in a simple nonlinear field model
International Nuclear Information System (INIS)
Quasiperiodic (QP) small-amplitude patterns are studied in a scalar field theory with quadratic nonlinearity. QP solutions of the class in interest are found as a projection of strictly periodic solutions of an associated 4D problem onto an 'irrationally oriented' 2D subspace. The periodic solutions of the 4D problem are constructed using a version of the method of asymptotic expansions. The analysis reveals complex patterns. In particular, there exists a one-parametric QP pattern with strict 12-fold symmetry, which contains infinitely many local patches with approximate 5-fold symmetry. In limit cases, the complex patterns transform into a simple pattern: a close pack of hexagonal cells. In certain resonance cases there exist patterns consisting of alternating pieces of close cell packs with either hexagonal or quadrangular symmetry. The relation between the 12-fold and 5-fold approximate symmetries is discussed. (author)
Symmetric and skew-symmetric weight functions in perturbation models of 2D interfacial cracks
Piccolroaz, A; Movchan, A B
2008-01-01
In this paper we address the vector problem of a 2D interfacial crack loaded by a general asymmetric distribution of forces acting on its faces. It is shown that the general integral formula for the evaluation of stress intensity factors, as well as high-order terms, requires both symmetric and skew-symmetric weight function matrices. The symmetric weight function matrix is obtained via the solution of a Wiener-Hopf functional equation, whereas the derivation of the skew-symmetric weight function matrix requires the construction of the corresponding full field singular solution. The weight function matrices are then used in the perturbation analysis of a crack advancing quasi-statically along the interface between two dissimilar media. A general and rigorous asymptotic procedure is developed to compute the perturbations of stress intensity factors as well as high-order terms.
2-D fluid dynamics models for laser driven fusion on IBM 3090 vector multiprocessors
International Nuclear Information System (INIS)
Fluid-dynamics codes for laser fusion are complex research codes, consisting of many distinct modules and embodying a variety of numerical methods. They are therefore good candidates for testing general purpose advanced computer architectures and the related software. In this paper, after a brief outline of the basic concepts of laser fusion, the implementation of the 2-D laser fusion fluid code DUED on the IBM 3090 VF vector multiprocessors is discussed. Emphasis is put on parallelization, performed by means of IBM Parallel FORTRAN (PF). It is shown how different modules have been optimized by using different features of PF: i) modules based on depth-2 nested loops exploit automatic parallelization; ii) laser light ray tracing is partitioned by scheduling parallel ICCG algorithm (executed in parallel by appropiately synchronized parallel subroutines). Performance results are given for separate modules of the code, as well as for typical complete runs
MATHEMATICAL MODEL FOR 2-D TIDAL FLOW AND WATER QUALITY WITH ORTHOGONAL CURVILINEAR COORDINATES
Institute of Scientific and Technical Information of China (English)
Liu Yu-ling; Wei Wen-li; Shen Yong-ming
2003-01-01
This paper presents a numerical method forsimulating the 2-D tidal flow and water quality with the or-thogonal curvilinear coordinates. In order to overcome thecomputational difficulties in natural rivers, such as the com-plicated boundary figures, the great disparity between lengthand width of computational domain, etc. , orthogonal bounda-ry-fitted grid was used. The irregular domain in physical planewas transformed into a rectangular domain in a transformedplane, and the depth-averaged momentum equations and massequation were given and discretized based on the alternatingdirection implicit finite difference scheme in curvilinear coordi-nates. The application of the presented method was illustratedby an example of analyzing the Yangtze River in the vicinity ofNanjing city. A fair agreement between the measured data andcomputed results demonstrates the validity of the developedmethod.
I. Kalisperakis; Stentoumis, Ch.; L. Grammatikopoulos; K. Karantzalos
2015-01-01
The indirect estimation of leaf area index (LAI) in large spatial scales is crucial for several environmental and agricultural applications. To this end, in this paper, we compare and evaluate LAI estimation in vineyards from different UAV imaging datasets. In particular, canopy levels were estimated from i.e., (i) hyperspectral data, (ii) 2D RGB orthophotomosaics and (iii) 3D crop surface models. The computed canopy levels have been used to establish relationships with the measured ...
Albrecht, Marc; Mila, Frederic
1995-01-01
We study the competition between magnetic order and valence bond order in a two dimensional (2D) frustrated Heisenberg model introduced some time ago by Shastry and Sutherland ({\\sc B. Sriram Shastry} and {\\sc Bill Sutherland}, {\\em Physica} 108{\\bf B},1069 (1981) ) for which a configuration of dimers is known to be the ground state in a certain range of parameters. Using exact diagonalisation of small clusters, linear spin wave theory and Schwinger boson mean field theory, we show that the t...
Pedersen, Henrik; Ólafsdóttir, Hildur; Darkner, Sune; Lyksborg, Mark; Larsen, Rasmus
2009-01-01
This paper introduces a novel approach to modelling of volumetric cardiac magnetic resonance imaging (MRI) with simultaneous resolution of cardiac and respiratory motion. The major challenge is that the inherent slow nature of MRI prevents obtaining real-time volumetric images of the heart with sufficient spatial and temporal resolution. To overcome this problem our method predicts pixel intensities in multiple 2D slices, acquired with high spatial and temporal resolution, and subsequently as...
Operto, S.; VIRIEUX, J; Ribodetti, Alessandra; Anderson, J E
2009-01-01
A 2D finite-difference, frequency-domain method was developed for modeling viscoacoustic seismic waves in transversely isotropic media with a tilted symmetry axis. The medium is parameterized by the P-wave velocity on the symmetry axis, the density, the attenuation factor, Thomsen's anisotropic parameters delta and epsilon, and the tilt angle. The finite-difference discretization relies on a parsimonious mixed-grid approach that designs accurate yet spatially compact stencils. The system of l...
Limin Wang; Weiwei Dong
2012-01-01
This paper develops the optimal fault-tolerant guaranteed cost control scheme for a batch process with actuator failures. Based on an equivalent two-dimensional Fornasini-Marchsini (2D-FM) model description of a batch process, the relevant concepts of the fault-tolerant guaranteed cost control are introduced. The robust iterative learning reliable guaranteed cost controller (ILRGCC), which includes a robust extended feedback control for ensuring the performances over time and an iterative lea...
Ute Weckmann; A. Jung; T. Branch; Oliver Ritter
2007-01-01
Two of the Earth´s largest geophysical anomalies, the Beattie Magnetic Anomaly (BMA) and the Southern Cape Conductive Belt (SCCB) extend across the southern African continent for more than 1000 km in an east-west direction. Based on previous electrical and magnetometer array measurements it is believed that both anomalies have a common crustal source with a width of 50 km represented by serpentinized palaeo-oceanic srust. New two-dimensional (2D) electrical conductivity models along a profile...
Generando entrelazamiento en cadenas XY - (Generating entanglement in XY chains)
Schmiegelow, C T
2006-01-01
Se estudia en este trabajo la capacidad de generar entrelazamiento de una cadena de espines con acoplamiento de Heisenberg XY y un campo magnetico uniforme a partir de un estado inicial en el que los espines estan completamente alineados. Se encuentra que la capacidad de generar estados entrelazados no muestra un comportamiento monotono con el campo presentando, en cambio, plateaus y resonancias. Tambien se muestra que, a pesar de que la anisotropia es necesaria para que se generen estados entrelazados, una mayor anisotropia no implica necesariamente mejores condiciones para generar entrelazamiento que sirva para usarse en una computadora cuantica. Inclusive, se observa que, se genera una cantidad finita de entrelazamiento en el limite de pequena anisotropia. (The maximum entanglement reached by an initially fully aligned state evolving in a XY Heisenberg spin chain placed in a uniform transverse magnetic field is studied. It is shown that the capacity to create entangled states (both of one qubit with the re...
Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study
International Nuclear Information System (INIS)
Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE3 v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the γ-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average γ-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average γ-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations have been
Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study
Energy Technology Data Exchange (ETDEWEB)
Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu [Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 and Radiation Oncology Department, Stanford University School of Medicine, Stanford, California 94305 (United States); Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 (United States); Radiation Oncology Department, Stanford University School of Medicine, Stanford, California 94305 (United States); Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 (United States)
2011-10-15
Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations
International Nuclear Information System (INIS)
Purpose: [123I]Epidepride is a radio-tracer with very high affinity for dopamine D2/D3 receptors in brain. The importance of alteration in dopamine D2/D3 receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [123I]epidepride could be used to evaluate the alterations of dopamine D2/D3 receptor binding condition in specific brain regions. Method: Rats were given repeated injection of MK-801 (dissolved in saline, 0.3 mg/kg) or saline for 1 month. Afterwards, total distance traveled (cm) and social interaction changes were recorded. Radiochemical purity of [123I]epidepride was analyzed by Radio-Thin-Layer Chromatography (chloroform: methanol, 9:1, v/v) and [123I]epidepride neuroimages were obtained by ex vivo autoradiography and small animal SPECT/CT. Data obtained were then analyzed to determine the changes of specific binding ratio. Result: Chronic MK-801 treatment for a month caused significantly increased local motor activity and induced an inhibition of social interaction. As shown in [123I]epidepride ex vivo autoradiographs, MK-801 induced a decrease of specific binding ratio in the striatum (24.01%), hypothalamus (35.43%), midbrain (41.73%) and substantia nigra (37.93%). In addition, [123I]epidepride small animal SPECT/CT neuroimaging was performed in the striatum and midbrain. There were statistically significant decreases in specific binding ratio in both the striatum (P 123I]epidepride is a useful radio-tracer to reveal the alterations of dopamine D2/D3 receptor binding in a rat schizophrenia model and is also helpful to evaluate therapeutic effects of schizophrenia in the future.
Entanglement in the XY spin chain
International Nuclear Information System (INIS)
We consider the entanglement in the ground state of the XY model of an infinite chain. Following Bennett, Bernstein, Popescu and Schumacher, we use the entropy of a sub-system as a measure of entanglement. Vidal, Latorre, Rico and Kitaev have conjectured that the von Neumann entropy of a large block of neighbouring spins approaches a constant as the size of the block increases. We evaluate this limiting entropy as a function of anisotropy and transverse magnetic field. We use the methods based on the integrable Fredholm operators and the Riemann-Hilbert approach. It is shown how the entropy becomes singular at the phase transition points
Analysis of entropy of XY Spin Chain
Franchini, F.; Its, A. R.; Jin, B. -Q.; Korepin, V. E.
2006-01-01
Entanglement in the ground state of the XY model on the infinite chain can be measured by the von Neumann entropy of a block of neighboring spins. We study a double scaling limit: the size of the block is much larger then 1 but much smaller then the length of the whole chain. In this limit, the entropy of the block approaches a constant. The limiting entropy is a function of the anisotropy and of the magnetic field. The entropy reaches minima at product states and increases boundlessly at pha...
Rigorous 2D Model for Study of Pulsed and Monochromatic Waves Propagation Near the Earth’s Surface
Directory of Open Access Journals (Sweden)
Seil S. Sautbekov
2014-01-01
Full Text Available A model problem considered in the paper allows solving rather complex 2D problems of the electromagnetic wave propagation with a required accuracy using conventional personal computers. The problems are of great importance for the theory and practical applications. The association of FDTD schemes with exact absorbing conditions makes up the basis for constructing models of the kind. This approach reduces the original open initial boundary value problems to the equivalent closed problems which can be solved numerically using the standard grid methods.
Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe
2016-04-01
In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the
International Nuclear Information System (INIS)
The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.
Local Mass Transfer Coefficient for Idealized 2D Urban Street Canyon Models
Leung, Ka Kit; Liu, Chun-Ho
2011-09-01
Human activities in urban areas is one of the major sources of anthropogenic releases in the atmospheric boundary layer (ABL). The mechanism of urban morphology for the heat and mass transfer in built environment is thus an attractive topic in the research community. In this paper, a series of laboratory measurements is conducted to elucidate the mass transfer from hypothetical urban roughness constructed by idealized 2D street canyons. The experiments are carried out in the wind tunnel in the University of Hong Kong. The urban ABL structure inside the wind tunnel is controlled by placing small cubic Styrofoam blocks upstream of the test section. The street canyons are fabricated by movable rectangular acrylic blocks so that different building height to street width (aspect) ratios are examined. The height of building blocks is kept minimum to make sure that the urban ABL over the street canyons is high enough for fully developed turbulent flows. The prevailing wind is normal to the street axis, demonstrating the scenario of least pollutant removal from the street canyons to the urban ABL. The sample street canyon is covered by soaked filter papers to represent uniform mass concentrations on the building facades and ground surface. The wet bulb temperature of the filter papers is continuously monitored to ensure saturated conditions. Their weight before and after an experiment is used to measure the amount of water evaporated. Preliminary results illustrate the local mass transfer coefficient distribution for aspect ratios 1/4, 1/2, 1, and 2, which are comparable with those available in literuatre.
International Nuclear Information System (INIS)
In order to design and define appropriate dimensions for a supercritical oxidation reactor, a comparative 2D and 3D simulation of the fluid dynamics and heat transfer during an oxidation process has been performed. The solver used is a commercial code, Fluent 6.2 (R). The turbulent flow field in the reactor, created by the stirrer, is taken into account with a k-omega model and a swirl imposed to the fluid. In the 3D case the rotation of the stirrer can be modelled using the sliding mesh model and the moving reference frame model. This work allows comparing 2D and 3D velocity and heat transfer calculations. The predicted values (mainly species concentrations and temperature profiles) are of the same order in both cases. The reactivity of the system is taken into account with a classical Eddy Dissipation Concept combustion model. Comparisons with experimental temperature measurements validate the ability of the CFD modelling to simulate the supercritical water oxidation reactive medium. Results indicate that the flow can be considered as plug flow-like and that heat transfer is strongly enhanced by the stirring. (authors)
2D MHD and 1D HD models of a solar flare -- a comprehensive comparison of the results
Falewicz, R; Murawski, K; Srivastava, A K
2015-01-01
Without any doubt solar flaring loops possess a multi-thread internal structure that is poorly resolved and there are no means to observe heating episodes and thermodynamic evolution of the individual threads. These limitations cause fundamental problems in numerical modelling of flaring loops, such as selection of a structure and a number of threads, and an implementation of a proper model of the energy deposition process. A set of 1D hydrodynamic and 2D magnetohydrodynamic models of a flaring loop are developed to compare energy redistribution and plasma dynamics in the course of a prototypical solar flare. Basic parameters of the modeled loop are set according to the progenitor M1.8 flare recorded in the AR10126 on September 20, 2002 between 09:21 UT and 09:50 UT. The non-ideal 1D models include thermal conduction and radiative losses of the optically thin plasma as energy loss mechanisms, while the non-ideal 2D models take into account viscosity and thermal conduction as energy loss mechanisms only. The 2...
A New Material Model for 2D FE Analysis of Adhesively Bonded Composite Joints
Zhao, Libin; Wang, Yana; TianLiang QIN; Zhang, Jianyu
2014-01-01
Effective and convenient stress analysis techniques play important roles in the analysis and design of adhesively bonded composite joints. A new material model is presented at the level of composite ply according to the orthotropic elastic mechanics theory and plane strain assumption. The model proposed has the potential to reserve nature properties of laminates with ply-to-ply modeling. The equivalent engineering constants in the model are obtained only by the material properties of unidirec...
Directory of Open Access Journals (Sweden)
Kowit Boonrawd
2015-04-01
Full Text Available A coupling of a 1-D flood routing model and quasi 2-D floodplain inundation model is applied for mapping spacetime flood extent. The routing model is formulated based on a non-linear storage-discharge relationship which is converted from an observed and synthetic rating curve. To draw the rating curve, required parameters for each reaches are estimated from hydraulic properties, floodplain geometry and vegetation and building cover of compound channels. The shape of the floodplain is defined by using fitting exercise based on the reverse approach between past and simulated inundation flood extent, to solve the current problem of inadequate topographic input data for floodplain. Mapping of daily flood can be generated relying on flat water levels. The quasi 2-D raster model is tested and applied to generate more realistic water surface and is used to estimate flood extent. The model is applied to the floodplains of Chiang Mai, north of Thailand and used to estimate a time series of hourly flood maps. Extending from daily to hourly flood extent, mapping development provides more details of flood inundation extent and depth.
International Nuclear Information System (INIS)
Purpose: In external beam radiation therapy of pelvic sites, patient setup errors can be quantified by registering 2D projection radiographs acquired during treatment to a 3D planning computed tomograph (CT). We present a 2D-3D registration framework based on a statistical model of the intensity values in the two imaging modalities. Methods: The model assumes that intensity values in projection radiographs are independently but not identically distributed due to the nonstationary nature of photon counting noise. Two probability distributions are considered for the intensity values: Poisson and Gaussian. Using maximum likelihood estimation, two similarity measures, maximum likelihood with a Poisson (MLP) and maximum likelihood with Gaussian (MLG), distribution are derived. Further, we investigate the merit of the model-based registration approach for data obtained with current imaging equipment and doses by comparing the performance of the similarity measures derived to that of the Pearson correlation coefficient (ICC) on accurately collected data of an anthropomorphic phantom of the pelvis and on patient data. Results: Registration accuracy was similar for all three similarity measures and surpassed current clinical requirements of 3 mm for pelvic sites. For pose determination experiments with a kilovoltage (kV) cone-beam CT (CBCT) and kV projection radiographs of the phantom in the anterior-posterior (AP) view, registration accuracies were 0.42 mm (MLP), 0.29 mm (MLG), and 0.29 mm (ICC). For kV CBCT and megavoltage (MV) AP portal images of the same phantom, registration accuracies were 1.15 mm (MLP), 0.90 mm (MLG), and 0.69 mm (ICC). Registration of a kV CT and MV AP portal images of a patient was successful in all instances. Conclusions: The results indicate that high registration accuracy is achievable with multiple methods including methods that are based on a statistical model of a 3D CT and 2D projection images.
A microscopic nuclear collective rotation-vibration model: 2D submodel
Gulshani, Parviz
2016-01-01
The previous microscopic collective rotation-vibration model is improved to include interaction between collective oscillations in a pair of spatial directions, and to remove many of the previous-model approximations. As in the previous model, the nuclear Schrodinger equation (instead of the Hamiltonian) is canonically transformed to obtain a Schrodinger equation for collective rotation and vibration of a nucleus coupled to an intrinsic motion, with the related constraints imposed on the wave...
New urban area flood model: a comparison with MIKE11-quasi2d
Sole, A.; Zuccaro, G.
2005-01-01
Recent hydrogeological events have increased both public interest and that of the Scientific Community in a more accurate study of flooding in urban areas. The present project proposes a new model which offers an optimal integration of two models, one for flood wave propagation in riverbeds and the other for flooding in urban areas. We consider it necessary to not only treat the modelling of the outflow in riverbeds and outside riverbeds.together but to integrate them thoroughly. We simulate...
Institute of Scientific and Technical Information of China (English)
吴修广; 沈永明; 郑永红
2004-01-01
A numerical model for shallow water flow has been developed based on the unsteady Reynolds-averaged NavierStokes equations with the hydrodynamic pressure instead of hydrostatic pressure assumption. The equations are transformed into the σ-coordinate system and the eddy viscosity is calculated with the standard k - e turbulence model. The control volume method is used to discrete the equations, and the boundary conditions at the bed for shallow water models only include vertical diffusion terms expressed with wall functions. And the semi-implicit method for pressure linked equation arithmetic is adopted to solve the equations. The model is applied to the 2D vertical plane flow of a curent over two steep-sided trenches for which experiment data are available for comparison and good agreement is obtained. And the model is used to predicting the flow in a channel with a steep-sided submerged breakwater at the bottom, and the streamline is drawn.
