WorldWideScience

Sample records for 2d saft technique

  1. The SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) real-time inspection system: Operational principles and implementation

    Hall, T. E.; Reid, L. D.; Doctor, S. R.

    1988-06-01

    This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.

  2. Technique of Embedding Depth Maps into 2D Images

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  3. 2-D DOA Estimation via Matrix Partition and Stacking Technique

    Ping Wei

    2009-01-01

    Full Text Available A novel approach is proposed for the efficient estimation of the two-dimensional (2-D direction-of-arrival (DOA of signals impinging on two orthogonal uniform linear arrays (ULAs. By partitioning the cross-correlation matrix (CCM between two ULAs data into a great deal of submatrices and making use of the submatrices and the symmetric subarrays, an extended correlation matrix is constructed, and then uses the modified ESPRIT approach to extract out the so-called Kronecker Steering Vectors (KSVs of which each is the Kronecker product of the elevation and azimuth angle with a one-to-one relationship. Upon that the proposed method yields the estimate of the 2-D DOA efficiently without requiring the additionally computational burden to remove the pair-matching problem. Furthermore, the main idea of the matrix partition and stacking is to much-enhanced subspace estimate. So based on the use of the concept, the proposed method's performance is better than the existing similar approaches. Meanwhile, unlike the traditional subspace methods, it is shown that the proposed can resolve the same uncorrelated sources as the number of subarray sensor through a delicate partition-and-stacking process. Simulation results demonstrate that the proposed method is superior to the existing techniques in both DOA estimation and the detection capability of sources.

  4. Generalization Technique for 2D+SCALE Dhe Data Model

    Karim, Hairi; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    Different users or applications need different scale model especially in computer application such as game visualization and GIS modelling. Some issues has been raised on fulfilling GIS requirement of retaining the details while minimizing the redundancy of the scale datasets. Previous researchers suggested and attempted to add another dimension such as scale or/and time into a 3D model, but the implementation of scale dimension faces some problems due to the limitations and availability of data structures and data models. Nowadays, various data structures and data models have been proposed to support variety of applications and dimensionality but lack research works has been conducted in terms of supporting scale dimension. Generally, the Dual Half Edge (DHE) data structure was designed to work with any perfect 3D spatial object such as buildings. In this paper, we attempt to expand the capability of the DHE data structure toward integration with scale dimension. The description of the concept and implementation of generating 3D-scale (2D spatial + scale dimension) for the DHE data structure forms the major discussion of this paper. We strongly believed some advantages such as local modification and topological element (navigation, query and semantic information) in scale dimension could be used for the future 3D-scale applications.

  5. A Survey of 2D Face Recognition Techniques

    Mejda Chihaoui

    2016-09-01

    Full Text Available Despite the existence of various biometric techniques, like fingerprints, iris scan, as well as hand geometry, the most efficient and more widely-used one is face recognition. This is because it is inexpensive, non-intrusive and natural. Therefore, researchers have developed dozens of face recognition techniques over the last few years. These techniques can generally be divided into three categories, based on the face data processing methodology. There are methods that use the entire face as input data for the proposed recognition system, methods that do not consider the whole face, but only some features or areas of the face and methods that use global and local face characteristics simultaneously. In this paper, we present an overview of some well-known methods in each of these categories. First, we expose the benefits of, as well as the challenges to the use of face recognition as a biometric tool. Then, we present a detailed survey of the well-known methods by expressing each method’s principle. After that, a comparison between the three categories of face recognition techniques is provided. Furthermore, the databases used in face recognition are mentioned, and some results of the applications of these methods on face recognition databases are presented. Finally, we highlight some new promising research directions that have recently appeared.

  6. SAFT-assisted sound beam focusing using phased arrays (PA-SAFT) for non-destructive evaluation

    Nanekar, Paritosh; Kumar, Anish; Jayakumar, T.

    2015-04-01

    Focusing of sound has always been a subject of interest in ultrasonic non-destructive evaluation. An integrated approach to sound beam focusing using phased array and synthetic aperture focusing technique (PA-SAFT) has been developed in the authors' laboratory. The approach involves SAFT processing on ultrasonic B-scan image collected by a linear array transducer using a divergent sound beam. The objective is to achieve sound beam focusing using fewer elements than the ones required using conventional phased array. The effectiveness of the approach is demonstrated on aluminium blocks with artificial flaws and steel plate samples with embedded volumetric weld flaws, such as slag and clustered porosities. The results obtained by the PA-SAFT approach are found to be comparable to those obtained by conventional phased array and full matrix capture - total focusing method approaches.

  7. An evaluation of 2D SLAM techniques available in Robot Operating System

    Machado Santos, Joao; Portugal, David; Rocha, Rui P.

    2013-01-01

    n this work, a study of several laser-based 2D Simultaneous Localization and Mapping (SLAM) techniques available in Robot Operating System (ROS) is conducted. All the approaches have been evaluated and compared in 2D simulations and real world experiments. In order to draw conclusions on the performance of the tested techniques, the experimental results were collected under the same conditions and a generalized performance metric based on the k-nearest neighbours concept was applied. Moreover...

  8. Ambiguities in results obtained with 2D gel replicon mapping techniques

    Linskens, Maarten H.K.; Huberman, Joel A.

    1990-01-01

    Recently, two 2-dimensional (2D) gel techniques, termed neutral/neutral and neutral/alkaline, have been developed and employed to map replication origins in eukaryotic plasmids and chromosomal DNA. The neutral/neutral technique, which requires less DNA for analysis, has been preferentially used in r

  9. 2D NMR技术在石油测井中的应用%Application of 2D NMR Techniques in Petroleum Logging

    顾兆斌; 刘卫; 孙佃庆; 孙威

    2009-01-01

    近几年, 2D NMR技术得到迅速发展, 特别是在核磁共振测井领域. 该文将主要介绍2D NMR技术的脉冲序列、弛豫原理以及2D NMR技术在石油测井中应用. 2D NMR技术是在梯度场的作用下, 利用一系列回波时间间隔不同的CPMG脉冲进行测量, 利用二维的数学反演得到2D NMR. 2D NMR技术可以直接测量自扩散系数、弛豫时间、原油粘度、含油饱和度、可动水饱和度、孔隙度、 渗透率等地层流体性质和岩石物性参数. 从2D NMR谱上, 可以直观的区分油、气、水, 判断储层润湿性, 确定内部磁场梯度等. 2D NMR技术为识别流体类型提供了新方法.%This review paper introduces 2D NMR pulse trains frequently used in petroleum logging and their applications, as well as relevant relaxation mechanisms. In NMR logging, often a set of data is acquired at different CPMG echo spacing in the presence of constant gradient magnetic field. Two-dimensional mathematical inversion is then applied to solve the dataset, yielding two-dimensional NMR map (D-T_2). In the meanwhile, 2D NMR technique can be used to measure the property parameters of formation fluid and the petrophysics parameters directly, such as diffusion coefficient, relaxation time, crude oil viscosity, oil saturation, free water saturation, porosity, permeability and so on. The 2D NMR map can also be used to differentiate oil, gas and water, determine internal gradient field in and judge wettability of the sample. 2D NMR techniques offer powerful tools for identifying fluid type in NMR logging.

  10. A functional technique based on the Euclidean algorithm with applications to 2-D acoustic diffractal diffusers

    Cortés-Vega, Luis

    2015-09-01

    We built, based on the Euclidean algorithm, a functional technique, which allows to discover a direct proof of Chinese Remainder Theorem. Afterwards, by using this functional approach, we present some applications to 2-D acoustic diffractal diffusers. The novelty of the method is their functional algorithmic character, which improves ideas, as well as, other results of the author and his collaborators in a previous work.

  11. Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques.

    Arvidsson, Anna; Sarve, Hamid; Johansson, Carina B

    2015-01-01

    The aim was to compare the osseointegration of grit-blasted implants with and without a hydrogen fluoride treatment in rat tibia and femur, and to visualize bone formation using state-of-the-art 3D visualization techniques. Grit-blasted implants were inserted in femur and tibia of 10 Sprague-Dawley rats (4 implants/rat). Four weeks after insertion, bone implant samples were retrieved. Selected samples were imaged in 3D using Synchrotron Radiation-based μCT (SRμCT). The 3D data was quantified and visualized using two novel visualization techniques, thread fly-through and 2D unfolding. All samples were processed to cut and ground sections and 2D histomorphometrical comparisons of bone implant contact (BIC), bone area (BA), and mirror image area (MI) were performed. BA values were statistically significantly higher for test implants than controls (p 3D analysis was a valuable complement to 2D analysis, facilitating improved visualization. However, further studies are required to evaluate aspects of 3D quantitative techniques, with relation to light microscopy that traditionally is used for osseointegration studies.

  12. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  13. Achieving energy efficiency in LTE with joint D2D communications and green networking techniques

    Yaacoub, Elias E.

    2013-07-01

    In this paper, the joint operation of cooperative device-to-device (D2D) communications and green cellular communications is investigated. An efficient approach for grouping mobile terminals (MTs) into cooperative clusters is described. In each cluster, MTs cooperate via D2D communications to share content of common interest. Furthermore, an energy-efficient technique for putting BSs in sleep mode in an LTE cellular network is presented. Finally, both methods are combined in order to ensure green communications for both the users\\' MTs and the operator\\'s BSs. The studied methods are investigated in the framework of OFDMA-based state-of-the-art LTE cellular networks, while taking into account intercell interference and resource allocation. © 2013 IEEE.

  14. Inspection of thick welded joints using laser-ultrasonic SAFT.

    Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P

    2016-07-01

    The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing.

  15. Monoplane 3D Overlay Roadmap versus Conventional Biplane 2D Roadmap Technique for Neurointervenional Procedures

    Jang, Dong-Kyu; Stidd, David A.; Schafer, Sebastian; Chen, Michael; Moftakhar, Roham

    2016-01-01

    Purpose We investigated whether a 3D overlay roadmap using monoplane fluoroscopy offers advantages over a conventional 2D roadmap using biplane fluoroscopy during endovascular aneurysm treatment. Materials and Methods A retrospective chart review was conducted for 131 consecutive cerebral aneurysm embolizations by three neurointerventionalists at a single institution. Allowing for a transition period, the periods from January 2012 to August 2012 (Time Period 1) and February 2013 to July 2013 (Time Period 2) were analyzed for radiation exposure, contrast administration, fluoroscopy time, procedure time, angiographic results, and perioperative complications. Two neurointerventionalists (Group 1) used a conventional 2D roadmap for both Time Periods, and one neurointerventionalist (Group 2) transitioned from a 2D roadmap during Time Period 1 to a 3D overlay roadmap during Time Period 2. Results During Time Period 2, Group 2 demonstrated reduced fluoroscopy time (p<0.001), procedure time (P=0.023), total radiation dose (p=0.001), and fluoroscopy dose (P=0.017) relative to Group 1. During Time Period 2, there was no difference of immediate angiographic results and procedure complications between the two groups. Through the transition from Time Period 1 to Time Period 2, Group 2 demonstrated decreased fluoroscopy time (p< 0.001), procedure time (p=0.022), and procedure complication rate (p=0.041) in Time Period 2 relative to Time Period 1. Conclusion The monoplane 3D overlay roadmap technique reduced fluoroscopy dose and fluoroscopy time during neurointervention of cerebral aneurysms with similar angiographic occlusions and complications rate relative to biplane 2D roadmap, which implies possible compensation of limitations of monoplane fluoroscopy by 3D overlay technique. PMID:27621947

  16. Photoacoustic technique for the characterization of plasmonic properties of 2D periodic arrays of gold nanoholes

    E. Petronijevic

    2017-02-01

    Full Text Available We apply photo-acoustic (PA technique to examine plasmonic properties of 2D periodic arrays of nanoholes etched in gold/chromium layer upon a glass substrate. The pitch of these arrays lies in the near IR, and this, under appropriate wave vector matching conditions in the visible region, allows for the excitation of surface plasmon polaritons (SPP guided along a dielectric – metal surface. SPP offered new approaches in light guiding and local field intensity enhancement, but their detection is often difficult due to the problematic discrimination of their contribution from the overall scattering. Here PA measures the energy absorbed due to the non-radiative decay of SPPs. We report on the absorption enhancement by presenting the spatial mapping of absorption under the incidence angles and wavelength that correspond to the efficient excitation of SPPs. Moreover, a comparison with optical transmission measurements is carried out, underlining the applicability and sensitivity of PA technique.

  17. Three-dimensional ultrasonic imaging of concrete elements using different SAFT data acquisition and processing schemes

    Schickert, Martin, E-mail: martin.schickert@mfpa.de [Materialforschungs- und -prüfanstalt an der Bauhaus-Universität Weimar, Coudraystr. 9, 99425 Weimar (Germany)

    2015-03-31

    Ultrasonic testing systems using transducer arrays and the SAFT (Synthetic Aperture Focusing Technique) reconstruction allow for imaging the internal structure of concrete elements. At one-sided access, three-dimensional representations of the concrete volume can be reconstructed in relatively great detail, permitting to detect and localize objects such as construction elements, built-in components, and flaws. Different SAFT data acquisition and processing schemes can be utilized which differ in terms of the measuring and computational effort and the reconstruction result. In this contribution, two methods are compared with respect to their principle of operation and their imaging characteristics. The first method is the conventional single-channel SAFT algorithm which is implemented using a virtual transducer that is moved within a transducer array by electronic switching. The second method is the Combinational SAFT algorithm (C-SAFT), also named Sampling Phased Array (SPA) or Full Matrix Capture/Total Focusing Method (TFM/FMC), which is realized using a combination of virtual transducers within a transducer array. Five variants of these two methods are compared by means of measurements obtained at test specimens containing objects typical of concrete elements. The automated SAFT imaging system FLEXUS is used for the measurements which includes a three-axis scanner with a 1.0 m × 0.8 m scan range and an electronically switched ultrasonic array consisting of 48 transducers in 16 groups. On the basis of two-dimensional and three-dimensional reconstructed images, qualitative and some quantitative results of the parameters image resolution, signal-to-noise ratio, measurement time, and computational effort are discussed in view of application characteristics of the SAFT variants.

  18. Three-dimensional ultrasonic imaging of concrete elements using different SAFT data acquisition and processing schemes

    Schickert, Martin

    2015-03-01

    Ultrasonic testing systems using transducer arrays and the SAFT (Synthetic Aperture Focusing Technique) reconstruction allow for imaging the internal structure of concrete elements. At one-sided access, three-dimensional representations of the concrete volume can be reconstructed in relatively great detail, permitting to detect and localize objects such as construction elements, built-in components, and flaws. Different SAFT data acquisition and processing schemes can be utilized which differ in terms of the measuring and computational effort and the reconstruction result. In this contribution, two methods are compared with respect to their principle of operation and their imaging characteristics. The first method is the conventional single-channel SAFT algorithm which is implemented using a virtual transducer that is moved within a transducer array by electronic switching. The second method is the Combinational SAFT algorithm (C-SAFT), also named Sampling Phased Array (SPA) or Full Matrix Capture/Total Focusing Method (TFM/FMC), which is realized using a combination of virtual transducers within a transducer array. Five variants of these two methods are compared by means of measurements obtained at test specimens containing objects typical of concrete elements. The automated SAFT imaging system FLEXUS is used for the measurements which includes a three-axis scanner with a 1.0 m × 0.8 m scan range and an electronically switched ultrasonic array consisting of 48 transducers in 16 groups. On the basis of two-dimensional and three-dimensional reconstructed images, qualitative and some quantitative results of the parameters image resolution, signal-to-noise ratio, measurement time, and computational effort are discussed in view of application characteristics of the SAFT variants.

  19. Wound Measurement Techniques: Comparing the Use of Ruler Method, 2D Imaging and 3D Scanner.

    Shah, Aj; Wollak, C; Shah, J B

    2013-12-01

    The statistics on the growing number of non-healing wounds is alarming. In the United States, chronic wounds affect 6.5 million patients. An estimated US $25 billion is spent annually on treatment of chronic wounds and the burden is rapidly growing due to increasing health care costs, an aging population and a sharp rise in the incidence of diabetes and obesity worldwide.(1) Accurate wound measurement techniques will help health care personnel to monitor the wounds which will indirectly help improving care.(7,9) The clinical practice of measuring wounds has not improved even today.(2,3) A common method like the ruler method to measure wounds has poor interrater and intrarater reliability.(2,3) Measuring the greatest length by the greatest width perpendicular to the greatest length, the perpendicular method, is more valid and reliable than other ruler based methods.(2) Another common method like acetate tracing is more accurate than the ruler method but still has its disadvantages. These common measurement techniques are time consuming with variable inaccuracies. In this study, volumetric measurements taken with a non-contact 3-D scanner are benchmarked against the common ruler method, acetate grid tracing, and 2-D image planimetry volumetric measurement technique. A liquid volumetric fill method is used as the control volume. Results support the hypothesis that the 3-D scanner consistently shows accurate volumetric measurements in comparison to standard volumetric measurements obtained by the waterfill technique (average difference of 11%). The 3-D scanner measurement technique was found more reliable and valid compared to other three techniques, the ruler method (average difference of 75%), acetate grid tracing (average difference of 41%), and 2D planimetric measurements (average difference of 52%). Acetate tracing showed more accurate measurements compared to the ruler method (average difference of 41% (acetate tracing) compared to 75% (ruler method)). Improving

  20. Predicting enhanced absorption of light gases in polyethylene using simplified PC-SAFT and SAFT-VR

    Haslam, Andrew J.; von Solms, Nicolas; Adjiman, Claire S.

    2006-01-01

    Absorption of light gases in polyethylene (PE) is studied using two versions of the Statistical Associating Fluid Theory (SAFT): SAFT for chain molecules with attractive potentials of variable range (VR) and simplified perturbed-chain (PC) SAFT. Emphasis is placed on the light gases typically pre...

  1. Fabrication of capacitive acoustic resonators combining 3D printing and 2D inkjet printing techniques.

    Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier

    2015-10-14

    A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  2. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  3. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM Techniques

    Kamarulzaman Kamarudin

    2014-12-01

    Full Text Available This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM techniques (i.e., Gmapping and Hector SLAM using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS. The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect’s depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  4. Fabrication of Capacitive Acoustic Resonators Combining 3D Printing and 2D Inkjet Printing Techniques

    Rubaiyet Iftekharul Haque

    2015-10-01

    Full Text Available A capacitive acoustic resonator developed by combining three-dimensional (3D printing and two-dimensional (2D printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency.

  5. SAFT nickel hydrogen cell cycling status

    Borthomieu, Yannick; Duquesne, Didier

    1994-01-01

    An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.

  6. A hybrid MAS/MoM technique for 2D impedance scatterers illuminated by closely positioned sources

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2005-01-01

    A hybrid technique for 2D scattering problems with impedance structures and closely positioned illuminating sources is presented. This technique combines the method of auxiliary sources (MAS) with a localized method of moments (MoM) region near the source. Significant improvements over standard MAS...

  7. Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT

    Graham, Aaron M [ORNL; Collins, Benjamin S [ORNL; Downar, Thomas [University of Michigan

    2017-01-01

    The MPACT transport code is being jointly developed by Oak Ridge National Laboratory and the University of Michigan to serve as the primary neutron transport code for the Virtual Environment for Reactor Applications Core Simulator. MPACT uses the 2D/1D method to solve the transport equation by decomposing the reactor model into a stack of 2D planes. A fine mesh flux distribution is calculated in each 2D plane using the Method of Characteristics (MOC), then the planes are coupled axially through a 1D NEM-P$_3$ calculation. This iterative calculation is then accelerated using the Coarse Mesh Finite Difference method. One problem that arises frequently when using the 2D/1D method is that of control rod cusping. This occurs when the tip of a control rod falls between the boundaries of an MOC plane, requiring that the rodded and unrodded regions be axially homogenized for the 2D MOC calculations. Performing a volume homogenization does not properly preserve the reaction rates, causing an error known as cusping. The most straightforward way of resolving this problem is by refining the axial mesh, but this can significantly increase the computational expense of the calculation. The other way of resolving the partially inserted rod is through the use of a decusping method. This paper presents new decusping methods implemented in MPACT that can dynamically correct the rod cusping behavior for a variety of problems.

  8. Comparison of a unidirectional panoramic 3D endoluminal interpretation technique to traditional 2D and bidirectional 3D interpretation techniques at CT colonography: preliminary observations

    Lenhart, D.K.; Babb, J.; Bonavita, J.; Kim, D. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Bini, E.J. [Department of Medicine, NYU School of Medicine, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Megibow, A.J. [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States); Macari, M., E-mail: michael.macari@med.nyu.ed [Department of Radiology, NYU Medical Center, 560 First Avenue, Suite HW-202, New York, NY 10016 (United States)

    2010-02-15

    Aim: To compare the evaluation times and accuracy of unidirectional panoramic three-dimensional (3D) endoluminal interpretation to traditional two-dimensional (2D) and bidirectional 3D endoluminal techniques. materials and methods: Sixty-nine patients underwent computed tomography colonography (CTC) after bowel cleansing. Forty-five had no polyps and 24 had at least one polyp >=6 mm. Patients underwent same-day colonoscopy with segmental unblinding. Three experienced abdominal radiologists evaluated the data using one of three primary interpretation techniques: (1) 2D; (2) bidirectional 3D; (3) panoramic 3D. Mixed model analysis of variance and logistic regression for correlated data were used to compare techniques with respect to time and sensitivity and specificity. Results: Mean evaluation times were 8.6, 14.6, and 12.1 min, for 2D, 3D, and panoramic, respectively. 2D was faster than either 3D technique (p < 0.0001), and the panoramic technique was faster than bidirectional 3D (p = 0.0139). The overall sensitivity of each technique per polyp and per patient was 68.4 and 76.7% for 2D, 78.9 and 93.3% for 3D; and 78.9 and 86.7% for panoramic 3D. Conclusion: 2D interpretation was the fastest overall, the panoramic technique was significantly faster than the bidirectional with similar sensitivity and specificity. The sensitivity for a single reader was significantly lower using the 2D technique. Each reader should select the technique with which they are most successful.

  9. Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.

    Robotti, Elisa; Marengo, Emilio; Quasso, Fabio

    2016-01-01

    Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers. Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.

  10. Optimal 25-Point Finite-Difference Subgridding Techniques for the 2D Helmholtz Equation

    Tingting Wu

    2016-01-01

    Full Text Available We present an optimal 25-point finite-difference subgridding scheme for solving the 2D Helmholtz equation with perfectly matched layer (PML. This scheme is second order in accuracy and pointwise consistent with the equation. Subgrids are used to discretize the computational domain, including the interior domain and the PML. For the transitional node in the interior domain, the finite difference equation is formulated with ghost nodes, and its weight parameters are chosen by a refined choice strategy based on minimizing the numerical dispersion. Numerical experiments are given to illustrate that the newly proposed schemes can produce highly accurate seismic modeling results with enhanced efficiency.

  11. Application of simplified PC-SAFT to glycol ethers

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2-e...

  12. Development of a 2D temperature measurement technique for combustion diagnostics using 2-line atomic fluorescence

    Engstroem, Johan

    2001-01-01

    The present thesis is concerned with the development and application of a novel planar laser-induced fluorescence (PLIF) technique for temperature measurements in a variety of combusting flows. Accurate measurement of temperature is an essential task in combustion diagnostics, since temperature is one of the most fundamental quantities for the characterization of combustion processes. The technique is based on two-line atomic fluorescence (TLAF) from small quantities of atomic indium (In) seeded into the fuel. It has been developed from small-scale experiments in laboratory flames to the point where practical combustion systems can be studied. The technique is conceptually simple and reveals temperature information in the post-flame regions. The viability of the technique has been tested in three extreme measurement situations: in spark ignition engine combustion, in ultra-lean combustion situations such as lean burning aero-engine concepts and, finally, in fuel-rich combustion. TLAF was successfully applied in an optical Sl engine using isooctane as fuel. The wide temperature sensitivity, 700 - 3000 K, of the technique using indium atoms allowed measurements over the entire combustion cycle in the engine to be performed. In applications in lean combustion a potential problem caused by the strong oxidation processes of indium atoms was encountered. This limits measurement times due to deposits of absorbing indium oxide on measurement windows. The seeding requirement is a disadvantage of the technique and can be a limitation in some applications. The results from experiments performed in sooting flames are very promising for thermometry measurements in such environments. Absorption by hydrocarbons and other native species was found to be negligible. Since low laser energies and low seeding concentrations could be used, the technique did not, unlike most other incoherent optical thermometry techniques, suffer interferences from LII of soot particles or LIF from PAH

  13. A NEW TECHNIQUE FOR THE EXTRACTION OF CHARACTERISTIC VIEWS FOR 2D/3D INDEXATION

    Mohamed El far,

    2010-07-01

    Full Text Available The tridimensional models are increasingly used in applications that require visualizing realistic objects (CAD/CAO, medical simulations, games, virtual reality, etc.. Therefore, the management of collecting 3D data of big size is becoming a significant field.For example, the indexation of these data allows a designer to easily retrieve the data that are visually and semantically similar to a featured query object. To that effect, two main approaches exist: searching by using a 3D model directly and searching by using a 2D view of the 3D query object. In our case/study, we are interested by this last approach and we emphasize on the extraction of haracteristic views of 3D models using the Datamining Algorithms “Apriori and extraction of association rules” from a description ofcharacteristic views based on the moments of Zernike. Moreover, the featured system relies on a Bayesian probabilistic approach. We present the obtained results in a set of 120 3D models of the rinceton benchmark. Then we compare them to results obtained using classical methods

  14. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  15. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate.

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei

    2016-01-11

    A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar(+) (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type  silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar(+) sputter etching, and photoresist &Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar(+) etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas.

  16. Detection of metallic and plastic landmines using the GPR and 2-D resistivity techniques

    M. Metwaly

    2007-12-01

    Full Text Available Low and non-metallic landmines are one of the most difficult subsurface targets to be detected using several geophysical techniques. Ground penetrating radar (GPR performance at different field sites shows great success in detecting metallic landmines. However significant limitations are taking place in the case of low and non-metallic landmines. Electrical resistivity imaging (ERI technique is tested to be an alternative or confirmation technique for detecting the metallic and non-metallic landmines in suspicious cleared areas. The electrical resistivity responses using forward modeling for metallic and non-metallic landmines buried in dry and wet environments utilizing the common electrode configurations have been achieved. Roughly all the utilized electrode arrays can establish the buried metallic and plastic mines correctly in dry and wet soil. The accuracy differs from one array to the other based on the relative resistivity contrast to the host soil and the subsurface distribution of current and potential lines as well as the amplitude of the noises in the data. The ERI technique proved to be fast and effective tool for detecting the non-metallic mines especially in the conductive environment whereas the performances of the other metal detector (MD and GPR techniques show great limitation.

  17. Image Compression Technique Based on Discrete 2-D wavelet transforms with Arithmetic Coding

    Deepika Sunoriya

    2012-06-01

    Full Text Available Digital Images play a very important role fordescribing the detailed information about man,money, machine almost in every field. The variousprocesses of digitizing the images to obtain it in thebest quality for the more clear and accurateinformation leads to the requirement of morestorage space and better storage and accessingmechanism in the form of hardware or software. Inthis paper we apply a technique for imagecompression. Our proposed approach is thecombination of several approaches to make thecompression better than the previous usedapproach. In this technique we first apply walshtransformation. Split all DC values form eachtransformed block 8x8.After that we applyarithmetic coding for compress an image. In thispaper we also present a brief survey on severalImage Compression Techniques.

  18. EToA: New 2D geolocation-based handover decision technique

    Ridha Ouni

    2016-03-01

    Full Text Available Position estimation using Time of Arrival (ToA, Time Difference of Arrival (TDoA, and Angle of Arrival (AoA measurements are the commonly used location techniques. These techniques, using location parameters received from different sources, are based on intersections of circles, hyperbolas, and lines, respectively. The location is determined using standard complex computation methods that are usually implemented in software and needed relatively long execution time. This paper consists of minimizing and simplifying the computing process in the Mobile Station (MS during its geo-location phase needed especially for handover. This work considers designing EToA as extended version of ToA, following the same principle but using another aspect for the computational process.

  19. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    Kamarulzaman Kamarudin; Syed Muhammad Mamduh; Ali Yeon Md. Shakaff; Ammar Zakaria

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor wi...

  20. 2D Raman spectroscopy as an alternative technique for distinguishing oleanoic acid and ursolic acid

    Mello, César; Crotti, Antônio E. M.; Vessecchi, Ricardo; Cunha, Wilson R.

    2006-11-01

    The isomeric triterpenes oleanoic acid and ursolic acid are compounds exhibiting a variety of biological activities. Structurally, they differ only in the position of the methyl group (C-29) at ring E. The differentiation of these two compounds requires a detailed analysis of their 13C and 1H NMR spectra which is often tedious and time-consuming, besides the need of using deuterated solvents. In this work, we report the use of bidimensional Raman spectroscopy as a fast technique to distinguish these two bioactive isomeric compounds.

  1. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  2. Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques

    Topcu, Gulacti; Ulubelen, Ayhan

    2007-05-01

    In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.

  3. Adaptive remeshing method in 2D based on refinement and coarsening techniques

    Giraud-Moreau, L.; Borouchaki, H.; Cherouat, A.

    2007-04-01

    The analysis of mechanical structures using the Finite Element Method, in the framework of large elastoplastic strains, needs frequent remeshing of the deformed domain during computation. Remeshing is necessary for two main reasons, the large geometric distortion of finite elements and the adaptation of the mesh size to the physical behavior of the solution. This paper presents an adaptive remeshing method to remesh a mechanical structure in two dimensions subjected to large elastoplastic deformations with damage. The proposed remeshing technique includes adaptive refinement and coarsening procedures, based on geometrical and physical criteria. The proposed method has been integrated in a computational environment using the ABAQUS solver. Numerical examples show the efficiency of the proposed approach.

  4. Application of PC-SAFT to glycol containing systems - PC-SAFT towards a predictive approach

    Grenner, Andreas; Kontogeorgis, Georgios; von Solms, Nicolas;

    2007-01-01

    For equations of state of the SAFT type a major limitation is the procedure of obtaining pure compound parameters using saturated vapor pressure and liquid density data. However, for complex compounds such data are often not available. One solution is to develop a group contribution scheme...... for estimating pure compound parameters from low molecular weight data and extrapolate to complex compounds. For associating compounds this is not trivial since the two parameters for association (association energy and association volume) need to be fixed for a group. In this work, which focuses on glycols, new...... general pure compound parameters were obtained for PC-SAFT which are able to perform well for both vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE). Linear trends of non-association parameters were obtained with respect to the molar mass. However, identical values for the association...

  5. Application of Stand-PSO Technique for Optimization Cameras’ 2D Dispositions in a MoCap system

    Salim ABDESSELAM

    2016-04-01

    Full Text Available In this paper, a detailed study of the Particle Swarm Optimization (PSO technique is given in its standard version to solve a network camera placement problem and to ensure the coverage of a reflector point by, at least, two cameras in each frame of a motion sequence of an object in movement in a MoCap (Motion Capture system. Solving the problem is by optimizing the extrinsic camera parameters for the whole network. The interest of this study is to determine the advantages and limits of this metaheuristic. Simulation results for 2D scenarios showed the effectiveness of this technique when considering all continuous space and the presence of obstacles.

  6. Application of sPC-SAFT and group contribution sPC-SAFT to polymer systems-Capabilities and limitations

    Tihic, Amra; von Solms, Nicolas; Michelsen, Michael Locht

    2009-01-01

    A group contribution (GC) version of the simplified Perturbed-Chain Statistical Associating Fluid Theory (sPC-SAFT) Equation of State is proposed in a previous work [A. Tihic, G.M. Kontogeorgis, N. von Solms, M.L. Michelsen, L Constantinou, Ind. Eng. Chem. Res. 47 (2008) 5092-5101]. The reported......PC-SAFT model, with and without GC. The reported results contribute to a better understanding of the applicability of the sPC-SAFT model to binary polymer mixtures, and identify both models as good predictive tools for several industrial applications. Limitations are also identified and discussed....

