WorldWideScience

Sample records for 2d laser scans

  1. Scanning laser beam displays based on a 2D MEMS

    Science.gov (United States)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  2. Motion Detection from Mobile Robots with Fuzzy Threshold Selection in Consecutive 2D Laser Scans

    Directory of Open Access Journals (Sweden)

    María A. Martínez

    2015-01-01

    Full Text Available Motion detection and tracking is a relevant problem for mobile robots during navigation to avoid collisions in dynamic environments or in applications where service robots interact with humans. This paper presents a simple method to distinguish mobile obstacles from the environment that is based on applying fuzzy threshold selection to consecutive two-dimensional (2D laser scans previously matched with robot odometry. The proposed method has been tested with the Auriga-α mobile robot in indoors to estimate the motion of nearby pedestrians.

  3. Application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs.

    Science.gov (United States)

    López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier

    2010-01-01

    Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard.

  4. Traversable terrain classification for outdoor autonomous robots using single 2D laser scans

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Blas, Morten Rufus; Andersen, Nils Axel;

    2006-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses seven distinctly different classifiers: raw height, roughness, step size...

  5. Terrain Classification for Outdoor Autonomous Robots using 2D Laser Scans

    DEFF Research Database (Denmark)

    Rufus Blas, Morten; Riisgaard, Søren; Ravn, Ole;

    2005-01-01

    Interpreting laser data to allow autonomous robot navigation on paved as well as dirt roads using a fixed angle 2D laser scanner is a daunting task. This paper introduces an algorithm for terrain classification that fuses four distinctly different classifiers: raw height, step size, slope...

  6. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    Science.gov (United States)

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-07-03

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  7. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Science.gov (United States)

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  8. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Directory of Open Access Journals (Sweden)

    Taekjun Oh

    2015-07-01

    Full Text Available Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  9. INTEGRATION OF TERRESTRIAL LASER SCANNING POINTS AND 2D FLOOR PLANS BASED ON MAXIMUM SEQUENTIAL SIMILARITY

    Directory of Open Access Journals (Sweden)

    L. Wang

    2012-09-01

    Full Text Available This paper presents a Maximum Sequential Similarity Reasoning (MSSR algorithm based method for co-registration of 3D TLS data and 2D floor plans. The co-registration consists of two tasks: estimating a transformation between the two datasets and finding the vertical locations of windows and doors. The method first extracts TLS line sequences and floor plan line sequences from a series of horizontal cross-section bands of the TLS points and floor plans respectively. Then each line sequence is further decomposed into column vectors defined by using local transformation invariant information between two neighbouring line segments. Based on a normalized cross-correlation based similarity score function, the proposed MSSR algorithm is then used to iteratively estimate the vertical and horizontal locations of each floor plan by finding the longest matched consecutive column vectors between floor plan line sequences and TLS line sequences. A group matching algorithm is applied to simultaneously determine final matching results across floor plans and estimate the transformation parameters between floor plans and TLS points. With real datasets, the proposed method demonstrates its ability to deal with occlusions and multiple matching problems. It also shows the potential to detect conflict between floor plan and as-built, which makes it a promising method that can find many applications in many industrial fields.

  10. Automated 3D Scene Reconstruction from Open Geospatial Data Sources: Airborne Laser Scanning and a 2D Topographic Database

    Directory of Open Access Journals (Sweden)

    Lingli Zhu

    2015-05-01

    Full Text Available Open geospatial data sources provide opportunities for low cost 3D scene reconstruction. In this study, based on a sparse airborne laser scanning (ALS point cloud (0.8 points/m2 obtained from open source databases, a building reconstruction pipeline for CAD building models was developed. The pipeline includes voxel-based roof patch segmentation, extraction of the key-points representing the roof patch outline, step edge identification and adjustment, and CAD building model generation. The advantages of our method lie in generating CAD building models without the step of enforcing the edges to be parallel or building regularization. Furthermore, although it has been challenging to use sparse datasets for 3D building reconstruction, our result demonstrates the great potential in such applications. In this paper, we also investigated the applicability of open geospatial datasets for 3D road detection and reconstruction. Road central lines were acquired from an open source 2D topographic database. ALS data were utilized to obtain the height and width of the road. A constrained search method (CSM was developed for road width detection. The CSM method was conducted by splitting a given road into patches according to height and direction criteria. The road edges were detected patch by patch. The road width was determined by the average distance from the edge points to the central line. As a result, 3D roads were reconstructed from ALS and a topographic database.

  11. Automated 3D Scene Reconstruction from Open Geospatial Data Sources: Airborne Laser Scanning and a 2D Topographic Database

    OpenAIRE

    Lingli Zhu; Matti Lehtomäki; Juha Hyyppä; Eetu Puttonen; Anssi Krooks; Hannu Hyyppä

    2015-01-01

    Open geospatial data sources provide opportunities for low cost 3D scene reconstruction. In this study, based on a sparse airborne laser scanning (ALS) point cloud (0.8 points/m2) obtained from open source databases, a building reconstruction pipeline for CAD building models was developed. The pipeline includes voxel-based roof patch segmentation, extraction of the key-points representing the roof patch outline, step edge identification and adjustment, and CAD building model generation. The a...

  12. Mean cell size and collagen orientation from 2D Fourier analysis on confocal laser scanning microscopy and two-photon fluorescence microscopy on human skin in vivo

    Science.gov (United States)

    Lucassen, Gerald W.; Bakker, Bernard L.; Neerken, Sieglinde; Hendriks, Rob F. M.

    2003-07-01

    We present results from 2D Fourier analysis on 3D stacks of images obtained by confocal laser scanning reflectance microscopy (CLSM) and two-photon fluorescence microscopy (2PM) on human skin in vivo. CLSM images were obtained with a modified commercial system (Vivascope1000, Lucid Inc, excitation wavelength 830 nm) equipped with a piezo-focusing element (350 μm range) for depth positioning of the objective lens. 2PM was performed with a specially designed set-up with excitation wavelength 730 nm. Mean cell size in the epidermal layer and structural orientation in the dermal layer have been determined as a function of depth by 2D Fourier analysis. Fourier analysis on microscopic images enables automatic non-invasive quantitative structural analysis (mean cell size and orientation) of living human skin.

  13. 2D and 3D documentation of St. Nicolas baroque church for the general reconstruction using laser scanning and photogrammetry technologies combination

    Science.gov (United States)

    Křemen, Tomáš; Koska, Bronislav

    2013-04-01

    Total reconstruction of a historical object is a complicated process consisting of several partial steps. One of these steps is acquiring high-quality data for preparation of the project documentation. If these data are not available from the previous periods, it is necessary to proceed to a detailed measurement of the object and to create a required drawing documentation. New measurement of the object brings besides its costs also several advantages as complex content and form of drawings exactly according to the requirements together with their high accuracy. The paper describes measurement of the Baroque church by the laser scanning method extended by the terrestrial and air photogrammetry. It deals with processing the measured data and creating the final outputs, which is a 2D drawing documentation, orthophotos and a 3D model. Attention is focused on their problematic parts like interconnection of the measurement data acquired by various technologies, creation of orthophotos and creation of the detailed combined 3D model of the church exterior. Results of this work were used for preparation of the planned reconstruction of the object.

  14. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  15. Laser Scanning in Forests

    OpenAIRE

    Håkan Olsson; Juha Hyyppä; Markus Holopainen

    2012-01-01

    The introduction of Airborne Laser Scanning (ALS) to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System), IMU (Inertial Measurement Unit) and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based fore...

  16. Laser Scanning in Forests

    Directory of Open Access Journals (Sweden)

    Håkan Olsson

    2012-09-01

    Full Text Available The introduction of Airborne Laser Scanning (ALS to forests has been revolutionary during the last decade. This development was facilitated by combining earlier ranging lidar discoveries [1–5], with experience obtained from full-waveform ranging radar [6,7] to new airborne laser scanning systems which had components such as a GNSS receiver (Global Navigation Satellite System, IMU (Inertial Measurement Unit and a scanning mechanism. Since the first commercial ALS in 1994, new ALS-based forest inventory approaches have been reported feasible for operational activities [8–12]. ALS is currently operationally applied for stand level forest inventories, for example, in Nordic countries. In Finland alone, the adoption of ALS for forest data collection has led to an annual savings of around 20 M€/year, and the work is mainly done by companies instead of governmental organizations. In spite of the long implementation times and there being a limited tradition of making changes in the forest sector, laser scanning was commercially and operationally applied after about only one decade of research. When analyzing high-ranked journal papers from ISI Web of Science, the topic of laser scanning of forests has been the driving force for the whole laser scanning research society over the last decade. Thus, the topic “laser scanning in forests” has provided a significant industrial, societal and scientific impact. [...

  17. Scanning laser Doppler vibrometry

    DEFF Research Database (Denmark)

    Brøns, Marie; Thomsen, Jon Juel

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from...

  18. Scanning laser Doppler vibrometry

    OpenAIRE

    2016-01-01

    With a Scanning Laser Doppler Vibrometer (SLDV) a vibrating surface is automatically scanned over predefined grid points, and data processed for displaying vibration properties like mode shapes, natural frequencies, damping ratios, and operational deflection shapes. Our SLDV – a PSV-500H from Polytec Inc. – was acquired and put to operation in October 2014, paid by a sub-donation of DKK 1,5 mill. of the total VILLUM CASMaT grant. Opening possibilities of measuring complicated vibration shapes...

  19. A quantitative damage imaging technique based on enhanced CCRTM for composite plates using 2D scan

    Science.gov (United States)

    He, Jiaze; Yuan, Fuh-Gwo

    2016-10-01

    A two-dimensional (2D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric wafer mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region in the vicinity of the PZT to capture the scattered wavefield. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, a reflectivity coefficients of the delamination is calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2D areal scans and 1D line scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.

  20. New Type of 2-D Laser Doppler Vibrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  1. Fast 2D phantom dosimetry for scanning proton beams

    NARCIS (Netherlands)

    Boon, SN; van Luijk, P; Schippers, JM; Meertens, H; Denis, JM; Vynckier, S; Medin, J; Grusell, E

    1998-01-01

    A quality control system especially designed for dosimetry in scanning proton beams has been designed and tested. The system consists of a scintillating screen (Gd2O2S:Tb), mounted at the beam-exit side of a phantom, and observed by a low noise CCD camera with a long integration time. The purpose of

  2. Enhanced Algorithms for Estimating Tree Trunk Diameter Using 2D Laser Scanner

    Directory of Open Access Journals (Sweden)

    Ola Ringdahl

    2013-10-01

    Full Text Available Accurate vehicle localization in forest environments is still an unresolved problem. Global navigation satellite systems (GNSS have well known limitations in dense forest, and have to be combined with for instance laser based SLAM algorithms to provide satisfying accuracy. Such algorithms typically require accurate detection of trees, and estimation of tree center locations in laser data. Both these operations depend on accurate estimations of tree trunk diameter. Diameter estimations are important also for several other forestry automation and remote sensing applications. This paper evaluates several existing algorithms for diameter estimation using 2D laser scanner data. Enhanced algorithms, compensating for beam width and using multiple scans, were also developed and evaluated. The best existing algorithms overestimated tree trunk diameter by ca. 40%. Our enhanced algorithms, compensating for laser beam width, reduced this error to less than 12%.

  3. A Laser Scanning Tracking Method

    Science.gov (United States)

    Xu, Gaoyue; Hu, Baoli; Wang, Jiangping

    1988-04-01

    In this paper, a new tracking approach, a laser scanning tracking method (LSTM) is proposed. The LSTM has been designed to track a cylindrical retroreflective target mounted on the object, which makes plane motion. The retroreflector pasted by scotchlite reflective sheeting (mad. in 3M ,0.) i s located by scanning a laser beam in holizontal. When the retroreflector is struck, its position that is azimuth is read by microcomputer and the aiming device is servocontrolled by microcomputer according to this azimuth immediately. This is a step-by-step tracking method. The time of servo-reponse is less than one millisecona in actual tests. The angular accuracy is less than 0.5 milliradian. The track angular velocity is greater than one radian/second.

  4. Fabrication of 2D and 3D photonic structures using laser lithography

    Science.gov (United States)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  5. Speckle analysis in laser scanning display system

    Institute of Scientific and Technical Information of China (English)

    Hong Chang; Wei Huang; Fugui Yang; Hai Ming; Jianping Xie

    2009-01-01

    The theory of speckle formation in laser scanning display system is established based on the averaging effect of eye response as laser beam scanning through an eye resolution spot.It is analyzed that speckle reduction can be obtained by averaging states of speckle during scanning.The theoretical results show that a smaller correlation length of screen surface and the narrowing of laser beam in scanning direction can reduce speckle contrast for this system.

  6. Laser Scanning Applications in Fluvial Geomorphology

    Science.gov (United States)

    Alho, P.

    2014-12-01

    During recent decades, the use of high-resolution laser scanning data in fluvial studies has rapidly increased. Airborne laser scanning (ALS) can be used to extensively map riverine topography. Laser scanning data have great potential to improve the effectiveness of topographical data acquisition and the accuracy and resolution of DTMs (Digital Terrain Models) needed in fluvial geomorphology. Airborne Laser Scanning (ALS) is applicable for mapping areas varying from reach to catchment scale and these data are, therefore, particularly suitable, especially for hydraulic modelling, mapping of flood inundation, and the detection of macro-scale fluvial geomorphology. With Terrestrial Laser Scanning (TLS) a spatial resolution of less than 1 mm and a range accuracy of few millimetres can be achieved. Mobile Laser Scanning (MLS) enables a remarkably faster survey approach compared to the conventional TLS method. One of the newest applications of MLS approaches involves a boat/cart/backpack -based mobile mapping system. This set-up includes laser scanning and imaging from a platform moving along a river course or floodplain and may be used to expand the spatial extent of terrestrial scanning. Detailed DTMs derived from laser scanning data can be used to improve the recognition of fluvial landforms, the geometric data of hydraulic modelling, and the estimation of flood inundation extents and the associated fluvial processes. Fluvial environments also offer challenges for the application of laser scanning techniques. Factors such as vegetation cover, terrain undulation, coarse surface materials and water surfaces may distort a laser scanning survey.

  7. Handbook of optical and laser scanning

    CERN Document Server

    Marshall, Gerald F

    2011-01-01

    From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater

  8. Scanning laser polarimetry in glaucoma.

    Science.gov (United States)

    Dada, Tanuj; Sharma, Reetika; Angmo, Dewang; Sinha, Gautam; Bhartiya, Shibal; Mishra, Sanjay K; Panda, Anita; Sihota, Ramanjit

    2014-11-01

    Glaucoma is an acquired progressive optic neuropathy which is characterized by changes in the optic nerve head and retinal nerve fiber layer (RNFL). White-on-white perimetry is the gold standard for the diagnosis of glaucoma. However, it can detect defects in the visual field only after the loss of as many as 40% of the ganglion cells. Hence, the measurement of RNFL thickness has come up. Optical coherence tomography and scanning laser polarimetry (SLP) are the techniques that utilize the evaluation of RNFL for the evaluation of glaucoma. SLP provides RNFL thickness measurements based upon the birefringence of the retinal ganglion cell axons. We have reviewed the published literature on the use of SLP in glaucoma. This review elucidates the technological principles, recent developments and the role of SLP in the diagnosis and monitoring of glaucomatous optic neuropathy, in the light of scientific evidence so far.

  9. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  10. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    Science.gov (United States)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  11. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A.; Bombach, R.; Kaeppeli, B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  12. Spatial heterodyne scanning laser confocal holographic microscopy

    CERN Document Server

    Liu, Changgeng

    2016-01-01

    Scanning laser confocal holographic microscopy using a spatial heterodyne detection method is presented. Spatial heterodyne detection technique employs a Mach-Zehnder interferometer with the reference beam frequency shifted by two acousto-optic modulators (AOM) relative to the object beam frequency. Different from the traditional temporal heterodyne detection technique in which hundreds temporal samples are taken at each scanning point to achieve the complex signal, the spatial heterodyne detection technique generates spatial interference fringes by use of a linear tempo-spatial relation provided by galvanometer scanning in a typical line-scanning confocal microscope or for the slow-scanning on one dimension in a point-scanning confocal microscope, thereby significantly reducing sampling rate and increasing the signal to noise ratio under the same illumination compared to the traditional temporal heterodyne counterpart. The proposed spatial heterodyne detection scheme applies to both line-scanning and point-s...

  13. Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.

    Science.gov (United States)

    Kuznetsov, A I; Kiyan, R; Chichkov, B N

    2010-09-27

    A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated.

  14. The design of laser scanning galvanometer system

    Science.gov (United States)

    Sun, Xiaoling; Zhou, Bin; Xie, Weihao; Zhang, Yuangeng

    2015-02-01

    In this paper, we designed the laser scanning galvanometer system according to our requirements. Based on scanning range of our laser scanning galvanometer system, the design parameters of this system were optimized. During this work, we focused on the design of the f-θ field lens. An optical system of patent lens in the optical manual book, which had three glasses structure, was used in our designs. Combining the aberration theory, the aberration corrections and image quality evaluations were finished using Code V optical design software. An optimum f-θ field lens was designed, which had focal length of 434 mm, pupil diameter of 30 mm, scanning range of 160 mm × 160 mm, and half field angle of 18°×18°. At the last, we studied the influences of temperature changes on our system.

  15. Design of an indoor mapping system using three 2D laser scanners and 6 DOF SLAM

    Science.gov (United States)

    Vosselman, G.

    2014-08-01

    We present the design for a new indoor mapping system based on three 2D laser scanners as well as a method to process the range measurements such that the pose of the system and the planes of floor, ceiling and walls can be estimated simultaneously. By the combined use of the measurements of all three scanners the pose of the system can be reconstructed in 3D without the need for an IMU. The six pose parameters are modelled as a continuous function over time such that scan line deformations caused by rapid scanner movements do not lead to biases in the estimated poses. The theoretical feasibility of the approach is demonstrated by analysing reconstruction results derived from simulated sensor data of two indoor models. Assuming a perfectly calibrated sensor and ranging noise of 3 cm, the results on data in 10x20 m corridor show that the plane orientation precision is better than 0.1 degree and that the standard deviation of plane-to-plane distances is below 1.5 cm after three loops in the corridor.

  16. Multiplatform Mobile Laser Scanning: Usability and Performance

    Directory of Open Access Journals (Sweden)

    Yuwei Chen

    2012-08-01

    Full Text Available Mobile laser scanning is an emerging technology capable of capturing three-dimensional data from surrounding objects. With state-of-the-art sensors, the achieved point clouds capture object details with good accuracy and precision. Many of the applications involve civil engineering in urban areas, as well as traffic and other urban planning, all of which serve to make 3D city modeling probably the fastest growing market segment in this field. This article outlines multiplatform mobile laser scanning solutions such as vehicle- and trolley-operated urban area data acquisition, and boat-mounted equipment for fluvial environments. Moreover, we introduce a novel backpack version of mobile laser scanning equipment for surveying applications in the field of natural sciences where the requirements include precision and mobility in variable terrain conditions. In addition to presenting a technical description of the systems, we discuss the performance of the solutions in the light of various applications in the fields of urban mapping and modeling, fluvial geomorphology, snow-cover characterization, precision agriculture, and in monitoring the effects of climate change on permafrost landforms. The data performance of the mobile laser scanning approach is described by the results of an evaluation of the ROAMER on a permanent MLS test field. Furthermore, an in situ accuracy assessment using a field of spherical 3D targets for the newly-introduced Akhka backpack system is conducted and reported on.

  17. Infrared pulsed fiber lasers employing 2D nanomaterials as saturable absorbers

    Science.gov (United States)

    Liu, Yong; Li, Heping; Li, Jianfeng

    2016-11-01

    We demonstrate that two kinds of 2D nanomaterials are employed as saturable absorbers to realize infrared pulsed fiber lasers at 1.5 μm and 3 μm, respectively. Mode-locked optical pulses are achieved at 1.5 μm erbium-doped fiber lasers by using multilayer molybdenum disulfide (MoS2). In addition, Q-switched fiber lasers are realized at 3 μm region by using topological insulator: Bi2Te3. Experimental proofs are provided. Our work reveals that 2D nanomaterials like MoS2 and TI: Bi2Te3 are absolutely a class of promising and reliable saturable absorbers for optical pulse generation at infrared waveband.

  18. An omnidirectional 3D sensor with line laser scanning

    Science.gov (United States)

    Xu, Jing; Gao, Bingtuan; Liu, Chuande; Wang, Peng; Gao, Shuanglei

    2016-09-01

    An active omnidirectional vision owns the advantages of the wide field of view (FOV) imaging, resulting in an entire 3D environment scene, which is promising in the field of robot navigation. However, the existing omnidirectional vision sensors based on line laser can measure points only located on the optical plane of the line laser beam, resulting in the low-resolution reconstruction. Whereas, to improve resolution, some other omnidirectional vision sensors with the capability of projecting 2D encode pattern from projector and curved mirror. However, the astigmatism property of curve mirror causes the low-accuracy reconstruction. To solve the above problems, a rotating polygon scanning mirror is used to scan the object in the vertical direction so that an entire profile of the observed scene can be obtained at high accuracy, without of astigmatism phenomenon. Then, the proposed method is calibrated by a conventional 2D checkerboard plate. The experimental results show that the measurement error of the 3D omnidirectional sensor is approximately 1 mm. Moreover, the reconstruction of objects with different shapes based on the developed sensor is also verified.

  19. Highly resolved measurements of atmospheric turbulence with the new 2d-Atmospheric Laser Cantilever Anemometer

    Science.gov (United States)

    Jeromin, A.; Schaffarczyk, A. P.; Puczylowski, J.; Peinke, J.; Hölling, M.

    2014-12-01

    For the investigation of atmospheric turbulent flows on small scales a new anemometer was developed, the so-called 2d-Atmospheric Laser Cantilever Anemometer (2d-ALCA). It performs highly resolved measurements with a spatial resolution in millimeter range and temporal resolution in kHz range, thus detecting very small turbulent structures. The anemometer is a redesign of the successfully operating 2d-LCA for laboratory application. The new device was designed to withstand hostile operating environments (rain and saline, humid air). In February 2012, the 2d-ALCA was used for the first time in a test field. The device was mounted in about 53 m above ground level on a lattice tower near the German North Sea coast. Wind speed was measured by the 2d-ALCA at 10 kHz sampling rate and by cup anemometers at 1 Hz. The instantaneous wind speed ranged from 8 m/s to 19 m/s at an average turbulence level of about 7 %. Wind field characteristics were analyzed based on cup anemometer as well as 2d-ALCA. The combination of both devices allowed the study of atmospheric turbulence over several magnitudes in turbulent scales.

  20. A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data

    Directory of Open Access Journals (Sweden)

    Jinling Wang

    2013-01-01

    Full Text Available Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments.

  1. Leonardo da Vinci's drapery studies: characterization of lead white pigments by µ-XRD and 2D scanning XRF

    Science.gov (United States)

    Gonzalez, Victor; Calligaro, Thomas; Pichon, Laurent; Wallez, Gilles; Mottin, Bruno

    2015-11-01

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of µ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Département des Arts Graphiques, Musée du Louvre and in the Musée des Beaux- Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special µ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique.

  2. Reference measurements on a Francis model turbine with 2D Laser-Doppler-Anemometry

    Science.gov (United States)

    Frey, A.; Kirschner, O.; Riedelbauch, S.; Jester-Zuerker, R.; Jung, A.

    2016-11-01

    To validate the investigations of a high-resolution CFD simulation of a Francis turbine, measurements with 2D Laser-Doppler-Anemometry are carried out. The turbine is operated in part load, where a rotating vortex rope occurs. To validate both, mean velocities and velocity fluctuations, the measurements are classified relative to the vortex rope position. Several acrylic glass windows are installed in the turbine walls such as upstream of the spiral case inlet, in the vaneless space and in the draft tube. The current investigation is focused on a measurement plane below the runner. 2D velocity components are measured on this whole plane by measuring several narrow spaced radial lines. To avoid optical refraction of the laser beam a plan parallel window is inserted in the cone wall. The laser probe is positioned with a 2D traverse system consisting of a circumferential rail and a radial aligned linear traverse. The velocity data are synchronized with the rotational frequency of the rotating vortex rope. The results of one measurement line show the dependency of the axial and circumferential velocities on the vortex rope position.

  3. Comparison of linear and angular measurements in CBCT scans using 2D and 3D rendering software

    Directory of Open Access Journals (Sweden)

    Secil Aksoy

    2016-07-01

    Full Text Available The aim of this study was to compare the reliability of both linear and angular measurements conducted on two-dimensional (2D lateral cephalometric images and three-dimensional (3D cone-beam computed tomography-generated cephalograms derived from various rendering software. Pre-treatment cephalometric digital radiographs of 15 patients and their corresponding cone beam computed tomographic images were randomly selected. Vista Dent OC as 2D, In vivo 5.1.2, Maxilim and Romexis software were used to generate cephalograms from the CBCT scans (NewTom 3G, QR Verona, Italy. In total, 19 cephalometric landmarks were identified and 18 widely used (11 linear, 7 angular measurements were performed by an independent observer. Mann–Whitney and Kruskall–Wallis H tests were also used to compare the four methods (p 0.05. The ICCs for Vista Dent OC (2D measurements indicated high reproducibility (p < 0.05. The 2D and 3D generated cephalograms from various rendering software were found to be similar; however, measurements on curved surfaces are not easily reproducible for 3D software.

  4. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-03-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work.

  5. OBSTACLE DETECTION BY ALV USING TWO 2D LASER RANGE FINDERS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper describes an effective method of obstacle detection by ALV (Autonomous Land Vehi- cle) equipped with two 2D laser range finders (LRF) installed at different locations of the ALV to obtain eom- prehensive information on the environment. The data processing includes two main steps: ( 1 ) data-processing of the current sample; (2) fusion of the former range data and the current one. The rough description of the ALV's environnent via the four sub-steps ( Data Filter, Obstacle Extraction, Obstacle Merging, Distinguish- ing Obstacle from Road-Edge) was not reliable enough for our control system. To overcome the shortcoming of the 2D LRF and the motion noise of the ALV, a Kalman filter was used to estimate the position of the obsta- cles; then the data of the two LRFs were collated to obtain the height and width of the obstacles. Experiment results attested the feasibility of the detection system.

  6. Mobile Laser Scanning for Indoor Modelling

    Science.gov (United States)

    Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J.

    2013-10-01

    The process of capturing and modelling buildings has gained increased focus in recent years with the rise of Building Information Modelling (BIM). At the heart of BIM is a process change for the construction and facilities management industries whereby a BIM aids more collaborative working through better information exchange, and as a part of the process Geomatic/Land Surveyors are not immune from the changes. Terrestrial laser scanning has been proscribed as the preferred method for rapidly capturing buildings for BIM geometry. This is a process change from a traditional measured building survey just with a total station and is aided by the increasing acceptance of point cloud data being integrated with parametric building models in BIM tools such as Autodesk Revit or Bentley Architecture. Pilot projects carried out previously by the authors to investigate the geometry capture and modelling of BIM confirmed the view of others that the process of data capture with static laser scan setups is slow and very involved requiring at least two people for efficiency. Indoor Mobile Mapping Systems (IMMS) present a possible solution to these issues especially in time saved. Therefore this paper investigates their application as a capture device for BIM geometry creation over traditional static methods through a fit-for-purpose test.

