WorldWideScience

Sample records for 2d magnetic null

  1. Nonlinear Alfv\\'en wave dynamics at a 2D magnetic null point: ponderomotive force

    CERN Document Server

    Thurgood, J O

    2013-01-01

    Context : In the linear, {\\beta}=0 MHD regime, the transient properties of MHD waves in the vicinity of 2D null points are well known. The waves are decoupled and accumulate at predictable parts of the magnetic topology: fast waves accumulate at the null point; whereas Alfv\\'en waves cannot cross the separatricies. However, in nonlinear MHD mode conversion can occur at regions of inhomogeneous Alfv\\'en speed, suggesting that the decoupled nature of waves may not extend to the nonlinear regime. Aims: We investigate the behaviour of low-amplitude Alfv\\'en waves about a 2D magnetic null point in nonlinear, {\\beta}= 0 MHD. Methods: We numerically simulate the introduction of low-amplitude Alfv\\'en waves into the vicinity of a magnetic null point using the nonlinear LARE2D code. Results: Unlike in the linear regime, we find that the Alfv\\'en wave sustains cospatial daughter disturbances, manifest in the transverse and longitudinal fluid velocity, owing to the action of nonlinear magnetic pressure gradients (viz. t...

  2. Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null

    International Nuclear Information System (INIS)

    Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null

  3. Phase Mixing of Alfvén Waves Near a 2D Magnetic Null Point

    Indian Academy of Sciences (India)

    J. A. McLaughlin

    2013-09-01

    The propagation of linear Alfvén wave pulses in an inhomogeneous plasma near a 2D coronal null point is investigated. When a uniform plasma density is considered, it is seen that an initially planar Alfvén wavefront remains planar, despite the varying equilibrium Alfvén speed, and that all the wave collects at the separatrices. Thus, in the non-ideal case, these Alfvénic disturbances preferentially dissipate their energy at these locations. For a non-uniform equilibrium density, it is found that the Alfvén wavefront is significantly distorted away from the initially planar geometry, inviting the possibility of dissipation due to phase mixing. Despite this however, we conclude that for the Alfvén wave, current density accumulation and preferential heating still primarily occur at the separatrices, even when an extremely non-uniform density profile is considered.

  4. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni [Centre for Mathematical Plasma Astrophysics (CmPA), KU Leuven (Belgium); Deca, Jan [Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, Boulder, CO (United States); Divin, Andrey [St. Petersburg State University, St. Petersburg (Russian Federation); Peng, Ivy Bo; Markidis, Stefano, E-mail: sya@mao.kiev.ua [High Performance Computing and Visualization (HPCViz), KTH Royal Institute of Technology, Stockholm (Sweden)

    2016-03-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data.

  5. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  6. Three-dimensional magnetic reconnection through a moving magnetic null

    Directory of Open Access Journals (Sweden)

    V. S. Lukin

    2011-11-01

    Full Text Available A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the spheromaks tilt, their magnetic fields begin to reconnect at the null, subsequently displacing both the null and the reconnection site. The motion of the reconnection region and the magnetic null are shown to be correlated, with stronger correlation and faster reconnection observed in plasmas with lower thermal to magnetic pressure ratio. It is also shown that ion inertial effects allow for yet faster reconnection, but do not qualitatively change the dynamics of the process. Implications of the coupling between moving magnetic nulls and reconnection sites, as well as of possible mechanisms for fast reconnection through a moving reconnection region, are discussed. The simulations are conducted using both single-fluid and Hall MHD plasma models within the HiFi multi-fluid modeling framework.

  7. Structures of magnetic null points in reconnection diffusion region: Cluster observations

    Institute of Scientific and Technical Information of China (English)

    HU YunHui; R.NAKAMURA; W.BAUMJOHANN; H.R'EME; C.M.CARR; DENG XiaoHua; ZHOU Meng; TANG RongXin; ZHAO Hui; FU Song; SU ZhiWen; WANG JingFang; YUAN ZhiGang

    2008-01-01

    Magnetic reconnection is a very important and fundamental plasma process in transferring energy from magnetic field into plasma. Previous theory, numerical simulations and observations mostly concen-trate on 2-dimensional (2D) model; however, magnetic reconnection is a 3-dimensional (3D) nonlinear process in nature. The properties of reconnection in 3D and its associated singular structure have not been resolved completely. Here we investigate the structures and characteristics of null points inside the reconnection diffusion region by introducing the discretized Poincaré index through Gauss integral and using magnetic field data with high resolution from the four satellites of Cluster mission. We esti-mate the velocity and trajectory of null points by calculating its position in different times, and compare and discuss the observations with different reconnection models with null points based on character-istics of electric current around null points.

  8. Energy dissipation in magnetic null points at kinetic scales

    CERN Document Server

    Olshevsky, Vyacheslav; Eriksson, Elin; Markidis, Stefano; Lapenta, Giovanni

    2015-01-01

    We use kinetic particle-in-cell and magnetohydrodynamic simulations supported by an observational dataset to investigate magnetic reconnection in clusters of null points in space plasma. The magnetic configuration under investigation is driven by fast adiabatic flux rope compression that dissipates almost half of the initial magnetic field energy. In this phase powerful currents are excited producing secondary instabilities, and the system is brought into a state of `intermittent turbulence' within a few ion gyro-periods. Reconnection events are distributed all over the simulation domain and energy dissipation is rather volume-filling. Numerous spiral null points interconnected via their spines form null lines embedded into magnetic flux ropes; null point pairs demonstrate the signatures of torsional spine reconnection. However, energy dissipation mainly happens in the shear layers formed by adjacent flux ropes with oppositely directed currents. In these regions radial null pairs are spontaneously emerging an...

  9. Magnetic null points in kinetic simulations of space plasmas

    CERN Document Server

    Olshevsky, Vyacheslav; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni

    2015-01-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic Particle-in-Cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind; and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3-9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and lunar magnetic ano...

  10. Electric Current Filamentation at a Non-potential Magnetic Null-point Due to Pressure Perturbation

    Science.gov (United States)

    Jelínek, P.; Karlický, M.; Murawski, K.

    2015-10-01

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh-Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  11. ELECTRIC CURRENT FILAMENTATION AT A NON-POTENTIAL MAGNETIC NULL-POINT DUE TO PRESSURE PERTURBATION

    Energy Technology Data Exchange (ETDEWEB)

    Jelínek, P. [University of South Bohemia, Faculty of Science, Institute of Physics and Biophysics, Branišovská 10, CZ-37005 České Budějovice (Czech Republic); Karlický, M. [Academy of Sciences of the Czech Republic, v. v. i., Astronomical Institute, Fričova 258, CZ-25165 Ondřejov (Czech Republic); Murawski, K., E-mail: pjelinek@prf.jcu.cz [Maria Curie-Skłodowska University, Institute of Physics, Group of Astrophysics, Radziszewskiego 10, PL-20031 Lublin (Poland)

    2015-10-20

    An increase of electric current densities due to filamentation is an important process in any flare. We show that the pressure perturbation, followed by an entropy wave, triggers such a filamentation in the non-potential magnetic null-point. In the two-dimensional (2D), non-potential magnetic null-point, we generate the entropy wave by a negative or positive pressure pulse that is launched initially. Then, we study its evolution under the influence of the gravity field. We solve the full set of 2D time dependent, ideal magnetohydrodynamic equations numerically, making use of the FLASH code. The negative pulse leads to an entropy wave with a plasma density greater than in the ambient atmosphere and thus this wave falls down in the solar atmosphere, attracted by the gravity force. In the case of the positive pressure pulse, the plasma becomes evacuated and the entropy wave propagates upward. However, in both cases, owing to the Rayleigh–Taylor instability, the electric current in a non-potential magnetic null-point is rapidly filamented and at some locations the electric current density is strongly enhanced in comparison to its initial value. Using numerical simulations, we find that entropy waves initiated either by positive or negative pulses result in an increase of electric current densities close to the magnetic null-point and thus the energy accumulated here can be released as nanoflares or even flares.

  12. Magnetic Reconnection at a Three-dimensional Solar Null Point

    DEFF Research Database (Denmark)

    Frederiksen, Jacob Trier; Baumann, Gisela; Galsgaard, Klaus;

    2012-01-01

    Using a specific solar null point reconnection case studied by Masson et al (2009; ApJ 700, 559) we investigate the dependence of the reconnection rate on boundary driving speed, numerical resolution, type of resistivity (constant or numerical), and assumed stratification (constant density or solar......-like). The MHD simulations start out from a potential magnetic field containing a null-point, obtained from a SOHO magnetogram extrapolation approximately 8 hours before a C-class flare was observed. The magnetic field is stressed with a boundary motion pattern similar to the horizontal motions observed by SOHO...... during the period preceding the flare. The general behavior is nearly independent of driving speed and numerical resolution, and is also very similar in stratified and unstratified models, provided only that the boundary motions are slow enough....

  13. The appearance, motion, and disappearance of three-dimensional magnetic null points

    CERN Document Server

    Murphy, Nicholas A; Haynes, Andrew L

    2015-01-01

    While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the vector field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or conv...

  14. Magnetohydrodynamics dynamical relaxation of coronal magnetic fields. IV. 3D tilted nulls

    CERN Document Server

    Fuentes-Fernandez, Jorge

    2013-01-01

    In this paper we study current accumulations in 3D "tilted" nulls formed by a folding of the spine and fan. A non-zero component of current parallel to the fan is required such that the null's fan plane and spine are not perpendicular. Our aims are to provide valid magnetohydrostatic equilibria and to describe the current accumulations in various cases involving finite plasma pressure.To create our equilibrium current structures we use a full, non-resistive, magnetohydrodynamic (MHD) code so that no reconnection is allowed. A series of experiments are performed in which a perturbed 3D tilted null relaxes towards an equilibrium via real, viscous damping forces. Changes to the initial plasma pressure and to magnetic parameters are investigated systematically.An initially tilted fan is associated with a non-zero Lorentz force that drives the fan and spine to collapse towards each other, in a similar manner to the collapse of a 2D X-point. In the final equilibrium state for an initially radial null with only the ...

  15. The appearance, motion, and disappearance of three-dimensional magnetic null points

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Nicholas A., E-mail: namurphy@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138 (United States); Parnell, Clare E.; Haynes, Andrew L. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2015-10-15

    While theoretical models and simulations of magnetic reconnection often assume symmetry such that the magnetic null point when present is co-located with a flow stagnation point, the introduction of asymmetry typically leads to non-ideal flows across the null point. To understand this behavior, we present exact expressions for the motion of three-dimensional linear null points. The most general expression shows that linear null points move in the direction along which the magnetic field and its time derivative are antiparallel. Null point motion in resistive magnetohydrodynamics results from advection by the bulk plasma flow and resistive diffusion of the magnetic field, which allows non-ideal flows across topological boundaries. Null point motion is described intrinsically by parameters evaluated locally; however, global dynamics help set the local conditions at the null point. During a bifurcation of a degenerate null point into a null-null pair or the reverse, the instantaneous velocity of separation or convergence of the null-null pair will typically be infinite along the null space of the Jacobian matrix of the magnetic field, but with finite components in the directions orthogonal to the null space. Not all bifurcating null-null pairs are connected by a separator. Furthermore, except under special circumstances, there will not exist a straight line separator connecting a bifurcating null-null pair. The motion of separators cannot be described using solely local parameters because the identification of a particular field line as a separator may change as a result of non-ideal behavior elsewhere along the field line.

  16. Magnetic gating of a 2D topological insulator

    Science.gov (United States)

    Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.

    2016-09-01

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.

  17. Magnetic gating of a 2D topological insulator.

    Science.gov (United States)

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2016-09-28

    Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829

  18. Internetwork magnetic field as revealed by 2D inversions

    CERN Document Server

    Danilovic, S; Rempel, M

    2016-01-01

    Properties of magnetic field in the internetwork regions are still fairly unknown due to rather weak spectropolarimetric signals. We address the matter by using the 2D inversion code that is able to retrieve the information on smallest spatial scales, up to the diffraction limit, while being less susceptible to noise than most of the previous methods used. Performance of the code and the impact of the various effects on the retrieved field distribution is tested first on the realistic MHD simulations. The best inversion scenario is then applied to the real Hinode/SP data. Tests on simulations show: (1) the best choice of node position ensures a decent retrieval of all parameters, (2) code performs well for different configurations of magnetic field, (3) slightly different noise level or slightly different defocus included in the spatial PSF produces no significant effect on the results and (4) temporal integration shifts the field distribution to the stronger, more horizontally inclined field. Although the co...

  19. Three-bosons in 2D with a magnetic field

    Science.gov (United States)

    Rittenhouse, Seth; Johnson, Brad; Wray, Andrew; D'Incao, Jose

    2016-05-01

    Systems of interacting particles in reduced dimensions in the presence of external fields can exhibit a number of surprising behaviors, for instance the emergence of the fractional quantum Hall effect. Examining few-body interactions and effects can lead to significant insights within these systems. In this talk we examine a system of three bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of M=3. We also discuss the effect of including finite range and higher partial-wave interactions.

  20. Symmetries of the 2D magnetic particle imaging system matrix

    International Nuclear Information System (INIS)

    In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. (paper)

  1. Nonlinear fast magnetoacoustic wave interaction with 2D magnetic X-points in the ion cyclotron range of frequencies

    CERN Document Server

    Threlfall, J W; De Moortel, I; McClements, K G; Arber, T D

    2012-01-01

    Context. This paper investigates the role of the Hall term in the propagation and dissipation of waves which interact with 2D magnetic X-points and considers the effect of the Hall term on the nature of the resulting reconnection. Aims. The goal is to determine how the evolution of a nonlinear fast magnetoacoustic wave pulse, and the behaviour of the oscillatory reconnection which results from the interaction of the pulse with a line-tied 2D magnetic X-point, is affected by the Hall term in the generalised Ohm's law. Methods. A Lagrangian remap shock-capturing code (Lare2d) is used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (di) in resistive Hall MHD. A magnetic null-point finding algorithm is also used to locate and track the evolution of the multiple null-points that are formed in the system. Results. In general, the fast wave is coupled to a shear wave and, for finite di, to whistler and ion cyclotron waves. Dispersive whistler effects...

  2. Characteristics of 2D magnetic field sensor based on magnetic sensitivity diodes

    Directory of Open Access Journals (Sweden)

    Xiaofeng Zhao

    2015-04-01

    Full Text Available A two-dimensional (2D magnetic field sensor is proposed in this paper. It contains two Wheatstone bridges composed of four magnetic sensitivity diodes(MSDswith similar characteristics and four loading resistances. In order to realize the axial symmetric distribution of four MSDs, two MSDs with opposite magnetic sensitive directions were located along the x and −x axes, and two with opposite magnetic sensitive directions were located along the y and −y axes. The experimental results indicate that when VDD = 5.0 V, the magnetic sensitivities of the 2D magnetic sensor can reach SxB  =  544 mV/T and SyB  =  498 mV/T in the x and y directions, respectively. Consequently, it is possible to measure the two-dimensional magnetic field.

  3. Current Singularities at Quasi-Separatrix Layers and Three-Dimensional Magnetic Nulls

    CERN Document Server

    Craig, I J D

    2014-01-01

    The open problem of how singular current structures form in line-tied, three-dimensional magnetic fields is addressed. A Lagrangian magneto-frictional relaxation method is employed to model the field evolution towards the final near-singular state. Our starting point is an exact force-free solution of the governing magnetohydrodynamic (MHD) equations which is sufficiently general to allow for topological features like magnetic nulls to be inside or outside the computational domain, depending on a simple set of parameters. Quasi-separatrix layers (QSLs) are present in these structures and together with the magnetic nulls, they significantly influence the accumulation of current. It is shown that perturbations affecting the lateral boundaries of the configuration lead not only to collapse around the magnetic null, but also to significant QSL currents. Our results show that once a magnetic null is present, the developing currents are always attracted to that specific location and show a much stronger scaling wit...

  4. Concentration of electrostatic solitary waves around magnetic nulls within magnetic reconnection diffusion region: single-event-based statistics

    Science.gov (United States)

    Li, Shiyou; Zhang, Shifeng; Cai, Hong; Yu, Sufang

    2014-12-01

    It is important to study the `concentrated' electrostatic solitary waves/structures (ESWs) associated with the magnetic reconnection. In the literature published as regards this topic, very few studies have reported the observation of such a large number of ESWs in a single magnetic reconnection event. In this work, we report our observation of a large number of ESWs around the magnetic null-pairs within the magnetic reconnection ion diffusion region of Earth's magnetosphere on 10 September 2001. With more than 9,600 cases of ESWs observed around magnetic null-pairs and more than 97,600 cases observed during the ion diffusion region crossing time span, the observation of such a large number of ESWs in the diffusion region has not been reported often in published works. We further perform single-event-based statistical analysis of the characteristics of the ESWs around magnetic null-pairs. Based on the statistical result, we speculate that the two-stream instability originating from the magnetic null and traveling outward along the plasma sheet boundary layer (PSBL) is the candidate mechanism of the large number of observed ESWs. Our observation and analysis in this work suggests that even with the presence of a complex magnetic structure around a magnetic null-pair in the three-dimensional regime, concentrated ESWs can be observed. This single-reconnection-event-based statistical result of ESWs around the magnetic null-pairs can aid in understanding the microdynamics associated with three-dimensional (3D) magnetic reconnection.

  5. Why Are Flare Ribbons Associated with the Spines of Magnetic Null Points Generically Elongated?

    Science.gov (United States)

    Pontin, David; Galsgaard, Klaus; Démoulin, Pascal

    2016-08-01

    Coronal magnetic null points exist in abundance, as demonstrated by extrapolations of the coronal field, and have been inferred to be important for a broad range of energetic events. These null points and their associated separatrix and spine field lines represent discontinuities of the field line mapping, making them preferential locations for reconnection. This field line mapping also exhibits strong gradients adjacent to the separatrix (fan) and spine field lines, which can be analysed using the "squashing factor", Q. In this article we analyse in detail the distribution of Q in the presence of magnetic nulls. While Q is formally infinite on both the spine and fan of the null, the decay of Q away from these structures is shown in general to depend strongly on the null-point structure. For the generic case of a non-radially-symmetric null, Q decays most slowly away from the spine or fan in the direction in which |{B}| increases most slowly. In particular, this demonstrates that the extended elliptical high-Q halo around the spine footpoints observed by Masson et al. ( Astrophys. J. 700, 559, 2009) is a generic feature. This extension of the Q halos around the spine or fan footpoints is important for diagnosing the regions of the photosphere that are magnetically connected to any current layer that forms at the null. In light of this, we discuss how our results can be used to interpret the geometry of observed flare ribbons in circular ribbon flares, in which typically a coronal null is implicated. We conclude that both the physics in the vicinity of the null and how this is related to the extension of Q away from the spine or fan can be used in tandem to understand observational signatures of reconnection at coronal null points.

  6. Why Are Flare Ribbons Associated with the Spines of Magnetic Null Points Generically Elongated?

    Science.gov (United States)

    Pontin, David; Galsgaard, Klaus; Démoulin, Pascal

    2016-06-01

    Coronal magnetic null points exist in abundance, as demonstrated by extrapolations of the coronal field, and have been inferred to be important for a broad range of energetic events. These null points and their associated separatrix and spine field lines represent discontinuities of the field line mapping, making them preferential locations for reconnection. This field line mapping also exhibits strong gradients adjacent to the separatrix (fan) and spine field lines, which can be analysed using the "squashing factor", Q. In this article we analyse in detail the distribution of Q in the presence of magnetic nulls. While Q is formally infinite on both the spine and fan of the null, the decay of Q away from these structures is shown in general to depend strongly on the null-point structure. For the generic case of a non-radially-symmetric null, Q decays most slowly away from the spine or fan in the direction in which |{B}| increases most slowly. In particular, this demonstrates that the extended elliptical high- Q halo around the spine footpoints observed by Masson et al. (Astrophys. J. 700, 559, 2009) is a generic feature. This extension of the Q halos around the spine or fan footpoints is important for diagnosing the regions of the photosphere that are magnetically connected to any current layer that forms at the null. In light of this, we discuss how our results can be used to interpret the geometry of observed flare ribbons in circular ribbon flares, in which typically a coronal null is implicated. We conclude that both the physics in the vicinity of the null and how this is related to the extension of Q away from the spine or fan can be used in tandem to understand observational signatures of reconnection at coronal null points.

  7. Observation of Magnetic reconnection at a 3D null point associated with a solar eruption

    CERN Document Server

    Sun, J Q; Yang, K; Cheng, X; Ding, M D

    2016-01-01

    Magnetic null has long been recognized as a special structure serving as a preferential site for magnetic reconnection (MR). However, the direct observational study of MR at null-points is largely lacking. Here, we show the observations of MR around a magnetic null associated with an eruption that resulted in an M1.7 flare and a coronal mass ejection. The GOES X- ray profile of the flare exhibited two peaks at 02:23 UT and 02:40 UT on 2012 November 8, respectively. Based on the imaging observations, we find that the first and also primary X- ray peak was originated from MR in the current sheet underneath the erupting magnetic flux rope (MFR). On the other hand, the second and also weaker X-ray peak was caused by MR around a null-point located above the pre-eruption MFR. The interaction of the null-point and the erupting MFR can be described as a two-step process. During the first step, the erupting and fast expanding MFR passed through the null-point, resulting in a significant displacement of the magnetic fi...

  8. 2D Hybrid Yttrium Iron Garnet Magnetic Sensor Noise Characterization

    OpenAIRE

    Dufay, Basile; Saez, Sébastien; Cordier, Christophe; Dolabdjian, Christophe; Dubuc, Christian; Hristoforou, E.; Ubizskii, S.

    2011-01-01

    International audience; This paper deals with the noise characterization of a magnetic field hybrid sensor based on flux-gate-like magnetometer. In the used layout, a magnetic core, like an Yttrium- Iron-Garnet (YIG) thin film, is driven to saturation by a rotating magnetization field, which induces a modulated magnetic field. The latter is sensed, by means of one or more punctual sensors, as an image of the applied magnetic field vector components. Both theoretical principles and main equiva...

  9. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  10. Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.

    2015-01-01

    This paper describes a technique for modeling overlapping laminations in magnetic core materials using two-dimensional finite-element (2-D FE) analysis. The magnetizing characteristic of the overlapping region is captured using a simple 2-D FE model of the periodic overlapping geometry and a comp...

  11. Submicrometric 2D ratchet effect in magnetic domain wall motion

    Energy Technology Data Exchange (ETDEWEB)

    Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-12-15

    Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.

  12. Turbulent magnetic reconnection in 2D and 3D

    CERN Document Server

    Lazarian, A; Vishniac, E; Kulpa-Dubel, K; Otmianowska-Mazur, K

    2010-01-01

    Magnetic field embedded in a perfectly conducting fluid preserves its topology for all time. Although ionized astrophysical objects, like stars and galactic disks, are almost perfectly conducting, they show indications of changes in topology, `magnetic reconnection', on dynamical time scales. Reconnection can be observed directly in the solar corona, but can also be inferred from the existence of large scale dynamo activity inside stellar interiors. Solar flares and gamma ray busts are usually associated with magnetic reconnection. Previous work has concentrated on showing how reconnection can be rapid in plasmas with very small collision rates. Here we present numerical evidence, based on three dimensional simulations, that reconnection in a turbulent fluid occurs at a speed comparable to the rms velocity of the turbulence, regardless of the value of the resistivity. In particular, this is true for turbulent pressures much weaker than the magnetic field pressure so that the magnetic field lines are only slig...

  13. A New Method of Identifying 3D Null Points in Solar Vector Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    Hui Zhao; Jing-Xiu Wang; Jun Zhang; Chi-Jie Xiao

    2005-01-01

    Employing the Poincaré index of isolated null-points in a vector field,we worked out a mathematical method of searching for 3D null-points in coronal magnetic fields. After introducing the relevant differential topology, we test the method by using the analytical model of Brown & Priest. The location of nullpoint identified by our method coincides precisely with the analytical solution.Finally we apply the method to the 3D coronal magnetic fields reconstructed from an observed MDI magnetogram of a super-active region (NOAA 10488). We find that the 3D null-point seems to be a key element in the magnetic topology associated with flare occurrence.

  14. Why are flare ribbons associated with the spines of magnetic null points generically elongated?

    CERN Document Server

    Pontin, D I; Demoulin, P

    2016-01-01

    Coronal magnetic null points exist in abundance as demonstrated by extrapolations of the coronal field, and have been inferred to be important for a broad range of energetic events. These null points and their associated separatrix and spine field lines represent discontinuities of the field line mapping, making them preferential locations for reconnection. This field line mapping also exhibits strong gradients adjacent to the separatrix (fan) and spine field lines, that can be analysed using the `squashing factor', $Q$. In this paper we make a detailed analysis of the distribution of $Q$ in the presence of magnetic nulls. While $Q$ is formally infinite on both the spine and fan of the null, the decay of $Q$ away from these structures is shown in general to depend strongly on the null-point structure. For the generic case of a non-radially-symmetric null, $Q$ decays most slowly away from the spine/fan in the direction in which $|{\\bf B}|$ increases most slowly. In particular, this demonstrates that the extend...

  15. 3D Alfven wave behaviour around proper and improper magnetic null points

    CERN Document Server

    Thurgood, J O

    2013-01-01

    Context: MHD waves and magnetic null points are both prevalent in many astrophysical plasmas, including the solar atmosphere. Interaction between waves and null points has been implicated as a possible mechanism for localised heating events. Aims: Here we investigate the transient behaviour of the Alfven wave about fully 3D proper and improper 3D magnetic null points. Previously, the behaviour of fast magnetoacoustic waves at null points in 3D, cold MHD was considered by Thurgood & McLaughlin (Astronomy & Astrophysics, 2012, 545, A9). Methods: We introduce an Alfven wave into the vicinity of both proper and improper null points by numerically solving the ideal, $\\beta=0$ MHD equations using the LARE3D code. A magnetic fieldline and flux-based coordinate system permits the isolation of resulting wave-modes and the analysis of their interaction. Results: We find that the Alfven wave propagates throughout the region and accumulates near the fan-plane, causing current build up. For different values of nul...

  16. MHD Dynamical Relaxation of Coronal Magnetic Fields. II. 2D Magnetic X-Points

    CERN Document Server

    Fuentes-Fernández, Jorge; Hood, Alan W

    2011-01-01

    We provide a valid magnetohydrostatic equilibrium from the collapse of a 2D X-point in the presence of a finite plasma pressure, in which the current density is not simply concentrated in an infinitesimally thin, one-dimensional current sheet, as found in force-free solutions. In particular, we wish to determine if a finite pressure current sheet will still involve a singular current, and if so, what is the nature of the singularity. We use a full MHD code, with the resistivity set to zero, so that reconnection is not allowed, to run a series of experiments in which an X-point is perturbed and then is allowed to relax towards an equilibrium, via real, viscous damping forces. Changes to the magnitude of the perturbation and the initial plasma pressure are investigated systematically. The final state found in our experiments is a "quasi-static" equilibrium where the viscous relaxation has completely ended, but the peak current density at the null increases very slowly following an asymptotic regime towards an i...

  17. A type of 2D magnetic equivalent circuit framework of permanent magnet for magnetic system in AEMR

    Institute of Scientific and Technical Information of China (English)

    Liang Huimin; You Jiaxin; Cai Zhaowen; Zhai Guofu

    2015-01-01

    Modeling of permanent magnet (PM) is very important in the process of electromagnetic system calculation of aerospace electromagnetic relay (AEMR). In traditional analytical calcula-tion, PM is often equivalent to a lumped parameter model of one magnetic resistance and one mag-netic potential, but great error is often caused for the inner differences of PM; based on the conception of flux tube, a type of 2D magnetic equivalent circuit framework of permanent magnet model (2D MECF) is established; the element is defined, the relationship between elements is deduced, and solution procedure as well as verification condition of this model is given;by a case study of the electromagnetic system of a certain type of AEMR, the electromagnetic system calcu-lation model is established based on 2D MECF and the attractive force at different rotation angles is calculated;the proposed method is compared with the traditional lumped parameter model and finite element method (FEM); for some types of electromagnetic systems with symmetrical struc-ture, 2D MECF proves to be of acceptable accuracy and high calculation speed which fit the requirement of robust design for AEMR.

  18. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    Science.gov (United States)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  19. Numerical Simulations of Solar Spicule Jets at a Magnetic Null-Point

    Science.gov (United States)

    Smirnova, V.; Konkol, P. M.; Solov'ev, A. A.; Murawski, K.

    2016-09-01

    Two-dimensional numerical simulations of jet-like structures in the solar atmosphere are performed. These structures result from a pressure pulse that is launched at the null point of a potential magnetic arcade. The plasma jet exhibits a double structure with two components: (a) dense, cool, and short vertical stream and (b) a less dense, hot and tall part of the jet. The upper part of the hot and tall jet may represent a direct response of the system to the pressure pulse launched at the null point, and the second, slower cool and dense part of the jet is formed later through the stretching up of the stream as a result of plasma evacuation from the top of the magnetic arcade. Numerical results show that jet-like structures mimic some properties of both type I and type II spicules, according to the classification provided by De Pontieu et al. (Publ. Astron. Soc. Japan 59, S655, 2007).

  20. Magnetic field decoupling and 3D-2D crossover in Nb/Cu multilayers

    DEFF Research Database (Denmark)

    Krasnov, V.M.; Kovalev, A.E.; Oboznov, V.A.;

    1996-01-01

    Transport properties of Nb/Cu multilayers were measured along and across layers. Ir is shown that not only the temperature but also the magnetic field parallel to layers can effectively decouple layers and cause the three-to-two-dimensional (3D-2D) crossover. As a consequence of the 3D-2D crossover...... magnetic field and by the multiply branched I-V curves caused by flux-flow of Josephson vortices in the stacked superconductor-normal-metal-superconductor junctions composing the multilayer. By measurements across layers the ''breaking field'' at which the proximity induced superconductivity in the normal...

  1. 2D and 3D modelling of magnetic and resistivity data from Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Mattsson, Haakan (GeoVista AB, Luleaa (Sweden))

    2011-05-15

    This report presents results from modelling of geophysical data. Ground magnetic and geo electric data were collected in 1988 as part of the pre-investigations carried out before the construction of the Aespoe Hard Rock Laboratory (HRL). The work presented in this report is an evaluation of the magnetic and geo electric data with the focus on estimating variations in geometry and dip of some of the possible deformation zones indicated in lineament interpretations presented earlier. This was done by 2D forward magnetic modelling, 2D forward resistivity modelling and 3D inversion of the magnetic data. The specific aims of this work are: 1. Produce magnetic 2D forward models across 12 selected linked lineaments. 2. Produce a 3D susceptibility model of the entire data set of Aespoe. 3. Use 2D forward resistivity modelling to produce electric anomaly response diagrams for a dipole-dipole survey across low resistivity zones with various dips. The results of the modelling work will mainly be used as supportive information for deterministic geological modelling of deformation zones and rock units in the vicinity of the Aespoe HRL. The results of the 2D forward modelling of magnetic data show geologically reasonable solutions, and in most cases it is possible to make reliable estimates of the width and orientation of the cause of the targeted lineament. The possible deformation zones generally dip steeply (80 deg-90 deg) and have a width of c. 30-50 m. In some cases the modelled lineament has a diffuse character with low amplitude, which makes the model solution uncertain. Two 3D susceptibility models were created by use of inversion of the ground magnetic data; one coarse model of the entire Island of Aespoe and one more detailed model of the south-eastern peninsula of the Island, covering the volume of the Aespoe HRL. The two models fit nicely to the measured data and they are geologically realistic. It is possible to identify well-defined bodies (rock volumes) of

  2. Magnetic focusing of cold atomic beam with a 2D array of current-carrying wires

    Institute of Scientific and Technical Information of China (English)

    Yang Liu; Min Yun; Jianping Yin

    2006-01-01

    @@ A new scheme to realize a two-dimensional (2D) array of magnetic micro-lenses for a cold atomic beam,formed by an array of square current-carrying wires,is proposed.We calculate the spatial distributions of the magnetic fields from the array of current-carrying wires and the magnetic focusing potential for cold rubidium atoms,and study the dynamic focusing processes of cold atoms passing through the magnetic micro-lens array and its focusing properties by using Monte-Carlo simulations and trajectory tracing method.The result shows that the proposed micro-lens array can be used to focus effectively a cold atomic beam,even to load ultracold atoms or a BEC sample into a 2D optical lattice formed by blue detuned hollow beams.

  3. Magnetic properties and the effect of non-magnetic impurities in the quasi-2D quantum magnet

    Science.gov (United States)

    Khuntia, P.; Dey, T.; Mahajan, A. V.

    2016-09-01

    We present synthesis, x-ray diffraction, magnetisation and specific heat studies on the quasi-two-dimensional (2D) S = 1/2 antiferromagnet (CuCl)LaNb2O7 and its doping analogues (Cu1-x Zn x Cl)LaNb2O7 (0 ≤ x ≤ 0.05), (Cu0.95Mg0.05Cl)LaNb2O7, and (CuCl)La1-y Ba y Nb2O7 (0 ≤ y ≤ 0.10). The magnetic susceptibility and specific heat of the parent compound and its isovalent or hetereovalent counterparts do not display any signature of magnetic ordering down to 1.8 K. The parent compound and its doping variants exhibit spin-singlet behaviour with a finite gap in the spin excitation spectrum due to dimerisation of the dominant intradimer interactions as evidenced from our magnetic susceptibility and specific heat data. The systematic increase of magnetic susceptibility at low temperature with non-magnetic Zn2+ and Mg2+ (S = 0) substitution at the Cu2+ site reflect that impurities induce local moments around the non-magnetic sites. While heterovalent Ba2+ substitution at the La3+ site do not result in mobile holes but rather give rise to a Curie term in the susceptibility due to localisation. The low value of spin S = 1/2, and absence of long range ordering or spin freezing, and the presence of competing exchange interactions hold special significance in hosting novel magnetic properties in this class of quasi-2D quantum material.

  4. Magnetic correlations in the 2D S=5/2 honeycomb antiferromagnet MnPS3

    DEFF Research Database (Denmark)

    Rønnow, H.M.; Wildes, A.R.; Bramwell, S.T.

    2000-01-01

    MnPS3 is a quasi-2D S = 5/2 antiferromagnet on a honeycomb lattice. Using an energy integrating neutron scattering technique, we have measured the structure factor S(k) of the instantaneous magnetic fluctuations. The temperature dependence of the correlation length xi follows the Kosterlitz...

  5. Polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets

    CERN Document Server

    Clément, R; Gruselle, M; Train, C

    2003-01-01

    We report major results concerning polyfunctional two- (2D) and three- (3D) dimensional oxalate bridged bimetallic magnets. As a consequence of their specific organization they are composed of an anionic sub-lattice and a cationic counter-part. These bimetallic polymers can accommodate various counter-cations possessing specific physical properties in addition to the magnetic ones resulting from the interactions between the metallic ions in the anionic sub-lattice. Thus, molecular magnets possessing paramagnetic, conductive and optical properties are presented in this review. Refs. 60 (author)

  6. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico); Carbonio, R.E. [INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba (Argentina); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico)

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  7. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    Science.gov (United States)

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-01

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model. PMID:27176463

  8. Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets.

    Science.gov (United States)

    Weber, Daniel; Schoop, Leslie M; Duppel, Viola; Lippmann, Judith M; Nuss, Jürgen; Lotsch, Bettina V

    2016-06-01

    Spin 1/2 honeycomb materials have gained substantial interest due to their exotic magnetism and possible application in quantum computing. However, in all current materials out-of-plane interactions are interfering with the in-plane order, hence a true 2D magnetic honeycomb system is still in demand. Here, we report the exfoliation of the magnetic semiconductor α-RuCl3 into the first halide monolayers and the magnetic characterization of the spin 1/2 honeycomb arrangement of turbostratically stacked RuCl3 monolayers. The exfoliation is based on a reductive lithiation/hydration approach, which gives rise to a loss of cooperative magnetism due to the disruption of the spin 1/2 state by electron injection into the layers. The restacked, macroscopic pellets of RuCl3 layers lack symmetry along the stacking direction. After an oxidative treatment, cooperative magnetism similar to the bulk is restored. The oxidized pellets of restacked single layers feature a magnetic transition at TN = 7 K if the field is aligned parallel to the ab-plane, while the magnetic properties differ from bulk α-RuCl3 if the field is aligned perpendicular to the ab-plane. The deliberate introduction of turbostratic disorder to manipulate the magnetic properties of RuCl3 is of interest for research in frustrated magnetism and complex magnetic order as predicted by the Kitaev-Heisenberg model.