  7. Saft til hverdag - en overset kilde til sukker?

    Fagt, Sisse

    2007-01-01

    Børn og unge har et højt forbrug af sukker, og sodavand er sammen med saft en af hovedkilderne til sukkerindta-get. De 4-6 årige drikker mere saft end sodavand, mens de 7-10 årige drikker lige store mængder af begge dele. Fra 11-års alderen drikker børn mere sodavand end saft (figur 1). Overordne...... set drikker børn og unge derfor mere soda-vand end saft, men saftens rolle i børn og unges sukker-forbrug er alligevel stor og bør ikke stå i skyggen af so-davand....

  8. On the potential of 2-D-Video Disdrometer technique to measure micro physical parameters of solid precipitation

    F. Bernauer

    2015-03-01

    Full Text Available Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D-video disdrometer technique is well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify this technique especially for detailed characterization of non symmetric solid hydrometeors. However, in case of solid precipitation problems related to the matching algorithm have to be considered and the user must be aware of the limited spacial resolution when size and shape descriptors are analyzed. This work has the aim of clarifying the potential of 2-D-video disdrometer technique in deriving size, velocity and shape parameters from single recorded pictures. The need of implementing a matching algorithm suitable for mixed and solid phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 40 cases of real snow fall. As result it was found, that reliable size and shape characterization with a relative standard deviation of less than 5% is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22% for the volume, 17% for size parameters and 14% for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with styrofoam particles a mismatch probability of less than 2.5% was found. For shape parameter measurements in case of real solid phase precipitation the 2DVD shows self-consistent behavior.

  9. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  10. EFFECTS OF ELECTRODE SPACING AND INVERSION TECHNIQUES ON THE EFFICACY OF 2D RESISTIVITY IMAGING TO DELINEATE SUBSURFACE FEATURES

    Adiat Kola Abdul-Nafiu

    2013-01-01

    Full Text Available In this study, the effect of the choice of appropriate electrode spacing and inversion algorithms on the efficacy of 2D imaging to map subsurface features was investigated. The target being investigated was the drainage concrete pipe buried at approximately 0.3 m into the subsurface. A profile perpendicular to the strike of the pipe was established. 2D resistivity data was separately collected with the electrode spacings of 1.5 m and 0.5 m. using the Dipole-Dipole, the Wenner and the Wenner-Schlumberger array configurations. The results obtained showed that when the electrode spacing of 1.5 m was used for the investigations, none of the three array types was able to map the target with either of the two inversion techniques. The results further show that the attainment of RMS error of less about 10% which usually gives the indication of a good subsurface model is not a guarantee that subsurface features are successfully mapped. On the other hand, when the electrode spacing of 0.5 m was used for the data collection, the results obtained with the standard constrains inversion technique showed that all the three array configurations mapped the target however, only the dipole-dipole array was able to resolve the boundary between the concrete pipe and the entrapped air. With the robust constrain inversion technique; the target was also successfully mapped by all the three array types. In addition to this, the boundary between the entrapped air and the concrete pipe was resolved by all the three array types. This suggests that if there is a significant contrast in the subsurface layers’ resistivities, the robust constrain inversion algorithm technique gives better boundaries resolution irrespective of the array types used for the survey. The inversion of the 3D data gave 3D resistivity sections which were presented as horizontal depth slices. The result obtained from the inversion of the 3D data has assisted us in getting information about the

  11. Grade-2 Teflon (AF1601) PCF for optical communication using 2D FDTD technique: a simplest design

    Muduli, N.; Achary, J. S. N.; Padhy, Hemanta ku.

    2016-04-01

    A nonlinear ytterbium-doped rectangular proposed PCF structure of inner and outer cladding is used to analyze effective mode field area (Aeff), nonlinear coefficient (γ), dispersion (D), and confinement loss (CL) in a wide range of wavelength. The fabrication of PCF structure is due to different size doped air hole, pitch, and air hole diameter in a regular periodic geometrical array fashion. The various property of PCF structure such as mode field area, nonlinear coefficient, dispersion, and confinement loss are analyzed by implementing 2D FDTD technique. The above PCF property investigated using suitable parameters like Λ1, ?, ?, and ? in three different situations is discussed in simulation. The high nonlinear coefficient and dispersion property of PCF structure are tailored by setting the cladding parameter. However, highly nonlinear fibers with nonzero dispersion at the wavelength of 1.55 μm are very attractive for a range of optical communication application such as laser amplifier, pulse compression, wavelength conversion, all optical switching, and supercontinuum generation. So our newly proposed ytterbium-doped PCF seems to be most suitable exclusively for supercontinuum generation and nonlinear fiber optics. Finally, it is observed that ytterbium-doped Teflon (AF1601) PCF has more nonlinear coefficient (γ(λ) = 65.27 W-1 km-1) as compared to pure silica PCF (γ(λ) = 52 W-1 km-1) design to have same mode field area (Aeff) 1.7 μm2 at an operating wavelength of 1.55 μm.

  12. raaSAFT: A framework enabling coarse-grained molecular dynamics simulations based on the SAFT- γ Mie force field

    Ervik, Åsmund; Serratos, Guadalupe Jiménez; Müller, Erich A.

    2017-03-01

    We describe here raaSAFT, a Python code that enables the setup and running of coarse-grained molecular dynamics simulations in a systematic and efficient manner. The code is built on top of the popular HOOMD-blue code, and as such harnesses the computational power of GPUs. The methodology makes use of the SAFT- γ Mie force field, so the resulting coarse grained pair potentials are both closely linked to and consistent with the macroscopic thermodynamic properties of the simulated fluid. In raaSAFT both homonuclear and heteronuclear models are implemented for a wide range of compounds spanning from linear alkanes, to more complicated fluids such as water and alcohols, all the way up to nonionic surfactants and models of asphaltenes and resins. Adding new compounds as well as new features is made straightforward by the modularity of the code. To demonstrate the ease-of-use of raaSAFT, we give a detailed walkthrough of how to simulate liquid-liquid equilibrium of a hydrocarbon with water. We describe in detail how both homonuclear and heteronuclear compounds are implemented. To demonstrate the performance and versatility of raaSAFT, we simulate a large polymer-solvent mixture with 300 polystyrene molecules dissolved in 42 700 molecules of heptane, reproducing the experimentally observed temperature-dependent solubility of polystyrene. For this case we obtain a speedup of more than three orders of magnitude as compared to atomistically-detailed simulations.

  13. 2D materials advances: from large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications

    Lin, Zhong; McCreary, Amber; Briggs, Natalie; Subramanian, Shruti; Zhang, Kehao; Sun, Yifan; Li, Xufan; Borys, Nicholas J.; Yuan, Hongtao; Fullerton-Shirey, Susan K.; Chernikov, Alexey; Zhao, Hui; McDonnell, Stephen; Lindenberg, Aaron M.; Xiao, Kai; LeRoy, Brian J.; Drndić, Marija; Hwang, James C. M.; Park, Jiwoong; Chhowalla, Manish; Schaak, Raymond E.; Javey, Ali; Hersam, Mark C.; Robinson, Joshua; Terrones, Mauricio

    2016-12-01

    The rise of two-dimensional (2D) materials research took place following the isolation of graphene in 2004. These new 2D materials include transition metal dichalcogenides, mono-elemental 2D sheets, and several carbide- and nitride-based materials. The number of publications related to these emerging materials has been drastically increasing over the last five years. Thus, through this comprehensive review, we aim to discuss the most recent groundbreaking discoveries as well as emerging opportunities and remaining challenges. This review starts out by delving into the improved methods of producing these new 2D materials via controlled exfoliation, metal organic chemical vapor deposition, and wet chemical means. We look into recent studies of doping as well as the optical properties of 2D materials and their heterostructures. Recent advances towards applications of these materials in 2D electronics are also reviewed, and include the tunnel MOSFET and ways to reduce the contact resistance for fabricating high-quality devices. Finally, several unique and innovative applications recently explored are discussed as well as perspectives of this exciting and fast moving field.

  14. Evaluation of the PC-SAFT, SAFT and CPA equations of state in predicting derivative properties of selected non-polar and hydrogen-bonding compounds

    de Villiers, A.J.; Schwarz, C.E.; Burger, A.J.

    2013-01-01

    In order to provide a comprehensive understanding of the potential and limitations of the PC-SAFT, SAFT and CPA equations-of-state, this study offers insight into their application for the prediction of derivative properties over extensive ranges of pressure and temperature. The ability of these ......In order to provide a comprehensive understanding of the potential and limitations of the PC-SAFT, SAFT and CPA equations-of-state, this study offers insight into their application for the prediction of derivative properties over extensive ranges of pressure and temperature. The ability...

  15. Group Contribution sPC-SAFT Equation of State

    Tihic, Amra

    2008-01-01

    Modellering af termodynamiske egenskaber og faseligevægte er en udfordring for den kemiske industri. Forenklet Perturbed Chains-Statistical Associating Fluid Theory (sPC-SAFT) er en tilstandsligning med udbredt anvendelse i en række industrielle sammenhænge. Modellen anvender tre parametre: segme...

  16. Phase Equilibrium Calculation of Mixtures: Comparison of SAFT, Modified SAFT, and BACK EOS for Supercritical CO2-C2H5OH System

    张志禹; 胡中桥; 杨基础; 李以圭

    2002-01-01

    Three calculational models, statistical associating fluid theory (SAFT), modified SAFT, and Boublík-Alder-Chen-Kreglewshi (BACK) are compared for supercritical CO2-C2H5OH using a set of van der Waals type mixing rules for both the BACK equation of state (EOS) and the SAFT EOS. Equations are presented for the residual Helmholtz free energy, residual chemical potentials, and compressibilty factor for mixtures. A comparison with experimental vapor-liquid equilibrium (VLE) data reveals that the BACK EOS together with the suggested mixing rules provides more accurate prediction of the binary system than the SAFT or the modified SAFT model with no adjustable binary parameters. The correlation results are improved with an adjustable parameter.

  17. Assessment of some problematic factors in facial image identification using a 2D/3D superimposition technique.

    Atsuchi, Masaru; Tsuji, Akiko; Usumoto, Yosuke; Yoshino, Mineo; Ikeda, Noriaki

    2013-09-01

    The number of criminal cases requiring facial image identification of a suspect has been increasing because a surveillance camera is installed everywhere in the city and furthermore, the intercom with the recording function is installed in the home. In this study, we aimed to analyze the usefulness of a 2D/3D facial image superimposition system for image identification when facial aging, facial expression, and twins are under consideration. As a result, the mean values of the average distances calculated from the 16 anatomical landmarks between the 3D facial images of the 50s groups and the 2D facial images of the 20s, 30s, and 40s groups were 2.6, 2.3, and 2.2mm, respectively (facial aging). The mean values of the average distances calculated from 12 anatomical landmarks between the 3D normal facial images and four emotional expressions were 4.9 (laughter), 2.9 (anger), 2.9 (sadness), and 3.6mm (surprised), respectively (facial expressions). The average distance obtained from 11 anatomical landmarks between the same person in twins was 1.1mm, while the average distance between different person in twins was 2.0mm (twins). Facial image identification using the 2D/3D facial image superimposition system demonstrated adequate statistical power and identified an individual with high accuracy, suggesting its usefulness. However, computer technology concerning video image processing and superimpose progress, there is a need to keep familiar with the morphology and anatomy as its base.

  18. Results of using frequency banded SAFT for examining three types of defects

    Clayton, Dwight; Barker, Alan; Santos-Villalobos, Hector

    2017-02-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties; its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include the containment building, spent fuel pool, and cooling towers. This use has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular Nondestructive Evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply the frequency banded Synthetic Aperture Focusing Technique (SAFT) technique to a 2.134 m × 2.134 m × 1.016 m concrete test specimen with twenty deliberately embedded defects. These twenty embedded defects simulate voids (honeycombs), delamination, and embedded organic construction debris. Using the time-frequency technique of wavelet packet decomposition and reconstruction, the spectral content of the signal can be divided into two resulting child nodes. The resulting two nodes can then

  19. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  20. Usefulness of lower extremity MR venography in 2D TOF sequence with fat suppression techniques and MTC, and study of different warming procedures

    Higashida, Mitsuji; Yamazaki, Masaru; Sahara, Tomohiro; Motozuka, Masayasu [Osaka City Univ. (Japan). Hospital

    2001-03-01

    We evaluated the effect of fat suppression techniques (fatsat) and magnetization transfer contrast (MTC) for MR venography (MRV) using the 2D TOF sequence in the lower extremities. In addition, the improvement of vessel conspicuity resulting from three different warming procedures was evaluated. Three combinations of fatsat and MTC were performed. Both the signal intensity ratio (SIR) and contrast-to-noise ratio (CNR) were measured at ROIs of vein, fat, and muscle in knee. The vessel conspicuity of MIP was evaluated by three radiologists. The experimental results indicated that MTC pulses did not affect fatsat. The combination techniques of fatsat and MTC improved SIR ({approx_equal}13%) and CNR ((applox =)5%) of the vein compared with techniques using fatsat only. The continuous warming procedure was better than temporary warming in terms of vessel conspicuity. We conclude that the combined techniques of fatsat and MTC with the continuous warming procedure were clearly useful for MRV using the 2D TOF sequence in the lower extremities. (author)

  1. In vivo kinematic study of the tarsal joints complex based on fluoroscopic 3D-2D registration technique.

    Chen Wang, M D; Geng, Xiang; Wang, Shaobai; Xin Ma, M D; Xu Wang, M D; Jiazhang Huang, M D; Chao Zhang, M D; Li Chen, M S; Yang, Junsheng; Wang, Kan

    2016-09-01

    The tarsal bones articulate with each other and demonstrate complicated kinematic characteristics. The in vivo motions of these tarsal joints during normal gait are still unclear. Seven healthy subjects were recruited and fourteen feet in total were tested in the current study. Three dimensional models of the tarsal bones were first created using CT scanning. Corresponding local 3D coordinate systems of each tarsal bone was subsequently established for 6DOF motion decompositions. The fluoroscopy system captured the lateral fluoroscopic images of the targeted tarsal region whilst the subject was walking. Seven key pose images during the stance phase were selected and 3D to 2D bone model registrations were performed on each image to determine joint positions. The 6DOF motions of each tarsal joint during gait were then obtained by connecting these positions together. The TNJ (talo-navicular joint) exhibited the largest ROMs (range of motion) on all rotational directions with 7.39±2.75°of dorsi/plantarflexion, 21.12±4.68°of inversion/eversion, and 16.11±4.44°of internal/external rotation. From heel strike to midstance, the TNJ, STJ (subtalar joint), and CCJ (calcaneao-cuboid joint) were associated with 5.97°, 5.04°, and 3.93°of dorsiflexion; 15.46°, 8.21°, and 5.82°of eversion; and 9.75°, 7.6°, and 4.99°of external rotation, respectively. Likewise, from midstance to heel off, the TNJ, STJ, and CCJ were associated with 6.39, 6.19°, and 4.47°of plantarflexion; 18.57°, 11.86°, and 6.32°of inversion and 13.95°, 9.66°, and 7.58°of internal rotation, respectively. In conclusion, among the tarsal joints, the TNJ exhibited the greatest rotational mobility. Synchronous and homodromous rotational motions were detected for TNJ, STJ, and CCJ during the stance phase.

  2. Are safe results obtained when SAFT equations are applied to ordinary chemicals?

    Privat, Romain; Conte, Elisa; Jaubert, Jean-Noël;

    2012-01-01

    In a previous work, some irregular behaviours of the PC-SAFT EoS – and more generally of SAFT-type EoS – were pointed out for pure components at low temperatures. In particular, it was shown that for pure fluids at a fixed temperature and pressure, these equations of state were likely to exhibit ...

  3. Real-time 3-D SAFT-UT system evaluation and validation

    Doctor, S.R.; Schuster, G.J.; Reid, L.D.; Hall, T.E. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-09-01

    SAFT-UT technology is shown to provide significant enhancements to the inspection of materials used in US nuclear power plants. This report provides guidelines for the implementation of SAFT-UT technology and shows the results from its application. An overview of the development of SAFT-UT is provided so that the reader may become familiar with the technology. Then the basic fundamentals are presented with an extensive list of references. A comprehensive operating procedure, which is used in conjunction with the SAFT-UT field system developed by Pacific Northwest Laboratory (PNL), provides the recipe for both SAFT data acquisition and analysis. The specification for the hardware implementation is provided for the SAFT-UT system along with a description of the subsequent developments and improvements. One development of technical interest is the SAFT real time processor. Performance of the real-time processor is impressive and comparison is made of this dedicated parallel processor to a conventional computer and to the newer high-speed computer architectures designed for image processing. Descriptions of other improvements, including a robotic scanner, are provided. Laboratory parametric and application studies, performed by PNL and not previously reported, are discussed followed by a section on field application work in which SAFT was used during inservice inspections of operating reactors.

  4. SAFT inspections for developing empirical database of fabrication flaws in nuclear reactor pressure vessels

    Doctor, Steven R.; Schuster, George J.; Pardini, Allan F.

    1998-03-01

    The Pacific Northwest National Laboratory (PNNL) is developing a methodology for estimating the size and density distribution of fabrication flaws in U.S. nuclear reactor pressure vessels. This involves the nondestructive evaluation (NDE) of reactor pressure vessel materials and the destructive validation of the flaws found. NDE has been performed on reactor pressure vessel material made by Babcock & Wilcox and Combustion Engineering. A metallographic analysis is being performed to validate the flaw density and size distributions estimated from the 2500 indications of fabrication flaws that were detected and characterized in the very sensitive SAFT-UT (synthetic aperture focusing technique for ultrasonic testing) inspection data from the Pressure Vessel Research User Facility (PVRUF) vessel at Oak Ridge National Laboratory. Research plans are also described for expanding the work to include other reactor pressure vessel materials.

  5. Effects of Process Parameters on Fabrication of 2D- C f/Al Composite Parts by Liquid-Solid Extrusion Following the Vacuum Infiltration Technique

    Ma, Y. Q.; Qi, L. H.; Zhou, J. M.; Zhang, T.; Li, H. J.

    2017-02-01

    Two-dimensional, carbon-fiber-reinforced aluminum matrix composites (2D- C f/Al composites) were prepared using liquid-solid extrusion by following the vacuum infiltration technique (LSEVI), which was an integrated and comprehensive process that resulted in as composite special-shaped part with ideal infiltration and a satisfied forming effect. According to the current research, we found preheating temperature, squeeze temperature, squeeze pressure, and melting temperature were the key parameters of the LSEVI technique, and it was very important to optimize these process parameters to obtain the ideal composite part. Through the research of orthogonal experimental design of these process parameters, results showed that squeeze pressure was the most significant influence parameter, and optimized parameters of aforementioned parameters were 888 K, 893 K, and 1053 K (615 °C, 620 °C, and 780 °C), 70 MPa, respectively. An infiltration effect of the C f/Al composite was full and uniform, and preparation defects could be avoided effectively under the above process parameters. Two-dimensional (2D) T300 carbon fiber preform was prepared by the method of carbon fiber laminates, and the 2D- C f/Al composite special-shaped part was fabricated successfully using the former optimized parameters of LSEVI. Results indicated a forming effect of the special-shaped part was obtained and that its sizes were reasonable. Through the analyses of microstructure and tensile property test, its infiltration effect and fracture morphology were satisfied. Carbon fibers in the composite played the reinforced effect effectively, so the ultimate tensile strength of the composite part was improved by 115.8 pct than that of the matrix, which proved that the optimized process parameters of the LSEVI technique were reasonable.

  6. Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI

    Meckel, Stephan [University Hospital Freiburg, Department of Neuroradiology, Freiburg (Germany); Leitner, Lorenz; Schubert, Tilman [University Hospital Basel, Institute of Radiology, Basel (Switzerland); Bonati, Leo H.; Lyrer, Philippe [University Hospital Basel, Department of Neurology, Basel (Switzerland); Santini, Francesco [University Hospital Basel, Department of Radiological Physics, Institute of Radiology, Basel (Switzerland); Stalder, Aurelien F. [Xuanwu Hospital - Capital Medical University, Department of Radiology, Beijing (China); Markl, Michael [Northwestern University Feinberg School of Medicine, Departments of Radiology and Biomedical Engineering, Chicago (United States); Wetzel, Stephan G. [Neuroradiology, Swiss Neuro Institute, Klinik Hirslanden, Zurich (Switzerland)

    2013-04-15

    4D phase contrast MR imaging (4D PC MRI) has been introduced for spatiotemporal evaluation of intracranial hemodynamics in various cerebrovascular diseases. However, it still lacks validation with standards of reference. Our goal was to compare blood flow quantification derived from 4D PC MRI with transcranial ultrasound and 2D PC MRI. Velocity measurements within large intracranial arteries [internal carotid artery (ICA), basilar artery (BA), and middle cerebral artery (MCA)] were obtained in 20 young healthy volunteers with 4D and 2D PC MRI, transcranial Doppler sonography (TCD), and transcranial color-coded duplex sonography (TCCD). Maximum velocities at peak systole (PSV) and end diastole (EDV) were compared using regression analysis and Bland-Altman plots. Correlation of 4D PC MRI measured velocities was higher in comparison with TCD (r = 0.49-0.66) than with TCCD (0.35-0.44) and 2D PC MRI (0.52-0.60). In mid-BA and ICA C7 segment, a significant correlation was found with TCD (0.68-0.81 and 0.65-0.71, respectively). No significant correlation was found in carotid siphon. On average over all volunteers, PSVs and EDVs in MCA were minimally underestimated compared with TCD/TCCD. Minimal overestimation of velocities was found compared to TCD in mid-BA and ICA C7 segment. 4D PC MRI appears as valid alternative for intracranial velocity measurement consistent with previous reference standards, foremost with TCD. Spatiotemporal averaging effects might contribute to vessel size-dependent mild underestimation of velocities in smaller (MCA), and overestimation in larger-sized (BA and ICA) arteries, respectively. Complete spatiotemporal flow analysis may be advantageous in anatomically complex regions (e.g. carotid siphon) relative to restrictions of ultrasound techniques. (orig.)

  7. Analysis and applications of a group contribution sPC-SAFT equation of state

    Tihic, Amra; von Solms, Nicolas; Michelsen, Michael Locht

    2009-01-01

    A group contribution (GC) method for estimating pure compound parameters for the molecular-based perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) is proposed in a previous work [A. Tihic, G.M. Kontogeorgis, N. von Solms, M.L Michelsen, L Constantinou. Ind. Eng...... method allow satisfactory representation of experimental data of investigated systems with the sPC-SAFT EoS. Moreover, the variety of functional groups in the available GC scheme ensures broad applications of the CC sPC-SAFT EoS....

  8. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  9. Kinematic study on tibiofemoral joint after TKA using 2D-3D automatic registration technique%利用2D-3D自动注册技术研究TKA术后胫股关节运动

    朱忠林; 杨明雷; 丁辉; 及松洁; 王广志

    2013-01-01

    目的 重建全膝置换(total knee arthroplasty,TKA)膝关节三维运动,研究后稳定型假体之间的运动和接触.方法 以16例TKA膝关节为研究对象,获取动态X线透视图像和假体三维模型,建立2D-3D自动注册算法,重建膝关节的三维运动,计算运动学参数并测量假体之间的接触位置.结果 单幅X线图像注册时间小于30 s,图像平面内重复性注册精度为0.4 mm和0.5°.高屈曲垫片对膝关节屈曲度和胫骨内外旋无明显改进.股骨假体在胫骨垫片的外侧接触点后移范围大于内侧.稳定柱后方的接触发生在屈膝约30°以后,平均接触范围小于9 mm.结论 2D-3D自动注册技术在精度和效率上达到TKA膝关节在体三维运动测量要求,测量结果对TKA膝关节生物力学研究和改进假体设计具有参考意义.

  10. SAFT and TOFD evaluation for ultrasonic testing of longitudinal welds in large-diameter pipes; SAFT- und TOFD-Auswertung fuer die Ultraschall-Schweissnahtpruefung von laengsnahtgeschweissten Grossrohren

    Rieder, Hans; Dillhoefer, Alexander; Spies, Martin [Fraunhofer-Institut fuer Techno- und Wirtschaftsmathematik ITWM, Kaiserslautern (Germany); Graff, Alfred; Orth, Thomas [Salzgitter Mannesmann Forschung GmbH, Duisburg (Germany); Kersting, Thomas [Europipe GmbH, Muelheim an der Ruhr (Germany). Werk Muelheim

    2010-07-01

    The authors present a mobile multichannel system for testing of longitudinal welds in large-diameter tubes. The prototype was designed for in situ inspection of longitudinal welds using transversal and longitudinal waves impacting at an angle from both sides in combined SE and IE operation. The reconstruction and imaging software enables SAFT calculations for all surface curves and superposition of the SAFT reconstructions from both sides into a general image of the weld. This includes superposition of the TOFD test data with a suitable evaluation and assessment concept. Details are presented, as are test results on test pieces for validation and on longitudinal welds in large-diameter tubes. (orig.)

  11. Kinematic Analysis of Healthy Hips during Weight-Bearing Activities by 3D-to-2D Model-to-Image Registration Technique

    Daisuke Hara

    2014-01-01

    Full Text Available Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics’ data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips.

  12. IN VIVO KINEMATICS OF THE ANTERIOR CRUCIATE LIGAMENT DEFICIENT KNEE DURING WIDE-BASED SQUAT USING A 2D/3D REGISTRATION TECHNIQUE

    Takeshi Miyaji

    2012-12-01

    Full Text Available Anterior cruciate ligament (ACL deficiency increases the risk of early osteoarthritis (OA. Studies of ACL deficient knee kinematics would be important to reveal the disease process and therefore to find mechanisms which would potentially slow OA progression. The purpose of this study was to determine if in vivo kinematics of the anterior cruciate ligament deficient (ACLD knee during a wide-based squat activity differ from kinematics of the contralateral intact knee. Thirty-three patients with a unilateral ACLD knee consented to participate in this institutional review board approved study with the contralateral intact knee serving as the control. In vivo knee kinematics during the wide-based squat were analyzed using a 2D/3D registration technique utilizing CT-based bone models and lateral fluoroscopy. Comparisons were performed using values between 0 and 100° flexion both in flexion and extension phases of the squat activity. Both the ACLD and intact knees demonstrated increasing tibial internal rotation with knee flexion, and no difference was observed in tibial rotation between the groups. The tibia in the ACLD knee was more anterior than that of the contralateral knees at 0 and 5° flexion in both phases (p < 0.05. Tibiofemoral medial contact points of the ACLD knees were more posterior than that of the contralateral knees at 5, 10 and 15° of knee flexion in the extension phase of the squat activity (p < 0.05. Tibiofemoral lateral contact points of the ACLD knees were more posterior than that of the contralateral knees at 0° flexion in the both phases (p < 0.05. The kinematics of the ACLD and contralateral intact knees were similar during the wide-based squat except at the low flexion angles. Therefore, we conclude the wide-based squat may be recommended for the ACLD knee by avoiding terminal extension

  13. Modeling the liquid-liquid equilibrium of petroleum fluid and polar compounds containing systems with the PC-SAFT equation of state

    Liang, Xiaodong; Yan, Wei; Thomsen, Kaj;

    2015-01-01

    A critical test for the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (FOS) is the modeling of systems containing petroleum fluid and polar compounds. In this work, two approaches are proposed for the simplified PC-SAFT EOS to obtain the necessary pure component......-SAFT parameter segment diameter. (C) 2015 Elsevier B.V. All rights reserved....

  14. Cycle life status of SAFT VOS nickel-cadmium cells

    Goualard, Jacques

    1993-01-01

    The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.

  15. Quantitative Comparison of 2D and 3D MRI Techniques for the Evaluation of Chondromalacia Patellae in 3.0T MR Imaging of the Knee

    Ali Özgen

    2016-09-01

    Full Text Available INTRODUCTION: Chondromalacia patellae is a very common disorder of patellar cartilage. Magnetic resonance imaging (MRI is a powerful non-invasive tool to investigate patellar cartilage lesions. Although many MRI sequences have been used in MR imaging of the patellar cartilage and the optimal pulse sequence is controversial, fat-saturated proton density images have been considered very valuable to evaluate patellar cartilage. The purpose of this study is to quantitatively compare the diagnostic performance of various widely used 2D and 3D MRI techniques for the evaluation of chondromalacia patellae in 3.0T MR imaging of the knee using T2 mapping images as the reference standard. METHODS: Sevety-five knee MRI exams of 69 adult consecutive were included in the study. Fat-saturated T2-weighted (FST2, fat-saturated proton density (FSPD, water-only T2-weighted DIXON (T2mD, T2-weighted 3 dimensional steady state (3DT2FFE, merged multi-echo steady state (3DmFFE, and water selective T1-weighted fat-supressed (WATSc images were acquired. Quantitative comparison of grade 1 and grade 5 lesions were made using contrast-to-noise (CNR ratios. Grade 2-4 lesions were scored qualitatively and scorings of the lesions were compared statistically. Analysis of variance and Tukey’s tests were used to compare CNR data. Two sample z-test was used to compare the ratio of MR exams positive for grade 1 lesions noted on T2-mapping and other conventional sequences. Paired samples t-test was used to compare two different pulse sequences. RESULTS: In detecting grade 1 lesions, FSPD, FST2 and T2mD images were superior in comparison to other sequences. FSPD and FST2 images were statistically superior in detecting grade 2-4 lesions. Although all grade 5 lesions were noted in every single sequence, FST2 images have the highest mean CNR followed by 3DT2FFE images. DISCUSSION AND CONCLUSION: FST2 sequence is equal or superior in detecting every grade of patellar chondromalacia in

  16. Rescaling of three-parameter equations of state: PC-SAFT and SPHCT

    Cismondi, Martin; Brignole, Esteban A.; Mollerup, Jørgen

    2005-01-01

    Two-parameter equations of state like PR or SRK predict a universal critical compressibility, factor for pure compounds, being intrinsically unable to reasonably describe the PVT properties of different fluids and their asymmetric mixtures, which require at least three component specific parameters...... in the density dependence. In this paper, we have explored the capabilities of the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) and the Simplified Perturbed Hard Chain Theory (SPHCT) equations of state to represent pure compound properties. Original parameters published by their respective...... behaviour for n-alkanes with PC-SAFT and their performance is tested in this work also for carbon dioxide, using the recent equations by Span and Wagner as reference data. The proposed parameters reproduce vapour pressures with the same accuracy of PC-SAFT original parameters but assure an exact...

  17. Capabilities, limitations and challenges of a simplified PC-SAFT equation of state

    von Solms, Nicolas; Kouskoumvekaki, Irene; Michelsen, Michael Locht

    2006-01-01

    and physical performance of a modified PC-SAFT equation of state for highly asymmetric and associating mixtures, Ind. Eng. Chem. Res. 42 (2003) 1098.] has been applied to several complex polymer-sol vent systems, including vapor-liquid equilibria, liquid-liquid equilibria and gas solubilities for both single-solvent...... and mixed-solvents (ternary) systems. This manuscript briefly reviews previous successful applications of PC-SAFT, illustrates the capabilities of the model and indicates some problems and limitations in specific areas, especially aqueous systems and blends, as well as challenges that need to be addressed...

  18. Approach to Improve Speed of Sound Calculation within PC-SAFT Framework

    Liang, Xiaodong; Maribo-Mogensen, Bjørn; Thomsen, Kaj;

    2012-01-01

    An extensive comparison of SRK, CPA and PC-SAFT for speed of sound in normal alkanes has been performed. The results reveal that PC-SAFT captures the curvature of speed of sound better than cubic EoS but the accuracy is not satisfactory. Two approaches have been proposed to improve PC-SAFT’s accu...... keeping acceptable accuracy for the primary properties, i.e. vapor pressure (2.1%) and liquid density (1.5%). The two approaches have also been applied to methanol, and both give very good results....