  7. Laser ablation cell sorting in scanning cytometry

    Science.gov (United States)

    Shen, Feimo; Price, Jeffrey H.

    2001-05-01

    Flow cytometry has been an important tool for automated cells sorting. However, the lack of good sensitivity prevents it from being used for rare events sorting; furthermore, fragile cells, anchorage-dependent cells, and clump forming cells cannot be sorted this way. A fully automated, high-speed scanning cytometer with autofocus and image segmentation is capable of accurately locating contaminant cells in a monolayer cell population. A laser ablation system was incorporated into the cytometer to negatively sort out the unwanted cells by applying a focused, ultra-short laser pulse (sub-micron diameter, pulse duration = 4 nsec, wavelength - 500 nm) to each targeted cell. Due to the high power density (approximately 1010 W/cm2) that was present at the focal point, disruptive mechanical forces were generated and were responsible for the kill. Fluorescently stained NIH-3T3 fibroblast cells were used as a model contaminant target ells in an unstained NIH-3T3 population to determine the identification-kill effectiveness. The contaminant cells were stained with the fluorochrome CellTracker Blue CMAC, whereas the background cells were left intact. Ablation pulses were applied in frame-by-frame increment batches to the cell culture on the microscope. The negative sorting effectiveness was analyzed by automatically re-scanning the post-ablation cell culture in phase contrast and propidium iodide stained epi fluorescent fields to verify cell death.

  8. Extraction of power lines from mobile laser scanning data

    Science.gov (United States)

    Xiang, Qing; Li, Jonathan; Wen, Chenglu; Huang, Pengdi

    2016-03-01

    Modern urban life is becoming increasingly more dependent on reliable electric power supply. Since power outages cause substantial financial losses to producers, distributors and consumers of electric power, it is in the common interest to minimize failures of power lines. In order to detect defects as early as possible and to plan efficiently the maintenance activities, distribution networks are regularly inspected. Carrying out foot patrols or climbing the structures to visually inspect transmission lines and aerial surveys (e.g., digital imaging or most recent airborne laser scanning (ALS) are the two most commonly used methods of power line inspection. Although much faster in comparison to the foot patrol inspection, aerial inspection is more expensive and usually less accurate, in complex urban areas particularly. This paper presents a scientific work that is done in the use of mobile laser scanning (MLS) point clouds for automated extraction of power lines. In the proposed method, 2D power lines are extracted using Hough transform in the projected XOY plane and the 3D power line points are visualized after the point searching. Filtering based on an elevation threshold is applied, which is combined with the vehicle's trajectory in the horizontal section.

  9. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.;

    2016-01-01

    compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement...... to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar...

  10. Element distribution imaging in rat kidney using a 2 D rapid scan EDXRF device

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R. G. [Universidad de la Frontera, Departamento de Ciencias Fisicas, Av. Francisco Salazar 1145, Temuco 4811230, Araucania (Chile); Lozano, E. [Instituto Nacional del Cancer, Unidad de Fisica Medica, Av. Profesor Zanartu 1010, Santiago (Chile); Bongiovanni, G., E-mail: figueror@ufro.cl [IDEPA-CONICET, Instituto Multidisciplinario de Investigacion y Desarrollo de la Patagonia Norte, Buenos Aires 1400, 8300 Neuquen (Argentina)

    2013-08-01

    Visualization of elemental distributions of biological tissue is gaining importance in many disciplines of biological, forensic and medical research. Furthermore, the maps of elements have wide application in archaeology for the understanding of the pigments, modes of preservation and environmental context. Since major advances in relation to collimators and detectors have yielded micro scale images, the chemical mapping via synchrotron scanning micro-X-ray fluorescence spectrometry (SR-{mu}X RF) is widely used as microanalytical techniques. However, the acquisition time is a limitation of current SR-{mu}X RF imaging protocols, doing tedious micro analysis of samples of more than 1 cm and very difficult to study of larger samples such as animal organ, whole organisms, work or art, etc. Recently we have developed a robotic system to image the chemistry of large specimens rapidly ar concentration levels of parts per million. Multiple images of distribution of elements can be obtained on surfaces of 100 x 100 mm and a spatial resolution of up to 0.2 mm{sup 2} per pixel, with a spectral capture time up to 1 ms per point. This system has proven to be highly efficient for the X RF mapping of elements in large biological samples, achieving comparable s results to those obtained by SR-{mu}X RF. Thus, images of As and Cu accumulation in renal cortex of arsenic-exposed rats were obtained by both methodologies. However, the new imaging system enables the X RF scanning in few minutes, whereas SR-{mu}X RF required several hours. These and other advantages as well as the potential applications of this system, will be discussed. (Author)

  11. A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

    Directory of Open Access Journals (Sweden)

    Agurto Carla

    2011-01-01

    Full Text Available Abstract Background A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. Methods We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes. For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes. Results Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions

  12. Mathematical model for light scanning system based on circular laser

    Institute of Scientific and Technical Information of China (English)

    Peiquan Xu; Shun Yao; Fenggui Lu; Xinhua Tang; Wei Zhang

    2005-01-01

    A novel light scanning system based on circular laser trajectory for welding robot is developed. With the help of image processing technique, intelligent laser welding could be realized. According to laser triangulation algorithm and Scheimpflug condition, mathematical model for circular laser vision is built.This scanning system projects circular laser onto welded seams and recovers the depth of the welded seams,escapes from shortcomings of less information, explains ambiguity and single tracking direction inherent in "spot" or "line" type laser trajectory. Three-dimensional (3D) model for welded seams could be recognized after depth recovery. The imaging error is investigated also.

  13. Rotationally relaxed, grating tuned laser oscillations in optically pumped C/sub 2/D/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, T.A.; Wittig, C.

    1982-07-15

    Rotationally relaxed, grating tuned laser oscillations are obtained in the frequency range 500--562 cm/sup -1/ via the optical pumping of C/sub 2/D/sub 2//He mixtures with a transverse, electric, atmospheric (TEA) CO/sub 2/ laser. Strong Q-branch oscillations at 530.8 cm/sup -1/ are also reported.

  14. D Model of AL Zubarah Fortress in Qatar - Terrestrial Laser Scanning VS. Dense Image Matching

    Science.gov (United States)

    Kersten, T.; Mechelke, K.; Maziull, L.

    2015-02-01

    In September 2011 the fortress Al Zubarah, built in 1938 as a typical Arabic fortress and restored in 1987 as a museum, was recorded by the HafenCity University Hamburg using terrestrial laser scanning with the IMAGER 5006h and digital photogrammetry for the Qatar Museum Authority within the framework of the Qatar Islamic Archaeology and Heritage Project. One goal of the object recording was to provide detailed 2D/3D documentation of the fortress. This was used to complete specific detailed restoration work in the recent years. From the registered laser scanning point clouds several cuttings and 2D plans were generated as well as a 3D surface model by triangle meshing. Additionally, point clouds and surface models were automatically generated from digital imagery from a Nikon D70 using the open-source software Bundler/PMVS2, free software VisualSFM, Autodesk Web Service 123D Catch beta, and low-cost software Agisoft PhotoScan. These outputs were compared with the results from terrestrial laser scanning. The point clouds and surface models derived from imagery could not achieve the same quality of geometrical accuracy as laser scanning (i.e. 1-2 cm).

  15. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    Science.gov (United States)

    van Dooren, M. F.; Kühn, M.; PetroviĆ, V.; Bottasso, C. L.; Campagnolo, F.; Sjöholm, M.; Angelou, N.; Mikkelsen, T.; Croce, A.; Zasso, A.

    2016-09-01

    This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dual- Lidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement of wake profiles on a line as well as wake area scans were executed to illustrate the applicability of Lidar scanning to measuring small scale wind flow effects. The downsides of Lidar with respect to the hot wire probes are the larger measurement probe volume and the loss of some measurements due to moving blades. In contrast, the benefits are the high flexibility in conducting both point measurements and area scanning, and the fact that remote sensing techniques do not disturb the flow while measuring. The research campaign revealed a high potential for using short-range WindScanner Lidar for accurately measuring small scale flow structures in a wind tunnel.

  16. Automatic Fusion of Hyperspectral Images and Laser Scans Using Feature Points

    Directory of Open Access Journals (Sweden)

    Xiao Zhang

    2015-01-01

    Full Text Available Automatic fusion of different kinds of image datasets is so intractable with diverse imaging principle. This paper presents a novel method for automatic fusion of two different images: 2D hyperspectral images acquired with a hyperspectral camera and 3D laser scans obtained with a laser scanner, without any other sensor. Only a few corresponding feature points are used, which are automatically extracted from a scene viewed by the two sensors. Extraction method of feature points relies on SURF algorithm and camera model, which can convert a 3D laser scan into a 2D laser image with the intensity of the pixels defined by the attributes in the laser scan. Moreover, Collinearity Equation and Direct Linear Transformation are used to create the initial corresponding relationship of the two images. Adjustment is also used to create corrected values to eliminate errors. The experimental result shows that this method is successfully validated with images collected by a hyperspectral camera and a laser scanner.

  17. Structural monitoring of tunnels using terrestrial laser scanning

    NARCIS (Netherlands)

    Lindenbergh, R.C.; Uchanski, L.; Bucksch, A.; Van Gosliga, R.

    2009-01-01

    In recent years terrestrial laser scanning is rapidly evolving as a surveying technique for the monitoring of engineering objects like roof constructions, mines, dams, viaducts and tunnels. The advantage of laser scanning above traditional surveying methods is that it allows for the rapid acquisitio

  18. Automatic classification of trees from laser scanning point clouds

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.

    2015-01-01

    Development of laser scanning technologies has promoted tree monitoring studies to a new level, as the laser scanning point clouds enable accurate 3D measurements in a fast and environmental friendly manner. In this paper, we introduce a probability matrix computation based algorithm for automatical

  19. Laser irradiated fluorescent perfluorocarbon microparticles in 2-D and 3-D breast cancer cell models

    Science.gov (United States)

    Niu, Chengcheng; Wang, Long; Wang, Zhigang; Xu, Yan; Hu, Yihe; Peng, Qinghai

    2017-01-01

    Perfluorocarbon (PFC) droplets were studied as new generation ultrasound contrast agents via acoustic or optical droplet vaporization (ADV or ODV). Little is known about the ODV irradiated vaporization mechanisms of PFC-microparticle complexs and the stability of the new bubbles produced. In this study, fluorescent perfluorohexane (PFH) poly(lactic-co-glycolic acid) (PLGA) particles were used as a model to study the process of particle vaporization and bubble stability following excitation in two-dimensional (2-D) and three-dimensional (3-D) cell models. We observed localization of the fluorescent agent on the microparticle coating material initially and after vaporization under fluorescence microscopy. Furthermore, the stability and growth dynamics of the newly created bubbles were observed for 11 min following vaporization. The particles were co-cultured with 2-D cells to form 3-D spheroids and could be vaporized even when encapsulated within the spheroids via laser irradiation, which provides an effective basis for further work. PMID:28262671

  20. Optimization of confocal scanning laser ophthalmoscope design.

    Science.gov (United States)

    LaRocca, Francesco; Dhalla, Al-Hafeez; Kelly, Michael P; Farsiu, Sina; Izatt, Joseph A

    2013-07-01

    Confocal scanning laser ophthalmoscopy (cSLO) enables high-resolution and high-contrast imaging of the retina by employing spatial filtering for scattered light rejection. However, to obtain optimized image quality, one must design the cSLO around scanner technology limitations and minimize the effects of ocular aberrations and imaging artifacts. We describe a cSLO design methodology resulting in a simple, relatively inexpensive, and compact lens-based cSLO design optimized to balance resolution and throughput for a 20-deg field of view (FOV) with minimal imaging artifacts. We tested the imaging capabilities of our cSLO design with an experimental setup from which we obtained fast and high signal-to-noise ratio (SNR) retinal images. At lower FOVs, we were able to visualize parafoveal cone photoreceptors and nerve fiber bundles even without the use of adaptive optics. Through an experiment comparing our optimized cSLO design to a commercial cSLO system, we show that our design demonstrates a significant improvement in both image quality and resolution.

  1. Quality Analysis and Correction of Mobile Backpack Laser Scanning Data

    Science.gov (United States)

    Rönnholm, P.; Liang, X.; Kukko, A.; Jaakkola, A.; Hyyppä, J.

    2016-06-01

    Backpack laser scanning systems have emerged recently enabling fast data collection and flexibility to make measurements also in areas that cannot be reached with, for example, vehicle-based laser scanners. Backpack laser scanning systems have been developed both for indoor and outdoor use. We have developed a quality analysis process in which the quality of backpack laser scanning data is evaluated in the forest environment. The reference data was collected with an unmanned aerial vehicle (UAV) laser scanning system. The workflow included noise filtering, division of data into smaller patches, ground point extraction, ground data decimation, and ICP registration. As a result, we managed to observe the misalignments of backpack laser scanning data for 97 patches each including data from circa 10 seconds period of time. This evaluation revealed initial average misalignments of 0.227 m, 0.073 and -0.083 in the easting, northing and elevation directions, respectively. Furthermore, backpack data was corrected according to the ICP registration results. Our correction algorithm utilized the time-based linear transformation of backpack laser scanning point clouds. After the correction of data, the ICP registration was run again. This revealed remaining misalignments between the corrected backpack laser scanning data and the original UAV data. We found average misalignments of 0.084, 0.020 and -0.005 meters in the easting, northing and elevation directions, respectively.

  2. Laser safety in design of near-infrared scanning LIDARs

    Science.gov (United States)

    Zhu, X.; Elgin, D.

    2015-05-01

    3D LIDARs (Light Detection and Ranging) with 1.5μm nanosecond pulse lasers have been increasingly used in different applications. The main reason for their popularity is that these LIDARs have high performance while at the same time can be made eye-safe. Because the laser hazard effect on eyes or skin at this wavelength region (mining applications. We have incorporated the laser safety requirements in the LIDAR design and conducted laser safety analysis for different operational scenarios. While 1.5μm is normally said to be the eye-safe wavelength, in reality a high performance 3D LIDAR needs high pulse energy, small beam size and high pulse repetition frequency (PRF) to achieve long range, high resolution and high density images. The resulting radiant exposure of its stationary beam could be many times higher than the limit for a Class 1 laser device. Without carefully choosing laser and scanning parameters, including field-of-view, scan speed and pattern, a scanning LIDAR can't be eye- or skin-safe based only on its wavelength. This paper discusses the laser safety considerations in the design of eye-safe scanning LIDARs, including laser pulse energy, PRF, beam size and scanning parameters in two basic designs of scanning mechanisms, i.e. galvanometer based scanner and Risley prism based scanner. The laser safety is discussed in terms of device classification, nominal ocular hazard distance (NOHD) and safety glasses optical density (OD).

  3. Ultra-Rapid 2-D and 3-D Laser Microprinting of Proteins

    Science.gov (United States)

    Scott, Mark Andrew

    When viewed under the microscope, biological tissues reveal an exquisite microarchitecture. These complex patterns arise during development, as cells interact with a multitude of chemical and mechanical cues in the surrounding extracellular matrix. Tissue engineers have sought for decades to repair or replace damaged tissue, often relying on porous scaffolds as an artificial extracellular matrix to support cell development. However, these grafts are unable to recapitulate the complexity of the in vivo environment, limiting our ability to regenerate functional tissue. Biomedical engineers have developed several methods for printing two- and three-dimensional patterns of proteins for studying and directing cell development. Of these methods, laser microprinting of proteins has shown the most promise for printing sub-cellular resolution gradients of cues, but the photochemistry remains too slow to enable large-scale applications for screening and therapeutics In this work, we demonstrate a novel high-speed photochemistry based on multi-photon photobleaching of fluorescein, and we build the fastest 2-D and 3-D laser microprinter for proteins to date. First, we show that multiphoton photobleaching of a deoxygenated solution of biotin-4-fluorescein onto a PEG monolayer with acrylate end-group can enable print speeds of almost 20 million pixels per second at 600 nanometer resolution. We discovered that the mechanism of fluorescein photobleaching evolves from a 2-photon to 3- and 4-photon regime at higher laser intensities, unlocking faster printing kinetics. Using this 2-D printing system, we develop a novel triangle-ratchet method for directing the polarization of single hippocampal neurons. This ability to determine which neurite becomes an axon, and which neuritis become dendrites is an essential step for developing defined in vitro neural networks. Next, we modify our multiphoton photobleaching system to print in three dimensions. For the first time, we demonstrate 3

  4. SU-E-T-778: Use of the 2D MatriXX Detector for Measuring Scanned Ion Beam Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Anvar, M Varasteh; Monaco, V; Sacchi, R; Guarachi, L Fanola; Cirio, R [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); University of Torino, Turin, TO (Italy); Giordanengo, S; Marchetto, F; Vignati, A [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Donetti, M [Istituto Nazionale di Fisica Nucleare (INFN), Division of Turin, TO (Italy); Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy); Ciocca, M; Panizza, D [Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, PV (Italy)

    2015-06-15

    Purpose: The quality assurance (QA) procedure has to check the most relevant beam parameters to ensure the delivery of the correct dose to patients. Film dosimetry, which is commonly used for scanned ion beam QA, does not provide immediate results. The purpose of this work is to answer whether, for scanned ion beam therapy, film dosimetry can be replaced with the 2D MatriXX detector as a real-time tool. Methods: MatriXX, equipped with 32×32 parallel plate ion-chambers, is a commercial device intended for pre-treatment verification of conventional radiation therapy.The MatriXX, placed at the isocenter, and GAFCHROMIC films, positioned on the MatriXX entrance, were exposed to 131.44 MeV proton and 221.45 MeV/u Carbon-ion beams.The OmniPro-I’mRT software, applied for the data taking of MatriXX, gives the possibility of acquiring consecutive snapshots. Using the NI LabVIEW, the data from snapshots were logged as text files for further analysis. Radiochromic films were scanned with EPSON scanner and analyzed using software programs developed in-house for comparative purposes. Results: The field dose uniformity, flatness, beam position and beam width were investigated. The field flatness for the region covering 6×6 cm{sup 2} square field was found to be better than 2%. The relative standard deviations, expected to be constant over 2×2, 4×4 and 6×6 pixels from MatriXX measurement gives a uniformity of 1.5% in good agreement with the film results.The beam center position is determined with a resolution better than 200 µm for Carbon and less than 100 µm for proton beam.The FWHM determination for a beam wider than 10 mm is satisfactory, whilst for smaller beams the determination is uncertain. Conclusion: Precise beam position and fast 2D dose distribution can be determined in real-time using MatriXX detector. The results show that MatriXX is quick and accurate enough to be used in charged-particle therapy QA.

  5. RESEARCH ON LASER RANGE SCANNING AND ITS APPLICATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper the development of the technology of the laserscanning is summarized.The principles of laser range scanning are introduced.Based on the laser scanning technology and methods,which are investigated by the authors to survey deposit volume,a surveying system is developed and a practical application is performed.It is shown that the laser-scanning technology has obvious advantages such as measurement precision,automation and visualization of observed data in comparison with the traditional methods.As a result,labor intensity is relieved obviously and work efficiency is promoted.

  6. Maritime Laser Scanning as the Source for Spatial Data

    Directory of Open Access Journals (Sweden)

    Szulwic Jakub

    2015-12-01

    Full Text Available The rapid development of scanning technology, especially mobile scanning, gives the possibility to collect spatial data coming from maritime measurement platforms and autonomous manned or unmanned vehicles. Presented solution is derived from the mobile scanning. However we should keep in mind that the specificity of laser scanning at sea and processing collected data should be in the form acceptable in Geographical Information Systems, especially typical for the maritime needs. At the same time we should be aware that data coming from maritime mobile scanning constitutes a new approach to the describing of maritime environment and brings a new perspective that is completely different than air and terrestrial scanning.

  7. Multispectral Analysis of Indigenous Rock Art Using Terrestrial Laser Scanning

    Science.gov (United States)

    Skoog, B.; Helmholz, P.; Belton, D.

    2016-06-01

    Multispectral analysis is a widely used technique in the photogrammetric and remote sensing industry. The use of Terrestrial Laser Scanning (TLS) in combination with imagery is becoming increasingly common, with its applications spreading to a wider range of fields. Both systems benefit from being a non-contact technique that can be used to accurately capture data regarding the target surface. Although multispectral analysis is actively performed within the spatial sciences field, its extent of application within an archaeological context has been limited. This study effectively aims to apply the multispectral techniques commonly used, to a remote Indigenous site that contains an extensive gallery of aging rock art. The ultimate goal for this research is the development of a systematic procedure that could be applied to numerous similar sites for the purpose of heritage preservation and research. The study consisted of extensive data capture of the rock art gallery using two different TLS systems and a digital SLR camera. The data was combined into a common 2D reference frame that allowed for standard image processing to be applied. An unsupervised k-means classifier was applied to the multiband images to detect the different types of rock art present. The result was unsatisfactory as the subsequent classification accuracy was relatively low. The procedure and technique does however show potential and further testing with different classification algorithms could possibly improve the result significantly.

  8. Laser scanning measurements on trees for logging harvesting operations.

    Science.gov (United States)

    Zheng, Yili; Liu, Jinhao; Wang, Dian; Yang, Ruixi

    2012-01-01

    Logging harvesters represent a set of high-performance modern forestry machinery, which can finish a series of continuous operations such as felling, delimbing, peeling, bucking and so forth with human intervention. It is found by experiment that during the process of the alignment of the harvesting head to capture the trunk, the operator needs a lot of observation, judgment and repeated operations, which lead to the time and fuel losses. In order to improve the operation efficiency and reduce the operating costs, the point clouds for standing trees are collected with a low-cost 2D laser scanner. A cluster extracting algorithm and filtering algorithm are used to classify each trunk from the point cloud. On the assumption that every cross section of the target trunk is approximate a standard circle and combining the information of an Attitude and Heading Reference System, the radii and center locations of the trunks in the scanning range are calculated by the Fletcher-Reeves conjugate gradient algorithm. The method is validated through experiments in an aspen forest, and the optimized calculation time consumption is compared with the previous work of other researchers. Moreover, the implementation of the calculation result for automotive capturing trunks by the harvesting head during the logging operation is discussed in particular.

  9. Laser Scanning Measurements on Trees for Logging Harvesting Operations

    Directory of Open Access Journals (Sweden)

    Ruixi Yang

    2012-07-01

    Full Text Available Logging harvesters represent a set of high-performance modern forestry machinery, which can finish a series of continuous operations such as felling, delimbing, peeling, bucking and so forth with human intervention. It is found by experiment that during the process of the alignment of the harvesting head to capture the trunk, the operator needs a lot of observation, judgment and repeated operations, which lead to the time and fuel losses. In order to improve the operation efficiency and reduce the operating costs, the point clouds for standing trees are collected with a low-cost 2D laser scanner. A cluster extracting algorithm and filtering algorithm are used to classify each trunk from the point cloud. On the assumption that every cross section of the target trunk is approximate a standard circle and combining the information of an Attitude and Heading Reference System, the radii and center locations of the trunks in the scanning range are calculated by the Fletcher-Reeves conjugate gradient algorithm. The method is validated through experiments in an aspen forest, and the optimized calculation time consumption is compared with the previous work of other researchers. Moreover, the implementation of the calculation result for automotive capturing trunks by the harvesting head during the logging operation is discussed in particular.

  10. Facial recognition and laser surface scan: a pilot study

    DEFF Research Database (Denmark)

    Lynnerup, Niels; Clausen, Maja-Lisa; Kristoffersen, Agnethe May

    2009-01-01

    that the discriminatory value was 86.7%. We also tested the surface scanner in terms of reliability in establishing point measures on skulls, and compared with physical measurements performed by calipers. The variation was on average 1 mm for five cranial measures. We suggest how surface scanning might be applied......Surface scanning of the face of a suspect is presented as a way to better match the facial features with those of a perpetrator from CCTV footage. We performed a simple pilot study where we obtained facial surface scans of volunteers and then in blind trials tried to match these scans with 2D...

  11. Influence of laser frequency noise on scanning Fabry-Perot interferometer based laser Doppler velocimetry

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Pedersen, Christian

    2014-01-01

    n this work, we study the performance of a scanning Fabry-Perot interferometer based laser Doppler velocimeter (sFPILDV) and compare two candidate 1.5 um single-frequency laser sources for the system – a fiber laser (FL) and a semiconductor laser (SL). We describe a straightforward calibration pr...

  12. Multicolor pattern scan laser for diabetic retinopathy with cataract

    Institute of Scientific and Technical Information of China (English)

    Takao; Hirano; Yasuhiro; Iesato; Toshinori; Murata

    2014-01-01

    · AIM: To evaluate the ability of various laser wavelengths in delivering sufficient burns to the retina in eyes with cataract using a new multicolor pattern scan laser with green(532 nm), yellow(577 nm), and red(647 nm)lasers.·METHODS: The relationship between the Emery-Little(EL) degree of cataract severity and the laser wavelength required to deliver adequate burns was investigated in102 diabetic eyes. Treatment time, total number of laser shots, and intra-operative pain were assessed as well.·RESULTS: All EL-1 grade eyes and 50% of EL-2 eyes were successfully treated with the green laser, while 50%of EL-2 eyes, 96% of EL-3 eyes, and 50% of EL-4 eyes required the yellow laser. The red laser was effective in the remaining 4% of EL-3 and 50% of EL-4 eyes.·CONCLUSION: Longer wavelength lasers are more effective in delivering laser burns through cataract when we use a multicolor pattern scan laser system.

  13. Cellular scanning strategy for selective laser melting: Generating reliable, optimized scanning paths and processing parameters

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2015-01-01

    to generate optimized cellular scanning strategies and processing parameters, with an objective of reducing thermal asymmetries and mechanical deformations. The optimized scanning strategies are used for selective laser melting of the standard samples, and experimental and numerical results are compared....... gradients that occur during the process. While process monitoring and control of selective laser melting is an active area of research, establishing the reliability and robustness of the process still remains a challenge.In this paper, a methodology for generating reliable, optimized scanning paths...