  9. In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail

    CERN Document Server

    Xiao, C J; Pu, Z Y; Zhao, H; Wang, J X; Ma, Z W; Fu, S Y; Kivelson, M G; Liu, Z X; Zong, Q G; Glassmeier, K H; Balogh, A; Korth, A; Reme, H; Escoubet, C P

    2006-01-01

    Magnetic reconnection is one of the most important processes in astrophysical, space and laboratory plasmas. Identifying the structure around the point at which the magnetic field lines break and subsequently reform, known as the magnetic null point, is crucial to improving our understanding reconnection. But owing to the inherently three-dimensional nature of this process, magnetic nulls are only detectable through measurements obtained simultaneously from at least four points in space. Using data collected by the four spacecraft of the Cluster constellation as they traversed a diffusion region in the Earth's magnetotail on 15 September, 2001, we report here the first in situ evidence for the structure of an isolated magnetic null. The results indicate that it has a positive-spiral structure whose spatial extent is of the same order as the local ion inertial length scale, suggesting that the Hall effect could play an important role in 3D reconnection dynamics.

  10. Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.

    Science.gov (United States)

    Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T

    2010-08-01

    We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230

  11. Magnetic Resonance Angiography of the pulmonary veins: TOF 3D versus 2D

    International Nuclear Information System (INIS)

    The aim of this work was to optimize the magnetic resonance angiography (MRA) technique for the selective study of the pulmonary veins. Twenty patients (13 men and 7 women; mean age: 30.5 years) were examined. MRA was performed with a 1 T superconductive magnet and the 3D time of flight (TOF) technique. Fast sequences (3D FISP : TR 58 ms, TE 6 ms, FA 20 deg, matrix 192 x 256; and 2D FLASH: TR 44 ms, TE 10 ms, FA 30 deg, matrix 192 x 256) were used. Coronal and sagittal images were submitted to MIP processing; presaturation pulses for the pulmonary arteries were located in the mediastinal region. In the right lung 3D TOF on the coronal plane well showed 124 veins, while sagittal images showed 106 veins. In the left lung, 3D TOF on the coronal plane well showed 96 vessels, while sagittal images showed 44 vessels. In the right lung, 2D TOF on the coronal plane well showed 54 veins, while sagittal images showed 36 vessels. In the left lung, 2D TOF on the coronal plane well showed 22 vessels, while sagittal images showed 21 vessels. Therefore 3D TOF yielded better than 2D TOF (p<0.05). To conclude, 3D TOF with contrast agent administration is a useful tool to study the pulmonary veins; those with a larger caliber are better depicted and the integration of coronal and sagittal images depicts more veins

  12. FORC diagram study of magnetostatic interactions in 2D longitudinal arrays of magnetic wires

    Energy Technology Data Exchange (ETDEWEB)

    Nica, Mihai; Stancu, Alexandru, E-mail: alstancu@uaic.ro

    2015-10-15

    The switching behavior of magnetic wires in 2D-longitudinal arrays is systematically analyzed with the first-order reversal curve (FORC) diagram method. The magnetostatic interactions in these systems are more difficult to calculate compared with the 2D-perpendicular arrays in which the global interaction effect is dominated by the demagnetizing mean–field interactions. The geometrical parameters of the magnetic structure can transform the magnetic system from one dominated by demagnetizing interactions to one dominated by the magnetizing interactions. We have found a structure in which the FORC distribution is symmetrical which indicate zero-mean field interaction. This compensated structure was studied at the level of the individual wire switchings and we show that in this case the switching field fluctuates around the intrinsic coercivity of the wire. In this particular case the switching field distribution obtained from the FORC diagram is identical with the distribution of the coercivities of the non-interacting wires. However, the system behavior is still not completely in agreement with the Classical Preisach Model. A comparison between the behavior of three systems with magnetizing, demagnetizing and compensated mean-field interactions is also presented and the results are discussed.

  13. Quasi-2D confinement of a BEC in a combined optical and magnetic potential

    International Nuclear Information System (INIS)

    We have added an optical potential to a conventional time-averaged orbiting potential (TOP) trap to create a highly anisotropic hybrid trap for ultracold atoms. Axial confinement is provided by the optical potential; the maximum frequency currently obtainable in this direction is 2.2 kHz for rubidium. The radial confinement is independently controlled by the magnetic trap and can be a factor of 700 times smaller than in the axial direction. This large anisotropy is more than sufficient to confine condensates with ∼105 atoms in a quasi-2D (Q2D) regime, and we have verified this by measuring a change in the free expansion of the condensate; our results agree with a variational model

  14. 2D and 3D ordered arrays of Co magnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Prida, V.M., E-mail: vmpp@uniovi.es [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Vega, V. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain); Rosa, W.O. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150 Urca., 22290-180 Rio de Janeiro, RJ (Brazil); Caballero-Flores, R.; Iglesias, L.; Hernando, B. [Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Asturias (Spain)

    2015-06-01

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires. - Graphical abstract: Scanning electronic microscope images of cylindrical anodic aluminum membranes (CAAM) electrodeposited with Co nanowires. From top, SEM micrographs of the nanoporous CAAM template at different magnifications, to bottom at the left, a cross-section image showing Co nanowires embedded in the nanopores of the alumina template. On the right at the bottom are shown the radial and axial hysteresis loops together FORC diagram obtained for the Co nanowires array along the radial direction of the CAAM template. - Highlights: • Co nanowire

  15. 2D and 3D ordered arrays of Co magnetic nanowires

    International Nuclear Information System (INIS)

    Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires. - Graphical abstract: Scanning electronic microscope images of cylindrical anodic aluminum membranes (CAAM) electrodeposited with Co nanowires. From top, SEM micrographs of the nanoporous CAAM template at different magnifications, to bottom at the left, a cross-section image showing Co nanowires embedded in the nanopores of the alumina template. On the right at the bottom are shown the radial and axial hysteresis loops together FORC diagram obtained for the Co nanowires array along the radial direction of the CAAM template. - Highlights: • Co nanowire

  16. Magnetic properties of a novel quasi-2D Cu(II)-trimer system

    Energy Technology Data Exchange (ETDEWEB)

    Removic-Langer, Katarina; Wolf, Bernd; Lang, Michael [Physikalisches Institut, Universitaet Frankfurt, SFB/TRR-49, D-60438 Frankfurt (Germany); Haussuehl, Eiken; Wiehl, Leonore [Institut fuer Geowissenschaften, Universitaet Frankfurt, D-60438 Frankfurt (Germany); Sauli, Francesca; Kopietz, Peter [Institut fuer Theoretische Physik, Universitaet Frankfurt, SFB/TTR-49, D-60438 Frankfurt (Germany); Hasselmann, Nils [International Center of Condensed Matter Physics, Universidade de BrasIlia, 70910-900 BrasIlia (Brazil)

    2009-05-06

    We present structural and magnetic data of a new Cu{sup 2+}(S = 1/2)-containing magnetic trimer system 2b{center_dot}3CuCl{sub 2}{center_dot}2H{sub 2}O (b = betaine, C{sub 5}H{sub 11}NO{sub 2}). The trimers form a quasi-2D quantum spin system with an unusual intra-layer exchange coupling topology, which, in principle, supports diagonal four-spin exchange. To describe the magnetic properties, a 2D effective interacting-trimer model has been developed including an intra-trimer coupling J and two inter-trimer couplings J{sub a} and J{sub b}. The low-energy description and effective parameters are obtained from numerical calculations based on four coupled trimers (with periodic boundary conditions). Fits to the experimental data using this model yield the magnetic coupling constants J/k{sub B} = -15 K and J{sub a}/k{sub B} = J{sub b}/k{sub B} = -4 K. These parameters describe the susceptibility and magnetization data very well over the whole temperature and field range investigated. Moreover, the model calculations indicate that, for certain ranges of the ratio J{sub b}/J{sub a}, which might be accessible by either chemical substitution and/or hydrostatic pressure, the low-energy properties of 2b{center_dot}3CuCl{sub 2}{center_dot}2H{sub 2}O will be dominated by non-trivial four-spin exchange processes.

  17. Assessing portal hypertension in post-operative biliary atresia patients using 2D magnetic resonance angiography

    Energy Technology Data Exchange (ETDEWEB)

    Hiki, Saori; Horikoshi, Kentarou; Kobayashi, Hiroyuki; Yamataka, Atsuyuki; Miyano, Takeshi; Kuwatsuru, Ryouhei; Katayama, Hitoshi [Juntendo Univ., Tokyo (Japan). School of Medicine

    2000-01-01

    2D magnetic resonance angiography (MRA) was performed in 38 post-operative biliary atresia (BA) patients. Collateral circulation other than esophageal varices that could not be observed with endoscopy was detected. By using contrast, the portal vasculature could be clearly delineated. MRA can be performed without using general anesthesia obviating the nead for hospitalization. At present, MRA alone is not sufficient for the complete assessment of varices in post-operative BA patients, and mucosal changes cannot be detected without endoscopy. However, combined with endoscopy, it provides valuable additional follow-up information without the need for general anesthesia or hospitalization. (author)

  18. Comparison of electrical conductivity structures and 2D magnetic modelling along two profiles crossing the Beattie Magnetic Anomaly, South Africa

    OpenAIRE

    Ute Weckmann; A. Jung; T. Branch; Oliver Ritter

    2007-01-01

    Two of the Earth´s largest geophysical anomalies, the Beattie Magnetic Anomaly (BMA) and the Southern Cape Conductive Belt (SCCB) extend across the southern African continent for more than 1000 km in an east-west direction. Based on previous electrical and magnetometer array measurements it is believed that both anomalies have a common crustal source with a width of 50 km represented by serpentinized palaeo-oceanic srust. New two-dimensional (2D) electrical conductivity models along a profile...

  19. Field-induced magnetization jumps and quantum criticality in the 2D J-Q model

    Science.gov (United States)

    Iaizzi, Adam; Sandvik, Anders

    The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.

  20. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    Science.gov (United States)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  1. Relativistic quantum Hall conductivity for 3D and 2D electron plasma in an external magnetic field

    International Nuclear Information System (INIS)

    The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis of constancy of the chemical potential. (author). 6 refs, 1 fig

  2. Comparison of 2-D Magnetic Designs of Selected Coil Configurations for the Next European Dipole (NED)

    CERN Document Server

    Toral, F; Felice, H; Fessia, Paolo; Loveridge, P W; Regis, Federico; Rochford, J; Sanz, S; Schwerg, Nikolai; Védrine, P; Völlinger, Christine

    2007-01-01

    The Next European Dipole (NED) activity is developing a high-performance Nb3Sn wire (aiming at a non-copper critical current density of 1500 A/mm2 at 4.2 K and 15 T), within the framework of the Coordinated Accelerator Research in Europe (CARE) project. This activity is expected to lead to the fabrication of a large aperture, high field dipole magnet. In preparation for this phase, a Working Group on Magnet Design and Optimization (MDO) has been established to propose an optimal design. Other parallel Work Packages are concentrating on relevant topics, such as quench propagation simulation, innovative insulation techniques, and heat transfer measurements. In a first stage, the MDO Working Group has selected a number of coil configurations to be studied, together with salient parameters and features to be considered during the evaluation: the field quality, the superconductor efficiency, the conductor peak field, the stored magnetic energy, the Lorentz Forces and the fabrication difficulties. 2-D magnetic calc...

  3. Magnetic-field dependence of the T*-anomaly in quasi-2D organic superconductors

    International Nuclear Information System (INIS)

    The family of quasi-2D superconductors κ-(BEDT-TTF)2X are model sy stems for strongly correlated low-dimensional metals. Recently, the unusual normal-conducting state - characterized by a line of anomalies T* (in the order o f 40 K) - has attracted considerable attention: a pseudo-gap behavior in analogy to the high-Tc cuprates, a crossover from an incoherent ''bad'' metal to a coherent Fermi-liquid regime, and a density-wave-type phase transition have been suggested as possible scenarios. To investigate the possibility of a magnetic origin we carried out detailed transport measurements in pulsed magnetic fields up to 60 T. For two different compounds, X=Cu[N(CN)2]Br a nd Cu(NCS)2, we observed a maximum in the relative magnetoresistance change right around T*. This indicates the significance of magnetic degrees of free dom which are coupled to the transport properties. Also, for the first time we w ere able to determine the magnetic-field dependence of T* showing a small negative shift with increasing field. We discuss the implications of our experiment al data for possible models explaining the anomalous normal-conducting state.

  4. Magnetic-field dependence of the T{sup *}-anomaly in quasi-2D organic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Brandenburg, Jens; Das, Pintu [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Mueller, Jens [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Johann-Wolfgang-von-Goethe Universitaet, SFB/TR49, Frankfurt am Main (Germany); Lang, Michael [Johann-Wolfgang-von-Goethe Universitaet, SFB/TR49, Frankfurt am Main (Germany); Weickert, Franziska [Max-Planck-Institut fuer Chemische Physik Fester Stoffe, Dresden (Germany); Hochfeld-Magnetlabor Dresden, Forschunszentrum Dresden-Rossendorf, Dresden (Germany); Bartkowiak, Marek; Wosnitza, Jochen [Hochfeld-Magnetlabor Dresden, Forschunszentrum Dresden-Rossendorf, Dresden (Germany)

    2009-07-01

    The family of quasi-2D superconductors {kappa}-(BEDT-TTF){sub 2}X are model sy stems for strongly correlated low-dimensional metals. Recently, the unusual normal-conducting state - characterized by a line of anomalies T{sup *} (in the order o f 40 K) - has attracted considerable attention: a pseudo-gap behavior in analogy to the high-T{sub c} cuprates, a crossover from an incoherent ''bad'' metal to a coherent Fermi-liquid regime, and a density-wave-type phase transition have been suggested as possible scenarios. To investigate the possibility of a magnetic origin we carried out detailed transport measurements in pulsed magnetic fields up to 60 T. For two different compounds, X=Cu[N(CN){sub 2}]Br a nd Cu(NCS){sub 2}, we observed a maximum in the relative magnetoresistance change right around T{sup *}. This indicates the significance of magnetic degrees of free dom which are coupled to the transport properties. Also, for the first time we w ere able to determine the magnetic-field dependence of T{sup *} showing a small negative shift with increasing field. We discuss the implications of our experiment al data for possible models explaining the anomalous normal-conducting state.

  5. Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene?

    Science.gov (United States)

    Park, Je-Geun

    2016-08-01

    There has been a huge increase of interests in two-dimensional van der Waals materials over the past ten years or so with the conspicuous absence of one particular class of materials: magnetic van der Waals systems. In this Viewpoint, we point it out and illustrate how we might be able to benefit from exploring these so-far neglected materials.

  6. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    Science.gov (United States)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  7. Hyperspherical approach to the three-bosons problem in 2D with a magnetic field

    CERN Document Server

    Rittenhouse, Seth T; Johnson, B L

    2016-01-01

    We examine a system of three-bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of $M=3$. With the inclusion of repulsive higher angular momentum we surmise that the origin of a set of ``magic number'' states (states with anomalously low energy) might emerge...

  8. 2D to 3D crossover of the magnetic properties in ordered arrays of iron oxide nanocrystals

    DEFF Research Database (Denmark)

    Faure, Bertrand; Wetterskog, Erik; Gunnarsson, Klas;

    2013-01-01

    interactions induce a ferromagnetic coupling that increases in strength with decreasing thickness of the array. The 2D to 3D transition in the magnetic properties is mainly driven by a change in the orientation of the magnetic vortex states with increasing thickness, becoming more isotropic as the thickness...... of the array increases. Magnetic anisotropy prevents long-range ferromagnetic order from being established at low temperature and the nanoparticle magnetic moments instead freeze along directions defined by the distribution of easy magnetization directions. © 2013 The Royal Society of Chemistry....

  9. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    Science.gov (United States)

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis. PMID:27622416

  10. Slow magnetic relaxation in a hydrogen-bonded 2D array of mononuclear dysprosium(III) oxamates.

    Science.gov (United States)

    Fortea-Pérez, Francisco R; Vallejo, Julia; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-05-01

    The reaction of N-(2,6-dimethylphenyl)oxamic acid with dysprosium(III) ions in a controlled basic media afforded the first example of a mononuclear lanthanide oxamate complex exhibiting a field-induced slow magnetic relaxation behavior typical of single-ion magnets (SIMs). The hydrogen-bond-mediated self-assembly of this new bifunctional dysprosium(III) SIM in the solid state provides a unique example of 2D hydrogen-bonded polymer with a herringbone net topology.

  11. Magnetic Bloch oscillations in the near-Ising antiferromagnet CoCl2#center dot#2D2O

    DEFF Research Database (Denmark)

    Christensen, N.B.; Lefmann, K.; Johannsen, I.;

    2000-01-01

    We have investigated the possible occurrence of magnetic Bloch oscillations in CoCl2 . 2D(2)O. We were unable to observe these oscillations at 20.0 K, just above T-N. In an attempt to explain this result, we studied spin waves in the a*-c* plane in order to estimate the effect of the interchain...

  12. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    Science.gov (United States)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  13. CHANGES IN PARTICLE PUMPING DUE TO VARIATION IN MAGNETIC BALANCE NEAR DOUBLE-NULL IN DIII-D

    International Nuclear Information System (INIS)

    OAK-B135 The authors report on a recent experiment examining how changes in the divertor magnetic balance affect the rate that particles can be pumped at the divertor targets. They find that both the edge density of the core plasma and divertor recycling play important roles in properly interpreting this pumping result. Previous studies on DIII-D have identified several important differences between double-null (DN) and single-null (SN) divertor operation. Small variations in the magnetic balance near-DN have large effects on both the power- and particle loadings at the divertor targets. These most likely result from an interplay between the plasma geometry and ion particle drifts, e.g., ''B x (del)B'' and ''E x B'' drifts. Other studies have shown that changes in magnetic balance affect the core plasma and where ELMs strike the vessel. In this paper, they examine how variations in the magnetic balance impact the rate at which particles are removed from the core plasma via pumping

  14. CHANGES IN PARTICLE PUMPING DUE TO VARIATION IN MAGNETIC BALANCE NEAR DOUBLE-NULL IN DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    PETRIE,TW; WATKINS,JG; ALLEN,SL; BROOKS,NH; FENSTERMACHER,ME; FERRON,JR; GREENFIELD,CM; GROTH,M; HYATT, AW; LUCE,TC; MAHDVI,MA; SCHAFFER,MJ; WADE,MR; WEST,WP; THE DIII-D TEAM

    2003-07-01

    OAK-B135 The authors report on a recent experiment examining how changes in the divertor magnetic balance affect the rate that particles can be pumped at the divertor targets. They find that both the edge density of the core plasma and divertor recycling play important roles in properly interpreting this pumping result. Previous studies on DIII-D have identified several important differences between double-null (DN) and single-null (SN) divertor operation. Small variations in the magnetic balance near-DN have large effects on both the power- and particle loadings at the divertor targets. These most likely result from an interplay between the plasma geometry and ion particle drifts, e.g., ''B x {del}B'' and ''E x B'' drifts. Other studies have shown that changes in magnetic balance affect the core plasma and where ELMs strike the vessel. In this paper, they examine how variations in the magnetic balance impact the rate at which particles are removed from the core plasma via pumping.

  15. High-resolution magnetic resonance angiography of the internal carotid artery: 2D vs 3D TOF in stenotic disease

    Energy Technology Data Exchange (ETDEWEB)

    Carriero, A.; Magarelli, N.; Marano, R.; Ambrosini, R.; Bonomo, L. [Department of Radiology, University of Chieti (Italy); Scarabino, T. [IRCCS, S. Giovanni Rotondo, Foggia (Italy); Salvolini, U. [Department of Neuroradiology, University of Ancona (Italy)

    1998-10-01

    The aim of this study was to compare high-resolution 2D TOF with high-resolution 3D TOF in the study of internal carotid artery disease. Sixty-four patients with clinical signs of cerebrovascular insufficiency were studied with a superconductive 1.5 T magnet using two techniques: 2D and 3D TOF. Digital subtraction angiography (DSA) was the gold standard. The 2D TOF technique was performed using the following parameters: TR/TE/FA/MA 49 ms/9 ms/60 /512 x 256; the 3D TOF was performed with the following parameters: TR/TE/FA/MA 50 ms/8 ms/20 /512 x 256. The 2D TOF agreed with DSA in 116 of 128 diagnostic judgments (90 %) and overestimated seven times. The 3D TOF technique agreed with DSA in 125 of 128 diagnostic judgments (97 %) with one overestimation and two underestimations. There was no statistically significant difference (P < 0.05) between the two different techniques. Our study confirms the high reliability of themethodology carried out with the high-resolution 2D and 3D technique. (orig.) (orig.) With 1 fig., 5 refs.

  16. The Study on the Shape of 2-D Stator with Electromagnets and Permanent Magnets for 3-D Superconducting Actuator

    Science.gov (United States)

    Ozasa, S.; Kim, S. B.; Nakano, H.; Sawae, M.; Kobayashi, H.

    The electric device applications of a high temperature superconducting (HTS) bulk magnet having stable levitation and suspension properties due to their strong flux pinning force have been proposed and developed. We have been investigating the three-dimensional (3-D) superconducting actuator using HTS bulk to develop a non-contact transportation device. Probably, the cost of the manufactory will be increased to install the 2-D arranged electromagnets (EM) in a large area because many EMs are needed to cover the area. Therefore, we have been trying to find the method for reducing the number of EMs. In this study, all the EMs except for rotation were replaced in the 2-D arranged permanent magnets (PM), and gap length between PMs were experimentally investigated to improve the dynamic behavior of the mover and to reduce the cost of the manufacturing. As a result, we have succeeded in conveyance of the bulk and reduce the convergence time and maximum overshoot.

  17. Understanding the focusing of charged particle for 2D sheet beam in a cusped magnetic field

    CERN Document Server

    Banerjee, Tusharika S; Reddy, K T V

    2016-01-01

    The requirement of axial magnetic field for focusing and transportation of sheet beam using cusped magnets is less as compared to solenoid magnetic fields which is uniform. There is often some confusion about how a cusped magnetic field focuses high current density sheet beam because it is generally understood that non-uniform magnetic field cannot guide the particle beam along its axis of propagation .In this paper, we perform simple analysis of the dynamics of sheet beam in a cusped magnetic field with single electron model and emphasize an intuitive understanding of interesting features (as beam geometry, positioning of permanent magnets, particle radius,particle velocity,radius of curvature of particle inside cusped magnetic field)

  18. 2D profile of poloidal magnetic field diagnosed by a laser-driven ion-beam trace probe (LITP)

    Science.gov (United States)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Lin, Chen; Wang, Long; Xu, Min; Yu, Yi

    2016-11-01

    Based on large energy spread of laser-driven ion beam (LIB), a new method, the Laser-driven Ion-beam Trace Probe (LITP), was suggested recently to diagnose the poloidal magnetic field (Bp) and radial electric field (Er) in toroidal devices. Based on another property of LIB, a wide angular distribution, here we suggested that LITP could be extended to get 2D Bp profile or 1D profile of both poloidal and radial magnetic fields at the same time. In this paper, we show the basic principle, some preliminary simulation results, and experimental preparation to test the basic principle of LITP.

  19. Perspective: Probing 2-D magnetic structures in a 3-D world

    Directory of Open Access Journals (Sweden)

    A. J. Grutter

    2016-03-01

    Full Text Available Magnetic interfaces have been identified as promising systems upon which to base next-generation spintronic devices. In these nearly two-dimensional systems, deviations from bulk electronic structure and competition between nearly degenerate magnetic ground states allow the stabilization of widely tunable emergent properties. However, ever smaller length scales pose new challenges which must be overcome in order to understand and control magnetic properties at the atomic level. Using recent examples in oxide heterostructures and topological insulators, we discuss how combining techniques such as neutron scattering, X-ray scattering, X-ray spectroscopy, and transmission electron microscopy enables the probing of magnetism on the Angstrom scale.

  20. Brain Extraction and Fuzzy Tissue Segmentation in Cerebral 2D T1-Weigthed Magnetic Resonance Images

    OpenAIRE

    Bouchaib Cherradi; Omar Bouattane; Mohamed Youssfi; Abdelhadi Raihani

    2011-01-01

    In medical imaging, accurate segmentation of brain MR images is of interest for many brain manipulations. In this paper, we present a method for brain Extraction and tissues classification. An application of this method to the segmentation of simulated MRI cerebral images in three clusters will be made. The studied method is composed with different stages, first Brain Extraction from T1-weighted 2D MRI slices (TMBE) is performed as pre-processing procedure, then Histogram based centroids init...

  1. Early detection of cardiac involvement in Miyoshi myopathy: 2D strain echocardiography and late gadolinium enhancement cardiovascular magnetic resonance

    Directory of Open Access Journals (Sweden)

    Kim Byoung

    2010-05-01

    Full Text Available Abstract Background Miyoshi myopathy (MM is an autosomal recessive distal myopathy characterized by early adult onset. Cardiomyopathy is a major clinical manifestation in other muscular dystrophies and an important prognostic factor. Although dysferlin is highly expressed in cardiac muscle, the effect of dysferlin deficiency in cardiac muscle has not been studied. We hypothesized that early myocardial dysfunction could be detected by 2D strain echocardiography and late gadolinium enhancement (LGE cardiovascular magnetic resonance (CMR. Method Five consecutive MM patients (3 male in whom we detected the DYSF gene mutation and age-matched healthy control subjects were included. None of the patients had history of cardiac disease or signs and symptoms of overt heart failure. Patients were studied using 2D strain echocardiography and CMR, with 2D strain being obtained using the Automated Function Imaging technique. Results All patients had preserved left ventricular systolic function. However, segmental Peak Systolic Longitudinal Strain (PSLS was decreased in 3 patients. Global PSLS was significantly lower in patients with MM than in control subjects (p = 0.005. Basal anterior septum, basal inferior septum, mid anterior, and mid inferior septum PSLS were significantly lower in patients with MM than in control subjects (P Conclusions Patients with MM showed subclinical involvement of the heart. 2D strain and LGE are sensitive methods for detecting myocardial dysfunction prior to the development of cardiovascular symptoms. The prognostic significance of these findings warrants further longitudinal follow-up.

  2. Implementation and application of a novel 2D magnetic twisting cytometry based on multi-pole electromagnet

    Science.gov (United States)

    Chen, La; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-06-01

    We implemented a novel 2D magnetic twisting cytometry (MTC) based on a previously reported multi-pole high permeability electromagnet, in which both the strength and direction of the twisting field can be controlled. Thanks to the high performance twisting electromagnet and the heterodyning technology, the measurement frequency has been extended to the 1 kHz range. In order to obtain high remanence of the ferromagnetic beads, a separate electromagnet with feedback control was adopted for the high magnetic field polarization. Our setup constitutes the first instrument which can be operated both in MTC mode and in magnetic tweezers (MT) mode. In this work, the mechanical properties of HL-1 cardiomyocytes were characterized in MTC mode. Both anisotropy and log-normal distribution of cell stiffness were observed, which agree with our previous results measured in MT mode. The response from these living cells at different frequencies can be fitted very well by the soft glassy rheology model.

  3. 2D image of local density and magnetic fluctuations from line-integrated interferometry-polarimetry measurements

    International Nuclear Information System (INIS)

    Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved

  4. Observed and Simulated Power Spectra of Kinetic and Magnetic Energy retrieved with 2D inversions

    CERN Document Server

    Danilovic, S; van Noort, M; Cameron, R

    2016-01-01

    We try to retrieve the power spectra with certainty to the highest spatial frequencies allowed by current instrumentation. For this, we use 2D inversion code that were able to recover information up to the instrumental diffraction limit. The retrieved power spectra have shallow slopes extending further down to much smaller scales than found before. They seem not to show any power law. The observed slopes at subgranular scales agree with those obtained from recent local dynamo simulations. Small differences are found for vertical component of kinetic energy that suggest that observations suffer from an instrumental effect that is not taken into account.

  5. 2D Analysis of Thermomechanical Response to Unbalanced Currents in Quenching Superconducting Magnets

    CERN Document Server

    AUTHOR|(CDS)2140986

    The thesis aims at studying coupling between electromagneticthermal and mechanical phenomena occurring after a quench in the superconducting magnets. For this reason, two models representing both domains are coupled by means of area-based coupling.

  6. Identification of magnetic deposits in 2-D axisymmetric eddy current models via shape optimization

    OpenAIRE

    Jiang, Zixian; Haddar, Houssem; Lechleiter, Armin; El-Guedri, Mabrouka

    2015-01-01

    International audience The non-destructive control of steam generators is an essential task for the safe and failure-free operation of nuclear power plants. Due to magnetite particles in the cooling water of the plants, a frequent source for failures are magnetic deposits in the cooling loop of steam generators. From eddy current signals measured inside a U-tube in the steam generator, we propose and analyze a regularized shape optimization algorithm to identify magnetic deposits outside t...

  7. Monolithic integration of focused 2D GMR spin valve magnetic field sensor for high-sensitivity (compass) applications (Presentation Recording)

    Science.gov (United States)

    Ueberschär, Olaf; Almeida, Maria J.; Matthes, Patrick; Müller, Mathias; Ecke, Ramona; Exner, Horst; Schulz, Stefan E.

    2015-09-01

    We have designed and fabricated 2D GMR spin valve sensors on the basis of IrMn/CoFe/Cu/CoFe/NiFe nanolayers in monolithic integration for high sensitivity applications. For a maximum signal-to-noise ratio, we realize a focused double full bridge layout featuring an antiparallel exchange bias pinning for neighbouring meanders and an orthogonal pinning for different bridges. This precise alignment is achieved with microscopic precision by laser heating and subsequent in-field cooling. Striving for maximum signal sensitivity and minimum hysteresis, we study in detail the impact of single meander geometry on the total magnetic structure and electronic transport properties. The investigated geometrical parameters include stripe width, stripe length, cross bar material and total meander length. In addition, the influence of the relative alignment between reference magnetization (pinned layer) and shape anisotropy (free layer) is studied. The experimentally obtained data are moreover compared to the predictions of tailored micromagnetic simulations. Using a set of optimum parameters, we demonstrate that our sensor may readily be employed to measure small magnetic fields, such as the ambient (geomagnetic) field, in terms of a 2D vector with high spatial (~200 μm) and temporal (~1 ms) resolution.

  8. Brain Extraction and Fuzzy Tissue Segmentation in Cerebral 2D T1-Weigthed Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Bouchaib Cherradi

    2011-05-01

    Full Text Available In medical imaging, accurate segmentation of brain MR images is of interest for many brain manipulations. In this paper, we present a method for brain Extraction and tissues classification. An application of this method to the segmentation of simulated MRI cerebral images in three clusters will be made. The studied method is composed with different stages, first Brain Extraction from T1-weighted 2D MRI slices (TMBE is performed as pre-processing procedure, then Histogram based centroids initialization is done, and finally the fuzzy c-means clustering algorithm is applied on the results to segment the image in three clusters. The introduction of this pre-processing procedure has been made in the goal to have a targeted segmentation method. The convergence speed for tissues classification has been considerably improved by avoiding a random initialization of the cluster centres and reduction of the volume of data processing.

  9. A 2D finite element procedure for magnetic field analysis taking into account a vector Preisach model

    Directory of Open Access Journals (Sweden)

    Luc R. Dupré

    1997-01-01

    Full Text Available The main purpose of this paper is to incorporate a refined hysteresis model, viz. a vector Preisach model, in 2D magnetic field computations. To this end the governing Maxwell equations are rewritten in a suitable way, which allows to take into account the proper magnetic material parameters and, moreover, to pass to a variational formulation. The variational problem is solved numerically by a FE approximation, using a quadratic mesh, followed by the time discretisation based upon a modified Cranck Nicholson algorithm. The latter includes a suitable iteration procedure to deal with the nonlinear hysteresis behaviour. Finally, the effectiveness of the presented mathematical tool has been confirmed by several numerical experiments.

  10. MITL: A 2-D code to investigate electron flow through non-uniform field region of magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Self-magnetically insulated, high voltage transmission lines are used in inertial confinement fusion particle accelerators to transmit power from the vacuum insulator to the diode. Injection and output convoluted sections pose special problems in establishing the desired electron flow pattern needed to maintain high overall efficiency. A time independent, 2-D numerical code for planar or triplate geometries calculates the motion of a test electron through the tapered input or output convolutes. The 1-D parapotential model is assumed to be appropriate at each position and the magnetic field and potential distribution are calculated in the vicinity of the particle. The electric field is then calculated from Gauss's Law, and the electron motion is calculated relativistically. The results show that the electron canonical momentum in the direction of flow change as the electron passes through a convoluted geometry

  11. Metal-insulator transition of 2d electron gas in a random magnetic field

    CERN Document Server

    Wang, X R; Liu, D Z

    1999-01-01

    We study the metal-insulator transition of a two-dimensional electron gas in the presence of a random magnetic field from the localization property. The localization length is directly calculated using a transfer matrix technique and finite size scaling analysis. We argue that there is a metal-insulator transition in such a system and show strong numerical evidence that the system undergoes a disorder driven Kosterlitz-Thouless type metal-insulator transition. We will also discuss a mean field theory which maps the random field system into a two-dimensional XY-model. The vortex and antivortex excitations in the XY-model correspond to two different kinds of magnetic domains in the random field system.

  12. Spin-dynamics simulations of vortex precession in 2-D magnetic dots

    Energy Technology Data Exchange (ETDEWEB)

    Depondt, Ph., E-mail: depondt@insp.jussieu.fr [Institut des NanoSciences de Paris, Universite Pierre et Marie Curie, UMR 7588 CNRS, 75252 Paris Cedex 05 (France); Levy, J.-C.S., E-mail: jean-claude.levy@univ-paris-diderot.fr [Materiaux et Phenomenes Quantiques, Universite Denis Diderot, UMR 7162 CNRS, 75013 Paris (France)

    2011-10-31

    Highlights: → Vortex precession was simulated in two-dimensional magnetic dots of finite size. → A simple qualitative explanation of the observed behaviors is proposed, including seemingly erratic ones. → Pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided. -- Abstract: Vortex precession was simulated in two-dimensional magnetic dots. The Landau-Lifshitz equation with exchange and dipolar interactions was integrated at a low temperature with initial conditions consisting in a single vortex situated aside from the central position. This vortex precesses around the center of the sample and either can be expelled or converges towards the center. These relaxation processes are systematically studied. A simple qualitative explanation of the observed behaviors is proposed, including seemingly somewhat erratic ones. Intrinsic pinning of the vortex motion, unconnected with defects, is also observed and an explanation thereof provided.

  13. Analytical computation of the magnetization probability density function for the harmonic 2D XY model

    CERN Document Server

    Palma, G

    2009-01-01

    The probability density function (PDF) of some global average quantity plays a fundamental role in critical and highly correlated systems. We explicitly compute this quantity as a function of the magnetization for the two dimensional XY model in its harmonic approximation. Numerical simulations and perturbative results have shown a Gumbel-like shape of the PDF, in spite of the fact that the average magnetization is not an extreme variable. Our analytical result allows to test both perturbative analytical expansions and also numerical computations performed previously. Perfect agreement is found for the first moments of the PDF. Also for large volume and in the high temperature limit the distribution becomes Gaussian, as it should be. In the low temperature regime its numerical evaluation is compatible with a Gumbel distribution.

  14. New 2D Thermal Model Applied to an LHC Inner Triplet Quadrupole Magnet

    CERN Document Server

    Bielert, ER; Ten Kate, HHJ; Verweij, AP

    2011-01-01

    A newly developed numerical model is presented that enables to compute two-dimensional heat transfer and temperature distributions over the cross-section of superconducting accelerator magnets. The entire thermal path from strand-in-cable to heat sink, including helium channels is considered. Superfluid helium properties are combined with temperature- and field-dependent non-linear solid material properties. Interfacial interactions are also taken into account. The model is applied to the cross-section of an inner triplet quadrupole magnet featuring a new concept for the ground insulation. Beam loss profiles are implemented as main heat source. It is concluded that operational margins can be considerably increased by opening additional thermal paths, improving the cooling conditions.

  15. 2D stationary resistive MHD flows: borderline to magnetic reconnection solutions

    CERN Document Server

    Nickeler, D H; Nickeler, Dieter H.; Fahr, Hans-Joerg

    2005-01-01

    We present the basic equations for stationary, incompressible resistive MHD flows in two dimensions. This leads to a system of differential equations for two flux functions, one elliptic partial differential equation (Grad-Shafranov-like) for the magnetic flux function and one for the stream function of the flow. In these equations two potentials appear: one potential is a generalized pressure. The second potential couples the magnetic and the flow shear components of the system. With the restriction to flux or at least line conserving flows one has to solve a modified Ohm's law. For the two dimensional case these are two coupled differential equations, which represent the borderline between the resistive but flux conserving (or line conserving) case, and that of reconnective solutions. We discuss some simplified solutions of these equations.

  16. Spin-current resonances in a magnetically inhomogeneous 2D conducting system

    Science.gov (United States)

    Charkina, O. V.; Kalinenko, A. N.; Kopeliovich, A. I.; Pyshkin, P. V.; Yanovsky, A. V.

    2016-10-01

    The high-frequency transport in a two-dimensional conducting ring having an inhomogeneous collinear magnetic structure has been considered in the hydrodynamic approximation. It is shown that the frequency dependence on the radial electric conductivity of the ring exhibits resonances corresponding to new hybrid oscillations in such systems. The oscillation frequencies are essentially dependent on the applied electromagnetic field and the spin state of the system.