  19. Multivariate genetic analyses of the 2D:4D ratio: examining the effects of hand and measurement technique in data from 757 twin families.

    Medland, Sarah E; Loehlin, John C

    2008-06-01

    The ratio of the lengths of the second to fourth digits of the hand (2D:4D) is a sexually dimorphic trait that has been proposed as a measure of prenatal testosterone exposure and a putative correlate of a variety of later behavioral and physiological outcomes including personality, fitness and sexual orientation. We present analyses of 2D:4D ratios collected from twins (1413 individuals) and their nontwin siblings (328 individuals) from 757 families. In this sample 2D:4D was measured from photocopies using digital calipers, and for a subset of participants, computer-aided measurement. Multivariate modeling of the left- and right-hand measurements revealed significant genetic and environmental covariation between hands. The two methods yielded very similar results, and the majority of variance was explained by factors shared by both measurement methods. Neither common environmental nor dominant genetic effects were found, and the covariation between siblings could be accounted for by additive genetic effects accounting for 80% and 71% of the variance for the left and right hands, respectively. There was no evidence of sex differences in the total variance, nor in the magnitude or source of genetic and environmental influences, suggesting that X-linked effects (such as the previously identified association with the Androgen receptor) are likely to be small. However, there were also nonshared environmental effects specific to each hand, which, in addition to measurement error, may in part explain why some studies within in the literature find effects for the 2D:4D ratio of one hand but not the other.

  20. Modeling Water Containing Systems with the Simplified PC-SAFT and CPA Equations of State

    Liang, Xiaodong; Tsivintzelis, Ioannis; Kontogeorgis, Georgios M.

    2014-01-01

    Numerous studies have been presented for modeling of water containing systems with the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EOS), and more than 20 water parameter sets have been published with emphasis on different applications. In this work, eight...

  1. On petroleum fluid characterization with the PC-SAFT equation of state

    Liang, Xiaodong; Yan, Wei; Thomsen, Kaj

    2014-01-01

    The perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state has shown promising results for describing complex phase behaviors and high pressure properties of various systems. It has been proposed as an alternative to the classical cubic equations of state in the petroleum...

  2. Artificial multiple criticality and phase equilibria: an investigation of the PC-SAFT approach.

    Yelash, Leonid; Müller, Marcus; Paul, Wolfgang; Binder, Kurt

    2005-11-01

    The perturbed-chain statistical associating fluid theory (PC-SAFT) is studied for a wide range of temperature, T, pressure, p, and (effective) chain length, m, to establish the generic phase diagram of polymers according to this theory. In addition to the expected gas-liquid coexistence, two additional phase separations are found, termed "gas-gas" equilibrium (at very low densities) and "liquid-liquid" equilibrium (at densities where the system is expected to be solid already). These phase separations imply that in one-component polymer systems three critical points occur, as well as equilibria of three fluid phases at triple points. However, Monte Carlo simulations of the corresponding system yield no trace of the gas-gas and liquid-liquid equilibria, and we conclude that the latter are just artefacts of the PC-SAFT approach. Using PC-SAFT to correlate data for polybutadiene melts, we suggest that discrepancies in modelling the polymer density at ambient temperature and high pressure can be related to the presumably artificial liquid-liquid phase separation at lower temperatures. Thus, particular care is needed in engineering applications of the PC-SAFT theory that aims at predicting properties of macromolecular materials.

  3. Tectonic Inversion Along the Algerian and Ligurian Margins: On the Insight Provided By Latest Seismic Processing Techniques Applied to Recent and Vintage 2D Offshore Multichannel Seismic Data

    Schenini, L.; Beslier, M. O.; Sage, F.; Badji, R.; Galibert, P. Y.; Lepretre, A.; Dessa, J. X.; Aidi, C.; Watremez, L.

    2014-12-01

    Recent studies on the Algerian and the North-Ligurian margins in the Western Mediterranean have evidenced inversion-related superficial structures, such as folds and asymmetric sedimentary perched basins whose geometry hints at deep compressive structures dipping towards the continent. Deep seismic imaging of these margins is difficult due to steep slope and superficial multiples, and, in the Mediterranean context, to the highly diffractive Messinian evaporitic series in the basin. During the Algerian-French SPIRAL survey (2009, R/V Atalante), 2D marine multi-channel seismic (MCS) reflection data were collected along the Algerian Margin using a 4.5 km, 360 channel digital streamer and a 3040 cu. in. air-gun array. An advanced processing workflow has been laid out using Geocluster CGG software, which includes noise attenuation, 2D SRME multiple attenuation, surface consistent deconvolution, Kirchhoff pre-stack time migration. This processing produces satisfactory seismic images of the whole sedimentary cover, and of southward dipping reflectors in the acoustic basement along the central part of the margin offshore Great Kabylia, that are interpreted as inversion-related blind thrusts as part of flat-ramp systems. We applied this successful processing workflow to old 2D marine MCS data acquired on the North-Ligurian Margin (Malis survey, 1995, R/V Le Nadir), using a 2.5 km, 96 channel streamer and a 1140 cu. in. air-gun array. Particular attention was paid to multiple attenuation in adapting our workflow. The resulting reprocessed seismic images, interpreted with a coincident velocity model obtained by wide-angle data tomography, provide (1) enhanced imaging of the sedimentary cover down to the top of the acoustic basement, including the base of the Messinian evaporites and the sub-salt Miocene series, which appear to be tectonized as far as in the mid-basin, and (2) new evidence of deep crustal structures in the margin which the initial processing had failed to

  4. 利用2D/3D配准技术开展直立位颈椎椎间孔形态学测量的可行性研究%The feasibility research of orthostaticcervical transforaminal morphologic measurements using 2D/3D registration techniques

    叶强; 李鉴轶; 李鹏; 孔祥雪; 李绍林

    2015-01-01

    目的:探讨利用2D/3D配准技术开展直立位颈椎椎间孔形态学测量的可行性研究。方法采集7位健康成年志愿者颈椎的CT影像,对其进行三维重建获得颈椎三维模型,并采集同一志愿者保持同一姿势时的颈椎直立正侧位X线平片,在图像处理软件Mimics中建立虚拟X线场景,采用2D/3D图像配准还原摄平片时颈椎的位置,并利用Rapidform XOR3软件测量两种位置的椎间孔面积。结果利用2D/3D图像配准方法,可获得颈椎直立位的三维位置数据,共测得56个椎间孔卧位及直立位两位置椎间孔面积,卧位椎间孔面积为(50.9±14.2) mm2,直立位椎间孔面积为(83.6±23.5) mm2,差异具有统计学意义(t=-8.107,P<0.05)。结论利用2D/3D配准技术可获得颈椎直立位椎间孔的形态学参数,直立位与卧位椎间孔有显著差异,但其准确性需要进一步的研究验证。%Objective To investigate the feasibility of orthostatic cervical transforaminal morphologic measurements using 2D/3D registration techniques. Method Seven healthy adult volunteer's cervical spines were CT scanned and then 3D reconstructed; And two orthogonal X-ray images of cervical vertebrae in the same orthostatic posture were also harvested. A virtual fluoroscopic scene was then created in software Mimics and wasused to reproduce the relative positions of the orthogonal images using 2D/3D image registration technology. Transforaminal morphologic measurements were performed in Software Rapidform. Result The cervical orthostatic posture could be reproduced and the morphologic data, such as inter foraminal area, could be calculated. A total of 56 intervertebral foramen were measured in supine and upright positions: supine foramen area was (50.9 ± 14.2) mm2 and orthostatic foramen area was (83.6 ± 23.5) mm2, showing significant difference(t=- 8.107, P<0.05 ). Conclusion Orthostatic cervical transforaminal morphological parameters could

  5. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC.

  6. The precision of the 2D/3D registration techniques in measuring the cervical intervertebral foramen morphology%基于2D/3D配准技术测量颈椎间孔形态学的精度研究

    张鑫涛; 叶强; 李鉴轶; 彭鹏; 李绍林

    2016-01-01

    Objective To investigate the 2D/3D registration techniques in measurement accuracy of cervical intervertebral foramen morphology in specimens. Method Spiral CT images from 16 cervical specimens were collected to obtain a three-dimensional model through three-dimensional reconstruction. CT scan and lateral radiography with each isolated specimens after changed the position of the specimen were performed. 2D/3D image registration techniques were used to restore the cervical spine’s three-dimensional position where we had taken the X-rays. The bilateral foramen area, anteroposterior diameter and vertical diameter from C2/3 to C6/7 before and after registration were measured using Rapidform XOR3. Results The number of the foramen area, anteroposterior diameter and vertical diameter were measured were 158. Compared with the pre-registration, the registration area of the intervertebral foramen, anteroposterior diameter, and vertical diameter showed no significant difference (P>0.05) by paired samples t-test. The accuracy of the intervertebral foramen area was 96.77%, with a precision of (1.27±1.16) mm2, the accuracy of the anteroposterior diameter was 94.35%with a precision of (0.30 ± 0.27) mm, the diameter of the upper and lower accurate degree was 96.14%with a precision of (0.32±0.28) mm. Conclusion Application of 2D/3D registration techniques to measure cervical intervertebral morphological parameters was high in accuracy and precision.%目的:探讨基于2D/3D配准技术测量离体颈椎标本椎间孔形态学的精度。方法获取16具颈椎离体标本的螺旋CT影像,通过三维重建获得相应标本的三维模型。然后改变标本的体位,再次行CT扫描并分别拍摄各具离体标本正侧位X线平片,采用2D/3D图像配准技术还原拍摄平片时颈椎的三维位置。利用Rapidform XOR3软件测量配准前与配准后C2/3至C6/7双侧的椎间孔面积、前后径和上下径。结果共测得椎间孔的面

  7. Measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons with the 2D-SUPER technique and dipolar dephasing (DD-SUPER)

    Liu, Wei; Wang, Wei D.; Wang, Wei; Bai, Shi; Dybowski, Cecil

    2010-09-01

    A modified 2D-SUPER technique is demonstrated to allow independent measurement of the principal values of the chemical-shift tensors of overlapping protonated and unprotonated carbons. The insertion of a dipolar-dephasing period into the sequence causes loss of signal from protonated carbons. The spectrum obtained with this modification allows one to determine the principal values of the unprotonated carbons with high precision. Subsequent fitting of the usual 2D-SUPER spectrum, with the chemical-shift parameters of the unprotonated carbons fixed, gives the parameters of the overlapped resonances of the protonated carbons. As an example, we report the determination of the 13C chemical-shift parameters of the carbons of form II of piroxicam. The experimental results are compared with those obtained from calculations using the DFT/GIAO method. Potential applications of this method are discussed.

  8. A spectroscopic study of nicotine analogue 2-phenylpyrrolidine (PPD) using resonant two-photon ionization (R2PI), microwave, and 2D NMR techniques.

    Martin, Danielle E; Robertson, Evan G; MacLellan, Jonathan G; Godfrey, Peter D; Thompson, Christopher D; Morrison, Richard J S

    2009-02-25

    Conformational preferences of the nicotine analogue 2-phenylpyrrolidine (PPD) have been studied in both gaseous and solution phases. Theoretical calculations at the MP2 and B3LYP levels point to 5-6 stable conformers which differ in three degrees of conformational freedom; torsion between the two rings, inversion at the pyrrolidine (PY) amine, and PY ring puckering, characterized using the Cremer-Pople definition for pseudorotation. Only one conformer has a trans arrangement between the amino hydrogen and the phenyl substituent. It is 6-8 kJ mol(-1) more stable than the cis conformers, has a perpendicular ring arrangement, and puckers at the nitrogen atom--similar to structures reported for nicotine. Resonant two-photon ionization (R2PI) data, including hole burn spectra, indicate only one conformer is present in the free jet expansion, and band contour analysis suggests assignment to the trans conformer. Confirmation was provided by microwave spectroscopy. Fifty-seven lines measured in the 48-72 GHz region were assigned to 206 b-type transitions and fitted to yield rotational constants within 2 MHz of MP2 values predicted for the trans conformer. The solution-phase conformers of PPD were studied using 1D and 2D (1)H NMR spectroscopy and solvent-based theoretical calculations. In marked contrast to the gas phase, NMR data reveals only cis conformers present in solution. Calculations confirm increased stability for these conformers when placed in simulated chloroform or water environments. Solvent molecules are believed to disrupt a crucial N...H(ortho) stabilizing interaction present within the trans conformer.

  9. Adsorption of molecular gases on porous materials in the SAFT-VR approximation

    Castro, M; Martinez, A; Rosu, H C; 10.1016/j.physa.2010.04.028

    2010-01-01

    A simple molecular thermodynamic approach is applied to the study of the adsorption of gases of chain molecules on solid surfaces. We use a model based on the Statistical Associating Fluid Theory for Variable Range (SAFT-VR) potentials [A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, J. Chem. Phys. 106 (1997) 4168] that we extend by including a quasi-two-dimensional approximation to describe the adsorption properties of this type of real gases [A. Martinez, M. Castro, C. McCabe, A. Gil-Villegas, J. Chem. Phys. 126 (2007) 074707]. The model is applied to ethane, ethylene, propane, and carbon dioxide adsorbed on activated carbon and silica gel, which are porous media of significant industrial interest. We show that the adsorption isotherms obtained by means of the present SAFT-VR modeling are in fair agreement with the experimental results provided in the literature

  10. PVTx measurements of the N-methylpyrrolidone/methanol mixed solvent: cubic and SAFT EOS analyses.

    Aparicio, Santiago; García, Begoña; Alcalde, Rafael; Davila, María J; Leal, José M

    2006-04-06

    The PVTx behavior for the x N-methylpyrrolidone (NMP) + (1 - x) methanol compressed liquid solvent is reported over the full composition range and within wide pressure and temperature ranges. The derived excess properties were analyzed in terms of structural effects and intermolecular interactions and revealed strong H-bonding heteroassociations between the two components. The cubic equations of state by Soave (SRK), Peng-Robinson (PR), Patel-Teja (PT), and Sako-Wu-Prausnitz (SWP), and the statistical associating fluid theory (SAFT) equation of state, combined with a number of selected mixing rules, were used to correlate and predict the behavior of both the pure components and mixed solvent. While the classical cubic equations of state were not successful in describing the properties of this system, the SWP equation of state and the SAFT yielded reasonably good results.

  11. A Preliminary Appraisal of the Effect of Pumping on Seawater Intrusion and Upconing in a Small Tropical Island Using 2D Resistivity Technique

    Nura Umar Kura

    2014-01-01

    Full Text Available The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1–10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2 reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm shrink with time, the low resistivity (10 Ωm tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add

  12. A preliminary appraisal of the effect of pumping on seawater intrusion and upconing in a small tropical island using 2D resistivity technique.

    Kura, Nura Umar; Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Zaudi, Muhammad Amar; Aris, Ahmad Zaharin

    2014-01-01

    The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1-10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific

  13. A predictive group-contribution simplified PC-SAFT equation of state: Application to polymer systems

    Tihic, Amra; Kontogeorgis, Georgios; von Solms, Nicolas

    2008-01-01

    A group-contribution (GC) method is coupled with the molecular-based perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) to predict its characteristic pure compound parameters. The estimation of group contributions for the parameters is based on a parameter...... are the molecular structure of the polymer of interest in terms of functional groups and a single binary interaction parameter for accurate mixture calculations....

  14. Primed-infusion technique for rapid estimation of the metabolic clearance rate of 1,25(OH)/sub 2/D/sub 3/

    Eastell, R.; Riggs, B.L.; Kumar, R.

    1987-09-01

    The authors have developed a rapid primed-infusion technique for the measurement of the metabolic clearance and production rate of 1,25-dihydroxyvitamin D/sub 3/ in normal human subjects and experimental animals. With this method, an estimate of the metabolic clearance rate of 1,25-dihydroxyvitamin D/sub 3/ can generally be made within 3 to 4 h. Initial studies in five dogs using 1,25-(/sup 3/H)-dihydroxyvitamin D/sub 3/ allowed us to determine the optimal ratio of loading dose to infusion rate that resulted in the most rapid attainment of steady-state levels of plasma radioactivity. By use of this technique they found that the metabolic clearance rate of 1,25-dihydroxyvitamin D/sub 3/ in dogs was 6.3 +/- 1.2 ml/min; the production rate of the hormone was 0.40 +/- 0.25 ..mu..g/day. In eight normal women, aged 28-51 yr, the metabolic clearance rate for 1,25-dihydroxyvitamin D/sub 3/ was 25.9 +/- 4.7 ml/min; the production rate was 1.38 +/- 0.45 ..mu..g/day. The advantages of this method relative to ones used in the past are that it can be performed quickly (generally within 3-4 h) with the use of only tracer amounts of this hormone (equivalent to 1.1% of the production rate). With this method, no assumptions about the most appropriate model to which to fit the data need to be made. Because of its rapidity, no metabolites of the injected 1,25-dihydroxyvitamin D/sub 3/ are formed during the study interval.

  15. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques

    Ebrahimi, Sara; Kompany-Zareh, Mohsen, E-mail: kmpz@dr.com

    2016-02-04

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation−emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model. - Highlights: • Hard restricted trilinear decomposition (HrTD) was introduced for model-based analysis of three-way rank deficient data. • DNA hybridization was investigated by two-dimensional fluorescence spectroscopy and soft/hard multi-way techniques. • Restricted Tucker3 analysis enabled accurate estimation of pure FRET profiles in the hybridized form. • HrTD was successfully employed to estimate kinetic and equilibrium parameters of DNA hybridization system. • The performance of the proposed methods in response to different physical stimuli was successfully evaluated.

  16. 2D semiconductor optoelectronics

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  17. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques.

    Ebrahimi, Sara; Kompany-Zareh, Mohsen

    2016-02-01

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation-emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model.

  18. Density gradient theory combined with the PC-SAFT equation of state used for modeling the surface tension of associating systems

    Vinš Václav

    2014-03-01

    Full Text Available The density gradient theory (GT combined with a SAFT-type (Statistical Associating Fluid Theory equation of state has been used for modeling the surface tension of associating fluids represented by a series of six alkanols ranging from methanol to 1-pentanol. The effect of nonzero dipole moment of the selected alkanols on the predicted surface tension was investigated in this study. Results of the GT + non-polar Perturbed Chain (PC SAFT equation of state were compared to predictions of GT combined with the PC-polar-SAFT, i.e. PCP-SAFT, equation. Both GT + PC-SAFT and GT + PCP-SAFT give reasonable prediction of the surface tension for pure alkanols. Results of both models are comparable as no significant difference in the modeled saturation properties and in the predicted surface tension using GT was found. Consideration of dipolar molecules of selected alkanols using PCP-SAFT had only minor effect on the predicted properties compared to the non-polar PC-SAFT model.

  19. Flaw detection and flaw size determination in electron-beam welded copper vessels using PA-SAFT; Fehlernachweis und -groessenbestimmung in elektronenstrahlgeschweissten Kupferbehaeltern mit Hilfe von PA-SAFT

    Boehm, Rainer; Brackrock, Daniel; Brekow, Gerhard; Montag, Hans-Joachim [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany); Lipponen, Aarne [VTT Technical Research Centre of Finland (Finland); Pitkaenen, Jorma [Posiva Oy, Eurajoki (Finland)

    2013-07-01

    Spent fuel rods from Finnish nuclear power plants are to be permanently disposed in copper vessels in which electron beam weld seams are to provide a secure closure between the tubular part and the cover. Extensive measurements were performed on reference errors and natural weld flaws using a phased-array ultrasonic testing system. The evaluation can be done by conventional means. HF-A images were nonetheless stored to permit SAFT reconstruction. This makes it possible to generate SAFT images with correct location of echo sources, thus greatly facilitating the evaluation. Due to the fuel cells' cylindrical geometry substantial time can be saved by using polar coordinates in the SAFT algorithm. Moreover this directly supplies the data for the developed view (depth and angles). The article contains PowerPoint slides.

  20. Performance of predictive models in phase equilibria of complex associating systems: PC-SAFT and CEOS/GE

    N. Bender

    2013-03-01

    Full Text Available Cubic equations of state combined with excess Gibbs energy predictive models (like UNIFAC and equations of state based on applied statistical mechanics are among the main alternatives for phase equilibria prediction involving polar substances in wide temperature and pressure ranges. In this work, the predictive performances of the PC-SAFT with association contribution and Peng-Robinson (PR combined with UNIFAC (Do through mixing rules are compared. Binary and multi-component systems involving polar and non-polar substances were analyzed. Results were also compared to experimental data available in the literature. Results show a similar predictive performance for PC-SAFT with association and cubic equations combined with UNIFAC (Do through mixing rules. Although PC-SAFT with association requires less parameters, it is more complex and requires more computation time.

  1. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan

    2015-01-01

    non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... of non-cubic models (PC-SAFT and Soave-BWR) and cubic models (SRK and PR) in several important aspects related to PVT modeling of reservoir fluids, including density description for typical pure components in reservoir fluids, description of binary VLE, prediction of multicomponent phase envelopes...... and Soave-BWR. For PC-SAFT, new correlations for estimating its model parameters in heptanes plus are developed. The results reveal that the non-cubic models are clearly advantageous in density calculation of pure components. For binary VLE and multicomponent phase envelopes, the results are similar...

  2. Improving synthetic aperture focusing technique for thick concrete specimens via frequency banding

    Clayton, Dwight A.

    2016-04-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. While standard Synthetic Aperture Focusing Technique (SAFT) is adequate for many defects with shallow concrete cover, some defects located under deep concrete cover are not easily identified using the standard SAFT. For many defects, particularly defects under deep cover, the use of frequency banded SAFT improves the detectability over standard SAFT. In addition to the improved detectability, the frequency banded SAFT also provides improved scan depth resolution that can be important in determining the suitability of a particular structure to perform its designed safety function. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To validate the advantages of frequency banded SAFT on thick concrete, a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects was fabricated.

  3. Applications of the simplified perturbed-chain SAFT equation of state using an extended parameter table

    Tihic, Amra; Kontogeorgis, Georgios; von Solms, Nicolas;

    2006-01-01

    An equation of state based on perturbation theory, the simplified perturbed-chain statistical associating fluid theory (PC-SAFT) is applied to binary systems that include an extensive number of non-associating compounds. Pure-component parameters of different compounds that are not available......, ketones, esters, sulphides, siloxanes, plasticizers, cyclo- and fluorinated-hydrocarbons, etc.). For many different families of compounds, the segment diameter and interaction energy are found to be constant with increasing molar mass, while the segment number increases linearly with molar mass. Using...

  4. Prediction and correlation of high-pressure gas solubility in polymers with simplified PC-SAFT

    von Solms, Nicolas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2005-01-01

    Using simplified PC-SAFT we have modeled gas solubilities at high temperatures and pressures for the gases methane and carbon dioxide in each of the three polymers high-density polyethylene (HDPE), nylon polyamide-11 (PA-11), and poly(vinylidene fluoride) (PVDF). In general the results...... are satisfactory, using in most cases a single, temperature-independent value of the binary interaction parameter. In the cases of methane in HDPE and PVDF, a temperature-dependent binary interaction parameter was required. New pure component polymer parameters for PA-11 and PVDF were obtained using a recently...

  5. Activated sludge model No. 2d, ASM2d

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  6. A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state

    Gross, J.

    2009-01-01

    A Helmholtz energy functional for inhomogeneous fluid phases based on the perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state is proposed. The model is supplemented with a capillary wave contribution to the surface tension to account for long-wavelength fluctuatio

  7. Benefits and drawbacks of TOFD and SAFT for crack depth measurement at thick-walled vessels; Vor- und Nachteile von TOFD und SAFT zur Risstiefenmessung an dickwandigen Behaeltern

    Schmitz, V.; Mueller, W. [IZFP, Saarbruecken (Germany); Hecht, A. [BASF AG, Ludwigshafen (Germany)

    1999-08-01

    The results presented in the paper show that TOFD can be applied in many cases as a low-cost and reliable testing method, but is less suitable for some cases. These are: Description of cracks in welded joints which yield a multitude of data, as e.g. microstructural data, so that the method is less suitable for austenitic weld testing; detection of small cracks. (orig./CB) [Deutsch] Aus den gezeigten Beispielen ergibt sich, dass TOFD in einer Vielzahl von Anwendungsfaellen als preisguenstiges und zuverlaessiges Pruefverfahren eingesetzt werden kann, dass es aber fuer einige Anwendungsfaelle weniger geeignet ist: Diese Anwendungsfaelle sind: (1) Nachweis von Rissen in Schweissnaehten mit vielen Anzeigen, z.B. Gefuegeanzeigen, d.h. insbesondere bei austenitischen Schweissnaehten, und (2) Nachweis von kleinen Rissen. Der Nachweis auch von kleinen Rissen wird dahingegen beim Impuls-Echo Verfahren aufgrund des vorliegenden Winkelspiegeleffektes durchaus moeglich sein. Durch eine nachgeschaltete SAFT-Auswertung werden zum einen stoerendes Gefuegerauschen unterdrueckt und zum anderen Echos von Fehlstellen angehoben. Diese Verbesserung des Signal-Rausch-Abstandes fuehrt zu einer Verbesserung der Fehlererkennbarkeit und der Fehlerbewertung. (orig.)

  8. Isothermal (vapour + liquid) equilibrium of (cyclic ethers + chlorohexane) mixtures: Experimental results and SAFT modelling

    Bandres, I.; Giner, B.; Lopez, M.C.; Artigas, H. [Departamento de Quimica Organica y Quimica Fisica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Lafuente, C. [Departamento de Quimica Organica y Quimica Fisica, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)], E-mail: celadi@unizar.es

    2008-08-15

    Experimental data for the isothermal (vapour + liquid) equilibrium of mixtures formed by several cyclic ethers (tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, and 1,4-dioxane) and chlorohexane at temperatures of (298.15 and 328.15) K are presented. Experimental results have been discussed in terms of both, molecular characteristics of pure compounds and potential intermolecular interaction between them using thermodynamic information of the mixtures obtained earlier. Furthermore, the influence of the temperature on the (vapour + liquid) equilibrium of these mixtures has been explored and discussed. Transferable parameters of the SAFT-VR approach together with standard combining rules have been used to model the phase equilibrium of the mixtures and a description of the (vapour + liquid) equilibrium of them that is in excellent agreement with the experimental data are provided.

  9. Bacterial diversity in rhizosphere soil of soybean: A comparison of RISA, DGGE, and 2D-PAGE techniques%RISA、DGGE和2D-PAGE技术对大豆根际土壤细菌多样性分析的比较

    李刚; 赵建宁; 文都日乐; 杨殿林

    2011-01-01

    采用基于PCR扩增的核糖体间隔区分析(RISA)、变性梯度凝胶电泳(DGGE)和双向电泳(2D-PAGE)3种分子生态学技术对大豆根际土壤细菌多样性比对分析.结果表明:2D-PAGE技术得到的土壤细菌多样性(基因点)最丰富,其次为DGGE技术(基因片段),RISA技术(基因片段)最低.RISA技术得到的条带数最少,但结果稳定性较高,并且实验操作比较简单;DGGE技术得到的条带数较多,具有较高的精度,但误差来源也最多;2D-PAGE技术作为一种新颖的土壤微生物研究方法,可以很好地解决其他2种技术分辨率低的缺点,能够获得丰富的土壤细菌多样性信息,在土壤微生物生态学研究中发挥重要作用,但与前2种技术相比,其操作比较复杂,条件要求相对比较严格.尽管存在不足,2D-PAGE技术在土壤微生物生态学研究领域中已显示出潜在的优势.%The PCR-based RISA, DGGE, and 2D-PAGE were adopted to analyze the bacterial diversity in thizosphere soil of soybean. Most abundant soil bacterial diversity was acquired by 2D-PAGE (gene spots) , followed by DGGE ( gene bands) , and by RISA ( gene bands). The RISA gave the fewest bands. but the result was more stable and the experimental operation was more easy; DGGE obtained more bands and showed good precision, but had more error sources; while 2D-PAGE as a novel soil microbial research method could overcome the low-resolution problem of the other two methods, achieve abundant information of soil bacterial diversity, and play an important role in the research of soil microbial ecology. However, the operation of 2DPAGE was more complicated and required strict conditions, compared with RISA and DGGE. In spite of these disadvantages, 2D-PAGE had shown potential advantages in the research field of soil microbial ecology.

  10. HypGrid2D. A 2-d mesh generator

    Soerensen, N.N.

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  11. Are safe results obtained when the PC-SAFT equation of state is applied to ordinary pure chemicals?

    Privat, Romain; Gani, Rafiqul; Jaubert, Jean-Noël

    2010-01-01

    The PC-SAFT equation of state is a very popular and promising model for fluids that employs a complicated pressure-explicit mathematical function (and can therefore not be solved analytically at a specified pressure and temperature, contrary to classical cubic equations). In this work, we...... demonstrate that in case of pure fluids, the PC-SAFT equation may exhibit up to five different volume-roots whereas cubic equations give at the most three volume-roots (and yet, only one or two volume roots have real significance). The consequence of this strongly atypical behaviour is the existence of two...... different fluid-fluid coexistence lines (the vapour pressure-curve and an additional liquid-liquid equilibrium curve) and two critical points for a same pure component, which is obviously physically inconsistent. In addition to n-alkanes, nearly sixty very common pure components (branched alkanes...

  12. Performance of predictive models in phase equilibria of complex associating systems: PC-SAFT and CEOS/GE

    Bender, N.; P. B. Staudt; Soares, R.P.; Cardozo,N. S. M.

    2013-01-01

    Cubic equations of state combined with excess Gibbs energy predictive models (like UNIFAC) and equations of state based on applied statistical mechanics are among the main alternatives for phase equilibria prediction involving polar substances in wide temperature and pressure ranges. In this work, the predictive performances of the PC-SAFT with association contribution and Peng-Robinson (PR) combined with UNIFAC (Do) through mixing rules are compared. Binary and multi-component systems involv...

  13. Homogeneous droplet nucleation modeled using the gradient theory combined with the PC-SAFT equation of state

    Vinš Václav

    2013-04-01

    Full Text Available In this work, we used the density gradient theory (DGT combined with the cubic equation of state (EoS by Peng and Robinson (PR and the perturbed chain (PC modification of the SAFT EoS developed by Gross and Sadowski [1]. The PR EoS is based on very simplified physical foundations, it has significant limitations in the accuracy of the predicted thermodynamic properties. On the other hand, the PC-SAFT EoS combines different intermolecular forces, e.g., hydrogen bonding, covalent bonding, Coulombic forces which makes it more accurate in predicting of the physical variables. We continued in our previous works [2,3] by solving the boundary value problem which arose by mathematical solution of the DGT formulation and including the boundary conditions. Achieving the numerical solution was rather tricky; this study describes some of the crucial developments that helped us to overcome the partial problems. The most troublesome were computations for low temperatures where we achieved great improvements compared to [3]. We applied the GT for the n-alkanes: nheptane, n-octane, n-nonane, and n-decane because of the availability of the experimental data. Comparing them with our numerical results, we observed great differences between the theories; the best results gave the combination of the GT and the PC-SAFT. However, a certain temperature drift was observed that is not satisfactorily explained by the present theories.

  14. Schottky diodes from 2D germanane

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  15. Aero Fighter - 2D Gaming

    Ahmed, Zeeshan

    2010-01-01

    Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.