  14. Ultra-low power threshold for laser induced changes in optical properties of 2D Molybdenum dichalcogenides

    CERN Document Server

    Cadiz, Fabian; Wang, Gang; Kong, Wilson; Fan, Xi; Blei, Mark; Lagarde, Delphine; Gay, Maxime; Manca, Marco; Taniguchi, Takashi; Watanabe, Kenji; Amand, Thierry; Marie, Xavier; Renucci, Pierre; Tongay, Sefaattin; Urbaszek, Bernhard

    2016-01-01

    The optical response of traditional semiconductors depends on the laser excitation power used in experiments. For two-dimensional (2D) semiconductors, laser excitation effects are anticipated to be vastly different due to complexity added by their ultimate thinness, high surface to volume ratio, and laser-membrane interaction effects. We show in this article that under laser excitation the optical properties of 2D materials undergo irreversible changes. Most surprisingly these effects take place even at low steady state excitation, which is commonly thought to be non-intrusive. In low temperature photoluminescence (PL) we show for monolayer (ML) MoSe2 samples grown by different techniques that laser treatment increases significantly the trion (i.e. charged exciton) contribution to the emission compared to the neutral exciton emission. Comparison between samples exfoliated onto different substrates shows that laser induced doping is more efficient for ML MoSe2 on SiO2/Si compared to h-BN and gold. For ML MoS2 ...

  15. Control and analysis software for a laser scanning microdensitometer

    Indian Academy of Sciences (India)

    H R Bundel; C P Navathe; P A Naik; P D Gupta

    2006-02-01

    A PC-based control software and data acquisition system is developed for an existing commercial microdensitometer (Biomed make model No. SL-2D/1D UV/VIS) to facilitate scanning and analysis of X-ray films. The software is developed in Labview, which includes operation of the microdensitometer in 1D and 2D scans and analysis of spatial or spectral data on X-ray films, such as optical density, intensity and wavelength. It provides a user-friendly Graphical User Interface (GUI) to analyse the scanned data and also store the analysed data/image in popular formats like data in Excel and images in jpeg. It has also on-line calibration facility with standard optical density tablets. The control software and data acquisition system is simple, inexpensive and versatile.

  16. 3D Laser Scanning in Technology Education.

    Science.gov (United States)

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  17. Repeat scanning technology for laser ultrasonic propagation imaging

    Science.gov (United States)

    Lee, Jung-Ryul; Yenn Chong, See; Sunuwar, Nitam; Park, Chan Yik

    2013-08-01

    Laser ultrasonic scanning in combination with contact or non-contact sensors provides new paradigms in structural health management (SHM) and non-destructive in-process quality control (IPQC) for large composite structures. Wave propagation imaging technology based on laser ultrasonic scanning and fixed-point sensing shows remarkable advantages, such as minimal need for embedded sensors in SHM, minimum invasive defect visualization in IPQC and general capabilities of curved and complex target inspection, and temporal reference-free inspection. However, as with other SHM methods and non-destructive evaluation based on ultrasound, the signal-to-noise ratio (SNR) is a prevalent issue in real structural applications, especially with non-contact thin-composite sensing or with thick and heterogeneous composites. This study proposes a high-speed repeat scanning technique for laser ultrasonic propagation imaging (UPI) technology, which is realized with the scanning speed of 1 kHz of a Q-switched continuous wave laser, and precise control of the laser beam pulses for identical point scanning. As a result, the technique enables the achievement of significant improvement in the SNR to inspect real-world composite structures. The proposed technique provides enhanced results for impact damage detection in a 2 mm thick wing box made of carbon-fiber-reinforced plastic, despite the low sensitivity of non-contact laser ultrasonic sensing. A field-applicable pure laser UPI system has been developed using a laser Doppler vibrometer as the non-contact ultrasonic sensor. The proposed technique enables the visualization of the disbond defect in a 15 mm thick wind blade specimen made of glass-fiber-reinforced plastic, despite the high dissipation of ultrasound in the thick composite.

  18. 2D profile of poloidal magnetic field diagnosed by a laser-driven ion-beam trace probe (LITP)

    Science.gov (United States)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Lin, Chen; Wang, Long; Xu, Min; Yu, Yi

    2016-11-01

    Based on large energy spread of laser-driven ion beam (LIB), a new method, the Laser-driven Ion-beam Trace Probe (LITP), was suggested recently to diagnose the poloidal magnetic field (Bp) and radial electric field (Er) in toroidal devices. Based on another property of LIB, a wide angular distribution, here we suggested that LITP could be extended to get 2D Bp profile or 1D profile of both poloidal and radial magnetic fields at the same time. In this paper, we show the basic principle, some preliminary simulation results, and experimental preparation to test the basic principle of LITP.

  19. Confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    CERN Document Server

    Jun, Brian; Yang, Haisheng; Main, Russell; Vlachos, Pavlos

    2016-01-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC) based velocimetry are (1) the use of diffusion dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross correlation, and develop an SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nano...

  20. Application of in vivo laser scanning microscope in dermatology

    Science.gov (United States)

    Lademann, Juergen; Richter, H.; Otberg, N.; Lawrenz, F.; Blume-Peytavi, U.; Sterry, W.

    2003-10-01

    The state of the art of in-vivo and in-vitro penetration measurements of topically applied substances is described. Only optical techniques represent online measuring methods based on the absorption or scattering properties of the topically applied substances. Laser scanning microscopy (LSM) has become a promising method for investigations in dermatology and skin physiology, after it was possible to analyze the skin surface on any body side in-vivo. In the present paper the application of a dermatological laser scanning microscope for penetration and distribution measurements of topically applied substances is described. The intercellular and follicular penetration pathways were studied.

  1. Street-Scene Tree Segmentation from Mobile Laser Scanning Data

    Science.gov (United States)

    Guan, H.; Cao, S.; Yu, Y.; Li, J.; Liu, N.; Chen, P.; Li, Y.

    2016-06-01

    Our work addresses the problem of extracting trees from mobile laser scanning data. The work is a two step-wise strategy, including terrain point removal and tree segmentation. First, a voxel-based upward growing filtering is proposed to remove terrain points from the mobile laser scanning data. Then, a tree segmentation is presented to extract individual trees via a Euclidean distance clustering approach and Voxel-based Normalized Cut (VNCut) segmentation approach. A road section data acquired by a RIEGL VMX-450 system are selected for evaluating the proposed tree segmentation method. Qualitative analysis shows that our algorithm achieves a good performance.

  2. Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage

    OpenAIRE

    Petr Olivka; Michal Krumnikl; Pavel Moravec; David Seidl

    2016-01-01

    The laser range finder is one of the most essential sensors in the field of robotics. The laser range finder provides an accurate range measurement with high angular resolution. However, the short range scanners require an additional calibration to achieve the abovementioned accuracy. The calibration procedure described in this work provides an estimation of the internal parameters of the laser range finder without requiring any special three-dimensional targets. This work presents the use of...

  3. Boresight calibration of construction misalignments for 3D scanners built with a 2D laser range finder rotating on its optical center.

    Science.gov (United States)

    Morales, Jesús; Martínez, Jorge L; Mandow, Anthony; Reina, Antonio J; Pequeño-Boter, Alejandro; García-Cerezo, Alfonso

    2014-10-24

    Many applications, like mobile robotics, can profit from acquiring dense, wide-ranging and accurate 3D laser data. Off-the-shelf 2D scanners are commonly customized with an extra rotation as a low-cost, lightweight and low-power-demanding solution. Moreover, aligning the extra rotation axis with the optical center allows the 3D device to maintain the same minimum range as the 2D scanner and avoids offsets in computing Cartesian coordinates. The paper proposes a practical procedure to estimate construction misalignments based on a single scan taken from an arbitrary position in an unprepared environment that contains planar surfaces of unknown dimensions. Inherited measurement limitations from low-cost 2D devices prevent the estimation of very small translation misalignments, so the calibration problem reduces to obtaining boresight parameters. The distinctive approach with respect to previous plane-based intrinsic calibration techniques is the iterative maximization of both the flatness and the area of visible planes. Calibration results are presented for a case study. The method is currently being applied as the final stage in the production of a commercial 3D rangefinder.

  4. Entropy-Based Registration of Point Clouds Using Terrestrial Laser Scanning and Smartphone GPS.

    Science.gov (United States)

    Chen, Maolin; Wang, Siying; Wang, Mingwei; Wan, Youchuan; He, Peipei

    2017-01-20

    Automatic registration of terrestrial laser scanning point clouds is a crucial but unresolved topic that is of great interest in many domains. This study combines terrestrial laser scanner with a smartphone for the coarse registration of leveled point clouds with small roll and pitch angles and height differences, which is a novel sensor combination mode for terrestrial laser scanning. The approximate distance between two neighboring scan positions is firstly calculated with smartphone GPS coordinates. Then, 2D distribution entropy is used to measure the distribution coherence between the two scans and search for the optimal initial transformation parameters. To this end, we propose a method called Iterative Minimum Entropy (IME) to correct initial transformation parameters based on two criteria: the difference between the average and minimum entropy and the deviation from the minimum entropy to the expected entropy. Finally, the presented method is evaluated using two data sets that contain tens of millions of points from panoramic and non-panoramic, vegetation-dominated and building-dominated cases and can achieve high accuracy and efficiency.

  5. OPTIMIZING TERRESTRIAL LASER SCANNING MEASUREMENT SET-UP

    Directory of Open Access Journals (Sweden)

    S. Soudarissanane

    2012-09-01

    Full Text Available One of the main applications of the terrestrial laser scanner is the visualization, modeling and monitoring of man-made structures like buildings. Especially surveying applications require on one hand a quickly obtainable, high resolution point cloud but also need observations with a known and well described quality. To obtain a 3D point cloud, the scene is scanned from different positions around the considered object. The scanning geometry plays an important role in the quality of the resulting point cloud. The ideal set-up for scanning a surface of an object is to position the laser scanner in such a way that the laser beam is near perpendicular to the surface. Due to scanning conditions, such an ideal set-up is in practice not possible. The different incidence angles and ranges of the laser beam on the surface result in 3D points of varying quality. The stand-point of the scanner that gives the best accuracy is generally not known. Using an optimal stand-point of the laser scanner on a scene will improve the quality of individual point measurements and results in a more uniform registered point cloud. The design of an optimum measurement setup is defined such that the optimum stand-points are identified to fulfill predefined quality requirements and to ensure a complete spatial coverage. The additional incidence angle and range constraints on the visibility from a view point ensure that individual scans are not affected by bad scanning geometry effects. A complex and large room that would normally require five view point to be fully covered, would require nineteen view points to obtain full coverage under the range and incidence angle constraints.

  6. USE OF LASER SCANNING FOR CULTURAL HERITAGE DOCUMENTATION

    Directory of Open Access Journals (Sweden)

    Gulhan BENLI

    2013-01-01

    Full Text Available In terms of raising an awareness of the historical, national and cultural properties in our country and ensuring a transfer of information to posterity, it is of vital importance to take inventory of the cultural and natural real properties located in protected sites. Many fields, such as medical science, construction, ground engineering, geodetic engineering, and architecture, make use of the present-day laser scanning technology. Even if contemporary and current scientific methods are used for the inventory and documentation studies related to cultural and natural real properties in the PROTECTED SITES in the field of architecture; acquiring data of the entirety of a protected site using these methods is a time consuming process. Among the scientific methods applied, laser scanning technology has the utmost importance in the latest years. The laser scanning devices for the detection of cultural, natural and historical properties in archeological, historical, urban or mixed protected sites in Turkey, eliminate challenges such as the enormity of sites, the difficulty of working in the sites, intense work hours, and the necessity of having a thorough knowledge of the site. In the scope of this study, the usage, application, facilities, advantages and attainments of geodetic laser scanning systems in conducting surveys on facade, street or avenue silhouettes in the protected sites, where historical buildings within field of architecture are widespread, will be examined.

  7. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological proc

  8. Single scan vector prediction in selective laser melting

    NARCIS (Netherlands)

    Wits, W.W.; Bruins, R.; Terpstra, L.; Huls, R.A.; Geijselaers, H.J.M.

    2015-01-01

    In selective laser melting (SLM) products are built by melting layers of metal powder successively. Optimal process parameters are usually obtained by scanning single vectors and subsequently determining which settings lead to a good compromise between product density and build speed. This paper pro

  9. Automated rock mass characterisation using 3-D terrestrial laser scanning

    NARCIS (Netherlands)

    Slob, S.

    2010-01-01

    The research investigates the possibility of using point cloud data from 3-D terrestrial laser scanning as a basis to characterise discontinuities in exposed rock massed in an automated way. Examples of discontinuities in rock are bedding planes, joints, fractures and schistocity. The characterisati

  10. Tree Stem Diameter Estimation from Mobile Laser Scanning Using Line-Wise Intensity-Based Clustering

    Directory of Open Access Journals (Sweden)

    Mona Forsman

    2016-09-01

    Full Text Available Diameter at breast height has been estimated from mobile laser scanning using a new set of methods. A 2D laser scanner was mounted facing forward, tilted nine degrees downwards, on a car. The trajectory was recorded using inertial navigation and visual SLAM (simultaneous localization and mapping. The laser scanner data, the trajectory and the orientation were used to calculate a 3D point cloud. Clusters representing trees were extracted line-wise to reduce the effects of uncertainty in the positioning system. The intensity of the laser echoes was used to filter out unreliable echoes only grazing a stem. The movement was used to obtain measurements from a larger part of the stem, and multiple lines from different views were used for the circle fit. Two trigonometric methods and two circle fit methods were tested. The best results with bias 2.3% (6 mm and root mean squared error 14% (37 mm were acquired with the circle fit on multiple 2D projected clusters. The method was evaluated compared to field data at five test areas with approximately 300 caliper-measured trees within a 10-m working range. The results show that this method is viable for stem measurements from a moving vehicle, for example a forest harvester.

  11. 2-D scanning technology in passive terahertz imaging%被动太赫兹成像二维扫描技术

    Institute of Scientific and Technical Information of China (English)

    谢巍; 侯丽伟; 潘鸣

    2014-01-01

    It is inevitable to use 2-D scanning in wide-Field of View(FOV) terahertz imaging due to the restriction of terahertz detector(lack of pixels and hardly integrated to large-scale plane array). The 45° mirror could be used in passive terahertz 2-D scanning imaging for its advantages in dimension, stability and scanning Field of View. The principle of 2-D scanning imaging using 45° mirror is analyzed in detail. A new method with horizontal scanning by rotating around axis Zand vertical stepping by rotating around axis Yis proposed. The scanning trace is calculated, the margin FOV distortion is about 3.2%. The method is validated by the imaging experiment and image is acquired in wide-Field of View.%太赫兹成像受探测器像元数少和无法进行大规模面阵集成的限制,大视场成像不可避免地要用到二维扫描。45º镜具有尺寸小,稳定性好,幅宽大等特点,可以用来实现被动太赫兹二维扫描成像。详细分析了45º镜扫描成像的工作原理和扫描方式,提出了绕Z轴摆动实现水平扫描,绕Y轴摆动实现垂直步进的扫描方案,计算了扫描轨迹,边沿视场成像畸变约3.2%,并通过成像实验对扫描方案进行了验证,得到了大视场下的被动太赫兹二维扫描图像。

  12. Leonardo da Vinci's drapery studies: characterization of lead white pigments by μ-XRD and 2D scanning XRF

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Victor; Calligaro, Thomas [Centre de Recherche et de Restauration des Musees de France, C2RMF, Paris (France); PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, UMR8247, Paris (France); Pichon, Laurent; Mottin, Bruno [Centre de Recherche et de Restauration des Musees de France, C2RMF, Paris (France); Wallez, Gilles [PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, UMR8247, Paris (France); Sorbonne University, UPMC Univ., Paris 06 (France)

    2015-11-15

    This work focuses on the composition and microstructure of the lead white pigment employed in a set of paintworks, using a combination of μ-XRD and 2D scanning XRF, directly applied on five drapery studies attributed to Leonardo da Vinci (1452-1519) and conserved in the Departement des Arts Graphiques, Musee du Louvre and in the Musee des Beaux-Arts de Rennes. Trace elements present in the composition as well as in the lead white highlights were imaged by 2D scanning XRF. Mineral phases were determined in a fully noninvasive way using a special μ-XRD diffractometer. Phase proportions were estimated by Rietveld refinement. The analytical results obtained will contribute to differentiate lead white qualities and to highlight the artist's technique. (orig.)

  13. Theoretical benchmarking of laser-accelerated ion fluxes by 2D-PIC simulations

    CERN Document Server

    Mackenroth, Felix; Marklund, Mattias

    2016-01-01

    There currently exists a number of different schemes for laser based ion acceleration in the literature. Some of these schemes are also partly overlapping, making a clear distinction between the schemes difficult in certain parameter regimes. Here, we provide a systematic numerical comparison between the following schemes and their analytical models: light-sail acceleration, Coulomb explosions, hole boring acceleration, and target normal sheath acceleration (TNSA). We study realistic laser parameters and various different target designs, each optimized for one of the acceleration schemes, respectively. As a means of comparing the schemes, we compute the ion current density generated at different laser powers, using two-dimensional particle-in-cell (PIC) simulations, and benchmark the particular analytical models for the corresponding schemes against the numerical results. Finally, we discuss the consequences for attaining high fluxes through the studied laser ion-acceleration schemes.

  14. An algorithm for circular test and improved optical configuration by two-dimensional (2D) laser heterodyne interferometer

    Science.gov (United States)

    Tang, Shanzhi; Yu, Shengrui; Han, Qingfu; Li, Ming; Wang, Zhao

    2016-09-01

    Circular test is an important tactic to assess motion accuracy in many fields especially machine tool and coordinate measuring machine. There are setup errors due to using directly centring of the measuring instrument for both of contact double ball bar and existed non-contact methods. To solve this problem, an algorithm for circular test using function construction based on matrix operation is proposed, which is not only used for the solution of radial deviation (F) but also should be applied to obtain two other evaluation parameters especially circular hysteresis (H). Furthermore, an improved optical configuration with a single laser is presented based on a 2D laser heterodyne interferometer. Compared with the existed non-contact method, it has a more pure homogeneity of the laser sources of 2D displacement sensing for advanced metrology. The algorithm and modeling are both illustrated. And error budget is also achieved. At last, to validate them, test experiments for motion paths are implemented based on a gantry machining center. Contrast test results support the proposal.

  15. Novel adaptive laser scanning sensor for reverse engineering measurement

    Institute of Scientific and Technical Information of China (English)

    Zhao Ji; Ma Zi; Lin Na; Zhu Quanmin

    2007-01-01

    In this paper, a series of new techniques are used to optimize typical laser scanning sensor. The integrated prototype is compared with traditional approach to demonstrate the much improved performance. In the research and development, camera calibration is achieved by extracting characteristic points of the laser plane, so that the calibration efficiency is improved significantly. With feedback control of its intensity, the laser is automatically adjusted for different material. A modified algorithm is presented to improve the accuracy of laser stripe extraction. The fusion of data extracted from left and right camera is completed with re-sampling technique. The scanner is integrated with a robot arm and some other machinery for on-line measurement and inspection, which provides a flexible measurement tool for reverse engineering.

  16. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    Science.gov (United States)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  17. Calibration of Short Range 2D Laser Range Finder for 3D SLAM Usage

    Directory of Open Access Journals (Sweden)

    Petr Olivka

    2016-01-01

    Full Text Available The laser range finder is one of the most essential sensors in the field of robotics. The laser range finder provides an accurate range measurement with high angular resolution. However, the short range scanners require an additional calibration to achieve the abovementioned accuracy. The calibration procedure described in this work provides an estimation of the internal parameters of the laser range finder without requiring any special three-dimensional targets. This work presents the use of a short range URG-04LX scanner for mapping purposes and describes its calibration. The precision of the calibration was checked in an environment with known ground truth values and the results were statistically evaluated. The benefits of the calibration are also demonstrated in the practical applications involving the segmentation of the environment. The proposed calibration method is complex and detects all major manufacturing inaccuracies. The procedure is suitable for easy integration into the current manufacturing process.

  18. Airborne laser scanning to detect pipeline area invasions

    Energy Technology Data Exchange (ETDEWEB)

    Falat, Denise R.; Sallem Filho, Silas [ESTEIO Engenharia e Aerolevantamentos S.A, Curitiba, PR (Brazil)

    2009-07-01

    The occupation of the surface on the pipeline right-of-ways needs constant detailing and updating. The speed of changes in the vegetation areas and the irregular growth of urbanization prove the need for quick answers on the identification of invasions and on the elaboration of technical reports showing spatially referenced elements. In this context, this technical paper seeks to identify changes on the surface, making use of data derived from airborne LASER (Light Amplification by Stimulated Emission of Radiance) sensor scanning performed in different periods in the same study right-of-way. This technique has been successfully used in a number of applications, however, in most of the cases the LASER data are combined with digital photogrammetric products. This paper aims at the identification of alterations on the surface of right-of-ways and pipelines, using data exclusively from LASER scanning, performed in distinct periods. From the data processing are generated the DSM's (Digital Surface Models). The automatic comparison between the DSM's allows the identification of changes occurred between the surveys. Based on the configuration of the altered areas, we then expect to distinguish the several types of changes occurred as: new buildings, the advance of vegetation over right-of-ways and objects. For the validation of this methodology, photographic images of the regions have been used, obtained through photogrammetry in the same period of the LASER scanning. (author)

  19. A Robotic Indoor 3D Mapping System Using a 2D Laser Range Finder Mounted on a Rotating Four-Bar Linkage of a Mobile Platform

    Directory of Open Access Journals (Sweden)

    Yu-Shin Chou

    2013-01-01

    Full Text Available This paper describes our work in developing a 3D robotic mapping system composed by an experimental mobile platform equipped with a rotating laser range finder (LRF. For the purpose of obtaining more complete 3D scans of the environment, we design, construct and calibrate a crank‐rocker four‐bar linkage so that a LRF mounted on it could undergo repetitive rotational motion between two extreme positions, allowing both horizontal and vertical scans. To reduce the complexity of map representation suitable for optimization later, the local map from the LRF is a grid map represented by a distance‐transformed (DT matrix. We compare the DT‐transformed maps and find the transformation matrix of a robot pose by a linear simplex‐based map optimization method restricted to a local region allows efficient alignment of maps in scan matching. Several indoor 2D and 3D mapping experiments are presented to demonstrate the consistency, efficiency and accuracy of the 3D mapping system for a mobile robot that is stationary or in motion.

  20. Block-to-Point Fine Registration in Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Jin Wang

    2013-12-01

    Full Text Available Fine registration of point clouds plays an important role in data analysis in Terrestrial Laser Scanning (TLS. This work proposes a block-to-point fine registration approach to correct the errors of point clouds from TLS and of geodetic networks observed using total stations. Based on a reference coordinate system, the block-to-point estimation is performed to obtain representative points. Then, fine registration with a six-parameter transformation is performed with the help of an Iterative Closest Point (ICP method. For comparisons, fine registration with a seven-parameter transformation is introduced by applying a Singular Value Decomposition (SVD algorithm. The proposed method not only corrects the registration errors between a geodetic network and the scans, but also considers the errors among the scans. The proposed method was tested on real TLS data of a dam surface, and the results showed that distance discrepancies of estimated representative points between scans were reduced by approximately 60%.

  1. Automated house internal geometric quality inspection using laser scanning

    Science.gov (United States)

    Wang, Yuchen; Zhang, Zhichao; Qiu, Zhouyan

    2015-12-01

    Taking a terrestrial laser scanner to scan the room of a house, the scanned data can be used to inspect the geometric quality of the room. Taking advantage of the scan line feature, we can quickly calculate normal of the scanned points. Afterwards, we develop a fast plane segmentation approach to recognize the walls of the room according to the semantic constraints of a common room. With geometric and semantic constraints, we can exclude points that don't belong to the inspecting room. With the segmented results, we can accurately do global search of max and min height, width and length of a room, and the flatness of the wall as well. Experiment shows the robustness of this geometric inspecting approach. This approach has the ability to measure some important indicators that cannot be done by manual work.

  2. Preparation of solder pads by selective laser scanning

    Institute of Scientific and Technical Information of China (English)

    Wenqing Shi; Yongqiang Yang; Yanlu Huang; Guoqiang Wei; Wei Guo

    2009-01-01

    We propose a new laser preparation technique to solder Sn-Ag3.5-Cu0.7 on a copper clad laminate (CCL). The experiment is conducted by selective laser heating and melting the thin solder layer and then preprint-ing it on CCL in order to form the matrix with solder pads. Through the analysis of macro morphology of the matrix with solder pads and microstructure of single pads, this technique is proved to be suitable for preparing solder pads and that the solder pads are of good mechanical properties. The results also reveal that high frequency laser pulse is beneficial to the formation of better solder pad, and that the 12-W fiber laser with a beam diameter of 0.030 mm can solder Sn-Ag3.5-Cu0.7 successfully on CCL at 500-kHz pulse frequency. The optimized parameters of laser soldering on CCL are as follows: the laser power is 12 W, the scanning speed is 1.0 mm/s, the beam diameter is 0.030 mm, the lead-free solder is Sn-Ag3.5-Cu0.7, and the laser pulse frequency is 500 kHz.

  3. D Data Acquisition for Indoor Assets Using Terrestrial Laser Scanning

    Science.gov (United States)

    Lee, S. Y.; Majid, Z.; Setan, H.

    2013-09-01

    The newly development of technology clearly shows an improvement of three-dimension (3D) data acquisition techniques. The requirements of 3D information and features have been obviously increased during past few years in many related fields. Generally, 3D visualization can provide more understanding and better analysis for making decision. The need of 3D GIS also pushed by the highly demand of 3D in geospatial related applications as well as the existing fast and accurate 3D data collection techniques. This paper focuses on the 3D data acquisition by using terrestrial laser scanning. In this study, Leica C10 terrestrial laser scanner was used to collect 3D data of the assets inside a computer laboratory. The laser scanner device is able to capture 3D point cloud data with high speed and high accuracy. A series of point clouds was produced from the laser scanner. However, more attention must be paid during the point clouds data processing, 3D modelling, and analysis of the laser scanned data. Hence, this paper will discuss about the data processing from 3D point clouds to 3D models. The processing of point cloud data divided into pre-processing (data registration and noise filter) and post-processing (3D modelling). During the process, Leica Cyclone 7.3 was used to process the point clouds and SketchUp was used to construct the 3D asset models. Afterward, the 3D asset models were exported to multipatch geometry format, which is a 3D GIS-ready format for displaying and storing 3D model in GIS environment. The final result of this study is a set of 3D asset models display in GIS-ready format since GIS can provides the best visual interpretation, planning and decision making process. This paper shows the 3D GIS data could be produced by laser scanning technology after further processing of point cloud data.

  4. Low temperature laser scanning microscopy of a superconducting radio-frequency cavity.

    Science.gov (United States)

    Ciovati, G; Anlage, Steven M; Baldwin, C; Cheng, G; Flood, R; Jordan, K; Kneisel, P; Morrone, M; Nemes, G; Turlington, L; Wang, H; Wilson, K; Zhang, S

    2012-03-01

    An apparatus was developed to obtain, for the first time, 2D maps of the surface resistance of the inner surface of an operating superconducting radio-frequency niobium cavity by a low-temperature laser scanning microscopy technique. This allows identifying non-uniformities of the surface resistance with a spatial resolution of about 2.4 mm and surface resistance resolution of ~1 μΩ at 3.3 GHz. A signal-to-noise ratio of about 10 dB was obtained with 240 mW laser power and 1 Hz modulation frequency. The various components of the apparatus, the experimental procedure and results are discussed in detail in this contribution.