  17. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles.

    Science.gov (United States)

    Carreño, N L V; Escote, M T; Valentini, A; McCafferty, L; Stolojan, V; Beliatis, M; Mills, C A; Rhodes, R; Smith, C T G; Silva, S R P

    2015-11-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m(2) g(-1), compared to approx. 4 m(2) g(-1) for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species. PMID:26441224

  18. Development of 2D/3D equilibrium codes for magnetically confined fusion experiments

    OpenAIRE

    Trevisan, Gregorio Luigi

    2013-01-01

    The present work is the result of a three-year Ph.D. research project carried out at Consorzio RFX on magnetically confined plasmas. Research on controlled thermonuclear fusion is currently being pursued by many countries throughout the world, thanks to its promise of a relatively clean and abundant energy source. The next steps for the international community are the construction and operation of a large device, ITER, considered as the last fusion physics experiment with respect to the tokam...

  19. Adsorbent 2D and 3D carbon matrices with protected magnetic iron nanoparticles

    Science.gov (United States)

    Carreño, N. L. V.; Escote, M. T.; Valentini, A.; McCafferty, L.; Stolojan, V.; Beliatis, M.; Mills, C. A.; Rhodes, R.; Smith, C. T. G.; Silva, S. R. P.

    2015-10-01

    We report on the synthesis of two and three dimensional carbonaceous sponges produced directly from graphene oxide (GO) into which functionalized iron nanoparticles can be introduced to render it magnetic. This simple, low cost procedure, wherein an iron polymeric resin precursor is introduced into the carbon framework, results in carbon-based materials with specific surface areas of the order of 93 and 66 m2 g-1, compared to approx. 4 m2 g-1 for graphite, decorated with ferromagnetic iron nanoparticles giving coercivity fields postulated to be 216 and 98 Oe, values typical for ferrite magnets, for 3.2 and 13.5 wt% Fe respectively. The strongly magnetic iron nanoparticles are robustly anchored to the GO sheets by a layer of residual graphite, on the order of 5 nm, formed during the pyrolysis of the precursor material. The applicability of the carbon sponges is demonstrated in their ability to absorb, store and subsequently elute an organic dye, Rhodamine B, from water as required. It is possible to regenerate the carbon-iron hybrid material after adsorption by eluting the dye with a solvent to which it has a high affinity, such as ethanol. The use of a carbon framework opens the hybrid materials to further chemical functionalization, for enhanced chemical uptake of contaminants, or co-decoration with, for example, silver nanoparticles for bactericidal properties. Such analytical properties, combined with the material's magnetic character, offer solutions for environmental decontamination at land and sea, wastewater purification, solvent extraction, and for the concentration of dilute species.

  20. Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms.

    Science.gov (United States)

    Schouteden, K; Ivanova, Ts; Li, Z; Iancu, V; Janssens, E; Van Haesendonck, C

    2015-03-19

    Metalated molecules are the ideal building blocks for the bottom-up fabrication of, e.g., two-dimensional arrays of magnetic particles for spintronics applications. Compared to chemical synthesis, metalation after network formation by an atom beam can yield a higher degree of control and flexibility and allows for mixing of different types of magnetic atoms. We report on successful metalation of tetrapyridyl-porphyrins (TPyP) by Co and Cr atoms, as demonstrated by scanning tunneling microscopy experiments. For the metalation, large periodic networks formed by the TPyP molecules on a Ag(111) substrate are exposed in situ to an atom beam. Voltage-induced dehydrogenation experiments support the conclusion that the porphyrin macrocycle of the TPyP molecule incorporates one transition metal atom. The newly synthesized Co-TPyP and Cr-TPyP complexes exhibit striking differences in their electronic behavior, leading to a magnetic character for Cr-TPyP only as evidenced by Kondo resonance measurements.

  1. A comprehensive parameter study of an active magnetic regenerator using a 2D numerical model

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders;

    2010-01-01

    , cycle frequency and fluid movement. These are cast into the non-dimensional units utilization, porosity and number of transfer units (NTU). The cooling capacity vs. temperature span is mapped as a function of these parameters and each configuration is evaluated through the maximum temperature span......A two-dimensional numerical heat transfer model is used to investigate an active magnetic regenerator (AMR) based on parallel plates of magnetocaloric material. A large range of parameter variations are performed to study the optimal AMR. The parameters varied are the plate and channel thicknesses...

  2. 2D Magnetic Design and Optimization of a 88-mm Aperture 15 T Dipole for NED

    CERN Document Server

    Schwerg, N; Devred, A; Leroy, D

    2007-01-01

    The Next European Dipole (NED) activity supported by the European Union aims at the development of a high-performance Nb3Sn conductor ( c = 1500A mm 2 @15 T, 4.2 K) in collaboration with European industry and at the design of a highfield dipole magnet making use of this conductor. In the framework of the NED collaboration which coordinates the activity of several institutes,CERNhas contributed to the electromagnetic design study of a cos , layer-type superconducting dipole with an 88 mm aperture that is able to reach 15 T at 4.2 K. Part of the optimization process was dedicated to the reduction of the multipole coefficients so as to improve field quality while keeping an efficient peak-field to main-field ratio. In this paper, we present the optimization of the coil cross-section and of the shape of the iron yoke to reduce saturation-induced field errors during ramp. The effects of persistent magnetization currents are also estimated and different methods to compensate persistent-current-induced field distort...

  3. Vortex polarity in 2-D magnetic dots by Langevin dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Depondt, Ph., E-mail: depondt@insp.jussieu.f [Institut des NanoSciences de Paris, Universite Pierre et Marie Curie, UMR 7588 CNRS, 75252 Paris Cedex 05 (France); Levy, J.-C.S., E-mail: jean-claude.levy@univ-paris-diderot.f [Materiaux et Phenomenes Quantiques, Universite Denis Diderot, UMR 7162 CNRS, 75013 Paris (France); Mertens, F.G., E-mail: franz.mertens@uni-bayreuth.d [Physikalisches Institut, Universitaet Bayreuth, D-95440 Bayreuth (Germany)

    2011-01-17

    Two-dimensional magnetic plots of finite size were simulated by integrating the Landau-Lifshitz equation for the isotropic Heisenberg model with a systematic exploration of the effect of dipole-dipole interactions of various strengths d, at a low temperature. Structures with or without vortices are observed, and in the cases in which vortices are present, out-of-plane contributions show only for relatively weak dipolar strengths: the integrated intensity of the out-of-plane component decreases roughly as 1/d with increasing dipolar strength while the vortex core width decreases as d{sup -1/2}. The coexistence of several vortices with an out-of-plane component seems limited to a narrow d-range, at least for the sample sizes studied. The size limit below which the vortices disappear decreases roughly as 1/d.

  4. 2D transition-metal diselenides: phase segregation, electronic structure, and magnetism

    International Nuclear Information System (INIS)

    Density-functional theory is used to investigate the phase-segregation behavior of two-dimensional transition-metal dichalcogenides, which are of current interest as beyond-graphene materials for optoelectronic and spintronic applications. Our focus is on the behavior of W1−xVxSe2 monolayers, whose end members are semiconducting WSe2 and ferromagnetic VSe2. The energetics favors phase segregation, but the spinodal decomposition temperature is rather low, about 420 K. The addition of V leads to a transition from a nonmagnetic semiconductor to a metallic ferromagnet, with a ferromagnetic moment of about 1.0 μ B per V atom. The transition is caused by a p-type doping mechanism, which shifts the Fermi level into the valence band. The finite-temperature structure and magnetism of the diselenide systems are discussed in terms of Onsager-type critical fluctuations and Bruggeman effective-medium behavior. (paper)

  5. Experimental Observation of a Metal-insulator Transition in 2D at Zero Magnetic Field

    Science.gov (United States)

    Kravchenko, S. V.

    1996-03-01

    The scaling theory of Abrahams et al. ^1 has had considerable success in describing many features of metal-insulator transitions. Within this theory, which was developed for non-interacting electrons, no such transition is possible in two-dimensional electron systems (2DES) in the absence of a magnetic field. However, we show experimentally that an ultra-high-mobility 2DES on the surface of silicon does exhibit the signature of a true metal-insulator phase transition at zero magnetic field at a critical electron density n_c ~10^11 cm-2. The energy of electron-electron interactions, ignored in the scaling theory,^1 is the dominant parameter in this 2DES. The resistivity, ρ, is empirically found to scale near the critical point both with temperature T and electric field E so that it can be represented by the form ρ(T,n_s)=ρ(T/T_0(n_s)) as Earrow0 or ρ(E,n_s)=ρ(E/E_0(n_s)) as Tarrow0. At the transition, the resistivity is close to 3h/e^2. Both scaling parameters, T0 and E_0, show power law behavior at the critical point. This is characteristic of a true phase transition and strongly resembles, in particular, the superconductor-insulator transition in disordered thin films,^2 as well as the transition between quantum Hall liquid and insulator.^3 Many high-mobility samples from two different sources (Institute for Metrological Service, Russia, and Siemens AG, Germany) with different oxide thicknesses and gate materials have been studied and similar results were found. Work done in collaboration with J. E. Furneaux, Whitney Mason, V. M. Pudalov, and M. D'Iorio, supported by NSF. ^1 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979). ^2 Y. Liu, K. A. McGreer, B. Nease, D. B. Haviland, G. Martinez, J. W. Halley, and A. M. Goldman, Phys. Rev. Lett. 67, 2068 (1991). ^3 T. Wang, K. P. Clark, G. F. Spencer, A. M. Mack, and W. P. Kirk, Phys. Rev. Lett. 72, 709 (1994).

  6. 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Gabbour, Maya [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Schnell, Susanne [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Jarvis, Kelly [Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Robinson, Joshua D. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Pediatrics, Division of Pediatric Cardiology, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Pediatrics, Chicago, IL (United States); Markl, Michael [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Northwestern University, Department of Biomedical Engineering, McCormick School of Engineering, Evanston, IL (United States); Rigsby, Cynthia K. [Ann and Robert H. Lurie Children' s Hospital of Chicago, Department of Medical Imaging 9, Chicago, IL (United States); Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States)

    2015-06-15

    Doppler echocardiography (echo) is the reference standard for blood flow velocity analysis, and two-dimensional (2-D) phase-contrast magnetic resonance imaging (MRI) is considered the reference standard for quantitative blood flow assessment. However, both clinical standard-of-care techniques are limited by 2-D acquisitions and single-direction velocity encoding and may make them inadequate to assess the complex three-dimensional hemodynamics seen in congenital heart disease. Four-dimensional flow MRI (4-D flow) enables qualitative and quantitative analysis of complex blood flow in the heart and great arteries. The objectives of this study are to compare 4-D flow with 2-D phase-contrast MRI for quantification of aortic and pulmonary flow and to evaluate the advantage of 4-D flow-based volumetric flow analysis compared to 2-D phase-contrast MRI and echo for peak velocity assessment in children and young adults. Two-dimensional phase-contrast MRI of the aortic root, main pulmonary artery (MPA), and right and left pulmonary arteries (RPA, LPA) and 4-D flow with volumetric coverage of the aorta and pulmonary arteries were performed in 50 patients (mean age: 13.1 ± 6.4 years). Four-dimensional flow analyses included calculation of net flow and regurgitant fraction with 4-D flow analysis planes similarly positioned to 2-D planes. In addition, 4-D flow volumetric assessment of aortic root/ascending aorta and MPA peak velocities was performed and compared to 2-D phase-contrast MRI and echo. Excellent correlation and agreement were found between 2-D phase-contrast MRI and 4-D flow for net flow (r = 0.97, P < 0.001) and excellent correlation with good agreement was found for regurgitant fraction (r = 0.88, P < 0.001) in all vessels. Two-dimensional phase-contrast MRI significantly underestimated aortic (P = 0.032) and MPA (P < 0.001) peak velocities compared to echo, while volumetric 4-D flow analysis resulted in higher (aortic: P = 0.001) or similar (MPA: P = 0.98) peak

  7. Structural and magnetic properties of quasi-1 and 2D pyrazine-containing spin-1/2 antiferromagnets.

    Energy Technology Data Exchange (ETDEWEB)

    Manson, J. L.; Connor, M. M.; Schlueter, J. A.; Hyzer, K. A.; Kykeem, A.; Materials Science Division; Eastern Washington Univ.

    2007-06-01

    Aqueous reaction of Cu(BF{sub 4}){sub 2}, NH{sub 4}HF{sub 2}, and pyrazine leads to formation of a novel 3D framework, [Cu(HF{sub 2})(pyz){sub 2}]BF{sub 4} (1), where 2D [Cu(pyz){sub 2}]{sup 2+} square layers are connected via HF{sub 2}{sup -}. A second compound, Cu(ReO{sub 4}){sub 2}(H{sub 2}O){sub 2}(pyz) (2), was the result of our attempt to create the perrhenate analog of 1; a linear chain compound consisting of CuO{sub 4}N{sub 2} octahedra linked through pyrazine ligands formed instead. Both compounds exhibit extensive hydrogen bonding interactions where bifluoride, F...H...F{sup -}, and O-H...O link layers and chains together in 1 and 2, respectively. Broad maxima indicative of short-range magnetic ordering (SRO) were observed in the magnetic susceptibility at 5.5 (1) and 7.7 K (2) while no evidence for the transition to long-range magnetic ordering (LRO) was detected above 2 K.

  8. MHD wave propagation from the sub-photosphere to the corona in an arcade-shaped magnetic field with a null point

    CERN Document Server

    Santamaria, Irantzu C; Collados, Manuel

    2015-01-01

    The aim of this work is to study the energy transport by means of MHD waves propagating in quiet Sun magnetic topology from layers below the surface to the corona. Upward propagating waves find obstacles, such as the equipartition layer with plasma b=1 and the transition region, and get converted, reflected and refracted. Understanding the mechanisms by which MHD waves can reach the corona can give us information about the solar atmosphere and the magnetic structures. We carry out two-dimensional numerical simulations of wave propagation in a magnetic field structure that consists of two vertical flux tubes separated by an arcade shaped magnetic field. This configuration contains a null point in the corona, that significantly modifies the behaviour of the waves. We describe in detail the wave propagation through the atmosphere under different driving conditions. We also present the spatial distribution of the mean acoustic and magnetic energy fluxes and the spatial distribution of the dominant frequencies in ...

  9. Global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system with non-equilibrium background magnetic field

    Science.gov (United States)

    Zhai, Cuili; Zhang, Ting

    2016-09-01

    In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.

  10. 2D Simulation of Nd2Fe14B/α-Fe Nanocomposite Magnets with Random Grain Distributions Generated by a Monte Carlo Procedure

    Directory of Open Access Journals (Sweden)

    Nguyen Xuan Truong

    2012-01-01

    Full Text Available The magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets consisting of two nanostructured hard and soft magnetic grains assemblies were simulated for 2D case with random grain distributions generated by a Monte Carlo procedure. The effect of the soft phase volume fraction on the remanence Br, coercivity Hc, squareness γ, and maximum energy product (BHmax has been simulated for the case of Nd2Fe14B/α-Fe nanocomposite magnets. The simulation results showed that, for the best case, the (BHmax can be gained up only a several tens of percentage of the origin hard magnetic phase, but not about hundred as theoretically predicted value. The main reason of this discrepancy is due to the fact that the microstructure of real nanocomposite magnets with their random feature is deviated from the modeled microstructure required for implementing the exchange coupling interaction between hard and soft magnetic grains. The hard magnetic shell/soft magnetic core nanostructure and the magnetic field assisted melt-spinning technique seem to be prospective for future high-performance nanocomposite magnets.

  11. Effect of resonant magnetic perturbations with toroidal mode numbers of 4 and 6 on ELMs in single null H-mode plasmas in MAST

    OpenAIRE

    Kirk, A.; Chapman, I. T.; Harrison, J.; Liu, Yueqiang; Nardon, E; Saarelma, S.; Scannell, R.; Thornton, A. J.; team, the MAST

    2013-01-01

    The application of resonant magnetic perturbations (RMPs) with a toroidal mode number of n=4 or n=6 to lower single null plasmas in the MAST tokamak produces up to a factor of 5 increase in Edge Localized Mode (ELM) frequency and reduction in plasma energy loss associated with type-I ELMs. A threshold current for ELM mitigation is observed above which the ELM frequency increases approximately linearly with current in the coils. Despite a large scan of parameters, complete ELM suppression has ...

  12. Parasitic extraction and magnetic analysis for transformers, inductors and igbt bridge busbar with maxwell 2d and maxwell 3d simulation

    Science.gov (United States)

    Zhang, Ning

    This thesis presents the parasitic extraction and magnetic analysis for transformers, inductors, and IGBT bridge busbars with Maxwell 2D and Maxwell 3D simulation. In the first chapter, the magnetic field of a transformer in Maxwell 2D is analyzed. The parasitic capacitance between each winding of the transformer are extracted by Maxwell 2D. According to the actual dimensions, the parasitic capacitances are calculated. The results are verified by comparing with the measurement results from 4395A impedance analyzer. In the second chapter, two CM inductors are simulated in Maxwell 3D. One is the conventional winding inductor, the other one is the proposed one. The magnetic field distributions of different winding directions are analyzed. The analysis is verified by the simulation result. The last chapter introduces a technique to analyze, extract, and measure the parasitic inductance of planar busbars. With this technique, the relationship between self-inductance and mutual-inductance is analyzed. Secondly, a total inductance is calculated based on the developed technique. Thirdly, the current paths and the inductance on a planar busbar are investigated with DC-link capacitors. Furthermore, the analysis of the inductance is addressed. Ansys Q3D simulation and analysis are presented. Finally, the experimental verification is shown by the S-parameter measurement.

  13. 2-D/3-D quench simulation using ANSYS for epoxy impregnated $Nb_{3}$ Sn high field magnets

    CERN Document Server

    Yamada, R; Marscin, E; Rey, J M; Wake, M

    2003-01-01

    A quench program using ANSYS is developed for the high field collider magnet for 3-D analysis. Its computational procedure is explained. The quench program is applied to a one meter Nb/sub 3/Sn high field model magnet, which is epoxy impregnated. The quench simulation program is used to estimate the temperature and mechanical stress inside the coil as well as over the whole magnet. It is concluded that for the one meter magnet with the presented cross section and configuration, the thermal effects due to the quench is tolerable. But we need much more quench study and improvements in the design for longer magnets. (6 refs).

  14. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    International Nuclear Information System (INIS)

    Two Keggin-type heteropolytungstates, [Co(phen)3]3[CoW12O40]·9H2O 1 (phen=1,10-phenanthroline) and [Fe(phen)3]2[FeW12O40]·H3O·H2O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)3]2+ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atoms in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm−1, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. - Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate

  15. Comparison between a 1D and a 2D numerical model of an active magnetic regenerative refrigerator

    DEFF Research Database (Denmark)

    Petersen, Thomas Frank; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden;

    2008-01-01

    a reciprocating AMR and can determine the cyclical steady-state temperature profile of the system as well as performance parameters such as the refrigeration capacity, the work input and the coefficient of performance (COP). The models are used to analyse an AMR with a regenerator made of flat parallel plates...... results of overall results such as the refrigeration capacity but that a 2D model is required for a detailed analysis of the phenomena occurring inside the AMR....

  16. One Dimensional(1D)-to-2D Crossover of Spin Correlations in the 3D Magnet ZnMn2O4

    Science.gov (United States)

    Disseler, S. M.; Chen, Y.; Yeo, S.; Gasparovic, G.; Piccoli, P. M. B.; Schultz, A. J.; Qiu, Y.; Huang, Q.; Cheong, S.-W.; Ratcliff, W.

    2015-12-01

    We report on the intriguing evolution of the dynamical spin correlations of the frustrated spinel ZnMn2O4. Inelastic neutron scattering and magnetization studies reveal that the dynamical correlations at high temperatures are 1D. At lower temperature, these dynamical correlations become 2D. Surprisingly, the dynamical correlations condense into a quasi 2D Ising-like ordered state, making this a rare observation of two dimensional order on the spinel lattice. Remarkably, 3D ordering is not observed down to temperatures as low as 300 mK. This unprecedented dimensional crossover stems from frustrated exchange couplings due to the huge Jahn-Teller distortions around Mn3+ ions on the spinel lattice.

  17. The Effect of Magnetic Field on 2-D Problem for a Mode-I Crack of a Fiber-Reinforced in Generalized Thermoelasticity

    Science.gov (United States)

    Lotfy, Kh.; Othman, Mohamed I. A.

    2014-01-01

    In the present paper, the coupled theory, Lord-Şhulman theory, and Green-Lindsay theory are introduced to study the influence of a magnetic field on the 2-D problem of a fiber-reinforced thermoelastic. These theories are also applied to study the influence of reinforcement on the total deformation of an infinite space weakened by a finite linear opening Mode-I crack. The material is homogeneous and an isotropic elastic half-space. The crack is subjected to a prescribed temperature and stress distribution. Normal mode analysis is used to solve the problem of a Mode-I crack. Numerical results for the temperature, the displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field. A comparison between the three theories is also made for different depths.

  18. The effect of a magnetic field on a 2D problem of fibre-reinforced thermoelasticity rotation under three theories

    Science.gov (United States)

    Kh., Lotfy

    2012-06-01

    In the present paper, we introduce the coupled theory (CD), Lord-Schulman (LS) theory, and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity. The material is a homogeneous isotropic elastic half-space. The method applied here is to use normal mode analysis to solve a thermal shock problem. Some particular cases are also discussed in the context of the problem. Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.

  19. A coupled 2$\\times$2D Babcock-Leighton solar dynamo model. I. Surface magnetic flux evolution

    CERN Document Server

    Lemerle, Alexandre; Carignan-Dugas, Arnaud

    2015-01-01

    The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model's key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of ...

  20. The effect of a magnetic field on a 2D problem of fibre-reinforced thermoelasticity rotation under three theories

    Institute of Scientific and Technical Information of China (English)

    Kh. Lotfy

    2012-01-01

    In the present paper,we introduce the coupled theory (CD),Lord Schulman (LS) theory,and Green-Lindsay (GL) theory to study the influences of a magnetic field and rotation on a two-dimensional problem of fibre-reinforced thermoelasticity.The material is a homogeneous isotropic elastic half-space.The method applied here is to use normal mode analysis to solve a thermal shock problem.Some particular cases are also discussed in the context of the problem.Deformation of a body depends on the nature of the force applied as well as the type of boundary conditions.Numerical results for the temperature,displacement,and thermal stress components are given and illustrated graphically in the absence and the presence of the magnetic field and rotation.

  1. Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration

    Science.gov (United States)

    Lionello, Roberto; Velli, Marco; Downs, Cooper; Linker, Jon A.; Mikić, Zoran

    2014-12-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  2. Application of a Solar Wind Model Driven by Turbulence Dissipation to a 2D Magnetic Field Configuration

    CERN Document Server

    Lionello, Roberto; Downs, Cooper; Linker, Jon A; Mikić, Zoran

    2014-01-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. (2007) developed a sophisticated, 1D, time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al. (2014), which incorporates turbulent dissipation of Alfv\\'en waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional ...

  3. Dimensional 3D-2D cross-over under magnetic field in Bi2Sr2-xLaxCuOy induced by La/Sr substitution

    Science.gov (United States)

    Murrills, C. D.; Li, Z. Z.; Raffy, H.

    2015-06-01

    The single CuO2 layer Bi2Sr2CuO6 (Bi-2201) is characterized by a low anisotropy under magnetic field. We show that this anisotropy increases exponentially from 4 to 400 with La/Sr substitution in Bi2Sr2-xLaxCu06 (Bi(La)-2201). We present a phase diagram showing the change in transport properties from 3D to 2D when the La concentration is increased, deduced from angular transport measurements in the mixed state of c-axis oriented epitaxial Bi(La)-2201 thin films with columnar pinning centers parallel to the c-axis. We attribute this anisotropy increase to the decrease of the distortion of CuO2 planes by La/Sr substitution.

  4. Preliminary comparison of the conventional and quasi-snowflake divertor configurations with the 2D code EDGE2D/EIRENE in the FAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Viola, B.; Maddaluno, G.; Pericoli Ridolfini, V. [EURATOM-ENEA Association, C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Corrigan, G.; Harting, D. [Culham Centre of Fusion Energy, EURATOM-Association, Abingdon (United Kingdom); Mattia, M. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico, 00133 Roma (Italy); Zagorski, R. [Institute of Plasma Physics and Laser Microfusion-EURATOM Association, 01-497 Warsaw (Poland)

    2014-06-15

    The new magnetic configurations for tokamak divertors, snowflake and super-X, proposed to mitigate the problem of the power exhaust in reactors have clearly evidenced the need for an accurate and reliable modeling of the physics governing the interaction with the plates. The initial effort undertaken jointly by ENEA and IPPLM has been focused to exploit a simple and versatile modeling tool, namely the 2D TECXY code, to obtain preliminary comparison between the conventional and snowflake configurations for the proposed new device FAST that should realize an edge plasma with properties quite close to those of a reactor. The very interesting features found for the snowflake, namely a power load mitigation much larger than expected directly from the change of the magnetic topology, has further pushed us to check these results with the more sophisticated computational tool EDGE2D coupled with the neutral code module EIRENE. After a preparatory work that has been carried out in order to adapt this code combination to deal with non-conventional, single null equilibria and in particular with second order nulls in the poloidal field generated in the snowflake configuration, in this paper we describe the first activity to compare these codes and discuss the first results obtained for FAST. The outcome of these EDGE2D runs is in qualitative agreement with those of TECXY, confirming the potential benefit obtainable from a snowflake configuration. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Verified Null-Move Pruning

    CERN Document Server

    David-Tabibi, Omid

    2008-01-01

    In this article we review standard null-move pruning and introduce our extended version of it, which we call verified null-move pruning. In verified null-move pruning, whenever the shallow null-move search indicates a fail-high, instead of cutting off the search from the current node, the search is continued with reduced depth. Our experiments with verified null-move pruning show that on average, it constructs a smaller search tree with greater tactical strength in comparison to standard null-move pruning. Moreover, unlike standard null-move pruning, which fails badly in zugzwang positions, verified null-move pruning manages to detect most zugzwangs and in such cases conducts a re-search to obtain the correct result. In addition, verified null-move pruning is very easy to implement, and any standard null-move pruning program can use verified null-move pruning by modifying only a few lines of code.

  6. Simulations of magnetic reconnection with Parsek2D-MLMD, a new Multi Level Multi Domain (MLMD) Implicit Moment Method (IMM) Particle in Cell (PIC) code

    Science.gov (United States)

    Innocenti, M.; Beck, A.; Lapenta, G.; Markidis, S.

    2012-12-01

    The kinetic simulation of intrinsically multi scale processes such as magnetic reconnection events with realistic mass ratios is a daunting task for explicit Particle In Cell (PIC) codes, which require to use resolutions of the order of the electron Debye length even when simulating dramatically bigger domains. As an example, a simulation of reconnection in the magnetotail, with domain sizes of the order of 20 di x 10 di (˜ 7.2 106 m x 3.6 106 m, with di being the ion skin depth) and a resolution of λD,e= 687 m, with λD,e the electron Debye length, requires the astounding number of 10500 x 5240 cells. Higher grid spacings can be used if the simulation is performed with an implicit PIC code, which substitutes a much less strict accuracy constraint to the stability constraint of explicit PIC codes. The same reconnection problem as before can be simulated, with an implicit PIC code resolving the scale of interest of de /2 instead of the electron Debye length (de is the electron skin depth), with the much more manageable number of 1920 x 958 cells. However, an even smaller number of cells can be used if, instead of using the same, high resolution on the entire domain, the domain to simulate is divided into subdomains each resolved with a grid spacing related to the physical scale of interest in the specific subdomain. In the case of reconnection, the division which immediately springs to mind is between electron diffusion region, ion diffusion region and outer region, where resolutions respectively of the order of fractions of the electron skin depth, of the ion skin depth and bigger can be used. We present here a new Multi Level Multi Domain (MLMD) Implicit Moment Method (IMM) Particle In Cell (PIC) code, Parsek2D-MLMD, able to perform simulations of magnetic reconnection where the expensive high resolutions are used only when needed, while the rest of the domain is simulated with grid spacings chosen according to the local scales of interest. The major difference

  7. Null twisted geometries

    CERN Document Server

    Speziale, Simone

    2013-01-01

    We define and investigate a quantisation of null hypersurfaces in the context of loop quantum gravity on a fixed graph. The main tool we use is the parametrisation of the theory in terms of twistors, which has already proved useful in discussing the interpretation of spin networks as the quantization of twisted geometries. The classical formalism can be extended in a natural way to null hypersurfaces, with the Euclidean polyhedra replaced by null polyhedra with space-like faces, and SU(2) by the little group ISO(2). The main difference is that the simplicity constraints present in the formalims are all first class, and the symplectic reduction selects only the helicity subgroup of the little group. As a consequence, information on the shapes of the polyhedra is lost, and the result is a much simpler, abelian geometric picture. It can be described by an Euclidean singular structure on the 2-dimensional space-like surface defined by a foliation of space-time by null hypersurfaces. This geometric structure is na...

  8. Transport Properties of 2D-Electron Gas in a InGaAs/GaAs DQW in a Vicinity of Low Magnetic-Field-Induced Insulator-Quantum Hall Liquid Transition

    Science.gov (United States)

    Arapov, Yu. G.; Yakunin, M. V.; Gudina, S. V.; Harus, G. I.; Neverov, V. N.; Shelushinina, N. G.; Podgornyh, S. M.; Uskova, E. A.; Zvonkov, B. N.

    2007-04-01

    The resistivity ρ of low mobility dilute 2D-elecron gas in a InGaAs/GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT 0.1) for our samples. We observed the coexistence of both the quantum Hall (QH) effect for the filling factors v = 2, 4 and the low magnetic field insulator — QH liquid (with v = 10) transition.

  9. Comparison of 3D Maximum intensity projection (MIP reconstruction and 2D T2 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE sequence in magnetic resonance cholangiopancreatography

    Directory of Open Access Journals (Sweden)

    Fuad Julardžija

    2014-04-01

    Full Text Available Introduction: Magnetic resonance cholangiopancreatography (MRCP is a method that allows noninvasive visualization of pancreatobiliary tree and does not require contrast application. It is a modern method based on heavily T2-weighted imaging (hydrography, which uses bile and pancreatic secretions as a natural contrast medium. Certain weaknesses in quality of demonstration of pancreatobiliary tract can be observed in addition to its good characteristics. Our aim was to compare the 3D Maximum intensity projection (MIP reconstruction and 2D T2 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo (HASTE sequence in magnetic resonance cholangiopancreatography.Methods: During the period of one year 51 patients underwent MRCP on 3T „Trio“ system. Patients of different sex and age structure were included, both outpatient and hospitalized. 3D MIP reconstruction and 2D T2 haste sequence were used according to standard scanning protocols.Results: There were 45.1% (n= 23 male and 54.9% (n=28 female patients, age range from 17 to 81 years. 2D T2 haste sequence was more susceptible to respiratory artifacts presence in 64% patients, compared to 3D MIP reconstruction with standard error (0.09, result significance indication (p=0.129 and confidence interval (0.46 to 0.81. 2D T2 haste sequences is more sensitive and superior for pancreatic duct demonstration compared to 3D MIP reconstruction with standard error (0.07, result significance indication (p=0.01 and confidence interval (0.59 to 0.87Conclusion: In order to make qualitative demonstration and analysis of hepatobiliary and pancreatic system on MR, both 2D T2 haste sequence in transversal plane and 3D MIP reconstruction are required.

  10. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. III. Catastrophe of the Eruptive Filament in a Magnetic Null Point and Formation of an Opposite-Handedness CME

    CERN Document Server

    Uralov, A M; Rudenko, G V; Myshyakov, I I; Chertok, I M; Filippov, B P; Slemzin, V A

    2014-01-01

    Our analysis in Papers I and II (Grechnev et al., 2014, Solar Phys. 289, 289 and 1279) of the 18 November 2003 solar event responsible for the 20 November geomagnetic superstorm has revealed a complex chain of eruptions. In particular, the eruptive filament encountered a topological discontinuity located near the solar disk center at a height of about 100 Mm, bifurcated, and transformed into a large cloud, which did not leave the Sun. Concurrently, an additional CME presumably erupted close to the bifurcation region. The conjectures about the responsibility of this compact CME for the superstorm and its disconnection from the Sun are confirmed in Paper IV (Grechnev et al., Solar Phys., submitted), which concludes about its probable spheromak-like structure. The present paper confirms the presence of a magnetic null point near the bifurcation region and addresses the origin of the magnetic helicity of the interplanetary magnetic clouds and their connection to the Sun. We find that the orientation of a magnetic...

  11. Hubless Flywheel with Null-E Magnetic Bearings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — For space-born energy storage systems, the energy to weight ratio is extremely important. From this perspective, a hubless flywheel energy storage design is very...

  12. Coupling Analysis of Electromagnetic Field Transverse Magnetic (TM) on 2D Photonic Crystals with Symmetrical Refractive Index Defect Using Tensor Green Method

    CERN Document Server

    Kurniawan, Candra

    2012-01-01

    Photonic crystal is a dielectric material which has a refractive index or permittivity which vary periodically, thus preventing the propagation of light with specific frequency and direction. The frequency range is called a photonic bandgap (PBG). If the structure of photonic crystals is modified by taking one line of rod in a photonic crystal is obtained a waveguide. Giving structures with symmetrical defects around the waveguide channel with the parameters given occurs coupling between the waveguide and cavity. Coupling indicates transfer part or all of the EM field depends on the frequency of EM field in the photonic crystal. Green tensor method can be used to calculate the total electric field in a 2D photonic crystal. With the aid of MATLAB programs can be shown to the powerful visualization calculation of the total electrical field in 2D photonic crystals. Based on analysis of the literature and the bandgap graphic and the field energy in the defects show that effective frequency which produces maximum ...

  13. Applications of the computer codes FLUX2D and PHI3D for the electromagnetic analysis of compressed magnetic field generators and power flow channels

    International Nuclear Information System (INIS)

    The authors present the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of a helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. The authors' third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic filed problems in cases of special and ideal geometries, the solution of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations

  14. Gravitational action with null boundaries

    CERN Document Server

    Lehner, Luis; Poisson, Eric; Sorkin, Rafael D

    2016-01-01

    We present a complete discussion of the boundary term in the action functional of general relativity when the boundary includes null segments in addition to the more usual timelike and spacelike segments. We confirm that ambiguities appear in the contribution from a null segment, because it depends on an arbitrary choice of parametrization for the generators. We also show that similar ambiguities appear in the contribution from a codimension-two surface at which a null segment is joined to another (spacelike, timelike, or null) segment. The parametrization ambiguity can be tamed by insisting that the null generators be affinely parametrized; this forces each null contribution to the boundary action to vanish, but leaves intact the fredom to rescale the affine parameter by a constant factor on each generator. Once a choice of parametrization is made, the ambiguity in the joint contributions can be eliminated by formulating well-motivated rules that ensure the additivity of the gravitational action. Enforcing t...

  15. QUANTUM HALL-EFFECT IN MULTILAYER P-GE/GE1-XSIX HETEROSTRUCTURES AND ENERGY-SPECTRUM OF THE 2D HOLE GAS IN A MAGNETIC-FIELD

    NARCIS (Netherlands)

    ARAPOV, YG; GORODILOV, NA; NEVEROV, VN; YAKUNIN, MV; GERMANENKO, AV; MINKOV, GM; KUZNETSOV, OA; RUBTSOVA, RA; CHERNOV, AL; ORLOV, LK

    1994-01-01

    The quantum Hall effect and the structure of magnetoresistance oscillations observed in multilayer p-Ge/Ge1-xSix heterostructure systems are analyzed on the basis of a picture of magnetic levels of the Ge valence band calculated from the model of an infinitely deep square quantum well. The odd numbe

  16. The Density of Coronal Null Points from Hinode and MDI

    CERN Document Server

    Longcope, Dana; DeForest, Craig

    2009-01-01

    Magnetic null points can be located numerically in a potential field extrapolation or their average density can be estimated from the Fourier spectrum of a magnetogram. We use both methods to compute the null point density from a quiet Sun magnetogram made with Hinode's NFI and from magnetograms from SOHO's MDI in both its high-resolution and low-resolution modes. All estimates of the super-chromospheric column density (z>1.5 Mm) agree with one another and with the previous measurements: 0.003 null points per square Mm of solar surface.