  16. Head First 2D Geometry

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  17. Surface Tension of Binary Mixtures Including Polar Components Modeled by the Density Gradient Theory Combined with the PC-SAFT Equation of State

    Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2013-05-01

    In this study, the Cahn-Hilliard density gradient theory (GT) is used for predicting the surface tension of various binary mixtures at relatively wide temperature ranges and for testing the application of the GT for predictions of homogeneous nucleation. The GT was combined with two physically based equations of state (EoS), namely the perturbed-chain (PC) statistical associating fluid theory (SAFT) and its modification for polar substances the perturbed-chain polar (PCP) SAFT. The GT applied to the planar phase interface was employed to predict the interfacial tension for various quadrupolar (CO2 and benzene) and dipolar (difluoromethane, i.e., R32; pentafluoroethane, i.e., R125; and 1,1,1,2-tetrafluoroethane, i.e., R134a) substances and for five binary mixtures including polar components ( n-decane + CO2, benzene + CO2, R32 + R125, R32 + R134a, R134a + R125). The PCP-SAFT EoS combined with the GT provides more accurate results for both the quadrupolar and dipolar substances than the original PC-SAFT EoS. Besides the planar phase interface, the GT was also applied to the spherical phase interface simulating a critical cluster occurring in homogeneous nucleation of droplets. Carbon dioxide was considered, because it has a relatively high quadrupole moment and because of its relevance to natural gas processing. Application of the PCP-SAFT EoS provides a significant improvement compared to the PC-SAFT EoS, and it is clearly superior to the classical cubic Peng-Robinson EoS, which is still used for modeling droplet nucleation.

  18. Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT.

    Paduszyński, Kamil; Domańska, Urszula

    2012-04-26

    We present the results of an extensive study on a novel approach of modeling ionic liquids (ILs) and their mixtures with molecular compounds, incorporating perturbed-chain statistical associating fluid theory (PC-SAFT). PC-SAFT was used to calculate the thermodynamic properties of different homologous series of ILs based on the bis(trifluormethylsulfonyl)imide anion ([NTf2]). First, pure fluid parameters were obtained for each IL by means of fitting the model predictions to experimental liquid densities over a broad range of temperature and pressure. The reliability and physical significance of the parameters as well as the employed molecular scheme were tested by calculation of density, vapor pressure, and other properties of pure ILs (e.g., critical properties, normal boiling point). Additionally, the surface tension of pure ILs was calculated by coupling the PC-SAFT equation of state with density gradient theory (DGT). All correlated/predicted results were compared with literature experimental or simulation data. Afterward, we attempted to model various thermodynamic properties of some binary systems composed of IL and organic solvent or water. The properties under study were the binary vapor-liquid, liquid-liquid, and solid-liquid equilibria and the excess enthalpies of mixing. To calculate cross-interaction energies we used the standard combining rules of Lorentz-Berthelot, Kleiner-Sadowski, and Wolbach-Sandler. It was shown that incorporation of temperature-dependent binary corrections was required to obtain much more accurate results than in the case of conventional predictions. Binary corrections were adjusted to infinite dilution activity coefficients of a particular solute in a given IL determined experimentally or predicted by means of the modified UNIFAC (Dortmund) group contribution method. We concluded that the latter method allows accurate and reliable calculations of bulk-phase properties in a totally predictive manner.

  19. Phase Equilibrium Calculation of Mixtures:Use of the SAFT-BACK Equation of State for Binary Systems under Elevated Pressure

    张志禹; 胡中桥; 杨基础; 李以圭

    2002-01-01

    The statistical associating fluid theory (SAFT)-Boublík-Alder-Chen- Kreglewshi(BACK) equation of state is employed to correlate vapor-liquid equilibria of 16 binary mixtures composed of supercritical fluids with other fluids at elevated pressures. The van der Waals mixing rules are used and the binary parameters are adjusted to experimental data. The SAFT-BACK equation of state provides a better correlation of vapor-liquid equilibrium than the original BACK equation. Consequently, the binary parameters computed from the data sets can be used to accurately predict the saturated densities of the vapor and liquid phases.

  20. Phase equilibria modeling of methanol-containing systems with the CPA and sPC-SAFT equations of state

    Tybjerg, Peter Chr. V.; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    Proper representation at various conditions of phase equilibria of methanol-containing mixtures (with hydrocarbons, water, etc.) is Important for oil flow assurance purposes In this work two association equations of state. CPA and sPC-SAFT, are applied to methanol-containing mixtures The purpose...... density, enthalpy of vaporization and compressibility factor data at e used Methanol-alkane vapor-liquid equilibrium (VLE) and liquid-liquid equilibrium (LLE) data. water-methanol VLE as well as water-methanol-hydrocarbon LLE are considered. It is concluded that the two association equations of state...

  1. Modeling phase equilibria of alkanols with the simplified PC-SAFT equation of state and generalized pure compound parameters

    Grenner, Andreas; Kontogeorgis, Georgios; von Solms, Nicolas

    2007-01-01

    of the physical pure compound parameters, in (segment number) and or (segment diameter), are obtained from linear extrapolations, since m and m sigma(3), increase linearly with respect to the molar mass, and moreover, the two association parameters (association energy and association volume) were assumed...... of this project is to obtain a thermodynamic model which can be used in the development of sophisticated products such as pharmaceuticals, polymers, detergents or food ingredients. One of the severe limitations in applying SAFT-type equations of state to these compounds is that the procedure for obtaining...

  2. 2D SIMPLIFIED SERVO VALVE

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  3. Personalized 2D color maps

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  4. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  5. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  6. Modeling of Asphaltene Onset Precipitation Conditions with Cubic Plus Association (CPA) and Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) Equations of State

    Arya, Alay; Liang, Xiaodong; von Solms, Nicolas

    2016-01-01

    using various equations of state and empirical models. In the past few years, association models based on CPA and SAFT equations of state have been found to be promising models for studies of asphaltene precipitation. In this work, we compare asphaltene precipitation results obtained from different...

  7. Comparison of two association models (Elliott-Suresh-Donohue and simplified PC-SAFT) for complex phase equilibria of hydrocarbon-water and amine-containing mixtures

    Grenner, Andreas; Schmelzer, Jürgen; von Solms, Nicolas;

    2006-01-01

    Two Wertheim-based association models, the simplified PC-SAFT and the Elliott-Suresh-Donohue (ESD) equation of state, are compared in this work for the description of vapor-liquid equilibria (VLE) and liquid-liquid equilibria (LLE) in binary systems of aniline, cyclohexylamine (CHA), hydrocarbons...

  8. Application of PC-SAFT and cubic equations of state for the correlation of solubility of some pharmaceutical and statin drugs in SC-CO2

    Abdallah El Hadj. A.

    2013-01-01

    Full Text Available In this work, the solubilities of some anti-inflammatory (nabumetone, phenylbutazone and salicylamide and statin drugs (fluvastatin, atorvastatin, lovastatin, simvastatin and rosuvastatin were correlated using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT with one-parameter mixing rule and commonly used cubic equations of state Peng-Robinson (PR and Soave-Redlich-Kwong (SRK combining with van-der Waals-1 parameter (VDW1 and van-der Waals-2 parameters (VDW2 mixing rules. The experimental data for studied compounds were taken from literature at temperature and pressure in ranges (308-348 K and (100-360 bar respectively. The critical properties required for the correlation with PR and SRK were estimated using Gani and Noonalol contribution group methods whereas, PC-SAFT pure-component parameters; segment number (m, segment diameter (σ and energy parameter (ε/k have been estimated by tihic’s group contribution method for nabumetone. For phenylbutazone and salicylamide those parameters were determined using a linear correlation. For statin drugs, PC-SAFT parameters were fitted to solubility data, and binary interaction parameters (kij and lij have been obtained by fitting the experimental data. The result was found to be in good agreement with the experimental data and showed that PC-SAFT approach can be used to model solid-SCF equilibrium with better correlation accuracy than cubic equations of state.

  9. Learn Unity for 2D game development

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  10. 2D vs. 3D mammography observer study

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  11. Model of PC-SAFT state equation based on simultaneous method%基于联立法的PC-SAFT状态方程模型

    徐申骏; 祝铃钰; 陈曦

    2015-01-01

    PC?SAFT (Perturbed-Chain Statistical Associating Fluid Theory)状态方程可以准确计算聚合物的物性,但是基于序贯算法的PC-SAFT状态方程模型收敛性较差.本文在MATLAB软件环境下编制了PC-SAFT状态方程模型的计算程序并用联立法求解,将乙烯、氢气、乙烯-氢气双组分、含聚合物的多组分等体系的物性与Aspen Plus软件模拟所得的数据进行比较,结果十分吻合.同时在MATLAB软件环境下编制了序贯法求解的PC-SAFT状态方程计算程序,在收敛步数方面与联立法程序进行了比较,联立方程法显示了明显的优势.%The equation of state of PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) can be used to calculate the physical properties of polymers accurately. However, based on sequential method, the astringency of PC-SAFT is not very good. This article established the model of PC-SAFT EOS through simultaneous method in MATLAB software, and calculated the physical properties of pure ethylene, pure hydrogen, two-component system of ethylene and hydrogen as well as multi-component system containing polymer. Compared the physical properties data with the data obtained from the simulations of Aspen Plus software, the results were in great agreement. Moreover, this article established the model of PC-SAFT EOS through sequential method in MATLAB software, and compared the number of convergence steps with the model through simultaneous method, the model through simultaneous method showed obvious advantage.

  12. 2-D Versus 3-D Magnetotelluric Data Interpretation

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  13. Metrology for graphene and 2D materials

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  14. SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.

    Avendaño, Carlos; Lafitte, Thomas; Adjiman, Claire S; Galindo, Amparo; Müller, Erich A; Jackson, George

    2013-03-07

    In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154] we introduced the SAFT-γ force field for molecular simulation of fluids. In our approach, a molecular-based equation of state (EoS) is used to obtain coarse-grained (CG) intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions of the fluid. The macroscopic experimental data for the vapor-liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the SAFT-VR Mie EoS and used to estimate effective intermolecular parameters that provide a good description of the thermodynamic properties by exploring a wide parameter space for models based on the Mie (generalized Lennard-Jones) potential. This methodology was first used to develop a simple single-segment CG Mie model of carbon dioxide (CO2) which allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the enthalpy of vaporization, interfacial tension, supercritical density, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thomson coefficient, and speed of sound). In our current paper, the methodology is further applied and extended to develop effective SAFT-γ CG Mie force fields for some important greenhouse gases including carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6), modeled as simple spherical molecules, and for long linear alkanes including n-decane (n-C10H22) and n-eicosane (n-C20H42), modeled as homonuclear chains of spherical Mie segments. We also apply the SAFT-γ methodology to obtain a CG homonuclear two-segment Mie intermolecular potential for the more challenging polar and asymmetric compound 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), a novel replacement

  15. Perspectives for spintronics in 2D materials

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  16. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Lina Yang

    2014-01-01

    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  17. Validation of minor species of the MIPAS2D database

    Enzo Papandrea

    2014-01-01

    Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […

  18. Twin characterisation using 2D and 3D EBSD

    M. D. NAVE; J. J. L. MULDERS; A. GHOLINIA

    2005-01-01

    Electron backscatter diffraction (EBSD) is a superior technique for twin characterisation due to its ability to provide highly detailed classification (by generation, system and variant) of a significant number of twins in a relatively short time. 2D EBSD is now widely used for twin characterisation and provides quite good estimates of twin volume fractions under many conditions. Nevertheless, its accuracy is limited by assumptions that have to be made due to the 2D nature of the technique. With 3D EBSD, two key assumptions are no longer required, as additional information can be derived from the 3D map. This paper compares the benefits and limitations of 2D and 3D EBSD for twin characterisation. 2D EBSD enables a larger number of twins to be mapped in a given space of time, giving better statistics. 3D EBSD provides more comprehensive twin characterisation and will be a valuable tool for validation of 2D stereological methods and microstructural models of twinning during deformation.

  19. Annotated Bibliography of EDGE2D Use

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  20. Port Adriano, 2D-Model Tests

    Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....

  1. Ion Transport in 2-D Graphene Nanochannels

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  2. Stereoscopic highlighting: 2D graph visualization on stereo displays.

    Alper, Basak; Höllerer, Tobias; Kuchera-Morin, JoAnn; Forbes, Angus

    2011-12-01

    In this paper we present a new technique and prototype graph visualization system, stereoscopic highlighting, to help answer accessibility and adjacency queries when interacting with a node-link diagram. Our technique utilizes stereoscopic depth to highlight regions of interest in a 2D graph by projecting these parts onto a plane closer to the viewpoint of the user. This technique aims to isolate and magnify specific portions of the graph that need to be explored in detail without resorting to other highlighting techniques like color or motion, which can then be reserved to encode other data attributes. This mechanism of stereoscopic highlighting also enables focus+context views by juxtaposing a detailed image of a region of interest with the overall graph, which is visualized at a further depth with correspondingly less detail. In order to validate our technique, we ran a controlled experiment with 16 subjects comparing static visual highlighting to stereoscopic highlighting on 2D and 3D graph layouts for a range of tasks. Our results show that while for most tasks the difference in performance between stereoscopic highlighting alone and static visual highlighting is not statistically significant, users performed better when both highlighting methods were used concurrently. In more complicated tasks, 3D layout with static visual highlighting outperformed 2D layouts with a single highlighting method. However, it did not outperform the 2D layout utilizing both highlighting techniques simultaneously. Based on these results, we conclude that stereoscopic highlighting is a promising technique that can significantly enhance graph visualizations for certain use cases.

  3. Applications of Doppler Tomography in 2D and 3D

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  4. UPLAND EROSION MODELING WITH CASC2D-SED

    Pierre JULIEN; Rosalía ROJAS

    2002-01-01

    Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.

  5. 2D materials for nanophotonic devices

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  6. Imaging techniques for ultrasonic testing; Bildgebende Verfahren fuer die Ultraschallpruefung

    NONE

    2013-07-01

    These seminar proceedings contain 16 lectures on the following topics: 1. From imaging to quantification - ultrasound methods in medical diagnostics; 2. SAFT, TOFD, Phased Array - classical applications and recent developments in ultrasonic imaging; 3. Innovative ultrasonic imaging methods in research and application; 4. Industrial ultrasonic testing of fibre-reinforced structures of complex geometry; 5. Visualisation of crack tips in the inspection of wheel set shafts with longitudinal boreholes as a means of avoiding unnecessary wheel set changes; 6. Areal analysis of the propagation of Lamb waves on curved, anisotropic structures; 7. High-resolution representation in immersion technique testing; 8. Variants in generating images from phased array measurement data - practical examples involving copper, carbon-fibre reinforced plastic and other materials; 9. GIUM - an unconventional method of microstructure imaging using ultrasonic stimulation and laser vibrometry scanning; 10. Innovative air-ultrasonic testing concepts for improved imaging; 11. Use of imaging methods for improving the quality of test results from nondestructive testing; 12. Modelling and visualisation of EMUS stimulation for transducer optimisation; 13. Use of SAFT in the manufacture of energy conversion machines; 14. Ultrasonic imaging tests for improved defect characterisation during weld seam inspection on longitudinally welded large-diameter pipes; 15. SAFT reconstruction for testing austenitic weld seams and dissimilar metal weld seams for transverse cracks; 16. Imaging-based optimisation method for quantitative ultrasonic testing of anisotropic inhomogeneous austenitic welded joints with determination and utilisation of their elastic properties. One contribution has been abstracted separately. [German] Dieser Seminarband enthaelt 16 Vortraege mit folgenden Themen: 1. Von der Bildgebung bis zur Quantifizierung - Ultraschallverfahren in der medizinischen Diagnostik; 2. SAFT, TOFD, Phased Array

  7. Maximizing entropy of image models for 2-D constrained coding

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino;

    2010-01-01

    £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...... of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848.......This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...

  8. 2D/3D switchable displays

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  9. Matrix models of 2d gravity

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  10. Matrix models of 2d gravity

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  11. Applications of 2D helical vortex dynamics

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  12. 2D Saturable Absorbers for Fibre Lasers

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  13. Image processing of 2D crystal images.

    Arheit, Marcel; Castaño-Díez, Daniel; Thierry, Raphaël; Gipson, Bryant R; Zeng, Xiangyan; Stahlberg, Henning

    2013-01-01

    Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to image frozen-hydrated 2D crystals. The processing of recorded images exploits the periodic arrangement of the structures in the images to extract the amplitudes and phases of diffraction spots in Fourier space. However, image imperfections require a crystal unbending procedure to be applied to the image before evaluation in Fourier space. We here describe the process of 2D crystal image unbending, using the 2dx software system.

  14. 2d index and surface operators

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  15. Glitter in a 2D monolayer.

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  16. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  17. Compression of 2D vector fields under guaranteed topology preservation

    2003-01-01

    In this paper we introduce a new compression technique for 2D vector fields which preserves the complete topology, i.e., the critical points and the connectivity of the separatrices. As the theoretical foundation of the algorithm, we show in a theorem that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a compression algorithm which is based on a ...

  18. Inversions for MT data in 2D symmetrical anisotropic media

    YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he

    2005-01-01

    In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.

  19. 2d Index and Surface operators

    Gadde, Abhijit

    2013-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...

  20. Automatic Contour Extraction from 2D Image

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  1. Optical modulators with 2D layered materials

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  2. Orthotropic Piezoelectricity in 2D Nanocellulose

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  3. 2D microwave imaging reflectometer electronics

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  4. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  5. Horns Rev II, 2-D Model Tests

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  6. 2D PIM Simulation Based on COMSOL

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...

  7. Canonical structure of 2D black holes

    Navarro-Salas, J; Talavera, C F

    1994-01-01

    We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.

  8. 2d-LCA - an alternative to x-wires

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  9. Half-metallicity in 2D organometallic honeycomb frameworks

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  10. Density functional theory for the description of spherical non-associating monomers in confined media using the SAFT-VR equation of state and weighted density approximations

    Malheiro, Carine; Mendiboure, Bruno; Plantier, Frédéric; Blas, Felipe J.; Miqueu, Christelle

    2014-04-01

    As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalar and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the "CG" approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the "FMT" extension version gives a good representation solely at low pressures. Hence, the "CG" version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.

  11. Planar maps, circle patterns and 2d gravity

    David, Francois

    2013-01-01

    Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a K\\"ahler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space; (3) a discretized version (involving finite difference complex derivative operators) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.

  12. Quantification of In Vivo 2D Vector Flow Ultrasound

    Pedersen, Mads Møller

    2012-01-01

    This PhD thesis has investigated the use of a new ultrasound technique that to measure the movement of blood. The technique was developed at the Center for Fast Ultrasound Imaging at the Technical University of Denmark and has previously only been available with experimental ultrasound scanners....... Now, the method has been implemented into a commercial ultrasound scanner made for hospital use. In real-time, the technique measures movements in all directions as 2D vector fields, including movements perpendicular to the ultrasound beam. This is not available with conventional ultrasound scanners...... today. The thesis consists of three studies that uses vector flow ultrasound measurements on healthy volunteers. In study I the common carotid artery of 16 healthy volunteers were scanned simultaneously with the vector technique and the conventional, spectral estimation method. The study compared...

  13. An Analytic Equation of State Based on SAFT-CP for Binary Non-Polar Alkane Mixtures Across the Critical Point

    周文来; 密建国; 贺刚; 于燕梅; 陈健

    2003-01-01

    The description using an analytic equation of state of thermodynamic properties near the critical points of fluids and their mixtures remains a challenging problem in the area of chemical engineering. Based on the statistical associating fluid theory across the critical point (SAFT-CP), an analytic equation of state is established in this work for non-polar mixtures. With two binary parameters, this equation of state can be used to calculate not only vapor-liquid equilibria but also critical properties of binary non-polar alkane mixtures with acceptable deviations.

  14. The A in SAFT: developing the contribution of association to the Helmholtz free energy within a Wertheim TPT1 treatment of generic Mie fluids

    Dufal, Simon; Lafitte, Thomas; Haslam, Andrew J.; Galindo, Amparo; Clark, Gary N. I.; Vega, Carlos; Jackson, George

    2015-05-01

    An accurate representation of molecular association is a vital ingredient of advanced equations of state (EOSs), providing a description of thermodynamic properties of complex fluids where hydrogen bonding plays an important role. The combination of the first-order thermodynamic perturbation theory (TPT1) of Wertheim for associating systems with an accurate description of the structural and thermodynamic properties of the monomer fluid forms the basis of the statistical associating fluid theory (SAFT) family of EOSs. The contribution of association to the free energy in SAFT and related EOSs is very sensitive to the nature of intermolecular potential used to describe the monomers and, crucially, to the accuracy of the representation of the thermodynamic and structural properties. Here we develop an accurate description of the association contribution for use within the recently developed SAFT-VR Mie framework for chain molecules formed from segments interacting through a Mie potential [T. Lafitte, A. Apostolakou, C. Avendaño, A, Galindo, C. S. Adjiman, E. A. Müller, and G. Jackson, J. Chem. Phys. 139, 154504 (2013)]. As the Mie interaction represents a soft-core potential model, a method similar to that adopted for the Lennard-Jones potential [E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 34, 3662 (1995)] is employed to describe the association contribution to the Helmholtz free energy. The radial distribution function (RDF) of the Mie fluid (which is required for the evaluation of the integral at the heart of the association term) is determined for a broad range of thermodynamic conditions (temperatures and densities) using the reference hyper-netted chain (RHNC) integral-equation theory. The numerical data for the association kernel of Mie fluids with different association geometries are then correlated for a range of thermodynamic states to obtain a general expression for the association contribution which can be applied for varying values of the Mie

  15. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  16. Reverse Time Migration: A Seismic Imaging Technique Applied to Synthetic Ultrasonic Data

    Sabine Müller

    2012-01-01

    Full Text Available Ultrasonic echo testing is a more and more frequently used technique in civil engineering to investigate concrete building elements, to measure thickness as well as to locate and characterise built-in components or inhomogeneities. Currently the Synthetic Aperture Focusing Technique (SAFT, which is closely related to Kirchhoff migration, is used in most cases for imaging. However, this method is known to have difficulties to image steeply dipping interfaces as well as lower boundaries of tubes, voids or similar objects. We have transferred a processing technique from geophysics, the Reverse Time Migration (RTM method, to improve the imaging of complicated geometries. By using the information from wide angle reflections as well as from multiple events there are fewer limitations compared to SAFT. As a drawback the required computing power is significantly higher compared to the techniques currently used. Synthetic experiments have been performed on polyamide and concrete specimens to show the improvements compared to SAFT. We have been able to image vertical interfaces of step-like structures as well as the lower boundaries of circular objects. It has been shown that RTM is a step forward for ultrasonic testing in civil engineering.

  17. 2D-Tasks for Cognitive Rehabilitation

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  18. Quasiparticle interference in unconventional 2D systems

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  19. 2D Metals by Repeated Size Reduction.

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  20. Engineering light outcoupling in 2D materials

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  1. Irreversibility-inversions in 2D turbulence

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  2. 2D superconductivity by ionic gating

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  3. Design Application Translates 2-D Graphics to 3-D Surfaces

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.

  4. 2D Static Light Scattering for Dairy Based Applications

    Skytte, Jacob Lercke

    Throughout this thesis we investigate a recently introduced optical technique denoted 2D static light scattering (2DSLS). The technique is remote sensing, non-invasive, highly flexible, and appears to be well suited for in-line process control. Moreover, the output signal contains contributions......, this specific process control can be highly beneficial. To provide suitable reference measures on the actual microstructure, we investigate how to quantify micrographs of yogurts objectively. We provide a comparative study, that includes a broad range of different image texture descriptors....... from several different optical phenomena, which can be utilised to provide information on chemical composition and underlying microstructure of an investigated sample. The main goal of this thesis is to provide an exploratory study of the 2DSLS technique in relation to dairy based applications...

  5. A WATERMARKING ALGORITHM BASED ON PERMUTATION AND 2-D BARCODE

    Ji Zhen; Zhang Jihong; Xie Weixin

    2001-01-01

    This letter presents a method for digital image watermarking for copyright protection. This technique produces a watermarked image that closely retains the quality of the original host image while concurrently surviving various image processing operations such as lowpass/highpass filtering, lossy JPEG compression, and cropping. This image watermarking algorithm takes full advantage of permutation and 2-D barcode (PDF417). The actual watermark embedding in spatial domain is followed using permutated image for improving the resistance to image cropping. Much higher watermark robustness is obtainable via a simple forward error correction technique, which is the main feature of PDF417 codes. Additional features of this technique include the easy determination of the existence of the watermark and that the watermark verification procedure does not need the original host image. The experimental results demonstrate its effectiveness.

  6. Optical diffraction by ordered 2D arrays of silica microspheres

    Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.

    2017-03-01

    The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.

  7. GBL-2D Version 1.0: a 2D geometry boolean library.

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  8. Another solution of 2D Ising model

    Vergeles, S. N.

    2009-04-01

    The partition function of the Ising model on a two-dimensional regular lattice is calculated by using the matrix representation of a Clifford algebra (the Dirac algebra), with number of generators equal to the number of lattice sites. It is shown that the partition function over all loops in a 2D lattice including self-intersecting ones is the trace of a polynomial in terms of Dirac matrices. The polynomial is an element of the rotation group in the spinor representation. Thus, the partition function is a function of a character on an orthogonal group of a high degree in the spinor representation.

  9. Instant HTMl5 2D platformer

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  10. Robust and resistant 2D shape alignment

    Larsen, Rasmus; Eiriksson, Hrafnkell

    2001-01-01

    \\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l...

  11. Extrinsic curvature induced 2-d gravity

    Viswanathan, K S

    1993-01-01

    Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.

  12. Laser-diagnostic and plasma-technological fundamentals for reduction of emissions and fuel consumption of DI internal combustion engines. Sub-project: 2D light scattering and fluorescence techniques for analysis of charge stratification and combustion characteristics of DI internal combustion engines. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Teilvorhaben: 2D-Streulicht- und Fluoreszenztechniken zur Analyse von Ladungsschichtung und Durchbrennverhalten bei der Benzindirekteinspritzung. Abschlussbericht

    Leipertz, A.; Egermann, J.; Ipp, W.; Wagner, V.

    2001-03-01

    The application of direct injection combustion concepts, which are based on inhomogeneous charge distribution, depend on the technical controllability of the charge over an entire range of speed and load. Especially the mixture condition at the ignition is important for the efficiency and the pollutant formation of the subsequent combustion process. In the frame of this research work laser based measurement techniques should be used and improved to investigate the interacting chain of injection, mixture formation, stratification and inflammation. Beside the already established Mie-scattering technique for the imagination of the liquid fuel distribution, the laser induced fluorescence was able to visualize the fuel vapor phase inside the engine. With this technique it was possible to show the interrelationship between worse engine running behavior and the qualitative fuel/air distribution (LIF-signal). In the frame of this project a two dimensional quantification of the relative air/fuel-ratio inside a fired transparent engine by LIF allows an improved judgement of the mixture formation process and a precise imagination of the stratification. The obtained information's are of importance to comprehend the combustion process and the causal connection of the pollutant formation. Only a few modifications had to be done at the experimental setup, compared to qualitative measurements. For a wide-spread acceptance of this concept the adoption of the model for using a multi-component fuel is required and will be one focal point of future research in this field of application. The Raman-technique became an important tool for the characterization of the mixture formation process during this project and has been used for a simultaneous verification of the LIF-results. This technique probably will be used only for research activities in the future because of its complex setup. (orig.) [German] Die Einsatzfaehigkeit direkteinspritzender ottomotorischer Brennverfahren, die

  13. Comments on Thermalization in 2D CFT

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  14. Remarks on thermalization in 2D CFT

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  15. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  16. Asymmetric 2D spatial beam filtering by photonic crystals

    Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.

    2016-04-01

    Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.

  17. Interactive 2D to 3D stereoscopic image synthesis

    Feldman, Mark H.; Lipton, Lenny

    2005-03-01

    Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.

  18. 2D Cooling of Magnetized Neutron Stars

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  19. 2D Electrostatic Actuation of Microshutter Arrays

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  20. 2-d Simulations of Test Methods

    Thrane, Lars Nyholm

    2004-01-01

    approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when......One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...

  1. Alignment free characterization of 2D gratings

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  2. Lie symmetries and 2D Material Physics

    Belhaj, Adil

    2014-01-01

    Inspired from Lie symmetry classification, we establish a correspondence between rank two Lie symmetries and 2D material physics. The material unit cell is accordingly interpreted as the geometry of a root system. The hexagonal cells, appearing in graphene like models, are analyzed in some details and are found to be associated with A_2 and G_2 Lie symmetries. This approach can be applied to Lie supersymmetries associated with fermionic degrees of freedom. It has been suggested that these extended symmetries can offer a new way to deal with doping material geometries. Motivated by Lie symmetry applications in high energy physics, we speculate on a possible connection with (p,q) brane networks used in the string theory compactification on singular Calabi-Yau manifolds.

  3. Character animation fundamentals developing skills for 2D and 3D character animation

    Roberts, Steve

    2012-01-01

    Expand your animation toolkit and remain competitive in the industry with this leading resource for 2D and 3D character animation techniques. Apply the industry's best practices to your own workflows and develop 2D, 3D and hybrid characters with ease. With side by side comparisons of 2D and 3D character design, improve your character animation and master traditional principles and processes including weight and balance, timing and walks. Develop characters inspired by humans, birds, fish, snakes and four legged animals. Breathe life into your character and develop a characters personality w

  4. Calibration of a 2D-CDB spectrometer using a reference {sup 133}Ba source

    Macchi, C. [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy) and IFIMAT, Facultad de Ciencias Exactas, UNICEN, Pinto 399, B7000GHG Tandil, Argentina. (Argentina)]. E-mail: cmacchi@exa.unicen.edu.ar; Karwasz, G.P. [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy); Facolta di Ingegneria, Universita di Trento, I-38050 Mesiano, Trento (Italy); Somoza, A. [IFIMAT, Facultad de Ciencias Exactas, UNICEN, Pinto 399, B7000GHG Tandil (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina); Brusa, R.S. [Dipartimento di Fisica, Universita di Trento, Via Sommarive 14, I-38050 Povo, Trento (Italy)

    2007-02-15

    A procedure for calibrating a FAST-ComTec 2D-CDB spectrometer using a {sup 133}Ba source is presented. The energy calibration consisted of acquiring two-dimensional (2D) spectra by measuring simultaneously with two HPGe detectors the 356 and 511 keV peaks. As the {sup 133}Ba source only emits one photon per decay, the Ba contribution to the 2D spectra was built up by taking two successive and uncorrelated events, i.e. one from each detector (pseudo-coincidence technique). The FWHM of the spectrometer was estimated from the E {sub 1}=E {sub 2} diagonal of the spectra.

  5. Secure Audio Forensic Marking Algorithm Using 2D Barcode in DWT-DFRNT Domain

    Li, De; JongWeon Kim

    2014-01-01

    We created a robust and secure forensic marking algorithm through the process of hiding information in a two-dimensional (2D) barcode and embedding it into the discrete wavelet transformation-discrete fractional random transformation (DWT-DFRNT) domain using the quantization technique. We hid information in the 2D barcode, encoded it with the block code that we developed, and then converted it through scrambling. The security of the algorithm was greatly improved by increasing the calculation...

  6. Global Regularity Results of the 2D Boussinesq Equations with Fractional Laplacian Dissipation

    Ye, Zhuan; Xu, Xiaojing

    2016-06-01

    In this paper, we study the 2D Boussinesq equations with fractional Laplacian dissipation. In particular, we prove the global regularity of the smooth solutions of the 2D Boussinesq equations with a new range of fractional powers of the Laplacian. The main ingredient of the proof is the utilization of the Hölder estimates for advection fractional-diffusion equations as well as Littlewood-Paley technique.

  7. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

  8. Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?

    Cortes, Ines Olmedo; Nielsen, Peter V.

    The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...

  9. Polymeric THz 2D Photonic Crystal Filters Fabricated by Fiber Drawing

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi;

    2012-01-01

    In this paper, we report on a new form of polymeric 2D photonic crystal filters for THz frequencies fabricated using a standard fiber drawing technique. The band stop filters were modeled and designed using the generalized multipole technique. The frequency and angle-dependent transmission...