  5. Binocular eye tracking with the Tracking Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    Stevenson, S B; Sheehy, C K; Roorda, A

    2016-01-01

    The development of high magnification retinal imaging has brought with it the ability to track eye motion with a precision of less than an arc minute. Previously these systems have provided only monocular records. Here we describe a modification to the Tracking Scanning Laser Ophthalmoscope (Sheehy et al., 2012) that splits the optical path in a way that slows the left and right retinas to be scanned almost simultaneously by a single system. A mirror placed at a retinal conjugate point redirects half of each horizontal scan line to the fellow eye. The collected video is a split image with left and right retinas appearing side by side in each frame. Analysis of the retinal motion in the recorded video provides an eye movement trace with very high temporal and spatial resolution. Results are presented from scans of subjects with normal ocular motility that fixated steadily on a green laser dot. The retinas were scanned at 4° eccentricity with a 2° square field. Eye position was extracted offline from recorded videos with an FFT based image analysis program written in Matlab. The noise level of the tracking was estimated to range from 0.25 to 0.5arcmin SD for three subjects. In the binocular recordings, the left eye/right eye difference was 1-2arcmin SD for vertical motion and 10-15arcmin SD for horizontal motion, in agreement with published values from other tracking techniques.

  6. Laser scanning of a recirculation zone on the Bolund escarpment

    DEFF Research Database (Denmark)

    Mann, Jakob; Angelou, Nikolas; Sjöholm, Mikael;

    2012-01-01

    Rapid variations in the height of the recirculation zone are measured with a scanning wind lidar over a small escarpment on the Bolund Peninsula. The lidar is essentially a continuous-wave laser Doppler anemometer with the capability of rapidly changing the focus distance and the beam direction....... The instrument measures the line-ofsight velocity 390 times per second and scans ten wind profiles from the ground up to seven meters per second. The results will be used to test computational fluid dynamics models for flow over terrain, and has relevance for wind energy. The development of multiple lidar...

  7. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    Science.gov (United States)

    Weekes, B.; Ewins, D.; Acciavatti, F.

    2014-05-01

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  8. Continuous-scanning laser Doppler vibrometry: Extensions to arbitrary areas, multi-frequency and 3D capture

    Energy Technology Data Exchange (ETDEWEB)

    Weekes, B.; Ewins, D. [University of Bristol, Queen' s Building, University Walk, Bristol, BS8 1TR (United Kingdom); Acciavatti, F. [Universita' Politecnica Delle Marche, Via Brecce Bianche 12, 60131 Ancona (Italy)

    2014-05-27

    To date, differing implementations of continuous scan laser Doppler vibrometry have been demonstrated by various academic institutions, but since the scan paths were defined using step or sine functions from function generators, the paths were typically limited to 1D line scans or 2D areas such as raster paths or Lissajous trajectories. The excitation was previously often limited to a single frequency due to the specific signal processing performed to convert the scan data into an ODS. In this paper, a configuration of continuous-scan laser Doppler vibrometry is demonstrated which permits scanning of arbitrary areas, with the benefit of allowing multi-frequency/broadband excitation. Various means of generating scan paths to inspect arbitrary areas are discussed and demonstrated. Further, full 3D vibration capture is demonstrated by the addition of a range-finding facility to the described configuration, and iteratively relocating a single scanning laser head. Here, the range-finding facility was provided by a Microsoft Kinect, an inexpensive piece of consumer electronics.

  9. 2D parameter optimization of Ne-like Cr x-ray laser on slab

    Institute of Scientific and Technical Information of China (English)

    Cheng Tao; Li Ying-Jun; Meng Li-Min; Yuan Su-Ying; Zhang Jie

    2009-01-01

    A method of studying a non-equilibrium x-ray laser plasma is developed by extending the existing one-dimensional similarity equations to the case of two-dimensional plasma study in the directions perpendicular to the slab and along a focal line. With this method the characteristics of pre-plasma are optimized for transient neon-like Cr x-ray laser. It is found that when the duration and the intensity of 1.053 μm pre-pulse are 1.2 ns and 6.5 TW/cm2respectively with a delay time of 1.5 us, the temperature and the temperature discrepancy each approach a proper state, which will provide a uniform distribution of properly ionized neon-like Cr ions before the arrival of pumping pulse.

  10. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  11. Scanning laser system to determine the corneal shape

    Science.gov (United States)

    Ascanio, Gabriel; Caballero-Ruiz, Alberto; Ruiz-Huerta, Leopoldo; Gonzalez-Cardel, Mario; Diaz-Uribe, Rufino

    2005-07-01

    The development and tests of a scanning system to be used to determine the corneal topography with the laser deflectometry method are presented. In this equipment, a He-Ne laser beam scans the cornea by describing a spiral trajectory generated by two components: radial and angular. The first component is produced by the displacement of a plane mirror moved by a linear pneumatic actuator. The second component is produced by passing the beam through a Dove prism which is rotating by means of a belt drive coupled to a high-speed electric motor. Tests were first performed by analyzing both components independently and then they were characterized by combining the two components. Results are discussed and compared to those of an earlier cited work.

  12. Monitoring stream bluff erosion using repeat terrestrial laser scanning

    Science.gov (United States)

    Neitzel, G.; Gran, K. B.

    2012-12-01

    Terrestrial laser scanning (TLS) technology provides high-resolution topographic data that can be used to detect geomorphic change in fluvial environments. In this study, we utilize successive terrestrial laser scans to investigate the relationship between peak flow rates and stream bluff erosion in the Amity Creek watershed in Duluth, Minnesota. We also combine TLS scan results with bluff inventories from airborne lidar to estimate the volume of sediment erosion from bluffs in the watershed, which is an important source of fine sediment contributing to the creek's turbidity impairment. We selected nine study bluffs to conduct terrestrial laser scans on after all significant flood events over a two-year time period. The study employs a Faro Focus 3D phase-shift laser to collect data. Post-processing of the TLS-point cloud data sets involves: (1) removal of vegetation and objects other than the erosional surface of interest; (2) decimation of the point cloud in PC Tools and extraction of zmin values to produce a data set manageable in GIS; (3) creation of a bare earth digital elevation model (DEM) for each set of scans using ArcMap; and (4) utilization of Geomorphic Change Detection (GCD) software to generate DEMs of Difference (DODs) from subsequent terrestrial laser scans. Preliminary results from three flooding events indicate significant erosional activity at all field sites. Slumps were observed at two bluffs following spring melt and freeze/thaw cycling. Two major precipitation events in late spring and early summer provided a unique opportunity to observe the impact of extreme high flow events on bluff erosion throughout the watershed using TLS technology. 4.75 inches of intermittent rain over a six-day period in late May 2012 (May 23-28) resulted in slumping at many bluffs and one major failure. The ≥100-year flood that occurred on June 19-20 (7.25 inches), 2012 was powerful enough to induce considerable channel change. Slumps occurred at six study sites

  13. Solvent-controlled 2D host-guest (2,7,12-trihexyloxytruxene/coronene) molecular nanostructures at organic liquid/solid interface investigated by scanning tunneling microscopy.

    Science.gov (United States)

    Liu, Jia; Zhang, Xu; Yan, Hui-Juan; Wang, Dong; Wang, Jie-Yu; Pei, Jian; Wan, Li-Jun

    2010-06-01

    The two-dimensional (2D) self-assembled networks of 2,7,12-trihexyloxytruxene (Tr) are shown to accommodate coronene guest molecules on highly oriented pyrolytic graphite (HOPG) surfaces. The host-guest structures are revealed by scanning tunneling microscopy (STM) at liquid/solid interfaces. The effect of solvents on the host-guest structures is intensively investigated in different solvents such as 1,2,4-trichlorobenzene (TCB), 1-phenyloctane, 1-octanol, and tetradecane. In contrast to the similar 2D hexagonal self-assembly of Tr host template on HOPG in different solvents, the formation of host-guest nanostructures of coronene in Tr 2D network strongly depend on the polarity of the solvents. The thermodynamic equilibrium during the host-guest assembly process is discussed, and the solvent-guest interaction is proposed as a main contributor for the observed solvent effect in the 2D host-guest self-assembly process. The results are significant to surface host-guest chemistry and nanopatterning.

  14. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    OpenAIRE

    Yoo, H W

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological processes and aberration-corrected imaging to localize the targeted biomolecule precisely through optical disturbances by specimen. In this thesis, optomechatronics design and control are discussed for...

  15. Super-resolution scanning laser microscopy through virtually structured detection

    OpenAIRE

    Lu, Rong-Wen; Wang, Ben-Quan; Zhang, Qiu-Xiang; Yao, Xin-Cheng

    2013-01-01

    High resolution microscopy is essential for advanced study of biological structures and accurate diagnosis of medical diseases. The spatial resolution of conventional microscopes is light diffraction limited. Structured illumination has been extensively explored to break the diffraction limit in wide field light microscopy. However, deployable application of the structured illumination in scanning laser microscopy is challenging due to the complexity of the illumination system and possible ph...

  16. Modeling 3D Objects for Navigation Purposes Using Laser Scanning

    Directory of Open Access Journals (Sweden)

    Cezary Specht

    2016-07-01

    Full Text Available The paper discusses the creation of 3d models and their applications in navigation. It contains a review of available methods and geometric data sources, focusing mostly on terrestrial laser scanning. It presents detailed description, from field survey to numerical elaboration, how to construct accurate model of a typical few storey building as a hypothetical reference in complex building navigation. Hence, the paper presents fields where 3d models are being used and their potential new applications.

  17. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  18. Improving Completeness of Geometric Models from Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Clemens Nothegger

    2011-12-01

    Full Text Available The application of terrestrial laser scanning for the documentation of cultural heritage assets is becoming increasingly common. While the point cloud by itself is sufficient for satisfying many documentation needs, it is often desirable to use this data for applications other than documentation. For these purposes a triangulated model is usually required. The generation of topologically correct triangulated models from terrestrial laser scans, however, still requires much interactive editing. This is especially true when reconstructing models from medium range panoramic scanners and many scan positions. Because of residual errors in the instrument calibration and the limited spatial resolution due to the laser footprint, the point clouds from different scan positions never match perfectly. Under these circumstances many of the software packages commonly used for generating triangulated models produce models which have topological errors such as surface intersecting triangles, holes or triangles which violate the manifold property. We present an algorithm which significantly reduces the number of topological errors in the models from such data. The algorithm is a modification of the Poisson surface reconstruction algorithm. Poisson surfaces are resilient to noise in the data and the algorithm always produces a closed manifold surface. Our modified algorithm partitions the data into tiles and can thus be easily parallelized. Furthermore, it avoids introducing topological errors in occluded areas, albeit at the cost of producing models which are no longer guaranteed to be closed. The algorithm is applied to scan data of sculptures of the UNESCO World Heritage Site Schönbrunn Palace and data of a petrified oyster reef in Stetten, Austria. The results of the method’s application are discussed and compared with those of alternative methods.

  19. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  20. Cellular scanning strategy for selective laser melting: Generating reliable, optimized scanning paths and processing parameters

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2015-01-01

    Selective laser melting is yet to become a standardized industrial manufacturing technique. The process continues to suffer from defects such as distortions, residual stresses, localized deformations and warpage caused primarily due to the localized heating, rapid cooling and high temperature...... gradients that occur during the process. While process monitoring and control of selective laser melting is an active area of research, establishing the reliability and robustness of the process still remains a challenge.In this paper, a methodology for generating reliable, optimized scanning paths...... and process parameters for selective laser melting of a standard sample is introduced. The processing of the sample is simulated by sequentially coupling a calibrated 3D pseudo-analytical thermal model with a 3D finite element mechanical model.The optimized processing parameters are subjected to a Monte Carlo...

  1. Laser Brazing with Beam Scanning: Experimental and Simulative Analysis

    Science.gov (United States)

    Heitmanek, M.; Dobler, M.; Graudenz, M.; Perret, W.; Göbel, G.; Schmidt, M.; Beyer, E.

    Laser beam brazing with copper based filler wire is a widely established technology for joining zinc-coated steel plates in the body-shop. Successful applications are the divided tailgate or the zero-gap joint, which represents the joint between the side panel and the roof-top of the body-in-white. These joints are in direct view to the customer, and therefore have to fulfil highest optical quality requirements. For this reason a stable and efficient laser brazing process is essential. In this paper the current results on quality improvement due to one dimensional laser beam deflections in feed direction are presented. Additionally to the experimental results a transient three-dimensional simulation model for the laser beam brazing process is taken into account. With this model the influence of scanning parameters on filler wire temperature and melt pool characteristics is analyzed. The theoretical predictions are in good accordance with the experimental results. They show that the beam scanning approach is a very promising method to increase process stability and seam quality.

  2. Categorisation of full waveform data provided by laser scanning devices

    Science.gov (United States)

    Ullrich, Andreas; Pfennigbauer, Martin

    2011-11-01

    In 2004, a laser scanner device for commercial airborne laser scanning applications, the RIEGL LMS-Q560, was introduced to the market, making use of a radical alternative approach to the traditional analogue signal detection and processing schemes found in LIDAR instruments so far: digitizing the echo signals received by the instrument for every laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve almost all information contained in the echo signal using transparent algorithms adaptable to specific applications. In the field of laser scanning the somewhat unspecific term "full waveform data" has since been established. We attempt a categorisation of the different types of the full waveform data found in the market. We discuss the challenges in echo digitization and waveform analysis from an instrument designer's point of view and we will address the benefits to be gained by using this technique, especially with respect to the so-called multi-target capability of pulsed time-of-flight LIDAR instruments.

  3. Measurement Axis Searching Model for Terrestrial Laser Scans Registration

    Directory of Open Access Journals (Sweden)

    Shaoxing Hu

    2016-01-01

    Full Text Available Nowadays, terrestrial Lidar scans can cover rather a large area; the point densities are strongly varied because of the line-of-sight measurement principle in potential overlaps with scans taken from different viewpoints. Most of the traditional methods focus on registration algorithm and ignore searching model. Sometimes the traditional methods are directly used to align two point clouds; a large critically unsolved problem of the large biases will be created in areas distant from the overlaps while the local overlaps are often aligned well. So a novel measurement axis searching model (MASM has been proposed in this paper. The method includes four steps: (1 the principal axis fitting, (2 the measurement axis generation, (3 low-high-precision search, and (4 result generation. The principal axis gives an orientation to the point cloud; the search scope is limited by the measurement axis. The point cloud orientation can be adjusted gradually until the achievement of the global optimum using low- and high-precision search. We perform some experiments with simulated point clouds and real terrestrial laser scans. The results of simulated point clouds have shown the processing steps of our method, and the results of real terrestrial laser scans have shown the sensitivity of the approach with respect to the indoor and outdoor scenes.

  4. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    Science.gov (United States)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  5. Enhanced 2D-image upconversion using solid-state lasers

    DEFF Research Database (Denmark)

    Pedersen, Christian; Karamehmedovic, Emir; Dam, Jeppe Seidelin

    2009-01-01

    the image inside a nonlinear PPKTP crystal located in the high intra-cavity field of a 1342 nm solid-state Nd:YVO4 laser, an upconverted image at 488 nm is generated. We have experimentally achieved an upconversion efficiency of 40% under CW conditions. The proposed technique can be further adapted for high...... efficiency mid-infrared image upconversion where direct and fast detection is difficult or impossible to perform with existing detector technologies.......Based on enhanced upconversion, we demonstrate a highly efficient method for converting a full image from one part of the electromagnetic spectrum into a new desired wavelength region. By illuminating a metal transmission mask with a 765 nm Gaussian beam to create an image and subsequently focusing...

  6. A new pulsed laser deposition technique: scanning multi-component pulsed laser deposition method.

    Science.gov (United States)

    Fischer, D; de la Fuente, G F; Jansen, M

    2012-04-01

    The scanning multi-component pulsed laser deposition (PLD) method realizes uniform depositions of desired coatings by a modified pulsed laser deposition process, preferably with a femto-second laser-system. Multi-component coatings (single or multilayered) are thus deposited onto substrates via laser induced ablation of segmented targets. This is achieved via horizontal line-scanning of a focused laser beam over a uniformly moving target's surface. This process allows to deposit the desired composition of the coating simultaneously, starting from the different segments of the target and adjusting the scan line as a function of target geometry. The sequence and thickness of multilayers can easily be adjusted by target architecture and motion, enabling inter/intra layer concentration gradients and thus functional gradient coatings. This new, simple PLD method enables the achievement of uniform, large-area coatings. Case studies were performed with segmented targets containing aluminum, titanium, and niobium. Under the laser irradiation conditions applied, all three metals were uniformly ablated. The elemental composition within the rough coatings obtained was fixed by the scanned area to Ti-Al-Nb = 1:1:1. Crystalline aluminum, titanium, and niobium were found to coexist side by side at room temperature within the substrate, without alloy formation up to 600 °C.

  7. Laser cutting of irregular shape object based on stereo vision laser galvanometric scanning system

    Science.gov (United States)

    Qi, Li; Zhang, Yixin; Wang, Shun; Tang, Zhiqiang; Yang, Huan; Zhang, Xuping

    2015-05-01

    Irregular shape objects with different 3-dimensional (3D) appearances are difficult to be shaped into customized uniform pattern by current laser machining approaches. A laser galvanometric scanning system (LGS) could be a potential candidate since it can easily achieve path-adjustable laser shaping. However, without knowing the actual 3D topography of the object, the processing result may still suffer from 3D shape distortion. It is desirable to have a versatile auxiliary tool that is capable of generating 3D-adjusted laser processing path by measuring the 3D geometry of those irregular shape objects. This paper proposed the stereo vision laser galvanometric scanning system (SLGS), which takes the advantages of both the stereo vision solution and conventional LGS system. The 3D geometry of the object obtained by the stereo cameras is used to guide the scanning galvanometers for 3D-shape-adjusted laser processing. In order to achieve precise visual-servoed laser fabrication, these two independent components are integrated through a system calibration method using plastic thin film target. The flexibility of SLGS has been experimentally demonstrated by cutting duck feathers for badminton shuttle manufacture.

  8. Density of point clouds in mobile laser scanning

    Directory of Open Access Journals (Sweden)

    A. Warchoł

    2015-11-01

    Full Text Available The LiDAR (Light Detection And Ranging technology is becoming a more and more popular method to collect spatial information. The acquisition of 3D data by means of one or several laser scanners mounted on a mobile platform (car could quickly provide large volumes of dense data with centimeter-level accuracy. This is, therefore, the ideal solution to obtain information about objects with elongated shapes (corridors, and their surroundings. Point clouds used by specific applications must fulfill certain quality criteria, such as quantitative and qualitative indicators (i.e. precision, accuracy, density, completeness.Usually, the client fixes some parameter values that must be achieved. In terms of the precision, this parameter is well described, whereas in the case of density point clouds the discussion is still open. Due to the specificities of the MLS (Mobile Laser Scanning, the solution from ALS (Airborne Laser Scanning cannot be directly applied. Hence, the density of the final point clouds, calculated as the number of points divided by "flat" surface area, is inappropriate. We present in this article three different ways of determining and interpreting point cloud density on three different test fields. The first method divides the number of points by the "flat" area, the second by the "three-dimensional" area, and the last one refers to a voxel approach. The most reliable method seems to be the voxel method, which in addition to the local density values also presents their spatial distribution.

  9. Land-Based Mobile Laser Scanning Systems: a Review

    Science.gov (United States)

    Puente, I.; González-Jorge, H.; Arias, P.; Armesto, J.

    2011-09-01

    Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS) systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS) and terrestrial laser scanning (TLS) systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  10. LAND-BASED MOBILE LASER SCANNING SYSTEMS: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. Puente

    2012-09-01

    Full Text Available Mobile mapping has been using various photogrammetric techniques for many years. In recent years, there has been an increase in the number of mobile mapping systems using laser scanners available in the market, partially because of the improvement in GNSS/INS performance for direct georeferencing. In this article, some of the most important land-based mobile laser scanning (MLS systems are reviewed. Firstly, the main characteristics of MLS systems vs. airborne (ALS and terrestrial laser scanning (TLS systems are compared. Secondly, a short overview of the mobile mapping technology is also provided so that the reader can fully grasp the complexity and operation of these devices. As we put forward in this paper, a comparison of different systems is briefly carried out regarding specifications provided by the manufacturers. Focuses on the current research are also addressed with emphasis on the practical applications of these systems. Most of them have been utilized for data collection on road infrastructures or building façades. This article shows that MLS technology is nowadays well established and proven, since the demand has grown to the point that there are several systems suppliers offering their products to satisfy this particular market.

  11. Efficient terrestrial laser scan segmentation exploiting data structure

    Science.gov (United States)

    Mahmoudabadi, Hamid; Olsen, Michael J.; Todorovic, Sinisa

    2016-09-01

    New technologies such as lidar enable the rapid collection of massive datasets to model a 3D scene as a point cloud. However, while hardware technology continues to advance, processing 3D point clouds into informative models remains complex and time consuming. A common approach to increase processing efficiently is to segment the point cloud into smaller sections. This paper proposes a novel approach for point cloud segmentation using computer vision algorithms to analyze panoramic representations of individual laser scans. These panoramas can be quickly created using an inherent neighborhood structure that is established during the scanning process, which scans at fixed angular increments in a cylindrical or spherical coordinate system. In the proposed approach, a selected image segmentation algorithm is applied on several input layers exploiting this angular structure including laser intensity, range, normal vectors, and color information. These segments are then mapped back to the 3D point cloud so that modeling can be completed more efficiently. This approach does not depend on pre-defined mathematical models and consequently setting parameters for them. Unlike common geometrical point cloud segmentation methods, the proposed method employs the colorimetric and intensity data as another source of information. The proposed algorithm is demonstrated on several datasets encompassing variety of scenes and objects. Results show a very high perceptual (visual) level of segmentation and thereby the feasibility of the proposed algorithm. The proposed method is also more efficient compared to Random Sample Consensus (RANSAC), which is a common approach for point cloud segmentation.

  12. Microanalysis of dental caries using laser-scanned fluorescence

    Science.gov (United States)

    Barron, Joseph R.; Paton, Barry E.; Zakariasen, Kenneth L.

    1992-06-01

    It is well known that enamel and dentin fluoresce when illuminated by short-wavelength optical radiation. Fluorescence emission from carious and non-carious regions of teeth have been studied using a new experimental scanning technique for fluorescence analysis of dental sections. Scanning in 2 dimensions will allow surface maps of dental caries to be created. These surface images are then enhanced using the conventional and newer image processing techniques. Carious regions can be readily identified and contour maps can be used to graphically display the degree of damage on both surfaces and transverse sections. Numerous studies have shown that carious fluorescence is significantly different than non-carious regions. The scanning laser fluorescence spectrometer focuses light from a 25 mW He-Cd laser at 442 nm through an objective lens onto a cross-section area as small as 3 micrometers in diameter. Microtome prepared dental samples 100 micrometers thick are laid flat onto an optical bench perpendicular to the incident beam. The sample is moved under computer control in X & Y with an absolute precision of 0.1 micrometers . The backscattered light is both spatial and wavelength filtered before being measured on a long wavelength sensitized photomultiplier tube. High precision analysis of dental samples allow detailed maps of carious regions to be determined. Successive images allow time studies of caries growth and even the potential for remineralization studies of decalcified regions.

  13. 2D hydrodynamic simulation of a line-focused plasma in Ni-like Ag x-ray laser research

    Institute of Scientific and Technical Information of China (English)

    Zheng Wu-Di; Zhang Guo-Ping

    2007-01-01

    In most collisional schemes of x-ray laser (XRL) experiments, a bow-like intensity distribution of XRL is often observed, and it is generally ascribed to the two-dimensional hydrodynamic behaviour of expanding plasma. In order to better understand its essence in physics, a newly developed two-dimensional non-equilibrium radiation hydrodynamic code XRL2D is used to simulate a quasi-steady state Ni-like Ag XRL experiment on ShenGuang-II facility. The simulation results show that the bow-like distribution of Ni-like ions caused by over-ionization in the central area of plasma is responsible for the bow-like shape of the XRL intensity distribution observed.

  14. Scanning tunneling microscope-laser fabrication of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Yau, S.T.; Saltz, D.; Nayfeh, M.H. (Univ. of Illinois, Urbana (United States))

    The authors report on a technique to write nanometer-scale features on surfaces. The technique combines two of the most advanced technologies: the laser and the scanning tunneling microscope (STM). Laser radiation is used to break the chemical bonds of trimethylaluminum to free aluminum atoms in the region of the tunneling gap of the STM. The atoms are subsequently selectively excited and ionized. The ions are then driven softly toward the surface where they are deposited by the field in the tunneling gap of the microscope. Since the field of the tip can be confined to a few nanometers, the writing can be controlled with high resolution. The technique is also capable of filling holes and addressable nondestructive erasing.

  15. Angular line scanning deflectometry using a laser pico projector

    Science.gov (United States)

    Zhan, Hao-Xun; Liang, Chao-Wen; Chien, Shih-Che

    2016-08-01

    In our previous publications, we had successfully made a deflectometry measurement by using a portable laser projector. In this research, we propose the beam weighting centroid method rather than previous the phase shifting method for quantification of the angular direction of the testing beam in the tested optics entrance pupil. By projecting the angular sequential lines on tested optics entrance pupil, the wavefront aberration is reconstructed from two orthogonal directions measurements, in a similar way to the line scanning deflectometry. The limited gray scale problem of laser projector during the phase shifting measurement is therefore eliminated. The reconstructed wavefront is proven to yield a more accurate result than the phase shifting methods at the cost of more image frames and acquisition time.

  16. Scanning laser Doppler vibrometry of the middle ear ossicles.

    Science.gov (United States)

    Ball, G R; Huber, A; Goode, R L

    1997-04-01

    This paper describes measurements of the vibratory modes of the middle ear ossicles made with a scanning laser Doppler vibrometer. Previous studies of the middle ear ossicles with single-point laser Doppler measurements have raised questions regarding the vibrational modes of the ossicular chain. Single-point analysis methods do not have the ability to measure multiple points on the ossicles and, consequently, have limited ability to simultaneously record relative phase information at these points. Using a Polytec Model PSV-100, detailed measurements of the ossicular chain have been completed in the human temporal bone model. This model, when driven with a middle ear transducer, provides detailed three-dimensional data of the vibrational patterns of the middle ear ossicles. Implications for middle ear implantable devices are discussed.

  17. Automatic Railway Power Line Extraction Using Mobile Laser Scanning Data

    Science.gov (United States)

    Zhang, Shanxin; Wang, Cheng; Yang, Zhuang; Chen, Yiping; Li, Jonathan

    2016-06-01

    Research on power line extraction technology using mobile laser point clouds has important practical significance on railway power lines patrol work. In this paper, we presents a new method for automatic extracting railway power line from MLS (Mobile Laser Scanning) data. Firstly, according to the spatial structure characteristics of power-line and trajectory, the significant data is segmented piecewise. Then, use the self-adaptive space region growing method to extract power lines parallel with rails. Finally use PCA (Principal Components Analysis) combine with information entropy theory method to judge a section of the power line whether is junction or not and which type of junction it belongs to. The least squares fitting algorithm is introduced to model the power line. An evaluation of the proposed method over a complicated railway point clouds acquired by a RIEGL VMX450 MLS system shows that the proposed method is promising.