  17. Magnetic resonance imaging of the knee at 3 and 7 Tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols

    International Nuclear Information System (INIS)

    To show the feasibility and possible superiority of two 7 Tesla knee protocols (''7 T high resolution'' and ''7 T quick'') using a new 28-channel knee coil compared to an optimised 3 T knee protocol using an 8-channel knee coil. The study was approved by the ethics committee. Both 3 T and 7 T MRI of the knee were performed in 10 healthy volunteers (29.6 ± 7.9 years), with two 2D sequences (PD-TSE and T1-SE) and three isotropic 3D sequences (TRUFI, FLASH and PD-TSE SPACE). Quantitative contrast-to-noise ratio (CNR) and qualitative evaluations were performed by different readers, and intra- and inter-rater agreement was assessed. The signal-to-noise ratio (SNR) as well as the CNR values for cartilage-bone, cartilage-fluid, cartilage-menisci and menisci-fluid were, in most cases, higher at 7 T compared to 3 T, and the 7 T quick measurement was slightly superior compared to the 7 T high-resolution measurement. The results of the subjective qualitative analysis were higher for the 7 T measurements compared to the 3 T measurements. Inter- and intra-observer reliability was high (0.884-0.999). Through higher field strength and an optimal coil, resolution at 7 T can be increased and acquisition time can be reduced, with superior quantitative and comparable qualitative results compared to 3 T. (orig.)

  18. A 2D magnetic and 3D mechanical coupled finite element model for the study of the dynamic vibrations in the stator of induction motors

    Science.gov (United States)

    Martinez, J.; Belahcen, A.; Detoni, J. G.

    2016-01-01

    This paper presents a coupled Finite Element Model in order to study the vibrations in induction motors under steady-state. The model utilizes a weak coupling strategy between both magnetic and elastodynamic fields on the structure. Firstly, the problem solves the magnetic vector potential in an axial cut and secondly the former solution is coupled to a three dimensional model of the stator. The coupling is performed using projection based algorithms between the computed magnetic solution and the three-dimensional mesh. The three-dimensional model of the stator includes both end-windings and end-shields in order to give a realistic picture of the motor. The present model is validated using two steps. Firstly, a modal analysis hammer test is used to validate the material characteristic of this complex structure and secondly an array of accelerometer sensors is used in order to study the rotating waves using multi-dimensional spectral techniques. The analysis of the radial vibrations presented in this paper firstly concludes that slot harmonic components are visible when the motor is loaded. Secondly, the multidimensional spectrum presents the most relevant mechanical waves on the stator such as the ones produced by the space harmonics or the saturation of the iron core. The direct retrieval of the wave-number in a multi-dimensional spectrum is able to show the internal current distribution in a non-intrusive way. Experimental results for healthy induction motors are showing mechanical imbalances in a multi-dimensional spectrum in a more straightforward form.

  19. Heteronuclear 2D-correlations in a uniformly [13C, 15N] labeled membrane-protein complex at ultra-high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Egorova-Zachernyuk, T.A.; Hollander, J. [Gorlaeus Laboratories (Netherlands); Fraser, N. [University of Glasgow, Division of Biochemistry and Molecular Biology (United Kingdom); Gast, P.; Hoff, A.J. [Leiden University, Huygens Laboratories (Netherlands); Cogdell, R. [University of Glasgow, Division of Biochemistry and Molecular Biology (United Kingdom); Groot, H.J.M. de; Baldus, M. [Gorlaeus Laboratories (Netherlands)

    2001-03-15

    One- and two-dimensional solid-state NMR experiments on a uniformly labeled intrinsic membrane-protein complex at ultra-high magnetic fields are presented. Two-dimensional backbone and side-chain correlations for a [U-{sup 13}C,{sup 15}N] labeled version of the LH2 light-harvesting complex indicate significant resolution at low temperatures and under Magic Angle Spinning. Tentative assignments of some of the observed correlations are presented and attributed to the {alpha}-helical segments of the protein, mostly found in the membrane interior.

  20. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  1. Small-angle shubnikov-de haas measurements in a 2D electron system: the effect of a strong In-plane magnetic field

    Science.gov (United States)

    Vitkalov; Zheng; Mertes; Sarachik; Klapwijk

    2000-09-01

    Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For Hsat), the phase of the second harmonic of the oscillations relative to the first is consistent with scattering events that depend on the overlap instead of the sum of the spin-up and spin-down densities of states. This unusual behavior may reflect the importance of many-body interactions. PMID:10970488

  2. 基于PSO-LS-SVM的漏磁信号二维轮廓重构%2-D Pipeline Defect Reconstruction from Magnetic Flux Leakage Signals Based on LS-SVM

    Institute of Scientific and Technical Information of China (English)

    纪凤珠; 孙世宇; 王长龙; 王瑾; 左宪章

    2011-01-01

    漏磁检测技术被广泛应用于铁磁材料的无损评估中,用漏磁信号描述缺陷的几何特征一直是漏磁检测的难点.提出应用最小二乘支持向量机对缺陷轮廓重构的方法,并利用粒子群算法来优化LS-SVM的参数及核函数参数.支持向量机输入是漏磁信号,输出是缺陷轮廓数据,建立了由缺陷的漏磁信号到缺陷二维轮廓的映射关系.训练样本由试验数据与仿真数据组成,测试样本为人工裂纹缺陷.该方法实现了人工裂纹缺陷的二维轮廓的重构,并与BP神经网络、GA-LS-SVM两种方法进行了比较.试验结果表明,该方法具有速度快、精度高和很好的泛化能力,为漏磁检测定量化提供了一种可行的方法.%Nondestructive evaluation of ferromagnetic material is most commonly performed by magnetic flux leakage( MFL) techniques, and the key element is to describe the characters of defects from MFL inspection signals. A novel method for the reconstitution of 2-D profiles is presented based on least squares support vector machines (LS-SVM) technique, and particle swarm optimization(PSO) is adopted to optimize the model parameter of I^S-SVM. The input data sets of SVM is MFL signals and output data sets is 2-D profiles parameter, the mapping relationship from MFL signals to 2-D profiles of defects is established. The least squares method is introduced into network learning, the training data sets are composed of experiment data sets and simulation data sets, the testing data sets are artificial crack defects. The reconstitution of 2-D profiles of artificial crack defects in the magnetic flux leakage testing was implemented by this algorithm. Comparing with the reconstitution results of BP network and GA-LS-SVM, the results show that LS-SVM possesses quick speed, high accuracy and very good generalization ability , and it is a good way for the quantization of the MFL testing.

  3. On Spinors and Null Vectors

    CERN Document Server

    Budinich, Marco

    2014-01-01

    We investigate the relations between spinors and null vectors in Clifford algebra with particular emphasis on the conditions that a spinor must satisfy to be simple (also: pure). In particular we prove: i) a new property for null vectors: each of them bisects spinor space into two parts of equal size; ii) that simple spinors form one-dimensional subspaces of spinor space; iii) a necessary and sufficient condition for a spinor to be simple that generalizes a theorem of Cartan and Chevalley that appears now as a corollary of this result. We also show how to write down easily the most general spinor with a given associated totally null plane.

  4. Glitter in a 2D monolayer.

    Science.gov (United States)

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  5. Null distance on a spacetime

    CERN Document Server

    Sormani, Christina

    2015-01-01

    Given a time function $\\tau$ on a spacetime $M$, we define a `null distance function', $\\hat{d}_\\tau$, built from and closely related to the causal structure of $M$. In basic models with timelike $\

  6. Interplay between the structural and magnetic probes in the elucidation of the structure of a novel 2D layered [V4O4(OH)2(O2CC6H4CO2)4]·DMF.

    Science.gov (United States)

    Djerdj, Igor; Škapin, Srečo D; Ceh, Miran; Jagličić, Zvonko; Pajić, Damir; Kozlevčar, Bojan; Orel, Bojan; Orel, Zorica Crnjak

    2012-01-14

    The title compound has been synthesized under solvothermal conditions by reacting vanadium(V) oxytriisopropoxide with terephthalic acid in N,N-dimethylformamide. A combination of synchrotron powder diffraction, infrared spectroscopy, scanning and transmission electron microscopy, and thermal and chemical analysis elucidated the chemical, structural and microstructural features of a new 2D layered inorganic-organic framework. Due to the low-crystallinity of the final material, its crystal structure has been solved from synchrotron X-ray powder diffraction data using a direct space global optimization technique and subsequent constraint Rietveld refinement. [V(4)O(4)(OH)(2)(O(2)CC(6)H(4)CO(2))(4)]·DMF crystallizes in the monoclinic system (space group P2/m (No. 10)); cell parameters: a = 20.923(4) Å, b = 5.963(4) Å, c = 20.425(1) Å, β = 123.70(6)°, V = 2120.1(9) Å(3), Z = 2. The overall structure can be described as an array of parallel 2D layers running along [-101] direction, consisting of two types of vanadium oxidation states and coordination polyhedra: face-shared trigonal prisms (V(4+)) and distorted corner-shared square pyramids (V(5+)). Both configurations form independent parallel chains oriented along the 2-fold symmetry crystallographic b-axis mutually interlinked with terephthalate ligands in a monodentate mode perpendicular to it. The morphology of the compound exhibits long nanofibers, with the growth direction along the layered [-101] axis. The magnetic susceptibility measurements show that the magnetic properties of [V(4)O(4)(OH)(2)(O(2)CC(6)H(4)CO(2))(4)]·DMF can be described by a linear antiferromagnetic chain model, with the isotropic exchange interaction of J = -75 K between the nearest V(4+) neighbours of S = 1/2. PMID:22042096

  7. Nulling Hall-Effect Current-Measuring Circuit

    Science.gov (United States)

    Sullender, Craig C.; Vazquez, Juan M.; Berru, Robert I.

    1993-01-01

    Circuit measures electrical current via combination of Hall-effect-sensing and magnetic-field-nulling techniques. Known current generated by feedback circuit adjusted until it causes cancellation or near cancellation of magnetic field produced in toroidal ferrite core by current measured. Remaining magnetic field measured by Hall-effect sensor. Circuit puts out analog signal and digital signal proportional to current measured. Accuracy of measurement does not depend on linearity of sensing components.

  8. Phase-Occultation Nulling Coronagraphy

    CERN Document Server

    Lyon, Richard G; Clampin, Mark; Petrone, Peter

    2015-01-01

    The search for life via characterization of earth-like planets in the habitable zone is one of the key scientific objectives in Astronomy. We describe a new phase-occulting (PO) interferometric nulling coronagraphy (NC) approach. The PO-NC approach employs beamwalk and freeform optical surfaces internal to the interferometer cavity to introduce a radially dependent plate scale difference between each interferometer arm (optical path) that nulls the central star at high contrast while transmitting the off-axis field. The design is readily implemented on segmented-mirror telescope architectures, utilizing a single nulling interferometer to achieve high throughput, a small inner working angle (IWA), sixth-order or higher starlight suppression, and full off-axis discovery space, a combination of features that other coronagraph designs generally must trade. Unlike previous NC approaches, the PO-NC approach does not require pupil shearing; this increases throughput and renders it less sensitive to on-axis common-mo...

  9. Energetics of kinetic reconnection in a three-dimensional null points cluster

    CERN Document Server

    Olshevsky, Vyacheslav; Markidis, Stefano

    2015-01-01

    We performed three-dimensional Particle-in-Cell simulations of magnetic reconnection with multiple magnetic null points. Magnetic field energy conversion into kinetic energy was about five times higher than in traditional Harris sheet configuration. More than 85% of initial magnetic field energy was transferred to particle energy during 25 reversed ion cyclofrequencies. Magnetic reconnection in the cluster of null points evolved in three phases. During the first phase, ion beams were excited, that then gave part of their energy back to magnetic field in the second phase. In the third phase, magnetic reconnection occurs in many small patches around the current channels formed along the stripes of low magnetic field. Magnetic reconnection in null points presents essentially three-dimensional features, with no two dimensional symmetries or current sheets.

  10. Lectures on 2D gravity and 2D string theory

    International Nuclear Information System (INIS)

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  11. Bootstrapping Null Polygon Wilson Loops

    OpenAIRE

    Gaiotto, Davide; Maldacena, Juan; Sever, Amit; Vieira, Pedro

    2010-01-01

    We derive the two loop expressions for polygonal Wilson loops by starting from the one loop expressions and applying an operator product expansion. We do this for polygonal Wilson loops in R^{1,1} and find a result in agreement with previous computations. We also discuss the spectrum of excitations around flux tube that connects two null Wilson lines.

  12. Magnetic anisotropy of cobalt nanoparticle 2D arrays grown on corrugated MnF{sub 2}(1 1 0) and CaF{sub 2}(1 1 0) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baranov, D.A., E-mail: dbaranov@mail.ioffe.ru [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Krichevtsov, B.B.; Gastev, S.V.; Banschikov, A.G.; Fedorov, V.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Koshmak, K.V. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation); Dipartimento di Ingegneria dei Materiali e dell’Ambiente, Università di Modena e Reggio Emilia, Via Vignolese 905, 41100 Modena (Italy); Suturin, S.M.; Sokolov, N.S. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, 26 Polytechnicheskaya str., St. Petersburg 194021 (Russian Federation)

    2013-02-15

    Cobalt nanoparticle 2D arrays with different effective thicknesses of cobalt layer (2 nm < d{sub eff} < 10 nm) were grown by molecular beam epitaxy on CaF{sub 2}(1 1 0)/Si(0 0 1) and MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) substrates with corrugated morphology of the surface. Surface morphology analysis showed that for effective thickness of cobalt layer d{sub eff} = 5 nm the lateral dimensions of cobalt islands are about 5–10 nm and the distances between the islands differs in a half along and across the grooves. In both types of the heterostructures the shape of hysteresis loops measured by LMOKE depend on orientation of in-plane magnetic field relative to the direction of the grooves. The azimuthal dependence of coercive field H{sub c} in Co/CaF{sub 2}(1 1 0)/Si(0 0 1) structures corresponds to Stoner–Wohlfarth model's predictions, which takes into account the anisotropy of individual particles. In contrast to that, in Co/MnF{sub 2}(1 1 0)/CaF{sub 2}(1 1 0)/Si(0 0 1) structures these dependences are analogous to those predicted by the model based on account of magnetic–dipole interaction between particles which are placed in chains (chain-of-spheres-model). Possible explanations of the difference in magnetic anisotropy are suggested.

  13. 2D-hahmoanimaation toteuttamistekniikat

    OpenAIRE

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  14. Resistivity at the field null of the FRC plasma

    International Nuclear Information System (INIS)

    In the absence of the major destructive instabilities, the configuration time is ultimately determined by particle and flux containment. If the profiles are ''gentle,'' then the anomalous flux-loss rate depends essentially on the anomalous resistivity at the field null. Conventional electrostatic quasi-linear models of anomalous cross-field resistive diffusivity are based upon the use of rvec E x rvec B drift velocities, and hence break down at the magnetic field null. In this paper, an electromagnetic treatment valid at the field null is developed, based upon the presence of flute-parity perturbations. An expression for anomalous resistivity at the field null in the quasi-linear approximation is derived by averaging in the ignorable direction over the random phases of the perturbations. The expression is valid for arbitrary (non-local) radial shapes of the perturbing modes (for example, the eigenfunctions need not be centered at the field null), and for an arbitrary ratio of real frequency to growth rate. The effective resistivity due to flute perturbations of the MHD type will be considered. 1 ref

  15. Blob dynamics in TORPEX poloidal null configurations

    CERN Document Server

    Shanahan, Brendan

    2016-01-01

    Three dimensional blob dynamics are simulated in X-point magnetic configurations in the TORPEX device via a non-field-aligned coordinate system, using an isothermal model which evolves density, vorticity, parallel velocity and parallel current density. By modifying the parallel gradient operator to include perpendicular perturbations from poloidal field coils, numerical singularities associated with field aligned coordinates are avoided. Blobs are found to propagate according to the sheath-connected scaling, and a validation with experiment is performed. It is determined that the null region can cause an acceleration of filaments due to increasing connection length, but this accleration is small relative to other effects, which we quantify. A comparison with a previously developed analytical model is performed and an agreement is found with minimal modification. Experimental measurements are reproduced, and the dominant acceleration mechanism is identified as that of a developing dipole in a moving background...

  16. Balloon Exoplanet Nulling Interferometer (BENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe

    2009-01-01

    We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.

  17. Parasitic interference in nulling interferometry

    CERN Document Server

    Matter, Alexis; Danchi, William C; Lopez, Bruno; Absil, Olivier

    2013-01-01

    Nulling interferometry aims to detect faint objects close to bright stars. Its principle is to produce a destructive interference along the line-of-sight so that the stellar flux is rejected, while the flux of the off-axis source can be transmitted. In practice, various instrumental perturbations can degrade the nulling performance. Any imperfection in phase, amplitude, or polarization produces a spurious flux that leaks to the interferometer output and corrupts the transmitted off-axis flux. One of these instrumental pertubations is the crosstalk phenomenon, which occurs because of multiple parasitic reflections inside transmitting optics, and/or diffraction effects related to beam propagation along finite size optics. It can include a crosstalk of a beam with itself, and a mutual crosstalk between different beams. This can create a parasitic interference pattern, which degrades the intrinsic transmission map - or intensity response - of the interferometer. In this context, we describe how this instrumental ...

  18. Variable polarity LMS feedback based on displacement nulling to compensate unbalance of magnetic bearing%基于最小位移的磁悬浮转子变极性LMS反馈不平衡补偿

    Institute of Scientific and Technical Information of China (English)

    宋腾; 韩邦成; 郑世强; 冯锐

    2015-01-01

    In consideration of the decrease of high-speed motor magnetic rotor displacement accuracy generated by unbalance vibration,a LMS feedback algorithm based on the principle of displacement nulling was proposed.The generalized dynamic stiffness of the system was improved by online identifying the same-frequency component in displacment signal and adding feedback to achieve unbalance compensation.In addition,the stability of close loop system was analyzed by use of generalized root locus;meanwhile, to cross over the critical frequency and achieve the displacement compensation within the whole speed range,a variable polarity strategy was raised.The experiment results demonstrate the method can suppress the displacement same-frequency vibration effectively within the whole speed range.%针对高速电机磁悬浮转子受不平衡扰动时位移精度下降的问题,提出一种基于最小位移原则的变极性最小均方误差(least mean square,LMS)反馈不平衡补偿策略,通过在线辨识位移信号中的转速同频分量,引入反馈补偿来增加系统对同频分量的广义动刚度,实现不平衡补偿。利用广义根轨迹分析了引入补偿后系统的闭环稳定性,同时针对仅以负极性或正极性引入补偿后,闭环系统均存在临界转频以上或以下发散的问题,设计了通过切换引入补偿的极性来穿越临界转频,从而实现引入LMS反馈补偿后全转速范围闭环稳定。实验结果表明,该方法在全转速范围内均能大幅减小位移信号中的转速同频分量。

  19. Accretion Disks Phase Transitions 2-D or not 2-D?

    CERN Document Server

    Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.

    2000-01-01

    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.

  20. Areas and volumes for null cones

    CERN Document Server

    Grant, James D E

    2010-01-01

    Motivated by recent work of Choquet-Bruhat, Chrusciel, and Martin-Garcia, we prove monotonicity properties and comparison results for the area of slices of the null cone of a point in a Lorentzian manifold. We also prove volume comparison results for subsets of the null cone analogous to the Bishop-Gromov relative volume monotonicity theorem and Guenther's volume comparison theorem. We briefly discuss how these estimates may be used to control the null second fundamental form of slices of the null cone in Ricci-flat Lorentzian four-manifolds with null curvature bounded above.

  1. SES2D user's manual

    International Nuclear Information System (INIS)

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  2. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    , and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...

  3. Topology optimization of piezo modal transducers with null-polarity phases

    DEFF Research Database (Denmark)

    Donoso, A.; Sigmund, O.

    2016-01-01

    Piezo modal transducers in 2d can be designed theoretically by tailoring polarity of the surface electrodes. However, it is also necessary to include null-polarity phases of known width separating areas of opposite polarity in the manufacturing process in order to avoid short-circuiting. Otherwise...

  4. Visible Nulling Coronagraph Testbed Results

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Melnick, Gary; Tolls, Volker; Woodruff, Robert; Vasudevan, Gopal; Rizzo, Maxime; Thompson, Patrick

    2009-01-01

    The Extrasolar Planetary Imaging Coronagraph (EPIC) is a NASA Astrophysics Strategic Mission Concept study and a proposed NASA Discovery mission to image and characterize extrasolar giant planets in orbits with semi-major axes between 2 and 10 AU. EPIC would provide insights into the physical nature of a variety of planets in other solar systems complimenting radial velocity (RV) and astrometric planet searches. It will detect and characterize the atmospheres of planets identified by radial velocity surveys, determine orbital inclinations and masses, characterize the atmospheres around A and F stars, observed the inner spatial structure and colors of inner Spitzer selected debris disks. EPIC would be launched to heliocentric Earth trailing drift-away orbit, with a 5-year mission lifetime. The starlight suppression approach consists of a visible nulling coronagraph (VNC) that enables starlight suppression in broadband light from 480-960 nm. To demonstrate the VNC approach and advance it's technology readiness we have developed a laboratory VNC and have demonstrated white light nulling. We will discuss our ongoing VNC work and show the latest results from the VNC testbed.

  5. Aero Fighter - 2D Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.

  6. Nonlinear wave propagation and reconnection at magnetic X-points in the Hall MHD regime

    Science.gov (United States)

    Threlfall, J.; Parnell, C. E.; De Moortel, I.; McClements, K. G.; Arber, T. D.

    2012-08-01

    Context. The highly dynamical, complex nature of the solar atmosphere naturally implies the presence of waves in a topologically varied magnetic environment. Here, the interaction of waves with topological features such as null points is inevitable and potentially important for energetics. The low resistivity of the solar coronal plasma implies that non-magnetohydrodynamic (MHD) effects should be considered in studies of magnetic energy release in this environment. Aims: This paper investigates the role of the Hall term in the propagation and dissipation of waves, their interaction with 2D magnetic X-points and the nature of the resulting reconnection. Methods: A Lagrangian remap shock-capturing code (Lare2d) was used to study the evolution of an initial fast magnetoacoustic wave annulus for a range of values of the ion skin depth (δi) in resistive Hall MHD. A magnetic null-point finding algorithm was also used to locate and track the evolution of the multiple null-points that are formed in the system. Results: Depending on the ratio of ion skin depth to system size, our model demonstrates that Hall effects can play a key role in the wave-null interaction. In particular, the initial fast-wave pulse now consists of whistler and ion-cyclotron components; the dispersive nature of the whistler wave leads to (i) earlier interaction with the null; (ii) the creation of multiple additional, transient nulls and, hence, an increased number of energy release sites. In the Hall regime, the relevant timescales (such as the onset of reconnection and the period of the oscillatory relaxation) of the system are reduced significantly, and the reconnection rate is enhanced.

  7. On the Penrose inequality along null hypersurfaces

    CERN Document Server

    Mars, Marc

    2015-01-01

    The null Penrose inequality, i.e. the Penrose inequality in terms of the Bondi energy, is studied by introducing a funtional on surfaces and studying its properties along a null hypersurface $\\Omega$ extending to past null infinity. We prove a general Penrose-type inequality which involves the limit at infinity of the Hawking energy along a specific class of geodesic foliations called Geodesic Asymptotic Bondi (GAB), which are shown to always exist. Whenever, this foliation approaches large spheres, this inequality becomes the null Penrose inequality and we recover the results of Ludvigsen-Vickers and Bergqvist. By exploiting further properties of the functional along general geodesic foliations, we introduce an approach to the null Penrose inequality called Renormalized Area Method and find a set of two conditions which implies the validity of the null Penrose inequality. One of the conditions involves a limit at infinity and the other a condition on the spacetime curvature along the flow. We investigate the...

  8. 2D-animaatiotuotannon optimointi

    OpenAIRE

    Saturo, Reetta

    2015-01-01

    Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...

  9. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  10. Photocurrent spectroscopy of 2D materials

    Science.gov (United States)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  11. Observation of the lower hybrid waves near the three-dimensional null pair

    Institute of Scientific and Technical Information of China (English)

    ZHOU Meng; DENG XiaoHua; FU Song; TANG RongXin; HU YunHui; LI ShiYou; A. VAIVADS; M. ANDRE; LIN Xi; LIN MingHui; ZHOU XiaoMin

    2009-01-01

    Magnetic reconnection is a fundamental process in plasma, which is thought to play important roles both in laboratory and natural plasmas through affecting magnetic topology, heating and accelerating particles. During an event on Oct. 1st, 2001, the Cluster tetrahedron circled around the magnetic re-connection region several times, and Xiao et al. First identified the null pair and found that the spectrum of the null-point oscillation shows the maximum power near the lower-hybrid frequency. In this paper we report the observation of electromagnetic and electrostatic wave enhancements near lower hybrid frequency associated with the reconnection process near the null pair. The lower hybrid waves (LHWs) with quasi-perpendicular propagation were identified and also confirmed by the power law of the spectrum of electric and magnetic fields.

  12. Observation of the lower hybrid waves near the three-dimensional null pair

    Institute of Scientific and Technical Information of China (English)

    A.; VAIVADS; M.; ANDRE

    2009-01-01

    Magnetic reconnection is a fundamental process in plasma,which is thought to play important roles both in laboratory and natural plasmas through affecting magnetic topology,heating and accelerating particles. During an event on Oct. 1st,2001,the Cluster tetrahedron circled around the magnetic reconnection region several times,and Xiao et al. first identified the null pair and found that the spectrum of the null-point oscillation shows the maximum power near the lower-hybrid frequency. In this paper we report the observation of electromagnetic and electrostatic wave enhancements near lower hybrid frequency associated with the reconnection process near the null pair. The lower hybrid waves(LHWs) with quasi-perpendicular propagation were identified and also confirmed by the power law of the spectrum of electric and magnetic fields.

  13. 2D SIMPLIFIED SERVO VALVE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  14. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  15. Causal cells: spacetime polytopes with null hyperfaces

    CERN Document Server

    Neiman, Yasha

    2012-01-01

    We consider polyhedra and 4-polytopes in Minkowski spacetime - in particular, null polyhedra with zero volume, and 4-polytopes that have such polyhedra as their hyperfaces. We present the basic properties of several classes of null-faced 4-polytopes: 4-simplices, "tetrahedral diamonds" and 4-parallelotopes. We propose a "most regular" representative of each class. The most-regular parallelotope is of particular interest: its edges, faces and hyperfaces are all congruent, and it features both null hyperplanes and null segments. A tiling of spacetime with copies of this polytope can be viewed alternatively as a lattice with null edges, such that each point is at the intersection of four lightrays in a tetrahedral pattern. We speculate on the relevance of this construct for discretizations of curved spacetime and for quantum gravity.

  16. 基于弛豫-扩散的二维核磁共振流体识别方法%Fluid identification method based on 2D diffusion-relaxation nuclear magnetic resonance (NMR)

    Institute of Scientific and Technical Information of China (English)

    胡法龙; 周灿灿; 李潮流; 徐红军; 周凤鸣; 司兆伟

    2012-01-01

    Based on current acquisition modes of MRIL-Prime NMR logging tool, 2D NMR signals could be obtained by the combination of logging data from different modes, then the fluid properties in complicated reservoirs could be distinguished by 2D diflusion-relaxation NMR logging data distribution of pore fluids, generated by multi-echotrain joint inversion. In comparison with ID NMR logging, this method could increase fluid information in diffusion regime, separate oil, gas and water signals in 2D space and enhance the identification capacity of fluid properties from NMR logging. The 2D NMR logging in the multi-echowave interval was applied in the oil pays in Well A and the water layers in Well B in the Nanpu Sag by MRIL-Prime tool, and the interpretation matches the well testing result. It indicates that 2D NMR logging has advantages on the identification of light oil, and fluids in macropore reservoirs than ID NMR logging.%基于MRIL-Prime核磁共振测井仪器现有采集模式,将不同采集模式测井信息进行组合后获得二维核磁共振信号,利用多回波串联合反演技术获得孔隙流体弛豫-扩散的二维核磁共振信息分布,用以识别复杂储集层流体性质.相对一维核磁共振测井,该流体性质识别方法增加了扩散域流体信息,可以在二维空间内将油、气、水信号分离,提高核磁共振测井流体性质识别能力.利用MRIL-Prime仪器对南堡凹陷A井油层和B井水层进行多回波间隔的二维核磁共振测井试验,解释结果与试油结果相吻合,说明二维核磁共振测井在轻质油识别和大孔隙储集层流体识别方面相对一维核磁共振测井技术有明显优势.

  17. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  18. Half-metallicity in 2D organometallic honeycomb frameworks.

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  19. Conformal symmetry inheritance in null fluid spacetimes

    CERN Document Server

    Tupper, B O J; Hall, G S; Coley, Alan A; Carot, J

    2003-01-01

    We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case.

  20. Conformal symmetry inheritance in null fluid spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Tupper, B O J [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 (Canada); Keane, A J [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Hall, G S [Department of Mathematical Sciences, University of Aberdeen, Dunbar Street, Aberdeen AB24 3UE (United Kingdom); Coley, A A [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada); Carot, J [Department de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca (Spain)

    2003-03-07

    We define inheriting conformal Killing vectors for null fluid spacetimes and find the maximum dimension of the associated inheriting Lie algebra. We show that for non-conformally flat null fluid spacetimes, the maximum dimension of the inheriting algebra is seven and for conformally flat null fluid spacetimes the maximum dimension is eight. In addition, it is shown that there are two distinct classes of non-conformally flat generalized plane wave spacetimes which possess the maximum dimension, and one class in the conformally flat case.

  1. Null Subjects in European and Brazilian Portuguese

    OpenAIRE

    Barbosa, Pilar; Duarte, Maria Eugênia L.; Kato, Mary Aizawa

    2005-01-01

    The goals of this paper are twofold: a) to provide a structural account of the effects of the informal ‘Avoid Pronoun Principle’, proposed in Chomsky (1981: 65) for the Null Subject Languages (NSLs), and b) to compare, in European and Brazilian Portuguese (EP and BP), the distribution of the third person pronouns in its full and null forms, to check whether in written corpora BP incorporates signs of the ongoing loss of the null subject, largely attested in its contemporary spoken language. T...

  2. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  3. Three-Year Global Survey of Coronal Null Points from Potential-Field-Source-Surface (PFSS) Modeling and Solar Dynamics Observatory (SDO) Observations

    Science.gov (United States)

    Freed, M. S.; Longcope, D. W.; McKenzie, D. E.

    2015-02-01

    This article compiles and examines a comprehensive coronal magnetic-null-point survey created by potential-field-source-surface (PFSS) modeling and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. The locations of 582 potential magnetic null points in the corona were predicted from the PFSS model between Carrington Rotations (CR) 2098 (June 2010) and 2139 (July 2013). These locations were manually inspected, using contrast-enhanced SDO/AIA images in 171 Å at the East and West solar limb, for structures associated with nulls. A Kolmogorov-Smirnov (K-S) test showed a statistically significant difference between observed and predicted latitudinal distributions of null points. This finding is explored further to show that the observability of null points could be affected by the Sun's asymmetric hemisphere activity. Additional K-S tests show no effect on observability related to eigenvalues associated with the fan and spine structure surrounding null points or to the orientation of the spine. We find that approximately 31 % of nulls obtained from the PFSS model were observed in SDO/AIA images at one of the solar limbs. An observed null on the East solar limb had a 51.6 % chance of being observed on the West solar limb. Predicted null points going back to CR 1893 (March 1995) were also used for comparing radial and latitudinal distributions of nulls to previous work and to test for correlation of solar activity to the number of predicted nulls.

  4. Null geodesics in brane world universe

    International Nuclear Information System (INIS)

    We study null bulk geodesic motion in the brane world cosmology in the RS2 scenario and in the static universe in the bulk of the charged topological AdS black hole. We obtain equations describing the null bulk geodesic motion as observed in one lower dimensions. We find that the null geodesic motion in the bulk of the brane world cosmology in the RS2 scenario is observed to be under the additional influence of extra non-gravitational force by the observer on the three-brane, if the brane universe does not possess the Z2 symmetry. As for the null geodesic motion in the static universe in the bulk of the charged AdS black hole, the extra force is realized even when the brane universe has the Z2 symmetry. (author)

  5. Latex allergy and filaggrin null mutations

    DEFF Research Database (Denmark)

    Carlsen, Berit C; Meldgaard, Michael; Hamann, Dathan;

    2011-01-01

    Objectives Natural rubber latex (NRL) contains over 200 proteins of which 13 have been identified as allergens and the cause of type I latex allergy. Health care workers share a high occupational risk for developing latex allergy. Filaggrin null mutations increase the risk of type I sensitizations...... to aeroallergens and it is possible that filaggrin null mutations also increase the risk of latex allergy. The aim of this paper was to examine the association between filaggrin null mutations and type I latex allergy. Methods Twenty latex allergic and 24 non-latex allergic dentists and dental assistants......, occupationally exposed to latex, were genotyped for filaggrin null mutations R501X and 2282del4. Latex allergy was determined by a positive reaction or a historical positive reaction to a skin prick test with NRL. Results 41 individuals were successfully genotyped. Three individuals were filaggrin mutation...

  6. High-contrast Nulling Interferometry Techniques Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "We are developing rotating-baseline nulling-interferometry techniques and algorithms on the single-aperture Hale and Keck telescopes at near-infrared wavelengths,...

  7. A Visualization of Null Geodesics for the Bonnor Massive Dipole

    CERN Document Server

    Oliva-Mercado, Guillermo Andree; Cordero-García, Iván; Frutos-Alfaro, Francisco

    2015-01-01

    In this work we simulate null geodesics for the Bonnor massive dipole metric by implementing a symbolic-numerical algorithm in Sage and Python. This program is also capable of visualizing in 3D, in principle, the geodesics for any given metric. Geodesics are launched from a common point, collectively forming a cone of light beams, simulating a solid-angle section of a point source in front of a massive object with a magnetic field. Parallel light beams also were considered, and their bending due to the curvature of the space-time was simulated.

  8. Null-sissemakse - eraisikule riskantne / Tõnu Tramm

    Index Scriptorium Estoniae

    Tramm, Tõnu, 1968-

    2005-01-01

    Ilmunud ka: Delovõje Vedomosti 20. apr. lk. 26. Hansaliising ja Ühisliising käivitasid kampaania, mille käigus pakutakse uusi kuni 250 000 krooni maksvaid autosid null-sissemaksega. Kommenteerib ASi SEB Ühisliising arendusdirektor Ove Muuk. Tabel: Null-sissemaksega auto tuleb kallim. Lisad: Kuidas saavutada võimalikult väike kuumakse?; Kuidas maksta võimalikult vähe intressi? Vt. samas: Argo Rebane: Liisingufirmast saab parema hinna

  9. Faddeev Null Plane Model of Proton

    CERN Document Server

    D'Araújo, W R B; Frederico, T

    1998-01-01

    The proton is formulated as a relativistic system of three constituent quarks interacting via a zero-range two-body force in the null-plane. The covariance of the null-plane Faddeev-like equation under kinematical front-form boosts is discussed. A simplified three-boson model of the nucleon wave-function is obtained numerically. The proton electric form-factor reproduces the experimental data for low momentum transfers and qualitatively describes the asymptotic region.

  10. On the Penrose inequality along null hypersurfaces

    Science.gov (United States)

    Mars, Marc; Soria, Alberto

    2016-06-01

    The null Penrose inequality, i.e. the Penrose inequality in terms of the Bondi energy, is studied by introducing a functional on surfaces and studying its properties along a null hypersurface Ω extending to past null infinity. We prove a general Penrose-type inequality which involves the limit at infinity of the Hawking energy along a specific class of geodesic foliations called Geodesic Asymptotically Bondi (GAB), which are shown to always exist. Whenever this foliation approaches large spheres, this inequality becomes the null Penrose inequality and we recover the results of Ludvigsen-Vickers (1983 J. Phys. A: Math. Gen. 16 3349-53) and Bergqvist (1997 Class. Quantum Grav. 14 2577-83). By exploiting further properties of the functional along general geodesic foliations, we introduce an approach to the null Penrose inequality called the Renormalized Area Method and find a set of two conditions which imply the validity of the null Penrose inequality. One of the conditions involves a limit at infinity and the other a restriction on the spacetime curvature along the flow. We investigate their range of applicability in two particular but interesting cases, namely the shear-free and vacuum case, where the null Penrose inequality is known to hold from the results by Sauter (2008 PhD Thesis Zürich ETH), and the case of null shells propagating in the Minkowski spacetime. Finally, a general inequality bounding the area of the quasi-local black hole in terms of an asymptotic quantity intrinsic of Ω is derived.

  11. Particle Acceleration at Reconnecting 3D Null Points

    Science.gov (United States)

    Stanier, A.; Browning, P.; Gordovskyy, M.; Dalla, S.

    2012-12-01

    Hard X-ray observations from the RHESSI spacecraft indicate that a significant fraction of solar flare energy release is in non-thermal energetic particles. A plausible acceleration mechanism for these are the strong electric fields associated with reconnection, a process that can be particularly efficient when particles become unmagnetised near to null points. This mechanism has been well studied in 2D, at X-points within reconnecting current sheets; however, 3D reconnection models show significant qualitative differences and it is not known whether these new models are efficient for particle acceleration. We place test particles in analytic model fields (eg. Craig and Fabling 1996) and numerical solutions to the the resistive magnetohydrodynamic (MHD) equations near reconnecting 3D nulls. We compare the behaviour of these test particles with previous results for test particle acceleration in ideal MHD models (Dalla and Browning 2005). We find that the fan model is very efficient due to an increasing "guide field" that stabilises particles against ejection from the current sheet. However, the spine model, which was the most promising in the ideal case, gives weak acceleration as the reconnection electric field is localised to a narrow cylinder about the spine axis.