  10. Analysis list: Kmt2d [Chip-atlas[Archive

    Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo

  11. Analysis list: KMT2D [Chip-atlas[Archive

    Full Text Available KMT2D Blood,Digestive tract + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KM...T2D.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KMT2D.5.tsv http://dbarchive.biosc...iencedbc.jp/kyushu-u/hg19/target/KMT2D.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Blo...od.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Digestive_tract

  12. 2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS

    B. Konakoglu

    2016-10-01

    Full Text Available Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950 and ITRF96 (International Terrestrial Reference Frame 1996 coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP, Cascade Forward Back Propagation (CFBP and Radial Basis Function Neural Network (RBFNN with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.

  13. Spectroscopic properties of multilayered gold nanoparticle 2D sheets.

    Yoshida, Akihito; Imazu, Keisuke; Li, Xinheng; Okamoto, Koichi; Tamada, Kaoru

    2012-12-11

    We report the fabrication technique and optical properties of multilayered two-dimensional (2D) gold nanoparticle sheets ("Au nanosheet"). The 2D crystalline monolayer sheet composed of Au nanoparticles shows an absorption peak originating from a localized surface plasmon resonance (LSPR). It was found that the absorption spectra dramatically change when the monolayers are assembled into the multilayers on different substrates (quartz or Au). In the case of the multilayers on Au thin film (d = 200 nm), the LSPR peak is shifted to longer wavelength at the near-IR region by increasing the number of layers. The absorbance also depends on the layer number and shows the nonlinear behavior. On the other hand, the multilayers on quartz substrate show neither such LSPR peak shift nor nonlinear response of absorbance. The layer number dependence on metal surfaces can be interpreted as the combined effects between the near-field coupling of the LSPR and the far-field optics of the stratified metamaterial films, as proposed in our previous study. We also report the spectroscopic properties of hybrid multilayers composed of two kinds of monolayers, i.e., Au nanosheet and Ag nanosheet. The combination of the different metal nanoparticle sheets realizes more flexible plasmonic color tuning.

  14. 2D vibrational properties of epitaxial silicene on Ag(111)

    Solonenko, Dmytro; Gordan, Ovidiu D.; Le Lay, Guy; Sahin, Hasan; Cahangirov, Seymur; Zahn, Dietrich R. T.; Vogt, Patrick

    2017-03-01

    The two-dimensional silicon allotrope, silicene, could spur the development of new and original concepts in Si-based nanotechnology. Up to now silicene can only be epitaxially synthesized on a supporting substrate such as Ag(111). Even though the structural and electronic properties of these epitaxial silicene layers have been intensively studied, very little is known about its vibrational characteristics. Here, we present a detailed study of epitaxial silicene on Ag(111) using in situ Raman spectroscopy, which is one of the most extensively employed experimental techniques to characterize 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous. The vibrational fingerprint of epitaxial silicene, in contrast to all previous interpretations, is characterized by three distinct phonon modes with A and E symmetries. Both, energies and symmetries of theses modes are confirmed by ab initio theory calculations. The temperature dependent spectral evolution of these modes demonstrates unique thermal properties of epitaxial silicene and a significant electron-phonon coupling. These results unambiguously support the purely two-dimensional character of epitaxial silicene up to about 300 °C, whereupon a 2D-to-3D phase transition takes place. The detailed fingerprint of epitaxial silicene will allow us to identify it in different environments or to study its modifications.

  15. 2D kinematic signatures of boxy/peanut bulges

    Iannuzzi, Francesca

    2015-01-01

    We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disk galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrised up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the midplane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically-symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second bucklin...

  16. 2D DIGITAL SIMPLIFIED FLOW VALVE

    Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D

    2004-01-01

    The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.

  17. Competing coexisting phases in 2D water

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  18. Intermittency in 2D soap film turbulence

    Cerbus, R T

    2013-01-01

    The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...

  19. Sparse and incomplete factorial matrices to screen membrane protein 2D crystallization.

    Lasala, R; Coudray, N; Abdine, A; Zhang, Z; Lopez-Redondo, M; Kirshenbaum, R; Alexopoulos, J; Zolnai, Z; Stokes, D L; Ubarretxena-Belandia, I

    2015-02-01

    Electron crystallography is well suited for studying the structure of membrane proteins in their native lipid bilayer environment. This technique relies on electron cryomicroscopy of two-dimensional (2D) crystals, grown generally by reconstitution of purified membrane proteins into proteoliposomes under conditions favoring the formation of well-ordered lattices. Growing these crystals presents one of the major hurdles in the application of this technique. To identify conditions favoring crystallization a wide range of factors that can lead to a vast matrix of possible reagent combinations must be screened. However, in 2D crystallization these factors have traditionally been surveyed in a relatively limited fashion. To address this problem we carried out a detailed analysis of published 2D crystallization conditions for 12 β-barrel and 138 α-helical membrane proteins. From this analysis we identified the most successful conditions and applied them in the design of new sparse and incomplete factorial matrices to screen membrane protein 2D crystallization. Using these matrices we have run 19 crystallization screens for 16 different membrane proteins totaling over 1300 individual crystallization conditions. Six membrane proteins have yielded diffracting 2D crystals suitable for structure determination, indicating that these new matrices show promise to accelerate the success rate of membrane protein 2D crystallization.

  20. Analysis list: Mef2d [Chip-atlas[Archive

    Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...

  1. Stability Test for 2-D Continuous-Discrete Systems

    2002-01-01

    Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.

  2. Pharm GKB: CYP2D6 [PharmGKB

    Full Text Available el for vortioxetine and CYP2D6 FDA Label for acetaminophen,tramadol and CYP2D6 FDA Label for dextromethorphan... Label for vortioxetine and CYP2D6 European Medicines Agency (EMA) Label for dextromethorphan,quinidine and ...ore of this label. Read more. last updated 10/25/2013 FDA Label for dextromethorphan, quinidine and CYP2D6 O...of NUEDEXTA is a CYP2D6 inhibitor used to increase the plasma availability of dextromethorphan, which is met... 05/02/2014 European Medicines Agency (EMA) Label for dextromethorphan, quinidine

  3. 3D/2D Registration of medical images

    Tomaževič, D.

    2008-01-01

    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...

  4. Comparison of 2-D and 3-D estimates of placental volume in early pregnancy.

    Aye, Christina Y L; Stevenson, Gordon N; Impey, Lawrence; Collins, Sally L

    2015-03-01

    Ultrasound estimation of placental volume (PlaV) between 11 and 13 wk has been proposed as part of a screening test for small-for-gestational-age babies. A semi-automated 3-D technique, validated against the gold standard of manual delineation, has been found at this stage of gestation to predict small-for-gestational-age at term. Recently, when used in the third trimester, an estimate obtained using a 2-D technique was found to correlate with placental weight at delivery. Given its greater simplicity, the 2-D technique might be more useful as part of an early screening test. We investigated if the two techniques produced similar results when used in the first trimester. The correlation between PlaV values calculated by the two different techniques was assessed in 139 first-trimester placentas. The agreement on PlaV and derived "standardized placental volume," a dimensionless index correcting for gestational age, was explored with the Mann-Whitney test and Bland-Altman plots. Placentas were categorized into five different shape subtypes, and a subgroup analysis was performed. Agreement was poor for both PlaV and standardized PlaV (p < 0.001 and p < 0.001), with the 2-D technique yielding larger estimates for both indices compared with the 3-D method. The mean difference in standardized PlaV values between the two methods was 0.007 (95% confidence interval: 0.006-0.009). The best agreement was found for regular rectangle-shaped placentas (p = 0.438 and p = 0.408). The poor correlation between the 2-D and 3-D techniques may result from the heterogeneity of placental morphology at this stage of gestation. In early gestation, the simpler 2-D estimates of PlaV do not correlate strongly with those obtained with the validated 3-D technique.

  5. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  6. Backscattering in a 2D topological insulator and the conductivity of a 2D strip

    Magarill, L. I.; Entin, M. V.

    2015-01-01

    A strip of the 2D HgTe topological insulator is studied. The same-spin edge states in an ideal system propagate in opposite directions on different sides of the strip and do not mix by tunneling. Impurities, edge irregularities, and phonons produce transitions between the counterpropagating edge states on different edges. This backscattering determines the conductivity of an infinitely long strip. The conductivity at finite temperature is determined in the framework of the kinetic equation. It is found that the conductivity exponentially grows with the strip width. In the same approximation the nonlocal resistance coefficients of a four-terminal strip are found.

  7. 2D magnetic nanoparticle imaging using magnetization response second harmonic

    Tanaka, Saburo, E-mail: tanakas@ens.tut.ac.jp [Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Murata, Hayaki; Oishi, Tomoya; Suzuki, Toshifumi [Toyohashi University of Technology, 1-1 Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Zhang, Yi [Peter Gruenberg Institute, Forschungszentrum Juelich, Juelich D-52425 (Germany)

    2015-06-01

    A detection method and an imaging technique for magnetic nanoparticles (MNPs) have been investigated. In MNP detection and in magnetic particle imaging (MPI), the most commonly employed method is the detection of the odd harmonics of the magnetization response. We examined the advantage of using the second harmonic response when applying an AC magnetic modulation field and a DC bias field. If the magnetization response is detected by a Cu-wound-coil detection system, the output voltage from the coil is proportional to the change in the flux, dϕ/dt. Thus, the dependence of the derivative of the magnetization, M, on an AC magnetic modulation field and a DC bias field were calculated and investigated. The calculations were in good agreement with the experimental results. We demonstrated that the use of the second harmonic response for the detection of MNPs has an advantage compared with the usage of the third harmonic response, when the Cu-wound-coil detection system is employed and the amplitude of the ratio of the AC modulation field and a knee field H{sub ac}/H{sub k} is less than 2. We also constructed a 2D MPI scanner using a pair of permanent ring magnets with a bore of ϕ80 mm separated by 90 mm. The magnets generated a gradient of G{sub z}=3.17 T/m transverse to the imaging bore and G{sub x}=1.33 T/m along the longitudinal axis. An original concentrated 10 μl Resovist solution in a ϕ2×3 mm{sup 2} vessel was used as a sample, and it was imaged by the scanner. As a result, a 2D contour map image could be successfully generated using the method with a lock-in amplifier.

  8. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  9. Photorealistic image synthesis and camera validation from 2D images

    Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya

    2014-06-01

    This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.

  10. Image Appraisal for 2D and 3D Electromagnetic Inversion

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  11. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  12. Noise reduction methods applied to two-dimensional correlation spectroscopy (2D-COS) reveal complementary benefits of pre- and post-treatment.

    Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B

    2011-05-01

    Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.

  13. Fast Computation of Wideband Beam Pattern for Designing Large-Scale 2-D Arrays.

    Chi, Cheng; Li, Zhaohui

    2016-06-01

    For real-time and high-resolution 3-D ultrasound imaging, the design of sparse distribution and weights of elements of a large-scale wideband 2-D array is needed to reduce hardware cost and achieve better directivity. However, due to the high time consumption of computing the wideband beam pattern, the design methods that need massive iterations have rarely been applied to design large-scale wideband 2-D arrays by directly computing the wideband beam pattern. In this paper, a fast method is proposed to realize the computation of a wideband beam pattern of arbitrary 2-D arrays in the far field in order to design large-scale wideband 2-D arrays. The proposed fast method exploits two important techniques: 1) nonuniform fast Fourier transform (FFT) and 2) short inverse FFT. Compared with the commonly used ultrasound simulator Field II, two orders of magnitude improvement in computation speed is achieved with comparable accuracy. The proposed fast method enables massive iterations of direct wideband beam pattern computation of arbitrary large-scale 2-D arrays. A design example in this paper demonstrates that the proposed fast method can help achieve better performance in designing large-scale wideband 2-D arrays.

  14. A 2-D Analytical Threshold Voltage Model for Symmetric Double Gate MOSFET's Using Green’s Function

    Anoop Garg

    2011-01-01

    Full Text Available We propose a new two dimensional (2D analytical solution of Threshold Voltage for undoped (or lightly doped Double Gate MOSFETs. We have used Green’s function technique to solve the 2D Poisson equation, and derived the threshold voltage model using minimum surface potential concept. This model is assumed uniform doping profile in Si region. The proposed model compared with existing literature and experimental data and we obtain excellent agreements with previous techniques.

  15. Optimization and practical implementation of ultrafast 2D NMR experiments

    Queiroz Júnior,Luiz H. K.; Antonio G. Ferreira; Patrick Giraudeau

    2013-01-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC...

  16. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units

    This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...

  17. A scintillating GEM detector for 2D dose imaging in hadron therapy

    Seravalli, E.

    2008-01-01

    The main aim of radiotherapy techniques is to deliver the dose to the target volume while sparing as much as possible the healthy tissue. Dose verifications prior the treatment of the patient are mandatory in order to guarantee high accuracy to the treatment. We have developed a 2D dose imaging sys

  18. CYP2D6 polymorphism in relation to tramadol metabolism

    Halling, Jónrit; Weihe, Pál; Brosen, Kim

    2008-01-01

    to investigate whether the previously observed frequency of CYP2D6 poor metabolizers (PMs) in the Faroese, which was shown to be double that of other Europeans, was evident in a patient group medicated with a CYP2D6 substrate. The patients were CYP2D6-phenotyped by the intake of sparteine, followed by urine...... European populations (7%-10%). The concentrations of (+)-M1 when corrected for dose (nM/mg) and the (+)-M1/(+)-tramadol ratio were approximately 14-fold higher in the extensive metabolizers (EMs) than in the PMs. In conclusion, the impact of the CYP2D6 polymorphism on the pharmacokinetics of tramadol...

  19. Sparse Non-negative Matrix Factor 2-D Deconvolution

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...

  20. 3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine

    Hamamoto, Kazuhiko; Sato, Motoyoshi

    3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.

  1. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  2. Physical Parameters of a Flare Derived from Multi-line 2D Spectroscopy

    2001-01-01

    Time series of 2D spectra of Hα and CaII λ8542 for a flare of 1999 December 22 are obtained and analyzed with a new fitting technique. The method we proposed can simultaneously yield the four parameters: the line source function, the optical thickness at line center, the line-of-sight velocity and the Doppler width. We present the spatial distributions of the physical parameters and their temporal evolutions determined from the 2D spectra. Our results are consistent with the general picture predicted by the flare dynamic models.

  3. Implementation of large kernel 2-D convolution in limited FPGA resource

    Zhong, Sheng; Li, Yang; Yan, Luxin; Zhang, Tianxu; Cao, Zhiguo

    2007-12-01

    2-D Convolution is a simple mathematical operation which is fundamental to many common image processing operators. Using FPGA to implement the convolver can greatly reduce the DSP's heavy burden in signal processing. But with the limit resource the FPGA can implement a convolver with small 2-D kernel. In this paper, An FIFO type line delayer is presented to serve as the data buffer for convolution to reduce the data fetching operation. A finite state machine is applied to control the reuse of multipliers and adders arrays. With these two techniques, a resource limited FPGA can be used to implement a larger kernel convolver which is commonly used in image process systems.

  4. Fabrication of 2D and 3D dendritic nanoarchitectures of CdS

    GU Li

    2008-01-01

    The controlled preparation of two-dimensional (2D) and three-dimensional (3D) dendritic nanostructures of CdS was reported. 2D dendritic patterns are obtained through the self-assembly of nanoparticles under the entropy-driven force. 3D dendritic needle-like nanocrystals are prepared through an aqueous solution synthesis regulated by oleic acid molecules. Their growth mechanism is presumed to be the selective binding of OA molecules onto growing crystal planes. Techniques such as SEM, TEM, XRD, and FT-IR were employed to characterize the morphologies and structures of the obtained products.

  5. 3D motion graphics for 2D artists conquering the 3rd dimension

    Byrne, Bill

    2011-01-01

    Add 3D to your mograph skillset! For the experienced 2D artist, this lavishly illustrated, 4 color book presents the essentials to building and compositing 3D elements into your 2D world of film and broadcast. Concepts and techniques are presented in concise, step-by-step tutorials, hundreds of which are featured throughout. Featured applications include Photoshop, Illustrator, After Effects, and Cinema 4D. Lessons include exploring the expanded 3D functionality of the Adobe Creative Suite applications (After Effects, Photoshop, and Illustrator) through a series of practical tutorials. More

  6. 2D digital imaging for cracks mapping of Cultural Heritage in emergency condition

    Michele Russo

    2013-10-01

    Full Text Available The digital photography represents not only an immediate medium for data communication, but also an effective instrument for surveying and monitoring the architectural buildings. In this context, 2D images allow to acquire multi-scale geometrical and material data in a few time. This peculiarity makes this technique very suitable for the survey of cracks distribution in emergency condition, for example immediately after an earthquake. Referring to this specific application, the article suggests a process of 2D images acquisition, data management and representation for surveying crack distribution inside an historical building in Ferrara, Palazzo Renata di Francia, seriously damaged by the seismic events happened in May 2012.

  7. Energy Efficiency of D2D Multi-User Cooperation.

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  8. From 2D Lithography to 3D Patterning

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo

  9. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  10. Animación 2D: curriculum vitae animado

    CANTOS BELMONTE, CONSUELO

    2015-01-01

    Trabajo Fin de Grado de animación 2D donde un personaje (alter ego de la animadora) expone, mediante la interación con una Voz en Off y su sombra, el curriclum vitae de la animadora. Cantos Belmonte, C. (2014). Animación 2D: curriculum vitae animado. http://hdl.handle.net/10251/45910. Archivo delegado

  11. Symmetries and solvable models for evaporating 2D black holes

    Cruz, J; Navarro-Salas, J; Talavera, C F

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is switched off suddenly. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model.

  12. New Type of 2-D Laser Doppler Vibrometer

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  13. The relation between Euclidean and Lorentzian 2D quantum gravity

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    2006-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen

  14. FPGA implementation of filtered image using 2D Gaussian filter

    Leila kabbai

    2016-07-01

    Full Text Available Image filtering is one of the very useful techniques in image processing and computer vision. It is used to eliminate useless details and noise from an image. In this paper, a hardware implementation of image filtered using 2D Gaussian Filter will be present. The Gaussian filter architecture will be described using a different way to implement convolution module. Thus, multiplication is in the heart of convolution module, for this reason, three different ways to implement multiplication operations will be presented. The first way is done using the standard method. The second way uses Field Programmable Gate Array (FPGA features Digital Signal Processor (DSP to ensure and make fast the scalability of the effective FPGA resource and then to speed up calculation. The third way uses real multiplier for more precision and a the maximum uses of FPGA resources. In this paper, we compare the image quality of hardware (VHDL and software (MATLAB implementation using the Peak Signal-to-Noise Ratio (PSNR. Also, the FPGA resource usage for different sizes of Gaussian kernel will be presented in order to provide a comparison between fixed-point and floating point implementations.

  15. 2D materials and van der Waals heterostructures.

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  16. Commissioning of a 3D pretreatment quality-assurance system in volumetric techniques based in 2D detector arrays; Validacin de un sistema de control de calidad pre-tratamiento 3D en tecnicas volumetricas basado en matrices bidimensionales de detectores

    Clemente Gutierrez, F.; Perez Vara, C.

    2015-05-01

    The present experience about intensity-modulated radiation therapy pre-treatment QA points to a paradigm shift oriented to metrics based in clinically relevant parameters. This work shows the commissioning of a QA system used in the verification of volumetric treatments based in 2D ion chamber arrays. This system accomplishes with the initial hypothesis making the dose calculation and reconstruction in actual patient anatomy possible from measurements taken during the verification process. Beam reference parameters are compared with those obtained with the system: absolute dose, output factors and relative dose distributions. Simple test cases are evaluated comparing dose-volume parameters and ion chamber-based measurements. Finally the system is applied to the verification of 12 actual clinical test cases, comparing ion chamber measurements, usual planar dose distributions analysis, dose-volume parameters from each anatomic site and 3D gamma tests. Results make the potential advantage of these systems clear compared with those based in traditional metrics. (Author)

  17. MUSIC 2D-DOA Estimation using Split Vertical Linear and Circular Arrays

    Yasser Albagory

    2013-06-01

    Full Text Available In this paper, the MUSIC 2D-DOA estimation is estimated by splitting the angle into elevation and azimuth components. This technique is based on an array that is composed by a vertical uniform linear array located perpendicularly at the center of another uniform circular array. This array configuration is proposed to reduce the computational burden faced in MUSIC 2D-DOA estimation where the vertical array is used to determine the elevation DOAs (θs which are used subsequently to determine the azimuth DOAs (∅s by the circular array instead of searching in all space of the two angles in the case of using circular array only. The new Split beamformer is investigated and the performance of the MUSIC 2D-DOA under several signal conditions in the presence of noise is studied.

  18. Fabrication and magnetic behaviour of 2D ordered Fe/SiO2 nanodots array

    Liu, W.; Zhong, W.; Qiu, L. J.; Lü, L. Y.; Du, Y. W.

    2006-06-01

    We have demonstrated a simple and universal morphology-controlled growth of 2D ordered Fe/SiO2 magnetic nanodots array, which was based on 2D colloidal monolayer template composed of polystyrene (PS) spheres and one-step sol-gel spin-coating technique. The Fe/SiO2 nanodots have a well-ordered structure arranged in a hexagonal pattern. The dots have the shape of quasi-pyramidal tetrahedron, which reside in the interstitial region between three PS spheres and the substrate. Magnetic measurements reveal that the nanodots array exhibits the in-plane easy magnetization direction. Compared with the unpatterned Fe/SiO2 thin film, the dots array has lower saturated field, higher remanence and coercivity. The present method is applicable to 2D ordered nanodots array of other magnetic materials.

  19. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.

    Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal

    2015-11-01

    Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.

  20. Structural dynamics inside a functionalized metal–organic framework probed by ultrafast 2D IR spectroscopy

    Nishida, Jun; Tamimi, Amr; Fei, Honghan; Pullen, Sonja; Ott, Sascha; Cohen, Seth M.; Fayer, Michael D.

    2014-01-01

    The structural elasticity of metal–organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer. PMID:25512539

  1. 2D SiC/SiC composite for flow channel insert (FCI) application

    Yu Haijiao [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Zhou Xingui, E-mail: zhouxinguilmy@163.com [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Wang Honglei; Zhao Shuang [Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, 47 Yanwachi Street, Changsha 410073 (China); Wu Yican; Huang Qunying; Zhu Zhiqiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Huang Zelan [Chongyi Zhangyuan Tungsten Co. Ltd., Chongyi 341300 (China)

    2010-12-15

    Two-dimensional (2D) silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) composite suiting for flow channel insert (FCI) application was successfully fabricated by stacking molding-precursor impregnation and pyrolysis (PIP) process. Plain-woven KD-I SiC fiber fabric was used as the reinforcement. SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition (CVD) technique. Mechanical, thermal and electrical properties of the 2D SiC/SiC composite were investigated. The results show that mechanical properties and through thickness thermal conductivity of the 2D KD-I/PIP SiC composite well meet the FCI application requirements; meanwhile, it seems that the electrical conductivity requirement will also be satisfied with a series of improvements.

  2. FPGA Implementation of 2-D DCT & DWT Engines for Vision Based Tracking of Dynamic Obstacles

    Remya Ramesan

    2014-07-01

    Full Text Available Real time motion estimation for tracking is a challenging task. Several techniques can transform an image into frequency domain, such as DCT, DFT and wavelet transform. Direct implementation of 2-D DCT takes N^4 multiplications for an N x N image which is impractical. The proposed architecture for implementation of 2-D DCT uses look up tables. They are used to store pre-computed vector products that completely eliminate the multiplier. This makes the architecture highly time efficient, and the routing delay and power consumption is also reduced significantly. Another approach, 2-D discrete wavelet transform based motion estimation (DWT-ME provides substantial improvements in quality and area. The proposed architecture uses Haar wavelet transform for motion estimation. In this paper, we present the comparison of the performance of discrete cosine transform, discrete wavelet transform for implementation in motion estimation.

  3. An efficient simulation method of a cyclotron sector-focusing magnet using 2D Poisson code

    Gad Elmowla, Khaled Mohamed M; Chai, Jong Seo, E-mail: jschai@skku.edu; Yeon, Yeong H; Kim, Sangbum; Ghergherehchi, Mitra

    2016-10-01

    In this paper we discuss design simulations of a spiral magnet using 2D Poisson code. The Independent Layers Method (ILM) is a new technique that was developed to enable the use of two-dimensional simulation code to calculate a non-symmetric 3-dimensional magnetic field. In ILM, the magnet pole is divided into successive independent layers, and the hill and valley shape around the azimuthal direction is implemented using a reference magnet. The normalization of the magnetic field in the reference magnet produces a profile that can be multiplied by the maximum magnetic field in the hill magnet, which is a dipole magnet made of the hills at the same radius. Both magnets are then calculated using the 2D Poisson SUPERFISH code. Then a fully three-dimensional magnetic field is produced using TOSCA for the original spiral magnet, and the comparison of the 2D and 3D results shows a good agreement between both.

  4. Sub-wavelength Lithography of Complex 2D and 3D Nanostructures without Dyes

    Chaudhary, Raghvendra P; Ummethala, Govind; Hawal, Suyog R; Saxena, Sumit; Shukla, Shobha

    2016-01-01

    One-photon or two photon absorption by dye molecules in photopolymers enable direct 2D & 3D lithography of micro/nano structures with high spatial resolution and can be used effectively in fabricating artificially structured nanomaterials. However, the major bottleneck in unleashing the potential of this useful technique is the indispensable usage of dyes that are extremely expensive, highly toxic and usually insoluble in commercially available photopolymers. Here we report a simple, inexpensive and one-step technique for direct-writing of micro/nanostructures, with sub-wavelength resolution at extremely high speeds without using any one photon or two photon absorbing dye. We incorporated large amount (20 weight %) of inexpensive photoinitiator into the photopolymer and utilized its two-photon absorbing property for sub-wavelength patterning. Complex 2D and 3D patterns were fabricated with sub-micron resolution, in commercially available liquid photopolymer to show the impact/versatility of this technique...

  5. Comparison of 2D versus 3D mammography with screening cases: an observer study

    Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent

    2012-02-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.

  6. An automated pipeline to screen membrane protein 2D crystallization.

    Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban

    2010-06-01

    Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.

  7. Kalman Filter for Generalized 2-D Roesser Models

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  8. Harvest Survive : Game Mechanics of Unity 2D Game

    2014-01-01

    The purpose of this project was to learn how to create Games in Unity 2D, to see the work-flow and to test if the new Unity 2D feature of the Unity engine was a good alternative for developing 2D games. A further aspect was to learn the different steps and mechanics of the Unity environment. The goal was to create a survival game, in which the player would have to grow plants in order to get food and money to stay alive in a hostile environment. The player has to survive in six different...

  9. Optimization and practical implementation of ultrafast 2D NMR experiments

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  10. Spin Waves in 2D ferromagnetic square lattice stripe

    Ahmed, Maher Z.

    2011-01-01

    In this work, the area and edges spin wave calculations were carried out using the Heisenberg Hamiltonian and the tridiagonal method for the 2D ferromagnetic square lattice stripe, where the SW modes are characterized by a 1D in-plane wave vector $q_x$. The results show a general and an unexpected feature that the area and edge spin waves only exist as optic modes. This behavior is also seen in 2D Heisenberg antiferromagnetic square lattice. This absence of the acoustic modes in the 2D square...

  11. Optimization and practical implementation of ultrafast 2D NMR experiments

    Luiz H. K. Queiroz Júnior

    2013-01-01

    Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

  12. Introduction to game physics with Box2D

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  13. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  14. Orbifold Reduction and 2d (0,2) Gauge Theories

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.

  15. First Principles Calculations of Electronic Excitations in 2D Materials

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... materials are few. However as the list of 2D materials is growing it is necessary to investigate their fundamental structural, electronic and optical properties. These are determined by the atomic and electronic structure of the materials that can quite accurately predicted by computational quantum...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...

  16. Emerging and potential opportunities for 2D flexible nanoelectronics

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  17. 2-D electromagnetic simulation of passive microstrip circuits

    Dueñas Jiménez, Alejandro

    2009-01-01

    A reference for circuit design engineers and microwave engineers. It uses a simple 2-D electromagnetic simulation procedure to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies.

  18. 2D gels still have a niche in proteomics

    Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;

    2013-01-01

    ) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show......With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2...

  19. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  20. Volume-translated cubic EoS and PC-SAFT density models and a free volume-based viscosity model for hydrocarbons at extreme temperature and pressure conditions

    Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Baled, Hseen O.; Enick, Robert M.; Wu, Yue; Bamgbade, Babatunde A.; McHugh, Mark A.

    2013-12-01

    This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquid density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.

  1. Generating a 2D Representation of a Complex Data Structure

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  2. Maximizing the Optical Band Gap in 2D Photonic Crystals

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  3. New design of 2-D photonic crystal waveguide couplers

    ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun

    2006-01-01

    @@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.

  4. QSAR Models for P-450 (2D6) Substrate Activity

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....

  5. Collins Model and Phase Diagram of 2D Ternary System

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  6. A simultaneous 2D/3D autostereo workstation

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  7. Self-leveling 2D DPN probe arrays

    Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike

    2010-02-01

    Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.

  8. 2D electrophoresis-based expression proteomics: a microbiologist's perspective.

    Sá-Correia, Isabel; Teixeira, Miguel C

    2010-12-01

    Quantitative proteomics based on 2D electrophoresis (2-DE) coupled with peptide mass fingerprinting is still one of the most widely used quantitative proteomics approaches in microbiology research. Our view on the exploitation of this global expression analysis technique and its contribution and potential to push forward the field of molecular microbial physiology towards a molecular systems microbiology perspective is discussed in this article. The advances registered in 2-DE-based quantitative proteomic analysis leading to increased protein resolution, sensitivity and accuracy, and the promising use of 2-DE to gain insights into post-translational modifications at a proteome-wide level (considering all the proteins/protein forms expressed by the genome) are focused on. Given the progress made in this field, it is foreseen that the 2-DE-based approach to quantitative proteomics will continue to be a fundamental tool for microbiologists working at a genome-wide scale. Guidelines are also provided for the exploitation of expression proteomics data, based on useful computational tools, and for the integration of these data with other genome-wide expression information. The advantages and limitations of a complete 2-DE-based expression proteomics analysis, envisaging the quantification of the global changes occurring in the proteome of a given cell depending on environmental or genetic manipulations, are discussed from the microbiologist's perspective. Particular focus is given to the emerging field of toxicoproteomics, a new systems toxicity approach that offers a powerful tool to directly monitor the earliest stages of the toxicological response by identifying critical proteins and pathways that are affected by, and respond to, a chemical stress. The experimental design and the bioinformatics analysis of data used in our laboratory to gain mechanistic insights through expression proteomics into the responses of the eukaryotic model Saccharomyces cerevisiae or of

  9. CYP2D6 variability in populations from Venezuela.

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  10. Two-dimensional Fourier transform ESR in the slow-motional and rigid limits: 2D-ELDOR

    Patyal, Baldev R.; Crepeau, Richard H.; Gamliel, Dan; Freed, Jack H.

    1990-12-01

    The two-dimensional Fourier transform ESP techniques of stimulated SECSY and 2D-ELDOR are shown to be powerful methods for the study of slow motions for nitroxides. Stimulated SECSY provides magnetization transfer rates, whereas 2D-ELDOR displays how the rotational motions spread the spins out from their initial spectral positions to new spectral positions, as a function of mixing time. The role of nuclear modulation in studies of structure and dynamics is also considered.