  18. Galvanometer beam-scanning system for laser fiber drawing.

    Science.gov (United States)

    Oehrle, R C

    1979-02-15

    A major difficulty in using a laser to draw optical fibers from a glass preform has been uniformally distributing the laser's energy around the melt zone. Several systems have evolved in recent years, but to date the most successful technique has been the off-axis rotating lens system (RLS). The inability of this device to structure efficiently and dynamically the heat zone longitudinally along the preform has restricted its use to preform of less than 8-mm diameter. A new technique reported here employs two orthogonal mounted mirrors, driven by galvanometers to distribute the laser energy around the preform. This system can be retrofitted into the RLS to replace the rotating lens element. The new system, the galvanometer scanning system (GSS), operates at ten times the rotational speed of the RLS and can instantaneously modify the melt zone. The ability of the GSS to enlarge the melt zone reduces the vaporization rate at the surface of the preform permitting efficient use of higher laser power. Experiments i dicate that fibers can be drawn from significantly larger preforms by using the expanded heat zone provided by the GSS.

  19. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer

    OpenAIRE

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L.; Shung, K. Kirk; Zhang, Hao F.; Jiao, Shuliang

    2012-01-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experimen...

  20. Membrane Vibration Studies Using a Scanning Laser Vibrometer

    Science.gov (United States)

    Gaspar, James L.; Solter, Micah J.; Pappa, Richard S.

    2001-02-01

    This paper summarizes on-going experimental work at NASA Langley Research Center to measure the dynamics of a 1.016 m (40 in.) square polyimide film Kapton membrane. A fixed fully automated impact hammer and Polytec PSV-300-H scanning laser vibrometer were used for non-contact modal testing of the membrane with zero-mass-loading. The paper discusses the results obtained by testing the membrane at various tension levels and at various excitation locations. Results obtained by direct shaker excitation to the membrane are also discussed.

  1. Membrane Vibration Studies Using a Scanning Laser Vibrometer

    Science.gov (United States)

    Gaspar, James L.; Solter, Micah J.; Pappa, Richard S.

    2001-01-01

    This paper summarizes on-going experimental work at NASA Langley Research Center to measure the dynamics of a 1.016 m (40 in.) square polyimide film Kapton membrane. A fixed fully automated impact hammer and Polytec PSV-300-H scanning laser vibrometer were used for non-contact modal testing of the membrane with zero-mass-loading. The paper discusses the results obtained by testing the membrane at various tension levels and at various excitation locations. Results obtained by direct shaker excitation to the membrane are also discussed.

  2. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    Energy Technology Data Exchange (ETDEWEB)

    Arias, Nestor [GOM, Departamento de Fisica y Geologia, Universidad de Pamplona (Colombia); Meneses, Nestor; Meneses, Jaime [GOTS-CENM, Escuela de Fisica, UIS, Bucaramanga (Colombia); Gharbi, Tijani, E-mail: nesariher@unipamplona.edu.co [Departement D' Optique, FEMTO-ST, 16 Route de Gray, 25030 Besancon (France)

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  3. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  4. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    Science.gov (United States)

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it.

  5. Determination of foveal location using scanning laser polarimetry.

    Science.gov (United States)

    VanNasdale, Dean A; Elsner, Ann E; Weber, Anke; Miura, Masahiro; Haggerty, Bryan P

    2009-03-25

    The fovea is the retinal location responsible for our most acute vision. There are several methods used to localize the fovea, but the fovea is not always easily identifiable. Landmarks used to determine the foveal location are variable in normal subjects and localization becomes even more difficult in instances of retinal disease. In normal subjects, the photoreceptor axons that make up the Henle fiber layer are cylindrical and the radial orientation of these fibers is centered on the fovea. The Henle fiber layer exhibits form birefringence, which predictably changes polarized light in scanning laser polarimetry imaging. In this study 3 graders were able to repeatably identify the fovea in 35 normal subjects using near infrared image types with differing polarization content. There was little intra-grader, inter-grader, and inter-image variability in the graded foveal position for 5 of the 6 image types examined, with accuracy sufficient for clinical purposes. This study demonstrates that scanning laser polarimetry imaging can localize the fovea by using structural properties inherent in the central macula.

  6. Feature-Based Laser Scan Matching and Its Application for Indoor Mapping

    Directory of Open Access Journals (Sweden)

    Jiayuan Li

    2016-08-01

    Full Text Available Scan matching, an approach to recover the relative position and orientation of two laser scans, is a very important technique for indoor positioning and indoor modeling. The iterative closest point (ICP algorithm and its variants are the most well-known techniques for such a problem. However, ICP algorithms rely highly on the initial guess of the relative transformation, which will reduce its power for practical applications. In this paper, an initial-free 2D laser scan matching method based on point and line features is proposed. We carefully design a framework for the detection of point and line feature correspondences. First, distinct feature points are detected based on an extended 1D SIFT, and line features are extracted via a modified Split-and-Merge algorithm. In this stage, we also give an effective strategy for discarding unreliable features. The point and line features are then described by a distance histogram; the pairs achieving best matching scores are accepted as potential correct correspondences. The histogram cluster technique is adapted to filter outliers and provide an accurate initial value of the rigid transformation. We also proposed a new relative pose estimation method that is robust to outliers. We use the lq-norm (0 < q < 1 metric in this approach, in contrast to classic optimization methods whose cost function is based on the l2-norm of residuals. Extensive experiments on real data demonstrate that the proposed method is almost as accurate as ICPs and is initial free. We also show that our scan matching method can be integrated into a simultaneous localization and mapping (SLAM system for indoor mapping.

  7. Test field for airborne laser scanning in Finland

    Science.gov (United States)

    Ahokas, E.; Kaartinen, H.; Kukko, A.; Litkey, P.

    2014-11-01

    Airborne laser scanning (ALS) is a widely spread operational measurement tool for obtaining 3D coordinates of the ground surface. There is a need for calibrating the ALS system and a test field for ALS was established at the end of 2013. The test field is situated in the city of Lahti, about 100 km to the north of Helsinki. The size of the area is approximately 3.5 km × 3.2 km. Reference data was collected with a mobile laser scanning (MLS) system assembled on a car roof. Some streets were measured both ways and most of them in one driving direction only. The MLS system of the Finnish Geodetic Institute (FGI) consists of a navigation system (NovAtel SPAN GNSS-IMU) and a laser scanner (FARO Focus3D 120). In addition to the MLS measurements more than 800 reference points were measured using a Trimble R8 VRS-GNSS system. Reference points are along the streets, on parking lots, and white pedestrian crossing line corners which can be used as reference targets. The National Land Survey of Finland has already used this test field this spring for calibrating their Leica ALS-70 scanner. Especially it was easier to determine the encoder scale factor parameter using this test field. Accuracy analysis of the MLS points showed that the point height RMSE is 2.8 cm and standard deviation is 2.6 cm. Our purpose is to measure both more MLS data and more reference points in the test field area to get a better spatial coverage. Calibration flight heights are planned to be 1000 m and 2500 m above ground level. A cross pattern, southwest-northeast and northwest-southeast, will be flown both in opposite directions.

  8. Quantification of telomere length by FISH and laser scanning cytometry

    Science.gov (United States)

    Mahoney, John E.; Sahin, Ergun; Jaskelioff, Mariela; Chin, Lynda; DePinho, Ronald A.; Protopopov, Alexei I.

    2008-02-01

    Telomeres play a critical role in the maintenance of chromosomal stability. Telomere erosion, coupled with loss of DNA damage checkpoint function, results in genomic instability that promotes the development of cancer. The critical role of telomere dynamics in cancer has motivated the development of technologies designed to monitor telomere reserves in a highly quantitative and high-throughput manner in humans and model organisms. To this end, we have adapted and modified two established technologies, telomere-FISH and laser scanning cytometry. Specifically, we have produced a number of enhancements to the iCys LSC (CompuCyte) package including software updates, use of 60X dry objectives, and increased spatial resolution by 0.2 um size of stage steps. In addition, the 633 nm HeNe laser was replaced with a 532 nm green diode laser to better match the viewing options. Utilization of telomere-deficient mouse cells with short dysfunctional telomeres and matched telomerase reconstituted cultures demonstrated significantly higher mean integral specific fluorescence values for mTR transfectants relative to empty vector controls: 4.485M vs. 1.362M (ptelomere intensities for individual cells were obtained and demonstrated intercellular heterogeneity in telomere lengths. The validation of the approach derives from a strong correlation between iCys LSC values and Southern blotting. This validated method greatly increases our experimental throughput and objectivity.

  9. Two-photon flow cytometer with laser scanning Bessel beams

    Science.gov (United States)

    Wang, Yongdong; Ding, Yu; Ray, Supriyo; Paez, Aurelio; Xiao, Chuan; Li, Chunqiang

    2016-03-01

    Flow cytometry is an important technique in biomedical discovery for cell counting, cell sorting and biomarker detection. In vivo flow cytometers, based on one-photon or two-photon excited fluorescence, have been developed for more than a decade. One drawback of laser beam scanning two-photon flow cytometer is that the two-photon excitation volume is fairly small due to the short Rayleigh range of a focused Gaussian beam. Hence, the sampling volume is much smaller than one-photon flow cytometry, which makes it challenging to count or detect rare circulating cells in vivo. Bessel beams have narrow intensity profiles with an effective spot size (FWHM) as small as several wavelengths, making them comparable to Gaussian beams. More significantly, the theoretical depth of field (propagation distance without diffraction) can be infinite, making it an ideal solution as a light source for scanning beam flow cytometry. The trade-off of using Bessel beams rather than a Gaussian beam is the fact that Bessel beams have small concentric side rings that contribute to background noise. Two-photon excitation can reduce this noise, as the excitation efficiency is proportional to intensity squared. Therefore, we developed a two-photon flow cytometer using scanned Bessel beams to form a light sheet that intersects the micro fluidic channel.

  10. Street environment change detection from mobile laser scanning point clouds

    Science.gov (United States)

    Xiao, Wen; Vallet, Bruno; Brédif, Mathieu; Paparoditis, Nicolas

    2015-09-01

    Mobile laser scanning (MLS) has become a popular technique for road inventory, building modelling, infrastructure management, mobility assessment, etc. Meanwhile, due to the high mobility of MLS systems, it is easy to revisit interested areas. However, change detection using MLS data of street environment has seldom been studied. In this paper, an approach that combines occupancy grids and a distance-based method for change detection from MLS point clouds is proposed. Unlike conventional occupancy grids, our occupancy-based method models space based on scanning rays and local point distributions in 3D without voxelization. A local cylindrical reference frame is presented for the interpolation of occupancy between rays according to the scanning geometry. The Dempster-Shafer theory (DST) is utilized for both intra-data evidence fusion and inter-data consistency assessment. Occupancy of reference point cloud is fused at the location of target points and then the consistency is evaluated directly on the points. A point-to-triangle (PTT) distance-based method is combined to improve the occupancy-based method. Because it is robust to penetrable objects, e.g. vegetation, which cause self-conflicts when modelling occupancy. The combined method tackles irregular point density and occlusion problems, also eliminates false detections on penetrable objects.

  11. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    Science.gov (United States)

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate transmission is less than 2 dB for all 16 channels.

  12. Laser characterization of the unsteady 2-D ion flow field in a Hall thruster with breathing mode oscillations

    Science.gov (United States)

    Lucca Fabris, Andrea; Young, Christopher; MacDonald-Tenenbaum, Natalia; Hargus, William, Jr.; Cappelli, Mark

    2016-10-01

    Hall thrusters are a mature form of electric propulsion for spacecraft. One commonly observed low frequency (10-50 kHz) discharge current oscillation in these E × B devices is the breathing mode, linked to a propagating ionization front traversing the channel. The complex time histories of ion production and acceleration in the discharge channel and near-field plume lead to interesting dynamics and interactions in the central plasma jet and downstream plume regions. A time-resolved laser-induced fluorescence (LIF) diagnostic non-intrusively measures 2-D ion velocity and relative ion density throughout the plume of a commercial BHT-600 Hall thruster manufactured by Busek Co. Low velocity classes of ions observed in addition to the main accelerated population are linked to propellant ionization outside of the device. Effects of breathing mode dynamics are shown to persist far downstream where modulations in ion velocity and LIF intensity are correlated with discharge current oscillations. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. M. Birkan as program manager. C.Y. acknowledges support from the DOE NSSA Stewardship Science Graduate Fellowship under contract DE-FC52-08NA28752.

  13. Linear and Nonlinear Damage Detection Using a Scanning Laser Vibrometer

    Directory of Open Access Journals (Sweden)

    Steve Vanlanduit

    2002-01-01

    Full Text Available Because a Scanning Laser Vibrometer (SLV can perform vibration measurements with a high spatial resolution, it is an ideal instrument to accurately locate damage in a structure. Unfortunately, the use of linear damage detection features, as for instance FRFs or modal parameters, does not always lead to a successful identification of the damage location. Measurement noise and nonlinear distortions can make the damage detection procedure difficult. In this article, a combined linear-nonlinear strategy to detect and locate damage in a structure with the aid of a SLV, will be proposed. To minimize the effect of noise, the modal parameters will be estimated using a Maximum Likelihood Estimator (MLE. Both noise and nonlinear distortion levels are extracted using the residuals of a two-dimensional spline fit. The validation of the technique will be performed on SLV measurements of a delaminated composite plate.

  14. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer.

    Science.gov (United States)

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L; Shung, K Kirk; Zhang, Hao F; Jiao, Shuliang

    2012-11-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.

  15. Urban Tree Classification Using Full-Waveform Airborne Laser Scanning

    Science.gov (United States)

    Koma, Zs.; Koenig, K.; Höfle, B.

    2016-06-01

    Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria). The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries) and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas) on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  16. URBAN TREE CLASSIFICATION USING FULL-WAVEFORM AIRBORNE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Zs. Koma

    2016-06-01

    Full Text Available Vegetation mapping in urban environments plays an important role in biological research and urban management. Airborne laser scanning provides detailed 3D geodata, which allows to classify single trees into different taxa. Until now, research dealing with tree classification focused on forest environments. This study investigates the object-based classification of urban trees at taxonomic family level, using full-waveform airborne laser scanning data captured in the city centre of Vienna (Austria. The data set is characterised by a variety of taxa, including deciduous trees (beeches, mallows, plane trees and soapberries and the coniferous pine species. A workflow for tree object classification is presented using geometric and radiometric features. The derived features are related to point density, crown shape and radiometric characteristics. For the derivation of crown features, a prior detection of the crown base is performed. The effects of interfering objects (e.g. fences and cars which are typical in urban areas on the feature characteristics and the subsequent classification accuracy are investigated. The applicability of the features is evaluated by Random Forest classification and exploratory analysis. The most reliable classification is achieved by using the combination of geometric and radiometric features, resulting in 87.5% overall accuracy. By using radiometric features only, a reliable classification with accuracy of 86.3% can be achieved. The influence of interfering objects on feature characteristics is identified, in particular for the radiometric features. The results indicate the potential of using radiometric features in urban tree classification and show its limitations due to anthropogenic influences at the same time.

  17. Control electronics for a multi-laser/multi-detector scanning system

    Science.gov (United States)

    Kennedy, W.

    1980-01-01

    The Mars Rover Laser Scanning system uses a precision laser pointing mechanism, a photodetector array, and the concept of triangulation to perform three dimensional scene analysis. The system is used for real time terrain sensing and vision. The Multi-Laser/Multi-Detector laser scanning system is controlled by a digital device called the ML/MD controller. A next generation laser scanning system, based on the Level 2 controller, is microprocessor based. The new controller capabilities far exceed those of the ML/MD device. The first draft circuit details and general software structure are presented.

  18. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  19. Multispectral Airborne Laser Scanning for Automated Map Updating

    Science.gov (United States)

    Matikainen, Leena; Hyyppä, Juha; Litkey, Paula

    2016-06-01

    During the last 20 years, airborne laser scanning (ALS), often combined with multispectral information from aerial images, has shown its high feasibility for automated mapping processes. Recently, the first multispectral airborne laser scanners have been launched, and multispectral information is for the first time directly available for 3D ALS point clouds. This article discusses the potential of this new single-sensor technology in map updating, especially in automated object detection and change detection. For our study, Optech Titan multispectral ALS data over a suburban area in Finland were acquired. Results from a random forests analysis suggest that the multispectral intensity information is useful for land cover classification, also when considering ground surface objects and classes, such as roads. An out-of-bag estimate for classification error was about 3% for separating classes asphalt, gravel, rocky areas and low vegetation from each other. For buildings and trees, it was under 1%. According to feature importance analyses, multispectral features based on several channels were more useful that those based on one channel. Automatic change detection utilizing the new multispectral ALS data, an old digital surface model (DSM) and old building vectors was also demonstrated. Overall, our first analyses suggest that the new data are very promising for further increasing the automation level in mapping. The multispectral ALS technology is independent of external illumination conditions, and intensity images produced from the data do not include shadows. These are significant advantages when the development of automated classification and change detection procedures is considered.

  20. Pedestrian Detection by Laser Scanning and Depth Imagery

    Science.gov (United States)

    Barsi, A.; Lovas, T.; Molnar, B.; Somogyi, A.; Igazvolgyi, Z.

    2016-06-01

    Pedestrian flow is much less regulated and controlled compared to vehicle traffic. Estimating flow parameters would support many safety, security or commercial applications. Current paper discusses a method that enables acquiring information on pedestrian movements without disturbing and changing their motion. Profile laser scanner and depth camera have been applied to capture the geometry of the moving people as time series. Procedures have been developed to derive complex flow parameters, such as count, volume, walking direction and velocity from laser scanned point clouds. Since no images are captured from the faces of pedestrians, no privacy issues raised. The paper includes accuracy analysis of the estimated parameters based on video footage as reference. Due to the dense point clouds, detailed geometry analysis has been conducted to obtain the height and shoulder width of pedestrians and to detect whether luggage has been carried or not. The derived parameters support safety (e.g. detecting critical pedestrian density in mass events), security (e.g. detecting prohibited baggage in endangered areas) and commercial applications (e.g. counting pedestrians at all entrances/exits of a shopping mall).

  1. Quantifying Snow Volume Uncertainty from Repeat Terrestrial Laser Scanning Observations

    Science.gov (United States)

    Gadomski, P. J.; Hartzell, P. J.; Finnegan, D. C.; Glennie, C. L.; Deems, J. S.

    2014-12-01

    Terrestrial laser scanning (TLS) systems are capable of providing rapid, high density, 3D topographic measurements of snow surfaces from increasing standoff distances. By differencing snow surface with snow free measurements within a common scene, snow depths and volumes can be estimated. These data can support operational water management decision-making when combined with measured or modeled snow densities to estimate basin water content, evaluate in-situ data, or drive operational hydrologic models. In addition, change maps from differential TLS scans can also be used to support avalanche control operations to quantify loading patterns for both pre-control planning and post-control assessment. However, while methods for computing volume from TLS point cloud data are well documented, a rigorous quantification of the volumetric uncertainty has yet to be presented. Using repeat TLS data collected at the Arapahoe Basin Ski Area in Summit County, Colorado, we demonstrate the propagation of TLS point measurement and cloud registration uncertainties into 3D covariance matrices at the point level. The point covariances are then propagated through a volume computation to arrive at a single volume uncertainty value. Results from two volume computation methods are compared and the influence of data voids produced by occlusions examined.

  2. Individual tree biomass estimation using terrestrial laser scanning

    Science.gov (United States)

    Kankare, Ville; Holopainen, Markus; Vastaranta, Mikko; Puttonen, Eetu; Yu, Xiaowei; Hyyppä, Juha; Vaaja, Matti; Hyyppä, Hannu; Alho, Petteri

    2013-01-01

    Determination of stem and crown biomass requires accurate measurements of individual tree stem, bark, branch and needles. These measurements are time-consuming especially for mature trees. Accurate field measurements can be done only in a destructive manner. Terrestrial laser scanning (TLS) measurements are a viable option for measuring the reference information needed. TLS measurements provide dense point clouds in which features describing biomass can be extracted for stem form and canopy dimensions. Existing biomass models do not utilise canopy size information and therefore TLS-based estimation methods should improve the accuracy of biomass estimation. The main objective of this study was to estimate single-tree-level aboveground biomass (AGB), based on models developed using TLS data. The modelling dataset included 64 laboratory-measured trees. Models were developed for total AGB, tree stem-, living branch- and dead branch biomass. Modelling results were also compared with existing individual tree-level biomass models and showed that AGB estimation accuracies were improved, compared with those of existing models. However, current biomass models based on diameter-at-breast height (DBH), tree height and species worked rather well for stem- and total biomass. TLS-based models improved estimation accuracies, especially estimation of branch biomass. We suggest the use of stem curve and crown size geometric measurements from TLS data as a basis for allometric biomass models rather than statistical three-dimensional point metrics, since TLS statistical metrics are dependent on various scanning parameters and tree neighbourhood characteristics.

  3. Laser scanning cytometry as a tool for biomarker validation

    Science.gov (United States)

    Mittag, Anja; Füldner, Christiane; Lehmann, Jörg; Tarnok, Attila

    2013-03-01

    Biomarkers are essential for diagnosis, prognosis, and therapy. As diverse is the range of diseases the broad is the range of biomarkers and the material used for analysis. Whereas body fluids can be relatively easily obtained and analyzed, the investigation of tissue is in most cases more complicated. The same applies for the screening and the evaluation of new biomarkers and the estimation of the binding of biomarkers found in animal models which need to be transferred into applications in humans. The latter in particular is difficult if it recognizes proteins or cells in tissue. A better way to find suitable cellular biomarkers for immunoscintigraphy or PET analyses may be therefore the in situ analysis of the cells in the respective tissue. In this study we present a method for biomarker validation using Laser Scanning Cytometry which allows the emulation of future in vivo analysis. The biomarker validation is exemplarily shown for rheumatoid arthritis (RA) on synovial membrane. Cryosections were scanned and analyzed by phantom contouring. Adequate statistical methods allowed the identification of suitable markers and combinations. The fluorescence analysis of the phantoms allowed the discrimination between synovial membrane of RA patients and non-RA control sections by using median fluorescence intensity and the "affected area". As intensity and area are relevant parameters of in vivo imaging (e.g. PET scan) too, the presented method allows emulation of a probable outcome of in vivo imaging, i.e. the binding of the target protein and hence, the validation of the potential of the respective biomarker.

  4. Development of 3D Chromatin Texture Analysis Using Confocal Laser Scanning Microscopy

    Directory of Open Access Journals (Sweden)

    André Huisman

    2005-01-01

    Full Text Available Introduction: Analysis of nuclear texture features as a measure of nuclear chromatin changes has been proven to be useful when measured on thin (5–6 μm tissue sections using conventional 2D bright field microscopy. The drawback of this approach is that most nuclei are not intact because of those thin sections. Confocal laser scanning microscopy (CLSM allows measurements of texture in 3D reconstructed nuclei. The aim of this study was to develop 3D texture features that quantitatively describe changes in chromatin architecture associated with malignancy using CLSM images. Methods: Thirty-five features thoughtfully chosen from 4 categories of 3D texture features (discrete texture features, Markovian features, fractal features, grey value distribution features were selected and tested for invariance properties (rotation and scaling using artificial images with a known grey value distribution. The discriminative power of the 3D texture features was tested on artificially constructed benign and malignant 3D nuclei with increasing nucleolar size and advancing chromatin margination towards the periphery of the nucleus. As a clinical proof of principle, the discriminative power of the texture features was assessed on 10 benign and 10 malignant human prostate nuclei, evaluating also whether there was more texture information in 3D whole nuclei compared to a single 2D plane from the middle of the nucleus. Results: All texture features showed the expected invariance properties. Almost all features were sensitive to variations in the nucleolar size and to the degree of margination of chromatin. Fourteen texture features from different categories had high discriminative power for separating the benign and malignant nuclei. The discrete texture features performed less than expected. There was more information on nuclear texture in 3D than in 2D. Conclusion: A set of 35 3D nuclear texture features was used successfully to assess nuclear chromatin patterns

  5. Reservoir shore development in long range terrestrial laser scanning monitoring.

    Science.gov (United States)

    Kaczmarek, Halina

    2016-04-01

    Shore zones of reservoirs are in most cases very active, getting transformed as a result of coastal processes and mass movements initiated on the slopes surrounding the reservoir. From the point of view of the users of water reservoirs shore recession strongly undesirable as it causes destruction to infrastructure and buildings located in the immediate vicinity of the reservoir. For this reason, reservoir shores require continuous geodetic monitoring. Fast and accurate geodetic measurements covering shore sections several kilometers long, often in poorly accessible areas, are available using long range terrestrial laser scanning (TLS). The possibilities of using long range terrestrial laser scanning are shown on the example of the reservoir Jeziorsko on the Warta River (Central Poland). This reservoir, created in the years 1986-1992, is a typical retention reservoir, the annual fluctuations of which reach 5 m. Depending on the water level its surface area ranges from 42.3 to 19.6 km2. The width of the reservoir is 2.5 km. The total shore length of the reservoir, developed in Quaternary till and sand-till sediments, is 44.3 km, including 30.1 km of the unreinforced shore. Out of the unreinforced shore 27% is subject to coastal erosion. The cliff heights vary from a few cm to 12.5 meters, and the current rate of the cliff recession ranges from 0 to 1.12 m/y. The study used a terrestrial long range laser scanner Riegl VZ-4000 of a range of up to 4000 m. It enabled conducting the measurements of the cliff recession from the opposite shore of the reservoir, with an angular resolution of 0.002°, which gives about 50 measurement points per 1 m2. The measurements were carried out in the years 2014-2015, twice a year, in early spring before high water level, and in late autumn at a dropping water level. This allowed the separation of the impact of coastal processes and frost weathering on the cliff recession and their quantitative determination. The size and nature of

  6. Deformation Monitoring of Motorway Underpasses Using Laser Scanning Data

    Science.gov (United States)

    Puente, I.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2012-07-01

    is a Optech Lynx mobile LiDAR. This laser scanner is based on time of flight technology and presents an accuracy of 6 mm in the determination of the geometrical coordinates. This accuracy can be improved to around 1 mm using fitting post-processing techniques and makes this technology very useful for studies related with deformation monitoring. The laser scanner, in comparison with other geodetic techniques as total stations, allows the control of all the structure, including unexpected deformations. Reflective targets are permanently positioned over the small walls of the structure to allow the 3D orientation of the different scans. Two main scans are made for this study, before and after the backfilling process. Backfilling takes about 10 days for the construction companies. The scans need a time of approximately 12 minutes. Construction works do not need to be interrupted during the scans. Point clouds are then post-processed using QT Modeler Software. First, the point cloud is cleaned to use only the data directly related with the structure under study. Then, using the target coordinates, both point clouds are moved to the same coordinate system. Finally, the deformation of the underpass is studied using two algorithms specifically developed using Matlab software. First algorithm fits a geometrical surface to the point cloud of the first scan and evaluates the residuals of both scans for this fitting surface. Differences in the residuals give the deformation map of the structure. Second algorithm takes a portion of the point cloud from the top of the structure, where it is located the joining point between the voussoirs. The joining between two voussoirs shows a height step that in an ideal case must tend to zero. Deformations produced by the loading of the structure are measured as a comparison between the steps before and after the backfilling process. The analysis of the results show as some deformation occurs in the structure in the joining point of the

  7. Fluorescence liftime imaging (FLIM) using ps-pulsed diode lasers in laser scanning microscopes

    Science.gov (United States)

    Ruck, Angelika C.; Dolp, Frank; Happ, Claudia; Steiner, Rudolf; Beil, Michael

    2003-06-01

    A setup consisting on a laser scanning microscope equipped with appropriate detection units was developed for time-resolved intracellular fluorescence spectroscopy and fluorescence lifetime imaging (FLIM) for on-line detection of structural changes of various biomolecules. Short-pulsed excitation was performed with a diode laser which emits pulses at 398 nm with 70 ps duration. The laser was coupled to the laser scanning microscope. For time resolved spectroscopy a setup consisting of an Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module was used to determine the fluorescence lifetime from single spots and to record lifetime images (τ-mapping). The time-resolved fluorescence characteristics of 5-ALA (5-aminolevulinic-acid), as well as 5-ALAhe (5-aminolevulinic-acid-hexylester)- induced protoporphyrine IX (PPIX) were investigated before and during PDT with subcellular resolution. For cells which were incubated with 5-ALA, a component with a fluorescence lifetime of about 7 ns was correlated with a structured fluorescence, which probably coincides with mitochondria, whereas a shorter lifetime was found in the cytoplasm. In the case of 5-ALAhe the lifetime of PPIX was longer, which could be due to different localization. During PDT the component with the longer lifetime completely vanished, whereas the shorter liftime was retained. It seems that FLIM is a valuable method to selectively identify and localize the photodynamically active photosensitizer.