  12. Pedestal and ELM characterisation of highly shaped single null and quasi double null plasmas in JET

    Energy Technology Data Exchange (ETDEWEB)

    Saibene, G.; Sartori, R.; Ingesson, L.C.; Loarte, A. [European Fusion Development Agreement Close Support Unit - Garching (Germany); Lomas, P.J.; Andrew, P.; Andrew, Y.; Guenther, K.; Korothov, A.; McDonald, D.; Meigs, A.G.; Parail, V.V.; Sharapov, S. [Euratom/Ukaea Association, Culham Science Centre, Abingdon, OX (United Kingdom); Becoulet, M.; Monier Garbet, P.; Rimini, F.G.; Thomas, P.R. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Conway, G.D.; Stober, J. [Association Euratom-IPP, MPI fur Plasmophysik, Garching (Germany); Kempenaars, M. [Association Euratom-FOM, Rijnhuizen (Netherlands); Koslowski, H.R.; Perez, C.P. [Forschungszentrum Juelich GmbH, Inst. fuer Plasmaphysik, Euratom Association, Trilateral Euregio Cluster, Julich (Germany); Lonnroth, J.S.; Saarelma, S. [Association Euratom-Tekes, Helsinki Univ. of Techn., Hut (Finland); Nave, M.F. [Association Euratom/IST, Centro de Fusao Nuclear, Lisbon (Portugal); Ongena, J. [ECOLE ROYALE MILITAIRE (ERM-KMS), Lab. Plasma Physics, Bruxelles (Belgium)

    2003-07-01

    This paper presents the results of experiments carried out in JET to study the plasma pedestal and ELM (edge localized modes) behaviour of high density/high confinement ELMy H-modes, focusing on the exploration of the effects of the plasma boundary magnetic geometry (triangularity {delta}, as well as proximity to Double-Null (DN)) and of q{sub 95} on the pedestal parameters, edge stability and ELM losses. These experiments were aimed at the study of Type-I ELMs at high density and of the access to steady-state Type-II ELM regime for JET plasma conditions, comparing pedestal and ELM characteristics in high {delta} SN (single-null) and QDN (quasi double-null) plasmas, in similar experimental conditions. To date, complete Type-I ELM suppression has not been achieved in JET in steady state conditions, although at high shaping and density mixed phases of Type-I and Type-II ELMs are observed, both for SN and QDN plasmas. Long periods of Type II ELMs (up to 150 ms in QDN) are obtained at high n(pedestal), associated with an increase of magnetic and density fluctuations, compared to levels in pure Type-I ELMy H-modes. The location of these enhanced fluctuation region is likely to be near the pedestal top. Increasing q{sub 95} from {approx} 3 to {approx} 4.5 (by varying either Ip or Bt), does not facilitate the access to the Type-II ELM regime, in contrast to indications from other experiments. In general, at high q{sub 95}, the Type-I ELMs frequency is much higher than at q{sub 95} {approx} 3 (typical for JET ELMy H-modes), the plasma global confinement is reduced, the Type II activity weakens, with the Type I-III transition occurring at lower pedestal density than at lower q{sub 95}. The enhanced {approx} 20 kHz magnetic fluctuations with Type-II ELMs are identified with strong washboard modes, possible responsible for the increased inter-ELM transport. Power balance calculations do indeed show that the power carried by ELMs is reduced by more than a factor of two in the

  13. Three-Year Global Survey of Coronal Null Points from Potential-Field-Source-Surface (PFSS) Modeling and Solar Dynamics Observatory (SDO) Observations

    CERN Document Server

    Freed, Michael; McKenize, David

    2014-01-01

    This article compiles and examines a comprehensive coronal magnetic-null-point survey created by potential-field-source-surface (PFSS) modeling and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations. The locations of 582 potential magnetic null points in the corona were predicted from the PFSS model between Carrington Rotations (CR) 2098 (June 2010) and 2139 (July 2013). These locations were manually inspected, using contrast-enhanced SDO/AIA images in 171 angstroms at the east and west solar limb, for structures associated with nulls. A Kolmogorov--Smirnov (K--S) test showed a statistically significant difference between observed and predicted latitudinal distributions of null points. This finding is explored further to show that the observability of null points could be affected by the Sun's asymmetric hemisphere activity. Additional K--S tests show no effect on observability related to eigenvalues associated with the fan and spine structure surrounding null points or to the orie...

  14. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    Science.gov (United States)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  15. Functionalized 2D atomic sheets with new properties

    Science.gov (United States)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  16. Perspectives for spintronics in 2D materials

    Directory of Open Access Journals (Sweden)

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  17. Surface modelling for 2D imagery

    OpenAIRE

    Lieng, Henrik

    2014-01-01

    Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...

  18. Perspectives for Spintronics in 2D Materials

    OpenAIRE

    Wei Han

    2016-01-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  19. Null structure groups in eleven dimensions

    CERN Document Server

    Cariglia, M; Conamhna, Oisin A. P. Mac

    2004-01-01

    We classify all the structure groups which arise as subgroups of the isotropy group, $(Spin(7)\\ltimes\\mathbb{R}^8)\\times\\mathbb{R}$, of a single null Killing spinor in eleven dimensions. We construct the spaces of spinors fixed by these groups. We determine the conditions under which structure subgroups of the maximal null strucuture group $(Spin(7)\\ltimes\\mathbb{R}^8)\\times\\mathbb{R}$ may also be embedded in SU(5), and hence the conditions under which supersymmetric spacetime admits only null, or both timelike and null, Killing spinors. This concludes, for spacetimes admitting at least one null Killing spinor, the first, purely algebraic, phase of the refined G-structure classification of supersymmetric spacetimes in eleven dimensions, the objective of which is the derivation of the general local bosonic solution of the Killing spinor equation of eleven dimensional supergravity. Finally, we discuss how the second phase of the classification, involving the direct analysis of the Killing spinor equation, may b...

  20. UNITS IN $F_2D_{2p}$

    OpenAIRE

    Kaur, Kuldeep; Khan, Manju

    2012-01-01

    Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...

  1. 2D Barcode for DNA Encoding

    CERN Document Server

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  2. 2D Barcode for DNA Encoding

    Directory of Open Access Journals (Sweden)

    Elena Purcaru

    2011-09-01

    Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  3. Two Roads to the Null Energy Condition

    CERN Document Server

    Parikh, Maulik

    2015-01-01

    The null energy condition has sweeping consequences in general relativity. I argue here that it has been misunderstood as a property exclusively of matter, when in fact it arises only in a theory of both matter and gravity. I then derive an equivalent geometric formulation of the null energy condition from worldsheet string theory, where it arises beautifully as simply Einstein's equations in two dimensions. But further, I show that this condition also has a thermodynamic origin, following from a local version of the second law of thermodynamics, applied to gravitational entropy. Thus, far from being an incidental property of matter, the validity of the null energy condition hints at the deep dual origins of gravity.

  4. Supersymmteric Null-like Holographic Cosmologies

    OpenAIRE

    Lin, Feng-Li; Wen, Wen-Yu

    2006-01-01

    We construct a new class of 1/4-BPS time dependent domain-wall solutions with null-like metric and dilaton in type II supergravities, which admit a null-like big bang singularity. Based on the domain-wall/QFT correspondence, these solutions are dual to 1/4-supersymmetric quantum field theories living on a boundary cosmological background with time dependent coupling constant and UV cutoff. In particular we evaluate the holographic $c$ function for the 2-dimensional dual field theory living on...

  5. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  6. Port Adriano, 2D-Model Tests

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....

  7. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  8. The Null Energy Condition and its violation

    OpenAIRE

    Rubakov, V. A.

    2014-01-01

    We give a mini-review of scalar field theories with second-derivative Lagrangians, whose field equations are second order. Some of these theories admit solutions violating the Null Energy Condition and having no obvious pathologies. We give a few examples of using these theories in cosmological setting and also in the context of the creation of a universe in the laboratory.

  9. Polarization nulling interferometry for exoplanet detection

    NARCIS (Netherlands)

    Spronck, J.; Pereira, S.F.; Braat, J.J.M.

    2006-01-01

    We introduce a new concept of nulling interferometer without any achromatic device, using polarization properties of light. This type of interferometer should enable a high rejection ratio in a theoretically unlimited spectral band. We analyze several consequences of the proposed design, notably, th

  10. A Philosophical Critique of Null Hypothesis Testing.

    Science.gov (United States)

    Orey III, Michael A.; And Others

    1989-01-01

    An attempt is made to clarify the philosophical foundations of the debate over research methodology appropriate for psychology in particular and the utility of null hypothesis testing in general. The article also relates the debate to education and suggests that the debate is far from settled. (IAH)

  11. 2D materials for nanophotonic devices

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  12. Internal Photoemission Spectroscopy of 2-D Materials

    Science.gov (United States)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  13. Spin dependent 2D electron scattering by nanomagnets

    International Nuclear Information System (INIS)

    The 2D scattering problem of an electron by a magnetized nanoparticle is solved in the Born approximation with account of the dipole-dipole interaction of the magnetic moments of electron and nanomagnet. The scattering amplitudes in this problem are the two-component spinors. They are obtained as functions of the electron spin orientation, the electron energy and show anisotropy in scattering angle. The initially polarized beam of electrons scattered by the nanomagnet consists of electrons with no spin flipped and spin flipped. The majority of electrons with no spin flipped are scattered by small angles. The majority electrons with spin flipped are scattered in the vicinity of the scattering angles π/2 and 3π/2. This can be used as one more method of controlling the spin currents. - Research highlights: → The artificial namomagnets with gigantic magnetic moments strongly interact with spins of electrons. → In 2D geometry this interaction controls the electron-nanomagnet scattering. → The scattering amplitudes are two-component spinors. → The scattering lengths depend on orientation of magnetic moment of the nanomagnet, the electron spin, and the scattering angle. → This dependence can be used for controlling the spin currents.

  14. Homogenization of 1D and 2D magnetoelastic lattices

    Directory of Open Access Journals (Sweden)

    Schaeffer Marshall

    2015-01-01

    Full Text Available This paper investigates the equivalent in-plane mechanical properties of one dimensional (1D and two dimensional (2D, periodic magneto-elastic lattices. A lumped parameter model describes the lattices using magnetic dipole moments in combination with axial and torsional springs. The homogenization procedure is applied to systems linearized about stable configurations, which are identified by minimizing potential energy. Simple algebraic expressions are derived for the properties of 1D structures. Results for 1D lattices show that a variety of stiffness changes are possible through reconfiguration, and that magnetization can either stiffen or soften a structure. Results for 2D hexagonal and re-entrant lattices show that both reconfigurations and magnetization have drastic effects on the mechanical properties of lattice structures. Lattices can be stiffened or softened and the Poisson’s ratio can be tuned. Furthermore for certain hexagonal lattices the sign of Poisson’s ratio can change by varying the lattice magnetization. In some cases presented, analytical and numerically estimated equivalent properties are validated through numerical simulations that also illustrate the unique characteristics of the investigated configurations.

  15. 2D supergravity in p+1 dimensions

    OpenAIRE

    Gustafsson, H.; Lindstrom, U.

    1998-01-01

    We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.

  16. 2D Barcode for DNA Encoding

    OpenAIRE

    Elena Purcaru; Cristian Toma

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  17. ELLIPT2D: A Flexible Finite Element Code Written Python

    International Nuclear Information System (INIS)

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research

  18. Dynamic topology and flux rope evolution during non-linear tearing of 3D null point current sheets

    Energy Technology Data Exchange (ETDEWEB)

    Wyper, P. F., E-mail: peterw@maths.dundee.ac.uk; Pontin, D. I., E-mail: dpontin@maths.dundee.ac.uk [Division of Mathematics, University of Dundee, Dundee (United Kingdom)

    2014-10-15

    In this work, the dynamic magnetic field within a tearing-unstable three-dimensional current sheet about a magnetic null point is described in detail. We focus on the evolution of the magnetic null points and flux ropes that are formed during the tearing process. Generally, we find that both magnetic structures are created prolifically within the layer and are non-trivially related. We examine how nulls are created and annihilated during bifurcation processes, and describe how they evolve within the current layer. The type of null bifurcation first observed is associated with the formation of pairs of flux ropes within the current layer. We also find that new nulls form within these flux ropes, both following internal reconnection and as adjacent flux ropes interact. The flux ropes exhibit a complex evolution, driven by a combination of ideal kinking and their interaction with the outflow jets from the main layer. The finite size of the unstable layer also allows us to consider the wider effects of flux rope generation. We find that the unstable current layer acts as a source of torsional magnetohydrodynamic waves and dynamic braiding of magnetic fields. The implications of these results to several areas of heliophysics are discussed.

  19. Gravitational collapse of a cylindrical null shell in vacuum

    Directory of Open Access Journals (Sweden)

    S. Khakshournia

    2008-03-01

    Full Text Available   Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .

  20. On the completeness of the black hole singularity in 2d dilaton theories

    CERN Document Server

    Katanaev, M O; Liebl, H

    1996-01-01

    The black hole of the widely used ordinary 2d--dilaton model (DBH) deviates from the Schwarzschild black hole (SBH) of General Relativity in one important feature: Whereas non-null extremals or geodesics show the expected incompleteness this turns out {\\it not to be the case for the null extremals}. After a simple analysis in Kruskal coordinates for singularities with power behavior of this -- apparently till now overlooked -- property we discuss the global structure of a large family of generalized dilaton theories which does not only contain the DBH and SBH but also other proposed dilaton theories as special cases. For large ranges of the parameters such theories are found to be free from this defect and exhibit global SBH behavior.

  1. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  2. Beltrami States in 2D Electron Magnetohydrodynamics

    OpenAIRE

    Shivamoggi, B. K.

    2015-01-01

    In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.

  3. Exotic magnetisation plateaus in a quasi-2D Shastry-Sutherland model

    OpenAIRE

    Foltin, G. R.; Manmana, S. R.; Schmidt, K. P.

    2014-01-01

    We find unconventional Mott insulators in a quasi-2D version of the Shastry-Sutherland model in a magnetic field. In our realization on a 4-leg tube geometry, these are stabilized by correlated hopping of localized magnetic excitations. Using perturbative continuous unitary transformations (pCUTs, plus classical approximation or exact diagonalization) and the density matrix renormalisation group method (DMRG), we identify prominent magnetization plateaus at magnetizations M=1/8, M=3/16, M=1/4...

  4. Novel Hydrogen-bonded Three-dimensional Supramolecular Architectures Containing 2D Honeycomb Networks or 2D Grids

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Sheng; ZHOU Cai-Hua; WANG Yao-Yu; FU Feng; WU Ya-Pan; QI Guang-Cai; SHI Qi-Zhen

    2006-01-01

    Two new supramolecular complexes, [Cu(H2dhbd)(3-pyOH)(H2O)]2·3-pyOH·2H2O (1) and [Cu2(dhbd)(dpa)2-(H2O)]·6H2O (2) (H4dhbd=2,3-dihydroxybutanedioic acid, 3-pyOH=3-hydroxypyridine, dpa=2,2'-dipyridylamine),have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses,H-O hydrogen bonds, the cyclic dinuclear units in 1 together with four adjacent neighbors are connected into a 2D honeycomb network encapsulating free 3-pyOH ligands. Unexpectedly, the water-dimers are fixed in interlayers of 2D honeycomb network and act as hydrogen-bond bridging to further extend these 2D networks into 3D hydrogen-bonded framework. Complex 2 includes interesting 2D grids constructed from chiral dinuclear units through cules into three dimension with channels. Variable-temperature magnetic susceptibility measurements for both complexes indicate the presence of weak antiferromagnetic exchange interactions between adjacent copper(Ⅱ) ions.

  5. 2d index and surface operators

    Science.gov (United States)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  6. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    Institute of Scientific and Technical Information of China (English)

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  7. Broadband nulling behaviour of PSR B2319+60

    CERN Document Server

    Gajjar, Vishal; Kramer, M

    2012-01-01

    Pulse nulling is one of many single pulse phenomena exhibited by radio pulsars. The broadband nature of this phenomena remained unexplained due to lack of coordinated observations. We are reporting broadband nulling behaviour of a well known nulling pulsar PSR B2319+60. The simultaneous observations were carried out at four different frequencies using the Giant Meterwave Radio telescope (325 and 610 MHz), the Westerbork Synthesis Radio Telescope (1420 MHz) and the Effelsberg radio telescope (5100 MHz). The nulling fractions were estimated at all four observed frequencies, which suggest similar degree of nulling across these frequencies. To comment on the broadband behaviour of pulse nulling, we calculated the Pearson cross-correlation coefficients for the occurrence of null and burst pulses between all four frequencies. We conclude that nulling is largely a broadband phenomenon for this pulsar and it points towards a global failure of the magnetospheric currents which produces radio emission at these frequenc...

  8. Strings vs Spins on the Null Orbifold

    CERN Document Server

    Kiran, K Surya; Saurabh, Ayush; Simon, Joan

    2014-01-01

    We study the null orbifold singularity in 2+1 d flat space higher spin theory as well as string theory. Using the Chern-Simons formulation of 2+1 d Einstein gravity, we first observe that despite the singular nature of this geometry, the eigenvalues of its Chern-Simons holonomy are trivial. Next, we construct a resolution of the singularity in higher spin theory: a Kundt spacetime with vanishing scalar curvature invariants. We also point out that the UV divergences previously observed in the 2-to-2 tachyon tree level string amplitude on the null orbifold do not arise in the $\\alpha^\\prime\\to \\infty$ limit. We find all the divergences of the amplitude and demonstrate that the ones remaining in the tensionless limit are physical IR-type divergences. We conclude with a discussion on the meaning and limitations of higher spin (cosmological) singularity resolution and its potential connection to string theory.

  9. Collapse and bounce of null fluids

    CERN Document Server

    Creelman, Bradley

    2016-01-01

    Exact solutions describing the spherical collapse of null fluids can contain regions which violate the energy conditions. Physically the violations occur when the infalling matter continues to move inwards even when non-gravitational repulsive forces become stronger than gravity. In 1991 Ori proposed a resolution for these violations: spacetime surgery should be used to replace the energy condition violating region with an outgoing solution. The matter bounces. We revisit and implement this proposal for the more general Husain null fluids. We find that: 1) generically there is a thin shell discontinuity along the junction surface between ingoing and outgoing solutions, 2) there are special cases where the shell vanishes and 3) these conclusions also apply to charged Vaidya (the original paper argued that there were no shells at the junctions). Along the way we note an apparent error in the standard classification of energy condition violations for Type II stress-energy tensors.

  10. On the null origin of the ambitwistor string

    OpenAIRE

    Casali, Eduardo; Tourkine, Piotr

    2016-01-01

    In this paper we present the null string origin of the ambitwistor string. Classically, the null string is the tensionless limit of string theory, and so too is the Ambitwistor string. Both have as constraint algebra the Galilean Conformal Algebra in two dimensions. But something interesting happens in the quantum theory since there is an ambiguity in quantizing the null string. We show that, given a particular choice of quantization scheme and a particular gauge, the null string coincides wi...

  11. Motion Behavior of Null Space in Redundant Robotic Manipulators

    OpenAIRE

    Shibata, Tsuyoshi; Murakami, Toshiyuki

    2008-01-01

    This chapter shows the control design of null space motion by PID controller. When the work space observer is emplyed in work space controller, work space and null space motion are determined independently. Then the PD based work space controller makes work space motion stable, but global stability of null space motion is not always guranteed. To improve the stability and the robustness of null space motion, PID controller considering passivity is useful and the design strategy of PID control...

  12. Optical codeword demodulation with error rates below standard quantum limit using a conditional nulling receiver

    CERN Document Server

    Chen, Jian; Dutton, Zachary; Lazarus, Richard; Guha, Saikat

    2011-01-01

    The quantum states of two laser pulses---coherent states---are never mutually orthogonal, making perfect discrimination impossible. Even so, coherent states can achieve the ultimate quantum limit for capacity of a classical channel, the Holevo capacity. Attaining this requires the receiver to make joint-detection measurements on long codeword blocks, optical implementations of which remain unknown. We report the first experimental demonstration of a joint-detection receiver, demodulating quaternary pulse-position-modulation (PPM) codewords at a word error rate of up to 40% (2.2 dB) below that attained with direct-detection, the largest error-rate improvement over the standard quantum limit reported to date. This is accomplished with a conditional nulling receiver, which uses optimized-amplitude coherent pulse nulling, single photon detection and quantum feedforward. We further show how this translates into coding complexity improvements for practical PPM systems, such as in deep-space communication. We antici...

  13. Renormalization of null Wilson lines in EQCD

    International Nuclear Information System (INIS)

    Radiation and energy loss of a light, high-energy parton in a perturbative Quark-Gluon Plasma is controlled by transverse momentum exchange. The troublesome infrared contributions to transverse momentum exchange can be computed on the lattice using dimensional reduction to EQCD. However a novel extended operator, the Null Wilson Line of EQCD, is involved. We compute the renormalization properties of this object’s lattice implementation to next-to-leading order, which should facilitate its efficient calculation on the lattice

  14. PHASE CLOSURE NULLING: THEORY AND PRACTICE

    Directory of Open Access Journals (Sweden)

    A. Chelli

    2009-01-01

    Full Text Available We provide a complete theory of the phase closure of a binary system in which a small, feeble, and unresolved companion acts as a perturbing parameter on the spatial frequency spectrum of a dominant, bright, resolved source. We demonstrate that the in uence of the companion can be measured with precision by measuring the phase closure of the system near the nulls of the primary visibility function. In these regions of phase closure nulling, frequency intervals always exist where the phase closure signature of the companion is larger than any systematic error and can thus be measured. We show that this technique allows retrieval of many astrophysically relevant properties of faint and close companions such as ux, position, and in favorable cases, spectrum. As a proof of concept, using the AMBER/VLTI instrument with 3 auxiliary telescopes of 1.8 m and only 15 minutes of on-sky integration, we detected the ve magnitudes fainter companion of HD 59717 at only 3.5 stellar radii distance from the primary. This is one of the highest contrast detected by interferometry between a companion and its parent star. We conclude by a rapid study of the potentialities of phase closure nulling observations with current interferometers and explore the requirements for a new type of dedicated instrument.

  15. Null conformal Killing-Yano tensors and Birkhoff theorem

    CERN Document Server

    Ferrando, Joan Josep

    2015-01-01

    We study the space-times admitting a null conformal Killing-Yano tensor whose divergence defines a Killing vector. We analyze the similitudes and differences with the recently studied non null case (Gen. Relativ. Grav. (2015) {\\bf 47} 1911). The results by Barnes concerning the Birkhoff theorem for the case of null orbits are analyzed and generalized.

  16. A Conformal Extension Theorem based on Null Conformal Geodesics

    CERN Document Server

    Lübbe, Christian

    2008-01-01

    In this article we describe the formulation of null geodesics as null conformal geodesics and their description in the tractor formalism. A conformal extension theorem through an isotropic singularity is proven by requiring the boundedness of the tractor curvature and its derivatives to sufficient order along a congruence of null conformal geodesic. This article extends earlier work by Tod and Luebbe.

  17. Real null coframes in general relativity and GPS type coordinates

    CERN Document Server

    Blagojevic, M; Hehl, F W; Obukhov, Yu N; Obukhov, Yu.N.

    2002-01-01

    Some time ago, D. Finkelstein defined a `symmetric' null frame with {\\it four real null vectors}. We discuss this Finkelstein frame and show that a similarly defined real null coframe is closely related to the GPS type coordinates recently introduced by Rovelli.

  18. 2d Index and Surface operators

    CERN Document Server

    Gadde, Abhijit

    2013-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...

  19. Multiple ising spins coupled to 2d quantum gravity

    CERN Document Server

    Harris, M G

    1994-01-01

    We study a model in which p independent Ising spins are coupled to 2d quantum gravity (in the form of dynamical planar phi-cubed graphs). Consideration is given to the p tends to infinity limit in which the partition function becomes dominated by certain graphs; we identify most of these graphs. A truncated model is solved exactly providing information about the behaviour of the full model in the limit of small beta. Finally, we derive a bound for the critical value of the coupling constant, beta_c and examine the magnetization transition in the limit p tends to zero.

  20. Optical modulators with 2D layered materials

    Science.gov (United States)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  1. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  2. 2D microwave imaging reflectometer electronics

    Energy Technology Data Exchange (ETDEWEB)

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  3. Proposal for a hybrid 2D MOT/molasses configuration for potassium-41

    Science.gov (United States)

    Peterson, W. A.; Wrubel, J. P.

    2016-05-01

    We report a proposed design for a compact 2D MOT-optical molasses hybrid for potassium-41 atoms. Adding electromagnets to a previously-reported permanent-magnet based 2D MOT, we show it is possible to flatten the magnetic field at the trap's center, creating a region suitable for molasses. The remaining magnetic field at the fringes of the molasses provides a restoring force sufficient to keep the atoms trapped. This technique should reduce the rate of atom escape from the molasses and allow cooling times substantially longer than in a standard, un-trapped molasses. Research Corporation for Science Advancement, Cottrell College Science Award.

  4. Observations of 2D Doppler backscattering on MAST

    CERN Document Server

    Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L

    2015-01-01

    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...

  5. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  6. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular waveguide...

  7. Baby universes in 2d quantum gravity

    OpenAIRE

    Ambjorn, J.; S. Jain; G. Thorleifsson

    1993-01-01

    We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.

  8. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  9. Experimental study of 2D hole systems : coherent transport in quantum dots and magnetothermopower

    OpenAIRE

    Faniel, Sébastien

    2007-01-01

    Two-dimensional (2D) carrier systems built from semiconductor heterostructures have been at the center of a wide variety of experimental and theoretical research over the past decades. The quality improvement of GaAs/AlGaAs systems has allowed the observation of several peculiar ground states stabilized by the subtle interplay between carrier-carrier interaction, disorder and magnetic field. More recently, 2D systems in semiconductor heterostructures have also been used as a prime substrate f...

  10. A Nulling Coronagraph for TPF-C

    Science.gov (United States)

    Shao, Michael; Levine, Bruce Martin; Wallace, James Kent; Orton, Glenn S.; Schmidtlin, Edouard; Lane, Benjamin F.; Seager, Sara; Tolls, Volker; Lyon, Richard G.; Samuele, Rocco; Tenerelli, Domenick J.; Woodruff, Robert; Ge, Jian

    2006-01-01

    The nulling coronagraph is one of 5 instrument concepts selected by NASA for study for potential use in the TPF-C mission. This concept for extreme starlight suppression has two major components, a nulling interferometer to suppress the starlight to 10(sup -10) per airy spot within 2 (lamda)/D of the star, and a calibration interferometer to measure the residual scattered starlight. The ability to work at 2 (lamda)/D dramatically improves the science throughput of a space based coronagraph like TPF-C. The calibration interferometer is an equally important part of the starlight suppression system. It measures the measures the wavefront of the scattered starlight with very high SNR, to 0.05nm in less than 5 minutes on a 5mag star. In addition, the post coronagraph wavefront sensor will be used to measure the residual scattered light after the coronagraph and subtract it in post processing to 12x10(sup -11) to enable detection of an Earthlike planet with a SNR of 510.

  11. Quasilocal energy exchange and the null cone

    CERN Document Server

    Uzun, Nezihe

    2016-01-01

    Energy is at best defined quasilocally in general relativity. Quasilocal energy definitions depend on the conditions one imposes on the boundary Hamiltonian, i.e., how a finite region of spacetime is "isolated". Here, we propose a method to define and investigate systems in terms of their matter plus gravitational energy content. We adopt a generic construction, that involves embedding of an arbitrary dimensional worldsheet into an arbitrary dimensional spacetime, to a 2 + 2 picture. In our case, the closed 2-dimensional spacelike surface $\\mathbb{S}$, that is orthogonal to the 2-dimensional timelike worldsheet $\\mathbb{T}$ at every point, encloses the system in question. The integrability conditions of $\\mathbb{T}$ and $\\mathbb{S}$ correspond to three null tetrad gauge conditions once we transform our notation to the one of the null cone observables. We interpret the Raychaudhuri equation of $\\mathbb{T}$ as a work-energy relation for systems that are not in equilibrium with their surroundings. We achieve thi...

  12. 2-D geometrical analysis of deformation

    International Nuclear Information System (INIS)

    Engineering structures such as dams, bridges, high rise buildings, etc. are subject to deformation. Deformation survey is therefore necessary to determine the magnitude and direction of such movements for the purpose of safety assessment. In this study, a strategy for two-step analyses for deformation survey rising the two dimensional (2-D) geodetic method has been developed, consisting of independent least squares estimation (LSE) of each epoch followed by deformation detection. Important aspects on LSE include global and local testing. In deformation detection, the following aspects were implemented; datum definition by the user. determination of stable datum points, geometrical analysis of deformation and graphic presentation. The developed strategy has been implemented in three computer programs, COMPUT, DEFORM and STRANS. Tests carried out with simulated and known data show that the developed strategy and programs are applicable for 2-D geometrical detection of deformation. (Author)

  13. 2D photonic-crystal optomechanical nanoresonator.

    Science.gov (United States)

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  14. Robust and resistant 2D shape alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Eiriksson, Hrafnkell

    2001-01-01

    We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l\\_\\$\\backslash\\$infty\\......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l......\\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints...

  15. Multi-transmitter multi-receiver null coupled systems forinductive detection and characterization of metallic objects

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J. Torquil; Morrison, H. Frank; Doolittle, Lawrence R.; Tseng, Hung-Wen

    2005-10-17

    Equivalent dipole polarizabilities are a succinct way tosummarize the inductive response of an isolated conductive body atdistances greater than the scale of the body. Their estimation requiresmeasurement of secondary magnetic fields due to currents induced in thebody by time varying magnetic fields in at least three linearlyindependent (e.g., orthogonal) directions. Secondary fields due to anobject are typically orders of magnitude smaller than the primaryinducing fields near the primary field sources (transmitters). Receivercoils may be oriented orthogonal to primary fields from one or twotransmitters, nulling their response to those fields, but simultaneouslynulling to fields of additional transmitters is problematic. Iftransmitter coils are constructed symmetrically with respect to inversionin a point, their magnetic fields are symmetric with respect to thatpoint. If receiver coils are operated in pairs symmetric with respect toinversion in the same point, then their differenced output is insensitiveto the primary fields of any symmetrically constructed transmitters,allowing nulling to three (or more) transmitters. With a sufficientnumber of receivers pairs, object equivalent dipole polarizabilities canbe estimated in situ from measurements at a single instrument sitting,eliminating effects of inaccurate instrument location on polarizabilityestimates. The method is illustrated with data from a multi-transmittermulti-receiver system with primary field nulling through differencedreceiver pairs, interpreted in terms of principal equivalent dipolepolarizabilities as a function of time.

  16. 2D-Tasks for Cognitive Rehabilitation

    OpenAIRE

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  17. Realistic and efficient 2D crack simulation

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  18. 2D materials: Graphene and others

    Science.gov (United States)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  19. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  20. On the null origin of the ambitwistor string

    CERN Document Server

    Casali, Eduardo

    2016-01-01

    In this paper we present the null string origin of the ambitwistor string. Classically, the null string is the tensionless limit of string theory, and so too is the Ambitwistor string. Both have as constraint algebra the Galilean Conformal Algebra in two dimensions. But something interesting happens in the quantum theory since there is an ambiguity in quantizing the null string. We show that, given a particular choice of quantization scheme and a particular gauge, the null string coincides with the ambitwistor string both classically and quantum mechanically. We also show that the same holds for the spinning versions of the null string and Ambitwistor string. With these results we clarify the relationship between the Ambitwistor string, the null string, the usual string and the Hohm-Siegel-Zwiebach theory.

  1. GMC Collisions as Triggers of Star Formation. I. Parameter Space Exploration with 2D Simulations

    CERN Document Server

    Wu, Benjamin; Tan, Jonathan C; Bruderer, Simon

    2015-01-01

    We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for GMC-GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region (PDR) based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter, and compare isolated versus colliding clouds. We find factors of ~2-3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow a...

  2. Differentiation of enantiomers by 2D NMR spectroscopy at 1 T using residual dipolar couplings.

    Science.gov (United States)

    Koos, Martin R M; Danieli, Ernesto; Casanova, Federico; Blümich, Bernhard; Luy, Burkhard

    2016-06-01

    Differentiating enantiomers using 2D bench-top NMR spectroscopy. Spectrometers working with permanent magnets at 1 T field strength allow the acquisition of 2D data sets. In conjunction with previously reported chiral alignment media, this setup allows the measurement of enantiomeric excess via residual dipolar couplings in stretched gelatine as a result of the reduced line width obtained by 2D J-resolved spectroscopy. PMID:25773020

  3. Null subjects and agreement marks in European and Brazilian Portuguese

    OpenAIRE

    Duarte, Maria Eugênia Lammoglia; Varejão, Filomena

    2013-01-01

    The purpose of this article is to discuss the relation between the presence of agreement marks and null subjects in contemporary European and Brazilian Portuguese based on very recent samples of speech collected in Lisbon and Rio de Janeiro. In order to bring additional evidence to support the analysis, we will briefly review the issues involving the Null Subject in Romance Languages and some diachronic and synchronic analyses which distinguish Brazilian and European Portuguese as far as null...

  4. Are Null Results Becoming an Endangered Species in Marketing?

    OpenAIRE

    Raymond Hubbard; JS Armstrong

    1992-01-01

    Editorial procedures in the social and biomedical sciences are said to promote studies that falsely reject the null hypothesis. This problem may also exist in major marketing journals. Of 692 papers using statistical significance tests sampled from the Journal of Marketing, Journal of Marketing Research, and Journal of Consumer Research between 1974 and 1989, only 7.8% failed to reject the null hypothesis. The percentage of null results declined by one-half from the 1970s to the 1980s. The...

  5. Averaged Null Energy Condition from Causality

    CERN Document Server

    Hartman, Thomas; Tajdini, Amirhossein

    2016-01-01

    Unitary, Lorentz-invariant quantum field theories in flat spacetime obey microcausality: commutators vanish at spacelike separation. For interacting theories in more than two dimensions, we show that this implies that the averaged null energy, $\\int du T_{uu}$, must be positive. This non-local operator appears in the operator product expansion of local operators in the lightcone limit, and therefore contributes to $n$-point functions. We derive a sum rule that isolates this contribution and is manifestly positive. The argument also applies to certain higher spin operators other than the stress tensor, generating an infinite family of new constraints of the form $\\int du X_{uuu\\cdots u} \\geq 0$. These lead to new inequalities for the coupling constants of spinning operators in conformal field theory, which include as special cases (but are generally stronger than) the existing constraints from the lightcone bootstrap, deep inelastic scattering, conformal collider methods, and relative entropy. We also comment ...

  6. Null fluid collapse in brane world models

    CERN Document Server

    Harko, Tiberiu

    2013-01-01

    The brane world description of our universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically-symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically-symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black ho...

  7. Wormholes minimally violating the null energy condition

    CERN Document Server

    Bouhmadi-Lopez, Mariam; Martin-Moruno, Prado

    2014-01-01

    We consider novel wormhole solutions supported by a matter content that minimally violates the null energy condition. More specifically, we consider an equation of state in which the sum of the energy density and radial pressure is proportional to a constant with a value smaller than that of the inverse area characterising the system, i.e., the area of the wormhole mouth. This approach is motivated by a recently proposed cosmological event, denoted "the little sibling of the big rip", where the Hubble rate and the scale factor blow up but the cosmic derivative of the Hubble rate does not [1]. By using the cut-and-paste approach, we match interior spherically symmetric wormhole solutions to an exterior Schwarzschild geometry, and analyze the stability of the thin-shell to linearized spherically symmetric perturbations around static solutions, by choosing suitable properties for the exotic material residing on the junction interface radius. Furthermore, we also consider an inhomogeneous generalisation of the eq...

  8. Null radiation zone at the LHC

    CERN Document Server

    Hagiwara, Kaoru

    2012-01-01

    The null radiation zone theorem states that, when special kinematical conditions are satisfied, all the helicity amplitudes of a parton-level subprocess where a vector current is emitted vanish due to destructive interference among different diagrams. We study the manifestation of the theorem in $pp$ collisions at the $\\sqrt{s}=8$ TeV LHC. The theorem predicts that the cross section for $p p \\rightarrow j j \\gamma$ events is suppressed when the transverse momenta of the two jets are similar and when the rapidity difference between the photon and the cluster of the jets is nearly zero, because the $u u \\rightarrow u u \\gamma$ subprocess, which dominates in events with large $j j \\gamma$ invaraint mass, has strong destructive interference in this region. We confirm this prediction by the calculation with MadGraph 5, and show that the suppression on the $p p \\rightarrow j j \\gamma$ cross section is observable at the LHC.