  11. 基于概率模型的E-2D Mesh网络容错性分析%Fault Tolerance of E-2D Mesh Networks Based on Model of Probability

    肖杰; 梁家荣; 黄亿海

    2009-01-01

    研究了太比特路由器核心交换网络拓扑的一种新结构-E-2D Mesh.提出一种计算E-2D Mesh网络连通率的新方法.证明了当网络结点失效率控制在0.66%以下时,具有四万多个结点的E-2D Mesh网络可保持不低于99%的连通率,且在同等规模条件下,E-2D Mesh网络结点容错率至少是Mesh网络的11.09倍.研究结果表明,该方法在计算E-2D Mesh网络连通率时显示出较强的生命力且能够用于研究其它层次的网络和其它网络通信问题.%A novel switching fabric is the core of the terabit router.--E-2D mesh networks are one of the most important network topologies In massively multiprocessor parallel systems. In this paper,a novel approach for calculating the probabilistic connectivity of E-2D mesh networks is proposed. The paper formally proves that when the networks'node failure probability is bounded by 0.66%, the E-2D mesh networks with over forty thousand nodes remain connected with probability larger than 99% , and in the same scale and conditions, the probability of E-2D mesh networks is 11.09 times greater than mesh networks. The results show that the method is a powerful technique for calculating the probabilistic connectivity in E-2D mesh networks,and the scheme is also applicable to the study of other hierarchical network structures and of other network communication problems.

  12. Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis

    Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.

    2015-01-01

    and a composite material is created, which has the same magnetization characteristic. The benefit of this technique is that it allows a designer to perform design and optimization of magnetic cores with overlapped laminations using a 2-D FE model rather than a 3-D FE model, which saves modeling and simulation...... time. The modeling technique is verified experimentally by creating a composite material of a lap joint with a 3-mm overlapping region and using it in a 2-D FE model of a ring sample made up of a stack of 20 laminations. The B-H curve of the simulated ring sample is compared with the B-H curve obtained...

  13. ANIMASI DENGAN EFEK ILUSTRASI PENSIL (2D PADA VIDEO KLIP MUSIK

    Satrya Mahardhika

    2010-09-01

    Full Text Available This research is to explore various styles of animation in making video clip of a new band. Besides defining the exact visual style, the process is important to bring animation out of 2D-3D dichotomy. Doodle style is chosen as it suits particular theme of the bands songs and music genre. Meanwhile, the style defining is related to the efficiency and efforts to be out of mindset that animation is just about technique skill instead of about creativity.

  14. Preparation of 2D crystals of membrane proteins for high-resolution electron crystallography data collection.

    Abeyrathne, Priyanka D; Chami, Mohamed; Pantelic, Radosav S; Goldie, Kenneth N; Stahlberg, Henning

    2010-01-01

    Electron crystallography is a powerful technique for the structure determination of membrane proteins as well as soluble proteins. Sample preparation for 2D membrane protein crystals is a crucial step, as proteins have to be prepared for electron microscopy at close to native conditions. In this review, we discuss the factors of sample preparation that are key to elucidating the atomic structure of membrane proteins using electron crystallography.

  15. 2D Sketch based recognition of 3D freeform shapes by using the RBF Neural Network

    Qin, S F; Sun, Guangmin; Wright, D K; Lim, S.; Khan, U.; Mao, C.

    2005-01-01

    This paper presents a novel free-form surface recognition method from 2D freehand sketching. The approach is based on the Radial basis function (RBF), an artificial intelligence technique. A simple three-layered network has been designed and constructed. After training and testing with two types of surfaces (four sided boundary surfaces and four close section surfaces), it has been shown that the method is useful in freeform surface recognition. The testing results are very satisfactory.

  16. 2D sketch based recognition of 3D freeform shape by using the RBF neural network

    Qin, SF; Sun, GM; Wright, DK; Lim, S.; Khan, U.; Mao, C.

    2005-01-01

    This paper presents a novel free-form surface recognition method from 2D freehand sketching. The approach is based on the Radial basis function (RBF), an artificial intelligence technique. A simple three-layered network has been designed and constructed. After training and testing with two types of surfaces (four sided boundary surfaces and four close section surfaces), it has been shown that the method is useful in freeform surface recognition. The testing results are very satisfactory.

  17. Multi-modal 2D-3D non-rigid registration

    Prümmer, M.; Hornegger, J.; Pfister, M.; Dörfler, A.

    2006-03-01

    In this paper, we propose a multi-modal non-rigid 2D-3D registration technique. This method allows a non-rigid alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make use of up-to-date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections. In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler-Lagrange equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field is driven to minimize the reconstruction distance between the volumetric data and its 2D projections using mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well. Experimental results are presented on both artificial phantom and 3D C-arm CT images.

  18. Medical anatomy segmentation kit: combining 2D and 3D segmentation methods to enhance functionality

    Tracton, Gregg S.; Chaney, Edward L.; Rosenman, Julian G.; Pizer, Stephen M.

    1994-07-01

    Image segmentation, in particular, defining normal anatomic structures and diseased or malformed tissue from tomographic images, is common in medical applications. Defining tumors or arterio-venous malformation from computed tomography or magnetic resonance images are typical examples. This paper describes a program, Medical Anatomy Segmentation Kit (MASK), whose design acknowledges that no single segmentation technique has proven to be successful or optimal for all object definition tasks associated with medical images. A practical solution is offered through a suite of complementary user-guided segmentation techniques and extensive manual editing functions to reach the final object definition goal. Manual editing can also be used to define objects which are abstract or otherwise not well represented in the image data and so require direct human definition - e.g., a radiotherapy target volume which requires human knowledge and judgement regarding image interpretation and tumor spread characteristics. Results are either in the form of 2D boundaries or regions of labeled pixels or voxels. MASK currently uses thresholding and edge detection to form contours, and 2D or 3D scale-sensitive fill and region algebra to form regions. In addition to these proven techniques, MASK's architecture anticipates clinically practical automatic 2D and 3D segmentation methods of the future.

  19. Nanoscale Tunable Strong Carrier Density Modulation of 2D Materials for Metamaterials and Other Tunable Optoelectronics

    Peng, Cheng; Efetov, Dmitri; Shiue, Ren-Jye; Nanot, Sebastien; Hempel, Marek; Kong, Jing; Koppens, Frank; Englund, Dirk

    Strong spatial tunability of the charge carrier density at nanoscale is essential to many 2D-material-based electronic and optoelectronic applications. As an example, plasmonic metamaterials with nanoscale dimensions would make graphene plasmonics at visible and near-infrared wavelengths possible. However, existing gating techniques based on conventional dielectric gating geometries limit the spatial resolution and achievable carrier concentration, strongly restricting the available wavelength, geometry, and quality of the devices. Here, we present a novel spatially selective electrolyte gating approach that allows for in-plane spatial Fermi energy modulation of 2D materials of more than 1 eV (carrier density of n = 1014 cm-2) across a length of 2 nm. We present electrostatic simulations as well as electronic transport, photocurrent, cyclic voltammetry and optical spectroscopy measurements to characterize the performance of the gating technique applied to graphene devices. The high spatial resolution, high doping capacity, full tunability and self-aligned device geometry of the presented technique opens a new venue for nanoscale metamaterial engineering of 2D materials for complete optical absorption, nonlinear optics and sensing, among other applications.

  20. The relationship between 2D static features and 2D dynamic features used in gait recognition

    Alawar, Hamad M.; Ugail, Hassan; Kamala, Mumtaz; Connah, David

    2013-05-01

    In most gait recognition techniques, both static and dynamic features are used to define a subject's gait signature. In this study, the existence of a relationship between static and dynamic features was investigated. The correlation coefficient was used to analyse the relationship between the features extracted from the "University of Bradford Multi-Modal Gait Database". This study includes two dimensional dynamic and static features from 19 subjects. The dynamic features were compromised of Phase-Weighted Magnitudes driven by a Fourier Transform of the temporal rotational data of a subject's joints (knee, thigh, shoulder, and elbow). The results concluded that there are eleven pairs of features that are considered significantly correlated with (pgait signature using latent data.

  1. The NH$_2$D hyperfine structure revealed by astrophysical observations

    Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...

  2. 2D nanostructures for water purification: graphene and beyond.

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  3. New Reductions and Nonlinear Systems for 2D Schrodinger Operators

    Mironov, A

    2010-01-01

    New Completely Integrable (2+1)-System is studied. It is based on the so-called L-A-B-triples $L_t=[H,L]-fL$ where L is a 2D Schrodinger Operator. This approach was invented by S.Manakov and B.Dubrovin, I.Krichever, S.Novikov(DKN) in the works published in 1976. A nonstandard reduction for the 2D Schrodinger Operator (completely different from the one found by S.Novikov and A.Veselov in 1984) compatible with time dynamics of the new Nonlinear System, is studied here. It can be naturally treated as a 2D extension of the famous Burgers System. The Algebro-Geometric (AG) Periodic Solutions here are very specific and unusual (for general and reduced cases). The reduced system is linearizable like Burgers. However, the general one (and probably the reduced one also) certainly lead in the stationary AG case to the nonstandard examples of algebraic curves $\\Gamma\\subset W$ in the full complex 2D manifold of Bloch-Floquet functions W for the periodic elliptic 2D operator H where $H\\psi(x,y,P)=\\lambda(P)\\psi(x,y,P),P\\...

  4. Failure Mechanism of True 2D Granular Flows

    Nguyen, Cuong T; Fukagawa, R

    2015-01-01

    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...

  5. Local Probing of Phase Coherence in a Strongly Interacting 2D Quantum Gas

    Luick, Niclas; Siegl, Jonas; Hueck, Klaus; Morgener, Kai; Lompe, Thomas; Weimer, Wolf; Moritz, Henning

    2016-05-01

    The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 3D superfluids, bosonic atoms or Cooper pairs condense into a macroscopic wave function exhibiting long-range phase coherence. Meanwhile, 2D superfluids show a strikingly different behavior: True long-range coherence is precluded by thermal fluctuations, nevertheless Berezinskii-Kosterlitz-Thouless (BKT) theory predicts that 2D systems can still become superfluid. The superfluid state is characterized by an algebraic decay of phase correlations g1(r) ~r - τ / 4 , where the decay exponent τ is directly related to the superfluid density ns according to τ = 4 /(nsλdB2) . I will present local coherence measurements in a strongly interacting 2D gas of diatomic 6 Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent and to reconstruct the superfluid density. We determine the scaling of the decay exponent with phase space density to provide a benchmark for studies of 2D superfluids in the strongly interacting regime.

  6. Higher-Order Neural Networks Applied to 2D and 3D Object Recognition

    Spirkovska, Lilly; Reid, Max B.

    1994-01-01

    A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.

  7. 2D ocean waves spectra from space: a challenge for validation and synergetic use

    Mouche, A.; Wang, H.; Husson, R.; Guitton, G.; Chapron, B.; Li, H.

    2016-05-01

    Sentinel-1 A now routinely acquires data over the ocean since 2014. Data are processed by ESA through the Payload Data Ground Segment up to Level-2 for Copernicus users. Level-2 products consist of geo-located geophysical parameters related to wind, waves and ocean current. In particular, Sentinel-1A wave measurements provide 2D ocean swell spectra (2D wave energy distribution as a function of wavelength and direction) as well as integrated parameters such as significant wave height, dominant wavelength and direction for each partition. In 2016, Sentinel-1 B will be launched by ESA and GF-3 by CNSA. Then in 2018, CFOSAT (China France Oceanography Satellite project), a joint mission from the Chinese and French Space Agencies, will be launched. They will also provide 2D Ocean waves spectra. This paper focuses on the techniques used to validate 2D-ocean waves as measured by satellite and the challenges and opportunities of such a program for ocean waves measurements from space.

  8. GAME THEORY BASED INTERFERENCE CONTROL AND POWER CONTROL FOR D2D COMMUNICATION IN CELLULAR NETWORKS

    Fa-Bin Li

    2016-09-01

    Full Text Available With the current development of mobile communication services, people need personal communication of high speed, excellent service, high quality and low latency,however, limited spectrum resources become the most important factor to hamper improvement of cellular systems. As big amount of data traffic will cause greater local consumption of spectrum resources, future networks are required to have appropriate techniques to better support such forms of communication. D2D (Device-to-device communication technology in a cellular network makes full use of spectrum resources underlaying, reduces the load of the base station, minimizes transmit power of the terminals and the base stations, thereby enhances the overall throughput of the networks. Due to the use of multiplexing D2D UE (User equipment resources and spectrum, and the interference caused by the sharing of resources between adjacent cells, it has become a major factor affecting coexisting of cellular subscribers and D2D users. When D2D communication multiplexes the uplink resources, the base-stations are easily to be disturbed; when the downlink resources are multiplexed, the users of downlink are susceptible to interference. In order to build a high-efficient mobile network, we can meet the QoS requirements by controlling the power to suppress the interference between the base station and a terminal user.

  9. Joint 2-D DOA and Noncircularity Phase Estimation Method

    Wang Ling

    2012-03-01

    Full Text Available Classical joint estimation methods need large calculation quantity and multidimensional search. In order to avoid these shortcoming, a novel joint two-Dimension (2-D Direction Of Arrival (DOA and noncircularity phase estimation method based on three orthogonal linear arrays is proposed. The problem of 3-D parameter estimation can be transformed to three parallel 2-D parameter estimation according to the characteristic of three orthogonal linear arrays. Further more, the problem of 2-D parameter estimation can be transformed to 1-D parameter estimation by using the rotational invariance property among signal subspace and orthogonal property of noise subspace at the same time in every subarray. Ultimately, the algorithm can realize joint estimation and pairing parameters by one eigen-decomposition of extended covariance matrix. The proposed algorithm can be applicable for low SNR and small snapshot scenarios, and can estiame 2(M −1 signals. Simulation results verify that the proposed algorithm is effective.

  10. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  11. Cluster algebras in Scattering Amplitudes with special 2D kinematics

    Torres, Marcus A C

    2013-01-01

    We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.

  12. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  13. Design and Realization of Dynamic Obstacle on URWPSSim2D

    Xiao Chen

    2013-07-01

    Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles,thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.  

  14. Quasi 2D hydrodynamic modelling of the flooded hinterland due to dyke breaching on the Elbe River

    S. Huang

    2007-01-01

    Full Text Available In flood modeling, many 1D and 2D combination and 2D models are used to simulate diversion of water from rivers through dyke breaches into the hinterland for extreme flood events. However, these models are too demanding in data requirements and computational resources which is an important consideration when uncertainty analysis using Monte Carlo techniques is used to complement the modeling exercise. The goal of this paper is to show the development of a quasi-2D modeling approach, which still calculates the dynamic wave in 1D but the discretisation of the computational units are in 2D, allowing a better spatial representation of the flow in the hinterland due to dyke breaching without a large additional expenditure on data pre-processing and computational time. A 2D representation of the flow and velocity fields is required to model sediment and micro-pollutant transport. The model DYNHYD (1D hydrodynamics from the WASP5 modeling package was used as a basis for the simulations. The model was extended to incorporate the quasi-2D approach and a Monte-Carlo Analysis was used to conduct a flood sensitivity analysis to determine the sensitivity of parameters and boundary conditions to the resulting water flow. An extreme flood event on the Elbe River, Germany, with a possible dyke breach area was used as a test case. The results show a good similarity with those obtained from another 1D/2D modeling study.

  15. CH2D+, the Search for the Holy Grail

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  16. EEG simulation by 2D interconnected chaotic oscillators

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  17. 2D fluid simulations of interchange turbulence with ion dynamics

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...

  18. Recording 2-D Nutation NQR Spectra by Random Sampling Method.

    Glotova, Olga; Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-10-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution.

  19. Exact computation of scalar 2D aerial imagery

    Gordon, Ronald L.

    2002-07-01

    An exact formulation of the problem of imaging a 2D object through a Koehler illumination system is presented; the accurate simulation of a real layout is then not time- limited but memory-limited. The main idea behind the algorithm is that the boundary of the region that comprise a typical TCC Is made up of circular arcs, and therefore the area - which determines the value of the TCC - should be exactly computable in terms of elementary analytical functions. A change to integration around the boundary leads to an expression with minimal dependence on expensive functions such as arctangents and square roots. Numerical comparisons are made for a simple 2D structure.

  20. GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD

    HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun

    2005-01-01

    The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.

  1. Isotropic 2D quadrangle meshing with size and orientation control

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  2. On the Nonrelativistic 2D Purely Magnetic Supersymmetric Pauli Operator

    Grinevich, P.; Mironov, A.(Lebedev Physics Institute; ITEP, Moscow, Russia); Novikov, S.

    2011-01-01

    The Complete Manifold of Ground State Eigenfunctions for the Purely Magnetic 2D Pauli Operator is considered as a by-product of the new reduction found by the present authors few years ago for the Algebrogeometric Inverse Spectral Data (i.e. Riemann Surfaces and Divisors). This reduction is associated with the (2+1) Soliton Hierarhy containing a 2D analog of the famous "Burgers System". This article contains also exposition of the previous works made since 1980 including the first topological...

  3. 2D "soap"-assembly of nanoparticles via colloid-induced condensation of mixed Langmuir monolayers of fatty surfactants.

    Babenko, Denis I; Ezhov, Alexander A; Turygin, Dmitry S; Ivanov, Vladimir A; Ivanov, Vladimir K; Arslanov, Vladimir V; Kalinina, Maria A

    2012-01-10

    We describe a new type of colloidal 2D gels formed in mixed Langmuir monolayers of stearic acid and octadecylamine on a surface of gold hydrosol. The adsorption of gold nanoparticles on the mixed monolayer led to an increase of interactions between oppositely charged surfactants giving a "soap" of mixed fatty salt. The observed effect is equivalent to a virtual "cooling" of floating monolayer, which undergoes rapid condensation on a surface of aqueous colloid. The consequent shrinking and rearrangement of the monolayer resulted in aggregation of nanoparticles into colloidal 2D "soap"-gels, which represented arrested colloidal phases within nonadsorbing organic medium. When sequentially deposited onto solids by Langmuir-Blodgett technique, the 2D "soap"-gels separated into organic and colloidal phases and gave dendrite-like bilateral organic crystallites coated with gold nanoparticles. The reported colloidal "soap"-assembly can offer a new opportunity to design 2D colloidal systems of widely variable chemistry and structures.

  4. Application of conformal map theory for design of 2-D ultrasonic array structure for NDT imaging application: a feasibility study.

    Ramadas, Sivaram N; Jackson, Joseph C; Dziewierz, Jerzy; O'Leary, Richard; Gachagan, Anthony

    2014-03-01

    Two-dimensional ultrasonic phased arrays are becoming increasingly popular in nondestructive evaluation (NDE). Sparse array element configurations are required to fully exploit the potential benefits of 2-D phased arrays. This paper applies the conformal mapping technique as a means of designing sparse 2-D array layouts for NDE applications. Modeling using both Huygens' field prediction theory and 2-D fast Fourier transformation is employed to study the resulting new structure. A conformal power map was used that, for fixed beam width, was shown in simulations to have a greater contrast than rectangular or random arrays. A prototype aperiodic 2-D array configuration for direct contact operation in steel, with operational frequency ~3 MHz, was designed using the array design principle described in this paper. Experimental results demonstrate a working sparse-array transducer capable of performing volumetric imaging.

  5. Automatic pose initialization for accurate 2D/3D registration applied to abdominal aortic aneurysm endovascular repair

    Miao, Shun; Lucas, Joseph; Liao, Rui

    2012-02-01

    Minimally invasive abdominal aortic aneurysm (AAA) stenting can be greatly facilitated by overlaying the preoperative 3-D model of the abdominal aorta onto the intra-operative 2-D X-ray images. Accurate 2-D/3-D registration in 3-D space makes the 2-D/3-D overlay robust to the change of C-Arm angulations. By far, the 2-D/3-D registration methods based on simulated X-ray projection images using multiple image planes have been shown to be able to provide satisfactory 3-D registration accuracy. However, one drawback of the intensity-based 2-D/3-D registration methods is that the similarity measure is usually highly non-convex and hence the optimizer can easily be trapped into local minima. User interaction therefore is often needed in the initialization of the position of the 3-D model in order to get a successful 2-D/3-D registration. In this paper, a novel 3-D pose initialization technique is proposed, as an extension of our previously proposed bi-plane 2-D/3-D registration method for AAA intervention [4]. The proposed method detects vessel bifurcation points and spine centerline in both 2-D and 3-D images, and utilizes landmark information to bring the 3-D volume into a 15mm capture range. The proposed landmark detection method was validated on real dataset, and is shown to be able to provide a good initialization for 2-D/3-D registration in [4], thus making the workflow fully automatic.

  6. Fast 2D-DCT implementations for VLIW processors

    Sohm, OP; Canagarajah, CN; Bull, DR

    1999-01-01

    This paper analyzes various fast 2D-DCT algorithms regarding their suitability for VLIW processors. Operations for truncation or rounding which are usually neglected in proposals for fast algorithms have also been taken into consideration. Loeffler's algorithm with parallel multiplications was found to be most suitable due to its parallel structure

  7. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  8. The partition function of 2d string theory

    Dijkgraaf, R; Plesser, R

    1993-01-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  9. The toroidal Hausdorff dimension of 2d Euclidean quantum gravity

    Ambjorn, Jan; Budd, Timothy George

    2013-01-01

    The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...

  10. The 2D Boussinesq equations with logarithmically supercritical velocities

    Chae, Dongho

    2011-01-01

    This paper investigates the global (in time) regularity of solutions to a system of equations that generalize the vorticity formulation of the 2D Boussinesq-Navier-Stokes equations. The velocity $u$ in this system is related to the vorticity $\\omega$ through the relations $u=\

  11. Dynamic and approximate pattern matching in 2D

    Clifford, Raphaël; Fontaine, Allyx; Starikovskaya, Tatiana

    2016-01-01

    updates can be performed in O(log2 n) time and queries in O(log2 m) time. - We then consider a model where an update is a new 2D pattern and a query is a location in the text. For this setting we show that Hamming distance queries can be answered in O(log m + H) time, where H is the relevant Hamming...... distance. - Extending this work to allow approximation, we give an efficient algorithm which returns a (1+ε) approximation of the Hamming distance at a given location in O(ε−2 log2 m log log n) time. Finally, we consider a different setting inspired by previous work on locality sensitive hashing (LSH......). Given a threshold k and after building the 2D text index and receiving a 2D query pattern, we must output a location where the Hamming distance is at most (1 + ε)k as long as there exists a location where the Hamming distance is at most k. - For our LSH inspired 2D indexing problem, the text can...

  12. 2D InP photonic crystal fabrication process development

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  13. The Analytical Approximate Solution of the 2D Thermal Displacement

    Chu-QuanGuan; Zeng-YuanGuo; 等

    1996-01-01

    The 2D plane gas flow under heating (with nonentity boundary condition)has been discussed by the analytical approach in this paper.The approximate analytical solutions have been obtained for the flow passing various kinds of heat sources.Solutions demonstrate the thermal displacement phenomena are strongly depend on the heating intensity.

  14. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    Chiu, Ming Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rheological Properties of Quasi-2D Fluids in Microgravity

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  16. Research Synthesis and Characterization of 2D Conjugated Polymers

    2007-07-13

    polythiophene chain on the Scheme should necessarily result in a continuous brick wall 2D structure). Furthermore, the design should eliminate any...Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectroscopy are under way. We have also conducted preliminary experiments on the two other low

  17. Design of the LRP airfoil series using 2D CFD

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Nav...

  18. BPS black holes in N=2 D=4 gauged supergravities

    Hristov, K.; Looyestijn, H.T.; Vandoren, S.J.G.

    2010-01-01

    We construct and analyze BPS black hole solutions in gauged N=2, D=4 supergravity with charged hypermultiplets. A class of solutions can be found through spontaneous symmetry breaking in vacua that preserve maximal supersymmetry. The resulting black holes do not carry any hair for the scalars. We de

  19. The Anglo-Australian Observatory's 2dF Facility

    Lewis, I J; Taylor, K; Glazebrook, K; Bailey, J A; Baldry, I K; Barton, J R; Bridges, T J; Dalton, G B; Farrell, T J; Gray, P M; Lankshear, A; McCowage, C; Parry, I R; Sharples, R M; Shortridge, K; Smith, G A; Stevenson, J; Straede, J O; Waller, L G; Whittard, J D; Wilcox, J K; Willis, K C

    2002-01-01

    The 2dF (Two-degree Field) facility at the prime focus of the Anglo-Australian Telescope provides multiple object spectroscopy over a 2 degree field of view. Up to 400 target fibres can be independently positioned by a complex robot. Two spectrographs provide spectra with resolutions of between 500 and 2000, over wavelength ranges of 440nm and 110nm respectively. The 2dF facility began routine observations in 1997. 2dF was designed primarily for galaxy redshift surveys and has a number of innovative features. The large corrector lens incorporates an atmospheric dispersion compensator, essential for wide wavelength coverage with small diameter fibres. The instrument has two full sets of fibres on separate field plates, so that re-configuring can be done in parallel with observing. The robot positioner places one fibre every 6 seconds, to a precision of 0.3 arcsec (20micron) over the full field. All components of 2dF, including the spectrographs, are mounted on a 5-m diameter telescope top-end ring for ease of ...

  20. Nonlinear excursions of particles in ideal 2D flows

    Aref, Hassan; Pedersen, Johan Rønby; Stremler, Mark A.;

    2010-01-01

    A number of problems related to particle trajectories in ideal 2D flows are discussed. Both regular particle paths, corresponding to integrable dynamics, and irregular or chaotic paths may arise. Examples of both types are shown. Sometimes, in the same flow, certain particles will follow regular ...

  1. Approximate 2D inversion of airborne TEM data

    Christensen, N.B.; Wolfgram, Peter

    2006-01-01

    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model ....... Application to GEOTEM data over the Harmony nickel sulphide deposit recovered the three dipping conductors in the 2D section despite their complex structure and high conductivity contrast.......We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...... section. For moving platform data there is translational invariance and the second part of the inversion becomes a deconvolution. The convolution kernels are computed by perturbing one model element in an otherwise homogeneous 2D section and calculating full nonlinear responses. These responses...

  2. CFD code comparison for 2D airfoil flows

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.;

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...

  3. Discrepant Results in a 2-D Marble Collision

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  4. CANONICAL COMPUTATIONAL FORMS FOR AR 2-D SYSTEMS

    ROCHA, P; WILLEMS, JC

    1990-01-01

    A canonical form for AR 2-D systems representations is introduced. This yields a method for computing the system trajectories by means of a line-by-line recursion, and displays some relevant information about the system structure such as the choice of inputs and initial conditions.

  5. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  6. Computational study of interfaces and edges of 2D materials

    Farmanbar Gelepordsari, M.

    2016-01-01

    The discovery of graphene and its intriguing properties has given birth to the field of two-dimensional (2D) materials. These materials are characterized by a strong covalent bonding between the atoms within a plane, but weak, van derWaals, bonding between the planes. Such materials can be isolated

  7. Horns Rev II, 2D-Model Tests

    Andersen, Thomas Lykke; Brorsen, Michael

    This report is an extension of the study presented in Lykke Andersen and Brorsen, 2006 and includes results from the irregular wave tests, where Lykke Andersen & Brorsen, 2006 focused on regular waves. The 2D physical model tests were carried out in the shallow wave flume at Dept. of Civil...

  8. The 2d-LCA as an alternative to x-wires

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2015-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  9. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Brady, Samuel L.; Gunasingha, Rathnayaka; Yoshizumi, Terry T.; Howell, Calvin R.; Crowell, Alexander S.; Fallin, Brent; Tonchev, Anton P.; Dewhirst, Mark W.

    2010-09-01

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the 2H(d,n)3He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  10. Weak lensing reconstructions in 2D & 3D: implications for cluster studies

    Leonard, Adrienne; Starck, Jean-Luc

    2015-01-01

    We compare the efficiency with which 2D and 3D weak lensing mass mapping techniques are able to detect clusters of galaxies using two state-of-the-art mass reconstruction techniques: MRLens in 2D and GLIMPSE in 3D. We simulate otherwise-empty cluster fields for 96 different virial mass-redshift combinations spanning the ranges $3\\times10^{13}h^{-1}M_\\odot \\le M_{vir}\\le 10^{15}h^{-1}M_\\odot$ and $0.05 \\le z_{\\rm cl} \\le 0.75$, and for each generate 1000 realisations of noisy shear data in 2D and 3D. For each field, we then compute the cluster (false) detection rate as the mean number of cluster (false) detections per reconstruction over the sample of 1000 reconstructions. We show that both MRLens and GLIMPSE are effective tools for the detection of clusters from weak lensing measurements, and provide comparable quality reconstructions at low redshift. At high redshift, GLIMPSE reconstructions offer increased sensitivity in the detection of clusters, yielding cluster detection rates up to a factor of $\\sim 10\\...

  11. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  12. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per;

    2017-01-01

    -infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association....... The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women....

  13. Measurements of density field in a swirling flame by 2D spontaneous Raman scattering

    Sharaborin, D. K.; Dulin, V. M.; Lobasov, A. S.; Markovich, D. M.

    2016-10-01

    This paper presents an evaluation of the density distribution in swirling turbulent premixed flames. The measurement principle is based on registration of spontaneous Raman scattering, when the reacting gas flow is illuminated by a laser sheet. Evaluation of 1D and 2D distributions of density and temperature were performed in a laminar Bunsen flame as a test case for validation of experimental technique. Time-averaged 2D images of the scattering during rovibronic transitions of nitrogen molecules were captured in turbulent premixed low-swirl and high-swirl (Re = 5000) propane-air flames in a wide range of equivalence ratio. The obtained density fields are useful for better understanding of heat and mass transfer in swirl-stabilized turbulent flames and for validation of CFD results.

  14. Graphical algorithms and threshold error rates for the 2d colour code

    Wang, D S; Hill, C D; Hollenberg, L C L

    2009-01-01

    Recent work on fault-tolerant quantum computation making use of topological error correction shows great potential, with the 2d surface code possessing a threshold error rate approaching 1% (NJoP 9:199, 2007), (arXiv:0905.0531). However, the 2d surface code requires the use of a complex state distillation procedure to achieve universal quantum computation. The colour code of (PRL 97:180501, 2006) is a related scheme partially solving the problem, providing a means to perform all Clifford group gates transversally. We review the colour code and its error correcting methodology, discussing one approximate technique based on graph matching. We derive an analytic lower bound to the threshold error rate of 6.25% under error-free syndrome extraction, while numerical simulations indicate it may be as high as 13.3%. Inclusion of faulty syndrome extraction circuits drops the threshold to approximately 0.1%.

  15. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  16. High-resolution spectroscopy of CH2D+ in a cold 22-pole ion trap.

    Gärtner, Sabrina; Krieg, Jürgen; Klemann, André; Asvany, Oskar; Brünken, Sandra; Schlemmer, Stephan

    2013-10-03

    The method of laser-induced reaction (LIR) is used to obtain high-resolution IR spectra of CH2D(+) in collision with n-H2 at a nominal temperature of 14 K. For this purpose, a home-built optical parametric oscillator (OPO), tunable in the range of 2500-4000 cm(-1), has been coupled to a 22-pole ion trap apparatus. In total, 112 lines of the ν1 and ν4 bands have been recorded. A line list is inferred from a careful analysis of the shape of the LIR signal. Line positions have been determined to an accuracy of 1 × 10(-4) cm(-1), allowing for the prediction of pure rotational transitions with MHz accuracy. In addition, an IR-THz double-resonance LIR depletion technique is applied to H2D(+) to demonstrate the feasibility for pure rotational spectroscopy with LIR.

  17. Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.

    Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique

    2014-01-01

    Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.

  18. Sampling Number Effects in 2D and Range Imaging of Range-gated Acquisition

    Kwon, Seong-Ouk; Park, Seung-Kyu; Baik, Sung-Hoon; Cho, Jai-Wan; Jeong, Kyung-Min [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, we analyzed the number effects of sampling images for making a 2D image and a range image from acquired RGI images. We analyzed the number effects of RGI images for making a 2D image and a range image using a RGI vision system. As the results, 2D image quality was not much depended on the number of sampling images but on how much well extract efficient RGI images. But, the number of RGI images was important for making a range image because range image quality was proportional to the number of RGI images. Image acquiring in a monitoring area of nuclear industry is an important function for safety inspection and preparing appropriate control plans. To overcome the non-visualization problem caused by airborne obstacle particles, vision systems should have extra-functions, such as active illumination lightening through disturbance airborne particles. One of these powerful active vision systems is a range-gated imaging system. The vision system based on the range-gated imaging system can acquire image data from raining or smoking environments. Range-gated imaging (RGI) is a direct active visualization technique using a highly sensitive image sensor and a high intensity illuminant. Currently, the range-gated imaging technique providing 2D and 3D images is one of emerging active vision technologies. The range-gated imaging system gets vision information by summing time sliced vision images. In the RGI system, a high intensity illuminant illuminates for ultra-short time and a highly sensitive image sensor is gated by ultra-short exposure time to only get the illumination light. Here, the illuminant illuminates objects by flashing strong light through airborne disturbance particles. Thus, in contrast to passive conventional vision systems, the RGI active vision technology robust for low-visibility environments.