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
Growing vegetables commercially requires intensive management and involves high irrigation demands and input of agrochemicals. Plastic mulch application in combination with drip irrigation is a common agricultural management technique practiced due to variety of benefits to the crop, mostly vegetable biomass production. However, the use of these techniques can result in various impacts on water and nutrient distribution in underlying soil and consequently affect nutrient leaching towards groundwater resources. The aim of this work is to estimate the effect of plastic mulch cover in combination with drip irrigation on water and nitrate dynamics in soil using HYDRUS-2D model. The field site was located in Croatian costal karst area on a Gleysol (WRB). The experiment was designed according to the split-plot design in three repetitions and was divided into plots with plastic mulch cover (MULCH) and control plots with bare soil (CONT). Each of these plots received applications of three levels of nitrogen fertilizer: 70, 140, and 210 kg per ha. All plots were equipped with drip irrigation and cropped with bell pepper (Capsicum annuum L. cv. Bianca F1). Lysimeters were installed at 90 cm depth in all plots and were used for monitoring the water and nitrate outflow. HYDRUS-2D was used for modeling the water and nitrogen outflow in the MULCH and CONT plots, implementing the proper boundary conditions. HYDRUS-2D simulated results showed good fitting to the field site observed data in both cumulative water and nitrate outflow, with high level of agreement. Water flow simulations produced model efficiency of 0.84 for CONT and 0.56 for MULCH plots, while nitrate simulations showed model efficiency ranging from 0.67 to 0.83 and from 0.70 to 0.93, respectively. Additional simulations were performed with the absence of the lysimeter, revealing faster transport of nitrates below drip line in the CONT plots, mostly because of the increased surface area subjected to precipitation
2-D Model Test Study of the Breakwater at Porto de Dande , Angola
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Ramirez, Jorge Robert Rodriguez; Burcharth, Hans F.
This report deals with a two-dimensional model test study of the new breakwater at Porto de Dande, Angola. One cross-section was tested for stability and overtopping in various sea conditions. The length scale used for the model tests was 1:32. Unless otherwise specified all values given in this ...
Numerical study of the classical 2D discrete frustrated phi(4) model
Savkin, V.; Rubtsov, A.N.; Janssen, T.
2004-01-01
The two-dimensional discrete frustrated phi(4) model is studied by Monte Carlo simulations for two sets of the parameters of the model. Two phase transitions and a floating-incommensurate phase are observed for the case of stronger frustration. The phase transition from the floating-fluid phase to t
Activated sludge models ASM1, ASM2, ASM2d and ASM3
DEFF Research Database (Denmark)
Henze, Mogens; Gujer, W.; Mino, T.; van Loosdrecht, M.C.M.
sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research.ContentsASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes in...
The critical points of the multimatrix model as the theories of 2-d W-gravity
International Nuclear Information System (INIS)
We further explore the connections between the generalized KdV hierarchy, the multimatrix model and Wn-gravity. We show that the Lax-pair formulation of the generalized KdV hierarchy is nothing but the Hamiltonian equations of W-gravity. Thus we demonstrate that the multicritical points of the multimatrix model are W-gravity theories. 16 refs
Li, Yunfeng; Pizlo, Zygmunt; Steinman, Robert M
2009-05-01
Human beings perceive 3D shapes veridically, but the underlying mechanisms remain unknown. The problem of producing veridical shape percepts is computationally difficult because the 3D shapes have to be recovered from 2D retinal images. This paper describes a new model, based on a regularization approach, that does this very well. It uses a new simplicity principle composed of four shape constraints: viz., symmetry, planarity, maximum compactness and minimum surface. Maximum compactness and minimum surface have never been used before. The model was tested with random symmetrical polyhedra. It recovered their 3D shapes from a single randomly-chosen 2D image. Neither learning, nor depth perception, was required. The effectiveness of the maximum compactness and the minimum surface constraints were measured by how well the aspect ratio of the 3D shapes was recovered. These constraints were effective; they recovered the aspect ratio of the 3D shapes very well. Aspect ratios recovered by the model were compared to aspect ratios adjusted by four human observers. They also adjusted aspect ratios very well. In those rare cases, in which the human observers showed large errors in adjusted aspect ratios, their errors were very similar to the errors made by the model. PMID:18621410
Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model
Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)
1998-01-01
The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum
Interface localization in the 2D Ising model with a driven line
International Nuclear Information System (INIS)
We study the effect of a one-dimensional driving field on the interface between two coexisting phases in a two dimensional model. This is done by considering an Ising model on a cylinder with Glauber dynamics in all sites and additional biased Kawasaki dynamics in the central ring. Based on the exact solution of the two-dimensional Ising model, we are able to compute the phase diagram of the driven model within a special limit of fast drive and slow spin flips in the central ring. The model is found to exhibit two phases where the interface is pinned to the central ring: one in which it fluctuates symmetrically around the central ring and another where it fluctuates asymmetrically. In addition, we find a phase where the interface is centered in the bulk of the system, either below or above the central ring of the cylinder. In the latter case, the symmetry breaking is ‘stronger’ than that found in equilibrium when considering a repulsive potential on the central ring. This equilibrium model is analyzed here by using a restricted solid-on-solid model. (paper)
Application of 2-D sediment model to fluctuating backwater area of Yangtze River
Institute of Scientific and Technical Information of China (English)
Yong FAN
2009-01-01
Based on the characteristics of backflow,a two-dimensional mathematical model of sediment movement was established.The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system.The basic equation of the two-dimensional total sediment load model,the numerical calculation format,and key problems associated with using the orthogonal curvilinear coordinate system were discussed.Water and sediment flow in the Chongqing reach of the Yangtze River were simulated.The calculated water level,flow velocity distribution,amount of silting and scouring,and alluvial distribution are found to be in agreement with the measured data,which indicates that the numerical model and calculation method are reasonable.The model can be used for calculation of flow in a relatively complicated river network.
Application of 2-D sediment model to fluctuating backwater area of Yangtze River
Directory of Open Access Journals (Sweden)
Yong FAN
2009-09-01
Full Text Available Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.
A microscopic nuclear collective rotation-vibration model: 2D submodel
Gulshani, Parviz
2016-01-01
The previous microscopic collective rotation-vibration model is improved to include interaction between collective oscillations in a pair of spatial directions, and to remove many of the previous-model approximations. As in the previous model, the nuclear Schrodinger equation (instead of the Hamiltonian) is canonically transformed to obtain a Schrodinger equation for collective rotation and vibration of a nucleus coupled to an intrinsic motion, with the related constraints imposed on the wavefunction (rather than on the particle co-ordinates). The resulting equation is then effectively linearized into three self-consistent, time-reversal invariant, cranking-type equations using a variational method. The relation of the equations to the phenomenological hydrodynamic collective Bohr-Davydov-Faessler-Greiner model is discussed. To facilitate the solution of the equations and enhance physical insight, we consider in this article the collective oscillations in only two space directions. For harmonic oscillator mea...
A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance
Dash, S.; Mishra, G. P.
2015-09-01
A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.
Large-N limit of the gradient flow in the 2D O(N) nonlinear sigma model
International Nuclear Information System (INIS)
The gradient flow equation in the 2D O(N) nonlinear sigma model with lattice regularization is solved in the leading order of the 1/N expansion. By using this solution, we analytically compute the thermal expectation value of a lattice energy–momentum tensor defined through the gradient flow. The expectation value reproduces thermodynamic quantities obtained by the standard large-N method. This analysis confirms that the above lattice energy–momentum tensor restores the correct normalization automatically in the continuum limit, in a system with a non-perturbative mass gap
Development of a 1D-2D coupled hydrodynamic model for the Øyeren Delta in southern Norway
2011-01-01
In this study a coupled 1D-2D hydrodynamic model, MIKE FLOOD was used to simulate flood inundation extent, water levels and water velocities in the delta region of Lake Øyeren in southern Norway. The objective was to evaluate the improvement gained using a more complex framework. In addition, the credibility of existing flood zone maps made for Lillestrøm by Norges Vassdrag- og Energidirektorat (NVE) in 2005 was assessed. They were based on the assumption that the water levels predicted for F...
The Continuum Phase Diagram of the 2d Non-Commutative lambda phi**4 Model
Mejía-Díaz, Héctor; Bietenholz, Wolfgang; Panero, Marco
2014-01-01
We present a non-perturbative study of the lambda phi**4 model on a non-commutative plane. The lattice regularised form can be mapped onto a Hermitian matrix model, which enables Monte Carlo simulations. Numerical data reveal the phase diagram; at large lambda it contains a "striped phase", which is absent in the commutative case. We explore the question whether or not this phenomenon persists in a Double Scaling Limit (DSL), which extrapolates simultaneously to the continuum and to infinite ...
Efficient parameter estimation in 2D transport models based on an adjoint formalism
International Nuclear Information System (INIS)
An adjoint based optimization procedure is elaborated to estimate transport coefficients for plasma edge models based on a limited set of known profiles at different locations. It is shown that a set of adjoint equations can accurately determine all sensitivities towards transport coefficients at once. A proof of principle is provided on a simple geometry. The methodology is subsequently applied to assess whether a simple edge model can be tuned toward full B2-EIRENE profiles for a JET-configuration. (paper)
Competition among reputations in the 2D Sznajd model: Spontaneous emergence of democratic states
Crokidakis, Nuno; Forgerini, Fabricio L.
2011-01-01
We propose a modification in the Sznajd sociophysics model defined on the square lattice. For this purpose, we consider reputation-a mechanism limiting the agents' persuasive power. The reputation is introduced as a time-dependent score, which can be positive or negative. This mechanism avoids dictatorship (full consensus, all spins parallel) for a wide range of model parameters. We consider two different situations: case 1, in which the agents' reputation increases for each persuaded neighbo...
From 2D to 3D: Using Illumination Cones to Build 3d Face Model
Energy Technology Data Exchange (ETDEWEB)
Xiao, S S; Jin, M [TianJin University, Collage of Precision Instrument and Opto-Ectronics Engineering (China)
2006-10-15
To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose.
From 2D to 3D: Using Illumination Cones to Build 3d Face Model
International Nuclear Information System (INIS)
To solve the problem derivate by lighting condition and position of the camera, a new method using illumination cones to build 3d face model has been proposed. Due to illumination variability, the same object can show dramatic difference even as being viewed in fixed pose. To handle this variability, an object recognition system must employ a representation that is either invariant to, or can model this variability. The proposed technique presents an appearance-based method for modeling the variability due to illumination in the images of objects. The method differs from past appearance-based methods. Evenmore, a small set of training images is used to generate a representation that the illumination cone models the complete set of images of an object with Lambertian reflectance surface under a combination of arbitrary point light sources at infinity. After building up the illumination cones, researches focus on how to present the 3d model of the face. Combining illumination and texture feature to build up 3d model of the face make it easy solving the problem in recognition of face under different pose
New urban area flood model: a comparison with MIKE11-quasi2d
Directory of Open Access Journals (Sweden)
A. Sole
2005-01-01
Full Text Available Recent hydrogeological events have increased both public interest and that of the Scientific Community in a more accurate study of flooding in urban areas. The present project proposes a new model which offers an optimal integration of two models, one for flood wave propagation in riverbeds and the other for flooding in urban areas. We consider it necessary to not only treat the modelling of the outflow in riverbeds and outside riverbeds.together but to integrate them thoroughly. We simulate the propagation in riverbed of the flood event with a model solving the equations of De Saint Venant with the explicit scheme at the finite differences by McCormack. The propagation outside the riverbed is simulated using an algorithm proposed by Braschi et al. (1990. This algorithm is based on a local discretization of the urban territory, divided in a series of "tanks" and "channels". Each tank is associated with an area of an extension related to the position of the other tanks and the quantity of buildings, modelled as insurmountable obstacles. The model facilitates the simultaneous performance of the two simulations: at each instant, the quantitiy of water overflow, depending on the piezometric level in every section, is calculated as a function of the dimensions of the weirs (the banks, assuming it passes through the critical state. Then, it is transferred to the tanks placed in the surroundings of the overflow points. Those points are the starting nodes for the propagation of the flood because they are connected to the network of tanks in which the surrounding land has been schematised. In this paper, we present a comparison of one of the most powerful models of inundation simulation in urban and no-urban areas. The field area is the city of Albenga (SV, Italy and the simulated event is the inundation of the 1994 (return period of about 25 years.
Unsteady separation experiments on 2-D airfoils, 3-D wings, and model helicopter rotors
Lorber, Peter F.; Carta, Franklin O.
1992-01-01
Information on unsteady separation and dynamic stall is being obtained from two experimental programs that have been underway at United Technologies Research Center since 1984. The first program is designed to obtain detailed surface pressure and boundary layer condition information during high amplitude pitching oscillations of a large (17.3 in. chord) model wing in a wind tunnel. The second program involves the construction and testing of a pressure-instrumented model helicopter rotor. This presentation describes some of the results of these experiments, and in particular compares the detailed dynamic stall inception information obtained from the oscillating wing with the unsteady separation and reverse flow results measured on the retreating blade side of the model rotor during wind tunnel testing.
Tian, Junfang; Li, Geng; Treiber, Martin; Zhu, Chenqiang; Jia, Bin
2016-01-01
This paper firstly show that 2 Dimensional Intelligent Driver Model (Jiang et al., PloS one, 9(4), e94351, 2014) is not able to replicate the synchronized traffic flow. Then we propose an improved model by considering the difference between the driving behaviors at high speeds and that at low speeds. Simulations show that the improved model can reproduce the phase transition from synchronized flow to wide moving jams, the spatiotemporal patterns of traffic flow induced by traffic bottleneck, and the evolution concavity of traffic oscillations (i.e. the standard deviation of the velocities of vehicles increases in a concave/linear way along the platoon). Validating results show that the empirical time series of traffic speed obtained from Floating Car Data can be well simulated as well.
The Continuum Phase Diagram of the 2d Non-Commutative lambda phi**4 Model
Mejía-Díaz, Héctor; Panero, Marco
2014-01-01
We present a non-perturbative study of the lambda phi**4 model on a non-commutative plane. The lattice regularised form can be mapped onto a Hermitian matrix model, which enables Monte Carlo simulations. Numerical data reveal the phase diagram; at large lambda it contains a "striped phase", which is absent in the commutative case. We explore the question whether or not this phenomenon persists in a Double Scaling Limit (DSL), which extrapolates simultaneously to the continuum and to infinite volume, at a fixed non-commutativity parameter. To this end, we introduce a dimensional lattice spacing based on the decay of the correlation function. Our results provide evidence for the existence of a striped phase even in the DSL, which implies the spontaneous breaking of translation symmetry. Due to the non-locality of this model, this does not contradict the Mermin-Wagner Theorem.
2D fuzzy anti-de Sitter space from matrix models
International Nuclear Information System (INIS)
We study the fuzzy hyperboloids AdS2 and dS2 as brane solutions in matrix models. The unitary representations of SO(2,1) required for quantum field theory are identified, and explicit formulae for their realization in terms of fuzzy wavefunctions are given. In a second part, we study the (A)dS2 brane geometry and its dynamics, as governed by a suitable matrix model. In particular, we show that trace of the energy-momentum tensor of matter induces transversal perturbations of the brane and of the Ricci scalar. This leads to a linearized form of Henneaux-Teitelboim-type gravity, illustrating the mechanism of emergent gravity in matrix models
Two-loop effective potentials in general N=2, d=3 chiral superfield model
International Nuclear Information System (INIS)
We study local superspace contributions to the low-energy effective action in general chiral three-dimensional superfield model. The effective Kähler and chiral potentials are computed in an explicit form up to the two-loop order. In accordance with the non-renormalization theorem, the ultraviolet divergences appear only in the full superspace while the effective chiral potential receives only finite quantum contributions in the massless case. As an application, the two-loop effective scalar potential is found for the three-dimensional N=2 supersymmetric Wess-Zumino model.
Critical behaviour in the model of 2D-surfaces with boundaries
International Nuclear Information System (INIS)
Critical behaviour in the hermitian matrix model with the external matrix field of special kind is studied. The model possesses SU(Q)xSU(N-Q) symmetry and is exactly solvable. Its free energy can be interpreted in terms of random surfaces with boundaries. Three kinds of critical behaviour are shown to correspond to different ratios of the average area to the average length of all boundaries of the relevant surfaces. Properties of the surfaces with boundaries are discussed. 7 refs.; 1 fig
Nonlinear state-space modeling of human motion using 2-D marker observations.
Vartiainen, Paavo; Bragge, Timo; Arokoski, Jari P; Karjalainen, Pasi A
2014-07-01
A novel method for the estimation of human kinematics, based on state-space modeling, is proposed. The state consists of the positions, orientations, velocities, and accelerations of an articulated model. Estimation is performed using the unscented Kalman filter (UKF) algorithm with a fixed-interval smoother. Impulsive acceleration at floor contact of the foot is estimated by implementing a contact constraint in the UKF evolution model. The constraint inserts an acceleration impulse into the model state. The estimation method was applied to marker-based motion analysis in a motion laboratory. Validation measurements were performed with a rigid test device and with human gait. A triaxial accelerometer was used to evaluate acceleration estimates. Comparison between the proposed method and the extended Kalman smoother showed a clear difference in the quality of estimates during impulsive accelerations. The proposed approach enables estimation of human kinematics during both continuous and transient accelerations. The approach provides a novel way of estimating acceleration at foot initial contact, and thus enables more accurate evaluation of loading from the beginning of the floor contact. PMID:24760898
Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics
International Nuclear Information System (INIS)
In this work, some classical results of the pfaffian theory of the dimer model based on the work of Kasteleyn, Fisher and Temperley are introduced in a fermionic framework. Then we shall detail the bosonic formulation of the model via the so-called height mapping and the nature of boundary conditions is unravelled. The complete and detailed fermionic solution of the dimer model on the square lattice with an arbitrary number of monomers is presented, and finite size effect analysis is performed to study surface and corner effects, leading to the extrapolation of the central charge of the model. The solution allows for exact calculations of monomer and dimer correlation functions in the discrete level and the scaling behavior can be inferred in order to find the set of scaling dimensions and compare to the bosonic theory which predicts particular features concerning corner behaviors. Finally, some combinatorial and numerical properties of partition functions with boundary monomers are discussed, proved and checked with enumeration algorithms
Exact solution of the 2d dimer model: Corner free energy, correlation functions and combinatorics
Energy Technology Data Exchange (ETDEWEB)
Allegra, Nicolas, E-mail: nicolas.allegra@univ-lorraine.fr
2015-05-15
In this work, some classical results of the pfaffian theory of the dimer model based on the work of Kasteleyn, Fisher and Temperley are introduced in a fermionic framework. Then we shall detail the bosonic formulation of the model via the so-called height mapping and the nature of boundary conditions is unravelled. The complete and detailed fermionic solution of the dimer model on the square lattice with an arbitrary number of monomers is presented, and finite size effect analysis is performed to study surface and corner effects, leading to the extrapolation of the central charge of the model. The solution allows for exact calculations of monomer and dimer correlation functions in the discrete level and the scaling behavior can be inferred in order to find the set of scaling dimensions and compare to the bosonic theory which predicts particular features concerning corner behaviors. Finally, some combinatorial and numerical properties of partition functions with boundary monomers are discussed, proved and checked with enumeration algorithms.
Zero-temperature renormalization of the 2D transverse Ising model
International Nuclear Information System (INIS)
A zero-temperature real-space renormalization-group method is applied to the transverse Ising model on planar hexagonal, triangular and quadratic lattices. The critical fields and the critical exponents describing low-field large-field transition are calculated. (author)
Softening of Phase Transition in 2D Potts Model Under Quenched Bond Randomness
Yaşar, Fatih; Gündüç, Yiğit; Çelik, Tarık
1997-01-01
We have simulated, by using cluster algorithm, the $q=8$ state Potts model in two-dimension with varying amount of quenched bond randomness. We have shown that there exist a finite size dependent threshold value of the introduced quenched bond randomness for rounding the first-order phase transition and this threshold value becomes smaller as the system size increased.
Comparison of 2D and 3D Models of Zinc Feeder
Czech Academy of Sciences Publication Activity Database
Mach, M.; Musil, Ladislav
Praha: ČVUT FEL, 2004, s. 1-4. ISBN 80-239-3565-8. [Konference ELEN 2004 (Elektro - Energetika). Praha (CZ), 21.09.2004-22.09.2004] R&D Projects: GA ČR GA102/03/0047 Keywords : zinc feeder * induction heating * computer modelling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Large N transition in the 2D SU(N)xSU(N) nonlinear sigma model
Narayanan, Rajamani; Neuberger, Herbert; Vicari, Ettore
2008-01-01
We consider the characteristic polynomial associated with the smoothed two point function in two dimensional large N principal chiral model. We numerically show that it undergoes a transition at a critical distance of the order of the correlation length. The transition is in the same universality class as two dimensional large N QCD.