  9. Exoplanet detection using a nulling interferometer.

    Science.gov (United States)

    Cagigal, M; Canales, V

    2001-07-01

    The detection of extra solar planets is a topic of growing interest, which stretches current technology and knowledge to their limits. Indirect measurement confirms the existence of a considerable number. However, direct imaging is the only way to obtain information about the nature of these planets and to detect Earth-like planets, which could support life. The main problem for direct imaging is that planets are associated with a much brighter source of light. Here, we propose the use of the nulling interferometer along with a photon counting technique called Dark Speckle. Using a simple model the behavior of the technique is predicted. The signal-to-noise ratio estimated confirms that it is a promising way to detect faint objects.

  10. 2D NMR技术在石油测井中的应用%Application of 2D NMR Techniques in Petroleum Logging

    Institute of Scientific and Technical Information of China (English)

    顾兆斌; 刘卫; 孙佃庆; 孙威

    2009-01-01

    近几年, 2D NMR技术得到迅速发展, 特别是在核磁共振测井领域. 该文将主要介绍2D NMR技术的脉冲序列、弛豫原理以及2D NMR技术在石油测井中应用. 2D NMR技术是在梯度场的作用下, 利用一系列回波时间间隔不同的CPMG脉冲进行测量, 利用二维的数学反演得到2D NMR. 2D NMR技术可以直接测量自扩散系数、弛豫时间、原油粘度、含油饱和度、可动水饱和度、孔隙度、 渗透率等地层流体性质和岩石物性参数. 从2D NMR谱上, 可以直观的区分油、气、水, 判断储层润湿性, 确定内部磁场梯度等. 2D NMR技术为识别流体类型提供了新方法.%This review paper introduces 2D NMR pulse trains frequently used in petroleum logging and their applications, as well as relevant relaxation mechanisms. In NMR logging, often a set of data is acquired at different CPMG echo spacing in the presence of constant gradient magnetic field. Two-dimensional mathematical inversion is then applied to solve the dataset, yielding two-dimensional NMR map (D-T_2). In the meanwhile, 2D NMR technique can be used to measure the property parameters of formation fluid and the petrophysics parameters directly, such as diffusion coefficient, relaxation time, crude oil viscosity, oil saturation, free water saturation, porosity, permeability and so on. The 2D NMR map can also be used to differentiate oil, gas and water, determine internal gradient field in and judge wettability of the sample. 2D NMR techniques offer powerful tools for identifying fluid type in NMR logging.

  11. Limit theorems for 2D invasion percolation

    CERN Document Server

    Damron, Michael

    2010-01-01

    We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the n-th of which gives the number of outlets in the box centered at the origin of side length 2^n. The most important of these properties describe the sequence's renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.

  12. Interparticle attraction in 2D complex plasmas

    CERN Document Server

    Kompaneets, Roman; Ivlev, Alexei V

    2015-01-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecular-like. In this Letter, we propose how to achieve a molecular-like interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  13. Periodically sheared 2D Yukawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Anikó Zsuzsa [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Hartmann, Peter [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798 (United States); Donkó, Zoltán [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Physics Department, Boston College, Chestnut Hill, Massachusetts 20467 (United States)

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  14. Extrinsic curvature induced 2-d gravity

    CERN Document Server

    Viswanathan, K S

    1993-01-01

    Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.

  15. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...... model....

  16. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  17. Phase Engineering of 2D Tin Sulfides.

    OpenAIRE

    Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS

    2016-01-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...

  18. Interparticle Attraction in 2D Complex Plasmas

    Science.gov (United States)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  19. Magnetic Reconnection Onset and Energy Release at Current Sheets

    Science.gov (United States)

    DeVore, C. R.; Antiochos, Spiro K.

    2015-04-01

    Reconnection and energy release at current sheets are important at the Sun (coronal heating, coronal mass ejections, flares, and jets) and at the Earth (magnetopause flux transfer events and magnetotail substorms) and other magnetized planets, and occur also at the interface between the Heliosphere and the interstellar medium, the heliopause. The consequences range from relatively quiescent heating of the ambient plasma to highly explosive releases of energy and accelerated particles. We use the Adaptively Refined Magnetohydrodynamics Solver (ARMS) model to investigate the self-consistent formation and reconnection of current sheets in an initially potential 2D magnetic field containing a magnetic null point. Unequal stresses applied to the four quadrants bounded by the X-line separatrix distort the potential null into a double-Y-type current sheet. We find that this distortion eventually leads to onset of fast magnetic reconnection across the sheet, with copious production, merging, and ejection of magnetic islands due to plasmoid instability. In the absence of a mechanism for ideal instability or loss of equilibrium of the global structure, however, this reconnection leads to minimal energy release. Essentially, the current sheet oscillates about its force-free equilibrium configuration. When the structure is susceptible to a large-scale rearrangement of the magnetic field, on the other hand, the energy release becomes explosive. We identify the conditions required for reconnection to transform rapidly a large fraction of the magnetic free energy into kinetic and other forms of plasma energy, and to restructure the current sheet and its surrounding magnetic field dramatically. We discuss the implications of our results for understanding heliophysical activity, particularly eruptions, flares, and jets in the corona.Our research was supported by NASA’s Heliophysics Supporting Research and Living With a Star Targeted Research and Technology programs.

  20. Gint2D-T2 correlation NMR of porous media

    Science.gov (United States)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  1. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  2. Local currents in a 2D topological insulator.

    Science.gov (United States)

    Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y

    2015-12-23

    Symmetry protected edge states in 2D topological insulators are interesting both from the fundamental point of view as well as from the point of view of potential applications in nanoelectronics as perfectly conducting 1D channels and functional elements of circuits. Here using a simple tight-binding model and the Landauer-Büttiker formalism we explore local current distributions in a 2D topological insulator focusing on effects of non-magnetic impurities and vacancies as well as finite size effects. For an isolated edge state, we show that the local conductance decays into the bulk in an oscillatory fashion as explained by the complex band structure of the bulk topological insulator. We demonstrate that although the net conductance of the edge state is topologically protected, impurity scattering leads to intricate local current patterns. In the case of vacancies we observe vortex currents of certain chirality, originating from the scattering of current-carrying electrons into states localized at the edges of hollow regions. For finite size strips of a topological insulator we predict the formation of an oscillatory band gap in the spectrum of the edge states, the emergence of Friedel oscillations caused by an open channel for backscattering from an impurity and antiresonances in conductance when the Fermi energy matches the energy of the localized state created by an impurity. PMID:26610145

  3. Comments on Thermalization in 2D CFT

    CERN Document Server

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  4. Multienzyme Inkjet Printed 2D Arrays.

    Science.gov (United States)

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  5. In-Cell Protein Structures from 2D NMR Experiments.

    Science.gov (United States)

    Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier

    2016-07-21

    In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949

  6. Performance of the new 2D ACAR spectrometer in Munich

    CERN Document Server

    Ceeh, Hubert; Leitner, Michael; Böni, Peter; Hugenschmidt, Christoph

    2012-01-01

    Angular Correlation of Annihilation Radiation (ACAR) is a well established technique for the investigation of the electric structure. A major limitation of ACAR studies is the available positron flux at a small spot on the sample. Fore this reason, the focus of this work is put on the discussion of a newly developed source-sample stage which uses an optimized static magnetic field configuration to guide the positrons onto the sample. The achieved spot size is $d_{\\mathrm{FWHM}}=5.4\\,$mm, with a high efficiency over the whole energy spectrum of the $^{22}$Na positron source. The implications of the performance of the source-sample stage are discussed with regard to 2D-ACAR measurements of single crystalline $\\alpha$-quartz, which serves as a model system for the determination of the total resolution.

  7. Experimental identification of diffusive coupling using 2D NMR.

    Science.gov (United States)

    Song, Y-Q; Carneiro, G; Schwartz, L M; Johnson, D L

    2014-12-01

    Spin relaxation based nuclear magnetic resonance (NMR) methods have been used extensively to determine pore size distributions in a variety of materials. This approach is based on the assumption that each pore is in the fast diffusion limit but that diffusion between pores can be neglected. However, in complex materials these assumptions may be violated and the relaxation time distribution is not easily interpreted. We present a 2D NMR technique and an associated data analysis that allow us to work directly with the time dependent experimental data without Laplace inversion to identify the signature of diffusive coupling between different pores. Measurements on microporous glass beads and numerical simulations are used to illustrate the technique. PMID:25526135

  8. Logarithmic corrections to gravitational entropy and the null energy condition

    Science.gov (United States)

    Parikh, Maulik; Svesko, Andrew

    2016-10-01

    Using a relation between the thermodynamics of local horizons and the null energy condition, we consider the effects of quantum corrections to the gravitational entropy. In particular, we find that the geometric form of the null energy condition is not affected by the inclusion of logarithmic corrections to the Bekenstein-Hawking entropy.

  9. Visual and Plastic Arts in Teaching Literacy: Null Curricula?

    Science.gov (United States)

    Wakeland, Robin Gay

    2010-01-01

    Visual and plastic arts in contemporary literacy instruction equal null curricula. Studies show that painting and sculpture facilitate teaching reading and writing (literacy), yet such pedagogy has not been formally adopted into USA curriculum. An example of null curriculum can be found in late 19th - early 20th century education the USA…

  10. Quasinormal modes of nonlinear electromagnetic black holes from unstable null geodesics

    CERN Document Server

    Breton, N

    2016-01-01

    The expressions for the quasinormal modes (QNMs) of black holes with nonlinear electrodynamics, calculated in the eikonal approximation, are presented. In the eikonal limit QNMs of black holes are determined by the parameters of the circular null geodesics. The unstable circular null orbits are derived from the effective metric that is the one obeyed by light rays under the influence of a nonlinear electromagnetic field. As an illustration we calculate the QNMs of four nonlinear electromagnetic black holes, two singular and two regular, namely from Euler-Heisenberg and Born-Infeld theories, for singular, and the magnetic Bardeen black hole and the one derived by Bronnikov for regular ones. Comparison is shown with the QNMs of the linear electromagnetic counterpart, their Reissner-Nordstr\\"{o}m black hole.

  11. First measurements with the Munich 2D-ACAR spectrometer on Cr

    Science.gov (United States)

    Ceeh, Hubert; Weber, Josef; Hugenschmidt, Christoph; Leitner, Michael; Böni, Peter

    2013-06-01

    The Munich 2D-ACAR spectrometer at the Maier-Leibnitz accelerator laboratory in Garching has recently become operational. In the present implementation a 2D-ACAR spectrometer is set up, with a baseline of 16.5 m, a conventional 22Na positron source and two Anger-type gamma-cameras. The positrons are guided onto the sample by a magnetic field generated by a normal conducting electromagnet. The sample can be either cooled by a standard closed-cycle-cryostat to low temperatures or heated by a resistive filament to temperatures up to 500 K. We present the key features of this new 2D-ACAR spectrometer and, in addition, discuss first measurements on the pure metal system Cr. The 2D-ACAR measurements have been performed on Cr at different temperatures: at 5 K and at room temperature in the anti-ferromagnetic phase and at 318K slightly above the paramagnetic phase transition.

  12. First measurements with the Munich 2D-ACAR spectrometer on Cr

    International Nuclear Information System (INIS)

    The Munich 2D-ACAR spectrometer at the Maier-Leibnitz accelerator laboratory in Garching has recently become operational. In the present implementation a 2D-ACAR spectrometer is set up, with a baseline of 16.5 m, a conventional 22Na positron source and two Anger-type gamma-cameras. The positrons are guided onto the sample by a magnetic field generated by a normal conducting electromagnet. The sample can be either cooled by a standard closed-cycle-cryostat to low temperatures or heated by a resistive filament to temperatures up to 500 K. We present the key features of this new 2D-ACAR spectrometer and, in addition, discuss first measurements on the pure metal system Cr. The 2D-ACAR measurements have been performed on Cr at different temperatures: at 5 K and at room temperature in the anti-ferromagnetic phase and at 318K slightly above the paramagnetic phase transition.

  13. Large-area high-quality 2D ultrathin Mo2C superconducting crystals

    Science.gov (United States)

    Xu, Chuan; Wang, Libin; Liu, Zhibo; Chen, Long; Guo, Jingkun; Kang, Ning; Ma, Xiu-Liang; Cheng, Hui-Ming; Ren, Wencai

    2015-11-01

    Transition metal carbides (TMCs) are a large family of materials with many intriguing properties and applications, and high-quality 2D TMCs are essential for investigating new physics and properties in the 2D limit. However, the 2D TMCs obtained so far are chemically functionalized, defective nanosheets having maximum lateral dimensions of ~10 μm. Here we report the fabrication of large-area high-quality 2D ultrathin α-Mo2C crystals by chemical vapour deposition (CVD). The crystals are a few nanometres thick, over 100 μm in size, and very stable under ambient conditions. They show 2D characteristics of superconducting transitions that are consistent with Berezinskii-Kosterlitz-Thouless behaviour and show strong anisotropy with magnetic field orientation; moreover, the superconductivity is also strongly dependent on the crystal thickness. Our versatile CVD process allows the fabrication of other high-quality 2D TMC crystals, such as ultrathin WC and TaC crystals, which further expand the large family of 2D materials.

  14. Sidelobe Suppression with Null Steering by Independent Weight Control

    Directory of Open Access Journals (Sweden)

    Zafar-Ullah Khan

    2015-01-01

    Full Text Available A uniform linear array of n antenna elements can steer up to n-1 nulls. In situations where less than n-1 nulls are required to be steered, the existing algorithms have no criterion to utilize the remaining weights for sidelobe suppression. This work combines sidelobe suppression capability with null steering by independent weight control. For this purpose, the array factor is transformed as the product of two polynomials. One of the polynomials is used for null steering by independent weight control, while the second one is for sidelobe suppression whose coefficients or weights are determined by using convex optimization. Finally, a new structure is proposed to incorporate the product of two polynomials such that sidelobe suppression weights are decoupled from those of null steering weights. Simulation results validate the effectiveness of the proposed scheme.

  15. Locality constraints and 2D quasicrystals

    International Nuclear Information System (INIS)

    The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs

  16. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  17. Area preserving diffeomorphisms and 2-d gravity

    CERN Document Server

    La, H S

    1995-01-01

    Area preserving diffeomorphisms of a 2-d compact Riemannian manifold with or without boundary are studied. We find two classes of decompositions of a Riemannian metric, namely, h- and g-decomposition, that help to formulate a gravitational theory which is area preserving diffeomorphism (SDiffM-) invariant but not necessarily diffeomorphism invariant. The general covariance of equations of motion of such a theory can be achieved by incorporating proper Weyl rescaling. The h-decomposition makes the conformal factor of a metric SDiffM-invariant and the rest of the metric invariant under conformal diffeomorphisms, whilst the g-decomposition makes the conformal factor a SDiffM scalar and the rest a SDiffM tensor. Using these, we reformulate Liouville gravity in SDiffM invariant way. In this context we also further clarify the dual formulation of Liouville gravity introduced by the author before, in which the affine spin connection is dual to the Liouville field.

  18. Graphene suspensions for 2D printing

    Science.gov (United States)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  19. Numerical Evaluation of 2D Ground States

    Science.gov (United States)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  20. Metrology for graphene and 2D materials

    Science.gov (United States)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  1. The curious case of null warped space

    Science.gov (United States)

    Anninos, Dionysios; Compère, Geoffrey; de Buyl, Sophie; Detournay, Stéphane; Guica, Monica

    2010-11-01

    We initiate a comprehensive study of a set of solutions of topologically massive gravity known as null warped anti-de Sitter spacetimes. These are pp-wave extensions of three-dimensional anti-de Sitter space. We first perform a careful analysis of the linearized stability of black holes in these spacetimes. We find two qualitatively different types of solutions to the linearized equations of motion: the first set has an exponential time dependence, the second — a polynomial time dependence. The solutions polynomial in time induce severe pathologies and moreover survive at the non-linear level. In order to make sense of these geometries, it is thus crucial to impose appropriate boundary conditions. We argue that there exists a consistent set of boundary conditions that allows us to reject the above pathological modes from the physical spectrum. The asymptotic symmetry group associated to these boundary conditions consists of a centrally-extended Virasoro algebra. Using this central charge we can account for the entropy of the black holes via Cardy's formula. Finally, we note that the black hole spectrum is chiral and prove a Birkoff theorem showing that there are no other stationary axisymmetric black holes with the specified asymptotics. We extend most of the analysis to a larger family of pp-wave black holes which are related to Schrödinger spacetimes with critical exponent z.

  2. The Curious Case of Null Warped Space

    CERN Document Server

    Anninos, Dionysios; de Buyl, Sophie; Detournay, Stéphane; Guica, Monica

    2010-01-01

    We initiate a comprehensive study of a set of solutions of topologically massive gravity known as null warped anti-de Sitter spacetimes. These are pp-wave extensions of three-dimensional anti-de Sitter space. We first perform a careful analysis of the linearized stability of black holes in these spacetimes. We find two qualitatively different types of solutions to the linearized equations of motion: the first set has an exponential time dependence, the second - a polynomial time dependence. The solutions polynomial in time induce severe pathologies and moreover survive at the non-linear level. In order to make sense of these geometries, it is thus crucial to impose appropriate boundary conditions. We argue that there exists a consistent set of boundary conditions that allows us to reject the above pathological modes from the physical spectrum. The asymptotic symmetry group associated to these boundary conditions consists of a centrally-extended Virasoro algebra. Using this central charge we can account for th...

  3. Wormholes minimally violating the null energy condition

    Energy Technology Data Exchange (ETDEWEB)

    Bouhmadi-López, Mariam [Departamento de Física, Universidade da Beira Interior, 6200 Covilhã (Portugal); Lobo, Francisco S N; Martín-Moruno, Prado, E-mail: mariam.bouhmadi@ehu.es, E-mail: fslobo@fc.ul.pt, E-mail: pmmoruno@fc.ul.pt [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8, 1749-016 Lisboa (Portugal)

    2014-11-01

    We consider novel wormhole solutions supported by a matter content that minimally violates the null energy condition. More specifically, we consider an equation of state in which the sum of the energy density and radial pressure is proportional to a constant with a value smaller than that of the inverse area characterising the system, i.e., the area of the wormhole mouth. This approach is motivated by a recently proposed cosmological event, denoted {sup t}he little sibling of the big rip{sup ,} where the Hubble rate and the scale factor blow up but the cosmic derivative of the Hubble rate does not [1]. By using the cut-and-paste approach, we match interior spherically symmetric wormhole solutions to an exterior Schwarzschild geometry, and analyse the stability of the thin-shell to linearized spherically symmetric perturbations around static solutions, by choosing suitable properties for the exotic material residing on the junction interface radius. Furthermore, we also consider an inhomogeneous generalization of the equation of state considered above and analyse the respective stability regions. In particular, we obtain a specific wormhole solution with an asymptotic behaviour corresponding to a global monopole.

  4. Null fluid collapse in brane world models

    Science.gov (United States)

    Harko, Tiberiu; Lake, Matthew J.

    2014-03-01

    The brane world description of our Universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high-density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black holes over naked singularities, we find that, for the types of fluid considered, this is not the case. However, the black hole solutions differ substantially from their general-relativistic counterparts and brane world corrections often play a role analogous to charge in general relativity. As an astrophysical application of this work, the possibility that energy emission from a Hagedorn fluid collapsing to form a naked singularity may be a source of GRBs in the brane world is also considered.

  5. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    Science.gov (United States)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  6. An Ensemble of 2D Convolutional Neural Networks for Tumor Segmentation

    DEFF Research Database (Denmark)

    Lyksborg, Mark; Puonti, Oula; Agn, Mikael;

    2015-01-01

    Accurate tumor segmentation plays an important role in radiosurgery planning and the assessment of radiotherapy treatment efficacy. In this paper we propose a method combining an ensemble of 2D convolutional neural networks for doing a volumetric segmentation of magnetic resonance images...

  7. 3D MHD Jet in a Non-Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Huang Hulin; Han Dong

    2005-01-01

    The purpose of this paper is to present a two-phase 3D magnetohydrodynamics (MHD) flow model that combines the volume of fluid (VOF) method with the technique derived from induced-magnetic-field equations for liquid metal free surface MHD-jet-flow. Analogy between the induced-magnetic-filed equation and the conventional computational fluid dynamics (CFD) equation is made, so that the equation can be conveniently accounted for by CFD. A penalty factor numerical method is introduced in order to force the local divergence-free condition of the magnetic fields and an extension of the void insulating calculation domain is applied to ensure that the induced-magnetic field at its boundaries is null. These simulation results for lithium liquid metal jets under magnetic field configurations of Magnetic Torus (Mtor) and National Spherical Torus Experiment (NSTX) outboard divertor have shown that three dimensional jet can not be annihilated by magnetic braking and its cross-section will deform in such a way that the momentum flux of the jet is conserved. 3D MHD effects from a magnetic field gradient cause return currents to interact with applied magnetic fields and produce unfavorable Lorentz forces.Under 3D applied non-uniform magnetic fields of the divertor, unfavorable Lorentz forces lead to a substantial change in flow pattern and a reduction in flow velocity, with the jet cross-section moving to one side of the jet space. These critical phenomena can not be revealed by 2D models.

  8. Simulating geomagnetic reversals through 2D Ising systems

    CERN Document Server

    Franco, J O O; Papa, A R R; Franco, Jorge O. O.; Dias, Vitor H. A.; Papa, Andres R. R.

    2006-01-01

    In this work 2D Ising systems were used to simulate the reversals of the Earth's magnetic field. Each spin was supposed to be a ring current in the Earth dynamo and the magnetization to be proportional to the field intensity. Given the relative success of some physical few-discs modeling of this system all the simulations were implemented in small systems. The temperature T was used as a tunning parameter. It plays the role of external perturbations. Power laws were obtained for the distribution of times between reversals. When the system size was increased the exponent of the power law asymptotically tended towards values very near -1.5, generally accepted as the right value for this phenomenon. Depending on the proximity of T and Tc the average duration of reversal period changes. In this way it is possible to establish a parallel between the model and more or less well defined periods of the reversal record. Some possible trends for future works are advanced.

  9. Face recognition method based on 2D-PCA and 2D-LDA%基于2D-PCA和2D-LDA的人脸识别方法

    Institute of Scientific and Technical Information of China (English)

    温福喜; 刘宏伟

    2007-01-01

    提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法.首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合.在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性.

  10. Analysis list: Kmt2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo

  11. Analysis list: KMT2D [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available KMT2D Blood,Digestive tract + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KM...T2D.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KMT2D.5.tsv http://dbarchive.biosc...iencedbc.jp/kyushu-u/hg19/target/KMT2D.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Blo...od.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Digestive_tract

  12. 2D manifold-independent spinfoam theory

    International Nuclear Information System (INIS)

    A number of background-independent quantization procedures have recently been employed in 4D nonperturbative quantum gravity. We investigate and illustrate these techniques and their relation in the context of a simple 2D topological theory. We discuss canonical quantization, loop or spin network states, path integral quantization over a discretization of the manifold, spin foam formulation and the fully background-independent definition of the theory using an auxiliary field theory on a group manifold. While several of these techniques have already been applied to this theory by Witten, the last one is novel: it allows us to give a precise meaning to the sum over topologies, and to compute background-independent and, in fact, 'manifold-independent' transition amplitudes. These transition amplitudes play the role of Wightman functions of the theory. They are physical observable quantities, and the canonical structure of the theory can be reconstructed from them via a C* algebraic GNS construction. We expect an analogous structure to be relevant in 4D quantum gravity

  13. Ion Transport in 2-D Graphene Nanochannels

    Science.gov (United States)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  14. Intermittency in 2D soap film turbulence

    CERN Document Server

    Cerbus, R T

    2013-01-01

    The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...

  15. 2D DIGITAL SIMPLIFIED FLOW VALVE

    Institute of Scientific and Technical Information of China (English)

    Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D

    2004-01-01

    The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.

  16. Resolution Independent 2D Cartoon Video Conversion

    Directory of Open Access Journals (Sweden)

    MSF. Fayaza

    2016-03-01

    Full Text Available This paper describes a novel system for vectorizing 2D raster cartoon. The output videos are the resolution independent, smaller in file size. As a first step, input video is segment to scene thereafter all processes are done for each scene separately. Every scene contains foreground and background objects so in each and every scene foreground background classification is performed. Background details can occlude by foreground objects but when foreground objects move its previous position such occluded details exposed in one of the next frame so using that frame can fill the occluded area and can generate static background. Classified foreground objects are identified and the motion of the foreground objects tracked for this simple user assistance is required from those motion details of foreground object’s animation generated. Static background and foreground objects segmented using K-means clustering and each and every cluster’s vectorized using potrace. Using vectored background and foreground object animation path vector video regenerated.

  17. Molecular basis for the CAT-2 null phenotype in maize

    International Nuclear Information System (INIS)

    Previous reports have described several maize lines whose developmental patterns of catalase gene expression vary from the typical maize line, W64A. Among these variants are the lines A16 and A338, both found to be null for the CAT-2 protein. Identification of a third CAT-2 null line, designated A340, is described. RNA blots and S1 nuclease protection analysis, using [32P]-labeled dCTP, indicate that all three CAT-2 null lines produce a similarly shortened Cat2 transcript. The molecular basis for this aberrant Cat2 transcript is discussed

  18. A Null Space Approach for Solving Nonlinear Complementarity Problems

    Institute of Scientific and Technical Information of China (English)

    Pu-yan Nie

    2006-01-01

    In this work, null space techniques are employed to tackle nonlinear complementarity problems(NCPs). NCP conditions are transform into a nonlinear programming problem, which is handled by null space algorithms. The NCP conditions are divided into two groups. Some equalities and inequalities in an NCP are treated as constraints. While other equalities and inequalities in an NCP are to be regarded as objective function.Two groups are all updated in every step. Null space approaches are extended to nonlinear complementarity problems. Two different solvers are employed for an NCP in an algorithm.

  19. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Directory of Open Access Journals (Sweden)

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  20. Finite state models of constrained 2d data

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2004-01-01

    This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....

  1. Charge Transport in a Spin-Polarized 2D Electron System in Silicon

    OpenAIRE

    Knyazev, D. A.; Omelyanovskii, O. E.; Dormidontov, A. S.; Pudalov, V.M.

    2006-01-01

    The temperature dependences of the conductivity \\sigma(T) for strongly interacting 2D electron system in silicon have been analyzed both in zero magnetic field and in spin-polarizing magnetic field of 14.2T, parallel to the sample plane. Measurements were carried out in a wide temperature range (1.4-9)K, in the ballistic regime of electron-electron interaction, i.e., for T\\tau > 1. In zero magnetic field, the data obtained for \\sigma(T) are quantitatively described by the theory of interactio...

  2. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    Science.gov (United States)

    He, Jiang-Hong; Xiao, Dong-Rong; Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li; Luo, Qun-Li; Wang, En-Bo

    2013-02-01

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]rad H2O (1), [M(norfH)(bpdc)]rad H2O (M=Cd (2) and Mn (3)), [Mn2(cfH)(odpa)(H2O)3]rad 0.5H2O (4), [Co2(norfH)(bpta)(μ2-H2O)(H2O)2]rad H2O (5) and [Co3(saraH)2(Hbpta)2(H2O)4]rad 9H2O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4'-biphenyldicarboxylate, odpa=4,4'-oxydiphthalate, bpta=3,3',4,4'-biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {M(COO)}nn+ chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed.

  3. Polynomial solution of 2D Kalman-Bucy filtering problem

    NARCIS (Netherlands)

    Sebek, M.

    1992-01-01

    The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2)

  4. Polynomial solution of 2D Kalman-Bucy filtering problem

    OpenAIRE

    Sebek, M.

    1992-01-01

    The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2) as well.

  5. The Importance of Phase in Nulling Interferometry and a Three Telescope Closure-Phase Nulling Interferometer Concept

    OpenAIRE

    Danchi, W. C.; Rajagopal, J.; Kuchner, M.; Richardson, J; Deming, D.

    2006-01-01

    We discuss the theory of the Bracewell nulling interferometer and explicitly demonstrate that the phase of the "white light" null fringe is the same as the phase of the bright output from an ordinary stellar interferometer. As a consequence a "closure phase" exists for a nulling interferometer with three or more telescopes. We calculate the phase offset as a function of baseline length for an Earth-like planet around the Sun at 10 pc, with a contrast ratio of $10^{-6}$ at 10 $\\mu$m. The magni...

  6. FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry

    International Nuclear Information System (INIS)

    1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)

  7. 2D-DCT的FPGA实现%Implementation of 2D-DCT using FPGA

    Institute of Scientific and Technical Information of China (English)

    郭前岗; 潘磊; 周西峰

    2012-01-01

    This paper presents an implementation for 2D-DCT using FPGA. It replaces the adders and multipliers with distributed arithmetic which is based on lookup tables, This design reduces resources and improves the operation speed. The simulation results show that the datas transformed by 2D-DCT are consistent with expectations, which is significant for the digital image and video compression.%设计了采用FPGA来实现2D—DCT的方案,对于其中的关键部分——乘加运算,给出了基于查找表的分布式算法。整个设计节省了资源,提高了运算速度。仿真结果表明,经LC-2D-DCT变换后的数据与期望值总体上是一致的,这对于数字图像和视频压缩的研究有一定的意义。

  8. Waves and null congruences in a draining bathtub

    CERN Document Server

    Dempsey, David

    2016-01-01

    We study wave propagation in a draining bathtub: a fluid-mechanical black hole analogue in which perturbations are governed by a Klein-Gordon equation on an effective Lorentzian geometry. Like the Kerr spacetime, the draining bathtub geometry possesses an (effective) horizon, an ergosphere and null circular orbits. We propose that a `pulse' disturbance may be used to map out the light-cone of the effective geometry. First, we apply the eikonal approximation to elucidate the link between wavefronts, null geodesic congruences and the Raychaudhuri equation. Next, we solve the wave equation numerically in the time domain using the method of lines. Starting with Gaussian initial data, we demonstrate that a pulse will propagate along a null congruence and thus trace out the light-cone of the effective geometry. Our numerical results reveal features, such as wavefront intersections, frame-dragging, winding and interference effects, that are closely associated with the presence of null circular orbits and the ergosph...

  9. Worldtube conservation laws for the null-timelike evolution problem

    CERN Document Server

    Winicour, Jeffrey

    2011-01-01

    I treat the worldtube constraints which arise in the null-timelike initial-boundary value problem for the Bondi-Sachs formulation of Einstein's equations. Boundary data on a worldtube and initial data on an outgoing null hypersurface determine the exterior spacetime by integration along the outgoing null geodsics. The worldtube constraints are a set of conservation laws which impose conditions on the integration constants. I show how these constraints lead to a well-posed initial value problem governing the extrinsic curvature of the worldtube, whose components are related to the integration constants. Possible applications to gravitational waveform extraction and to the well-posedness of the null-timelike initial-boundary value problem are discussed.

  10. Effects of 2D and Finite Density Fluctuations on O-X Correlation Reflectometry

    International Nuclear Information System (INIS)

    The correlation between O-mode and X-mode reflectometer signals is studied with a 1D and 2D reflectometer model in order to explore its feasibilities as a q-profile diagnostic. It was found that 2D effects and finite fluctuation levels both decrease the O-X correlation. At very low fluctuation levels, which are usually present in the plasma core, there is good possibility to determine the local magnetic field strength and use that as a constraint for the equilibrium reconstruction

  11. Organic structure determination using 2-D NMR spectroscopy a problem-based approach

    CERN Document Server

    Simpson, Jeffrey H

    2011-01-01

    Organic Structure Determination Using 2-D NMR Spectroscopy: A Problem-Based Approach, Second Edition, provides an introduction to the use of two-dimensional (2-D) nuclear magnetic resonance (NMR) spectroscopy to determine organic structure. The book begins with a discussion of the NMR technique, while subsequent chapters cover instrumental considerations; data collection, processing, and plotting; chemical shifts; symmetry and topicity; through-bond effects; and through-space effects. The book also covers molecular dynamics; strategies for assigning resonances to atoms within a molecule; s

  12. Another Nulling Hall-Effect Current-Measuring Circuit

    Science.gov (United States)

    Thibodeau, Phillip E.; Sullender, Craig C.

    1993-01-01

    Lightweight, low-power circuit provides noncontact measurement of alternating or direct current of many ampheres in main conductor. Advantages of circuit over other nulling Hall-effect current-measuring circuits is stability and accuracy increased by putting both analog-to-digital and digital-to-analog converters in nulling feedback loop. Converters and rest of circuit designed for operation at sampling rate of 100 kHz, but rate changed to alter time or frequency response of circuit.

  13. The geometry of D=11 null killing spinors

    Energy Technology Data Exchange (ETDEWEB)

    Gauntlett, Jerome P.; Gutowski, Jan B. E-mail: gutowski@maths.ox.ac.uk; Stathis Pakis

    2003-12-01

    We determine the necessary and sufficient conditions on the metric and the four-form for the most general bosonic supersymmetric configurations of D=11 supergravity which admit a null Killing spinor i.e. a Killing spinor which can be used to construct a null Killing vector. This class covers all supersymmetric time-dependent configurations and completes the classification of the most general supersymmetric configurations initiated in hep-th/0212008. (author)

  14. The Geometry of D=11 Null Killing Spinors

    CERN Document Server

    Gauntlett, J P; Pakis, S

    2003-01-01

    We determine the necessary and sufficient conditions on the metric and the four-form for the most general bosonic supersymmetric configurations of D=11 supergravity which admit a null Killing spinor i.e. a Killing spinor which can be used to construct a null Killing vector. This class covers all supersymmetric time-dependent configurations and completes the classification of the most general supersymmetric configurations initiated in hep-th/0212008.

  15. Using Multivalued Logic in Relational Database Containing Null Value

    Institute of Scientific and Technical Information of China (English)

    马宗民; YanLi

    1996-01-01

    In this paper,several kinds of multivalued logic for relational database and their developing process are presented on the basis of null value's semantics.A new 5 valued logic is led into relational database containing null value.The feasibility and necessity of using 5 valued logic are expounded.Comparative calculation and logical calculation under 5 valued logic are defined at the end of the paper.

  16. Overt and Null Subject Pronouns in Jordanian Arabic

    Directory of Open Access Journals (Sweden)

    Islam M. Al-Momani

    2015-08-01

    Full Text Available The paper aims at examining the role that morphology plays in allowing and/or motivating sentences in Jordanian Arabic (hereafter JA to be formed with or without subject pronouns. It also aims at giving a comprehensive and descriptive presentation of the distribution of overt and null subject pronouns in JA, and tries to determine to what extent there is optionality in its system.Keywords: null subject pronouns, overt subjects, pro-drop languages, verbal inflectional morphology

  17. Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Timothy M. Adamo

    2012-01-01

    Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in an auxiliary four-complex dimensional space, H-space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi's integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum--conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

  18. Null Geodesic Congruences, Asymptotically-Flat Spacetimes and Their Physical Interpretation

    Directory of Open Access Journals (Sweden)

    Timothy M. Adamo

    2009-09-01

    Full Text Available A priori, there is nothing very special about shear-free or asymptotically shear-free null geodesic congruences. Surprisingly, however, they turn out to possess a large number of fascinating geometric properties and to be closely related, in the context of general relativity, to a variety of physically significant effects. It is the purpose of this paper to try to fully develop these issues. This work starts with a detailed exposition of the theory of shear-free and asymptotically shear-free null geodesic congruences, i.e., congruences with shear that vanishes at future conformal null infinity. A major portion of the exposition lies in the analysis of the space of regular shear-free and asymptotically shear-free null geodesic congruences. This analysis leads to the space of complex analytic curves in complex Minkowski space. They in turn play a dominant role in the applications. The applications center around the problem of extracting interior physical properties of an asymptotically-flat spacetime directly from the asymptotic gravitational (and Maxwell field itself, in analogy with the determination of total charge by an integral over the Maxwell field at infinity or the identification of the interior mass (and its loss by (Bondi’s integrals of the Weyl tensor, also at infinity. More specifically, we will see that the asymptotically shear-free congruences lead us to an asymptotic definition of the center-of-mass and its equations of motion. This includes a kinematic meaning, in terms of the center-of-mass motion, for the Bondi three-momentum. In addition, we obtain insights into intrinsic spin and, in general, angular momentum, including an angular-momentum–conservation law with well-defined flux terms. When a Maxwell field is present, the asymptotically shear-free congruences allow us to determine/define at infinity a center-of-charge world line and intrinsic magnetic dipole moment.

  19. Correlated Electron Phenomena in 2D Materials

    Science.gov (United States)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  20. Stability Test for 2-D Continuous-Discrete Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.

  1. Analysis list: Mef2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...

  2. Programmable variable stiffness 2D surface design

    Science.gov (United States)

    Trabia, Sarah; Hwang, Taeseon; Yim, Woosoon

    2014-03-01

    Variable stiffness features can contribute to many engineering applications ranging from robotic joints to shock and vibration mitigation. In addition, variable stiffness can be used in the tactile feedback to provide the sense of touch to the user. A key component in the proposed device is the Biased Magnetorheological Elastomer (B-MRE) where iron particles within the elastomer compound develop a dipole interaction energy. A novel feature of this device is to introduce a field induced shear modulus bias via a permanent magnet which provides an offset with a current input to the electromagnetic control coil to change the compliance or modulus of a base elastomer in both directions (softer or harder). The B-MRE units can lead to the design of a variable stiffness surface. In this preliminary work, both computational and experimental results of the B-MRE are presented along with a preliminary design of the programmable variable stiffness surface design.