  19. Novel Hydrogen-bonded Three-dimensional Supramolecular Architectures Containing 2D Honeycomb Networks or 2D Grids

    LI Dong-Sheng; ZHOU Cai-Hua; WANG Yao-Yu; FU Feng; WU Ya-Pan; QI Guang-Cai; SHI Qi-Zhen

    2006-01-01

    Two new supramolecular complexes, [Cu(H2dhbd)(3-pyOH)(H2O)]2·3-pyOH·2H2O (1) and [Cu2(dhbd)(dpa)2-(H2O)]·6H2O (2) (H4dhbd=2,3-dihydroxybutanedioic acid, 3-pyOH=3-hydroxypyridine, dpa=2,2'-dipyridylamine),have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses,H-O hydrogen bonds, the cyclic dinuclear units in 1 together with four adjacent neighbors are connected into a 2D honeycomb network encapsulating free 3-pyOH ligands. Unexpectedly, the water-dimers are fixed in interlayers of 2D honeycomb network and act as hydrogen-bond bridging to further extend these 2D networks into 3D hydrogen-bonded framework. Complex 2 includes interesting 2D grids constructed from chiral dinuclear units through cules into three dimension with channels. Variable-temperature magnetic susceptibility measurements for both complexes indicate the presence of weak antiferromagnetic exchange interactions between adjacent copper(Ⅱ) ions.

  20. Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.

    Zhang, Bing; He, Jiankang; Li, Xiao; Xu, Fangyuan; Li, Dichen

    2016-08-25

    Electrohydrodynamic printing (EHDP), based on the electrohydrodynamically induced flow of materials, enables the production of micro/nanoscale fibers or droplets and has recently attracted extensive interest to fabricate user-specific patterns in a controlled and high-efficiency manner. However, most of the existing EHDP techniques can only print two-dimensional (2D) micropatterns which cannot meet the increasing demands for the direct fabrication of three-dimensional (3D) microdevices. The integration of EHDP techniques with the layer-by-layer stacking principle of additive manufacturing has emerged as a promising solution to this limitation. Here we present a state-of-the-art review on the translation of 2D EHDP technique into a viable micro/nanoscale 3D printing strategy. The working principle, essential components as well as critical process parameters for EHDP are discussed. We highlight recent explorations on both solution-based and melt-based 3D EHDP techniques in cone-jet and microdripping modes for the fabrication of multimaterial structures, microelectronics and biological constructs. Finally, we discuss the major challenges as well as possible solutions with regard to translating the 3D EHDP process into a real micro/nanoscale additive manufacturing strategy for the freeform fabrication of 3D structures.

  1. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  2. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    Burgess, Ian B; Loncar, Marko

    2012-01-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  3. Synchronous two-dimensional MIR correlation spectroscopy (2D-COS) as a novel method for screening smoke tainted wine.

    Fudge, Anthea L; Wilkinson, Kerry L; Ristic, Renata; Cozzolino, Daniel

    2013-08-15

    In this study, two-dimensional correlation spectroscopy (2D-COS) combined with mid-infrared (MIR) spectroscopy was evaluated as a novel technique for the identification of spectral regions associated with smoke-affected wine, for the purpose of screening taint arising from grapevine exposure to smoke. Smoke-affected wines obtained from experimental and industry sources were analysed using MIR spectroscopy and chemometrics, and calibration models developed. 2D-COS analysis was used to generate synchronous data maps for red and white cask wines spiked with guaiacol, a marker of smoke taint. Correlations were observed at wavelengths that could be attributable to aromatic C-C stretching, i.e., between 1400 and 1500 cm(-1), indicative of volatile phenols. These results demonstrate the potential of 2D-COS as a rapid, high-throughput technique for the preliminary screening of smoke tainted wine.

  4. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  5. Parameterising root system growth models using 2D neutron radiography images

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  6. Extreme Growth of Enstrophy on 2D Bounded Domains

    Protas, Bartosz; Sliwiak, Adam

    2016-11-01

    We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.

  7. Enhanced automated platform for 2D characterization of RFID communications

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  8. Security Issues for 2D Barcodes Ticketing Systems

    Cristian Toma

    2011-03-01

    Full Text Available The paper presents a solution for endcoding/decoding access to the subway public transportation systems. First part of the paper is dedicated through section one and two to the most used 2D barcodes used in the market – QR and DataMatrix. The sample for DataMatrix is author propietary and the QR sample is from the QR standard [2]. The section three presents MMS and Digital Rights Management topics used for issuing the 2D barcodes tickets. The second part of the paper, starting with section four shows the architecture of Subway Ticketing Systems and the proposed procedure for the ticket issuing. The conclusions identify trends of the security topics in the public transportation systems.

  9. Wave propagation in pantographic 2D lattices with internal discontinuities

    Madeo, A; Neff, P

    2014-01-01

    In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.

  10. Stable 2D Feature Tracking for Long Video Sequences

    Jong-Seung Park

    2008-12-01

    Full Text Available In this paper, we propose a 2D feature tracking method that is stable to long video sequences. To improve the stability of long tracking, we use trajectory information about 2D features. We predict the expected feature states and compute a rough estimate of the feature location on the current image frame using the history of previous feature states up to the current frame. A search window is positioned at the estimated location and similarity measures are computed within the search window. Once the feature position is determined from the similarity measures, the current feature states are appended to the history bu®er. The outlier rejection stage is also introduced to reduce false matches. Experimental results from real video sequences showed that the proposed method stably tracks point features for long frame sequences.

  11. Band-structure engineering in conjugated 2D polymers.

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  12. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  13. Structural Complexity and Phonon Physics in 2D Arsenenes.

    Carrete, Jesús; Gallego, Luis J; Mingo, Natalio

    2017-03-15

    In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.

  14. Optimizing sparse sampling for 2D electronic spectroscopy

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  15. A brief review of the 2d/4d correspondences

    Tachikawa, Yuji

    2016-01-01

    An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.

  16. 2D Models for Dust-driven AGB Star Winds

    Woitke, P

    2006-01-01

    New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...

  17. Controlling avalanche criticality in 2D nano arrays.

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  18. Tradeoffs for reliable quantum information storage in 2D systems

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd^2=O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. We show that the analogous tradeoff for the classical information storage is k\\sqrt{d} =O(n).

  19. A "Necklace" Model for Vesicles Simulations in 2D

    Ismail, Mourad

    2012-01-01

    The aim of this paper is to propose a new numerical model to simulate 2D vesicles interacting with a newtonian fluid. The inextensible membrane is modeled by a chain of circular rigid particles which are maintained in cohesion by using two different type of forces. First, a spring force is imposed between neighboring particles in the chain. Second, in order to model the bending of the membrane, each triplet of successive particles is submitted to an angular force. Numerical simulations of vesicles in shear flow have been run using Finite Element Method and the FreeFem++[1] software. Exploring different ratios of inner and outer viscosities, we recover the well known "Tank-Treading" and "Tumbling" motions predicted by theory and experiments. Moreover, for the first time, 2D simulations of the "Vacillating-Breathing" regime predicted by theory in [2] and observed experimentally in [3] are done without special ingredient like for example thermal fluctuations used in [4].

  20. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  1. Simulation of corium concrete interaction in 2D geometry

    Cranga, M. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Spindler, B.; Dufour, E. [CEA Grenoble, DEN, F-38000 Grenoble (France); Dimov, Dimitar [Bulgarian Acad Sci, Inst Nucl Res and Nucl Energy, NPPSAL, BU-1784 Sofia (Bulgaria); Atkhen, Kresna [EDF, SEPTEN, F-69628 Villeurbanne (France); Foit, Jerzy [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Garcia-Martin, M. [Univ Politecn Madrid, E-28006 Madrid (Spain); Sevon, Tuomo [Tech Res Ctr Finland VTT, FI-02044 Helsinki (Finland); Schmidt, W. [AREVA, D-91058 Erlangen (Germany); Spengler, C. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany)

    2010-07-01

    Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)

  2. 2D/3D Program work summary report

    NONE

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).

  3. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks

    LI Chao; YAO Kan; LI Fang

    2009-01-01

    Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.

  4. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    I. Iliev

    2015-02-01

    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  5. Critical Dynamics in Quenched 2D Atomic Gases

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  6. Hard and Soft Physics with 2D Materials

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  7. Estimating 2-D Vector Velocities Using Multidimensional Spectrum Analysis

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans;

    2008-01-01

    Wilson (1991) presented an ultrasonic wide-band estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity...... a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes....... Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2...

  8. Functionalized 2D atomic sheets with new properties

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  9. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  10. An inverse design method for 2D airfoil

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  11. Vertical heterostructures based on graphene and other 2D materials

    Antonova, I. V. [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch (Russian Federation)

    2016-01-15

    Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.

  12. Mapping Proprioception across a 2D Horizontal Workspace

    2010-01-01

    Relatively few studies have been reported that document how proprioception varies across the workspace of the human arm. Here we examined proprioceptive function across a horizontal planar workspace, using a new method that avoids active movement and interactions with other sensory modalities. We systematically mapped both proprioceptive acuity (sensitivity to hand position change) and bias (perceived location of the hand), across a horizontal-plane 2D workspace. Proprioception of both the le...

  13. An Arbitrary 2D Structured Replica Control Protocol

    Basmadjian, Robert; Meer, Hermann,

    2011-01-01

    Traditional replication protocols that logically arrange the replicas into a specific structure have reasonable availability, lower communication cost as well as system load than those that do not require any logical organisation of replicas. We propose in this paper the A2DS protocol: a single protocol that, unlike the existing proposed protocols, can be adapted to any 2D structure. Its read operation is carried out on any replica of every level of the structure whereas write operations are ...

  14. FASTWO - A 2-D interactive algebraic grid generator

    Luh, Raymond Ching-Chung; Lombard, C. K.

    1988-01-01

    This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.

  15. Submicrometric 2D ratchet effect in magnetic domain wall motion

    Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-12-15

    Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.

  16. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior...

  17. Physical degrees of freedom in 2-D string field theories

    Sakai, N; Sakai, Norisuke; Tanii, Yoshiaki

    1992-01-01

    States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, but it is noted that the absolute (semi-relative) cohomology states are lost.

  18. 2D and 3D Traveling Salesman Problem

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  19. Horns Rev II, 2D-Model Tests

    Andersen, Thomas Lykke; Brorsen, Michael

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006....

  20. Controllable and Observable Polynomial Description for 2D Noncausal Systems

    M. S. Boudellioua

    2007-01-01

    Full Text Available Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing, or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable and observable.

  1. F-theory and 2d (0, 2) theories

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  2. Volumetric elasticity imaging with a 2-D CMUT array.

    Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve

    2010-06-01

    This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.

  3. 2D Non-Abelian Theory: Some Novel Features

    Srinivas, N; Kureel, B K; Malik, R P

    2016-01-01

    Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss some novel features of a two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations for this specific 2D theory. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci-Ferrari (CF) type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities respect some precise and perf...

  4. A novel point cloud registration using 2D image features

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  5. Photonic crystals to enhance light extraction from 2D materials

    Noori, Yasir J; Roberts, Jonathan; Woodhead, Christopher; Bernardo-Gavito, Ramon; Tovee, Peter; Young, Robert J

    2016-01-01

    We propose a scheme for coupling 2D materials to an engineered cavity based on a defective rod type photonic crystal lattice. We show results from numerical modelling of the suggested cavity design, and propose using the height profile of a 2D material transferred on top of the cavity to maximise coupling between exciton recombination and the cavity mode. The photonic structure plays a key role in enhancing the launch efficiency, by improving the directionality of the emitted light to better couple it into an external optical system. When using the photonic structure, we measured an increase in the extraction ratio by a factor of 3.4. We investigated the variations in the flux spectrum when the radius of the rods is modified, and when the 2D material droops to a range of different heights within the cavity. We found an optimum enhancement when the rods have a radius equal to 0.165 times the lattice constant, this enhancement reduces when the radius is reduced or increased. Finally, we discuss the possible use...

  6. Cross-Correlating 2D and 3D Galaxy Surveys

    Passaglia, Samuel [Chicago U., KICP; Manzotti, Alessandro [Chicago U., KICP; Dodelson, Scott [Fermilab

    2017-02-09

    Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors of ${\\sim}1.2$ to ${\\sim}1.8$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of ${\\sim}2$ to ${\\sim}12$ over internal photo-$z$ reconstructions.

  7. Hybrid 3D-2D printing for bone scaffolds fabrication

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  8. Observations of 2D Doppler backscattering on MAST

    Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L

    2015-01-01

    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...

  9. Remarks on the improved regularity criterion for the 2D Euler-Boussinesq equations with supercritical dissipation

    Ye, Zhuan

    2016-12-01

    This paper is devoted to the investigation of the regularity criterion to the two-dimensional (2D) Euler-Boussinesq equations with supercritical dissipation. By making use of the Littlewood-Paley technique, we provide an improved regularity criterion involving the temperature at the scaling invariant level, which improves the previous results.

  10. Magnetic correlations in the 2D S=5/2 honeycomb antiferromagnet MnPS3

    Rønnow, H.M.; Wildes, A.R.; Bramwell, S.T.

    2000-01-01

    MnPS3 is a quasi-2D S = 5/2 antiferromagnet on a honeycomb lattice. Using an energy integrating neutron scattering technique, we have measured the structure factor S(k) of the instantaneous magnetic fluctuations. The temperature dependence of the correlation length xi follows the Kosterlitz...

  11. A low-complexity joint 2D-DOD and 2D-DOA estimation algorithm for MIMO radar with arbitrary arrays

    Chen, Chen; Zhang, Xiaofei

    2013-10-01

    In this article, we study the problem of four-dimensional angles estimation for bistatic multiple-input multiple-output (MIMO) radar with arbitrary arrays, and propose a joint two-dimensional direction of departure (2D-DOD) and two-dimensional direction of arrival (2D-DOA) estimation algorithm. Our algorithm is to extend the propagator method (PM) for angle estimation in MIMO radar. The proposed algorithm does not require peak searching and eigenvalue decomposition of received signal covariance matrix, because of this, it has low computational complexity. And it can achieve automatic pairing of four-dimensional angles. Furthermore, the proposed algorithm has much better angle estimation performance than interpolated estimation method of signal parameters via rotational invariance techniques (ESPRIT), and has very close angle estimation performance to ESPRIT-like algorithm which has higher computational cost than the proposed algorithm. We also analyze the complexity and angle estimation error of the algorithm, and derive the Cramer-Rao bound (CRB). The simulation results verify the effectiveness and improvement of the proposed algorithm.

  12. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  13. LPA 2D-DOA Estimation for Fast Nonstationary Sources Using New Array Geometry Configuration

    AmiraAshour

    2013-09-01

    Full Text Available This paper proposes a new array geometry configuration to improve the two dimensional direction of arrival (2D-DOA estimation of narrowband moving sources with less complexity. This new array is denoted by verticircular configuration, which is composed of both Uniform linear array (ULA and Uniform Circular array (UCA to avoid too much computation for 2D-DOA estimation. The proposed verticircular array is applied with the LPA nonparametric estimator to estimate multiple rapidly moving sources’ parameters (angles and angular velocities for both azimuth as well as elevation directions. Simulation results show that this nonparametric technique is capable of resolving closely spaced sources provided that their velocities are sufficiently different with decreased computational complexity when using the verticircular array. Different scenarios are used to show the efficient LPA beamformer to distinguish sources that can have the same angles using their different angular velocities. In addition, this paper is to compare the performance of the 2D- LPA DOA estimation algorithm when using verticircular array (proposed array geometry or rectangular planar array geometry. Simulation results show that the performance of the proposed method with less complexity than that obtained when using rectangular planar array.

  14. From 2D Silhouettes to 3D Object Retrieval: Contributions and Benchmarking

    Napoléon Thibault

    2010-01-01

    Full Text Available 3D retrieval has recently emerged as an important boost for 2D search techniques. This is mainly due to its several complementary aspects, for instance, enriching views in 2D image datasets, overcoming occlusion and serving in many real-world applications such as photography, art, archeology, and geolocalization. In this paper, we introduce a complete "2D photography to 3D object" retrieval framework. Given a (collection of picture(s or sketch(es of the same scene or object, the method allows us to retrieve the underlying similar objects in a database of 3D models. The contribution of our method includes (i a generative approach for alignment able to find canonical views consistently through scenes/objects and (ii the application of an efficient but effective matching method used for ranking. The results are reported through the Princeton Shape Benchmark and the Shrec benchmarking consortium evaluated/compared by a third party. In the two gallery sets, our framework achieves very encouraging performance and outperforms the other runs.

  15. The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.

    Iacovache, Ioan; Biasini, Marco; Kowal, Julia; Kukulski, Wanda; Chami, Mohamed; van der Goot, F Gisou; Engel, Andreas; Rémigy, Hervé-W

    2010-03-01

    Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution.

  16. Device-Relaying in Cellular D2D Networks: A Fairness Perspective

    Chaaban, Anas

    2015-10-24

    Device-to-Device (D2D) communication is envisioned to play a key role in 5G networks as a technique for meeting the demand for high data rates. In a cellular network, D2D allows not only direct communication between users, but also device relaying. In this paper, a simple instance of device-relaying is investigated, and its impact on fairness among users is studied. Namely, a cellular network consisting of two D2D-enabled users and a base-station (BS) is considered. Thus, the users who want to establish communication with the BS can act as relays for each other’s signals. While this problem is traditionally considered in the literature as a multiple-access channel with cooperation in the uplink, and a broadcast channel with cooperation in the downlink, we propose a different treatment of the problem as a multi-way channel. A simple communication scheme is proposed, and is shown to achieve significant gain in terms of fairness (measured by the symmetric rate supported) in comparison to the aforementioned traditional treatment.

  17. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao

    2015-11-01

    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics.

  18. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    Akca Irfan

    2016-01-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole invers...

  19. Polarizablity of 2D and 3D conducting objects using method of moments

    Shahpari, Morteza; Lewis, Andrew

    2014-01-01

    Fundamental antenna limits of the gain-bandwidth product are derived from polarizability calculations. This electrostatic technique has significant value in many antenna evaluations. Polarizability is not available in closed form for most antenna shapes and no commercial electromagnetic packages have this facility. Numerical computation of the polarizability for arbitrary conducting bodies was undertaken using an unstructured triangular mesh over the surface of 2D and 3D objects. Numerical results compare favourably with analytical solutions and can be implemented efficiently for large structures of arbitrary shape.

  20. Motion analysis of optically trapped particles and cells using 2D Fourier analysis

    Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring;

    2012-01-01

    Motion analysis of optically trapped objects is demonstrated using a simple 2D Fourier transform technique. The displacements of trapped objects are determined directly from the phase shift between the Fourier transform of subsequent images. Using end-and side-view imaging, the stiffness...... of the trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...

  1. From 2D to 3D GIS for CyberCity

    LI Deren; ZHU Qing; LIU Qiang; XU Peng

    2004-01-01

    In order to understand the 3D landscape with many high buildings in a city, the 2D GIS has to be extended to 3D GIS. The further development of CyberCity has to include various applications of 3D scenes from the outdoor scenes to the indoor ones. In thispaper, some key techniques, such as data management method and dynamicalvisualization method for the outdoor and the indoor scenes, are discussed.The indoor scene is compared with the outdoor one. The idea of integratedrepresentation of the outdoor and the indoor scenes in CyberCity GIS is discussed.

  2. Rational trigonometric cubic spline to conserve convexity of 2D data

    Farheen Ibraheem

    2013-11-01

    Full Text Available Researchers in different fields of study are always in dire need of spline interpolating function that conserve intrinsic trend of the data. In this paper, a rational trigonometric cubic spline with four free parameters has been used to retain convexity of 2D data. For this purpose, constraints on two of free parameters βi and γi in the description of the rational trigonometric function are derived while the remaining two αi and δi are set free. Numerical examples demonstrate that resulting curves using the technique of the underlying paper are C1.

  3. Advanced 2D and 3D Electron Microscopy Analysis of Clay/PP Nanocomposites

    Mosca, Alessandra; Roberts, Ashley; Daviðsdóttir, Svava

    2011-01-01

    consisting of 3 wt% modified clay in a PP matrix was studied. Prior to microscopy analyses, SEM or TEM samples were cryo-microtomed to a flat surface or thin sections (70 nm), respectively. An FEI Titan T20 TEM microscope operating at 200 kV was used for 2D imaging. An FEI Helios focussed ion beam (FIB...... and high resolution) as compared to TEM in the study of polymer nanocomposites. Both microscopy techniques are powerful tools to study these materials and provide a clear, quantitative measurement of the morphology, size distributions, and dispersion of the clay nanoparticles....

  4. Hybrid 3D-2D printing of bone scaffolds Hybrid 3D-2D printing methods for bone scaffolds fabrication.

    Prinz, V Ya; Seleznev, Vladimir

    2016-12-13

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  5. Human factors flight trial analysis for 2D/3D SVS

    Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick

    2004-08-01

    The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional

  6. 2D-ELDOR using full Sc- fitting and absorption lineshapes

    Chiang, Yun-Wei; Costa-Filho, Antonio; Freed, Jack H.

    2007-10-01

    Recent progress in developing 2D-ELDOR (2D electron-electron double resonance) techniques to better capture molecular dynamics in complex fluids, particularly in model and biological membranes, is reported. The new "full Sc- method", which corrects the spectral analysis for the phase distortion effects present in the experiments, is demonstrated to enhance the sensitivity of 2D-ELDOR in reporting on molecular dynamics in complex membrane environments. That is, instead of performing spectral fitting in the magnitude mode, our new method enables simultaneous fitting of both the real and imaginary components of the Sc- signal. The full Sc- fitting not only corrects the phase distortions in the experimental data but also more accurately determines instrumental dead times. The phase corrections applied to the Sc- spectrum enable the extraction of the pure absorption-mode spectrum, which is characterized by much better resolution than the magnitude-mode spectrum. In the absorption mode, the variation of homogeneous broadening, which reports on the dynamics of the spin probe, can even be observed by visual inspection. This new method is illustrated with results from model membranes of dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC)-cholesterol binary mixtures, as well as with results from plasma membrane vesicles of mast cells. In addition to the dynamic parameters, which provide quantitative descriptions for membranes at the molecular level, the high-resolution absorption spectra themselves may be used as a "fingerprint" to characterize membrane phases and distinguish coexisting components in biomembranes. Thus we find that 2D-ELDOR is greatly improved with the new "full Sc- method" especially for exploring the complexity of model and biological membranes.

  7. 2D-ELDOR using full S(c-) fitting and absorption lineshapes.

    Chiang, Yun-Wei; Costa-Filho, Antonio; Freed, Jack H

    2007-10-01

    Recent progress in developing 2D-ELDOR (2D electron-electron double resonance) techniques to better capture molecular dynamics in complex fluids, particularly in model and biological membranes, is reported. The new "full S(c-) method", which corrects the spectral analysis for the phase distortion effects present in the experiments, is demonstrated to enhance the sensitivity of 2D-ELDOR in reporting on molecular dynamics in complex membrane environments. That is, instead of performing spectral fitting in the magnitude mode, our new method enables simultaneous fitting of both the real and imaginary components of the S(c-) signal. The full S(c-) fitting not only corrects the phase distortions in the experimental data but also more accurately determines instrumental dead times. The phase corrections applied to the S(c-) spectrum enable the extraction of the pure absorption-mode spectrum, which is characterized by much better resolution than the magnitude-mode spectrum. In the absorption mode, the variation of homogeneous broadening, which reports on the dynamics of the spin probe, can even be observed by visual inspection. This new method is illustrated with results from model membranes of dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC)-cholesterol binary mixtures, as well as with results from plasma membrane vesicles of mast cells. In addition to the dynamic parameters, which provide quantitative descriptions for membranes at the molecular level, the high-resolution absorption spectra themselves may be used as a "fingerprint" to characterize membrane phases and distinguish coexisting components in biomembranes. Thus we find that 2D-ELDOR is greatly improved with the new "full S(c-) method" especially for exploring the complexity of model and biological membranes.

  8. Power Control for D2D Underlay Cellular Networks With Channel Uncertainty

    Memmi, Amen

    2016-12-26

    Device-to-device (D2D) communications underlying the cellular infrastructure are a technology that have been proposed recently as a promising solution to enhance cellular network capabilities. It improves spectrum utilization, overall throughput, and energy efficiency while enabling new peer-to-peer and location-based applications and services. However, interference is the major challenge, since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this paper, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Existing results on D2D underlay networks assume perfect channel state information (CSI). This assumption is usually unrealistic in practice due to the dynamic nature of wireless channels. Thus, it is of great interest to study and evaluate achievable performances under channel uncertainty. Differently from previous works, we are assuming that the CSI may be imperfect and include estimation errors. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name “centralized”. For the distributed method, the ON–OFF power control and the truncated channel inversion are proposed. Expressions of coverage probabilities are established in the function of D2D links intensity, pathloss exponent, and estimation error variance. Results show the important influence of CSI error on achievable performances and thus how crucial it is to consider it while designing networks and evaluating performances.

  9. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.

  10. Contemporary electromagnetic spectrum reuse techniques: tv white spaces and D2D communications

    Carlos Filipe Moreira e Silva

    2015-01-01

    Over the last years, the wireless broadband access has achieved a tremendous success. With that, the telecommunications industry has faced very important changes in terms of technology, heterogeneity, kind of applications, and massive usage (virtual data tsunami) derived from the introduction of smartphones and tablets; or even in terms of market structure and its main players/actors. Nonetheless, it is well-known that the electromagnetic spectrum is a scarce resource, being al...

  11. Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques

    Caes, Benjamin; Jensen, Dell, Jr.

    2008-01-01

    9-Hydroxyphenalenone is a planar multicyclic [beta]-keto-enol, which is synthesized via a Friedel-Crafts acylation followed by acid-catalyzed intramolecular Michael addition with the loss of a phenyl group in a one-pot reaction during a four-hour lab period. Tautomerization of the [beta]-keto-enol results in C[subscript 2v] symmetry on the NMR…

  12. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques.

    Bocian, Aleksandra; Urbanik, Małgorzata; Hus, Konrad; Łyskowski, Andrzej; Petrilla, Vladimír; Andrejčáková, Zuzana; Petrillová, Monika; Legáth, Jaroslav

    2016-12-13

    Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A₂ and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5'-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.

  13. Proteomic Analyses of Agkistrodon contortrix contortrix Venom Using 2D Electrophoresis and MS Techniques

    Aleksandra Bocian

    2016-12-01

    Full Text Available Snake venom is a complex mixture of proteins and peptides which in the Viperidae is mainly hemotoxic. The diversity of these components causes the venom to be an extremely interesting object of study. Discovered components can be used in search for new pharmaceuticals used primarily in the treatment of diseases of the cardiovascular system. In order to determine the protein composition of the southern copperhead venom, we have used high resolution two dimensional electrophoresis and MALDI ToF/ToF MS-based identification. We have identified 10 groups of proteins present in the venom, of which phospholipase A2 and metalloprotease and serine proteases constitute the largest groups. For the first time presence of 5′-nucleotidase in venom was found in this group of snakes. Three peptides present in the venom were also identified. Two of them as bradykinin-potentiating agents and one as an inhibitor.

  14. 单群2D2n(2)的拟刻画%Quasirecognition of the Simple Group 2 D2n (2)

    李立莉

    2015-01-01

    Let G be finite group such that M(G) = M(2 D2n (2)) where 2n -1 prime .Then G has a nor‐mal subgroup isomorphic to 2 D2n (2) .Especially ,if | G | = |2 D2n (2)| ,then G ≌ 2 D2n (2) .%设 G为有限群,且满足 M(G)= M(2 D2n (2)),其中2n -1为素数。则 G必有正规子群同构于2 D2n (2)。特别地,若|G|=|2 D2n (2)|,则G ≌2 D2n (2)。

  15. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator.

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-09-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability.

  16. Application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs.

    López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier

    2010-01-01

    Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard.

  17. Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy

    Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander

    2014-07-01

    The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.

  18. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  19. N=2, D=6 supergravity with $E_7$ gauge matter

    Zyablyuk, K N

    1997-01-01

    The lagrangian of N=2, D=6 supergravity coupled to E_7 X SU(2) vector- and hyper-multiplets is derived. For this purpose the coset manifold E_8/E_7 X SU(2), parametrized by the scalars of the hypermultiplet, is constructed. A difference from the case of Sp(n)-matter is pointed out. This model can be considered as an intermediate step in the compactification of D=10 supergravity coupled to E_8 X E_8 matter to four-dimensional model of E_6 unification.

  20. Novel 2D representation of vibration for local damage detection

    Grzegorz Żak

    2014-07-01

    Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.

  1. Partial compactness for the 2-D Landau-Lifshitz flow

    Paul Harpes

    2004-07-01

    Full Text Available Uniform local $C^infty$-bounds for Ginzburg-Landau type approximations for the Landau-Lifshitz flow on planar domains are proven. They hold outside an energy-concentration set of locally finite parabolic Hausdorff-dimension 2, which has finite times-slices. The approximations subconverge to a global weak solution of the Landau-Lifshitz flow, which is smooth away from the energy concentration set. The same results hold for sequences of global smooth solutions of the 2-d Landau-Lifshitz flow.

  2. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  3. Numerical modelling of spallation in 2D hydrodynamics codes

    Maw, J. R.; Giles, A. R.

    1996-05-01

    A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.

  4. CFD code comparison for 2D airfoil flows

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...... × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar...

  5. 2-D Electromagnetic Model of Fast-Ramping Superconducting Magnets

    Auchmann, B; Kurz, S; Russenschuck, Stephan

    2006-01-01

    Fast-ramping superconducting (SC) accelerator magnets are the subject of R&D efforts by magnet designers at various laboratories. They require modifications of magnet design tools such as the ROXIE program at CERN, i.e. models of dynamic effects in superconductors need to be implemented and validated. In this paper we present the efforts towards a dynamic 2-D simulation of fast-ramping SC magnets with the ROXIE tool. Models are introduced and simulation results are compared to measurements of the GSI001 magnet of a GSI test magnet constructed and measured at BNL.

  6. Computation of 2-D spectra assisted by compressed sampling

    Almeida, J; Plenio, M B

    2012-01-01

    The computation of scientific data can be very time consuming even if they are ultimately determined by a small number of parameters. The principle of compressed sampling suggests that we can achieve a considerable decrease in the computation time by avoiding the need to sample the full data set. We demonstrate the usefulness of this approach at the hand of 2-D spectra in the context of ultra-fast non-linear spectroscopy of biological systems where numerical calculations are highly challenging due to the considerable computational effort involved in obtaining individual data points.

  7. Automatische Annotation medizinischer 2D- und 3D-Visualisierungen

    Mühler, Konrad; Preim, Bernhard

    Wir stellen ein Framework vor, mit dem medizinische 2D- und 3D-Visualisierungen automatisch annotiert werden können. Annotationstexte wie St beirukturbenennungen oder Kurzbefunde werden so in der Darstellung platziert, dass sie gut lesbar sind und keine anderen Texte oder Strukturen verdecken. Weiterhin führen wir Techniken ein, mit denen sich eine Überfrachtung von Schichtbildern mit Annotationen vermeiden lassen. Unser System kommt sowohl in der chirurgischen OP-Planung wie auch in medizinischen Ausbildungssystemen zum Einsatz.