Adaptive Fault-Tolerant Routing in 2D Mesh with Cracky Rectangular Model
Directory of Open Access Journals (Sweden)
Yi Yang
2014-01-01
Full Text Available This paper mainly focuses on routing in two-dimensional mesh networks. We propose a novel faulty block model, which is cracky rectangular block, for fault-tolerant adaptive routing. All the faulty nodes and faulty links are surrounded in this type of block, which is a convex structure, in order to avoid routing livelock. Additionally, the model constructs the interior spanning forest for each block in order to keep in touch with the nodes inside of each block. The procedure for block construction is dynamically and totally distributed. The construction algorithm is simple and ease of implementation. And this is a fully adaptive block which will dynamically adjust its scale in accordance with the situation of networks, either the fault emergence or the fault recovery, without shutdown of the system. Based on this model, we also develop a distributed fault-tolerant routing algorithm. Then we give the formal proof for this algorithm to guarantee that messages will always reach their destinations if and only if the destination nodes keep connecting with these mesh networks. So the new model and routing algorithm maximize the availability of the nodes in networks. This is a noticeable overall improvement of fault tolerability of the system.
Complex renormalization group flows for 2D nonlinear O(N) sigma models
International Nuclear Information System (INIS)
Motivated by recent attempts to find nontrivial infrared fixed points in 4-dimensional lattice gauge theories, we discuss the extension of the renormalization group transformations to complex coupling spaces for O(N) models on LxL lattices, in the large-N limit. We explain the Riemann sheet structure and singular points of the finite L mappings between the mass gap and the 't Hooft coupling. We argue that the Fisher's zeros appear on ''strings'' ending approximately near these singular points. We show that for the spherical model at finite N and L, the density of states is stripwise polynomial in the complex energy plane. We compare finite volume complex flows obtained from the rescaling of the ultraviolet cutoff in the gap equation and from the two-lattice matching. In both cases, the flows are channelled through the singular points and end at the strong coupling fixed points, however strong scheme dependence appear when the Compton wavelength of the mass gap is larger than the linear size of the system. We argue that the Fisher's zeros control the global properties of the complex flows. We briefly discuss the implications for perturbation theory, proofs of confinement, and searches for nontrivial infrared fixed points in models beyond the standard model.
Global existence for a model of inhomogeneous incompressible elastodynamics in 2D
Yin, Silu
2016-05-01
In this paper, we investigate a model of incompressible, isotropic, inhomogeneous elastodynamics in two space dimensions, inspired by Lei in [18]. We prove the global existence for this Cauchy problem with sufficiently small initial displacement and small density disturbance around constant.
Structure of a model salt bridge in solution investigated with 2D-IR spectroscopy
A. Huerta-Viga; S.R. Domingos; S. Amirjalayer; S. Woutersen
2013-01-01
Salt bridges are known to be important for the stability of protein conformation, but up to now it has been difficult to study their geometry in soln. Here we characterize the spatial structure of a model salt bridge between guanidinium (Gdm+) and acetate (Ac-) using two-dimensional vibrational (2
Application of a 2D Hydrodynamic Model for Assessing Flood Risk from Extreme Storm Events
Directory of Open Access Journals (Sweden)
Sohan Ghimire
2013-11-01
Full Text Available In the wake of increasing flood disasters, there is an increasing use of flood inundation models to assess risks and impacts at different temporal and spatial scales. Assessing the impacts of extreme climatic rainfall events will require developing design rainfall profiles to represent rainfall under different conditions. Rainfall profiles of different return periods were developed using the Flood Estimation Handbook (FEH methodology for a small rural catchment of Scotland, to assess flood risks at a catchment scale. Rainfall induced runoff flows were estimated based on a set of catchment characteristics. The channel and floodplain flows were modelled using a two-dimensional hydrodynamic model-TUFLOW. The main channel was represented by a one-dimensional linear channel based on surveyed data and the floodplain topography, was represented by a digital terrain model based on Light Detection and Ranging (LiDAR. A range of hydrological events with different return periods are simulated. Results show that many residential houses and an extensive area of agricultural land are at risk of flooding from extreme events such as a 1 in 100 year flood.
Edge gradients evaluation for 2D hybrid finite volume method model
In this study, a two-dimensional depth-integrated hydrodynamic model was developed using FVM on a hybrid unstructured collocated mesh system. To alleviate the negative effects of mesh irregularity and non-uniformity, a conservative evaluation method for edge gradients based on the second-order Tayl...
New 2D Thermal Model Applied to an LHC Inner Triplet Quadrupole Magnet
Bielert, ER; Ten Kate, HHJ; Verweij, AP
2011-01-01
A newly developed numerical model is presented that enables to compute two-dimensional heat transfer and temperature distributions over the cross-section of superconducting accelerator magnets. The entire thermal path from strand-in-cable to heat sink, including helium channels is considered. Superfluid helium properties are combined with temperature- and field-dependent non-linear solid material properties. Interfacial interactions are also taken into account. The model is applied to the cross-section of an inner triplet quadrupole magnet featuring a new concept for the ground insulation. Beam loss profiles are implemented as main heat source. It is concluded that operational margins can be considerably increased by opening additional thermal paths, improving the cooling conditions.
Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model
Farrokhpanah, Amirsaman; Mostaghimi, Javad
2016-01-01
Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. Simulations show that a close match to the chosen contact angle values can be achieved for both stationary and moving contact lines. This technique has proven to reduce the amount of nonphysical shear stresses near the triple point and to enhance the convergence characteristics of the solver.
Hemodynamic simulation of the heart using a 2D model and MR data
DEFF Research Database (Denmark)
Adeler, Pernille Thorup
2002-01-01
Computational models of the blood flow in the heart are a useful tool for studying the functioning of the heart. The purpose of this thesis is to achieve a better understanding of hemodynamics of the normal and diseased hearts through the use of a computational model and magnetic resonance (MR...... the mitral ring and across the aortic outflow tract. The comparison between elocity fields shows a reasonably fair agreement in the general flow pattern: a wide inflow jet, the formation of an anterior vortex during filling, and an outflow jet through the outflow tract. There are some disagreements in...... the detailed flow pattern, in particular with regard to the vortex patterns. The velocity time curves from the simulation show good agreement with MR data. The timing in the simulation is practically the same as in the MR data, while there are some differences between the shapes and maximum values of...
Hue, V; Cavalié, T; Dobrijevic, M; Hersant, F
2015-01-01
Saturn's axial tilt produces seasons in a similar way as on Earth. Both the stratospheric temperature and composition are affected by this latitudinally varying insolation along the seasons. The thermal structure is controlled and regulated by the amount of hydrocarbons in the stratosphere, which act as absorbers and coolants from the UV to the far-IR spectral range, and this structure influences the amount of hydrocarbons. We study here the feedback between the chemical composition and the thermal structure by coupling a latitudinal and seasonal photochemical model with a radiative seasonal model. Our results show that the seasonal temperature peak in the higher stratosphere, associated with the seasonal increase of insolation, is shifted earlier than the maximum insolation peak. This shift is increased with increasing latitudes and is caused by the low amount of stratospheric coolants in the spring season. At 80$^{\\circ}$ in both hemispheres, the temperature peak at 1d-2mbar is seen to occur half a season e...
A 2D Time Domain DRBEM Computer Model for MagnetoThermoelastic Coupled Wave Propagation Problems
Directory of Open Access Journals (Sweden)
Mohamed Abdelsabour Fahmy
2014-07-01
Full Text Available A numerical computer model based on the dual reciprocity boundary element method (DRBEM is extended to study magneto-thermoelastic coupled wave propagation problems with relaxation times involving anisotropic functionally graded solids. The model formulation is tested through its application to the problem of a solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis with a constant angular velocity. In the case of two-dimensional deformation, an implicit-explicit time domain DRBEM was presented and implemented to obtain the solution for the displacement and temperature fields. A comparison of the results is presented graphically in the context of Lord and Shulman (LS and Green and Lindsay (GL theories. Numerical results that demonstrate the validity of the proposed method are also presented graphically.
Hassan, Ehab; Morrison, P J; Horton, W
2016-01-01
Progress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. A deeper understanding of the linear and nonlinear evolution and the coupling of the gradient-drift and Farley-Buneman instabilities is achieved by studying the e?ect of di?erent combinations of the density-gradient scale-lengths (Ln) and cross-?eld (E?B) drifts on the plasma turbulence. Mechanisms and channels of energy transfer are illucidated for these multiscale instabilities. Energy for the uni?ed model is examined, including the injected, conservative redistribution (between ?elds and scales), and ultimate dissipation. Various physical mechanisms involved in the energetics are categorized as sources, sinks, nonlinear transfer, and coupling to show that the system satisfies the fundamental law of energy Oonservation. The physics of the nonlinear transfer terms is studied to identify their roles in producing energy cascades { the transference of energy from the domin...
Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model
Maier, T. A.; Jarrell, M.; Schulthess, T.C.; Kent, P. R. C.; White, J. B.
2005-01-01
The cluster size dependence of superconductivity in the conventional two-dimensional Hubbard model, commonly believed to describe high-temperature superconductors, is systematically studied using the Dynamical Cluster Approximation and Quantum Monte Carlo simulations as cluster solver. Due to the non-locality of the d-wave superconducting order parameter, the results on small clusters show large size and geometry effects. In large enough clusters, the results are independent of the cluster si...
Dynamic Linkages Between the Transition Zone & Surface Plate Motion in 2D Models of Subduction
Arredondo, K.; Billen, M. I.
2014-12-01
Subduction zones exhibit a wide range of behavior, from slab stagnation at 660 km to direct penetration into the lower mantle. Due to uncertainties in the tectonic history of individual subduction zones, such as trench velocities, potential mechanisms for controlling slab behavior in the transition zone are explored using numerical models. Numerical simulations have utilized a range of assumptions to improve computational efficiency, such as ignoring latent heat, ignoring compositional effects or fixing the trench location: the net effect of these assumptions resulting modeled dynamics remains unclear. Additionally the eight major, composition-dependent, phase transitions for pyrolite, harzburgite and eclogite may be an important influence on subducting slab dynamics due to the additional forces that are dependent on depth and compositional layering within the slab (e.g., Ricard et al., 2005). With the goal of developing more complete, self-consistent, and less idealized simulations, we test the importance of various factors on slab behavior: the presence of shear, adiabatic and latent heating, compositional layering, composition-dependent phase transitions and explicit plate speeds versus dynamically evolving plate and trench velocities. Preliminary results indicate that individual components have a relatively minor effect, but produce large changes when combined together. The extent of slab folding and stagnation is overestimated by only modeling the 410 and 660 km phase transitions. Dynamic models with all seven composition-dependent phase transitions are very sensitive to the plate strength and weak zone viscosity, causing large changes in plate speed and slab detachment. Changes to the overriding plate buoyance and strength investigate the origin and influence of trench movement on slab deformation. These feedbacks and parameter-sensitive behavior indicate that the wide range of observed slab behavior may result from subtle differences in plate and plate
Flood and erosion hazard maps based on 2D hydraulic model
Lovšin, Gregor
2014-01-01
In 2007, the European Union adopted the Flood Directive with the aim of better regulation in case of flood. The European Union member states are required to create flood hazard maps and flood risk maps. To achieve these objectives, Rules on Methodology to Define Flood Risk Areas and Erosion Areas Connected to Floods and Classification of Plots into Risk Classes were adopted in Slovenia. The two-dimensional hydraulic models, which are increasingly in use, represent an irreplaceable tool in pre...
Impact of a hydrogen economy on the stratosphere and troposphere studied in a 2-D model
Warwick, N. J.; Bekki, S.; Nisbet, Euan; Pyle, J.A.
2004-01-01
A switch from a fossil fuel to a hydrogen-based energy system could cause significant changes in the magnitude and composition of anthropogenic emissions. Model simulations suggest the most significant impact of these emission changes would occur in the troposphere, affecting OH. This impact is dependent upon the magnitude and nature of trade-offs in changing fossil fuel use. In the stratosphere, changes in water vapour resulting from expected increases in surface molecular hydrogen emissio...
A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites
Directory of Open Access Journals (Sweden)
Lucas eBrely
2015-07-01
Full Text Available In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.
Hue, V.; Greathouse, T. K.; Cavalié, T.; Dobrijevic, M.; Hersant, F.
2016-03-01
Saturn's axial tilt of 26.7° produces seasons in a similar way as on Earth. Both the stratospheric temperature and composition are affected by this latitudinally varying insolation along Saturn's orbital path. The atmospheric thermal structure is controlled and regulated by the amount of hydrocarbons in the stratosphere, which act as absorbers and coolants from the UV to the far-IR spectral range, and this structure has an influence on the amount of hydrocarbons. We study here the feedback between the chemical composition and the thermal structure by coupling a latitudinal and seasonal photochemical model with a radiative seasonal model. Our results show that the seasonal temperature peak in the higher stratosphere, associated with the seasonal increase of insolation, is shifted earlier than the maximum insolation peak. This shift is increased with increasing latitudes and is caused by the low amount of stratospheric coolants in the spring season. At 80° in both hemispheres, the temperature peak at 10-2 mbar is seen to occur half a season (3-4 Earth years) earlier than was previously predicted by radiative seasonal models that assumed spatially and temporally uniform distribution of coolants. This shift progressively decreases with increasing pressure, up to around the 0.5 mbar pressure level where it vanishes. On the opposite, the thermal field has a small feedback on the abundance distributions. Accounting for that feedback modifies the predicted equator-to-pole temperature gradient. The meridional gradients of temperature at the mbar pressure levels are better reproduced when this feedback is accounted for. At lower pressure levels, Saturn's stratospheric thermal structure seems to depart from pure radiative seasonal equilibrium as previously suggested by Guerlet et al. (2014). Although the agreement with the absolute value of the stratospheric temperature observed by Cassini is moderate, it is a mandatory step toward a fully coupled GCM-photochemical model.
Cooperative Research on 2-D Soil-Structure Interaction Model with P-SV Plane Wave
Gicev, Vlado
2008-01-01
The main goal of the proposed research was to study the phenomena accompanying the soil-foundation-structure interaction and based on this study to propose improvements of the existing codes for blasting and building structures resistant to strong ground motion (earthquakes, underground explosions, and blasting). We proposed the research conducted with computer simulations on numerical models of wave propagation in three media (soil, foundation, and structure). We also proposed that at the en...
A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites
Brely, Lucas; Bosia, Federico; Pugno, Nicola
2015-07-01
In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.
Comparison Between 2D Turbulence Model ESEL and Experimental Data from AUG and Compass Tokamaks
Czech Academy of Sciences Publication Activity Database
Ondáč, Peter; Horáček, Jan; Seidl, Jakub; Vondráček, Petr; Müller, H.W.; Adámek, Jiří; Nielsen, A.H.
2015-01-01
Roč. 55, č. 2 (2015), s. 128-135. ISSN 1210-2709 R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : turbulence * tokamak * computer model * probe measurements Subject RIV: BL - Plasma and Gas Discharge Physics https ://ojs.cvut.cz/ojs/index.php/ap/article/viewFile/2257/2816
A Finite-Volume Version of Aizenman-Higuchi Theorem for the 2d Ising Model
Coquille, Loren; Velenik, Yvan Alain
2010-01-01
In the late 1970s, in two celebrated papers, Aizenman and Higuchi independently established that all infinite-volume Gibbs measures of the two-dimensional ferromagnetic nearest-neighbor Ising model are convex combinations of the two pure phases. We present here a new approach to this result, with a number of advantages: (i) We obtain an optimal finite-volume, quantitative analogue (implying the classical claim); (ii) the scheme of our proof seems more natural and provides a better picture of ...
Modeling the 2-D seismic velocity structure across the Kenya rift
Braile, L. W.; Wang, B.; Daudt, C. R.; Keller, G. R.; Patel, J. P.
1994-09-01
A 460-km-long seismic refraction/wide-angle reflection profile across the East African rift in Kenya has been interpreted using a travel-time inversion method to calculate a two-dimensional crustal and uppermost mantle seismic velocity model. The derived model is consistent with the crustal structure determined by independent interpretation of axial (along the rift) and flank (near the eastern end of the cross profile) data sets. The velocity model indicates that the Kenya rift at this location (near the Equator) is a relatively narrow (about 100 km wide) feature from surface expression (fault-bounded basins) to upper-mantle depths. A 5-km-deep, sediment- and volcanic-filled basin is present beneath the rift valley. Seismic velocities in the underlying crust are slightly higher directly beneath the rift valley than in the adjacent terranes. Additionally, the crust thins by about 8 km (to a thickness of about 30 km) in a 100-km-wide zone beneath the rift valley and anomalously low upper-mantle seismic velocity (Pn ≈ 7.6 km/s) is present only beneath the thinned crust and extends to depths of greater than 120 km.
Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects
Energy Technology Data Exchange (ETDEWEB)
Shan, Yuyao; Choe, Song-Yul [Department of Mechanical Engineering, Auburn University, Auburn (United States); Choi, Seo-Ho [Fuel Cell Vehicle Team, Hyundai Motor Company and Kia Motors Corporation (United States)
2007-02-25
Models currently used for analyses of thermal and water behavior of a PEM fuel cell are based 3D computational fluid dynamics (CFD). However, the analyses are limited to a single cell with static behavior. Thus, these models cannot be used for analyses of dynamic behavior of a stack that continuously varies according to operating conditions. The model proposed describes dynamic behavior of a stack with two adjoining cells and endplate assembly, and work as a current controlled voltage source that can be used for optimization of BOPs and the associated controls. Simulations have been conducted to analyze start-up behaviors and the performance of the stack. Our analyses deliver following results: (1) dynamic temperature distribution in both the through-plane direction and the along channel direction of the fuel cell stack, (2) effects influencing the source terms of current density, and (3) dynamic oxygen concentration distribution. The temperature profile and its variation propensity are comparable to the previous results [Y. Shan, S.Y. Choe, J. Power Sources, 145 (1) (2005) 30-39; Y. Shan, S.Y. Choe, J. Power Sources, in press]. (author)
A STUDY FOR THE MATHEMATIC MODELING OF 2D IRREGULAR SHAPES FOR FOOTWEAR CAD SYSTEM
Directory of Open Access Journals (Sweden)
DRIŞCU Mariana
2015-05-01
Full Text Available For using a specialized footwear CAD system it's imperative to know the analytical expression of the outlines of the footwear patterns. This brings us to the field of mathematical modeling. Mathematic modeling is based on the equation of the function defining the outline of the model contour. Shapes, contours cannot be identified, in designing, by simple function of the form y=f(x, because most of them have irregular forms, with many concavities and convexities, which explains why their form is intrinsically dependent on the coordinates system. For example, if we want to plot a curve, it is absolutely necessary that we choose the right set of contour points in a system of coordinates, but the important factor in determining the form of the object is the relation between these points, not that between the points and the randomly chosen coordinates system. Further more, the contour forms may have vertical tangents. If the shape were represented by a function y=f(x, the vertical tangents would be an inconvenient in designing, which might be avoided by an approximation of analytic function (e.g. of polynomials For all these reasons, the dominant representation of shapes in CAD is not possible a function y=f(x but a set of function which can be obtained on various portions. This paper presents a study regarding the interpolation of the footwear components and outlines contours and the graphic visualization, using the following methods: Lagrange, B-Spline, Bezier.
Quark-Antiquark and Diquark Condensates in Vacuum in a 2D Two-Flavor Gross-Neveu Model
Institute of Scientific and Technical Information of China (English)
ZHOU Bang-Rong
2007-01-01
The analysis based on the renormalized effective potential indicates that, similar to in the 4D two-flavor Nambu-Jona-Lasinio (NJL) model, in a 2D two-flavor Gross-Neveu model, the interplay between the quark-antiquark and the diquark condensates in vacuum also depends on Gs/Hs, the ratio of the coupling constants in scalar quark antiquark and scalar diquark channel. Only the pure quark-antiquark condensates exist if Gs/Hs ＞ 2/3, which is just the ratio of the color numbers of the quarks participating in the diquark and quark-antiquark condensates. The two condensates will coexist if 0 ＜ Gs/Hs ＜ 2/3. However, different from the 4D NJL model, the pure diquark condensates arise only at Gs/Hs = 0 and are not in a possibly finite region of Gs/Hs below 2/3.