  3. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  4. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  5. A series of 2D metal–quinolone complexes: Syntheses, structures, and physical properties

    International Nuclear Information System (INIS)

    Six novel 2D metal–quinolone complexes, namely [Cd(cfH)(bpdc)]·H2O (1), [M(norfH)(bpdc)]·H2O (M=Cd (2) and Mn (3)), [Mn2(cfH)(odpa)(H2O)3]·0.5H2O (4), [Co2(norfH)(bpta)(μ2-H2O)(H2O)2]·H2O (5) and [Co3(saraH)2(Hbpta)2(H2O)4]·9H2O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4′-biphenyldicarboxylate, odpa=4,4′-oxydiphthalate, bpta=3,3′,4,4′-biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1–3 consist of 2D arm-shaped layers based on the 1D {M(COO)}nn+ chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal–quinolone complexes with 2D bilayer structure. By inspection of the structures of 1–6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal–quinolone complexes. The magnetic properties of compounds 3–6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1–2 are discussed. - Graphical abstract: Six novel 2D metal–quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: ►Compounds 1–3 consist of novel 2D arm-shaped layers based on the 1D {M(COO)}nn+ chains. ► Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. ► Compound 6 is the first example of metal–quinolone complexes with 2D bilayer structure. ► Compounds 1–6 represent six unusual examples of 2D metal–quinolone complexes.

  6. A series of 2D metal-quinolone complexes: Syntheses, structures, and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiang-Hong [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Xiao, Dong-Rong, E-mail: xiaodr98@yahoo.com.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chen, Hai-Yan; Sun, Dian-Zhen; Yan, Shi-Wei; Wang, Xin; Ye, Zhong-Li [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Luo, Qun-Li, E-mail: qlluo@swu.edu.cn [College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Wang, En-Bo, E-mail: wangeb889@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2013-02-15

    Six novel 2D metal-quinolone complexes, namely [Cd(cfH)(bpdc)]{center_dot}H{sub 2}O (1), [M(norfH)(bpdc)]{center_dot}H{sub 2}O (M=Cd (2) and Mn (3)), [Mn{sub 2}(cfH)(odpa)(H{sub 2}O){sub 3}]{center_dot}0.5H{sub 2}O (4), [Co{sub 2}(norfH)(bpta)({mu}{sub 2}-H{sub 2}O)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) and [Co{sub 3}(saraH){sub 2}(Hbpta){sub 2}(H{sub 2}O){sub 4}]{center_dot}9H{sub 2}O (6) (cfH=ciprofloxacin, norfH=norfloxacin, saraH=sarafloxacin, bpdc=4,4 Prime -biphenyldicarboxylate, odpa=4,4 Prime -oxydiphthalate, bpta=3,3 Prime ,4,4 Prime -biphenyltetracarboxylate) have been synthesized and characterized. Compounds 1-3 consist of 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Compounds 4 and 5 display 2D structures based on tetranuclear manganese or cobalt clusters with (3,6)-connected kgd topology. Compound 6 exhibits a 2D bilayer structure, which represents the first example of metal-quinolone complexes with 2D bilayer structure. By inspection of the structures of 1-6, it is believed that the long aromatic polycarboxylate ligands are important for the formation of 2D metal-quinolone complexes. The magnetic properties of compounds 3-6 was studied, indicating the existence of antiferromagnetic interactions. Furthermore, the luminescent properties of compounds 1-2 are discussed. - Graphical abstract: Six novel 2D metal-quinolone complexes have been prepared by self-assemblies of the quinolones and metal salts in the presence of long aromatic polycarboxylates. Highlights: Black-Right-Pointing-Pointer Compounds 1-3 consist of novel 2D arm-shaped layers based on the 1D {l_brace}M(COO){r_brace}{sub n}{sup n+} chains. Black-Right-Pointing-Pointer Compounds 4 and 5 are two novel 2D layers based on tetranuclear Mn or Co clusters with kgd topology. Black-Right-Pointing-Pointer Compound 6 is the first example of metal-quinolone complexes with 2D bilayer structure. Black-Right-Pointing-Pointer Compounds 1-6 represent six unusual

  7. 2D and 3D Numerical Simulations of Flux Cancellation

    Science.gov (United States)

    Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.

    2009-01-01

    Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.

  8. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.

    Science.gov (United States)

    Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal

    2015-11-01

    Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.

  9. Landau levels in 2D materials using Wannier Hamiltonians obtained by first principles

    Science.gov (United States)

    Lado, J. L.; Fernández-Rossier, J.

    2016-09-01

    We present a method to calculate the Landau levels and the corresponding edge states of two dimensional (2D) crystals using as a starting point their electronic structure as obtained from standard density functional theory (DFT). The DFT Hamiltonian is represented in the basis of maximally localized Wannier functions. This defines a tight-binding Hamiltonian for the bulk that can be used to describe other structures, such as ribbons, provided that atomic scale details of the edges are ignored. The effect of the orbital magnetic field is described using the Peierls substitution in the hopping matrix elements. Implementing this approach in a ribbon geometry, we obtain both the Landau levels and the dispersive edge states for a series of 2D crystals, including graphene, Boron Nitride, MoS2, Black Phosphorous, Indium Selenide and MoO3. Our procedure can readily be used in any other 2D crystal, and provides an alternative to effective mass descriptions.

  10. A post-processing framework for localized 2D MR spectroscopy in vivo

    International Nuclear Information System (INIS)

    We propose a post-processing framework for localized two-dimensional (2D) magnetic resonance spectroscopy (MRS) in vivo. Our framework consists of corrections on eddy current and subject motion along with the framework used in conventional analytical 2D nuclear magnetic resonance (NMR) spectroscopy. In the eddy current correction, the phases of the free induction decays (FIDs) of the metabolite 1H are corrected along the t2 direction by the phase of the FID of water 1H. The corrected FIDs are Fourier transformed along the t2 direction, and interferograms of F(t1, ω2) are calculated. In the motion correction, the zero-order phase of the N-acetyl aspartate (NAA) singlet peak for each t1 axis is corrected after correction of frequency drift. We applied this framework in phantom and human brain measurements in a 4.7 T whole-body MR system. Two-dimensional data were collected by the localized 2D constant-time correlation spectroscopy (CT-COSY) sequence. We used a phantom containing a brain metabolite mixture of NAA, creatine (Cr), glutamate (Glu), glutamine (Gln) and γ-amino butyric acid (GABA). We demonstrated the eddy current correction procedure in the phantom experiments and the subject motion correction in human measurements. Though asymmetric patterns of the singlets of NAA and Cr were shown around the peak along the F2 direction in the reconstructed phantom spectra without eddy current correction, symmetric patterns arose after the correction. The t1 noise caused by those singlets was found in the human brain spectra without motion correction. The t1 noise was sufficiently suppressed by the motion correction. Our proposed post-processing framework for localized 2D MRS can improve the quality of in vivo 2D spectra and may allow improved quantitation and robustness of in vivo 2D spectroscopy. (author)

  11. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  13. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  15. In-situ observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas

    Science.gov (United States)

    Guo, Ruilong; Pu, Zuyin; Chen, Li-Jen; Fu, Suiyan; Xie, Lun; Wang, Xiaogang; Dunlop, Malcolm; Bogdanova, Yulia V.; Yao, Zhonghua; Xiao, Chijie; He, Jiansen; Fazakerley, Andrew N.

    2016-05-01

    Signatures of secondary islands are frequently observed in the magnetic reconnection regions of magnetotail plasmas. In this paper, magnetic structures with the secondary-island signatures observed by Cluster are reassembled by a fitting-reconstruction method. The results show three-dimensionally that a secondary island event can manifest the flux rope formed with an As-type null and a Bs-type null paired via their spines. We call this As-spine-Bs-like configuration the helically wrapped spine model. The reconstructed field lines wrap around the spine to form the flux rope, and an O-type topology is therefore seen on the plane perpendicular to the spine. Magnetized electrons are found to rotate on and cross the fan surface, suggesting that both the torsional-spine and the spine-fan reconnection take place in the configuration. Furthermore, detailed analysis implies that the spiral nulls and flux ropes were locally generated nearby the spacecraft in the reconnection outflow region, indicating that secondary reconnection may occur in the exhaust away from the primary reconnection site.

  16. Cascades and Spectra of a Turbulent Spinodal Decomposition in 2D Symmetric Binary Liquid Mixture

    CERN Document Server

    Fan, Xiang; Chacón, L; Li, Hui

    2016-01-01

    We study the fundamental physics of cascades and spectra in 2D Cahn-Hilliard-Navier-Stokes (CHNS) turbulence, and compare and contrast this system with 2D MagnetoHydroDynamic (MHD) turbulence. The important similarities include basic equations, ideal quadratic invariants, cascades and the role of linear elastic waves. Surface tension induces elasticity, and the balance between surface tension energy and turbulent kinetic energy determines a length scale (Hinze scale) of the system. The Hinze scale may be thought of as the scale of emergent critical balance between fluid straining and elastic restoring forces. The scales between the Hinze scale and dissipation scale constitute the elastic range of the 2D CHNS system. By direct numerical simulation, we find that in the elastic range, the mean square concentration spectrum $H^\\psi_k$ of the 2D CHNS system exhibits the same power law ($-7/3$) as the mean square magnetic potential spectrum $H^A_k$ in the inverse cascade regime of 2D MHD. This power law is consiste...

  17. Acute myocarditis with normal wall motion detected with 2D speckle tracking echocardiography

    Directory of Open Access Journals (Sweden)

    Thomas Sturmberger

    2016-05-01

    Full Text Available We present the case of a 26-year-old male with acute tonsillitis who was referred for coronary angiography because of chest pain, elevated cardiac biomarkers, and biphasic T waves. The patient had no cardiovascular risk factors. Echocardiography showed no wall motion abnormalities and no pericardial effusion. 2D speckle tracking revealed distinct decreased regional peak longitudinal systolic strain in the lateral and posterior walls. Ischemic disease was extremely unlikely in view of his young age, negative family history regarding coronary artery disease, and lack of regional wall motion abnormalities on the conventional 2D echocardiogram. Coronary angiography was deferred as myocarditis was suspected. To confirm the diagnosis, cardiac magnetic resonance tomography (MRT was performed, showing subepicardial delayed hyperenhancement in the lateral and posterior walls correlating closely with the strain pattern obtained by 2D speckle tracking echocardiography. With a working diagnosis of acute myocarditis associated with acute tonsillitis, we prescribed antibiotics and nonsteroidal anti-inflammatory drugs. The patient’s clinical signs resolved along with normalization of serum creatine kinase (CK levels, and the patient was discharged on the third day after admission. Learning points: • Acute myocarditis can mimic acute coronary syndromes. • Conventional 2D echocardiography lacks specific features for detection of subtle regional wall motion abnormalities. • 2D speckle tracking expands the scope of echocardiography in identifying myocardial dysfunction derived from edema in acute myocarditis.

  18. Visible Nulling Coronagraphy Testbed Development for Exoplanet Detection

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Thompson, Patrick; Chen, Andrew; Petrone, Peter; Booth, Andrew; Madison, Timothy; Bolcar, Matthew; Noecker, M. Charley; Kendrick, Stephen; Melnick, Gary; Tolls, Volker

    2010-01-01

    Three of the recently completed NASA Astrophysics Strategic Mission Concept (ASMC) studies addressed the feasibility of using a Visible Nulling Coronagraph (VNC) as the prime instrument for exoplanet science. The VNC approach is one of the few approaches that works with filled, segmented and sparse or diluted aperture telescope systems and thus spans the space of potential ASMC exoplanet missions. NASA/Goddard Space Flight Center (GSFC) has a well-established effort to develop VNC technologies and has developed an incremental sequence of VNC testbeds to advance the this approach and the technologies associated with it. Herein we report on the continued development of the vacuum Visible Nulling Coronagraph testbed (VNT). The VNT is an ultra-stable vibration isolated testbed that operates under high bandwidth closed-loop control within a vacuum chamber. It will be used to achieve an incremental sequence of three visible light nulling milestones of sequentially higher contrasts of 10(exp 8) , 10(exp 9) and 10(exp 10) at an inner working angle of 2*lambda/D and ultimately culminate in spectrally broadband (>20%) high contrast imaging. Each of the milestones, one per year, is traceable to one or more of the ASMC studies. The VNT uses a modified Mach-Zehnder nulling interferometer, modified with a modified "W" configuration to accommodate a hex-packed MEMS based deformable mirror, a coherent fiber bundle and achromatic phase shifters. Discussed will be the optical configuration laboratory results, critical technologies and the null sensing and control approach.

  19. Long-term Observations of Three Nulling Pulsars

    CERN Document Server

    Young, N J; Stappers, B W; Lyne, A G; Kramer, M

    2015-01-01

    We present an analysis of approximately 200 hours of observations of the pulsars J1634$-$5107, J1717$-$4054 and J1853$+$0505, taken over the course of 14.7 yr. We show that all of these objects exhibit long term nulls and radio-emitting phases (i.e. minutes to many hours), as well as considerable nulling fractions (NFs) in the range $\\sim67\\,\\% - 90\\,\\%$. PSR J1717$-$4054 is also found to exhibit short timescale nulls ($1 - 40~P$) and burst phases ($\\lesssim 200~P$) during its radio-emitting phases. This behaviour acts to modulate the NF, and therefore the detection rate of the source, over timescales of minutes. Furthermore, PSR J1853$+$0505 is shown to exhibit a weak emission state, in addition to its strong and null states, after sufficient pulse integration. This further indicates that nulls may often only represent transitions to weaker emission states which are below the sensitivity thresholds of particular observing systems. In addition, we detected a peak-to-peak variation of $33\\pm1\\,\\%$ in the spin-...

  20. The causal topology of neutral 4-manifolds with null boundary

    CERN Document Server

    Georgiou, Nikos

    2016-01-01

    This paper considers aspects of 4-manifold topology from the point of view of a neutral metric, a point of view we call neutral causal topology. In particular, we construct and investigate neutral 4-manifolds with null boundary that arise from canonical 3- and 4-dimensional settings. A null hypersurface is foliated by its normal and, in the neutral case, inherits a pair of totally null planes at each point. This paper focuses on this structure in a number of classical settings The first construction is the conformal compactification of flat neutral 4-space into the 4-ball. The null foliation on the boundary in this case is the Hopf fibration on the 3-sphere and the totally null planes in the boundary are integrable. The metric on the 4-ball is a conformally flat, scalar-flat, positive Ricci curvature neutral metric. The second constructions are subsets of the 4-dimensional space of oriented geodesics in a 3-dimensional space-form, equipped with its canonical neutral metric. We consider all oriented geodesics ...

  1. Do Null Subjects (mis-)Trigger Pro-drop Grammars?

    Science.gov (United States)

    Frazier, Lyn

    2015-12-01

    Native speakers of English regularly hear sentences without overt subjects. Nevertheless, they maintain a [−pro] grammar that requires sentences to have an overt subject. It is proposed that listeners of English recognize that speakers reduce predictable material and thus attribute null subjects to this process, rather than changing their grammars to a [−pro] setting. Mack et al. (J Memory Lang 67(1):211-223, 2012) showed that sentences with noise covering the subject are analyzed as having null subjects more often with a first person pronoun and with a present tense--properties correlated with more predictable referents--compared to a third person pronoun and past tense. However, those results might in principle have been due to reporting null subjects for verbs that often occur with null subjects. An experiment is reported here in which comparable results are found for sentences containing nonsense verbs. Participants preferred a null subject more often for first person present tense sentences than for third person past tense sentences. The results are as expected if participants are responding to predictability, the likelihood of reduction, rather than to lexical statistics. The results are argued to be important in removing a class of mis-triggering examples from the language acquisition problem. PMID:25086703

  2. Maximizing entropy of image models for 2-D constrained coding

    OpenAIRE

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...

  3. Sparse Non-negative Matrix Factor 2-D Deconvolution

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...

  4. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    Science.gov (United States)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-05-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  5. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  7. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  8. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  9. Amygdala activation in response to 2D and 3D emotion-inducing stimuli

    OpenAIRE

    Dores, Artemisa Rocha; Barbosa, Fernando; Monteiro, Luís; Leitão, Miguel; Reis, Mafalda; Coelho, Carlos M.; Ribeiro, Eduardo; Irene P. Carvalho; de Sousa, Liliana; Castro-Caldas, Alexandre

    2014-01-01

    Studying changes in brain activation according to the valence of emotion-inducing stimuli is essential in the research on emotions. Due to the ecological potential of virtual reality, it is also important to examine whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images. This study uses functional Magnetic Resonance Imaging to compare differences between 3D and standard (2D) visual stimuli in the activation of emotion-...

  10. Fluid and plastic flow dynamics of the critical state for a strongly pinned 2D superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Monier, D.; Fruchter, L. [Universite de Paris-Sud, Orsay (France). Lab. de Physique des Solides

    2000-09-01

    We present simulations of the dynamic critical state for a 2D superconductor with strong pinning centers, corresponding to a matching field twice the applied magnetic field. The sharp crossover between the plastic regime, at low current density and temperature, and the fluid flow regime for flux motion is characterized by the activation energy for flux motion and the transverse diffusion of the vortices trajectory. (orig.)

  11. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    Science.gov (United States)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  12. Stabilising a nulling interferometer using optical path difference dithering

    CERN Document Server

    Gabor, Pavel; Brachet, Frank; Ollivier, Marc; Decaudin, Michel; Jacquinod, Sophie; Labèque, Alain; Léger, Alain

    2008-01-01

    Context. Nulling interferometry has been suggested as the underlying principle for the Darwin and TPF-I exoplanet research missions. Aims. There are constraints both on the mean value of the nulling ratio, and on its stability. Instrument instability noise is most detrimental to the stability of the nulling performance. Methods. We applied a modified version of the classical dithering technique to the optical path difference in the scientific beam. Results. Using only this method, we repeatedly stabilised the dark fringe for several hours. This method alone sufficed to remove the 1/ f component of the noise in our setup for periods of 10 minutes, typically. These results indicate that performance stability may be maintained throughout the long-duration data acquisitions typical of exoplanet spectroscopy. Conclusions. We suggest that further study of possible stabilisation strategies should be an integral part of Darwin/TPF-I research and development

  13. Null-steering techniques for application to large array antennas

    Science.gov (United States)

    Hockham, G. A.; Cho, C.; Parr, J. C.; Wolfson, R. I.

    A multimode waveguide can be employed to design an antenna which produces a beam for each propagating mode. A dual-beam waveguide slot array is particularly attractive. The antenna is compact, highly efficient, and has lower sidelobe-level performance than can be achieved with conventional monopulse techniques. Adaptive phase steering for jammer nulling is considered, taking into account a large phased array using a series feed system. The considered configuration was selected for computer simulation. A description is presented of a multiple beam antenna with independent steerable nulls. The multiple beam low-sidelobe antenna configuration has the ability to provide a radiation pattern with multiple and independently-located nulls, with minimal effect on the sidelobes of the unperturbed pattern.

  14. Thermodynamical interpretation of the geometrical variables associated with null surfaces

    CERN Document Server

    Chakraborty, Sumanta

    2015-01-01

    The emergent gravity paradigm interprets gravitational field equations as a describing the thermodynamic limit of the underlying statistical mechanics of microscopic degrees of freedom of the spacetime. The connection is established by attributing a heat density Ts to the null surfaces where T is the appropriate Davies-Unruh temperature and s is the entropy density. The field equations can be obtained from a thermodynamic variational principle which extremises the total heat density of all null surfaces. The explicit form of s determines the nature of the theory. We explore the consequences of this paradigm for an arbitrary null surface and highlight the thermodynamic significance of various geometrical quantities. In particular, we show that: (a) A conserved current, associated with the time development vector in a natural fashion, has direct thermodynamic interpretation in all Lanczos-Lovelock models of gravity. (b) One can generalize the notion of gravitational momentum, introduced in arXiv 1506.03814 to a...

  15. Phase closure nulling: results from the 2009 campaign

    Science.gov (United States)

    Duvert, Gilles; Malbet, Fabien; Chelli, Alain; Millan-Gabet, Rafael; Monnier, John D.; Schaefer, Gail H.

    2010-07-01

    We present here a new observational technique, Phase Closure Nulling (PCN), which has the potential to obtain very high contrast detection and spectroscopy of faint companions to bright stars. PCN consists in measuring closure phases of fully resolved objects with a baseline triplet where one of the baselines crosses a null of the object visibility function. For scenes dominated by the presence of a stellar disk, the correlated flux of the star around nulls is essentially canceled out, and in these regions the signature of fainter, unresolved, scene object(s) dominates the imaginary part of the visibility in particular the closure phase. We present here the basics of the PCN method, the initial proof-of-concept observation, the envisioned science cases and report about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this technique.

  16. Phase Closure Nulling: results from the 2009 campaign

    CERN Document Server

    Duvert, Gilles; Chelli, Alain; Millan-Gabet, Rafael; Monnier, John D; Schaefer, Gail H

    2010-01-01

    We present here a new observational technique, Phase Closure Nulling (PCN), which has the potential to obtain very high contrast detection and spectroscopy of faint companions to bright stars. PCN consists in measuring closure phases of fully resolved objects with a baseline triplet where one of the baselines crosses a null of the object visibility function. For scenes dominated by the presence of a stellar disk, the correlated flux of the star around nulls is essentially canceled out, and in these regions the signature of fainter, unresolved, scene object(s) dominates the imaginary part of the visibility in particular the closure phase. We present here the basics of the PCN method, the initial proof-of-concept observation, the envisioned science cases and report about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this technique.

  17. Null but not void: considerations for hypothesis testing.

    Science.gov (United States)

    Shaw, Pamela A; Proschan, Michael A

    2013-01-30

    Standard statistical theory teaches us that once the null and alternative hypotheses have been defined for a parameter, the choice of the statistical test is clear. Standard theory does not teach us how to choose the null or alternative hypothesis appropriate to the scientific question of interest. Neither does it tell us that in some cases, depending on which alternatives are realistic, we may want to define our null hypothesis differently. Problems in statistical practice are frequently not as pristinely summarized as the classic theory in our textbooks. In this article, we present examples in statistical hypothesis testing in which seemingly simple choices are in fact rich with nuance that, when given full consideration, make the choice of the right hypothesis test much less straightforward. Published 2012. This article is a US Government work and is in the public domain in the USA. PMID:22807023

  18. Neutral evolution: A null model for language dynamics

    CERN Document Server

    Blythe, R A

    2011-01-01

    We review the task of aligning simple models for language dynamics with relevant empirical data, motivated by the fact that this is rarely attempted in practice despite an abundance of abstract models. We propose that one way to meet this challenge is through the careful construction of null models. We argue in particular that rejection of a null model must have important consequences for theories about language dynamics if modelling is truly to be worthwhile. Our main claim is that the stochastic process of neutral evolution (also known as genetic drift or random copying) is a viable null model for language dynamics. We survey empirical evidence in favour and against neutral evolution as a mechanism behind historical language changes, highlighting the theoretical implications in each case.

  19. Association between striatal dopamine D2/D3 receptors and brain activation during visual attention: effects of sleep deprivation

    Science.gov (United States)

    Tomasi, D; Wang, G-J; Volkow, N D

    2016-01-01

    Sleep deprivation (SD) disrupts dopamine (DA) signaling and impairs attention. However, the interpretation of these concomitant effects requires a better understanding of dopamine's role in attention processing. Here we test the hypotheses that D2/D3 receptors (D2/D3R) in dorsal and ventral striatum would distinctly regulate the activation of attention regions and that, by decreasing D2/D3, SD would disrupt these associations. We measured striatal D2/D3R using positron emission tomography with [11C]raclopride and brain activation to a visual attention (VA) task using 4-Tesla functional magnetic resonance imaging. Fourteen healthy men were studied during rested wakefulness and also during SD. Increased D2/D3R in striatum (caudate, putamen and ventral striatum) were linearly associated with higher thalamic activation. Subjects with higher D2/D3R in caudate relative to ventral striatum had higher activation in superior parietal cortex and ventral precuneus, and those with higher D2/D3R in putamen relative to ventral striatum had higher activation in anterior cingulate. SD impaired the association between striatal D2/D3R and VA-induced thalamic activation, which is essential for alertness. Findings suggest a robust DAergic modulation of cortical activation during the VA task, such that D2/D3R in dorsal striatum counterbalanced the stimulatory influence of D2/D3R in ventral striatum, which was not significantly disrupted by SD. In contrast, SD disrupted thalamic activation, which did not show counterbalanced DAergic modulation but a positive association with D2/D3R in both dorsal and ventral striatum. The counterbalanced dorsal versus ventral striatal DAergic modulation of VA activation mirrors similar findings during sensorimotor processing (Tomasi et al., 2015) suggesting a bidirectional influence in signaling between the dorsal caudate and putamen and the ventral striatum. PMID:27219347

  20. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    International Nuclear Information System (INIS)

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  1. Singular value decomposition for photon-processing nuclear imaging systems and applications for reconstruction and computing null functions

    Science.gov (United States)

    Jha, Abhinav K.; Barrett, Harrison H.; Frey, Eric C.; Clarkson, Eric; Caucci, Luca; Kupinski, Matthew A.

    2015-09-01

    Recent advances in technology are enabling a new class of nuclear imaging systems consisting of detectors that use real-time maximum-likelihood (ML) methods to estimate the interaction position, deposited energy, and other attributes of each photon-interaction event and store these attributes in a list format. This class of systems, which we refer to as photon-processing (PP) nuclear imaging systems, can be described by a fundamentally different mathematical imaging operator that allows processing of the continuous-valued photon attributes on a per-photon basis. Unlike conventional photon-counting (PC) systems that bin the data into images, PP systems do not have any binning-related information loss. Mathematically, while PC systems have an infinite-dimensional null space due to dimensionality considerations, PP systems do not necessarily suffer from this issue. Therefore, PP systems have the potential to provide improved performance in comparison to PC systems. To study these advantages, we propose a framework to perform the singular-value decomposition (SVD) of the PP imaging operator. We use this framework to perform the SVD of operators that describe a general two-dimensional (2D) planar linear shift-invariant (LSIV) PP system and a hypothetical continuously rotating 2D single-photon emission computed tomography (SPECT) PP system. We then discuss two applications of the SVD framework. The first application is to decompose the object being imaged by the PP imaging system into measurement and null components. We compare these components to the measurement and null components obtained with PC systems. In the process, we also present a procedure to compute the null functions for a PC system. The second application is designing analytical reconstruction algorithms for PP systems. The proposed analytical approach exploits the fact that PP systems acquire data in a continuous domain to estimate a continuous object function. The approach is parallelizable and

  2. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    Directory of Open Access Journals (Sweden)

    Sezen S

    2006-01-01

    Full Text Available A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  3. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  4. Optimization of myocardial nulling in pediatric cardiac MRI

    Energy Technology Data Exchange (ETDEWEB)

    Tham, Edythe B. [Stollery Children' s Hospital, University of Alberta, Department of Pediatrics, Division of Pediatric Cardiology, Edmonton, Alberta (Canada); Hung, Ryan W.; Crawley, Cinzia; Noga, Michelle L. [University of Alberta, Pediatric Radiology, Stollery Children' s Hospital, Edmonton (Canada); Myers, Kimberley A. [Alberta Children' s Hospital, Calgary (Canada)

    2012-04-15

    Current protocols to determine optimal nulling time in late enhancement imaging using adult techniques may not apply to children. To determine the optimal nulling time in anesthetised children, with the hypothesis that this occurs earlier than in adults. Sedated cardiac MRI was performed in 12 children (median age: 12 months, range: 1-60 months). After gadolinium administration, scout images at 2, 3, 4 and 10 min and phase sensitive inversion recovery (PSIR) images from 5 to 10 min were obtained. Signal-to-noise ratio (SNR) and inversion time (TI) were determined. Quality of nulling was assessed according to a grading score by three observers. Data was analysed using linear regression, Kruskal-Wallis and quadratic-weighted kappa statistics. One child with a cardiomyopathy had late enhancement. Good agreement in nulling occurred for scout images at 2 ({kappa} = 0.69) and 3 ({kappa} = 0.66) min and moderate agreement at 4 min ({kappa} = 0.57). Agreement of PSIR images was moderate at 7 min ({kappa} = 0.44) and poor-fair at other times. There were significant correlations between TI and scout time (r = 0.61, P < 0.0001), and SNR and kappa (r = 0.22, P = 0.017). Scout images at 2-4 min can be used to determine the TI with little variability. Image quality for PSIR images was highest at 7 min and SNR optimal at 7-9 min. TI increases with time and should be adjusted frequently during imaging. Thus, nulling times in children differ from nulling times in adults when using standard adult techniques. (orig.)

  5. Quantization in Spacetime from Null Paths in Higher Dimensions

    OpenAIRE

    Wesson, Paul S.

    2008-01-01

    Massive particles on timelike paths in spacetime can be viewed as moving on null paths in a higher-dimensional manifold. This and other consequences follow from the use of Campbell's theorem to embed 4D general relativity in non-compactified 5D Kaluza-Klein theory. We now show that it is possible in principle to obtain the standard rule for quantization in 4D from the canonical metric with null paths in 5D. Particle mass can be wavelike, as suggested originally by Dirac, and other 4D/5D conse...

  6. A Matrix Model for the Null-Brane

    OpenAIRE

    Robbins, Daniel; Sethi, Savdeep

    2005-01-01

    The null-brane background is a simple smooth 1/2 BPS solution of string theory. By tuning a parameter, this background develops a big crunch/big bang type singularity. We construct the DLCQ description of this space-time in terms of a Yang-Mills theory on a time-dependent space-time. Our dual Matrix description provides a non-perturbative framework in which the fate of both (null) time, and the string S-matrix can be studied.

  7. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Science.gov (United States)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  8. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  9. Symmetries and solvable models for evaporating 2D black holes

    OpenAIRE

    Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V

  10. New Type of 2-D Laser Doppler Vibrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  11. Statische verweking talud: Handleiding Windows versie SLIQ2D

    NARCIS (Netherlands)

    Van den Ham, G.

    2009-01-01

    SLIQ2D is een quasi-2D computerprogramma waarmee het optreden voorspeld kan worden van een verwekingsvloeiing ofwel een instabiliteit van een onderwatertalud ten gevolge van verweking, gegeven de taludhelling, relatieve dichtheid en materiaaleigenschappen van het zand. Dit programma is in 1994 door

  12. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  13. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo

  14. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    2006-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen

  15. Van der Waals stacked 2D layered materials for optoelectronics

    Science.gov (United States)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  16. Circumpulsar Asteroids: Inferences from Nulling Statistics and High Energy Correlations

    Science.gov (United States)

    Shannon, Ryan; Cordes, J. M.

    2006-12-01

    We have proposed that some classes of radio pulsar variability are associated with the entry of neutral asteroidal material into the pulsar magnetosphere. The region surrounding neutron stars is polluted with supernova fall-back material, which collapses and condenses into an asteroid-bearing disk that is stable for millions of years. Over time, collisional and radiative processes cause the asteroids to migrate inward until they are heated to the point of ionization. For older and cooler pulsars, asteroids ionize within the large magnetospheres and inject a sufficient amount of charged particles to alter the electrodynamics of the gap regions and modulate emission processes. This extrinsic model unifies many observed phenomena of variability that occur on time scales that are disparate with the much shorter time scales associated with pulsars and their magnetospheres. One such type of variability is nulling, in which certain pulsars exhibit episodes of quiescence that for some objects may be as short as a few pulse periods, but, for others, is longer than days. Here, in the context of this model, we examine the nulling phenomenon. We analyze the relationship between in-falling material and the statistics of nulling. In addition, as motivation for further high energy observations, we consider the relationship between the nulling and other magnetospheric processes.

  17. Quantization in Spacetime from Null Paths in Higher Dimensions

    CERN Document Server

    Wesson, Paul S

    2008-01-01

    Massive particles in spacetime can be viewed as moving on null paths in a higher-dimensional manifold. Using a novel gauge, we show that geometric structure in 5D can lead to the standard rule for quantization in 4D. Particle mass can be wavelike, as suggested originally by Dirac, and other 5D/4D consequences are outlined.

  18. Testing the null hypothesis: the forgotten legacy of Karl Popper?

    Science.gov (United States)

    Wilkinson, Mick

    2013-01-01

    Testing of the null hypothesis is a fundamental aspect of the scientific method and has its basis in the falsification theory of Karl Popper. Null hypothesis testing makes use of deductive reasoning to ensure that the truth of conclusions is irrefutable. In contrast, attempting to demonstrate the new facts on the basis of testing the experimental or research hypothesis makes use of inductive reasoning and is prone to the problem of the Uniformity of Nature assumption described by David Hume in the eighteenth century. Despite this issue and the well documented solution provided by Popper's falsification theory, the majority of publications are still written such that they suggest the research hypothesis is being tested. This is contrary to accepted scientific convention and possibly highlights a poor understanding of the application of conventional significance-based data analysis approaches. Our work should remain driven by conjecture and attempted falsification such that it is always the null hypothesis that is tested. The write up of our studies should make it clear that we are indeed testing the null hypothesis and conforming to the established and accepted philosophical conventions of the scientific method.

  19. Progress in broadband infrared nulling technology for TPF

    Science.gov (United States)

    Wallace, J. Kent; Brown, Ken; Bartos, Randall; Gappinger, Robert; Loya, Frank; Macdonald, Dan; Moser, Steve; Negron, John

    2005-01-01

    TPF-I has set for itself a host of challenging technical milestones along its path to demonstrating the feasibility of infrared nulling for planet detection Progress in each of these areas of technical development will be reviewed as well as progress in meeting the overarching technical milestones.

  20. Design of a polarization nulling interferometer for exoplanet detection

    NARCIS (Netherlands)

    Spronck, J.; Vosteen, L.L.A.; Pereira, S.F.; Braat, J.J.M.

    2007-01-01

    We present the design of a new testbed experiment to demonstrate nulling interferometry using polarization properties. This three-beam set-up is perfectly symmetric with respect to the number of reflections and transmissions and should therefore allow a high rejection ratio in a wide spectral band.

  1. Nulling interferometry for exoplanet detection using polarization properties

    NARCIS (Netherlands)

    Spronck, J.; Pereira, S.F.; Braat, J.J.M.

    2006-01-01

    We present a new type of nulling interferometer that makes use of polarization properties to have on-axis destructive interference. The proposed design, which only involves commercial components and no achromatic device, is also suitable for internal modulation. This type of interferometer should en

  2. Dispersion in nulling interferometry for exoplanet detection: experimental validation

    NARCIS (Netherlands)

    Spronck, J.F.P.; Los, J.W.N.; Pereira, S.F.

    2009-01-01

    It is well known that dispersion affects the performance of a wide-band nulling interferometer, since it induces wavelength-dependent phase differences between the arms of the interferometer. This property is used to create achromatic phase shift by combining several dielectric plates. In this paper

  3. Compensation and optimization of dispersion in nulling interferometry

    NARCIS (Netherlands)

    Spronck, J.F.P.; Los, J.W.N.; Pereira, S.F.

    2008-01-01

    The optical properties of materials are wavelength-dependent. This property, called dispersion, affects the performance of a wide-band nulling interferometer by inducing wavelength-dependent phase differences between the arms of the interferometer. In this paper, we analyze the influence of dispersi

  4. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    Science.gov (United States)

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  5. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  7. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  8. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  9. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  10. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino;

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  11. The NH$_2$D hyperfine structure revealed by astrophysical observations

    OpenAIRE

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) n...

  12. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  13. Optimization and practical implementation of ultrafast 2D NMR experiments

    Directory of Open Access Journals (Sweden)

    Luiz H. K. Queiroz Júnior

    2013-01-01

    Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

  14. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    Science.gov (United States)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  15. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  16. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  17. Positron annihilation 2D ACAR device using position-sensitive photoelectron multiplier tube

    International Nuclear Information System (INIS)

    For a positron annihilation 2D ACAR device, the γ ray detector with good position resolution and detection efficiency is indispensable. The authors have examined the performance of the new type γ ray detector, in which the scintillator with high detection efficiency and high luminance is attached to a position-sensitive photoelectron multiplier tube (PS-PMT). As the result, it was found that the detector of attaching many fine columnar BGO scintillators being bundled to a PS-PMT is suitable to the detector for the 2D ACAR device. The 2D ACAR device using this detector was made in the Radioisotope Center, University of Tokyo. The position-sensitive γ ray detector and the method of detecting position are explained. The arrangement of the 2D ACAR device including two detectors and the circuit are shown. The two-dimensional angular correlation of KI at 14K measured with this device is shown. The momentum resolution was estimated to be about 1.2 x 10-3 mc from the width of a positronium peak. 70 counts/s on average was obtained under the conditions of 30 mCi Na-22 source and 7.5 k gauss magnetic field. The detector is compact, its efficiency is high, and price is low. (K.I.)