  8. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2015-05-01

    Full Text Available The Simultaneous Localization and Mapping (SLAM technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs: one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach.

  9. Utilization of scanning laser ophthalmoscopy in laser-induced bilateral human retinal nerve fiber layer damage

    Science.gov (United States)

    Zwick, Harry; Gagliano, Donald A.; Ruiz, S.; Stuck, Bruce E.

    1995-05-01

    In this paper, we describe a military laser accident case where bilateral Q-switched laser exposure resulted in bilateral macular damage with immediate visual acuity loss in one eye (OS) and delayed visual acuity loss in the other exposed eye (OD), where retinal damage appeared more parafoveal. At 6 weeks post exposure, OS had recovered to 20/17 and OD had dropped to 20/100 Snellen activity. Retinal nerve fiber damage was observed in both eyes at this time. Contrast sensitivity measurements made in OS were suppressed across all spatial frequencies, even though Snellen acuity measured in the normal range. More severe high spatial frequency loss in contrast was measured in the right eye as well as low spatial frequency loss. Both OS and OD revealed a parafoveal preferred retinal locus with scanning laser ophthalmoscopy contrast sensitivity measurements, suggesting parafoveal retinal compensatory processes.

  10. Development of an Online Archive for Terrestrial Laser Scanning Data

    Science.gov (United States)

    Crosby, Christopher; Lowry, Ben; McWhirter, Jeff; Phillips, David; Meertens, Chuck

    2013-04-01

    The UNAVCO Geodetic Imaging program provides terrestrial laser scanning (TLS) support to the Earth science research community through a TLS instrumentation pool of five scanners, field engineering, data processing, and technical training. As part of this community TLS support role, UNAVCO is responsible for generation of level one (L1) TLS data products and TLS data archive and access. A UNAVCO-organized and US National Science Foundation-funded TLS community workshop held October 2011 in Boulder, Colorado defined many of the challenges and requirements a TLS data archive and access system must address. TLS data acquisition presents unique challenges for metadata, provenance capture, and data archive. TLS datasets are often large and level zero (L0 - raw) data are stored in a variety of proprietary formats, requiring conversion and standardization for access and exchange. Due to the wide range of scientific and engineering objectives that motivate TLS data collection, field methods and collection techniques vary greatly and must be thoroughly documented in project metadata. These challenges make data and metadata capture, preservation, and provenance important objectives for an online TLS archive. To address these challenges, UNAVCO is developing a TLS archive based on the open source RAMADDA platform (http://ramadda.org). The UNAVCO TLS archive will provide online archive of L0 and L1 data products, capture field metadata and data processing workflows for provenance, and store original georeferencing information. In addition, the TLS repository provides on-demand services for simple point cloud visualization, data sub-setting and thinning, and file format (e.g., LAS, ASCII, proprietary) data conversion. The system also offers automation of RINEX processing of GPS data, OPUS and CSRS submission and solution ingestion, and generation of control point lists to streamline georeferencing of TLS point cloud data. Georeferencing metadata and GPS file provenance are

  11. Parametric modeling and optimization of laser scanning parameters during laser assisted machining of Inconel 718

    Science.gov (United States)

    Venkatesan, K.; Ramanujam, R.; Kuppan, P.

    2016-04-01

    This paper presents a parametric effect, microstructure, micro-hardness and optimization of laser scanning parameters (LSP) on heating experiments during laser assisted machining of Inconel 718 alloy. The laser source used for experiments is a continuous wave Nd:YAG laser with maximum power of 2 kW. The experimental parameters in the present study are cutting speed in the range of 50-100 m/min, feed rate of 0.05-0.1 mm/rev, laser power of 1.25-1.75 kW and approach angle of 60-90°of laser beam axis to tool. The plan of experiments are based on central composite rotatable design L31 (43) orthogonal array. The surface temperature is measured via on-line measurement using infrared pyrometer. Parametric significance on surface temperature is analysed using response surface methodology (RSM), analysis of variance (ANOVA) and 3D surface graphs. The structural change of the material surface is observed using optical microscope and quantitative measurement of heat affected depth that are analysed by Vicker's hardness test. The results indicate that the laser power and approach angle are the most significant parameters to affect the surface temperature. The optimum ranges of laser power and approach angle was identified as 1.25-1.5 kW and 60-65° using overlaid contour plot. The developed second order regression model is found to be in good agreement with experimental values with R2 values of 0.96 and 0.94 respectively for surface temperature and heat affected depth.

  12. MIMIC: An Innovative Methodology for Determining Mobile Laser Scanning System Point Density

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2014-08-01

    Full Text Available Understanding how various Mobile Mapping System (MMS laser hardware configurations and operating parameters exercise different influence on point density is important for assessing system performance, which in turn facilitates system design and MMS benchmarking. Point density also influences data processing, as objects that can be recognised using automated algorithms generally require a minimum point density. Although obtaining the necessary point density impacts on hardware costs, survey time and data storage requirements, a method for accurately and rapidly assessing MMS performance is lacking for generic MMSs. We have developed a method for quantifying point clouds collected by an MMS with respect to known objects at specified distances using 3D surface normals, 2D geometric formulae and line drawing algorithms. These algorithms were combined in a system called the Mobile Mapping Point Density Calculator (MIMIC and were validated using point clouds captured by both a single scanner and a dual scanner MMS. Results from MIMIC were promising: when considering the number of scan profiles striking the target, the average error equated to less than 1 point per scan profile. These tests highlight that MIMIC is capable of accurately calculating point density for both single and dual scanner MMSs.

  13. Estimation of forest resources from a country wide laser scanning survey and national forest inventory data

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Schumacher, Johannes

    2012-01-01

    Airborne laser scanning may provide a means for assessing local forest biomass resources. In this study, national forest inventory (NFI) data was used as reference data for modeling forest basal area, volume, aboveground biomass, and total biomass from laser scanning data obtained in a countrywide...

  14. Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Juha Hyyppä

    2011-05-01

    Full Text Available Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin.

  15. Mitigation of Laser Damage Growth in Fused Silica with a Galvanometer Scanned CO2 Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bass, I L; Guss, G M; Hackel, R P

    2005-10-28

    At the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL), mitigation of laser surface damage growth on fused silica using single and multiple CO{sub 2} laser pulses has been consistently successful for damage sites whose lateral dimensions are less than 100 {micro}m, but has not been for larger sites. Cracks would often radiate outward from the damage when a CO{sub 2} pulse was applied to the larger sites. An investigation was conducted to mitigate large surface damage sites using galvanometer scanning of a tightly focused CO{sub 2} laser spot over an area encompassing the laser damage. It was thought that by initially scanning the CO{sub 2} spot outside the damage site, radiating crack propagation would be inhibited. Scan patterns were typically inward moving spirals starting at radii somewhat larger than that of the damage site. The duration of the mitigation spiral pattern was {approx}110 ms during which a total of {approx}1.3 J of energy was delivered to the sample. The CO{sub 2} laser spot had a 1/e{sup 2}-diameter of {approx}200 {micro}m. Thus, there was general heating of a large area around the damage site while rapid evaporation occurred locally at the laser spot position in the spiral. A 30 to 40 {micro}m deep crater was typically generated by this spiral with a diameter of {approx}600 {micro}m. The spiral would be repeated until there was no evidence of the original damage in microscope images. Using this technique, damage sites as large as 300 mm in size did not display new damage after mitigation when exposed to fluences exceeding 22 J/cm{sup 2} at 355 nm, 7.5 ns. It was found necessary to use a vacuum nozzle during the mitigation process to reduce the amount of re-deposited fused silica. In addition, curing spiral patterns at lower laser powers were used to presumably ''re-melt'' any re-deposited fused silica. A compact, shearing interferometer microscope was developed to permit in situ

  16. Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms

    OpenAIRE

    Lawrence, J. R.; Swerhone, G. D. W.; Leppard, G. G.; T. Araki; Zhang, X.; West, M. M.; A. P. Hitchcock

    2003-01-01

    Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provid...

  17. Hierarchical extraction of urban objects from mobile laser scanning data

    Science.gov (United States)

    Yang, Bisheng; Dong, Zhen; Zhao, Gang; Dai, Wenxia

    2015-01-01

    Point clouds collected in urban scenes contain a huge number of points (e.g., billions), numerous objects with significant size variability, complex and incomplete structures, and variable point densities, raising great challenges for the automated extraction of urban objects in the field of photogrammetry, computer vision, and robotics. This paper addresses these challenges by proposing an automated method to extract urban objects robustly and efficiently. The proposed method generates multi-scale supervoxels from 3D point clouds using the point attributes (e.g., colors, intensities) and spatial distances between points, and then segments the supervoxels rather than individual points by combining graph based segmentation with multiple cues (e.g., principal direction, colors) of the supervoxels. The proposed method defines a set of rules for merging segments into meaningful units according to types of urban objects and forms the semantic knowledge of urban objects for the classification of objects. Finally, the proposed method extracts and classifies urban objects in a hierarchical order ranked by the saliency of the segments. Experiments show that the proposed method is efficient and robust for extracting buildings, streetlamps, trees, telegraph poles, traffic signs, cars, and enclosures from mobile laser scanning (MLS) point clouds, with an overall accuracy of 92.3%.

  18. [Clinical value of scanning laser polarimetry in glaucoma diagnostics].

    Science.gov (United States)

    Kremmer, S; Anastassiou, G; Selbach, J M

    2012-02-01

    The term glaucoma is used as a melting pot of many different diseases which have in common that the retinal ganglion cells and their axons are damaged. Untreated, apoptosis can be induced causing ganglion cell death which subsequently leads to typical glaucomatous damage at the optic nerve head, scotomas of the visual fields, and in the worst case scenario to blindness. It is well known that patients with glaucoma can suffer a 20 to 50 % loss of retinal ganglion cells before a defect becomes evident in standard white on white perimetry. To prevent glaucomatous damage, it is important to detect changes of the retinal ganglion cells and their nerve fibre layer as early as possible and to monitor their follow-up as closely as possible in order to find an adequate treatment of glaucoma, and to control its efficiency. In the past few years, scanning laser polarimetry by means of GDx technology (Carl Zeiss Meditec, Dublin, USA) could be established as a new method to measure the retinal nerve fibre layer not only qualitatively but even quantitatively. Presently, the GDx plays an important role in actual glaucoma diagnostics on account of its high resolution, the comfort for both patient and user, and its highly reproducible measurements. Especially in difficult evaluable optic nerve heads (e. g., micro- and macrodiscs), tilted discs, and optic disc anomalies (e. g., optic nerve drusen) modern nerve fibre diagnostics by means of GDx technology is a helpful enrichment in clinical routine.

  19. Flow cytometric and laser scanning microscopic approaches in epigenetics research.

    Science.gov (United States)

    Szekvolgyi, Lorant; Imre, Laszlo; Minh, Doan Xuan Quang; Hegedus, Eva; Bacso, Zsolt; Szabo, Gabor

    2009-01-01

    Our understanding of epigenetics has been transformed in recent years by the advance of technological possibilities based primarily on a powerful tool, chromatin immunoprecipitation (ChIP). However, in many cases, the detection of epigenetic changes requires methods providing a high-throughput (HTP) platform. Cytometry has opened a novel approach for the quantitative measurement of molecules, including PCR products, anchored to appropriately addressed microbeads (Pataki et al. 2005. Cytometry 68, 45-52). Here we show selected examples for the utility of two different cytometry-based platforms of epigenetic analysis: ChIP-on-beads, a flow-cytometric test of local histone modifications (Szekvolgyi et al. 2006. Cytometry 69, 1086-1091), and the laser scanning cytometry-based measurement of global epigenetic modifications that might help predict clinical behavior in different pathological conditions. We anticipate that such alternative tools may shortly become indispensable in clinical practice, translating the systematic screening of epigenetic tags from basic research into routine diagnostics of HTP demand.

  20. Detecting Terrain Stoniness From Airborne Laser Scanning Data †

    Directory of Open Access Journals (Sweden)

    Paavo Nevalainen

    2016-08-01

    Full Text Available Three methods to estimate the presence of ground surface stones from publicly available Airborne Laser Scanning (ALS point clouds are presented. The first method approximates the local curvature by local linear multi-scale fitting, and the second method uses Discrete-Differential Gaussian curvature based on the ground surface triangulation. The third baseline method applies Laplace filtering to Digital Elevation Model (DEM in a 2 m regular grid data. All methods produce an approximate Gaussian curvature distribution which is then vectorized and classified by logistic regression. Two training data sets consisted of 88 and 674 polygons of mass-flow deposits, respectively. The locality of the polygon samples is a sparse canopy boreal forest, where the density of ALS ground returns is sufficiently high to reveal information about terrain micro-topography. The surface stoniness of each polygon sample was categorized for supervised learning by expert observation on the site. The leave-pair-out (L2O cross-validation of the local linear fit method results in the area under curve A U C = 0 . 74 and A U C = 0 . 85 on two data sets, respectively. This performance can be expected to suit real world applications such as detecting coarse-grained sediments for infrastructure construction. A wall-to-wall predictor based on the study was demonstrated.

  1. Monitoring Riverbank Erosion in Mountain Catchments Using Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Laura Longoni

    2016-03-01

    Full Text Available Sediment yield is a key factor in river basins management due to the various and adverse consequences that erosion and sediment transport in rivers may have on the environment. Although various contributions can be found in the literature about sediment yield modeling and bank erosion monitoring, the link between weather conditions, river flow rate and bank erosion remains scarcely known. Thus, a basin scale assessment of sediment yield due to riverbank erosion is an objective hard to be reached. In order to enhance the current knowledge in this field, a monitoring method based on high resolution 3D model reconstruction of riverbanks, surveyed by multi-temporal terrestrial laser scanning, was applied to four banks in Val Tartano, Northern Italy. Six data acquisitions over one year were taken, with the aim to better understand the erosion processes and their triggering factors by means of more frequent observations compared to usual annual campaigns. The objective of the research is to address three key questions concerning bank erosion: “how” erosion happens, “when” during the year and “how much” sediment is eroded. The method proved to be effective and able to measure both eroded and deposited volume in the surveyed area. Finally an attempt to extrapolate basin scale volume for bank erosion is presented.

  2. High-Q MEMS Resonators for Laser Beam Scanning Displays

    Directory of Open Access Journals (Sweden)

    Ulrich Hofmann

    2012-06-01

    Full Text Available This paper reports on design, fabrication and characterization of high-Q MEMS resonators to be used in optical applications like laser displays and LIDAR range sensors. Stacked vertical comb drives for electrostatic actuation of single-axis scanners and biaxial MEMS mirrors were realized in a dual layer polysilicon SOI process. High Q-factors up to 145,000 have been achieved applying wafer level vacuum packaging technology including deposition of titanium thin film getters. The effective reduction of gas damping allows the MEMS actuator to achieve large amplitudes at high oscillation frequencies while driving voltage and power consumption can be minimized. Exemplarily shown is a micro scanner that achieves a total optical scan angle of 86 degrees at a resonant frequency of 30.8 kHz, which fulfills the requirements for HD720 resolution. Furthermore, results of a new wafer based glass-forming technology for fabrication of three dimensionally shaped glass lids with tilted optical windows are presented.

  3. Fundamental study of microelectronic chip response under laser ultrasonic-interferometric inspection using C-scan method

    Science.gov (United States)

    Yang, Lei; Gong, Jie; Ume, I. Charles

    2014-02-01

    In modern surface mount packaging technologies, such as flip chips, chip scale packages, and ball grid arrays(BGA), chips are attached to the substrates/printed wiring board (PWB) using solder bump interconnections. The quality of solder bumps between the chips and the substrate/board is difficult to inspect. Laser ultrasonic-interferometric technique was proved to be a promising approach for solder bump inspection because of its noncontact and nondestructive characteristics. Different indicators extracted from received signals have been used to predict the potential defects, such as correlation coefficient, error ratio, frequency shifting, etc. However, the fundamental understanding of the chip behavior under laser ultrasonic inspection is still missing. Specifically, it is not sure whether the laser interferometer detected out-of-plane displacements were due to wave propagation or structural vibration when the chip was excited by pulsed laser. Plus, it is found that the received signals are chip dependent. Both challenges impede the interpretation of acquired signals. In this paper, a C-scan method was proposed to study the underlying phenomenon during laser ultrasonic inspection. The full chip was inspected. The response of the chip under laser excitation was visualized in a movie resulted from acquired signals. Specifically, a BGA chip was investigated to demonstrate the effectiveness of this method. By characterizing signals using discrete wavelet transform(DWT), both ultrasonic wave propagation and vibration were observed. Separation of them was successfully achieved using ideal band-pass filter and visualized in resultant movies, too. The observed ultrasonic waves were characterized and their respective speeds were measured by applying 2-D FFT. The C-scan method, combined with different digital signal processing techniques, was proved to be an very effective methodology to learn the behavior of chips under laser excitation. This general procedure can be

  4. Modelling and calibration of the laser beam-scanning triangulation measurement system

    NARCIS (Netherlands)

    Wang, Guoyu; Zheng, Bing; Li, Xin; Houkes, Z.; Regtien, P.P.L.

    2002-01-01

    We present an approach of modelling and calibration of an active laser beam-scanning triangulation measurement system. The system works with the pattern of two-dimensional beam-scanning illumination and one-dimensional slit-scanning detection with a photo-multiplier tube instead of a CCD camera. By

  5. An Analytical and Experimental Investigation of Average Laser Power and Angular Scanning Speed Effects on Laser Tube Bending Process

    Directory of Open Access Journals (Sweden)

    Imhan Khalil Ibraheem

    2017-01-01

    Full Text Available Laser tube bending is a new technique of laser material forming to produce a complex and accurate shape due to its flexibility and high controllability. Moreover, the defects during conventional tube forming such as thinning, wrinkling, spring back and ovalization can be avoided in laser tube bending process, because there is no external force used. In this paper an analytical investigation has been conducted to analyses the effects of average laser power and laser scanning speed on laser tube bending process, the analytical results have been verified experimentally. The model used in this study is in the same trend of the experiment. The results show that the bending angle increased with the increasing of average laser power and decreased with the increasing of angular scanning speed.

  6. Retro-Mode Scanning Laser Ophthalmoscopy Planning for Navigated Macular Laser Photocoagulation in Macular Edema.

    Science.gov (United States)

    Boiko, Ernest V; Maltsev, Dmitrii S

    2016-01-01

    Purpose. To compare treatment areas and navigated macular laser photocoagulation (MLP) plans suggested by retro-mode scanning laser ophthalmoscopy (RM-SLO) image versus optical coherence tomography (OCT) central retinal thickness map and treatment planning among retina specialists. Methods. Thirty-nine eyes with diabetic or branch retinal vein occlusion-related ME undergoing navigated MLP with navigated photocoagulator had OCT and RM-SLO taken. OCT map and RM-SLO image were imported to the photocoagulator and aligned onto the retina. Two retina specialists placed laser spot marks separately based on OCT and RM-SLO images in a random fashion. The spots placed by each physician were compared between OCT and RM-SLO and among physicians. The areas of retinal edema on OCT and RM-SLO of the same eye were also compared. Results. The average number of laser spots using RM-SLO and OCT template was 189.6 ± 77.4 and 136.6 ± 46.8, respectively, P = 0.003. The average area of edema on RM-SLO image was larger than that on OCT map (14.5 ± 3.9 mm(2) versus 10.3 ± 2.8 mm(2), P = 0.005) because of a larger scanning area. There was narrow variability in treatment planning among retina specialists for both RM-SLO (P = 0.13) and OCT (P = 0.19). Conclusion. The RM-SLO image superimposed onto the fundus of the same eye can be used to guide MLP with narrow variability in treatment planning among retina specialists. The treatment areas suggested by RM-SLO-guided MLP plans for ME were shown to be larger than those suggested by OCT-guided plans.

  7. Retro-Mode Scanning Laser Ophthalmoscopy Planning for Navigated Macular Laser Photocoagulation in Macular Edema

    Directory of Open Access Journals (Sweden)

    Ernest V. Boiko

    2016-01-01

    Full Text Available Purpose. To compare treatment areas and navigated macular laser photocoagulation (MLP plans suggested by retro-mode scanning laser ophthalmoscopy (RM-SLO image versus optical coherence tomography (OCT central retinal thickness map and treatment planning among retina specialists. Methods. Thirty-nine eyes with diabetic or branch retinal vein occlusion-related ME undergoing navigated MLP with navigated photocoagulator had OCT and RM-SLO taken. OCT map and RM-SLO image were imported to the photocoagulator and aligned onto the retina. Two retina specialists placed laser spot marks separately based on OCT and RM-SLO images in a random fashion. The spots placed by each physician were compared between OCT and RM-SLO and among physicians. The areas of retinal edema on OCT and RM-SLO of the same eye were also compared. Results. The average number of laser spots using RM-SLO and OCT template was 189.6±77.4 and 136.6±46.8, respectively, P=0.003. The average area of edema on RM-SLO image was larger than that on OCT map (14.5±3.9 mm2 versus 10.3±2.8 mm2, P=0.005 because of a larger scanning area. There was narrow variability in treatment planning among retina specialists for both RM-SLO (P=0.13 and OCT (P=0.19. Conclusion. The RM-SLO image superimposed onto the fundus of the same eye can be used to guide MLP with narrow variability in treatment planning among retina specialists. The treatment areas suggested by RM-SLO-guided MLP plans for ME were shown to be larger than those suggested by OCT-guided plans.

  8. Confocal laser scanning microscopy in study of bone calcification

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Tetsunari, E-mail: tetsu-n@cc.osaka-dent.ac.jp [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Kokubu, Mayu; Kato, Hirohito [Department of Oral Pathology, Osaka Dental University, Osaka (Japan); Imai, Koichi [Department of Biomaterials, Osaka Dental University, Osaka (Japan); Tanaka, Akio [Department of Oral Pathology, Osaka Dental University, Osaka (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer High-magnification images with depth selection, and thin sections were observed using CLSM. Black-Right-Pointing-Pointer The direction and velocity of calcification of the bone was observed by administration of 2 fluorescent dyes. Black-Right-Pointing-Pointer In dog femora grafted with coral blocks, newly-formed bone was observed in the coral block space with a rough surface. Black-Right-Pointing-Pointer Twelve weeks after dental implant was grafted in dog femora, the space between screws was filled with newly-formed bones. - Abstract: Bone regeneration in mandible and maxillae after extraction of teeth or tumor resection and the use of rough surface implants in bone induction must be investigated to elucidate the mechanism of calcification. The calcified tissues are subjected to chemical decalcification or physical grinding to observe their microscopic features with light microscopy and transmission electron microscopy where the microscopic tissue morphology is significantly altered. We investigated the usefulness of confocal laser scanning microscopy (CLSM) for this purpose. After staggering the time of administration of calcein and alizarin red to experimental rats and dogs, rat alveolar bone and dog femur grafted with coral as scaffold or dental implants were observed with CLSM. In rat alveolar bone, the calcification of newly-formed bone and net-like canaliculi was observed at the mesial bone from the roots progressed at the rate of 15 {mu}m/day. In dog femur grafted with coral, newly-formed bones along the space of coral were observed in an orderly manner. In dog femur with dental implants, after 8 weeks, newly-formed bone proceeded along the rough surface of the implants. CLSM produced high-magnification images of newly-formed bone and thin sections were not needed.

  9. A Practical Approach for Extracting Tree Models in Forest Environments Based on Equirectangular Projections of Terrestrial Laser Scans

    Directory of Open Access Journals (Sweden)

    Felix Morsdorf

    2013-10-01

    Full Text Available Extracting 3D tree models based on terrestrial laser scanning (TLS point clouds is a challenging task as trees are complex objects. Current TLS devices acquire high-density data that allow a detailed reconstruction of the tree topology. However, in dense forests a fully automatic reconstruction of trees is often limited by occlusion, wind influences and co-registration issues. In this paper, a semi-automatic method for extracting branching and stem structure based on equirectangular projections (range and intensity maps is presented. The digitization of branches and stems is based on 2D maps, which enables simple navigation and raster processing. The modeling is performed for each viewpoint individually instead of using a registered point cloud. Previously reconstructed 2D-skeletons are transformed between the maps. Therefore, wind influences, orientation imperfections of scans and data gaps can be overcome. The method is applied to a TLS dataset acquired in a forest in Germany. In total 34 scans were carried out within a managed forest to measure approximately 90 spruce trees with minimal occlusions. The results demonstrate the feasibility of the presented approach to extract tree models with a high completeness and correctness and provide an excellent input for further modeling applications.

  10. Cosmetic and aesthetic skin photosurgery using a computer-assisted CO2 laser-scanning system

    Science.gov (United States)

    Dutu, Doru C. A.; Dumitras, Dan C.; Nedelcu, Ioan; Ghetie, Sergiu D.