Finite-Element 2D and 3D PIC Modeling of RF Devices with Applications to Multipacting
De Ford, John F; Petillo, John
2005-01-01
Multipacting currently limits the performance of many high power radio-frequency (RF) devices, particularly couplers and windows. Models have helped researchers understand and mitigate this problem in 2D structures, but useful multipacting models for complicated 3D structures are still a challenge. A combination of three recent technologies that have been developed in the Analyst and MICHELLE codes begin to address this challenge: high-order adaptive finite-element RF field calculations, advanced particle tracking on unstructured grids, and comprehensive secondary emission models. Analyst employs high-order adaptive finite-element methods to accurately compute driven RF fields and eigenmodes in complex geometries, particularly near edges, corners, and curved surfaces. To perform a multipacting analysis, we use the mesh and fields from Analyst in a modified version of the self-consistent, finite-element gun code MICHELLE. MICHELLE has both a fast, accurate, and reliable particle tracker for unstructured grids ...
Directory of Open Access Journals (Sweden)
Somboon PORNPINATEPONG
2006-01-01
Full Text Available A 2-D vertically averaged boundary-fitted coordinate hydrodynamic model was employed to simulate circulation in Thale Sap Songkhla due to tides in the Gulf of Thailand. The model was calibrated against a set of current velocity data collected between June and July 1997. The best fit for observations at Ko Yo and Pak Ro was achieved. To comprehend the hydrodynamic in the lake, the current vectors were illustrated for both the flood and ebb stages. Detailed analysis indicated that there existed a turning current at the northern tip of Ko Yo Island, which induced a significant current along its northern shoreline. The calculations show the current was stronger in the deep channel north of Ko Yo than in the southern circuit. The model also predicted a gyre near the deep channel of the lake entrance, which persisted for some time during the changing direction of the flood and ebb currents.
1D and 2D Numerical Modeling for Solving Dam-Break Flow Problems Using Finite Volume Method
Directory of Open Access Journals (Sweden)
Szu-Hsien Peng
2012-01-01
Full Text Available The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.
International Nuclear Information System (INIS)
Developmental neurotoxicity is a major issue in human health and may have lasting neurological implications. In this preliminary study we exposed differentiating Ntera2/clone D1 (NT2/D1) cell neurospheres to known human teratogens classed as non-embryotoxic (acrylamide), weakly embryotoxic (lithium, valproic acid) and strongly embryotoxic (hydroxyurea) as listed by European Centre for the Validation of Alternative Methods (ECVAM) and examined endpoints of cell viability and neuronal protein marker expression specific to the central nervous system, to identify developmental neurotoxins. Following induction of neuronal differentiation, valproic acid had the most significant effect on neurogenesis, in terms of reduced viability and decreased neuronal markers. Lithium had least effect on viability and did not significantly alter the expression of neuronal markers. Hydroxyurea significantly reduced cell viability but did not affect neuronal protein marker expression. Acrylamide reduced neurosphere viability but did not affect neuronal protein marker expression. Overall, this NT2/D1-based neurosphere model of neurogenesis, may provide the basis for a model of developmental neurotoxicity in vitro
Elangovan, Premkumar; Warren, Lucy M; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R; Young, Kenneth C; Bosmans, Hilde; Strudley, Celia J; Wells, Kevin
2014-08-01
Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials. PMID:25029333
International Nuclear Information System (INIS)
Based on a 2D version of the Smoluchowski-type model, formulated in a phase space of the linear objects' sizes R-s in terms of the mesoscopic nonequilibrium thermodynamics (MNET) as a guiding formalism/mechanism, we are looking in a comparative way for its basic trends and characteristics in a suitably designed Monte Carlo (MC) computer experiment on model biopolymer aggregation. The preliminary small-scale simulation results indicate that the examined hydrophobic-polar HP (dis)ordered aggregations bear two-type signatures of the underlying (complex) Smoluchowski dynamics. The first one is associated with a phase-separative tendency, showing up, in suitable conditions, lamellar ordering within the cluster, intermingled randomly with an amorphous phase. This is the case called by us the cylindrolite formation. The second-type signature, in turn, seems to point out some more disordered-from-within overall HP aggregations, presumably resulting in establishing a large HP mega-cluster, tending to span all over the available 2D simulation space. The quantitative characteristics derived so far show up at best an approximative tendency towards interpolating between this two types of aggregation/phase-separation signatures. A certain hope for better adjusting theory to computer simulation may come from realizing a non-Markovian character of the process which, for example, enables one to manipulate with the time scale in a case-sensitive, presumably excluded-area involving manner. (author)
International Nuclear Information System (INIS)
Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials. (paper)
Lectures on 2D gravity and 2D string theory
International Nuclear Information System (INIS)
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
Absence of the d-Density Wave State in 2D Hubbard Model
Macridin, Alexandru; Jarrell, Mark; Maier, Thomas
2004-01-01
Using the Dynamical Cluster Approximation (DCA) we calculate the alternating circulating-current susceptibility and investigate the transition to the d-density wave (DDW) order in the two-dimensional Hubbard model. The 2 x 2 cluster used in the DCA calculation is the smallest that can capture d-wave order; therefore, due to the mean-field character of our calculation, we expect to overestimate d-wave transition temperatures. Despite this, we found no transition to the DDW state. In the pseudo...
Hassan, Ehab; Hatch, D. R.; Morrison, P. J.; Horton, W.
2016-01-01
Progress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. A deeper understanding of the linear and nonlinear evolution and the coupling of the gradient-drift and Farley-Buneman instabilities is achieved by studying the e?ect of di?erent combinations of the density-gradient scale-lengths (Ln) and cross-?eld (E?B) drifts on the plasma turbulence. Mechanisms and channels of energy transfer are illucidated for thes...
Uncovering the secrets of the 2d random-bond Blume-Capel model
Malakis, A.; Berker, A. Nihat; Hadjiagapiou, I. A.; Fytas, N. G.; Papakonstantinou, T.
2009-01-01
The effects of bond randomness on the ground-state structure, phase diagram and critical behavior of the square lattice ferromagnetic Blume-Capel (BC) model are discussed. The calculation of ground states at strong disorder and large values of the crystal field is carried out by mapping the system onto a network and we search for a minimum cut by a maximum flow method. In finite temperatures the system is studied by an efficient two-stage Wang-Landau (WL) method for several values of the crys...
Plaquette expansion of the 2D anti-ferromagnetic Heisenberg model
International Nuclear Information System (INIS)
The plaquette expansion of the Lanczos recursion method is applied to the two dimensional anti-ferromagnetic Heisenberg model. Connected Hamiltonian moments are calculated with respect to the Neel state up to n = 6. The subsequent plaquette expansion of the Lanczos matrix in the number of plaquettes on the lattice, Np, is determined to order 1/Np. Diagonalizing the Lanczos matrix in this form gives an upper bound on the energy density of -0.664 in the limit Np → ∞, in good agreement with existing calculations. 4 refs., 1 tab., 2 figs
2-D spectroscopy and modeling of the biconical ionized gas in NGC 4388
Ciroi, S.; Contini, M.; Rafanelli, P.; Richter, G. M.
2003-01-01
We present recent results from spectroscopic data and modeling of the biconical ionized gas in the Seyfert-2 galaxy NGC 4388. A field of ~2.6 x 2.4 kpc centered on the nucleus has been observed by means of the modern technique of integral field spectroscopy. The analysis of more than two hundred spectra allowed to study the physical characteristics of the gas in the surroundings of the active nucleus. The South-West ionization cone, revealed by the [O III]5007/H-beta excitation map, shows hig...
An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion
Gou, J.; Ward, M. J.
2016-04-01
A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell
An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion
Gou, J.; Ward, M. J.
2016-08-01
A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell
DEFF Research Database (Denmark)
Zwisler, Stine T; Enggaard, Thomas P; Noehr-Jensen, Lene;
2009-01-01
Oxycodone is O-demethylated by CYP2D6 to oxymorphone which is a potent micro-receptor agonist. The CYP2D6 oxidation polymorphism divides the Caucasian population in two phenotypes: approximately 8% with no enzyme activity, poor metabolizers (PM) and the remainder with preserved CYP2D6 activity...
Competition among reputations in the 2D Sznajd model: Spontaneous emergence of democratic states
Crokidakis, Nuno
2011-01-01
We propose a modification in the Sznajd sociophysics model defined on the square lattice. For this purpose, we consider reputation-a mechanism limiting the agents' persuasive power. The reputation is introduced as a time-dependent score, which can be positive or negative. This mechanism avoids dictatorship (full consensus, all spins parallel) for a wide range of model parameters. We consider two different situations: case 1, in which the agents' reputation increases for each persuaded neighbor, and case 2, in which the agents' reputation increases for each persuasion and decreases when a neighbor keeps his opinion. Our results show that the introduction of reputation avoids full consensus even for initial densities of up spins greater than 1/2. The relaxation times follow a log-normal-like distribution in both cases, but they are larger in case 2 due to the competition among reputations. In addition, we show that the usual phase transition occurs and depends on the initial concentration $d$ of individuals wit...
Comparative 2D BRT and seismic modeling of CO2 plumes in deep saline reservoirs
Hagrey, Said Attia Al; Strahser, Matthias; Rabbel, Wolfgang
2010-05-01
The multi-disciplinary research project 'CO2 MoPa' (modeling and parameterization of CO2 storage in deep saline formations for dimensions and risk analysis) deals, among others, with the parameterization of virtual subsurface storage sites to characterize rock properties with modeling of processes related to CCS in deep saline reservoirs. The geophysical task is to estimate the sensitivity and the resolution of reflection seismic and geoelectrical time-lapses in order to determine the propagation of CO2 within the sediments and the development of the CO2 reservoir. Compared with seismic, borehole electric resistivity tomography (BRT) has lower resolution, but its permanent installation and continuous monitoring can make it an economical alternative or complement. Seismic and geoelectric applications to quantify changes of intrinsic aquifer properties with time are justified by the lower density and velocity and the higher electric resistivity of CO2 in comparison to pore brine. We present here modeling results on scenarios with realistic parameters of deep saline formations of the German Basin (candidate for CCS). The study focuses on effects of parameters related to depth (temperature, pressure), petrophysics (salinity, porosity), plume dimensions/saturations and data acquisition, processing and inversions. Both methods show stronger effects with increasing brine salinity, CO2 reservoir thickness, porosity and CO2 saturation in the pores. Both methods have a pronounced depth dependence due to the pressure and temperature dependence of the velocities, densities and resistivities of the host rock, brine and CO2. Increasing depth means also decreasing frequencies of the seismic signal and hence weaker resolution. Because of the expected limited thickness of the CO2 reservoir, the reflections from its top and bottom will most likely interfere with each other, making it difficult to determine the exact dimensions of the reservoir. In BRT, the resulting resistivity
Form factor expansions in the 2D Ising model and Painleve VI
International Nuclear Information System (INIS)
We derive a Toda-type recurrence relation, in both high- and low-temperature regimes, for the λ-extended diagonal correlation functions C(N,N;λ) of the two-dimensional Ising model, using an earlier connection between diagonal form factor expansions and tau-functions within Painleve VI (PVI) theory, originally discovered by Jimbo and Miwa. This greatly simplifies the calculation of the diagonal correlation functions, particularly their λ-extended counterparts. We also conjecture a closed form expression for the simplest off-diagonal case C±(0,1;λ) where a connection to PVI theory is not known. Combined with the results for diagonal correlations these give all the initial conditions required for the λ-extended version of quadratic difference equations for the correlation functions discovered by McCoy, Perk and Wu. The results obtained here should provide a further potential algorithmic improvement in the λ-extended case, and facilitate other developments.
Form factor expansions in the 2D Ising model and Painleve VI
Energy Technology Data Exchange (ETDEWEB)
Mangazeev, Vladimir V., E-mail: Vladimir.Mangazeev@anu.edu.a [Department of Theoretical Physics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Guttmann, Anthony J., E-mail: tonyg@ms.unimelb.edu.a [ARC Centre of Excellence for Mathematics and Statistics of Complex Systems, Department of Mathematics and Statistics, The University of Melbourne, Victoria 3010 (Australia)
2010-10-21
We derive a Toda-type recurrence relation, in both high- and low-temperature regimes, for the {lambda}-extended diagonal correlation functions C(N,N;{lambda}) of the two-dimensional Ising model, using an earlier connection between diagonal form factor expansions and tau-functions within Painleve VI (PVI) theory, originally discovered by Jimbo and Miwa. This greatly simplifies the calculation of the diagonal correlation functions, particularly their {lambda}-extended counterparts. We also conjecture a closed form expression for the simplest off-diagonal case C{sup {+-}}(0,1;{lambda}) where a connection to PVI theory is not known. Combined with the results for diagonal correlations these give all the initial conditions required for the {lambda}-extended version of quadratic difference equations for the correlation functions discovered by McCoy, Perk and Wu. The results obtained here should provide a further potential algorithmic improvement in the {lambda}-extended case, and facilitate other developments.
Form factor expansions in the 2D Ising model and Painlevé VI
Mangazeev, Vladimir V.; Guttmann, Anthony J.
2010-10-01
We derive a Toda-type recurrence relation, in both high- and low-temperature regimes, for the λ-extended diagonal correlation functions C(N,N;λ) of the two-dimensional Ising model, using an earlier connection between diagonal form factor expansions and tau-functions within Painlevé VI (PVI) theory, originally discovered by Jimbo and Miwa. This greatly simplifies the calculation of the diagonal correlation functions, particularly their λ-extended counterparts. We also conjecture a closed form expression for the simplest off-diagonal case C(0,1;λ) where a connection to PVI theory is not known. Combined with the results for diagonal correlations these give all the initial conditions required for the λ-extended version of quadratic difference equations for the correlation functions discovered by McCoy, Perk and Wu. The results obtained here should provide a further potential algorithmic improvement in the λ-extended case, and facilitate other developments.
Verification of the 2D Tokamak edge modelling codes for conditions of detached divertor plasma
International Nuclear Information System (INIS)
The paper discusses verification of the ITER edge modelling code SOLPS 4.3 (B2-EIRENE). Results of the benchmark against SOLPS 5.0 are shown for standard JET test cases. Special two-point formulas are employed in SOLPS 4.3 to analyze the results of numerical simulations. The applied relations are exact in frame of the equations solved by the B2 code. This enables simultaneous check of the parallel momentum and energy balances and boundary conditions. Transition to divertor detachment is analyzed quantitatively as it appears in the simulations in terms of the coupled momentum and energy balance (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
A mathematical model for a didactic device able to simulate a 2D Newtonian gravitational field
International Nuclear Information System (INIS)
In this paper we propose a mathematical model to describe a theoretical device able to simulate an inverse-square force on a test mass moving on a horizontal plane. We use two pulleys, a counterweight, a wire and a smooth rail, in addition to the test mass. The tension of the wire (i.e. the attractive force on the test mass) is determined by the position of a counterweight free to move on a rail placed under the plane. The profile of the rail is calculated in order to obtain the required Newtonian force. Details of this calculation are reported in the paper, and numerical simulations are provided in order to investigate the stability of the orbits under the effect of the main friction forces and other perturbative effects. This work points out that there are some criticalities intrinsic to the apparatus and gives some suggestions about how to minimize their impact. (paper)
A mathematical model for a didactic device able to simulate a 2D Newtonian gravitational field
De Marchi, Fabrizio
2015-01-01
In this paper we propose a mathematical model to describe a theoretical device able to simulate an inverse-square force on a test mass moving on a horizontal plane. We use two pulleys, a counterweight, a wire and a smooth rail, in addition to the test mass. The tension of the wire (i.e. the attractive force on the test mass) is determined by the position of a counterweight free to move on a rail placed under the plane. The profile of the rail is calculated in order to obtain the required Newtonian force. Details of this calculation are reported in the paper, and numerical simulations are provided in order to investigate the stability of the orbits under the effect of the main friction forces and other perturbative effects. This work points out that there are some criticalities intrinsic to the apparatus and gives some suggestions about how to minimize their impact.
A new algorithm for bank-failure mechanisms in 2D morphodynamic models with unstructured grids
Institute of Scientific and Technical Information of China (English)
Stefania Evangelista; Massimo Greco; Michele Iervolino; Angelo Leopardi; Andrea Vacca
2015-01-01
Bank failure is an important phenomenon in geomorphic processes. In the presence of river banks or steep bedforms, collapse mechanisms induced by the water-level rise deeply affect the bed evolution along with the sediment-transport processes. In this paper an algorithm capable of simulating such mechanisms in a two-dimensional two-phase morphodynamic model is presented. A mixed Cell-Centered and Node-Centered Finite-Volume discretization, which makes use of an unstructured trian-gular mesh and allows the slope in each cell to be univocally defined, is proposed. The geo-failure operator guarantees that when in the cell the bed slope exceeds a critical angle, the corresponding bed material and pore water will become part of the bed transport and will then follow the dynamic equations of the two-phase flow. The algorithm effectiveness is shown by the numerical reproduction of some experimental tests from the literature.
2D analytical modeling of a wholly superconducting synchronous reluctance motor
Malé, G.; Lubin, T.; Mezani, S.; Lévêque, J.
2011-03-01
An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.
Pestana, Rita; Matias, Magda; Canelas, Ricardo; Roque, Dora; Araujo, Amelia; Van Zeller, Emilia; Trigo-Teixeira, Antonio; Ferreira, Rui; Oliveira, Rodrigo; Heleno, Sandra; Falcão, Ana Paula; Gonçalves, Alexandre B.
2014-05-01
Floods account for 40% of all natural hazards worldwide and were responsible for the loss of about 100 thousand human lives and affected more than 1,4 million people in the last decade of the 20th century alone. Floods have been the deadliest natural hazard in Portugal in the last 100 years. In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus (LT) River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. The economical relevance of the area and the high frequency of the relevant flood events make the LT floodplain a good pilot region to conduct a data-driven, systematic calibration work of flood hydraulic models. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 1997, 2001 and 2006 on a 70-km stretch of the LT River, between Tramagal and Omnias, using the software Tuflow. This computational engine provides 2D solutions based on the Stelling finite-difference, alternating direction implicit (ADI) scheme that solves the full 2D free surface shallow-water flow equations and allowed the introduction of structures that constrain water flow. The models were based on a digital terrain model (DTM) acquired in 2008 by radar techniques (5m of spatial resolution) and on in situ measurements of water elevation in Omnias (downstream boundary condition) and discharge in Tramagal and Zezere (upstream boundary conditions). Due to the relevancy of several dykes on this stretch of the LT River, non-existent on the available DTM, five of them were introduced in the models. All models have the same boundaries and were simulated using steady-state flow initial conditions. The resolution of the 2D grid mesh was 30m. Land cover data for the study area was retrieved from Corine Land Cover 2006 (CO-ordination of INformation on the Environment) with spatial resolution of 100m, and combined with estimated manning coefficients obtained in literature
2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods
Tucker, Orenthal J.; Combi, Michael R.; Tenishev, Valeriy M.
2015-09-01
The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of ∼300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451, 685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number ∼10-250) and dense flows in narrow tubular channels (Reynolds number ∼106). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of ∼1014-1020 m-3 were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of ∼10 m, the much denser flows with number densities of 1021-1023 m-3 accelerated micron-sized grains to bulk gas speed of ∼600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains.
Pressure propagation in a 2D CDA model by method of near characteristics
International Nuclear Information System (INIS)
Parametric hydrodynamic computations are carried out by method of near characteristics for a simulated core disruptive accidental condition. The model comprises of a rigid cylindrical vessel filled with water up to a certain level, which simulates the coolant, and a high pressure spherical bubble which represents the expanding core. Top lid force, impulse and mid plane pressure time histories are obtained for different initial bubble pressures ranging between 10 MPa and 400 MPa. The impulse per unit work potential of the bubble increases with increase in the bubble pressure up to 40 MPa and then shows a decreasing trend for higher pressures of the bubble. For a given initial bubble pressure, the force and impulse on the top lid are studied at different cover gas volumes which are 6%, 16%, 20% and 25% of the vessel volume. It is observed that larger the cover gas volume lesser the impulse on the top lid. The role of vapour expansion constant of the bubble γ in causing damage to the top lid is assessed for different values of γ, viz. 0.65, 0.72, 0.85, 0.9, 1.4 and 1.67. It is noted that the impulse on the top lid decreases for increasing values of γ. Calculations have been carried out by replacing water medium by sodium at 500 deg C. It is seen that the force and impulse on the top lid are higher in the case of sodium than water by 55% and 10% respectively. (author)
2D condensation model for the inner Solar Nebula: an enstatite-rich environment
Pignatale, Francesco C; Maddison, Sarah T; Brooks, Geoffrey
2016-01-01
Infrared observations provide the dust composition in the protoplanetary discs surface layers, but can not probe the dust chemistry in the midplane, where planet formation occurs. Meteorites show that dynamics was important in determining the dust distribution in the Solar Nebula and needs to be considered if we are to understand the global chemistry in discs. 1D radial condensation sequences can only simulate one disc layer at a time and cannot describe the global chemistry or the complexity of meteorites. To address these limitations, we compute for the first time the two dimensional distribution of condensates in the inner Solar Nebula using a thermodynamic equilibrium model, and derive timescales for vertical settling and radial migration of dust. We find two enstatite-rich zones within 1 AU from the young Sun: a band ~0.1 AU thick in the upper optically-thin layer of the disc interior to 0.8 AU, and in the optically-thick disc midplane out to ~0.4 AU. The two enstatite-rich zones support recent evidence ...