  18. KPLS-RWBFNN model for MFL 2D defect profile reconstruction

    Science.gov (United States)

    Xu, Chao; Wang, Changlong; Ji, Fengzhu

    2013-03-01

    Kernel partial least squares (KPLS) is normally very efficient for tackling nonlinear systems by mapping an original input space into a high-dimensional feature space and creating a linear PLS model in the feature space. Unlike other nonlinear PLS techniques, KPLS does not entail any nonlinear optimisation procedures. However, due to the linear inner model of PLS, KPLS is still inappropriate for describing the significant nonlinear characteristic data structure while dealing with complex physical systems in practical situations. Under this circumstance, radial wavelet basic function neural network (RWBFNN) can replace the linear inner model of PLS in the nonlinear kernel-based algorithm. Thus, KPLS-RWBFNN model is proposed in this paper and applied to multi-resolution approximation reconstruction of 2D defect profiles in magnetic flux leakage testing. The reconstructions of 2D defect profiles by this method are implemented, and the comparisons among reconstructions by KPLS, RWBFNN and the proposed approach are also undertaken. Meanwhile, the reconstructions of 2D defects by RWBFNN and the proposed approach at different SNR are also executed. The results indicate that KPLS-RWBFNN model could simplify the structure of the network while holding well-behaved generalisation and multi-resolution approximation and predict the 2D defect profiles accurately and rapidly with good robustness.

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  20. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  1. Orbifold Reduction and 2d (0,2) Gauge Theories

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.

  2. Emerging and potential opportunities for 2D flexible nanoelectronics

    Science.gov (United States)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  3. Double resonance rotational spectroscopy of CH2D+

    Science.gov (United States)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  4. 2D gels still have a niche in proteomics

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;

    2013-01-01

    With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2......) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show...

  5. Technical Review of the UNET2D Hydraulic Model

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  6. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Directory of Open Access Journals (Sweden)

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  7. Recent developments in 2D layered inorganic nanomaterials for sensing

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  8. Predicting treatment response in schizophrenia: The role of striatal and frontal dopamine D2/D3 receptor binding potential

    DEFF Research Database (Denmark)

    Nørbak, Henrik; Wulff, Sanne; Nielsen, Mette Ødegaard;

    structural Magnetic Resonance Imaging, SPECT and PANSS. In the IBZMcohort we included 26 patients. We used the ligand [123]IBZM (123labeled iodbenzamid) to examine the binding potential (BP) of dopamine D2/D3 receptors in striatum. Patients were treated with amisulpride for six weeks. In the EPIcohort we...

  9. Absolute parametric instability of low-frequency waves in a 2D nonuniform anisotropic warm plasma

    Indian Academy of Sciences (India)

    N G Zaki

    2010-05-01

    Using the separation method, absolute parametric instability (API) of electrostatic waves in a magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in two-dimensional (2D) nonuniform plane plasma. Equations which describe the spatial part of the electric potential are obtained. Also, the growth rates and conditions of the parametric instability for periodic and aperiodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are less when compared to that in cold plasma.

  10. A coupled $2\\times2$D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions

    CERN Document Server

    Lemerle, Alexandre

    2016-01-01

    In this paper we complete the presentation of a new hybrid $2\\times2$D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. 2015 to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship betwe...

  11. Transverse magneto-optical Kerr effect in 2D gold–garnet nanogratings

    Energy Technology Data Exchange (ETDEWEB)

    Chetvertukhin, A.V., E-mail: chetvertukhin@gmail.com [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Musorin, A.I.; Dolgova, T.V. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Uchida, H. [Tohoku Institute of Technology, Sendai, Miyagi 982-8577 (Japan); Inoue, M. [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fedyanin, A.A., E-mail: fedyanin@nanolab.phys.msu.ru [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2015-06-01

    Planar magnetoplasmonic nanogratings composed of a two-dimensional square array of gold nanoparticles embedded into thin magnetic garnet films are proposed for enhancement of the transverse magneto-optical Kerr effect due to excitation of a quasi-waveguiding mode with light concentrated mostly inside the magnetic film. A proper optimisation of the size and periodicity of plasmonic nanoparticles as well as the thickness of magnetic dielectrics allows spectral tuning of the waveguiding mode leading to the sharp asymmetric resonance in the magneto-optical response in the desired spectral region. - Highlights: • TMOKE in hybrid 2D magnetoplasmonic nanogratings is studied experimentally. • The enhancement of TMOKE is attributed to excitation of a quasi-waveguiding mode. • Quasi-waveguiding mode provides sharp asymmetric resonance of the TMOKE.

  12. 2d quantum gravity and black hole formation

    International Nuclear Information System (INIS)

    The quantum integral of generic 2d quantum gravity can be performed exactly. The equivalence of dilaton theories to 2d theories with torsion and the use of a light cone gauge are crucial. Scalar matter can be treated perturbatively. A generalization of the Polyakov action emerges. For scattering of scalars in a flat background already in the tree approximation for the first time the intermediate formation of a black hole is observed in an ab initio quantum gravity computation

  13. Excitation of 2D plasmons in Cs/W(110)

    CERN Document Server

    Benemanskaya, G V; Frank-Kamenetskaya, G E

    2001-01-01

    One studied the evolution of surface photoemission spectra for Cs/W(110) system at metastable Cs coatings exceeding monolayer. One showed possibility to observe 2D plasmons by means of threshold photoemission spectroscopy. One detected three photoemission peaks characterized by complicated behavior depending on Cd adsorption dose. The nature of peaks may be related to plasmon photoinduced excitation in quasi-2D Cs clusters, surface Cs plasmon and interface Cs-W plasmon

  14. The Branching of Graphs in 2-d Quantum Gravity

    OpenAIRE

    Harris, M. G.

    1996-01-01

    The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.

  15. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    OpenAIRE

    Jian-Hua Li; Yi-Wen Wang; Yi Chen; Meng Zhang

    2013-01-01

    Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations) are employed to original images using big scale multiple SEs (structuring elements). Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcode...

  16. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  17. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST%Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST

    Institute of Scientific and Technical Information of China (English)

    张凌; 常加峰; 张炜; 李颖颖; 钱金平; 徐国盛; 丁斯晔; 高伟; 吴振伟; 陈颖杰; 黄娟; 刘晓菊; 臧庆

    2011-01-01

    In this work, population coefficients of hydrogen's n = 3 excited state from the hydrogen collisional-radiative (CR) model, from the data file of DEGAS 2, are used to calculate the photon emissivity coefficients (PECs) of hydrogen Balmer-α (n = 3 →n = 2) (Hα). The results are compared with the PECs from Atomic Data and Analysis Structure (ADAS) database, and a good agreement is found. A magnetic surface-averaged neutral density profile of typical double-null (DN) plasma in EAST is obtained by using FRANTIC, the 1.5-D fluid transport code. It is found that the sum of integral Dα and Hα emission intensity calculated via the neutral density agrees with the measured results obtained by using the absolutely calibrated multi-channel poloidal photodiode array systems viewing the lower divertor at the last closed flux surface (LCFS). It is revealed that the typical magnetic surface-averaged neutral density at LCFS is about 3.5×10^16 m^-3 .

  18. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  19. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    Energy Technology Data Exchange (ETDEWEB)

    Catapano, F., E-mail: menacata3@gmail.com; Zimbardo, G. [Dipartimento di Fisica, Università della Calabria, Rende, Cosenza (Italy); Artemyev, A. V., E-mail: ante0226@gmail.com; Vasko, I. Y. [Space Research Institute, RAS, Moscow (Russian Federation)

    2015-09-15

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed.

  20. Bill2d -- a software package for classical two-dimensional Hamiltonian systems

    CERN Document Server

    Solanpää, Janne; Räsänen, Esa

    2016-01-01

    We present Bill2d, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. Bill2d can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincar\\'e sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).

  1. BILL2D - A software package for classical two-dimensional Hamiltonian systems

    Science.gov (United States)

    Solanpää, J.; Luukko, P. J. J.; Räsänen, E.

    2016-02-01

    We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).

  2. Current sheets with inhomogeneous plasma temperature: Effects of polarization electric field and 2D solutions

    International Nuclear Information System (INIS)

    We develop current sheet models which allow to regulate the level of plasma temperature and density inhomogeneities across the sheet. These models generalize the classical Harris model via including two current-carrying plasma populations with different temperature and the background plasma not contributing to the current density. The parameters of these plasma populations allow regulating contributions of plasma density and temperature to the pressure balance. A brief comparison with spacecraft observations demonstrates the model applicability for describing the Earth magnetotail current sheet. We also develop a two dimensional (2D) generalization of the proposed model. The interesting effect found for 2D models is the nonmonotonous profile (along the current sheet) of the magnetic field component perpendicular to the current sheet. Possible applications of the model are discussed

  3. Methods for defect characterisation in thin film materials by depth-selective 2D-ACAR

    Science.gov (United States)

    Eijt, S. W. H.; Falub, C. V.; van Veen, A.; Schut, H.; Mijnarends, P. E.

    2002-06-01

    The advent of intense positron beams makes it possible to perform depth-selective 2D-ACAR (two-dimensional angular correlation of annihilation radiation) studies. The Delft POSH-ACAR setup employs a strong permanent magnet for focusing of the POSH beam on the sample, which leads to a ˜15% spread in implantation energy. The effects of this spread on positron depth-profiling data are discussed, and are shown to be consistent with Doppler experiments on Si(1 0 0) with a subsurface layer of nanocavities. A method is presented to decompose depth-selective 2D-ACAR spectra reliably into their various (layer) components. This is used to reveal strong positron trapping in the nanocavities in Si(1 0 0).

  4. Proof of a Null Penrose Conjecture using a new Quasi-local Mass

    CERN Document Server

    Roesch, Henri

    2016-01-01

    We define an explicit quasi-local mass functional which is non-decreasing along all foliations (satisfying a convexity assumption) of null cones. We use this new functional to prove the null Penrose conjecture under fairly generic conditions.

  5. Analysis of nulling phase functions suitable to image plane coronagraphy

    CERN Document Server

    Henault, Francois; Verinaud, Christophe

    2016-01-01

    Coronagraphy is a very efficient technique for identifying and characterizing extra-solar planets orbiting in the habitable zone of their parent star, especially when used in a space environment. An important family of coronagraphs is based on phase plates located at an intermediate image plane of the optical system, that spread the starlight outside the "Lyot" exit pupil plane of the instrument. In this communication we present a set of candidate phase functions generating a central null at the Lyot plane, and study how it propagates to the image plane of the coronagraph. These functions include linear azimuthal phase ramps (the well-known optical vortex), azimuthally cosine-modulated phase profiles, and circular phase gratings. Numerical simulations of the expected null depth, inner working angle, sensitivity to pointing errors, effect of central obscuration located at the pupil or image planes, and effective throughput including image mask and Lyot stop transmissions are presented and discussed. The prelim...

  6. Conserved quantities at spatial and null infinity: The Penrose potential

    International Nuclear Information System (INIS)

    We define a superpotential for energy-momentum and rotation momentum which is built out of the conformal tensor and a bivector. This superpotential is identified with that used by Penrose in his definition of quasilocal energy. It is applied to the definition of energy-momentum and rotation momentum at spatial and at null infinities. At spatial infinity the results are in agreement with those of Ashtekar and Hansen. At null infinity the results are unsatisfactory; they are tied to a specific Bondi frame. Thus, they are not in agreement with the results of Tamburino and Winicour, Geroch and Winicour, nor with those of Dray and Streubel. Some reasons for this failure are discussed

  7. Holographic proof of the quantum null energy condition

    Science.gov (United States)

    Koeller, Jason; Leichenauer, Stefan

    2016-07-01

    We use holography to prove the quantum null energy condition (QNEC) at leading order in large N for CFTs and relevant deformations of CFTs in Minkowski space which have Einstein gravity duals. Given any codimension-two surface Σ which is locally stationary under a null deformation in the direction k at the point p , the QNEC is a lower bound on the energy-momentum tensor at p in terms of the second variation of the entropy to one side of Σ : ⟨Tk k⟩≥S''/2 π √{h } . In a CFT, conformal transformations of this inequality give results which apply when Σ is not locally stationary. The QNEC was proven previously for free theories, and taken together with our result this provides strong evidence that the QNEC is a true statement about quantum field theory in general.

  8. Averaged null energy condition in Loop Quantum Cosmology

    CERN Document Server

    Li, Li-Fang

    2008-01-01

    Wormhole and time machine are very interesting objects in general relativity. However, they need exotic matters which are impossible in classical level to support them. But if we introduce the quantum effects of gravity into the stress-energy tensor, these peculiar objects can be constructed self-consistently. Fortunately, loop quantum cosmology (LQC) has the potential to serve as a bridge connecting the classical theory and quantum gravity. Therefore it provides a simple way for the study of quantum effect in the semiclassical case. As is well known, loop quantum cosmology is very successful to deal with the behavior of early universe. In the early stage, if taken the quantum effect into consideration, inflation is natural because of the violation of every kind of local energy conditions. Similar to the inflationary universe, the violation of the averaged null energy condition is the necessary condition for the traversable wormholes. In this paper, we investigate the averaged null energy condition in LQC in ...

  9. Null Cones and Einstein's Equations in Minkowski Spacetime

    CERN Document Server

    Pitts, J B

    2004-01-01

    If Einstein's equations are to describe a field theory of gravity in Minkowski spacetime, then causality requires that the effective curved metric must respect the flat background metric's null cone. The kinematical problem is solved using a generalized eigenvector formalism based on the Segr\\'{e} classification of symmetric rank 2 tensors with respect to a Lorentzian metric. Securing the correct relationship between the two null cones dynamically plausibly is achieved using the naive gauge freedom. New variables tied to the generalized eigenvector formalism reduce the configuration space to the causality-respecting part. In this smaller space, gauge transformations do not form a group, but only a groupoid. The flat metric removes the difficulty of defining equal-time commutation relations in quantum gravity and guarantees global hyperbolicity.

  10. Null warped AdS in higher spin gravity

    CERN Document Server

    Breunhoelder, Veronika; Grumiller, Daniel; Prohazka, Stefan

    2015-01-01

    We equip three-dimensional spin-3 gravity in the principal embedding with a new set of boundary conditions that we call "asymptotically null warped AdS". We find a chiral copy of the Polyakov-Bershadsky algebra as asymptotic symmetry algebra, reminiscent of the situation in topologically massive gravity with strict null warped AdS boundary conditions. We prove the invertibility of the map between zuvielbein and metric variables and construct a global gauge transformation to half of AdS spin-3 gravity in the diagonal embedding. This explains why the theory is chiral and why the Polyakov-Bershadsky algebra arises. We then introduce chemical potentials, derive the entropy, free energy, and the holographic response functions, and conclude with a discussion.

  11. Sparse Non-negative Tensor 2D Deconvolution (SNTF2D) for multi channel time-frequency analysis

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We recently introduced two algorithms for sparse non-negative matrix factor 2-D deconvolution (SNMF2D) that are useful for single channel source separation and music transcription. We here extend this approach to the analysis of the log-frequency spectrograms of a multichannel recording. The model...... algorithms are demonstrated to successfully identify the components of both artificially generated as well as real stereo music....

  12. The Tolman VII solution, trapped null orbits and w - modes

    CERN Document Server

    Neary, N J; Lake, K; Neary, Nicholas; Ishak, Mustapha; Lake, Kayll

    2001-01-01

    The Tolman VII solution is an exact static spherically symmetric perfect fluid solution of Einstein's equations that exhibits a surprisingly good approximation to a neutron star. We show that this solution exhibits trapped null orbits in a causal region even for a tenuity (total radius to mass ratio) $> 3$. In this region the dynamical part of the potential for axial w - modes dominates over the centrifugal part.

  13. Lie groups of conformal motions acting on null orbits

    CERN Document Server

    Sintes, A M; Carot, J

    1997-01-01

    Space-times admitting a 3-dimensional Lie group of conformal motions $C_3$ acting on null orbits are studied. Coordinate expressions for the metric and the conformal Killing vectors (CKV) are provided (irrespectively of the matter content) and then all possible perfect fluid solutions are found, although none of these verify the weak and dominant energy conditions over the whole space-time manifold.

  14. A null model for testing thermodynamic optimization in ecological systems

    OpenAIRE

    Doyle, Santiago R.; Carusela, Florencia; Guala, Sebastián; Momo, Fernando

    2011-01-01

    Several authors have hypothesized that ecological systems are subject to thermodynamic optimization, which, if proven correct, could represent a long sought general principle of organization in ecology. Although there have been recent advances, this still remains as an unresolved topic, and ecologists lack a general method to test thermodynamic optimization hypotheses in specific systems. Here we present a general, novel approach that allows generating a null model for testing thermodynamic o...

  15. Do electromagnetic waves always propagate along null geodesics?

    CERN Document Server

    Asenjo, Felipe A

    2016-01-01

    We find exact solutions to Maxwell equations written in terms of four-vector potentials in non--rotating, as well as in G\\"odel and Kerr spacetimes. Exact electromagnetic waves solutions are written on given gravitational field backgrounds where they evolve. We find that in non--rotating spherical symmetric spacetimes, electromagnetic plane waves travel along null geodesics. However, electromagnetic plane waves on G\\"odel and Kerr spacetimes do not exhibit that behavior.

  16. Nulling interferometry for exoplanet detection using polarization properties

    OpenAIRE

    Spronck, J.; Pereira, S.F.; Braat, J.J.M.

    2006-01-01

    We present a new type of nulling interferometer that makes use of polarization properties to have on-axis destructive interference. The proposed design, which only involves commercial components and no achromatic device, is also suitable for internal modulation. This type of interferometer should enable a high rejection ratio in a theoretically unlimited spectral band. We implemented that concept on a two-beam white-light interferometer and we present here the first experimental results

  17. Detection of Fatigue Cracks at Rivets with Self-Nulling Probe

    Science.gov (United States)

    Wincheski, Buzz; Fulton, Jim; Nath, Shridhar; Namkung, Min

    1994-01-01

    A new eddy current probe developed at NASA Langley Research Center has been used to detect small cracks at rivets in aircraft lap splices [1]. The device has earlier been used to detect isolated fatigue cracks with a minimum detectable flaw size of roughly 1/2 to 1/3 the diameter of the probe [2]. The present work shows that the detectable flaw size for cracks originating at rivets can be greatly improved upon from that of isolated flaws. The use of a rotating probe method combined with spatial filtering has been used to detect 0.18 cm EDM notches, as measured from the rivet shank, with a 1.27 cm diameter probe and to detect flaws buried under the rivet head, down to a length of 0.076 cm, using a 0.32 cm diameter probe. The Self-Nulling Electromagnetic Flaw Detector induces a high density eddy current ring in the sample under test. A ferromagnetic flux focusing lens is incorporated such that in the absence of any inhomogeneities in the material under test only a minimal magnetic field will reach the interior of the probe. A magnetometer (pickup coil) located in the center of the probe therefore registers a null voltage in the absence of material defects. When a fatigue crack or other discontinuity is present in the test article the path of the eddy currents in the material is changed. The magnetic field associated with these eddy currents then enter into the interior of the probe, producing a large output voltage across the pickup coil leads. Further

  18. Self-attraction and natural curvature in null DNA.

    Science.gov (United States)

    Manning, G S

    1989-08-01

    Forces of self-attraction inherent in DNA are unmasked when its ionic charge is neutralized. On the global level, self-attraction operates between segments to condense null (charge-neutralized) DNA into a segment-rich particle. Locally, self-attraction tends to contract an individual segment along its axis. If certain conditions are satisfied, the compressed segment buckles outward from the original line of the axis. Its most stable shape is then curved, or, as an extreme case, even completely folded. Buckling conditions are derived and shown to be met by DNA, thus explaining the high degree of ordered curvature and folding in the observed morphologies of condensed null DNA. The central concept employed is the buckling persistence length. It is evaluated for null DNA (40-50 bp) and agrees with experimental data (less than 60 bp). It helps in understanding the observed cooperative unit in the condensation/decondensation equilibrium (about 60 bp) and the observed size of digestion fragments unstable in the condensed phase (about 80 bp). The root-mean-square thermal compression/extension fluctuation in DNA is estimated at about 0.1 A/bp. PMID:2684222

  19. Non-null annular subaperture stitching interferometry for aspheric test

    Science.gov (United States)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  20. Retarded Fields of Null Particles and the Memory Effect

    CERN Document Server

    Tolish, Alexander

    2014-01-01

    We consider the retarded solution to the scalar, electromagnetic, and linearized gravitational field equations in Minkowski spacetime, with source given by a particle moving on a null geodesic. In the scalar case and in the Lorenz gauge in the electromagnetic and gravitational cases, the retarded integral over the infinite past of the source does not converge as a distribution, so we cut off the null source suitably at a finite time $t_0$ and then consider two different limits: (i) the limit as the observation point goes to null infinity at fixed $t_0$, from which the ``$1/r$'' part of the fields can be extracted and (ii) the limit $t_0 \\to - \\infty$ at fixed ``observation point.'' The limit (i) gives rise to a ``velocity kick'' on distant test particles in the scalar and electromagnetic cases, and it gives rise to a ``memory effect'' (i.e., a permanent change in relative separation of two test particles) in the linearized gravitational case, in agreement with previous analyses. Although the second limit does...

  1. Zero emission city. Preliminary study; Null-Emissions-Stadt. Sondierungsstudie

    Energy Technology Data Exchange (ETDEWEB)

    Diefenbach, N.; Enseling, A.; Werner, P.; Flade, A.; Greiff, R.; Hennings, D.; Muehlich, E.; Wullkopf, U.; Sturm, P.; Kieslich, W.; Born, R.; Grossklos, M.; Hatteh, R.; Mueller, K.; Ratschow, A.; Valouch-Fornoff, C.

    2002-10-01

    The idea of a 'zero emission city' is investigated by the Institut Wohnen und Umwelt on behalf of the Federal Minister of Education and Research. After describing the current situation and defining the key parameters of a 'zero emission city', settlement structures, power supply, production processes and transportation are analyzed and linked with the communal action level to obtain a framework for research, activities and actions. The study ends with recommendations for a research programme 'zero emission city'. (orig.) [German] Die von den Staedten der Industrielaender ausgehenden Emissionen stellen im Hinblick auf die globalen Belastungen wie z.B. Treibhauseffekt, Ozonabbau und Versauerung das Hauptproblem dar. Aus diesem Grunde bietet es sich an, den Gedanken der 'Null-Emissions-Stadt', der Vision einer moeglichst emissionsfreien Stadt, aufzugreifen und auf seine Tragfaehigkeit fuer innovative Handlungsmodelle forschungsstrategisch zu ueberpruefen. Das Bundesministerium fuer Bildung und Forschung hat das Institut Wohnen und Umwelt beauftragt, in einer Sondierungsstudie dieser Fragestellung nachzugehen. Nach der Festlegung der Ausgangsbedingungen und Eckpunkte der Vision 'Null-Emissions-Stadt' und der Analyse der vier Handlungsfelder Siedlungsstrukturen, Energieversorgung, Produktionsprozesse (Kreislaufwirtschaft) und Verkehr werden diese aufgegriffen und mit der kommunalen Handlungsebene verknuepft und zu einem Forschungs-, Handlungs- und moeglichen Aktionsrahmen zusammengefuegt. Die Studie schliesst mit Hinweisen fuer die Gestaltung eines Forschungsprogramms 'Null-Emissions-Stadt'. (orig.)

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  3. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  4. MAGNET

    CERN Multimedia

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  5. Variational principle for gravity with null and non-null boundaries: a unified boundary counter-term

    Energy Technology Data Exchange (ETDEWEB)

    Parattu, Krishnamohan; Chakraborty, Sumanta; Padmanabhan, T. [IUCAA, Post Bag 4, Pune (India)

    2016-03-15

    It is common knowledge that the Einstein-Hilbert action does not furnish a well-posed variational principle. The usual solution to this problem is to add an extra boundary term to the action, called a counter-term, so that the variational principle becomes well-posed. When the boundary is spacelike or timelike, the Gibbons-Hawking-York counter-term is the most widely used. For null boundaries, we had proposed a counter-term in a previous paper. In this paper, we extend the previous analysis and propose a counter-term that can be used to eliminate variations of the ''off-the-surface'' derivatives of the metric on any boundary, regardless of its spacelike, timelike or null nature. (orig.)

  6. Variational Principle for Gravity with Null and Non-null boundaries: A Unified Boundary Counter-term

    CERN Document Server

    Parattu, Krishnamohan; Padmanabhan, T

    2016-01-01

    It is common knowledge that the Einstein-Hilbert action does not furnish a well-posed variational principle. The usual solution to this problem is to add an extra boundary term to the action, called a counter-term, so that the variational principle becomes well-posed. When the boundary is spacelike or timelike, the Gibbons-Hawking-York counter-term is the most widely used. For null boundaries, we had proposed a counter-term in a previous paper. In this paper, we extend the previous analysis and propose a counter-term that can be used to eliminate variations of the "off-the-surface" derivatives of the metric on any boundary, regardless of its spacelike, timelike or null nature.

  7. 2D nanostructures for water purification: graphene and beyond.

    Science.gov (United States)

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  8. KOREAN MOBILE OPERATORS' VALUE MAP FOR LTE D2D

    Directory of Open Access Journals (Sweden)

    Taisiya Kim

    2015-04-01

    Full Text Available Managing the wireless data traffic is a main concern for mobile network operators in Information of Things (IoT environment. Long Term Evolution Device to Device (LTE D2D is regarding as a solution for the spectrum problem. It will bring an impact on providers and the whole mobile environment. The main purpose of this study is to analyze the role of key players, who share spectrum with mobile operators, and to present the value map of relationship among Korean mobile operators and other key players in LTE D2D discovery (commercial channel, as complicated relationships of key players are expected. Then, this study suggests scenario for ‘Targeted Advertising’ service of LTE D2D. LTE D2D is early discussion stage and scenario has limitation of specific business model. However, results of this study are significant for the present stage and provide implications for future researches on strategies for LTE D2D environment.

  9. Failure Mechanism of True 2D Granular Flows

    CERN Document Server

    Nguyen, Cuong T; Fukagawa, R

    2015-01-01

    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...

  10. The NH$_2$D hyperfine structure revealed by astrophysical observations

    CERN Document Server

    Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...

  11. Estimation of Neutral Density in Edge Plasma with Double Null Configuration in EAST

    International Nuclear Information System (INIS)

    In this work, population coefficients of hydrogen's n = 3 excited state from the hydrogen collisional-radiative (CR) model, from the data file of DEGAS 2, are used to calculate the photon emissivity coefficients (PECs) of hydrogen Balmer-α (n = 3 → n = 2) (Hα). The results are compared with the PECs from Atomic Data and Analysis Structure (ADAS) database, and a good agreement is found. A magnetic surface-averaged neutral density profile of typical double-null (DN) plasma in EAST is obtained by using FRANTIC, the 1.5-D fluid transport code. It is found that the sum of integral Dα and Hα emission intensity calculated via the neutral density agrees with the measured results obtained by using the absolutely calibrated multi-channel poloidal photodiode array systems viewing the lower divertor at the last closed flux surface (LCFS). It is revealed that the typical magnetic surface-averaged neutral density at LCFS is about 3.5 x 1016 m-3. (magnetically confined plasma)

  12. A 2D Stress Tensor for 4D Gravity

    CERN Document Server

    Kapec, Daniel; Raclariu, Ana-Maria; Strominger, Andrew

    2016-01-01

    We use the subleading soft-graviton theorem to construct an operator $T_{zz}$ whose insertion in the four-dimensional tree-level quantum gravity $\\mathcal{S}$-matrix obeys the Virasoro-Ward identities of the energy momentum tensor of a two-dimensional conformal field theory (CFT$_2$). The celestial sphere at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT$_2$, with the Lorentz group acting as the unbroken $SL(2,\\mathbb{C})$ subgroup.

  13. Evolution of Matter Wave Interference of Bose-Condensed Gas in a 2D Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    XUZhi-Jun; LINGuo-Cheng; XUJun; LIZhen

    2005-01-01

    We investigate the average particle-number distribution of the atoms in the combined potential of 2D optical lattices and 31) harmonic magnetic trap based on the Gross-Pitaevskii equation. After the combined potential is switched of[, and only the optical lattice is switched off, we give the analytical results of the wavefunction of the Bosecondensed gas at any time t by using a propagator method. For both disk-shaped and cigar-shaped Bose-condensed gas,we discuss the evolution process of the central and side peaks of the interference pattern.

  14. Evolution of Matter Wave Interference of Bose-Condensed Gas in a 2D Optical Lattice

    Institute of Scientific and Technical Information of China (English)

    XU Zhi-Jun; LIN Guo-Cheng; XU Jun; LI Zhen

    2005-01-01

    We investigate the average particle-number distribution of the atoms in the combined potential of 2D optical lattices and 3D harmonic magnetic trap based on the Gross-Pitaevskii equation. After the combined potential is switched off, and only the optical lattice is switched off, we give the analytical results of the wavefunction of the Bosecondensed gas at any time t by using a propagator method. For both disk-shaped and cigar-shaped Bose-condensed gas,we discuss the evolution process of the central and side peaks of the interference pattern.

  15. Gray-matter volume, midbrain dopamine D2/D3 receptors and drug craving in methamphetamine users.

    Science.gov (United States)

    Morales, A M; Kohno, M; Robertson, C L; Dean, A C; Mandelkern, M A; London, E D

    2015-06-01

    Dysfunction of the mesocorticolimbic system has a critical role in clinical features of addiction. Despite evidence suggesting that midbrain dopamine receptors influence amphetamine-induced dopamine release and that dopamine is involved in methamphetamine-induced neurotoxicity, associations between dopamine receptors and gray-matter volume have been unexplored in methamphetamine users. Here we used magnetic resonance imaging and [(18)F]fallypride positron emission tomography, respectively, to measure gray-matter volume (in 58 methamphetamine users) and dopamine D2/D3 receptor availability (binding potential relative to nondisplaceable uptake of the radiotracer, BPnd) (in 31 methamphetamine users and 37 control participants). Relationships between these measures and self-reported drug craving were examined. Although no difference in midbrain D2/D3 BPnd was detected between methamphetamine and control groups, midbrain D2/D3 BPnd was positively correlated with gray-matter volume in the striatum, prefrontal cortex, insula, hippocampus and temporal cortex in methamphetamine users, but not in control participants (group-by-midbrain D2/D3 BPnd interaction, Pmidbrain D2/D3 BPnd and methamphetamine craving was not detected. Lower midbrain D2/D3 BPnd may increase vulnerability to deficits in gray-matter volume in mesocorticolimbic circuitry in methamphetamine users, possibly reflecting greater dopamine-induced toxicity. Identifying factors that influence prefrontal and limbic volume, such as midbrain BPnd, may be important for understanding the basis of drug craving, a key factor in the maintenance of substance-use disorders.

  16. 2D materials for photon conversion and nanophotonics

    Science.gov (United States)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  17. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  18. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  19. Cluster algebras in Scattering Amplitudes with special 2D kinematics

    CERN Document Server

    Torres, Marcus A C

    2013-01-01

    We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.

  20. 2D growth processes: SLE and Loewner chains

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Michel [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: michel.bauer@cea.fr; Bernard, Denis [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: denis.bernard@cea.fr

    2006-10-15

    This review provides an introduction to two dimensional growth processes. Although it covers a variety of processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the remarkable properties of SLE are explained, together with the tools for computing with it. This review has been written with the aim of filling the gap between the mathematical and the physical literature on the subject.

  1. UPLAND EROSION MODELING WITH CASC2D-SED

    Institute of Scientific and Technical Information of China (English)

    Pierre JULIEN; Rosalía ROJAS

    2002-01-01

    Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.

  2. Design and Realization of Dynamic Obstacle on URWPSSim2D

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2013-07-01

    Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles,thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.  

  3. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    Science.gov (United States)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  4. Numerical modeling of the transition from low to high confinement in magnetically confined plasma

    DEFF Research Database (Denmark)

    Rasmussen, Jens Juul; Nielsen, Anders Henry; Madsen, Jens;

    2015-01-01

    The transition dynamics from low (L) to high (H) mode confinement in magnetically confined plasmas is investigated using a four-field drift fluid model—HESEL (Hot Edge-Sol-Electrostatic). The model includes profile evolution and is solved in a 2D domain at the out-board mid-plane of a tokamak......–I–H transition with an intermediate I-phase displaying limit-cycle oscillations (LCO). The model recovers the power threshold for the L–H transition, the scaling of the threshold with the density and with the loss-rate in the SOL, indicating a decrease in power threshold when switching from single to double null...

  5. Null controllable region of delta operator systems subject to actuator saturation

    Science.gov (United States)

    Yang, Hongjiu; Yan, Ce; Xia, Yuanqing; Zhang, Jinhui

    2016-07-01

    In this paper, we give exact description of null controllable regions for delta operator systems subject to actuator saturation. The null controllable region is in terms of a set of extremal trajectories of anti-stable subsystems. For the delta operator system with real eigenvalues or complex eigenvalues, the description is simplified to an explicit formula which is used to characterise the boundary of a null controllable region. The relations of null controllable regions are shown separately for continuous-time systems, discrete-time systems and delta operator systems. Two numerical examples are given to illustrate the effectiveness of the proposed techniques on null controllable regions.

  6. W$_{\\infty}$ structures of 2D string theory

    CERN Document Server

    Hamada, K J

    1996-01-01

    The Ward identities of the W_{\\infty} symmetry in 2D string theory in the tachyon background are studied in the continuum approach. Comparing the solutions with the matrix model results, it is verified that 2D string amplitudes are different from the matrix model amplitudes only by the external leg factors even in higher genus. This talk is based on the recent work [1] and also [2] for the c_M <1 model. (Talk given at the workshop on ``Frontiers in Quantum Field Theory'', Osaka, Japan, December 1995.)

  7. CH2D+, the Search for the Holy Grail

    Science.gov (United States)

    Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen

    2013-10-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  8. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  9. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....

  10. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  11. Self-dual Strings and 2D SYM

    CERN Document Server

    Hosomichi, Kazuo

    2014-01-01

    We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D N=(4,4) super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.

  12. 2D-ACAR investigations of PPT aramid fibres

    International Nuclear Information System (INIS)

    2D-ACAR spectra of PPT (poly(p-phenylene terephthalamide)) fibres which contain structural elongated open spaces in the crystallographic unit cell show a p-Ps peak with an elliptical cross-section and side lobes. Peak broadening suggests dimensions of ∝14-17 by 7-9 A for the open spaces and indicates some penetration of Ps into the interlayer spacing. The side lobes can be related to projected reciprocal lattice points and indicate Ps delocalization. 2D-ACAR has also been used to study the evolution of water release from the open spaces. (orig.)

  13. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  14. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  15. CH2D+, the Search for the Holy Grail

    CERN Document Server

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  16. GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD

    Institute of Scientific and Technical Information of China (English)

    HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun

    2005-01-01

    The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.

  17. QSAR Models for P-450 (2D6) Substrate Activity

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    drugs and other chemicals. A training set of 747 chemicals primarily based on in vivo human data for the CYP isoenzyme 2D6 was collected from the literature. QSAR models focusing on substrate/non substrate activity were constructed by the use of MultiCASE, Leadscope and MDL quantitative structure......Human Cytochrome P450 (CYP) is a large group of enzymes that possess an essential function in metabolising different exogenous and endogenous compounds. Humans have more than 50 different genes encoding CYP enzymes, among these a gene encoding for the CYP isoenzyme 2D6, a CYP able to metabolise...

  18. SKIMO: corto de animación 2D

    OpenAIRE

    VALERO BALLESTER, AIDA AMPARO

    2015-01-01

    El siguiente Trabajo Final de Grado llamado “Skimo” consiste en un teaser de animación 2D enfocado a ser finalizado el próximo año durante la realización del Diploma en Animación de personajes 2D del Máster de animación. Realizado en solitario como reto personal durante el curso presente, siendo la primera vez que trabajaba la animación. Para este proyecto he realizado toda la preproducción (layout, animática, storyboard, diseño de personajes, fondos, etc), animación en pape...

  19. Transmission properties of 2D metamaterial photonic crystals

    Science.gov (United States)

    Mejía-Salazar, Jorge; Porras-Montenegro, Nelson

    2014-03-01

    By using the finite difference time domain technique, we have performed a theoretical study of the transmission properties in 2D photonic crystals composed by circular cilyndrical metamaterial rods. Numerical transmission spectra was compared with its corresponding photonic band structure in the case of an infinite periodic 2D array obtaining a very good agreement. On the other hand, we have characterized the corresponding symmetries for this system and the results were compared with its corresponding conventional plasmonic metamaterial counterpart. J.R. M-S is funded by the Colombian Agency COLCIENCIAS.

  20. Nomenclature for human CYP2D6 alleles.

    Science.gov (United States)

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658