    1997-12-01

    Since the first application of CO2 laser in skin photosurgery, various techniques such as laser pulsing, beam scanning and computer-assisted laser pulse generator have been introduced for the purpose of reducing tissue carbonization and thermal necrosis. Using a quite simple XY optical scanner equipped with two galvanometric driven mirrors and an appropriate software to process the scanning data and control the interaction time and energy density in the scanned area, we have obtained a device which can improve CO2 laser application in cosmetic and aesthetic surgery. The opto-mechanical CO2 laser scanner based on two total reflecting flat mirrors placed at 90 degree(s) in respect to the XY scanning directions and independently driven through a magnetic field provides a linear movement of the incident laser beam in the operating field. A DA converter supplied with scanning data by the software enables a scanning with linearity better than 1% for a maximum angular deviation of 20 degree(s). Because the scanning quality of the laser beam in the operating field is given not only by the displacement function of the two mirrors, but also by the beam characteristics in the focal plane and the cross distribution in the laser beam, the surgeon can control through software either the scanning field dimensions or the distance between two consecutive points of the vertically and/or horizontally sweep line. The development of computer-assisted surgical scanning techniques will help control the surgical laser, to create either a reproducible incision with a controlled depth or a controlled incision pattern with minimal incision width, a long desired facility for plastic surgery, neurosurgery, ENT and dentistry.

  11. Error analysis of motion correction method for laser scanning of moving objects

    OpenAIRE

    S. Goel; Lohani, B.

    2014-01-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or a...

  12. Automatic Extraction of Tunnel Lining Cross-Sections from Terrestrial Laser Scanning Point Clouds.

    Science.gov (United States)

    Cheng, Yun-Jian; Qiu, Wenge; Lei, Jin

    2016-10-06

    Tunnel lining (bare-lining) cross-sections play an important role in analyzing deformations of tunnel linings. The goal of this paper is to develop an automatic method for extracting bare-lining cross-sections from terrestrial laser scanning (TLS) point clouds. First, the combination of a 2D projection strategy and angle criterion is used for tunnel boundary point detection, from which we estimate the two boundary lines in the X-Y plane. The initial direction of the cross-sectional plane is defined to be orthogonal to one of the two boundary lines. In order to compute the final cross-sectional plane, the direction is adjusted twice with the total least squares method and Rodrigues' rotation formula, respectively. The projection of nearby points is made onto the adjusted plane to generate tunnel cross-sections. Finally, we present a filtering algorithm (similar to the idea of the morphological erosion) to remove the non-lining points in the cross-section. The proposed method was implemented on railway tunnel data collected in Sichuan, China. Compared with an existing method of cross-sectional extraction, the proposed method can offer high accuracy and more reliable cross-sectional modeling. We also evaluated Type I and Type II errors of the proposed filter, at the same time, which gave suggestions on the parameter selection of the filter.

  13. Automatic Extraction of Tunnel Lining Cross-Sections from Terrestrial Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    Yun-Jian Cheng

    2016-10-01

    Full Text Available Tunnel lining (bare-lining cross-sections play an important role in analyzing deformations of tunnel linings. The goal of this paper is to develop an automatic method for extracting bare-lining cross-sections from terrestrial laser scanning (TLS point clouds. First, the combination of a 2D projection strategy and angle criterion is used for tunnel boundary point detection, from which we estimate the two boundary lines in the X-Y plane. The initial direction of the cross-sectional plane is defined to be orthogonal to one of the two boundary lines. In order to compute the final cross-sectional plane, the direction is adjusted twice with the total least squares method and Rodrigues' rotation formula, respectively. The projection of nearby points is made onto the adjusted plane to generate tunnel cross-sections. Finally, we present a filtering algorithm (similar to the idea of the morphological erosion to remove the non-lining points in the cross-section. The proposed method was implemented on railway tunnel data collected in Sichuan, China. Compared with an existing method of cross-sectional extraction, the proposed method can offer high accuracy and more reliable cross-sectional modeling. We also evaluated Type I and Type II errors of the proposed filter, at the same time, which gave suggestions on the parameter selection of the filter.

  14. Clinical applications of in vivo fluorescence confocal laser scanning microscopy

    Science.gov (United States)

    Oh, Chilhwan; Park, Sangyong; Kim, Junhyung; Ha, Seunghan; Park, Gyuman; Lee, Gunwoo; Lee, Onseok; Chun, Byungseon; Gweon, Daegab

    2008-02-01

    Living skin for basic and clinical research can be evaluated by Confocal Laser Scanning Microscope (CLSM) non-invasively. CLSM imaging system can achieve skin image its native state either "in vivo" or "fresh biopsy (ex vivo)" without fixation, sectioning and staining that is necessary for routine histology. This study examines the potential fluorescent CLSM with a various exogenous fluorescent contrast agent, to provide with more resolution images in skin. In addition, in vivo fluorescent CLSM researchers will be extended a range of potential clinical application. The prototype of our CLSM system has been developed by Prof. Gweon's group. The operating parameters are composed of some units, such as illuminated wavelength 488 nm, argon illumination power up to 20mW on the skin, objective lens, 0.9NA oil immersion, axial resolution 1.0μm, field of view 200μm x 100μm (lateral resolution , 0.3μm). In human volunteer, fluorescein sodium was administrated topically and intradermally. Animal studies were done in GFP transgenic mouse, IRC mouse and pig skin. For imaging of animal skin, fluorescein sodium, acridine orange, and curcumine were used for fluorescein contrast agent. We also used the GFP transgenic mouse for fluorescein CLSM imaging. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. Curcumin is a yellow food dye that has similar fluorescent properties to fluorescein sodium. Acridin Orange can be highlight nuclei in viable keratinocyte. In vivo CLSM of transgenic GFP mouse enable on in vivo, high resolution view of GFP expressing skin tissue. GFP signals are brightest in corneocyte, kertinocyte, hair and eccrine gland. In intact skin, absorption of fluorescein sodium by individual corneocyte and hair. Intradermal administrated the fluorescein sodium, distinct outline of keratinocyte cell border could be seen. In

  15. Precise measurement of the micron-scale spot of ultrashort laser pulse based on film scanning

    Institute of Scientific and Technical Information of China (English)

    Fengtie Wu; Jianrong Zhang; Yunbin Chen; Dongdong Guo

    2008-01-01

    @@ A novel and precise micron-scale nanosecond laser spot measurement based on film-scanning method is presented. The method can be used to measure the spot size, beam profile, and intensity distribution of the pulse.

  16. Event-based progression detection strategies using scanning laser polarimetry images of the human retina

    NARCIS (Netherlands)

    Vermeer, K.A.; Lo, B.; Zhou, Q.; Vos, F.M.; Vossepoel, A.M.; Lemij, H.G.

    2011-01-01

    Monitoring glaucoma patients and ensuring optimal treatment requires accurate and precise detection of progression. Many glaucomatous progression detection strategies may be formulated for Scanning Laser Polarimetry (SLP) data of the local nerve fiber thickness. In this paper, several strategies, al

  17. A Rapid Calibration Technique for Scanning Line-Structured Laser Sensor

    Institute of Scientific and Technical Information of China (English)

    Li Tao; Changku Sun; Zhiqin Xu; Wei Wei

    2003-01-01

    A novel procedure to calibrate the scanning line-structured laser sensor is presented. A drone composed of two orthogonal planes is designed, with the result that camera parameters and light-plane equation parameters is achieved simultaneously.

  18. 3D cavity detection technique and its application based on cavity auto scanning laser system

    Institute of Scientific and Technical Information of China (English)

    LIU Xi-ling; LI Xi-bing; LI Fa-ben; ZHAO Guo-yan; QIN Yu-hui

    2008-01-01

    Ground constructions and mines are severely threatened by underground cavities especially those unsafe or inaccessible ones. Safe and precise cavity detection is vital for reasonable cavity evaluation and disposal. The conventional cavity detection methods and their limitation were analyzed. Those methods cannot form 3D model of underground cavity which is used for instructing the cavity disposal; and their precisions in detection are always greatly affected by the geological circumstance. The importance of 3D cavity detection in metal mine for safe exploitation was pointed out; and the 3D cavity laser detection method and its principle were introduced. A cavity auto scanning laser system was recommended to actualize the cavity 3D detection after comparing with the other laser detection systems. Four boreholes were chosen to verify the validity of the cavity auto scanning laser system. The results show that the cavity auto scanning laser system is very suitable for underground 3D cavity detection, especially for those inaccessible ones.

  19. A case of retinopathy of prematurity treated by pattern scan laser photocoagulation

    Directory of Open Access Journals (Sweden)

    Ota S

    2014-07-01

    Full Text Available Satoshi Ota, Miho Nozaki, Shuichiro Hirahara, Tomoaki Hattori, Munenori Yoshida, Yuichiro Ogura Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan Abstract: We experienced a case of retinopathy of prematurity that was successfully treated with pattern scan laser. Pattern scan laser treatment should be considered as one treatment option for Retinopathy of Prematurity. Keywords: retinopathy of prematurity, PASCAL, slit-lamp delivery

  20. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    Science.gov (United States)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  1. Stop-and-Go Mode: Sensor Manipulation as Essential as Sensor Development in Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Antero Kukko

    2013-06-01

    Full Text Available This study was dedicated to illustrating the significance of sensor manipulation in the case of terrestrial laser scanning, which is a field now in quick development. In fact, this quickness was mainly rooted in the emergence of new sensors with better performance, while the implications of sensor manipulation have not been fully recognized by the whole community. For this technical gap, the stop-and-go mapping mode can be reckoned as one of the potential solution plans. Stop-and-go was first proposed to handle the low efficiency of traditional static terrestrial laser scanning, and then, it was re-emphasized to improve the stability of sample collections for the state-of-the-art technology of mobile laser scanning. This work reviewed the previous efforts of trying the stop-and-go mode for improving the performance of static and mobile terrestrial laser scanning and generalized their principles respectively. This work also analyzed its advantages compared to the fully-static and fully-kinematic terrestrial laser scanning, and suggested the plans with more automatic measures for raising the efficacy of terrestrial laser scanning. Overall, this literature review indicated that the stop-and-go mapping mode as a case with generic sense can verify the presumption of sensor manipulation as essential as sensor development.

  2. 2D IR spectroscopy at 100 kHz utilizing a Mid-IR OPCPA laser source.

    Science.gov (United States)

    Luther, Bradley M; Tracy, Kathryn M; Gerrity, Michael; Brown, Susannah; Krummel, Amber T

    2016-02-22

    We present a 100 kHz 2D IR spectrometer. The system utilizes a ytterbium all normal dispersion fiber oscillator as a common source for the pump and seed beams of a MgO:PPLN OPCPA. The 1030 nm OPCPA pump is generated by amplification of the oscillator in cryocooled Yb:YAG amplifiers, while the 1.68 μm seed is generated in a OPO pumped by the oscillator. The OPCPA outputs are used in a ZGP DFG stage to generate 4.65 μm pulses. A mid-IR pulse shaper delivers pulse pairs to a 2D IR spectrometer allowing for data collection at 100 kHz.

  3. Application of step-scan FTIR to the research of quantum cascade lasers

    Institute of Scientific and Technical Information of China (English)

    Junqi Liu; Xiuzhen Lu; Yu Guo; Xiuqi Huang; Xiaoling Che; Wen Lei; Fengqi Liu

    2005-01-01

    The principle of step-scan Fourier transform infrared (FTIR) spectroscopy is introduced. Double modulation step-scan FTIR technique is used to obtain the quantum cascade laser's stacked emission spectra in the time domain. Optical property and thermal accumulation of devices due to large drive current are analyzed.

  4. Eye safety analysis for non-uniform retinal scanning laser trajectories

    Science.gov (United States)

    Schelinski, Uwe; Dallmann, Hans-Georg; Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Reinig, Peter; Woittennek, Franziska

    2016-03-01

    Scanning the retinae of the human eyes with a laser beam is an approved diagnosis method in ophthalmology; moreover the retinal blood vessels form a biometric modality for identifying persons. Medical applied Scanning Laser Ophthalmoscopes (SLOs) usually contain galvanometric mirror systems to move the laser spot with a defined speed across the retina. Hence, the load of laser radiation is uniformly distributed and eye safety requirements can be easily complied. Micro machined mirrors also known as Micro Electro Mechanical Systems (MEMS) are interesting alternatives for designing retina scanning systems. In particular double-resonant MEMS are well suited for mass fabrication at low cost. However, their Lissajous-shaped scanning figure requires a particular analysis and specific measures to meet the requirements for a Class 1 laser device, i.e. eye-safe operation. The scanning laser spot causes a non-uniform pulsing radiation load hitting the retinal elements within the field of view (FoV). The relevant laser safety standards define a smallest considerable element for eye-related impacts to be a point source that is visible with an angle of maximum 1.5 mrad. For non-uniform pulsing expositions onto retinal elements the standard requires to consider all particular impacts, i.e. single pulses, pulse sequences in certain time intervals and cumulated laser radiation loads. As it may be expected, a Lissajous scanning figure causes the most critical radiation loads at its edges and borders. Depending on the applied power the laser has to be switched off here to avoid any retinal injury.

  5. Distance measurement using frequency scanning interferometry with mode-hoped laser

    Science.gov (United States)

    Medhat, M.; Sobee, M.; Hussein, H. M.; Terra, O.

    2016-06-01

    In this paper, frequency scanning interferometry is implemented to measure distances up to 5 m absolutely. The setup consists of a Michelson interferometer, an external cavity tunable diode laser, and an ultra-low expansion (ULE) Fabry-Pérot (FP) cavity to measure the frequency scanning range. The distance is measured by acquiring simultaneously the interference fringes from, the Michelson and the FP interferometers, while scanning the laser frequency. An online fringe processing technique is developed to calculate the distance from the fringe ratio while removing the parts result from the laser mode-hops without significantly affecting the measurement accuracy. This fringe processing method enables accurate distance measurements up to 5 m with measurements repeatability ±3.9×10-6 L. An accurate translation stage is used to find the FP cavity free-spectral-range and therefore allow accurate measurement. Finally, the setup is applied for the short distance calibration of a laser distance meter (LDM).

  6. Note: Laser beam scanning using a ferroelectric liquid crystal spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Das, Abhijit [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India); Department of Physics, Gauhati University, Guwahati 781014, Assam (India); Boruah, Bosanta R., E-mail: brboruah@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam (India)

    2014-04-15

    In this work we describe laser beam scanning using a ferroelectric liquid crystal spatial light modulator. Commercially available ferroelectric liquid crystal spatial light modulators are capable of displaying 85 colored images in 1 s using a time dithering technique. Each colored image, in fact, comprises 24 single bit (black and white) images displayed sequentially. We have used each single bit image to write a binary phase hologram. For a collimated laser beam incident on the hologram, one of the diffracted beams can be made to travel along a user defined direction. We have constructed a beam scanner employing the above arrangement and demonstrated its use to scan a single laser beam in a laser scanning optical sectioning microscope setup.

  7. Nano-strip grating lines self-organized by a high speed scanning CW laser

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Satoru; Ito, Takeshi; Akiyama, Kensuke; Yasui, Manabu; Kato, Chihiro; Tanaka, Satomi; Hirabayashi, Yasuo [Kanagawa Industrial Technology Center, Kanagawa Prefectural Government, 705-1 Shimo-Imaizumi, Ebina, Kanagawa 243-0435 (Japan); Mastuno, Akira; Nire, Takashi [Phoeton Corp., 3050 Okada, Atsugi, Kanagawa 243-0021 (Japan); Funakubo, Hiroshi; Yoshimoto, Mamoru, E-mail: satoru@kanagawa-iri.go.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8502 (Japan)

    2011-04-29

    After a laser annealing experiment on Si wafer, we found an asymmetric sheet resistance on the surface of the wafer. Periodic nano-strip grating lines (nano-SGLs) were self-organized along the trace of one-time scanning of the continuous wave (CW) laser. Depending on laser power, the nano-trench formed with a period ranging from 500 to 800 nm with a flat trough between trench structures. This simple method of combining the scanning laser with high scanning speed of 300 m min{sup -1} promises a large area of nanostructure fabrication with a high output. As a demonstration of the versatile method, concentric circles were drawn on silicon substrate rotated by a personal computer (PC) cooling fan. Even with such a simple system, the nano-SGL showed iridescence from the concentric circles.

  8. Orientation of airborne laser scanning point clouds with multi-view, multi-scale image blocks.

    Science.gov (United States)

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.

  9. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, O., E-mail: olena.kononenko@desy.de [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Lopes, N.C.; Cole, J.M.; Kamperidis, C.; Mangles, S.P.D.; Najmudin, Z. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Poder, K. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Rusby, D.; Symes, D.R. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Warwick, J. [Queens University Belfast, North Ireland (United Kingdom); Wood, J.C. [The John Adams Institute for Accelerator Science, The Blackett Laboratory, Imperial College London, SW7 2BZ UK (United Kingdom); Palmer, C.A.J. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  10. Laser transmission welding of Clearweld-coated polyethylene glycol terephthalate by incremental scanning technique

    Science.gov (United States)

    Wang, Y. Y.; Wang, A. H.; Weng, Z. K.; Xia, H. B.

    2016-06-01

    Transmission laser welding using Incremental Scanning Technique(TWIST) mode and conventional contour welding mode were adopted to investigate laser transmission welding of 0.5 mm thick PET plate. A 1064 nm fiber laser was used to weld PET at the (TWIST) mode, and an 808 nm diode laser was applied to conduct the conventional contour welding. The Clearweld coating was used as laser absorbing material. The influences of laser parameters (i.e. defocusing distance, distance between two circles) on the quality of weld seams were analyzed by optical microscopy. Moreover, geometry and shear strength of the weld zone were tested to optimize laser parameters. Additionally, the water vapor permeability (WVP) of weld seams was measured to test hermetical capacity. Results show that the shear strength and hermetic capacity of weld seam by TWIST mode are at the same level in comparison with that of the conventional contour welding.

  11. An Automatic Algorithm for Minimizing Anomalies and Discrepancies in Point Clouds Acquired by Laser Scanning Technique

    Science.gov (United States)

    Bordin, Fabiane; Gonzaga, Luiz, Jr.; Galhardo Muller, Fabricio; Veronez, Mauricio Roberto; Scaioni, Marco

    2016-06-01

    Laser scanning technique from airborne and land platforms has been largely used for collecting 3D data in large volumes in the field of geosciences. Furthermore, the laser pulse intensity has been widely exploited to analyze and classify rocks and biomass, and for carbon storage estimation. In general, a laser beam is emitted, collides with targets and only a percentage of emitted beam returns according to intrinsic properties of each target. Also, due interferences and partial collisions, the laser return intensity can be incorrect, introducing serious errors in classification and/or estimation processes. To address this problem and avoid misclassification and estimation errors, we have proposed a new algorithm to correct return intensity for laser scanning sensors. Different case studies have been used to evaluate and validated proposed approach.

  12. Adhesion studies on dental enamel surfaces irradiated by a rapidly scanned carbon dioxide laser

    Science.gov (United States)

    Chang, Kwang K.; Staninec, Michal; Chan, Kenneth H.; Fried, Daniel

    2011-03-01

    In this study, we investigated the influence of different laser scanning patterns on the adhesive strength of laser irradiated enamel surfaces both with and without post ablation acid etching. Previous studies of dental enamel surfaces ablated by a rapidly scanned carbon dioxide laser indicated that the highly uniform smooth surfaces produced by the scanned laser beam yielded low bond strength and acid etching was required in order to attain a high bond strength. However, since the enamel surface after ablation by CO2 lasers is more resistant to acid dissolution it is desirable to avoid acid etching before bonding. The overlap between adjacent laser spots was varied to modify the effective surface roughness. In addition, small retention holes were drilled at higher laser intensity with varying spacing to increase the adhesive strength without acid etching. Varying the degree of overlap between adjacent laser spots did not significantly influence the bond strength with post ablation acid etching. The bond strength was significantly higher without acid etching with retention holes spaced 250-μm apart.

  13. Optimizing terrestrial laser scanning measurement set-up

    NARCIS (Netherlands)

    Soudarissanane, S.S.; Lindenbergh, R.C.

    2011-01-01

    One of the main applications of the terrestrial laser scanner is the visualization, modeling and monitoring of man-made structures like buildings. Especially surveying applications require on one hand a quickly obtainable, high resolution point cloud but also need observations with a known and well

  14. The geometry of terrestrial laser scanning; identification of errors, modeling and mitigation of scanning geometry

    NARCIS (Netherlands)

    Soudarissanane, S.S.

    2016-01-01

    Over the past few decades, Terrestrial Laser Scanners are increasingly being used in a broad spectrum of applications, from surveying to civil engineering, medical modeling and forensics. Especially surveying applications require on one hand a quickly obtainable, high resolution point cloud but also

  15. Angle extended linear MEMS scanning system for 3D laser vision sensor

    Science.gov (United States)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  16. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Science.gov (United States)

    Gary, Ramla; Carbone, Giovani; Petriashvili, Gia; De Santo, Maria Penelope; Barberi, Riccardo

    2016-01-01

    The gold nanoparticle (GNP) aggregation growth induced by deoxyribonucleic acid (DNA) is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA. PMID:26907286

  17. Detection of Gold Nanoparticles Aggregation Growth Induced by Nucleic Acid through Laser Scanning Confocal Microscopy

    Directory of Open Access Journals (Sweden)

    Ramla Gary

    2016-02-01

    Full Text Available The gold nanoparticle (GNP aggregation growth induced by deoxyribonucleic acid (DNA is studied by laser scanning confocal and environmental scanning electron microscopies. As in the investigated case the direct light scattering analysis is not suitable, we observe the behavior of the fluorescence produced by a dye and we detect the aggregation by the shift and the broadening of the fluorescence peak. Results of laser scanning confocal microscopy images and the fluorescence emission spectra from lambda scan mode suggest, in fact, that the intruding of the hydrophobic moiety of the probe within the cationic surfactants bilayer film coating GNPs results in a Förster resonance energy transfer. The environmental scanning electron microscopy images show that DNA molecules act as template to assemble GNPs into three-dimensional structures which are reminiscent of the DNA helix. This study is useful to design better nanobiotechnological devices using GNPs and DNA.

  18. Structural damage detection using higher-order finite elements and a scanning laser vibrometer

    Science.gov (United States)

    Jin, Si

    Deflection Shapes (ODSs) measured by the scanning laser vibrometer. The BED method decomposes an ODS into central and boundary solutions by using a sliding-window least-squares fitting technique. Because boundary solutions are non-zero only at damage sites as well as structural boundaries, they can reveal damage locations. Three signal processing methods are developed for use in the BED method: (1) processing 1-D ODSs (i.e., beams) using a sliding-window curve-fitting technique, (2) processing 2-D ODSs (i.e., plates) using a sliding-window surface-fitting technique, and (3) processing 2-D ODSs using a sliding-window curve-fitting technique. Experiments are performed on isotropic beams and plates with different types of damage. At a damage location on a beam, results show that the boundary solution of slope changes sign, the boundary solution of displacement peaks up or dimples down, the fitting error peaks up, and second and third spatial derivatives show sudden changes. For plates, results show that sensitive damage detection parameters are boundary solutions and parameters related to bending moments and shear forces because they show significant sign changes or peaks at damage locations. All the results show that the BED method is more sensitive than other dynamics-based methods using curvatures and/or strain energies. Moreover, because the BED method works without using any structural models or historical data and it provides multiple damage detection parameters for users to ensure the identified damage locations, it is a reliable method and is applicable to actual structures.

  19. 3D LASER SCANNING TECHNIQUE FOR THE INSPECTION AND MONITORING OF RAILWAY TUNNELS

    Directory of Open Access Journals (Sweden)

    Han-Mei CHEN

    2015-12-01

    Full Text Available Railway tunnel inspection and monitoring has predominantly been a visual and manual procedure, which is time-consuming and subjective, giving rise to variance in standards and quality. Thus, alternative, novel, automated techniques need to be developed, for more efficient and reliable tunnel examination. The reported research aimed to investigate the application of a laser scanning technique for the inspection of tunnel degradation and structural integrity. The proposed method may either substitute or supplement traditional survey techniques, being more efficient, and contributing thus to the standardisation of tunnel inspections. For the purpose of investigating the applicability and accuracy of laser scanning in tunnels, a set of tunnel lining models was constructed for laboratory tests, with the objective of determining the quality of the imaging. Initial tests were carried out using a performant laser scanner and demonstrated the feasibility of the concept. As a result, refined laboratory models were built, and experiments conducted, to establish the quality and precision of laser scanning imaging, for condition monitoring of tunnels. The experimental results indicate that the laser scanning technique used in this research has high potential for detecting the tunnel condition, monitoring the depth of weathered mortar, spalling bricks etc. with high accuracy in static scanning mode.

  20. Three-dimensional laser scanning for geometry documentation and construction management of highway tunnels during excavation.

    Science.gov (United States)

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered.

  1. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    Directory of Open Access Journals (Sweden)

    Vassilis Gikas

    2012-08-01

    Full Text Available Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the use and explores the potential of laser scanning technology to accurately track excavation and construction activities of highway tunnels. It provides a detailed overview of the static laser scanning method, its principles of operation and applications for tunnel construction operations. Also, it discusses the planning, execution, data processing and analysis phases of laser scanning activities, with emphasis given on geo-referencing, mesh model generation and cross-section extraction. Specific case studies are considered based on two construction sites in Greece. Particularly, the potential of the method is examined for checking the tunnel profile, producing volume computations and validating the smoothness/thickness of shotcrete layers at an excavation stage and during the completion of excavation support and primary lining. An additional example of the use of the method in the geometric documentation of the concrete lining formwork is examined and comparisons against dimensional tolerances are examined. Experimental comparisons and analyses of the laser scanning method against conventional surveying techniques are also considered.

  2. Recommendations for the design and the installation of large laser scanning microscopy systems

    Science.gov (United States)

    Helm, P. Johannes

    2012-03-01

    Laser Scanning Microscopy (LSM) has since the inventions of the Confocal Scanning Laser Microscope (CLSM) and the Multi Photon Laser Scanning Microscope (MPLSM) developed into an essential tool in contemporary life science and material science. The market provides an increasing number of turn-key and hands-off commercial LSM systems, un-problematic to purchase, set up and integrate even into minor research groups. However, the successful definition, financing, acquisition, installation and effective use of one or more large laser scanning microscopy systems, possibly of core facility character, often requires major efforts by senior staff members of large academic or industrial units. Here, a set of recommendations is presented, which are helpful during the process of establishing large systems for confocal or non-linear laser scanning microscopy as an effective operational resource in the scientific or industrial production process. Besides the description of technical difficulties and possible pitfalls, the article also illuminates some seemingly "less scientific" processes, i.e. the definition of specific laboratory demands, advertisement of the intention to purchase one or more large systems, evaluation of quotations, establishment of contracts and preparation of the local environment and laboratory infrastructure.

  3. Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology

    Directory of Open Access Journals (Sweden)

    Chao Hu

    2015-04-01

    Full Text Available Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak, cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laser-scanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation project quality assessment with the laser scanning technology can be reduced by 70%−90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.