International Nuclear Information System (INIS)
We study the performance of different message passing algorithms in the two-dimensional Edwards–Anderson model. We show that the standard belief propagation (BP) algorithm converges only at high temperature to a paramagnetic solution. Then, we test a generalized belief propagation (GBP) algorithm, derived from a cluster variational method (CVM) at the plaquette level. We compare its performance with BP and with other algorithms derived under the same approximation: double loop (DL) and a two-way message passing algorithm (HAK). The plaquette-CVM approximation improves BP in at least three ways: the quality of the paramagnetic solution at high temperatures, a better estimate (lower) for the critical temperature, and the fact that the GBP message passing algorithm converges also to nonparamagnetic solutions. The lack of convergence of the standard GBP message passing algorithm at low temperatures seems to be related to the implementation details and not to the appearance of long range order. In fact, we prove that a gauge invariance of the constrained CVM free energy can be exploited to derive a new message passing algorithm which converges at even lower temperatures. In all its region of convergence this new algorithm is faster than HAK and DL by some orders of magnitude
Time-Dependent 2D Modeling of Magnetron Plasma Torch in Turbulent Flow
Institute of Scientific and Technical Information of China (English)
LI Lincun; XIA Weidong
2008-01-01
A theoretical model is presented to describe the electromagnetic, heat transfer and fluid flow phenomena within a magnetron plasma torch and in the resultant plume, by using a commercial computational fluid dynamics (CFD) code FLUENT. Specific calculations are pre-sented for a pure argon system (i.e., an argon plasma discharging into an argon environment), operated in a turbulent mode. An important finding of this work is that the external axial mag-netic field (AMF) may have a significant effect on the behavior of arc plasma and thus affects the resulting plume. The AMF impels the plasma to retract axially and expand radially. As a result, the plasma intensity distribution on the cross section of torch seems to be more uniform. Numerical results also show that with AMF, the highest plasma temperature decreases and the anode arc root moves upstream significantly, while the current density distribution at the anode is more concentrated with a higher peak value. In addition, the use of AMF then induces a strong backflow at the torch spout and its magnitude increases with the AMF strength but decreases with the inlet gas velocity.
Form factor expansions in the 2D Ising model and Painlev\\'e VI
Mangazeev, Vladimir V
2010-01-01
We derive a Toda-type recurrence relation, in both high and low temperature regimes, for the $\\lambda$ - extended diagonal correlation functions $C(N,N;\\lambda)$ of the two-dimensional Ising model, using an earlier connection between diagonal form factor expansions and tau-functions within Painlev\\'e VI (PVI) theory, originally discovered by Jimbo and Miwa \\cite{JM1980}. This greatly simplifies the calculation of the diagonal correlation functions, particularly their $\\lambda$-extended counterparts. We also give a closed form expression for the simplest off-diagonal case $C^{\\pm}(0,1;\\lambda)$ where a connection to PVI theory is not known. Together these give all the initial conditions required for the $\\l$-extended version of quadratic difference equations for the correlation functions, first given by Perk \\cite{Perk80}, and used by Orrick et al. \\cite{ONGP00} to derive susceptibility series of previously unimaginable length. The results obtained here should provide a further potential algorithmic improvemen...
Revisiting 2D Numerical Models for the 19th century outbursts of $\\eta$ Carinae
González, R F; Gómez, G C; Pino, E M de Gouveia Dal; Raga, A C; Cantó, J; Velázquez, P F; de la Fuente, E
2009-01-01
We present here new results of two-dimensional hydrodynamical simulations of the eruptive events of the 1840s (the great) and the 1890s (the minor) eruptions suffered by the massive star $\\eta$ Car. The two bipolar nebulae commonly known as the Homunculus and the little Homunculus were formed from the interaction of these eruptive events with the underlying stellar wind. As in previous work (Gonzalez et al. 2004a, 2004b), we assume here an interacting, nonspherical multiple-phase wind scenario to explain the shape and the kinematics of both Homunculi, but adopt a more realistic parametrization of the phases of the wind. During the 1890s eruptive event, the outflow speed {\\it decreased} for a short period of time. This fact suggests that the little Homunculus is formed when the eruption ends, from the impact of the post-outburst $\\eta$ Car wind (that follows the 1890s event) with the eruptive flow (rather than by the collision of the eruptive flow with the pre-outburst wind, as claimed in previous models; Gonz...
A quantum gauge group approach to the 2D SU(n) WZNW model
International Nuclear Information System (INIS)
The canonical quantization of the WZNW model provides a complete set of exchange relations in the enlarged chiral state spaces that include the Gauss components M±, M-bar± of the monodromy matrices M, M-bar. Regarded as new dynamical variables, the elements of M and M-bar cannot be identified -they satisfy different exchange relations. Accordingly, the two dimensional theory expressed in terms of the left and right movers' fields does not automatically respect monodromy invariance. Continuing our recent analysis of the problem by gauge theory methods we conclude that physical states Φ (on which the field u(x - t)u-bar(x + t) is an element of SU(n) acts as a single valued operator) are invariant under the (permuted) coproduct of the left and right Uq(sl(n)). They satisfy additional constraints fully described for n = 2; then (i) Φ is invariant under a second U2(sl(2)), which commutes with the coproduct, and (ii) (A-)h-1Φ = 0, where A-is a quantum group invariant annihilation operator such that (A-)h = 0 (h = k + 2 being the height). (author). 6 refs
2D-Modelling of pellet injection in the poloidal plane: results of numerical tests
International Nuclear Information System (INIS)
A time-dependent two-dimensional resistive MHD code is being developed for computing the expansion of pellet-produced clouds in the poloidal plane. The various components of the code complex are being tested by means of simplified model calculations. In the present paper, results pertaining to the expansion and drift of a high density plasmoid in a magnetically confined homogeneous background plasma are reported. The confining (toroidal) field may be uniform or has a prescribed gradient. In this test phase, the 2-dimensional code is ran in a one-dimensional mode: it is assumed that all changes are restricted to the 'x' direction, which represents in our case the radial direction in the poloidal plane. The full set of time-dependent resistive MHD equations consisting of the conservation equations for mass, momentum, and energy, and supplemented by Maxwell's equations, a number of rate equations (ionization rate, etc.), and equations describing diffusive transport processes (internal energy, magnetic field) is solved by applying a second order Godunov numerical scheme and the GMRES method. The numerical scheme is based on a Riemann solver with Roe's approximation. In this analysis, three cases are considered in detail: a) the magnetic field strength is zero; b) an initially homogeneous magnetic field of B = 2 Tesla is applied over the whole domain; c) a spatially varying magnetic field with a gradient of the order of 1 tesla/m is applied over the width of the plasmoid
Generalized 2d-dilaton models, the true black hole and quantum integrability
Katanaev, M O; Liebl, H; Vasilevich, D V
1997-01-01
All 1+1 dimensional dipheomorphism-invariant models can be viewed in a unified manner. This includes also general dilaton theories and especially spherically symmetric gravity (SSG) and Witten's dilatonic black hole (DBH). A common feature --- also in the presence of matter fields of any type --- is the appearance of an absolutely conserved quantity C which is determined by the influx of matter. Only for a subclass of generalized dilaton theories the singularity structure vanishes together with C. Such `physical' theories include, of course, SSG and DBH. It seems to have been overlooked until recently that the (classical) 'black hole' singularity of the DBH deviates from SSG in a physically nontrivial manner. At the quantum level for all generalized dilaton theories --- in the absence of matter --- the local quantum effects are shown to disappear. This enables us to compute e.g. the second loop order correction to the Polyakov term. For non-minimal scalar coupling we also believe to have settled the controver...
Directory of Open Access Journals (Sweden)
A. Caserta
1995-06-01
Full Text Available The geological information collected in the last years by the Istituto Nazionale di Geofisica for the city of Rome is used to construct 1- and 2-D models of the nearsurface structure. These models are the basis for the numerical generation of synthetic accelerograms which can simulate the horizontal ground motion (SH waves produced in the different areas of the city by a large (M ? 7 potential earthquake 100 km away in Central Apennines. The proposed methodology yields earthquake engineering parameters (peak ground acceleration and velocity, Arias intensity, energy flux, response spectra whose spatial variations are consistent with the damage distribution caused by the strongest earthquakes felt in Rome during its long history. Based on the macroseismic inforination and the results of the numerical simulations, general criteria for seismic zonation of the city of Rome are proposed.
Institute of Scientific and Technical Information of China (English)
V.MEDINA; A.BATEMAN; M.H(U)RLIMANN
2008-01-01
FLATModel is a 2D finite volume code that contains several original approaches to improve debris-flow simulation.Firstly,FLATModel incorporates a "stop-and-go" technique in each cell to allow continuous collapses and remobilizations of the debris-flow mass.Secondly,flow velocity and consequently yield stress is directly associated with the type of rheology to improve boundary accuracy.Thirdly,a simple approach for entrainment is also included in the model to analyse the effect of basal erosion of debris flows.FLATMODEL was tested at several events that occurred in the Eastern Pyrenees and simulation results indicated that the model can represent rather well the different characteristics observed in the field.
Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model
International Nuclear Information System (INIS)
It is known that the gauge field and its composite operators evolved by the Yang–Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit
Guzik, Joyce A; Nelson, N J; Lovekin, C; Kosak, K; Kitiashvili, I N; Mansour, N N; Kosovichev, A
2016-01-01
We present multidimensional modeling of convection and oscillations in main-sequence stars somewhat more massive than the Sun, using three separate approaches: 1) Using the 3-D planar StellarBox radiation hydrodynamics code to model the envelope convection zone and part of the radiative zone. Our goals are to examine the interaction of stellar pulsations with turbulent convection in the envelope, excitation of acoustic modes, and the role of convective overshooting; 2) Applying the spherical 3-D MHD ASH (Anelastic Spherical Harmonics) code to simulate the core convection and radiative zone. Our goal is to determine whether core convection can excite low-frequency gravity modes, and thereby explain the presence of low frequencies for some hybrid gamma Doradus/delta Scuti variables for which the envelope convection zone is too shallow for the convective blocking mechanism to drive gravity modes; 3) Applying the ROTORC 2-D stellar evolution and dynamics code to calculate evolution with a variety of initial rotat...
Liu, L.; Liu, Y.; Wang, X.; Yu, D.; Liu, K.; Huang, H.; Hu, G.
2015-03-01
Flash floods have occurred frequently in the urban areas of southern China. An effective process-oriented urban flood inundation model is urgently needed for urban storm-water and emergency management. This study develops an efficient and flexible cellular automaton (CA) model to simulate storm-water runoff and the flood inundation process during extreme storm events. The process of infiltration, inlets discharge and flow dynamics can be simulated with little preprocessing on commonly available basic urban geographic data. In this model, a set of gravitational diverging rules are implemented to govern the water flow in a rectangular template of three cells by three cells of a raster layer. The model is calibrated by one storm event and validated by another in a small urban catchment in Guangzhou of southern China. The depth of accumulated water at the catchment outlet is interpreted from street-monitoring closed-circuit television (CCTV) videos and verified by on-site survey. A good level of agreement between the simulated process and the reality is reached for both storm events. The model reproduces the changing extent and depth of flooded areas at the catchment outlet with an accuracy of 4 cm in water depth. Comparisons with a physically based 2-D model (FloodMap) show that the model is capable of effectively simulating flow dynamics. The high computational efficiency of the CA model can meet the needs of city emergency management.
Zhao, Dongmiao; Tang, Jun; Wu, Xiuguang; Lin, Changning; Liu, Lijun; Chen, Jian
2016-05-01
A 2D vertical (2DV) numerical model, without σ-coordinate transformation in the vertical direction, is developed for the simulation of fl ow and sediment transport in open channels. In the model, time-averaged Reynolds equations are closed by the k-ɛ nonlinear turbulence model. The modifi ed Youngs-VOF method is introduced to capture free surface dynamics, and the free surface slope is simulated using the ELVIRA method. Based on the power-law scheme, the k-ɛ model and the suspended-load transport model are solved numerically with an implicit scheme applied in the vertical plane and an explicit scheme applied in the horizontal plane. Bedload transport is modeled using the Euler-WENO scheme, and the grid-closing skill is adopted to deal with the moving channel bed boundary. Verifi cation of the model using laboratory data shows that the model is able to adequately simulate fl ow and sediment transport in open channels, and is a good starting point for the study of sediment transport dynamics in strong nonlinear fl ow scenarios.
Revisiting 2D numerical models for the 19th century outbursts of η Carinae
González, R. F.; Villa, A. M.; Gómez, G. C.; de Gouveia Dal Pino, E. M.; Raga, A. C.; Cantó, J.; Velázquez, P. F.; de La Fuente, E.
2010-02-01
We present here new results of two-dimensional hydrodynamical simulations of the eruptive events of the 1840s (the great) and the 1890s (the minor) eruptions suffered by the massive star η Carinae (Car). The two bipolar nebulae commonly known as the Homunculus and the little Homunculus (LH) were formed from the interaction of these eruptive events with the underlying stellar wind. We assume here an interacting, non-spherical multiple-phase wind scenario to explain the shape and the kinematics of both Homunculi, but adopt a more realistic parametrization of the phases of the wind. During the 1890s eruptive event, the outflow speed decreased for a short period of time. This fact suggests that the LH is formed when the eruption ends, from the impact of the post-outburst η Car wind (that follows the 1890s event) with the eruptive flow (rather than by the collision of the eruptive flow with the pre-outburst wind, as claimed in previous models; González et al.). Our simulations reproduce quite well the shape and the observed expansion speed of the large Homunculus. The LH (which is embedded within the large Homunculus) becomes Rayleigh-Taylor unstable and develop filamentary structures that resemble the spatial features observed in the polar caps. In addition, we find that the interior cavity between the two Homunculi is partially filled by material that is expelled during the decades following the great eruption. This result may be connected with the observed double-shell structure in the polar lobes of the η Car nebula. Finally, as in previous work, we find the formation of tenuous, equatorial, high-speed features that seem to be related to the observed equatorial skirt of η Car.
International Nuclear Information System (INIS)
The study addresses the issues of groundwater flow and particle transport in a 2-D heterogenous porous medium. We follow here the line of G. Dagan and Y. Rubin. In a series of articles these authors propose and represent the variables involves ((transmissivity, head, Darcy velocity, particle position and travel time) by means of stochastic processes. The (unconditional) moments are first derived by solving the partial differential equations corresponding to a 2-D flow in a saturated medium, with no recharge. In a second step, the variances of the processes are reduced bu taking local data into account within the conditional probabilities framework. In this document we present a complete theoretical study of the method and apply it on synthetical test cases. We deal with the following matters: study the impact of different data type and configurations on the conditional estimation of the flow and transport variables; study the robustness of the model for increasing levels of heterogeneity by means of comparison with the moments obtained by Monte-Carlo simulations. The method is enlarged to weakly un-stationary flow cases (non constant transmissivity and head gradient means) and applied on synthetical test cases. (author)
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard
2016-04-01
Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.
Institute of Scientific and Technical Information of China (English)
LI WeiFeng; CHEN QiuWen; MAO JingQiao
2009-01-01
Urban inundation due to anomalous storms is a serious problem for many cities worldwide. Therefore, it is important to accurately simulate urban hydrological processes and efficiently predict the potential risks of urban floods for the improvement of drainage designs and implementation of emergency ac-tions. However, the complexity of urban landforma and the diversity of hydraulic infrastructure pose particular challenges for the simulation and risk assessment of urban drainage processes. This study developed a methodology to comprehensively simulate inundation processes by dynamically coupling 1D and 2D hydrodynamic models. By allowing the simultaneous solution of the processes of rainfall and runoff, urban drainage, and flooding, this method can be used to estimate the potential inundation risks of any designed drainage system. Furthermore, a Geographical Information System (GIS) based platform was fully integrated with the model engine to effectively illustrate the context of the problem. The developed model was then demonstrated on the Beijing 2008 Olympic Village under the conditions of the 5-year and 50-year design storms. The sewer discharge, channel discharge, and flood propaga-tion (inundation initiation, extent, depths, and duration) were numerically validated and analyzed. The results identified the potential inundation risks. From the study, it is found that the coupled GIS and 1D and 2D hydrodynamic models have the potential to simulate urban inundation processes, and hence efficiently predict flood risks and support cost-effective drainage design and management. It also im-plies promising prospects about the wide availability of high quality digital data, GIS techniques, and well-developed monitoring infrastructure to develop online urban inundation forecasts.
QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors
Energy Technology Data Exchange (ETDEWEB)
Kar, Supratik [Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032 (India); Roy, Kunal, E-mail: kunalroy_in@yahoo.com [Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Raja S C Mullick Road, Kolkata 700032 (India)
2010-05-15
One of the major economic alternatives to experimental toxicity testing is the use of quantitative structure-activity relationships (QSARs) which are used in formulating regulatory decisions of environmental protection agencies. In this background, we have modeled a large diverse group of 297 chemicals for their toxicity to Daphnia magna using mechanistically interpretable descriptors. Three-dimensional (3D) (electronic and spatial) and two-dimensional (2D) (topological and information content indices) descriptors along with physicochemical parameter log K{sub o/w} (n-octanol/water partition coefficient) and structural descriptors were used as predictor variables. The QSAR models were developed by stepwise multiple linear regression (MLR), partial least squares (PLS), genetic function approximation (GFA), and genetic PLS (G/PLS). All the models were validated internally and externally. Among several models developed using different chemometric tools, the best model based on both internal and external validation characteristics was a PLS equation with 7 descriptors and three latent variables explaining 67.8% leave-one-out predicted variance and 74.1% external predicted variance. The PLS model suggests that higher lipophilicity and electrophilicity, less negative charge surface area and presence of ether linkage, hydrogen bond donor groups and acetylenic carbons are responsible for greater toxicity of chemicals. The developed model may be used for prediction of toxicity, safety and risk assessment of chemicals to achieve better ecotoxicological management and prevent adverse health consequences.
Nale, J. P.; Gosain, A. K.; Khosa, R.
2015-12-01
Pinder River, one of major headstreams of River Ganga, originates in Pindari Glaciers of Kumaon Himalayas and after passing through rugged gorges meets Alaknanda at Karanprayag forming one of the five celestial confluences of Upper Ganga region. While other sub-basins of Upper Ganga are facing severe ecological losses, Pinder basin is still in its virginal state and is well known for its beautiful valleys besides being host to unique and rare biodiversity. A proposed 252 MW run-of-river hydroelectric project at Devsari on this river has been a major concern on account of its perceived potential for egregious environmental and social impacts. In this context, the study presented tries to analyse the expected changes in aquatic habitat conditions after this project is operational (with different operation policies). SWAT hydrological modelling platform has been used to derive stream flow simulations under various scenarios ranging from the present to the likely future conditions. To analyse the habitat conditions, a two dimensional hydraulic-habitat model 'River-2D', a module of iRIC software, is used. Snow trout has been identified as the target keystone species and its habitat preferences, in the form of flow depths, flow velocity and substrate condition, are obtained from diverse sources of related literature and are provided as Habitat Suitability Indices to River-2D. Bed morphology constitutes an important River-2D input and has been obtained, for the designated 1 km long study reach of Pinder upto Karanprayag, from a combination of actual field observations and supplemented by SRTM 1 Arc-Second Global digital elevation data. Monthly Weighted Usable Area for three different life stages (Spawning, Juvenile and Adult) of Snow Trout are obtained corresponding to seven different flow discharges ranging from 10 cumec to 1000 cumec. Comparing the present and proposed future river flow conditions obtained from SWAT modelling, losses in Weighted Usable Area, for the
GPU computing for 2-d spin systems: CUDA vs OpenGL
Anselmi, V; Di Renzo, F
2008-01-01
In recent years the more and more powerful GPU's available on the PC market have attracted attention as a cost effective solution for parallel (SIMD) computing. CUDA is a solid evidence of the attention that the major companies are devoting to the field. CUDA is a hardware and software architecture developed by Nvidia for computing on the GPU. It qualifies as a friendly alternative to the approach to GPU computing that has been pioneered in the OpenGL environment. We discuss the application of both the CUDA and the OpenGL approach to the simulation of 2-d spin systems (XY model).