  8. Quantum Oscillations in an Interfacial 2D Electron Gas.

    Zhang, Bingop [Zhejiang Univ., Hangzhou (China); Lu, Ping [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liu, Henan [Univ. of North Carolina, Charlotte, NC (United States); Lin, Jiao [Zhejiang Univ., Hangzhou (China); Ye, Zhenyu [Zhejiang Univ., Hangzhou (China); Jaime, Marcelo [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Balakirev, Fedor F. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Yuan, Huiqiu [Zhejiang Univ., Hangzhou (China); Wu, Huizhen [Zhejiang Univ., Hangzhou (China); Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhang, Yong [Univ. of North Carolina, Charlotte, NC (United States)

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  9. Dynamics of Quantum Particles in Perturbed Parabolic 2d Potential

    A.S. Mazmanishvili

    2016-11-01

    Full Text Available 2d quantum-mechanical problem of the time evolution of a particle in a quadratic potential is studied. We suppose that the center of the potential is displaced in arbitrary way in time. An analytical expression for the wave function in arbitrary instant time was built. It is shown the dynamic shift of the center of the potential doesn’t change the variance. Moreover, the system can exhibit the resonance: when the frequency of the potential perturbation approaches to the natural frequency the amplitude of the wave packet of particle is increased.

  10. 2D Magneto-optical trapping of diatomic molecules.

    Hummon, Matthew T; Yeo, Mark; Stuhl, Benjamin K; Collopy, Alejandra L; Xia, Yong; Ye, Jun

    2013-04-05

    We demonstrate one- and two-dimensional transverse laser cooling and magneto-optical trapping of the polar molecule yttrium (II) oxide (YO). In a 1D magneto-optical trap (MOT), we characterize the magneto-optical trapping force and decrease the transverse temperature by an order of magnitude, from 25 to 2 mK, limited by interaction time. In a 2D MOT, we enhance the intensity of the YO beam and reduce the transverse temperature in both transverse directions. The approach demonstrated here can be applied to many molecular species and can also be extended to 3D.

  11. Multichannel 2-D Power Spectral Estimation and Applications.

    1987-12-01

    Nuttall,1976) in 1-D. The success of the ME method in 1-D has led researchers to explore this problem in 2-D. Unfortunately, the simplicity and elegance...the form: P -I T , _ _ (i)] x,,i (3.53)i=1 (S. where i. is the estimated value of the PWM -dimensional data vector x,, and a(’) is the linear...in detail in the next section. C. CODING EXPERIMENTS WITH COLOR IMAGES In this work a color image is represented by its red, green, and blue ( RGB ) com

  12. Exact solutions for the 2d one component plasma

    Andersen, Timothy D

    2011-01-01

    The 2d one component gas of pointlike charges in a uniform neutralizing background interacting with a logarithmic potential is a common model for plasmas. In its classical equilibrium statistics at fixed temperature (canonical ensemble) it is formally related to certain types of random matrices with Gaussian distribution and complex eigenvalues. In this paper, I present an exact integration of this ensemble for $N$ such particles (or alternatively $N\\times N$ matrices) for all complex temperatures, a significant open problem in statistical physics for several decades.

  13. Automatic simulation of 1D and 2D chaotic oscillators

    Tlelo-Cuautle, E; Munoz-Pacheco, J-M [Department of Electronics, INAOE, Luis Enrique Erro No. 1, Tonantzintla, Puebla, 72840 MEXICO (Mexico)], E-mail: e.tlelo@ieee.org, E-mail: mpacheco@inaoep.mx

    2008-02-15

    A new method is introduced for automatic simulation of three kinds of chaotic oscillators: Chua's circuit, generalized Chua's circuit and chaotic oscillator implemented with saturated functions. The former generates the double-scroll, and the others 1D n-scroll attractors. The third chaotic oscillator is modified to generate 2D n-scrolls attractors. The oscillators are modelled by applying state variables and piecewise-linear approximation. Basically, the method computes the eigenvalues of the oscillators to begin time simulation and to make control of step-size automatically.

  14. Quantum Cosmological Approach to 2d Dilaton Gravity

    Navarro-Salas, J

    1994-01-01

    We study the canonical quantization of the induced 2d-gravity and the pure gravity CGHS-model on a closed spatial section. The Wheeler-DeWitt equations are solved in (spatially homogeneous) choices of the internal time variable and the space of solutions is properly truncated to provide the physical Hilbert space. We establish the quantum equivalence of both models and relate the results with the covariant phase-space quantization. We also discuss the relation between the quantum wavefunctions and the classical space-time solutions and propose the wave function representing the ground state.

  15. A generalized 2-D Poincaré inequality

    Crisciani Fulvio

    2000-01-01

    Full Text Available Two 1-D Poincaré-like inequalities are proved under the mild assumption that the integrand function is zero at just one point. These results are used to derive a 2-D generalized Poincare inequality in which the integrand function is zero on a suitable arc contained in the domain (instead of the whole boundary. As an application, it is shown that a set of boundary conditions for the quasi geostrophic equation of order four are compatible with general physical constraints dictated by the dissipation of kinetic energy.

  16. Efficient 2d full waveform inversion using Fortran coarray

    Ryu, Donghyun; Kim, ahreum; Ha, Wansoo

    2016-04-01

    We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.

  17. NUMERICAL SIMULATIONS OF 2D PERIODIC UNSTEADY CAVITATING FLOWS

    WU Lei; LU Chuan-jing; LI Jie; CHEN Xin

    2006-01-01

    A two-phase mixture model was established to study unsteady cavitating flows. A local compressible system of equations was derived by introducing a density-pressure function to account for the two-phase flow of water/vapor and the transition from one phase to the other. An algorithm for solving the variable-density Navier-Stokes equations of cavitating flow problem was put forward. The numerical results for unsteady characteristics of cavitating flows on a 2D NACA hydrofoil coincide well with experimental data.

  18. Anomalous Hall Effect in a 2D Rashba Ferromagnet.

    Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M

    2016-07-22

    Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength.

  19. Horns Rev II, 2D-Model Tests

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To investigate the combined influence of the pile diameter to water depth ratio and the wave height to water...... on the front side of the pile (0 to 90 degrees). These tests have been conducted at Aalborg University from 9. October, 2006 to 8. November, 2006. Unless otherwise mentioned, all values given in this report are in model scale....

  20. 2-D SIMULATION OF CHANNEL FLOWS WITH MOVEABLE BED

    Wilhelm BECHTELER; Davood FARSHI

    2001-01-01

    This paper presents some preliminary results of 2-D numerical simulation of open channel flow with moveable bed. The unsteady two dimensional channel flow and sediment transport are simulated by solving shallow water equations and sediment continuity equation in conservation form based on unstructured finite volume method. Redefining longitudinal and transverse slopes of the bed is implemented in order to consider them in the bedload equation. A simple modeling treatment dealing with secondary flow effect on sediment movement is also discussed. Finally, two examples of numerical simulation are presented.

  1. Dislocation field theory in 2D: Application to graphene

    Lazar, Markus, E-mail: lazar@fkp.tu-darmstadt.de [Heisenberg Research Group, Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt (Germany); Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States)

    2013-01-17

    A two-dimensional (2D) dislocation continuum theory is being introduced. The present theory adds elastic rotation, dislocation density, and background stress to the classical energy density of elasticity. This theory contains four material moduli. Two characteristic length scales are defined in terms of the four material moduli. Non-singular solutions of the stresses and elastic distortions of an edge dislocation are calculated. It has been pointed out that the elastic strain agrees well with experimental data found recently for an edge dislocation in graphene.

  2. Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics

    Morgener, Kai Henning

    2014-12-08

    This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has

  3. Partially Loaded Cavity Analysis by Using the 2-D FDTD Method

    YAO Bin; ZHENG Qin-Hong; PENG Jin-Hui; ZHONG Ru-Neng; XIANG Tai; XU Wan-Song

    2011-01-01

    A compact two-dimensional (2-D) finite-difference time-domain (FDTD) method is proposed to calculate the resonant frequencies and quality factors ofa partially loaded cavity that is uniform in the z-direction and has an arbitrary cross section in the x-y plane.With the description of z dependence by kz,the three-dimensional (3-D) problem can be transformed into a 2-D problem.Therefore,less memory and CPU time are required as compared to the conventional 3-D FDTD method.Three representative examples,a half-loaded rectangular cavity,an inhomogeneous cylindrical cavity and a cubic cavity loaded with dielectric post,are presented to validate the utility and efficiency of the proposed method.Since the finite-difference time-domain (FDTD)method was first introduced by Yee,[1] it has been widely used to solve electromagnetic problems.[2,3]Among them,endeavors have been made to achieve faster resonator computation and some numerical techniques have been combined with the FDTD method for faster computation.The numerical teehniques include digital filtering,the modern spectrum estimation technique,Prony analysis,Padé approximation and the Baker algorithm.[4-8] Benefiting from these techniques,the analysis time of resonators has been greatly reduced.However,there are two deficiencies in the above-mentioned literature.First,these approaches are still based on a three-dimensional (3-D)mesh,which needs numerous computational resources.%A compact two-dimensioned (2-D) finite-difference time-domain (FDTD) method is proposed to calculate the resonant frequencies and quality factors of a partially loaded cavity that is uniform in the z-direction and has an arbitrary cross section in the x-y plane. With the description of z dependence by kz, the three-dimensional (3-D) problem can be transformed into a 2-D problem. Therefore, less memory and CPU time are required as compared to the conventional 3-D FDTD method. Three representative examples, a half-loaded rectangular cavity, an

  4. A feasibility study using radiochromic films for fast neutron 2D passive dosimetry

    Brady, Samuel L; Fallin, Brent [Medical Physics Graduate Program, Duke University, Durham, NC 27705 (United States); Gunasingha, Rathnayaka; Yoshizumi, Terry T [Radiation Safety Division, Duke University, Durham, NC 27705 (United States); Howell, Calvin R; Crowell, Alexander S; Tonchev, Anton P [Department of Physics, Duke University, Durham, NC 27706 (United States); Dewhirst, Mark W, E-mail: yoshi003@mc.duke.ed [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2010-09-07

    The objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the {sup 2}H(d,n){sup 3}He reaction. The XRQA film response was a factor of 1.39 greater than EBT film response to the 10 MeV neutron beam when exposed to a neutron dose of 165 cGy. A film response-to-soft tissue dose calibration function was established over a range of 0-10 Gy and had a goodness of fit of 0.9926 with the calibration data. The 2D film dosimetry technique estimated the neutron dose to the mice by measuring the dose using a mouse phantom and by placing a piece of film on the exterior of the experimental mouse setup. The film results were benchmarked using Monte Carlo and aluminum (Al) foil activation measurements. The radiochromic film, Monte Carlo and Al foil dose measurements were strongly correlated, and the film within the mouse phantom agreed to better than 7% of the externally mounted films. These results demonstrated the potential application of radiochromic films for passive 2D neutron dosimetry.

  5. 2-D Coda and Direct Wave Attenuation Tomography in Northern Italy

    Morasca, P; Mayeda, K; Gok, R; Phillips, W S; Malagnini, L

    2007-10-17

    A 1-D coda method was proposed by Mayeda et al. (2003) in order to obtain stable seismic source moment-rate spectra using narrowband coda envelope measurements. That study took advantage of the averaging nature of coda waves to derive stable amplitude measurements taking into account all propagation, site, and Sto-coda transfer function effects. Recently this methodology was applied to micro earthquake data sets from three sub-regions of northern Italy (i.e., western Alps, northern Apennines and eastern Alps). Since the study regions were small, ranging between local-to-near-regional distances, the simple 1-D path assumptions used in the coda method worked very well. The lateral complexity of this region would suggest, however, that a 2-D path correction might provide even better results if the datasets were combined, especially when paths traverse larger distances and complicated regions. The structural heterogeneity of northern Italy makes the region ideal to test the extent to which coda variance can be reduced further by using a 2-D Q tomography technique. The approach we use has been developed by Phillips et al. (2005) and is an extension of previous amplitude ratio techniques to remove source effects from the inversion. The method requires some assumptions such as isotropic source radiation which is generally true for coda waves. Our results are compared against direct Swave inversions for 1/Q and results from both share very similar attenuation features that coincide with known geologic structures. We compare our results with those derived from direct waves as well as some recent results from northern California obtained by Mayeda et al. (2005) which tested the same tomographic methodology applied in this study to invert for 1/Q. We find that 2-D coda path corrections for this region significantly improve upon the 1-D corrections, in contrast to California where only a marginal improvement was observed. We attribute this difference to stronger lateral

  6. F-theory and 2d (0,2) Theories

    Schafer-Nameki, Sakura

    2016-01-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet t...

  7. 2D Gridded Surface Data Value-Added Product

    Tang, Q [Lawrence Livermore National Laboratory; Xie, S [Lawrence Livermore National Laboratory

    2015-08-30

    This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.

  8. 2D Plasmonics for Enabling Novel Light-Matter Interactions

    Kaminer, Ido; Zhen, Bo; Joannopoulos, John D; Soljacic, Marin

    2015-01-01

    The physics of light-matter interactions is strongly constrained by both the small value of the fine-structure constant and the small size of the atom. Overcoming these limitations is a long-standing challenge. Recent theoretical and experimental breakthroughs have shown that two dimensional systems, such as graphene, can support strongly confined light in the form of plasmons. These 2D systems have a unique ability to squeeze the wavelength of light by over two orders of magnitude. Such high confinement requires a revisitation of the main assumptions of light-matter interactions. In this letter, we provide a general theory of light-matter interactions in 2D systems which support plasmons. This theory reveals that conventionally forbidden light-matter interactions, such as: high-order multipolar transitions, two-plasmon spontaneous emission, and spin-flip transitions can occur on very short time-scales - comparable to those of conventionally fast transitions. Our findings enable new platforms for spectroscopy...

  9. $T \\bar{T}$-deformed 2D Quantum Field Theories

    Cavaglià, Andrea; Szécsényi, István M; Tateo, Roberto

    2016-01-01

    It was noticed many years ago, in the framework of massless RG flows, that the irrelevant composite operator $T \\bar{T}$, built with the components of the energy-momentum tensor, enjoys very special properties in 2D quantum field theories, and can be regarded as a peculiar kind of integrable perturbation. Novel interesting features of this operator have recently emerged from the study of effective string theory models.In this paper we study further properties of this distinguished perturbation. We discuss how it affects the energy levels and one-point functions of a general 2D QFT in finite volume through a surprising relation with a simple hydrodynamic equation. In the case of the perturbation of CFTs, adapting a result by L\\"uscher and Weisz we give a compact expression for the partition function on a finite-length cylinder and make a connection with the exact $g$-function method. We argue that, at the classical level, the deformation naturally maps the action of $N$ massless free bosons into the Nambu-Goto...

  10. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    José Oswaldo Cadenas

    Full Text Available In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q ≤ n the algorithm executes in time within O(n; second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q ≤ n holds; the smaller the ratio min(p, q/n is in the dataset, the greater the speedup factor achieved.

  11. Scaling in Gravitational Clustering, 2D and 3D Dynamics

    Munshi, D; Melott, A L; Schäffer, R

    1999-01-01

    Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprec...

  12. Predicting Non-Square 2D Dice Probabilities

    Pender, G A T

    2014-01-01

    The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 [1]. In this paper we make progress on the 2D problem (which can be realised in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest a model that predicts this based on the side length ratio. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or grippy surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This ...

  13. 2D Implosion Simulations with a Kinetic Particle Code

    Sagert, Irina; Strother, Terrance T

    2016-01-01

    We perform two-dimensional (2D) implosion simulations using a Monte Carlo kinetic particle code. The paper is motivated by the importance of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions. These cannot be fully captured by hydrodynamic simulations while kinetic methods, as the one presented in this study, are able to describe continuum and rarefied regimes within one approach. In the past, our code has been verified via traditional shock wave and fluid instability simulations. In the present work, we focus on setups that are closer to applications in ICF. We perform simple 2D disk implosion simulations using one particle species. The obtained results are compared to simulations using the hydrodynamics code RAGE. In a first study, the implosions are powered by energy deposition in the outer layers of the disk. We test the impact of the particle mean-free-path and find that while the width of the implosion shock broadens, its location as a function of time remains very similar. ...

  14. High Current Density 2D/3D Esaki Tunnel Diodes

    Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth

    2016-01-01

    The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.

  15. Application Perspective of 2D+SCALE Dimension

    Karim, H.; Rahman, A. Abdul

    2016-09-01

    Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.

  16. Preconditioning 2D Integer Data for Fast Convex Hull Computations.

    Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L

    2016-01-01

    In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.

  17. Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces

    Escobar-Ruiz, M. A.; Miller, Willard, Jr.

    2016-07-01

    2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.

  18. MESH2D GRID GENERATOR DESIGN AND USE

    Flach, G.; Smith, F.

    2012-01-20

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

  19. 2D Hilbert transform for phase retrieval of speckle fields

    Gorsky, M. P.; Ryabyi, P. A.; Ivanskyi, D. I.

    2016-09-01

    The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. An analysis of optical field singularity algorithms depending on intensity discretization and image resolution has been carried out. An optimal approach is chosen, which allows to bring much closer the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions.

  20. 2D NMR-spectroscopic screening reveals polyketides in ladybugs.

    Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C

    2011-06-14

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.

  1. Electron-Phonon Scattering in Atomically Thin 2D Perovskites.

    Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai

    2016-11-22

    Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.

  2. Facial biometrics based on 2D vector geometry

    Malek, Obaidul; Venetsanopoulos, Anastasios; Androutsos, Dimitrios

    2014-05-01

    The main challenge of facial biometrics is its robustness and ability to adapt to changes in position orientation, facial expression, and illumination effects. This research addresses the predominant deficiencies in this regard and systematically investigates a facial authentication system in the Euclidean domain. In the proposed method, Euclidean geometry in 2D vector space is being constructed for features extraction and the authentication method. In particular, each assigned point of the candidates' biometric features is considered to be a 2D geometrical coordinate in the Euclidean vector space. Algebraic shapes of the extracted candidate features are also computed and compared. The proposed authentication method is being tested on images from the public "Put Face Database". The performance of the proposed method is evaluated based on Correct Recognition (CRR), False Acceptance (FAR), and False Rejection (FRR) rates. The theoretical foundation of the proposed method along with the experimental results are also presented in this paper. The experimental results demonstrate the effectiveness of the proposed method.

  3. Homogenization of 1D and 2D magnetoelastic lattices

    Schaeffer Marshall

    2015-01-01

    Full Text Available This paper investigates the equivalent in-plane mechanical properties of one dimensional (1D and two dimensional (2D, periodic magneto-elastic lattices. A lumped parameter model describes the lattices using magnetic dipole moments in combination with axial and torsional springs. The homogenization procedure is applied to systems linearized about stable configurations, which are identified by minimizing potential energy. Simple algebraic expressions are derived for the properties of 1D structures. Results for 1D lattices show that a variety of stiffness changes are possible through reconfiguration, and that magnetization can either stiffen or soften a structure. Results for 2D hexagonal and re-entrant lattices show that both reconfigurations and magnetization have drastic effects on the mechanical properties of lattice structures. Lattices can be stiffened or softened and the Poisson’s ratio can be tuned. Furthermore for certain hexagonal lattices the sign of Poisson’s ratio can change by varying the lattice magnetization. In some cases presented, analytical and numerically estimated equivalent properties are validated through numerical simulations that also illustrate the unique characteristics of the investigated configurations.

  4. Symmetries and black holes in 2D dilaton gravity

    Cruz, J; Navarro, M; Talavera, C F

    1996-01-01

    We study global symmetries of generic 2D dilaton gravity models. Using a non-linear sigma model formulation we show that the unique theories admitting special conformal symmetries are the models with an exponential potential V \\propto e^{\\beta\\phi} ( S ={1\\over2\\pi} \\int d^2 x \\sqrt{-g} [ R \\phi + 4 \\lambda^2 e^{\\beta\\phi} ]), which include the model of Callan, Giddings, Harvey and Strominger (CGHS) as a particular though limiting (\\beta=0) case. These models give rise to black hole solutions with a mass-dependent temperature. The underlying conformal symmetry can be maintained in a natural way in the one-loop effective action, thus implying the exact solvability of the semiclassical theory including back-reaction. Moreover, we also introduce three different classes of non-conformal transformations which are symmetries for generic 2D dilaton gravity models. Special linear combinations of these transformations turn out to be the conformal symmetries of the CGHS and V \\propto e^{\\beta\\phi} models. We show that,...

  5. On row-by-row coding for 2-D constraints

    Tal, Ido; Roth, Ron M

    2008-01-01

    A constant-rate encoder--decoder pair is presented for a fairly large family of two-dimensional (2-D) constraints. Encoding and decoding is done in a row-by-row manner, and is sliding-block decodable. Essentially, the 2-D constraint is turned into a set of independent and relatively simple one-dimensional (1-D) constraints; this is done by dividing the array into fixed-width vertical strips. Each row in the strip is seen as a symbol, and a graph presentation of the respective 1-D constraint is constructed. The maxentropic stationary Markov chain on this graph is next considered: a perturbed version of the corresponding probability distribution on the edges of the graph is used in order to build an encoder which operates in parallel on the strips. This perturbation is found by means of a network flow, with upper and lower bounds on the flow through the edges. A key part of the encoder is an enumerative coder for constant-weight binary words. A fast realization of this coder is shown, using floating-point arith...

  6. 2D CFT Partition Functions at Late Times

    Dyer, Ethan

    2016-01-01

    We consider the late time behavior of the analytically continued partition function $Z(\\beta + it) Z(\\beta - it)$ in holographic $2d$ CFTs. This is a probe of information loss in such theories and in their holographic duals. We show that each Virasoro character decays in time, and so information is not restored at the level of individual characters. We identify a universal decaying contribution at late times, and conjecture that it describes the behavior of generic chaotic $2d$ CFTs out to times that are exponentially large in the central charge. It was recently suggested that at sufficiently late times one expects a crossover to random matrix behavior. We estimate an upper bound on the crossover time, which suggests that the decay is followed by a parametrically long period of late time growth. Finally, we discuss integrable theories and show how information is restored at late times by a series of characters. This hints at a possible bulk mechanism, where information is restored by an infinite sum over non-...

  7. Flatbands in 2D boroxine-linked covalent organic frameworks.

    Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long

    2016-01-14

    Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics.

  8. Reconstruction of a 2D seismic wavefield by seismic gradiometry

    Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige

    2016-12-01

    We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.

  9. 2-D Composite Model for Numerical Simulations of Nonlinear Waves

    2000-01-01

    - A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.

  10. The Usage of 2D Codes in Marketing Practices

    Toni Podmanicki

    2011-07-01

    Full Text Available Barcodes, which are used for the labelling and identification of products, have been used as the foundation for the development of new symbols, two-dimensional barcodes (usually called 2D codes. These codes are capable of receiving large amounts of data in a small area, and data stored in them can be read by means of mobile devices. They usually contain information such as web addresses, text, contacts and similar data that encourage users to interact in order to obtain the desired information, entertainment, discount, reservation, and even do their shopping. The possibility of connecting the physical and digital world by means of 2D codes has led marketing professionals to face new challenges in the development of strategies in mobile marketing. Many companies recognized the potential of the above technology very early, in its initial phase, and they use it now in their activities. This paper aims to emphasize the importance of knowing this technology and its advantages by providing examples in marketing practices.

  11. 2D velocity fields of simulated interacting disc galaxies

    Kronberger, T; Schindler, S; Ziegler, B L

    2007-01-01

    We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for...

  12. 2D-DOA estimation of noncircular signals for uniform rectangular array via NC-PARAFAC method

    Zhang, Licen; Lv, Weihua; Zhang, Xiaofei; Li, Shu

    2016-11-01

    In this paper, we propose a two-dimensional direction of arrival (2D-DOA) estimation algorithm for uniform rectangular array via noncircular-parallel factor (NC-PARAFAC) method. Compared to the conventional parallel factor (PARAFAC) algorithm, the proposed algorithm exploits the property of noncircular signals to double the array aperture. Therefore, the angle estimation performance of the proposed algorithm is better than the conventional PARAFAC method. The proposed algorithm achieves automatically paired two-dimensional angle estimates, and has better 2D-DOA estimation performance than some conventional algorithms, which include estimation of signal parameters via rotational invariance technique (ESPRIT), propagator method (PM), PARAFAC algorithm, noncircular-ESPRIT (NC-ESPRIT) and noncircular-PM (NC-PM). We also derive the Cramér-Rao bound for the 2D-DOA estimation of noncircular signals with uniform rectangular array. Simulation results verify the effectiveness and improvement of the proposed algorithm.

  13. First experiences with 2D-mXRF analysis of gunshot residue on garment, tissue, and cartridge cases

    Knijnenberg, Alwin; Stamouli, Amalia; Janssen, Martin

    2014-09-01

    The investigation of garment and human tissue originating from a victim of a shooting incident can provide crucial information for the reconstruction of such an incident. The use of 2D-mXRF for such investigations has several advantages over current methods as this new technique can be used to scan large areas, provides simultaneous information on multiple elements, can be applied under ambient conditions and is non-destructive. In this paper we report our experiences and challenges with the implementation of 2D-mXRF in GSR analysis. Currently we mainly focus on the use of 2D-mXRF as a tool for visualizing elemental distributions on various samples.

  14. Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation

    Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad

    2017-03-01

    Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm  ±  0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.

  15. Impact of Nanosize on Supercapacitance: Study of 1D Nanorods and 2D Thin-Films of Nickel Oxide.

    Patil, Ranjit A; Chang, Cheng-Ping; Devan, Rupesh S; Liou, Yung; Ma, Yuan-Ron

    2016-04-20

    We synthesized unique one-dimensional (1D) nanorods and two-dimensional (2D) thin-films of NiO on indium-tin-oxide thin-films using a hot-filament metal-oxide vapor deposition technique. The 1D nanorods have an average width and length of ∼100 and ∼500 nm, respectively, and the densely packed 2D thin-films have an average thickness of ∼500 nm. The 1D nanorods perform as parallel units for charge storing. However, the 2D thin-films act as one single unit for charge storing. The 2D thin-films possess a high specific capacitance of ∼746 F/g compared to 1D nanorods (∼230 F/g) using galvanostatic charge-discharge measurements at a current density of 3 A/g. Because the 1D NiO nanorods provide more plentiful surface areas than those of the 2D thin-films, they are fully active at the first few cycles. However, the capacitance retention of the 1D nanorods decays faster than that of the 2D thin-films. Also, the 1D NiO nanorods suffer from instability due to the fast electrochemical dissolution and high nanocontact resistance. Electrochemical impedance spectroscopy verifies that the low dimensionality of the 1D NiO nanorods induces the unavoidable effects that lead them to have poor supercapacitive performances. On the other hand, the slow electrochemical dissolution and small contact resistance in the 2D NiO thin-films favor to achieve high specific capacitance and great stability.

  16. GRID GENERATION AND NUMERICAL SIMULATION OF 2-D RIVER FLOW GRID GENERATION AND NUMERICAL SIMULATION OF 2-D RIVER FLOW

    2001-01-01

    This paper presents new weighting functions in grid generation and new discretizing scheme of momentum equations in numerical simulation of river flow. By using the new weighting functions, the curvilinear grid could be concentrated as desired near the assigned points or lines in physical plane. By using the new discretizing scheme, the difficulties caused by movable boundary and dry riverbed can be overcome. As an application, the flow in the Wuhan Section of Yangtze River is simulated. The computational results are in good agreement with the measured results. The new method is applicable to the numerical simulation of 2-D river flow with irregular region and moveable boundary.

  17. 3-D Imaging using Row--Column-Addressed 2-D Arrays with a Diverging Lens

    Bouzari, Hamed; Engholm, Mathias; Stuart, Matthias Bo;

    2016-01-01

    It has been shown that row–column-addressed (RCA) 2-D arrays can be an inexpensive alternative to fully addressed 2-D arrays. Generally imaging with an RCA 2-D array is limited to its forward-looking volume region. Constructing a double-curved RCA 2-D array or applying a diverging lens over the f...

  18. Groundwater exploration using 2D Resistivity Imaging in Pagoh, Johor, Malaysia

    Kadri, Muhammad; Nawawi, M. N. M.

    2010-12-01

    Groundwater is a very important component of water resources in nature. Since the demand of groundwater increases with population growth, it is necessary to explore groundwater more intensively. In Malaysia only less than 2% of the present water used is developed from groundwater. In order to determine the existence of usable groundwater for irrigation and drinking purposes in Pagoh, 2D resistivity imaging technique was utilized. The 2-D resistivity imaging technique utilized the Wenner—Schlumberger electrode array configuration because this array is moderately sensitive to both horizontal and vertical structures. Three lines were surveyed for groundwater delineation purpose The length for each survey lines are 400 meters. At Pagoh, the survey site shows the existence of groundwater. It is indicated by the resistivity values about 10-100 ohm-m. The maximum depth of investigation survey is 77 meters. In general the results show that the subsurface is made up of alluvium and clay and the high resistivity values of more than 1000 ohm-m near the surface is due laterite and the end of the depth can be interpreted as mixture of weathered material or bedrock.

  19. 2D NMR Investigation of Dynamic Equilibrium of Tautomers of Gossypol

    SHEN Ying-lin; YANG Sheng-hua; YAN Xiao-hua; MA Xue-yi

    2004-01-01

    Gossypol was obtained as an yellow platelike crystal with m.p. 210-214 . In CDCl3 there were three tautomers of gossypol: Ⅰ aldehyde, Ⅱ lactol, Ⅲ ketal, in equilibrium .Their total 1H NMR spectra were assigned by means of 1D and 2D NMR techniques including 1H-1H cosy ,DEPT, HMQC (1H Detected Heteronuclear Multiple Quantum Coherence) and HMBC (1H Detected Heteronuclear Multiple Bond Connectivity) experiments.This paper first reported that we took use of the 2D NMR techniques to assign all of 1H NMR chemical shifts of each tautomer , through the assignments of each peaks we investigated the tautomerism of gossypol . We concluded that when gossypol ( Ⅰ ) was put into CDCl3 , it would tautomerized three tautomers, they stable existed and attained tautomeric equilibrium in a molar ratio of 6:2:1 according to peaks intensity ratios in CDCl3. The result listed in table 1.Table 1. The 1H spectroscopy chemical shifts (ppm) for gossypol (Ⅰ), (Ⅱ) and (Ⅲ)All spectra were recorded at room tempreture in CDCl3 using TMS as an internal standard reported in δ units,hydroxyl protons were identified by D2O exchange.

  20. 2D-patterning of self-assembled silver nanoisland films.

    Chervinskii, Semen; Reduto, Igor; Kamenskii, Alexander; Mukhin, Ivan S; Lipovskii, Andrey A

    2016-01-01

    The paper is dedicated to the recently developed by the authors technique of silver nanoisland growth, allowing self-arrangement of 2D-patterns of nanoislands. The technique employs silver out-diffusion from ion-exchanged glass in the course of annealing in hydrogen. To modify the silver ion distribution in the exchanged soda-lime glass we included the thermal poling of the ion-exchanged glass with a profiled electrode as an intermediate stage of the process. The resulting consequence consists of three steps: (i) during the ion exchange of the glass in the AgxNa1-xNO3 (x = 0.01-0.15) melt we enrich the subsurface layer of the glass with silver ions; (ii) under the thermal poling, the electric field displaces these ions deeper into the glass under the 2D profiled anodic electrode, the displacement is smaller under the hollows in the electrode where the intensity of the field is minimal; (iii) annealing in a reducing atmosphere of hydrogen results in silver out-diffusion only in the regions corresponding to the electrode hollows, as a result silver forms nanoislands following the shape of the electrode. Varying the electrode and mode of processing allows governing the nanoisland size distribution and self-arrangement of the isolated single nanoislands, pairs, triples or groups of several nanoislands-so-called plasmonic molecules.