A unified approach to the power law and the critical state modeling of superconductors in 2D
International Nuclear Information System (INIS)
Two main options exist for modeling the non-linearity of the superconductor: the power law and the critical state model. A vanishing electric field is predicted by the critical state model, which does not take into account relaxation phenomena. The power law model is to be used if flux creep is to be taken into account. However, detectable flux creep may not occur in many operating conditions. In these cases the critical state represents a more accurate modeling option. The existing numerical tools usually incorporate either the power law with a finite n-exponent or the critical state model, not both. A numerical model which incorporates both the power law and the critical state modeling of superconductors in 2D is developed in this paper. The same mathematical formulation and discretization method are used in both of the cases, and the same matrix equation is obtained. The difference between the two models only arises when the solution of the matrix equation is dealt with. The model is implemented by means of one unique computer code. The discretization can be made by means of both triangular and rectangular meshes. A circuit interpretation of the model is also introduced. The equivalence of the proposed method with the variational approach reported in the literature for dealing with the critical state is also discussed in the paper. The numerical results for some cases of practical interest are presented. The difference between the results obtained by means of the two models in terms of current distribution and ac loss is pointed out. (paper)
2D radiative-magnetohydrostatic model of a prominence observed by Hinode, SoHO/SUMER and Meudon/MSDP
Berlicki, A.; Gunar, S.; Heinzel, P.; Schmieder, B.; Schwartz, P.
2011-06-01
Aims: Prominences observed by Hinode show very dynamical and intriguing structures. To understand the mechanisms that are responsible for these moving structures, it is important to know the physical conditions that prevail in fine-structure threads. In the present work we analyse a quiescent prominence with fine structures, which exhibits dynamic behaviour, which was observed in the hydrogen Hα line with Hinode/SOT, Meudon/MSDP and Ondřejov/HSFA2, and simultaneously in hydrogen Lyman lines with SoHO/SUMER during a coordinated campaign. We derive the fine-structure physical parameters of this prominence and also address the questions of the role of the magnetic dips and of the interpretation of the flows. Methods: We calibrate the SoHO/SUMER and Meudon/MSDP data and obtain the line profiles of the hydrogen Lyman series (Lβ to L6), the Ciii (977.03 Å) and Svi (933.40 Å), and Hα along the slit of SoHO/SUMER that crosses the Hinode/SOT prominence. We employ a complex 2D radiation-magnetohydrostatic (RMHS) modelling technique to properly interpret the observed spectral lines and derive the physical parameters of interest. The model was constrained not only with integrated intensities of the lines, but also with the hydrogen line profiles. Results: The slit of SoHO/SUMER is crossing different prominence structures: threads and dark bubbles. Comparing the observed integrated intensities, the depressions of Hα bubbles are clearly identified in the Lyman, Ciii, and Svi lines. To fit the observations, we propose a new 2D model with the following parameters: T = 8000 K, pcen = 0.035 dyn cm-2, B = 5 Gauss, ne = 1010 cm-3, 40 threads each 1000 km wide, plasma β is 3.5 × 10-2. Conclusions: The analysis of Ciii and Svi emission in dark Hα bubbles allows us to conclude that there is no excess of a hotter plasma in these bubbles. The new 2D model allows us to diagnose the orientation of the magnetic field versus the LOS. The 40 threads are integrated along the LOS. We
Using overlapping sonobuoy data from the Ross Sea to construct a 2D deep crustal velocity model
Selvans, M. M.; Clayton, R. W.; Stock, J. M.; Granot, R.
2012-03-01
Sonobuoys provide an alternative to using long streamers while conducting multi-channel seismic (MCS) studies, in order to provide deeper velocity control. We present analysis and modeling techniques for interpreting the sonobuoy data and illustrate the method with ten overlapping sonobuoys collected in the Ross Sea, offshore from Antarctica. We demonstrate the importance of using the MCS data to correct for ocean currents and changes in ship navigation, which is required before using standard methods for obtaining a 1D velocity profile from each sonobuoy. We verify our 1D velocity models using acoustic finite-difference (FD) modeling and by performing depth migration on the data, and demonstrate the usefulness of FD modeling for tying interval velocities to the shallow crust imaged using MCS data. Finally, we show how overlapping sonobuoys along an MCS line can be used to construct a 2D velocity model of the crust. The velocity model reveals a thin crust (5.5 ± 0.4 km) at the boundary between the Adare and Northern Basins, and implies that the crustal structure of the Northern Basin may be more similar to that of the oceanic crust in the Adare Basin than to the stretched continental crust further south in the Ross Sea.
Directory of Open Access Journals (Sweden)
Harman Ajiwibowo
2011-04-01
Full Text Available The effectiveness of a breakwater can be measured by quantifying the transmission coefficient (KT. The smaller the coefficient, the better the performance of the breakwater. A physical modeling on the proposed breakwater was conducted to identify the coefficient of Perforated Skirt Breakwater (PSB. The PSB model was tested in 2-D wave flume at Ocean Wave Research Laboratory FTSL ITB, to obtain the effectiveness of PSB for short-period waves (prototype periods, Tp= 4 second and smaller. The scaling of PSB models applies the principle of Froude Similarity, where the Froude number in model equals to the Froude number in prototype (Frm=Frp. The flume is equipped with 5 resistance-type wave probes and 8-channel DAS (Data Acquisition System. Wave heights (H and wave periods (T data were observed both manually by visual observation and wave probes readings (processed later with method of “zero mean up-crossing” technique. The incoming wave heights (Hi and transmitted wave heights (Ht were measured and processed to obtain the transmission coefficient (KT. The relationships between KT and non-dimensional variables (skirt draft / incident wave height, S/Hi are analyzed and the calculated effectiveness of the PSB for varied environmental condition is obtained to be up to 70%.Abstract. The effectiveness of a breakwater can be measured by quantifying the transmission coefficient (KT. The smaller the coefficient, the better the performance of the breakwater. A physical modeling on the proposed breakwater was conducted to identify the coefficient of Perforated Skirt Breakwater (PSB. The PSB model was tested in 2-D wave flume at Ocean Wave Research Laboratory FTSL ITB, to obtain the effectiveness of PSB for short-period waves (prototype periods, Tp= 4 second and smaller. The scaling of PSB models applies the principle of Froude Similarity, where the Froude number in model equals to the Froude number in prototype (Frm=Frp. The flume is equipped with 5
Directory of Open Access Journals (Sweden)
J. P. McCormack
2006-01-01
Full Text Available The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP for high-altitude numerical weather prediction (NWP systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day and long-term (1-year stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
Semblat, Jean-François
2011-01-01
To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the B...
Universality Class of the Nishimori Point in the 2D ±J Random-Bond Ising Model
International Nuclear Information System (INIS)
We study the universality class of the Nishimori point in the 2D ±J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value pc=0.1094±0.0002 and estimate ν=1.33±0.03 . Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c=0.464±0.004 . The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point
Renormalization group flow and fixed point of the lattice topological charge in the 2D O(3) σ model
International Nuclear Information System (INIS)
We study the renormalization group evolution up to the fixed point of the lattice topological susceptibility in the 2D O(3) nonlinear σ model. We start with a discretization of the continuum topological charge by a local charge density polynomial in the lattice fields. Among the different choices we propose also a Symanzik-improved lattice topological charge. We check step by step in the renormalization group iteration the progressive dumping of quantum fluctuations, which are responsible for the additive and multiplicative renormalizations of the lattice topological susceptibility with respect to the continuum definition. We find that already after three iterations these renormalizations are negligible and an excellent approximation of the fixed point is achieved. We also check by an explicit calculation that the assumption of slowly varying fields in iterating the renormalization group does not lead to a good approximation of the fixed point charge operator. copyright 1997 The American Physical Society
Zischg, Andreas Paul; Felder, Guido; WWeingartner, Rolf
2015-04-01
The catchment of the river Aare upstream of Bern, Switzerland, with an area of approx. 3000 km2 is a complex network of sub-catchments with different runoff characteristics; it also includes two larger lakes. Most of the rivers were regulated in the 18th century. An important regulation, however, was realised as early as in the 17th century. For this catchment, the worst case flood event was identified and its consequences were analysed. Beside the hydro-meteorological characteristics, an important basis to model the worst case flood is to understand the non-linear effects of flood retention in the valley bottom and in the lakes. The aim of this study was to compare these effects based on both the current river network and the historic one prior to the main river training works. This allows to quantify the human impacts. Methodologically, we set up a coupled 2D flood model representing the floodplains of the river Aare as well as of the tributaries Lombach, Lütschine, Zulg, Rotache, Chise and Guerbe. The flood simulation was made in 2D with the software BASEMENT-ETH (Vetsch et al. 2014). The model was calibrated by means of reproducing the large floods in August 2005 and the bankfull discharge for all river reaches. The model computes the discharge at the outlet of the Aare catchment at Bern by routing all discharges from the sub-catchments through the river reaches and their floodplains. With this, the modulation of the input hydrographs by widespread floodings in the floodplains can be quantified. The same configuration was applied on the basis of reconstructed digital terrain models representing the landscape and the river network before the first significant river training works had been realised. This terrain model was reconstructed by georeferencing and digitalizing historic maps and cross-sections combined with the mapping of the geomorphologic evidences of former river structures in non-modified areas. The latter mapping procedure was facilitated by the
Tian, Junfang; Ma, Shoufeng; Zhu, Chenqiang; Jiang, Rui; Ding, YaoXian
2015-01-01
This paper proposes an improved cellular automaton traffic flow model based on the brake light model, which takes into account that the desired time gap of vehicles is remarkably larger than one second. Although the hypothetical steady state of vehicles in the deterministic limit corresponds to a unique relationship between speeds and gaps in the proposed model, the traffic states of vehicles dynamically span a two-dimensional region in the plane of speed versus gap, due to the various randomizations. It is shown that the model is able to well reproduce (i) the free flow, synchronized flow, jam as well as the transitions among the three phases; (ii) the evolution features of disturbances and the spatiotemporal patterns in a car-following platoon; (iii) the empirical time series of traffic speed obtained from NGSIM data. Therefore, we argue that a model can potentially reproduce the empirical and experimental features of traffic flow, provided that the traffic states are able to dynamically span a 2D speed-gap...
Schaa, R.; Gross, L.; du Plessis, J.
2016-04-01
We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.
Simão Ferreira, C. J.; Bijl, H.; van Bussel, G.; van Kuik, G.
2007-07-01
The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: •comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-epsilon) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) •verifying the sensitivity of the model to its grid refinement (space and time), •evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simão Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement.
SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy
International Nuclear Information System (INIS)
Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakage in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification
International Nuclear Information System (INIS)
The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: .comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-ε) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) .verifying the sensitivity of the model to its grid refinement (space and time), .evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simao Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement
Energy Technology Data Exchange (ETDEWEB)
Ferreira, C J Simao; Bijl, H; Bussel, G van; Kuik, G van [DUWIND- Delft University Wind Energy Research Institute, Kluyverweg 1, 2629 HS Delft (Netherlands)
2007-07-15
The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: .comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-{epsilon}) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) .verifying the sensitivity of the model to its grid refinement (space and time), .evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simao Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement.
Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc
2015-04-01
Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last
Directory of Open Access Journals (Sweden)
L. Liu
2014-09-01
Full Text Available Flash floods have occurred frequently and severely in the urban areas of South China. An effective process-oriented urban flood inundation model becomes an urgent demand for urban storm water and emergency management. This study develops an effective and flexible cellular automaton (CA model to simulate storm water runoff and the flood inundation process during extreme storm events. The process of infiltration, inlets discharge and flow dynamic can be simulated only with little pre-processing on commonly available basic urban geographic data. In this model, a set of gravitational diverging rules are implemented in a cellular automation (CA model to govern the water flow in a 3 x 3 cell template of a raster layer. The model is calibrated by one storm event and validated by another in a small urban catchment in Guangzhou of Southern China. The depth of accumulated water at the catchment outlet is interpreted from street monitoring sensors and verified by on-site survey. A good level of agreement between the simulated process and the reality is reached for both storm events. The model reproduces the changing extent and depth of flooded areas at the catchment outlet with an accuracy of 4 cm in water depth. Comparisons with a physically-based 2-D model (FloodMap results show that the model have the capability of simulating flow dynamics. The high computational efficiency of CA model can satisfy the demand of city emergency management. The encouraging results of the simulations demonstrate that the CA-based approach is capable of effectively representing the key processes associated with a storm event and reproducing the process of water accumulation at the catchment outlet for making process-considered city emergency management decisions.
Steerneman, A.G.M.; van Perlo -ten Kleij, Frederieke
2005-01-01
The main topic of this paper is the matrix V = A - XY*, where A is a nonsingular complex k x k matrix and X and Y are k x p complex matrices of full column rank. Because properties of the matrix V can be derived from those of the matrix Q = I - XY*, we will consider in particular the case where A =
Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.
2004-01-01
Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.
Posmentier, E. S.; Faiia, A.; Feng, X.; Michel, F. A.
2009-12-01
The most widely cited climate feedback in the Arctic region is ice cover. Warming climate reduces the sea ice extent, which causes a lower surface albedo, resulting in more absorbed insolation and further warming - a positive feedback. Conversely, warming is also likely to result in increased Arctic evaporation and precipitation, leading to increased snow cover and a higher Arctic terrestrial albedo, which would cause cooling - a negative feedback. The balance between these feedbacks must be understood and quantified in order to predict climate response to influences such as increased greenhouse gases. Here, we use measurements of high latitude precipitation isotopes and a 2D model to investigate interannual variability in the contributions of subtropical and Arctic vapor sources to Arctic precipitation. In a previous study, we used isotopic ratios alone to investigate the sources of moisture to the Arctic. We found significant positive relationships between ice area and the d-excess of precipitation on both interannual and seasonal timescales, an expected result under the assumption that sea ice prevents evaporation from the sea surface and consequently reduces the contribution of Arctic moisture with low d-excess values to Arctic precipitation. In this work, we go a step further with an attempt to estimate the influence of sea ice cover on Arctic evaporation using a 2D model and constraining it with high latitude isotopic measurements. The 2D model is a vertical-meridional mass conservation model for H2O, HDO, and H218O with prescribed atmospheric circulation and temperatures. For each isotope, the rates of surface evaporation, sublimation, precipitation, and reevaporation of falling hydrometeors are calculated, and values of the humidity and isotopic concentrations of both vapor and hydrometeors are computed interdependently with the four process rates.. The model fractionation associated with the four processes is based primarily on the work of Jouzel and
Wortham, Brian W; Eppert, Bryan L; Motz, Greg T; Flury, Jennifer L; Orozco-Levi, Mauricio; Hoebe, Kasper; Panos, Ralph J; Maxfield, Melissa; Glasser, Stephan W; Senft, Albert P; Raulet, David H; Borchers, Michael T
2012-05-01
Chronic obstructive pulmonary disease (COPD) is characterized by peribronchial and perivascular inflammation and largely irreversible airflow obstruction. Acute disease exacerbations, due frequently to viral infections, lead to enhanced disease symptoms and contribute to long-term progression of COPD pathology. Previously, we demonstrated that NK cells from cigarette smoke (CS)-exposed mice exhibit enhanced effector functions in response to stimulating cytokines or TLR ligands. In this article, we show that the activating receptor NKG2D is a key mediator for CS-stimulated NK cell hyperresponsiveness, because CS-exposed NKG2D-deficient mice (Klrk1(-/-)) did not exhibit enhanced effector functions as assessed by cytokine responsiveness. NK cell cytotoxicity against MHC class I-deficient targets was not affected in a COPD model. However, NK cells from CS-exposed mice exhibit greater cytotoxic activity toward cells that express the NKG2D ligand RAET1ε. We also demonstrate that NKG2D-deficient mice exhibit diminished airway damage and reduced inflammation in a model of viral COPD exacerbation, which do not affect viral clearance. Furthermore, adoptive transfer of NKG2D(+) NK cells into CS-exposed, influenza-infected NKG2D-deficient mice recapitulated the phenotypes observed in CS-exposed, influenza-infected wild-type mice. Our findings indicate that NKG2D stimulation during long-term CS exposure is a central pathway in the development of NK cell hyperresponsiveness and influenza-mediated exacerbations of COPD. PMID:22467655
VCA Direct-Drive High Speed and Precision XY Table
Institute of Scientific and Technical Information of China (English)
ZHAO Xingyu; FENG Xiaomei; ZHANG Dawei
2007-01-01
In order to compensate for the limitation of conventional XY table used in semiconductor integrated circuits(IC) packaging and improve its speed and accuracy, a voice coil actuator (VCA)direct-drive high-speed and precision positioning XY table used in wire bonder was proposed. Also, a novel flexible decoupling mechanism was used in the positioning table, and the small moving mass enabled the positioning table to move at high speed and precision. XY table deformation interference caused by assembly error and instant interference generated by dynamic load moving with high speed and acceleration can be eliminated through the flexible decoupling mechanism. Considering the positioning table as lumped mass spring system, the dynamic equations of the mechanical sys-tem and the VCA were built according to the Newton mechanics principle and electromagnetic theory. Then the electromechanical coupling control model of the system was created through Laplace transform. Based on displacement PID controller, the Icop-locked controlling algorithm of the positioning system was investigated. The dynamic control algorithm effectively improved the system dynamic performance. The precision test of the prototype machine was carried out, and the results val-idated the correctness of the model and the theory. Compared with traditional XY table, the tablehas higher speed, acceleration and positioning accuracy.
International Nuclear Information System (INIS)
The present study deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the prediction of transonic flows, for which shock wave/boundary layer interaction is important. When this interaction is strong enough (M ≥ 1.3), shock induced oscillations (SIO) appear at the suction side of the airfoil and lead to the formation of unsteady separated areas. The main issue is then to perform unsteady computations applying appropriate turbulence modelling and relevant boundary conditions with respect to the test case. Computations were performed with the ONERA elsA software and the URANS-type approach, closure relationships being achieved from transport-equation models. Applications are provided for the OAT15A airfoil data base, well documented for unsteady CFD validation (mean and r.m.s. pressure, phase-averaged LDA data, ...). In this paper, the capabilities of turbulence models are evaluated with two 2D URANS strategies, under free-stream or confined conditions. The latter takes into account the adaptive upper and lower wind-tunnel walls. A complete 3D URANS simulation was then performed to demonstrate the real impact of all lateral wind-tunnel walls on such a flow
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
Hue, Vincent; Dobrijevic, Michel; Hersant, Franck; Greathouse, Thomas K
2015-01-01
Saturn's axial tilt of 26.7{\\deg} produces seasons in a similar way as on Earth. Both the stratospheric temperature and composition are affected by this latitudinally varying insolation along Saturn's orbital path. A new time dependent 2D photochemical model is presented to study the seasonal evolution of Saturn's stratospheric composition. This study focuses on the impact of the seasonally variable thermal field on the main stratospheric C2 hydrocarbon chemistry (C2H2 and C2H6) using a realistic radiative climate model. Meridional mixing and advective processes are implemented in the model but turned off in the present study for the sake of simplicity. The results are compared to a simple study case where a latitudinally and temporally steady thermal field is assumed. Our simulations suggest that, when the seasonally variable thermal field is accounted for, the downward diffusion of the seasonally produced hydrocarbons is faster due to the seasonal compression of the atmospheric column during winter. This ef...
Multi-scale Model of Residual Strength of 2D Plain Weave C/SiC Composites in Oxidation Atmosphere
Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong
2016-06-01
Multi-scale models play an important role in capturing the nonlinear response of woven carbon fiber reinforced ceramic matrix composites. In plain weave carbon fiber/silicon carbon (C/SiC) composites, the carbon fibers and interphases will be oxidized at elevated temperature and the strength of the composite will be degraded when oxygen enters micro-cracks formed in the as-produced parts due to the mismatch in thermal properties between constituents. As a result of the oxidation on fiber surface, fiber shows a notch-like morphology. In this paper, the change rule of fiber notch depth is fitted by circular function. And a multi-scale model based upon the change rule of fiber notch depth is developed to simulate the residual strength and post-oxidation stress-strain curves of the composite. The multi-scale model is able to accurately predict the residual strength and post-oxidation stress-strain curves of the composite. Besides, the simulated residual strength and post-oxidation stress-strain curves of 2D plain weave C/SiC composites in oxidation atmosphere show good agreements with experimental results. Furthermore, the oxidation time and temperature of the composite are investigated to show their influences upon the residual strength and post-oxidation stress-strain curves of plain weave C/SiC composites.
Directory of Open Access Journals (Sweden)
Olalekan Fayemi
2016-01-01
Full Text Available In this study, we introduced multitransient electromagnetic (MTEM method as an effective tool for shale gas exploration. We combined the uniaxial perfectly matched layer (UPML equation with the first derivative diffusion equation to solve for a finite difference time domain (FDTD UPML equation, which was discretized to form an algorithm for 3D modeling of earth impulse response and used in modeling MTEM response over 2D South China shale gas model. We started with stepwise demonstration of the UPML and the FDTD algorithm as an effective tool. Subsequently, quantitative study on the convergence of MTEM earth impulse response was performed using different grid setup over a uniform earth material. This illustrates that accurate results can be obtained for specified range of offset. Furthermore, synthetic responses were generated for a set of geological scenarios. Lastly, the FDTD algorithm was used to model the MTEM response over a 2D shale gas earth model from South China using a PRBS source. The obtained apparent resistivity section from the MTEM response showed a similar geological setup with the modeled 2D South China shale gas section. This study confirmed the competence of MTEM method as an effective tool for unconventional shale gas prospecting and exploitation.
Indian Academy of Sciences (India)
R Vidya Sagar; B K Raghu Prasad
2009-12-01
In this paper, numerical modelling of fracture in concrete using two-dimensional lattice model is presented and also a few issues related to lattice modelling technique applicable to concrete fracture are reviewed. A comparison is made with acoustic emission (AE) events with the number of fractured elements. To implement the heterogeneity of the plain concrete, two methods namely, by generating grain structure of the concrete using Fuller’s distribution and the concrete material properties are randomly distributed following Gaussian distribution are used. In the ﬁrst method, the modelling of the concrete at meso level is carried out following the existing methods available in literature. The shape of the aggregates present in the concrete are assumed as perfect spheres and shape of the same in two-dimensional lattice network is circular. A three-point bend (TPB) specimen is tested in the experiment under crack mouth opening displacement (CMOD) control at a rate of 0·0004 mm/sec and the fracture process in the same TPB specimen is modelled using regular triangular 2D lattice network. Load versus crack mouth opening displacement (CMOD) plots thus obtained by using both the methods are compared with experimental results. It was observed that the number of fractured elements increases near the peak load and beyond the peak load. That is once the crack starts to propagate. AE hits also increase rapidly beyond the peak load. It is compulsory here to mention that although the lattice modelling of concrete fracture used in this present study is very similar to those already available in literature, the present work brings out certain ﬁner details which are not available explicitly in the earlier works.
Martowicz, A.; Ruzzene, M.; Staszewski, W. J.; Rimoli, J. J.; Uhl, T.
2014-03-01
The work deals with the reduction of numerical dispersion in simulations of wave propagation in solids. The phenomenon of numerical dispersion naturally results from time and spatial discretization present in a numerical model of mechanical continuum. Although discretization itself makes possible to model wave propagation in structures with complicated geometries and made of different materials, it inevitably causes simulation errors when improper time and length scales are chosen for the simulations domains. Therefore, by definition, any characteristic parameter for spatial and time resolution must create limitations on maximal wavenumber and frequency for a numerical model. It should be however noted that expected increase of the model quality and its functionality in terms of affordable wavenumbers, frequencies and speeds should not be achieved merely by denser mesh and reduced time integration step. The computational cost would be simply unacceptable. The authors present a nonlocal finite difference scheme with the coefficients calculated applying a Fourier series, which allows for considerable reduction of numerical dispersion. There are presented the results of analyses for 2D models, with isotropic and anisotropic materials, fulfilling the planar stress state. Reduced numerical dispersion is shown in the dispersion surfaces for longitudinal and shear waves propagating for different directions with respect to the mesh orientation and without dramatic increase of required number of nonlocal interactions. A case with the propagation of longitudinal wave in composite material is studied with given referential solution of the initial value problem for verification of the time-domain outcomes. The work gives a perspective of modeling of any type of real material dispersion according to measurements and with assumed accuracy.
Bignardi, S.; Mantovani, A.; Abu Zeid, N.
2016-08-01
OpenHVSR is a computer program developed in the Matlab environment, designed for the simultaneous modeling and inversion of large Horizontal-to-Vertical Spectral Ratio (HVSR or H/V) datasets in order to construct 2D/3D subsurface models (topography included). The program is designed to provide a high level of interactive experience to the user and still to be of intuitive use. It implements several effective and established tools already present in the code ModelHVSR by Herak (2008), and many novel features such as: -confidence evaluation on lateral heterogeneity -evaluation of frequency dependent single parameter impact on the misfit function -relaxation of Vp/Vs bounds to allow for water table inclusion -a new cost function formulation which include a slope dependent term for fast matching of peaks, which greatly enhances convergence in case of low quality HVSR curves inversion -capability for the user of editing the subsurface model at any time during the inversion and capability to test the changes before acceptance. In what follows, we shall present many features of the program and we shall show its capabilities on both simulated and real data. We aim to supply a powerful tool to the scientific and professional community capable of handling large sets of HSVR curves, to retrieve the most from their microtremor data within a reduced amount of time and allowing the experienced scientist the necessary flexibility to integrate into the model their own geological knowledge of the sites under investigation. This is especially desirable now that microtremor testing has become routinely used. After testing the code over different datasets, both simulated and real, we finally decided to make it available in an open source format. The program is available by contacting the authors.
Croissant, T.; Lague, D.; Davy, P.
2014-12-01
Numerical models of floodplain dynamics often use a simplified 1D description of flow hydraulics and sediment transport that cannot fully account for differential friction between vegetated banks and low friction in the main channel. Key parameters of such models are the friction coefficient and the description of the channel bathymetry which strongly influence predicted water depth and velocity, and therefore sediment transport capacity. In this study, we use a newly developed 2D hydrodynamic model, Floodos, whose efficiency is a major advantage for exploring channel morphodynamics from a flood event to millennial time scales. We evaluate the quality of Floodos predictions in the Whataroa river, New Zealand and assess the effect of a spatially distributed friction coefficient (SDFC) on long term sediment transport. Predictions from the model are compared to water depth data from a gauging station located on the Whataroa River in Southern Alps, New Zealand. The Digital Elevation Model (DEM) of the 2.5 km long studied reach is derived from a 2010 LiDAR acquisition with 2 m resolution and an interpolated bathymetry. The several large floods experienced by this river during 2010 allow us to access water depth for a wide range of possible river discharges and to retrieve the scaling between these two parameters. The high resolution DEM used has a non-negligible part of submerged bathymetry that airborne LiDAR was not able to capture. Bathymetry can be reconstructed by interpolation methods that introduce several uncertainties concerning water depth predictions. We address these uncertainties inherent to the interpolation using a simplified channel with a geometry (slope and width) similar to the Whataroa river. We then explore the effect of a SDFC on velocity pattern, water depth and sediment transport capacity and discuss its relevance on long term predictions of sediment transport and channel morphodynamics.
Structural modelling and testing of failed high energy pipe runs: 2D and 3D pipe whip
Energy Technology Data Exchange (ETDEWEB)
Reid, S.R., E-mail: steve.reid@abdn.ac.uk [School of Engineering, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Wang, B.; Aleyaasin, M. [School of Engineering, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)
2011-05-15
The sudden rupture of a high energy piping system is a safety-related issue and has been the subject of extensive study and discussed in several industrial reports (e.g. ). The dynamic plastic response of the deforming pipe segment under the blow-down force of the escaping liquid is termed pipe whip. Because of the potential damage that such an event could cause, various geometric and kinematic features of this phenomenon have been modelled from the point of view of dynamic structural plasticity. After a comprehensive summary of the behaviour of in-plane deformation of pipe runs that deform in 2D in a plane, the more complicated case of 3D out-of-plane deformation is discussed. Both experimental studies and modelling using analytical and FE methods have been carried out and they show that, for a good estimate of the 'hazard zone' when unconstrained pipe whip motion could occur, a large displacement analysis is essential. The classical, rigid plastic, small deflection analysis (e.g. see ), is valid for estimating the initial failure mechanisms, however it is insufficient for describing the details and consequences of large deflection behaviour. - Highlights: > Dynamic plastic response of piping system under extreme loading (fluid escape). > Two and three dimensional analysis of the pipe whipping phenomena. > Comparison between theory and the experiments. > Determination of the Hazard Zone (HZ) and safety-related issues.
Bais, Preeti; Beebe, Kirk; Morelli, Kathryn H.; Currie, Meagan E.; Norberg, Sara N.; Evsikov, Alexei V.; Miers, Kathy E.; Seburn, Kevin L.; Guergueltcheva, Velina; Kremensky, Ivo; Jordanova, Albena; Bult, Carol J.
2016-01-01
ABSTRACT Charcot–Marie–Tooth disease encompasses a genetically heterogeneous class of heritable polyneuropathies that result in axonal degeneration in the peripheral nervous system. Charcot–Marie–Tooth type 2D neuropathy (CMT2D) is caused by dominant mutations in glycyl tRNA synthetase (GARS). Mutations in the mouse Gars gene result in a genetically and phenotypically valid animal model of CMT2D. How mutations in GARS lead to peripheral neuropathy remains controversial. To identify putative disease mechanisms, we compared metabolites isolated from the spinal cord of Gars mutant mice and their littermate controls. A profile of altered metabolites that distinguish the affected and unaffected tissue was determined. Ascorbic acid was decreased fourfold in the spinal cord of CMT2D mice, but was not altered in serum. Carnitine and its derivatives were also significantly reduced in spinal cord tissue of mutant mice, whereas glycine was elevated. Dietary supplementation with acetyl-L-carnitine improved gross motor performance of CMT2D mice, but neither acetyl-L-carnitine nor glycine supplementation altered the parameters directly assessing neuropathy. Other metabolite changes suggestive of liver and kidney dysfunction in the CMT2D mice were validated using clinical blood chemistry. These effects were not secondary to the neuromuscular phenotype, as determined by comparison with another, genetically unrelated mouse strain with similar neuromuscular dysfunction. However, these changes do not seem to be causative or consistent metabolites of CMT2D, because they were not observed in a second mouse Gars allele or in serum samples from CMT2D patients. Therefore, the metabolite ‘fingerprint’ we have identified for CMT2D improves our understanding of cellular biochemical changes associated with GARS mutations, but identification of efficacious treatment strategies and elucidation of the disease mechanism will require additional studies. PMID:27288508
Elsawy, Hesham
2014-11-01
Device-to-device (D2D) communication enables the user equipments (UEs) located in close proximity to bypass the cellular base stations (BSs) and directly connect to each other, and thereby, offload traffic from the cellular infrastructure. D2D communication can improve spatial frequency reuse and energy efficiency in cellular networks. This paper presents a comprehensive and tractable analytical framework for D2D-enabled uplink cellular networks with a flexible mode selection scheme along with truncated channel inversion power control. The developed framework is used to analyze and understand how the underlaying D2D communication affects the cellular network performance. Through comprehensive numerical analysis, we investigate the expected performance gains and provide guidelines for selecting the network parameters.
Cepeda, Jose; Luna, Byron Quan; Nadim, Farrokh
2013-04-01
An essential component of a quantitative landslide hazard assessment is establishing the extent of the endangered area. This task requires accurate prediction of the run-out behaviour of a landslide, which includes the estimation of the run-out distance, run-out width, velocities, pressures, and depth of the moving mass and the final configuration of the deposits. One approach to run-out modelling is to reproduce accurately the dynamics of the propagation processes. A number of dynamic numerical models are able to compute the movement of the flow over irregular topographic terrains (3-D) controlled by a complex interaction between mechanical properties that may vary in space and time. Given the number of unknown parameters and the fact that most of the rheological parameters cannot be measured in the laboratory or field, the parametrization of run-out models is very difficult in practice. For this reason, the application of run-out models is mostly used for back-analysis of past events and very few studies have attempted to achieve forward predictions. Consequently all models are based on simplified descriptions that attempt to reproduce the general features of the failed mass motion through the use of parameters (mostly controlling shear stresses at the base of the moving mass) which account for aspects not explicitly described or oversimplified. The uncertainties involved in the run-out process have to be approached in a stochastic manner. It is of significant importance to develop methods for quantifying and properly handling the uncertainties in dynamic run-out models, in order to allow a more comprehensive approach to quantitative risk assessment. A method was developed to compute the variation in run-out intensities by using a dynamic run-out model (MassMov2D) and a probabilistic framework based on a Monte Carlo simulation in order to analyze the effect of the uncertainty of input parameters. The probability density functions of the rheological parameters
Energy Technology Data Exchange (ETDEWEB)
Plenio, M. B.; Almeida, J.; Huelga, S. F. [Institute for Theoretical Physics, Albert-Einstein-Allee 11, University Ulm, D-89069 Ulm (Germany)
2013-12-21
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
MHD and deep mixing in evolved stars. 1. 2D and 3D analytical models for the AGB
Nucci, M C
2014-01-01
The advection of thermonuclear ashes by magnetized domains emerging from near the H-shell was suggested to explain AGB star abundances. Here we verify this idea quantitatively through exact MHD models. Starting with a simple 2D geometry and in an inertia frame, we study plasma equilibria avoiding the complications of numerical simulations. We show that, below the convective envelope of an AGB star, variable magnetic fields induce a natural expansion, permitted by the almost ideal MHD conditions, in which the radial velocity grows as the second power of the radius. We then study the convective envelope, where the complexity of macro-turbulence allows only for a schematic analytical treatment. Here the radial velocity depends on the square root of the radius. We then verify the robustness of our results with 3D calculations for the velocity, showing that, for both the studied regions, the solution previously found can be seen as a planar section of a more complex behavior, in which anyway the average radial vel...
Study of the silver ion release from antimicrobial nanosilver (nAg)/PTFE two dimensional (2D) model
Energy Technology Data Exchange (ETDEWEB)
Alissawi, Nisreen; Zaporojtchenko, Vladimir; Strunskus, Thomas; Faupel, Franz [Institute for Materials Science-Multicomponents Materials, Christian-Albrechts-University, Kaiserstr.2, 24143, Kiel (Germany); Garbe-Schoenberg, Dieter [Dept. of Geology, ICPMS Lab., CAU Kiel, Ludewig- Meyn-Strasse 10, 24118 Kiel (Germany)
2011-07-01
Despite the great interest in silver based antimicrobial nanocomposites, it is still not clear how the composite morphology (nanoparticle size, concentration, and distribution) affect the mechanism and kinetics of the interfacial ion transfer reactions of the Ag nanoparticles due to the fact that metal nanoparticles embedded in a polymeric matrix are not directly accessible concerning their interfacial structure and reactivity. This problem will be approached in our present work by the usage of well defined model systems consisting of 2D nanoparticle arrays which are either directly accessible or covered by polymer barrier. The Ag nanoparticles and the PTFE polymer layers were synthesized by physical vapor deposition (PVD) techniques. The samples' morphology, optical properties and composition were examined by Transmission Electron microscopy (TEM), UV-Visible Spectroscopy (UV-Vis) and X-Ray Photoelectron Spectroscopy (XPS), respectively, and the time-dependent release of silver ions after inserting in water was measured using Inductively coupled plasma mass spectrometry (ICP-MS). Time dependence of silver ions release on the particle size and barrier properties are discussed.
International Nuclear Information System (INIS)
Runaway electrons in tokamak plasmas have received lately a great attention due to several reasons: a) the capability of enhancement the ECH absorption in the presence of suprathermal tail in the electron distribution, and b) the possibility to study electromagnetic turbulence by measuring the runaway flux fluctuations and its energy spectra. In this paper we are presenting a numerical scheme for the development of a 2 D model for runaway dynamics and its application to the interpretation of Hard-X-ray spectra. First, a single electron is considered and the obtained results are later extended to the case of maxwellian distribution in the plasma, solving the dynamics equation in a faster and simpler way by using a conservative numerical scheme instead of Fokker-Planck equations. The properties of the motion of a particle in a force field are related to the existence of certain conservation laws and symmetries. Due to their importance, it is highly desirable that numerical schemes should show a discrete analogous of the conservation laws, symmetries and stability properties of the underlying continuous equations. Otherwise, the scheme can show numerical chaos and the solutions exhibit unphysical properties. In this framework of ideas, we give a new numerical scheme to integrate the equations of motion of a relativistic charge in an electric field either with dissipation or without it. (author) 6 refs., 5 figs
2D modeling of salt precipitation during the injection of dry CO2 in a depleted gas reservoir
International Nuclear Information System (INIS)
The precipitation of halite around a CO2 injection well has been studied to investigate the possible effects on well injectivity for a pilot test of CO2 injection in a depleted gas reservoir. The numerical simulations performed with the TMGAS simulator, using both 1D and 2D radial grids, show that the injection of dry supercritical CO2 vaporizes the formation brine promoting NaCl concentration and the precipitation of halite. Different behaviors are observed depending on the initial liquid saturation: when the brine has a low mobility, the evaporation front advances with limited halite precipitation and only minor effects on well injectivity. On the other hand, when the brine has sufficient mobility, the precipitation front is recharged by the brine flowing towards the wellbore, due to the capillary pressure gradient driven by the evaporation. In this case the concentrated precipitation can strongly reduce the formation permeability. These effects depend on formation properties and on the porosity-permeability relationship which describes the effects of halite precipitation on permeability reduction. In the attempt to improve the prediction of halite precipitation effects, an extension of the so-called tube-in-series model of Verma and Pruess was developed, with pore-size distribution evaluated from the measured grain-size distribution of the sandy formation considered for the execution of the pilot CO2 sequestration test
Directory of Open Access Journals (Sweden)
L. Altarejos-García
2012-07-01
Full Text Available This paper addresses the use of reliability techniques such as Rosenblueth's Point-Estimate Method (PEM as a practical alternative to more precise Monte Carlo approaches to get estimates of the mean and variance of uncertain flood parameters water depth and velocity. These parameters define the flood severity, which is a concept used for decision-making in the context of flood risk assessment. The method proposed is particularly useful when the degree of complexity of the hydraulic models makes Monte Carlo inapplicable in terms of computing time, but when a measure of the variability of these parameters is still needed. The capacity of PEM, which is a special case of numerical quadrature based on orthogonal polynomials, to evaluate the first two moments of performance functions such as the water depth and velocity is demonstrated in the case of a single river reach using a 1-D HEC-RAS model. It is shown that in some cases, using a simple variable transformation, statistical distributions of both water depth and velocity approximate the lognormal. As this distribution is fully defined by its mean and variance, PEM can be used to define the full probability distribution function of these flood parameters and so allowing for probability estimations of flood severity. Then, an application of the method to the same river reach using a 2-D Shallow Water Equations (SWE model is performed. Flood maps of mean and standard deviation of water depth and velocity are obtained, and uncertainty in the extension of flooded areas with different severity levels is assessed. It is recognized, though, that whenever application of Monte Carlo method is practically feasible, it is a preferred approach.
Directory of Open Access Journals (Sweden)
L. Altarejos-García
2012-01-01
Full Text Available This paper addresses the use of reliability techniques such as Rosenblueth's Point-Estimate Method (PEM as a practical alternative to more precise Monte Carlo approaches to get estimates of the mean and variance of uncertain flood parameters water depth and velocity. These parameters define the flood severity, which is a concept used for decision-making in the context of flood risk assessment. The method proposed is particularly useful when the degree of complexity of the hydraulic models makes Monte Carlo inapplicable in terms of computing time, but when a measure of the variability of these parameters is still needed. The capacity of PEM, which is a special case of numerical quadrature based on orthogonal polynomials, to evaluate the first two moments of performance functions such as the water depth and velocity is demonstrated in the case of a single river reach using a 1-D HEC-RAS model. It is shown that in some cases, using a simple variable transformation, statistical distributions of both water depth and velocity approximate the lognormal. As this distribution is fully defined by its mean and variance, PEM can be used to define the full probability distribution function of these flood parameters and so allowing for probability estimations of flood severity. Then, an application of the method to the same river reach using a 2-D Shallow Water Equations (SWE model is performed. Flood maps of mean and standard deviation of water depth and velocity are obtained, and uncertainty in the extension of flooded areas with different severity levels is assessed. It is recognized, though, that whenever application of Monte Carlo method is practically feasible, it is a preferred approach.
3D RECORDING FOR 2D DELIVERING – THE EMPLOYMENT OF 3D MODELS FOR STUDIES AND ANALYSES –
Directory of Open Access Journals (Sweden)
A. Rizzi
2012-09-01
Full Text Available In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d’Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino. APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying
International Nuclear Information System (INIS)
Highlights: • A multiphase CFD model was combined with RSM. • Gasification optimal operating conditions were found in a pilot scale reactor. • Syngas quality indices were optimized in a biomass gasification process. • Propagation of error methodology was combined with a CFD model and RSM. - Abstract: This paper presents a study to evaluate the potential of Portuguese biomasses (coffee husks, forest residues and vine pruning residues) to produce syngas for different applications. By using a 2-D Eulerian–Eulerian approach within the CFD framework, a design of several computer experiments was developed and were used as analysis tools the response surface method (RSM) and the propagation of error (POE) approach. The CFD model was validated under experimental results collected at a semi-industrial reactor. For design purposes, temperature, steam to biomass ratio (SBR) and the type of biomass were selected as input factors. The responses were the H2 generation, the H2/CO ratio, the CH4/H2 ratio, the carbon conversion and the cold gas efficiency. It was concluded that after an optimization procedure to determine the operating conditions, vine pruning residues could show very promising results considering some of the typical syngas indice standards for commercial purposes. From the optimization procedure, it was also concluded that forest residues are preferable for domestic natural gas applications and vine pruning residues for fuel cells and integrated gasification systems application. By using the RSM combined with POE, it was verified that the operating conditions to get higher performances do not always coincide with those necessary to obtain a stable syngas composition
International Nuclear Information System (INIS)
Highlights: ► A heat and mass transfer model is developed for a compact reformer. ► Hydrogen production from methane steam reforming is simulated. ► Increasing temperature greatly increases the reaction rates at the inlet. ► Temperature in the downstream is increased at higher rate of heat supply. ► Larger permeability enhances gas flow and reaction rates in the catalyst layer. - Abstract: Compact reformers (CRs) are promising devices for efficient fuel processing. In CRs, a thin solid plate is sandwiched between two catalyst layers to enable efficient heat transfer from combustion duct to the reforming duct for fuel processing. In this study, a 2D heat and mass transfer model is developed to investigate the fundamental transport phenomenon and chemical reaction kinetics in a CR for hydrogen production by methane steam reforming (MSR). Both MSR reaction and water gas shift reaction (WGSR) are considered in the numerical model. Parametric simulations are performed to examine the effects of various structural/operating parameters, such as pore size, permeability, gas velocity, temperature, and rate of heat supply on the reformer performance. It is found that the reaction rates of MSR and WGSR are the highest at the inlet but decrease significantly along the reformer. Increasing the operating temperature raises the reaction rates at the inlet but shows very small influence in the downstream. For comparison, increasing the rate of heat supply raises the reaction rates in the downstream due to increased temperature. A high gas velocity and permeability facilitates gas transport in the porous structure thus enhances reaction rates in the downstream of the reformer.
International Nuclear Information System (INIS)
In the study of severe accidents of nuclear pressurized water reactors, the scenarios that describe the relocation of significant quantities of liquid corium at the bottom of the lower head are investigated from the mechanical point of view. In these scenarios, the risk of a breach and the possibility of a large quantity of corium being released from the lower head exist. This may lead to direct heating of the containment or outer vessel steam explosion. These issues are important due to their early containment failure potential. Since the TMI-2 accident, many theoretical and experimental investigations, relating to lower head mechanical behaviour under severe thermo-mechanical loading in the event of a core meltdown accident have been performed. IRSN participated actively in the one-fifth scale USNRC/SNL LHF and OECD LHF (OLHF) programs. Within the framework of these programs, two simplified models were developed by IRSN: the first is a simplified 1D approach based on the theory of pressurized spherical shells and the second is a simplified 2D model based on the theory of shells of revolution under symmetric loading. The mathematical formulation of both models and the creep constitutive equations used are presented in detail in this paper. The corresponding models were used to interpret some of the OLHF program experiments and the calculation results were quite consistent with the experimental data. The two simplified models have been used to simulate the thermo-mechanical behaviour of a 900 MWe pressurized water reactor lower head under severe accident conditions leading to failure. The average transient heat flux produced by the corium relocated at the bottom of the lower head has been determined using the IRSN HARAR code. Two different methods, both taking into account the ablation of the internal surface, are used to determine the temperature profiles across the lower head wall and their effect on the time to failure is discussed. Using these simplified models
Directory of Open Access Journals (Sweden)
Kristin eDickschen
2012-05-01
Full Text Available Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+ mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6. It is widely accepted that CYP2D6 poor metabolizers (PM exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers (EM. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved.In this context, physiologically-based pharmacokinetic (PBPK-modeling provides a useful tool to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy.It has long been thought that only a minor percentage of endoxifen is formed via 4-hydroxytamoxifen. However, the current investigation supports very recently published data that postulates a contribution of 4-hydroxytamoxifen above 20 % to total endoxifen formation. The developed PBPK-model describes tamoxifen PK in rats and humans. Moreover, tamoxifen metabolism in dependence of CYP2D6 phenotype in populations of European female individuals is well described, thus providing a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity or co-treatment with CYP2D6 inhibitors.
Sun, Zhigang; Chen, Xihui; Shao, Hongyan; Song, Yingdong
2016-08-01
A numerical model is presented for simulation of the oxidation-affected behaviors of two dimensional carbon fiber-reinforced silcon carbide matrix composite (2D C/SiC) exposed to air oxidizing environments below 900 °C, which incorporates the modeling of oxidized microstructure and computing of degraded elastic properties. This model is based upon the analysis of the representative volume cell (RVC) of the composite. The multi-scale model of 2D C/SiC composites is concerned in the present study. Analysis results of such a composite can provide a guideline for the real 2D C/SiC composite. The micro-structure during oxidation process is firstly modeled in the RVC. The elastic moduli of oxidized composite under non-stress oxidation environment is computed by finite element analysis. The elastic properties of 2D-C/SiC composites in air oxidizing environment are evaluated and validated in comparison to experimental data. The oxidation time, temperature and fiber volume fractions of C/SiC composite are investigated to show their influences upon the elastic properties of 2D C/SiC composites.
Institute of Scientific and Technical Information of China (English)
HAN Dong; FANG Hong-wei; BAI Jing; HE Guo-jian
2011-01-01
A coupled one-dimensional(1-D)and two-dimensional(2-D)channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article.For the 1-D model,the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network.The Alternating Direction Implicit(ADI)method is adopted for the 2-D model at the nodes.In the coupled model,the 1-D model provides a good approximation with small computational effort,while the 2-D model is applied for complex topography to achieve a high accuracy.An Artificial Neural Network(ANN)method is used for the data exchange and the connectivity between the 1-D and 2-D models.The coupled model is applied to the Jingjiang-Dongting Lake region,to simulate the tremendous looped channel network system,and the results are compared with field data.The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.
Joseph, Rose; Goorjian, Peter; Taflove, Allen
1993-01-01
Experimentalists have produced all-optical switches capable of 100-fs responses. To adequately model such switches, nonlinear effects in optical materials (both instantaneous and dispersive) must be included. In principle, the behavior of electromagnetic fields in nonlinear dielectrics can be determined by solving Maxwell's equations subject to the assumption that the electric polarization has a nonlinear relation to the electric field. However, until our previous work, the resulting nonlinear Maxwell's equations have not been solved directly. Rather, approximations have been made that result in a class of generalized nonlinear Schrodinger equations (GNLSE) that solve only for the envelope of the optical pulses. In this paper, we present first-time calculations from the vector nonlinear Maxwell's equations of femtosecond soliton propagation and scattering, including carrier waves, in two-dimensional systems of dielectric waveguides exhibiting the Kerr and Raman quantum effects. We use the finite-difference time-domain (FD-TD) method in an extension of our 1-D work. There, in a fundamental innovation, we treated the linear and nonlinear convolutions for the electric polarization as new dependent variables. By differentiating these convolutions in the time domain, we derived an equivalent system of coupled, nonlinear second-order ODE's. These equations together with Maxwell's equations form the system that is solved to determine the electromagnetic fields in inhomogeneous nonlinear dispersive media. Backstorage in time is limited to only that needed by the time-integration algorithm for the ODE's, rather than that needed to store the time-history of the kernel functions of the convolutions (1000-10,000 time steps). Thus, a 2-D nonlinear optics model from Maxwell's equations is now feasible.
Senter, A. E.; Pasternack, G. B.
2011-12-01
In higher order, wider channels, dead wood that is delivered to the wetted channel has a high probability of transporting downstream. Many other dead wood pieces can accumulate within a wide but often dry bankfull channel and along the edges of the riparian corridor. These dead wood pieces are of varying sizes - twigs to tree trunks - and may transport at unknown discharges as seasonally driven precipitation and random storms occur. The dynamics of dead wood pieces such as these were investigated along a 4th order 13-km segment of the South Yuba River, Sierra Nevada, California. The scientific questions answered in this study were: What were the bulk statistics of dead wood across multiple spatial scales: segment, reach, and morphologic unit? Was the longitudinal distribution of dead wood organized or random? As a function of discharge, what were the total percentage and number of digitized dead wood pieces per modeled wetted area? A kite-blimp was used to obtain ~4 cm resolution digital images of the river corridor in summer 2009. Images were georeferenced in ArcGIS; digitization of all visible dead wood resulted in >8000 individual polygons. During the same field season, topographic data were collected of the channel bathymetry, active channel expanse, and riparian corridor using RTK-GPS, total stations, pontoon-based echosounding, and LIDAR. SRH-2D was used to simulate 1-m resolution hydrodynamics (i.e., water surface elevations, depths, velocity vectors, and shear stresses) at 21 discharges spanning three orders of magnitude from base flow to moderate flood, also accounting for strong hydrologic seasonality. Model results were stratified and analyzed at segment, reach, and morphologic unit scales. Then hydrodynamic results at each scale were compared to dead wood data at each scale to understand the links between landforms, flows, and dead wood distributions.
Vavilin, V A; Angelidaki, I
2005-01-01
Batch anaerobic codigestion of municipal household solid waste (MHSW) and digested manure in mesophilic conditions was carried out. The different waste-to-biomass ratios and intensity of mixing were studied theoretically and experimentally. The experiments showed that when organic loading was high, intensive mixing resulted in acidification and failure of the process, while low mixing intensity was crucial for successful digestion. However, when loading was low, mixing intensity had no significant effect on the process. We hypothesized that mixing was preventing establishment of methanogenic zones in the reactor space. The methanogenic zones are important to withstand inhibition due to development of acids formed during acidogenesis. The 2D distributed models of symmetrical cylinder reactor are presented based on the hypothesis of the necessity of a minimum size of methanogenic zones that can propagate and establish a good methanogenic environment. The model showed that at high organic loading rate spatial separation of the initial methanogenic centers from active acidogenic areas is the key factor for efficient conversion of solids to methane. The initial level of methanogenic biomass in the initiation centers is a critical factor for the survival of these centers. At low mixing, most of the initiation methanogenic centers survive and expand over the reactor volume. However, at vigorous mixing the initial methanogenic centers are reduced in size, averaged over the reactor volume, and finally dissipate. Using fluorescence in situ hybridization, large irregular cocci of microorganisms were observed in the case with minimal mixing, while in the case with high stirring mainly dead cells were found. PMID:15540194
Ikeda, Tatsushi; Ito, Hironobu; Tanimura, Yoshitaka
2015-06-01
We explore and describe the roles of inter-molecular vibrations employing a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear infrared absorption (1D IR), we calculated 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are compared with results obtained from the LL+SL BO model applied through use of hierarchal Fokker-Planck equations with non-perturbative and non-Markovian noise. We find that all of the qualitative features of the 2D profiles of the signals obtained from the MD simulations are reproduced with the LL+SL BO model, indicating that this model captures the essential features of the inter-molecular motion. We analyze the fitted 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The origins of the echo peaks of the librational motion and the elongated peaks parallel to the probe direction are elucidated using optical Liouville paths. PMID:26049441
Ikeda, Tatsushi; Tanimura, Yoshitaka
2015-01-01
We explore and describe the roles of inter-molecular vibrations in terms of a Brownian oscillator (BO) model with linear-linear (LL) and square-linear (SL) system-bath interactions, which we use to analyze two-dimensional (2D) THz-Raman spectra obtained by means of molecular dynamics (MD) simulations. In addition to linear absorption (1D IR), we calculate 2D Raman-THz-THz, THz-Raman-THz, and THz-THz-Raman signals for liquid formamide, water, and methanol using an equilibrium non-equilibrium hybrid MD simulation. The calculated 1D IR and 2D THz-Raman signals are then accounted by the LL+SL BO model with the use of the hierarchal Fokker-Planck equations for a non-perturbative and non-Markovian noise. All of the characteristic 2D profiles of the simulated signals are reproduced using the LL+SL BO model, indicating that the present model captures the essential features of the inter-molecular motion. We analyze the fitted the 2D profiles in terms of anharmonicity, nonlinear polarizability, and dephasing time. The ...
El Kadi Abderrezzak, Kamal; Die Moran, Andrés; Tassi, Pablo; Ata, Riadh; Hervouet, Jean-Michel
2016-07-01
Bank erosion can be an important form of morphological adjustment in rivers. With the advances made in computational techniques, two-dimensional (2D) depth-averaged numerical models have become valuable tools for resolving many engineering problems dealing with sediment transport. The objective of this research work is to present a simple, new, bank-erosion operator that is integrated into a 2D Saint-Venant-Exner morphodynamic model. The numerical code is based on an unstructured grid of triangular elements and finite-element algorithms. The slope of each element in the grid is compared to the angle of repose of the bank material. Elements for which the slope is too steep are tilted to bring them to the angle of repose along a horizontal axis defined such that the volume loss above the axis is equal to the volume gain below, thus ensuring mass balance. The model performance is assessed using data from laboratory flume experiments and a scale model of the Old Rhine. For the flume experiment case with uniform bank material, relevant results are obtained for bank geometry changes. For the more challenging case (i.e. scale model of the Old Rhine with non-uniform bank material), the numerical model is capable of reproducing the main features of the bank failure, induced by the newly designed groynes, as well as the transport of the mobilized sediment material downstream. Some deviations between the computed results and measured data are, however, observed. They are ascribed to the effects of three-dimensional (3D) flow structures, pore pressure and cohesion, which are not considered in the present 2D model.
Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...
A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling
Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.
2015-06-01
In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.
Directory of Open Access Journals (Sweden)
Longbiao Li
2016-05-01
Full Text Available In this paper, the cyclic fatigue hysteresis loops of 2D woven SiC/SiC ceramic matrix composites (CMCs at elevated temperatures in steam have been investigated. The interface slip between fibers and the matrix existing in matrix cracking modes 3 and 5, in which matrix cracking and interface debonding occurred in longitudinal yarns, is considered as the major reason for hysteresis loops of 2D woven CMCs. The hysteresis loops of 2D SiC/SiC composites corresponding to different peak stresses, test conditions, and loading frequencies have been predicted using the present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing fatigue peak stress. With increasing cycle number, the interface shear stress in the longitudinal yarns decreases, leading to transition of interface slip types of matrix cracking modes 3 and 5.
Choquard, Ph.; Vuffray, M.
2014-10-01
The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler-Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf-Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one
Energy Technology Data Exchange (ETDEWEB)
Vivier, Frederic [Centre National de la Recherche Scientifique (CNRS), Universite Pierre et Marie Curie, Laboratoire d' Oceanographie et du Climat, Experimentation et Approches Numeriques, Institut Pierre-Simon Laplace (LOCEAN-IPSL), Paris (France); Iudicone, Daniele [Stazione Zoologica di Napoli (SZN), Naples (Italy); Busdraghi, Fabiano [Stazione Zoologica di Napoli (SZN), Naples (Italy); LOCEAN-IPSL, Paris (France); Park, Young-Hyang [Museum National d' Histoire Naturelle, LOCEAN-IPSL, Paris (France)
2010-02-15
We analyze the processes responsible for the generation and evolution of sea-surface temperature anomalies observed in the Southern Ocean during a decade based on a 2D diagnostic mixed-layer model in which geostrophic advection is prescribed from altimetry. Anomalous air-sea heat flux is the dominant term of the heat budget over most of the domain, while anomalous Ekman heat fluxes account for 20-40% of the variance in the latitude band 40 -60 S. In the ACC pathway, lateral fluxes of heat associated with anomalous geostrophic currents are a major contributor, dominating downstream of several topographic features, reflecting the influence of eddies and frontal migrations. A significant fraction of the variability of large-scale SST anomalies is correlated with either ENSO or the SAM, each mode contributing roughly equally. The relation between the heat budget terms and these climate modes is investigated, showing in particular that anomalous Ekman and air-sea heat fluxes have a co-operating effect (with regional exceptions), hence the large SST response associated with each mode. It is further shown that ENSO- or SAM-locked anomalous geostrophic currents generate substantial heat fluxes in all three basins with magnitude comparable with that of atmospheric forcings for ENSO, and smaller for the SAM except for limited areas. ENSO-locked forcings generate SST anomalies along the ACC pathway, and advection by mean flows is found to be a non-negligible contribution to the heat budget, exhibiting a wavenumber two zonal structure, characteristic of the Antarctic Circumpolar Wave. By contrast SAM-related forcings are predominantly zonally uniform along the ACC, hence smaller zonal SST gradients and a lesser role of mean advection, except in the SouthWest Atlantic. While modeled SST anomalies are significantly correlated with observations over most of the Southern Ocean, the analysis of the data-model discrepancies suggests that vertical ocean physics may play a significant
Scratched-XY Universality and Phase Diagram of Disordered 1D Bosons in Optical Lattice
Yao, Zhiyuan; Pollet, Lode; Prokof'ev, Nikolay; Svistunov, Boris
The superfluid-insulator quantum phase transition in a 1D system with weak links belongs to the so-called scratched-XY universality class, provided the irrenormalizable exponent ζ characterizing the distribution of weak links is smaller than 2 / 3 . With a combination of worm-algorithm Monte Carlo simulations and asymptotically exact analytics, we accurately trace the position of the scratched-XY critical line on the ground-state phase diagram of bosonic Hubbard model at unity filling. In particular, we reveal the location of the tricritical point separating the scratched-XY criticality from the Giamarchi-Schulz one.
International Nuclear Information System (INIS)
Task 2D concerns numerical simulation of the coupled THC modeling of the DST test at Yucca mountain, with given results for geologic, thermal, hydrologic, mineralogic and petrologic characterization, as-built configuration of the test block of DST, including locations of various sensors and measuring instruments and the plans for heating and cooling, including expected heater powers at various times, and compared with geochemical measurements performed on gas, water, and mineral samples collected from the DST. Two teams of DOE/LBNL (USA) and JNC (Japan) participated the task with different approaches. The LBNL model represented the fractures and rock matrix by a dual-continuum concept, with the mineral-water-gas reactions treated by primarily kinetic and a few equilibrium reactions. The JNC model represented the fractures and matrix as a single effective continuum, with equilibrium mineral-water reactions controlling the chemical evolution (as well as considering aqueous species transport). The JNC team performed the coupled THC simulation of the Yucca Mountain Drift Scale Test by the coupled THM code 'THAMES', mass transport code 'Dtransu' and geochemical code 'PHREEQE' under coupling system code 'COUPLYS'. The LBNL team simulated the THC processes include coupling between heat, water, and vapor flow; aqueous and gaseous species transport; kinetic and equilibrium mineral-water reactions; and feedback of mineral precipitation/dissolution on porosity, permeability, and capillary pressure, with the FDM code TOUGHREACT V3.0. In general, both models capture the temperature evolution in the rock fairly well, although the JNC model yielded a closer match to the initial temperature rise in the rock, probably due to the better site-specific thermal data. Both models showed the contrasting solubility effects of increasing temperature on calcite and silica solubility; yet the dual continuum approach better represented the effects of the boiling and condensation periods on