  4. Mobile laser scanning applied to the earth sciences

    Science.gov (United States)

    Brooks, Benjamin A.; Glennie, Craig; Hudnut, Kenneth W.; Ericksen, Todd; Hauser, Darren

    2013-01-01

    Lidar (light detection and ranging), a method by which the precise time of flight of emitted pulses of laser energy is measured and converted to distance for reflective targets, has helped scientists make topographic maps of Earth's surface at scales as fine as centimeters. These maps have allowed the discovery and analysis of myriad otherwise unstudied features, such as fault scarps, river channels, and even ancient ruins [Glennie et al., 2013b].

  5. Addressable, large-field second harmonic generation microscopy based on 2D acousto-optical deflector and spatial light modulator.

    Science.gov (United States)

    Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben; Gao, Bruce Z

    2012-09-01

    We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability.

  6. The Combination of Laser Scanning and Structure from Motion Technology for Creation of Accurate Exterior and Interior Orthophotos of ST. Nicholas Baroque Church

    Science.gov (United States)

    Koska, B.; Křemen, T.

    2013-02-01

    Terrestrial laser scanning technology is used for creation of building documentation and 3D building model from its emerging at the turn of the millennium. Photogrammetry has even longer tradition in this field. Both technologies have some technical limitations if they are used for creation of a façade or even an interior orthophoto, but combination of both technologies seems profitable. Laser scanning can be used for creation of an accurate 3D model and photogrammetry for consequent application of high quality colour information. Both technologies were used in synergy to create the building plans, 2D drawing documentation of facades and interior views and the orthophotos of St. Nicholas Baroque church in Prague. The case study is described in details in the paper.

  7. Comparison of 2D temperature maps recorded during laser-induced thermal tissue treatment with corresponding temperature distributions calculated from 3D Monte-Carlo simulations

    Science.gov (United States)

    Busse, Harald; Bublat, Martin; Ratering, Ralf; Rassek, Margarethe; Schwarzmaier, Hans-Joachim; Kahn, Thomas

    2000-05-01

    Minimally invasive techniques often require special biomedical monitoring schemes. In the case of laser coagulation of tumors accurate temperature mapping is desirable for therapy control. While magnetic resonance (MR)-based thermometry can easily yield qualitative results it is still difficult to calibrate this technique with independent temperature probes for the entire 2D field of view. Calculated temperature maps derived from Monte-Carlo simulations (MCS), on the other hand, are suitable for therapy planning and dosimetry but typically can not account for the extract individual tissue parameters and physiological changes upon heating. In this work, online thermometry was combined with MCS techniques to explore the feasibility and potential of such a biomodal approach for surgical assist systems. For the first time, the result of a 3D simulation were evaluated with MR techniques. An MR thermometry system was used to monitor the temperature evolution during laser-induced thermal treatment of bovine liver using a commercially available water-cooled applicator. A systematic comparison between MR-derived 2D temperature maps in different orientations and corresponding snapshots of a 3D MCS of the laser-induced processes is presented. The MCS is capable of resolving the complex temperature patterns observed in the MR-derived images and yields a good agreement with respect to absolute temperatures and damage volume dimensions. The observed quantitative agreement is around 10 degrees C and on the order of 10 percent, respectively. The integrated simulation-and-monitoring approach has the potential to improve surgical assistance during thermal interventions.

  8. Combining laser scan and photogrammetry for 3D object modeling using a single digital camera

    Science.gov (United States)

    Xiong, Hanwei; Zhang, Hong; Zhang, Xiangwei

    2009-07-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Laser scan and photogrammetry are two main methods to be used. For laser scan, a video camera and a laser source are necessary, and for photogrammetry, a digital still camera with high resolution pixels is indispensable. In some 3D modeling tasks, two methods are often integrated to get satisfactory results. Although many research works have been done on how to combine the results of the two methods, no work has been reported to design an integrated device at low cost. In this paper, a new 3D scan system combining laser scan and photogrammetry using a single consumer digital camera is proposed. Nowadays there are many consumer digital cameras, such as Canon EOS 5D Mark II, they usually have features of more than 10M pixels still photo recording and full 1080p HD movie recording, so a integrated scan system can be designed using such a camera. A square plate glued with coded marks is used to place the 3d objects, and two straight wood rulers also glued with coded marks can be laid on the plate freely. In the photogrammetry module, the coded marks on the plate make up a world coordinate and can be used as control network to calibrate the camera, and the planes of two rulers can also be determined. The feature points of the object and the rough volume representation from the silhouettes can be obtained in this module. In the laser scan module, a hand-held line laser is used to scan the object, and the two straight rulers are used as reference planes to determine the position of the laser. The laser scan results in dense points cloud which can be aligned together automatically through calibrated camera parameters. The final complete digital model is obtained through a new a patchwise energy functional method by fusion of the feature points, rough volume and the dense points cloud. The design

  9. Embedding complementary imaging data in laser scanning microscopy micrographs by reversible watermarking.

    Science.gov (United States)

    Dragoi, Ioan-Catalin; Stanciu, Stefan G; Hristu, Radu; Coanda, Henri-George; Tranca, Denis E; Popescu, Marius; Coltuc, Dinu

    2016-04-01

    Complementary laser scanning microscopy micrographs are considered as pairs consisting in a master image (MI) and a slave image (SI), the latter with potential for facilitating the interpretation of the MI. We propose a strategy based on reversible watermarking for embedding a lossy compressed version of the SI into the MI. The use of reversible watermarking ensures the exact recovery of the host image. By storing and/or transmitting the watermarked MI in a single file, the information contained in both images that constitute the pair is made available to a potential end-user, which simplifies data association and transfer. Examples are presented using support images collected by two complementary techniques, confocal scanning laser microscopy and transmission laser scanning microscopy, on Hematoxylin and Eosin stained tissue fragments. A strategy for minimizing the watermarking distortions of the MI, while preserving the content of the SI, is discussed in detail.

  10. Il laser scanning e CloudCUBE per le grotte di Naica

    Directory of Open Access Journals (Sweden)

    Erminio Paolo Canevese

    2008-03-01

    Full Text Available Laser scanning and CloudCube for Naica cavesOn May 2007, Virtualgeo, a geomatic software development and communication company, took part in the first official expedition to Mexico. The Project, coined "Naica", involves researchers from ten universities, four companies and several laboratories. Virtualgeo carried out the survey by applying laser scanning technology to hypogeal caves covered with selenite crystals. The data was processed using CloudCUBE, a proprietary software designed to manage and model 3D point clouds. The first results of the laser scanning survey of a spectacular “forest of crystals” are presented here.

  11. Determining the nonlinear refractive index of fused quartz by femtosecond laser Z-scan technology

    Science.gov (United States)

    Zhang, Lin; Ren, Huan; Ma, Hua; Shi, Zhendong; Yang, Yi; Yuan, Quan; Feng, Xiaoxuan; Ma, Yurong; Chen, Bo

    2016-10-01

    Z-scan technology is an experimental technique for determining the nonlinear refractive index based on the principle of transformation of phase distortion to amplitude distortion when a laser beam propagates through a nonlinear material. For most of the Z-scan system based on the nanosecond or picosecond laser, the accumulation of thermal effects becomes a big problem in nonlinear refractive index measurement especially for the nonlinear materials such as fused quartz and neodymium glass which have a weak nonlinear refractive effect. To overcome this problem, a system for determining the nonlinear refractive index of optical materials based on the femtosecond laser Z-scan technology is presented. Using this system, the nonlinear refractive index of the fused quartz is investigated.

  12. Application of Three-Dimensional Laser Scanning and Surveying in Geological Investigation of High Rock Slope

    Institute of Scientific and Technical Information of China (English)

    Huang Runqiu; Dong Xiujun

    2008-01-01

    The appearance of 3D laser scanning technology is one of the most important technology revolutions in surveying and mapping field. It can be widely used in many interrelated fields, such as engineering constructions and 3D measurements, owing to its prominent characteristics of the high efficiency and high precision. At present its application is still in the initial state, and it is quite rarely used in China, especially in geotechnical engineering and geological engineering fields. Starting with a general introduction of 3D laser scanning technology, this article studies how to apply the technology to high rock slope investigations. By way of a case study, principles and methods of quick slope documentation and occurrence measurement of discontinuities are discussed and analyzed. Analysis results show that the application of 3D laser scanning technology to geotechnical and geological engineering has a great prospect and value.

  13. Multibeam scanning optics with single laser source for full-color printers.

    Science.gov (United States)

    Maruo, S; Arimoto, A; Kobayashi, S

    1997-10-01

    In the novel optical system described here, four-color toners can be developed in one rotation of the photoconductor, and the color control information is given when the intensities of the laser power levels are changed and the two polarization directions are switched. A polarizing beam splitter between the common scanning optics and the photoconductor enables the laser beam to pass through a common scanning system and to illuminate two positions on the photoconductive material. The laser beam polarization direction is controlled by an electro-optical device immediately behind the laser. In each illuminated position, two-color toners are developed by a three-level (trilevel) photographic process. This simplified optical system eliminates the registration errors that occur with four-color information items and can be useful in high-speed printing systems.

  14. Analysis of Systematic Error Influences on Accuracy of Airborne Laser Scanning Altimetry

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaohong; LIU Jingnan

    2004-01-01

    The error sources related to the laser rangefinder, GPS and INS are analyzed in details. Several coordinates systems used in airborne laser scanning are set up, and then the basic formula of system is given. This paper emphasizes on discussing the kinematic offset correction between GPS antenna phase center and laser fired point. And kinematic time delay influence on laser footprint position, the ranging errors, positioning errors, attitude errors and integration errors of the system are also explored. Finally, the result shows that the kinematic time delay can be neglected as compared with other error sources. The accuracy of the coordinates is not only influenced by the amplitude of the error, but also controlled by the operation parameters such as flight height, scanning angle amplitude and attitude magnitude of the platform.

  15. Automatic concrete cracks detection and mapping of terrestrial laser scan data

    Directory of Open Access Journals (Sweden)

    Mostafa Rabah

    2013-12-01

    The current paper submits a method for automatic concrete cracks detection and mapping from the data that was obtained during laser scanning survey. The method of cracks detection and mapping is achieved by three steps, namely the step of shading correction in the original image, step of crack detection and finally step of crack mapping and processing steps. The detected crack is defined in a pixel coordinate system. To remap the crack into the referred coordinate system, a reverse engineering is used. This is achieved by a hybrid concept of terrestrial laser-scanner point clouds and the corresponding camera image, i.e. a conversion from the pixel coordinate system to the terrestrial laser-scanner or global coordinate system. The results of the experiment show that the mean differences between terrestrial laser scan and the total station are about 30.5, 16.4 and 14.3 mms in x, y and z direction, respectively.

  16. New kind of subarea-parallel scanning mode for laser metal deposition shaping

    Institute of Scientific and Technical Information of China (English)

    BIAN Hongyou; LIU Weijun; ZHAO Jibin

    2007-01-01

    A scanning mode is the key technology in a laser metal deposition shaping (LMDS) fabrication process. On the basis of the analysis of existing scanning modes and their influences on the fabrication efficiency and the quality of parts, some disadvantages of them are pointed out. A new kind of subarea-parallel scanning mode for LMDS based on a subdividing profiled outline into monotonous polygon subareas is presented. First, based on the principle of point visibility, inner loops are eliminated, and simple polygons are subdivided into monotonous polygons with the minimal zones. Second, the parallel scanning paths of all monotonous polygon subareas are finished, which diminishes the length of the scanning line. The practical application shows that the scanning mode can enhance the fabrication efficiency and quality.

  17. Metal imaging in non-denaturating 2D electrophoresis gels by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for the detection of metalloproteins.

    Science.gov (United States)

    Becker, J Susanne; Lobinski, Ryszard; Becker, J Sabine

    2009-01-01

    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was developed as a powerful analytical technique for metal imaging of 2D gels for the detection of metalloproteins in rat kidney after electrophoretic separation. Protein complexes, extracted with water, were separated in their native state in the first and second dimension by blue native gel electrophoresis (BN-PAGE). Essential and toxic metals, such as zinc, copper, iron, manganese and lead, were monitored by LA-ICP-MS after gel ablation by a focused laser beam in a way that the total surface of a selected fragment of the gel was totally ablated. The metal distribution of this part of the gel was then constructed by plotting the metal (isotope) signal intensity as a function of the x,y (isoelectric point, molecular mass) coordinates of the gel. The proteins at locations rich in metals were cut out, digested with trypsin and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS).

  18. Influence of scanning velocity on femtosecond laser direct writing lines on FOTURAN glass

    Institute of Scientific and Technical Information of China (English)

    Yinzhong Wu; Ching-Yue Wang; Wei Jia; Xiaochang Ni; Minglie Hu; Lu Chai

    2008-01-01

    Lines are induced on the surface of a photosensitive (FOTURAN) glass by focused femtosecond laser transverse writing with scanning velocity in a wide range of 40- 1800μm/s. The formed lines are analyzed using scanning electron microscope (SEM) and optical microscope (OM). It is observed that three distinct morphologies of lines are produced depending on the scanning velocity. Lines written in low velocity level (40 - 100 μm/s) and high velocity level (1000 - 1800 μm/s) are uniform and regular, while those written in moderate velocity level (150 - 600 μm/s) are rough. The influence of scanning velocity is explained based on different pulses overlapping or cumulative dose of laser exposure in irradiated area. Fabrication of shallow groove on the surface is also demonstrated.

  19. Laser power and Scanning Speed Influence on the Mechanical Property of Laser Metal Deposited Titanium-Alloy

    Science.gov (United States)

    Mahamood, Rasheedat M.; Akinlabi, Esther T.; Akinlabi, Stephen

    2015-03-01

    The influence of the laser power and the scanning speed on the microhardness of the Laser Metal Deposited Ti6Al4V, an aerospace Titanium-alloy, was studied. Ti6Al4V powder was deposited on the Ti6Al4V substrate using the Laser Metal Deposition (LMD) process, an Additive Manufacturing (AM) manufacturing technology. The laser power was varied between 1.8 kW 3 kW and the scanning speed was varied between 0.05 m/s and 0.1 m/s. The powder flow rate and the gas flow rate were kept at constant values of 2 g/min and 2 l/min respectively. The full factorial design of experiment was used to design the experiment and to also analyze the results in the Design Expert 9 software environment. The microhardness profiling was studied using Microhardness indenter performed at a load of 500 g and at a dwelling time of 15 s. The distance between indentations was maintained at a distance of 15 μm. The study revealed that as the laser power was increased, the microhardness was found to decrease and as the scanning speed was increased, the microhardness was found to also increase. The results are presented and fully discussed.

  20. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    Science.gov (United States)

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  1. Low-cost Mobile Laser Scanning and its Feasibility for Environmental Mapping

    OpenAIRE

    Jaakkola, Anttoni

    2015-01-01

    Mobile laser scanning is a measurement technology that combines accurate positioning and attitude information from navigation satellites and inertial sensors with distance measurements from a laser scanner into a point cloud that represents the geometry of the environment surrounding the measurement platform. This geometrical information can be utilized in a variety of applications ranging from 3D city modelling and infrastructure maintenance to forestry and environmental monitoring. In th...

  2. Heat accumulation in ultra-short pulsed scanning laser ablation of metals.

    Science.gov (United States)

    Bauer, Franziska; Michalowski, Andreas; Kiedrowski, Thomas; Nolte, Stefan

    2015-01-26

    High average laser powers can have a serious adverse impact on the ablation quality in ultra-short pulsed laser material processing of metals. With respect to the scanning speed, a sharp transition between a smooth, reflective and an uneven, dark ablated surface is observed. Investigating the influence of the sample temperature, it is experimentally shown that this effect stems from heat accumulation. In a numerical heat flow simulation, the critical scanning speed indicating the change in ablation quality is determined in good agreement with the experimental data.

  3. A novel cryogenic scanning laser microscope tested on Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Holm, Jesper; Mygind, Jesper

    1995-01-01

    A novel cryogenic scanning laser microscope with a spatial resolution of less than 5 µm has been designed for on-chip in situ investigations of the working properties of normal and superconducting circuits and devices. The instrument relies on the detection of the electrical response of the circuit...... to a very localized heating induced by irradiation with 675 nm wavelength light from a semiconductor laser. The hot spot is moved by a specially designed piezoelectric scanner sweeping the tip of a single-mode optical fiber a few µm above the circuit. Depending on the scanner design the scanning area can...

  4. Geodetic Imaging of Marsh Surface Elevation with Terrestrial Laser Scanning

    Science.gov (United States)

    Nguyen, C. T.; Starek, M. J.; Gibeaut, J. C.; Lord, A.

    2015-12-01

    The resilience of marshes to a rising sea is dependent on their elevation response. Given the level of precision required to measure minute changes in marsh elevation over time, survey methods have to be adapted to minimize impacts to the sediment surface. Current approaches include Surface Elevation Tables (SETs), which are used to monitor wetland surface change with respect to an in situ vertical benchmark. Although SETs have been proven as an effective technique to track subtle sedimentation rates (bare-earth mapping. For this survey, a Riegl VZ-400 TLS (1550 nm wavelength) was utilized. The system is capable of recording multiple returns per a transmitted pulse (up to 15) and provides full-waveform output for signal post-processing to extract returns. The objectives of the study are twofold: 1) examine impacts of TLS survey design, scan angle and scan density on marsh elevation mapping; 2) assess the capabilities of multiple-echo and full-waveform TLS data to extract the bare-earth surface below the dense vegetation. This presentation will present results of the study including the developed TLS survey protocol and data processing workflow, details on waveform and multi-echo approaches for ground point detection, and a discussion on error analysis and challenges for measuring marsh surface elevation with TLS.

  5. Extracting Rail Track Geometry from Static Terrestrial Laser Scans for Monitoring Purposes

    OpenAIRE

    Soni, A; S. Robson; Gleeson, B.

    2014-01-01

    This paper presents the capabilities of detecting relevant geometry of railway track for monitoring purposes from static terrestrial laser scanning (TLS) systems at platform level. The quality of the scans from a phased based scanner (Scanner A) and a hybrid timeof- flight scanner (Scanner B) are compared by fitting different sections of the track profile to its matching standardised rail model. The various sections of track investigated are able to fit to the model with an RMS of le...

  6. Effect of scanning speed on continuous wave laser scribing of metal thin films: theory and experiment

    Science.gov (United States)

    Shahbazi, AmirHossein; Koohian, Ata; Madanipour, Khosro

    2017-01-01

    In this paper continuous wave laser scribing of the metal thin films have been investigated theoretically and experimentally. A formulation is presented based on parameters like beam power, spot size, scanning speed and fluence thresholds. The role of speed on the transient temperature and tracks width is studied numerically. By using two frameworks of pulsed laser ablation of thin films and laser printing on paper, the relation between ablation width and scanning speed has been derived. Furthermore, various speeds of the focused 450 nm continuous laser diode with an elliptical beam spot applied to a 290 nm copper thin film coated on glass, experimentally. The beam power was 150 mW after spatial filtering. By fitting the theoretical formulation to the experimental data, the threshold fluence and energy were obtained to be 13.2 J mm-2 and 414~μ J respectively. An anticipated theoretical parameter named equilibrium~border was verified experimentally. It shows that in the scribing of the 290 nm copper thin film, at a distance where the intensity reaches about 1/e of its maximum value, the absorbed fluence on the surface is equal to zero. Therefore the application of continuous laser in metal thin film ablation has different mechanism from pulsed laser drilling and beam scanning in printers.

  7. Fine micro-welding of thin metal sheet by high speed laser scanning

    Science.gov (United States)

    Okamoto, Yasuhiro; Gillner, Arnold; Olowinsky, Alexander; Gedicke, Jens; Uno, Yoshiyuki

    2007-05-01

    Recently, since the size of component becomes smaller, then the welding of thin metal sheet has been required. Besides, the flexibility of process is important according to the accessibility especially for small components. Fraunhofer Institute for Laser Technology had developed the SHADOW ® welding technology, in which the high speed joining with small distortion is possible using pulsed Nd:YAG laser. The possibility of high speed and high quality welding had been reported by using single-mode fiber laser. The combination of micro beam and high speed laser scanning has the advantages for thin metal sheet welding. Therefore, the characteristics of micro-welding for thin metal sheet were investigated by high speed laser scanning, in which the welding was carried out by high speed scanner system with single-mode fiber laser and pulsed Nd:YAG laser. The proper welding region was narrow by the laser beam with a large focus diameter of 160 μm without pulse control, while a small focus diameter of 22 μm can control the welding state widely. A small focus diameter can perform the excellent welding seam from the extreme beginning without pulse control. The penetration depth can be controlled by the energy density with a small focus diameter of 22 μm at the energy densities less than 1 J/mm2. Besides, the unique periodic structure appeared at the high velocity of beam scanning with a small focus diameter. Moreover, the overlap welding of 25 μm thickness sheet can be performed regardless of small gap distance between two sheets by the laser beam with a small focus diameter of 22 μm.

  8. Retrieval of Gap Fraction and Effective Plant Area Index from Phase-Shift Terrestrial Laser Scans

    Directory of Open Access Journals (Sweden)

    Pyare Pueschel

    2014-03-01

    Full Text Available The characterization of canopy structure is crucial for modeling eco-physiological processes. Two commonly used metrics for characterizing canopy structure are the gap fraction and the effective Plant Area Index (PAIe. Both have been successfully retrieved with terrestrial laser scanning. However, a systematic assessment of the influence of the laser scan properties on the retrieval of these metrics is still lacking. This study investigated the effects of resolution, measurement speed, and noise compression on the retrieval of gap fraction and PAIe from phase-shift FARO Photon 120 laser scans. We demonstrate that FARO’s noise compression yields gap fractions and PAIe that deviate significantly from those based on scans without noise compression and strongly overestimate Leaf Area Index (LAI estimates based on litter trap measurements. Scan resolution and measurement speed were also shown to impact gap fraction and PAIe, but this depended on leaf development phase, stand structure, and LAI calculation method. Nevertheless, PAIe estimates based on various scan parameter combinations without noise compression proved to be quite stable.

  9. Mitigation of Laser Damage Growth in Fused Silica NIF Optics with a Galvanometer Scanned Carbon Dioxide Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bass, I L; Draggoo, V; Guss, G M; Hackel, R P; Norton, M A

    2006-04-06

    Economic operation of the National Ignition Facility at the Lawrence Livermore National Laboratory depends on controlling growth of laser damage in the large, high cost optics exposed to UV light at 351 nm. Mitigation of the growth of damage sites on fused silica surfaces greater than several hundred microns in diameter has been previously reported by us using galvanometer scanning of a tightly focused 10.6 {micro}m CO{sub 2} laser spot over an area encompassing the laser damage. Further investigation revealed that fused silica vapor re-deposited on the surface as ''debris'' led to laser damage at unexpectedly low fluences when exposed to multiple laser shots at 351 nm. Additionally, laser power and spatial mode fluctuations in the mitigation laser led to poor repeatability of the process. We also found that the shape of the mitigation pit could produce downstream intensification that could damage other NIF optics. Modifications were made to both the laser system and the mitigation process in order to address these issues. Debris was completely eliminated by these changes, but repeatability and downstream intensification issues still persist.

  10. Topographic laser ranging and scanning principles and processing

    CERN Document Server

    Shan, Jie

    2008-01-01

    A systematic, in-depth introduction to theories and principles of Light Detection and Ranging (LiDAR) technology is long overdue, as it is the most important geospatial data acquisition technology to be introduced in recent years. An advanced discussion, this text fills the void.Professionals in fields ranging from geology, geography and geoinformatics to physics, transportation, and law enforcement will benefit from this comprehensive discussion of topographic LiDAR principles, systems, data acquisition, and data processing techniques. The book covers ranging and scanning fundamentals, and broad, contemporary analysis of airborne LiDAR systems, as well as those situated on land and in space. The authors present data collection at the signal level in terms of waveforms and their properties; at the system level with regard to calibration and georeferencing; and at the data level to discuss error budget, quality control, and data organization. They devote the bulk of the book to LiDAR data processing and inform...

  11. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    Science.gov (United States)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  12. Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    Directory of Open Access Journals (Sweden)

    Henrik Haggrén

    2009-07-01

    Full Text Available Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters.

  13. A simple F-center laser spectrometer for continuous single frequency scans

    Science.gov (United States)

    Nelson, David D., Jr.; Schiffman, Aram; Lykke, Keith R.; Nesbitt, David J.

    1988-12-01

    We report a simple and novel scheme for continuous, single frequency scanning of a commercial F-center laser without any computer interfacing. The scheme utilizes galvo tuning of the cavity length with intracavity CaF 2 Brewster plates with servo loop control of the intracavity etalon. This permits continuous tuning of the F-center frequency over 0.8 cm -1 under complete manual control, as well as arbitrarily long, concatenated scans, and trivial interfacing to a data acquisition system. This scanning spectrometer operation is demonstrated on direct absorption of atomic bromine.

  14. 基于均匀介质球透镜的二维扫描天线%2D-Scan Antenna Based on Homogeneous Spherical Lens

    Institute of Scientific and Technical Information of China (English)

    张金栋; 齐世山; 赵怀成; 吴文; 吴锡东

    2011-01-01

    Spherical lens generalizely can only be used to multiple beams in one dimension previously.Multilayer feed antennas placed parallelly in another dimension, scanning in two dimensions is realized.The relationship between displacement of feed antenna and scan angle is analyzed based on the coordinate transformation approach and by using a combined GO/PO method.The antenna is composed of a homogenous spherical lens and multiple layer planar feed antennas.The beam scanning in azimuth and elevation can be achieved by switching the TSA feed antennas in the same layer and different feeding layers respectively.For millimeter-wave application, a Ka-band lens antenna with 8 × 2 feed arrays has been fabricated.Measurements show scan coverage of 128° in azimuth and 30° in elevation is achieved.%在球透镜仅实现一维扫描的基础上,通过在另一维上平行放置多层馈源的方式,实现了二维同时扫描.基于坐标变换和GO/PO方法推导了馈源偏移量和波束指向角之间的关系式.该天线由一个均匀介质球透镜和多层平面馈源天线组成.通过同一层上的TSA(渐变缝隙天线)单元之间的切换实现水平面的扫描,而通过不同层上TSA单元之间的切换实现垂直面的扫描.作为在毫米波段的一个应用,研制了一个Ka波段用8×2的TSA单元阵馈电的天线实物.实测结果表明它可以在水平面和垂直面分别达到128°和30°的覆盖.

  15. Light propagation studies on laser modified waveguides using scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Borrise, X.; Berini, Abadal Gabriel; Jimenez, D.;

    2001-01-01

    By means of direct laser writing on Al, a new method to locally modify optical waveguides is proposed. This technique has been applied to silicon nitride waveguides, allowing modifications of the optical propagation along the guide. To study the formed structures, a scanning near-held optical...

  16. Dynamic experimentation on the confocal laser scanning microscope : application to soft-solid, composite food materials

    NARCIS (Netherlands)

    Plucknett, K.P.; Pomfret, S.J.; Normand, V.; Ferdinando, D.; Veerman, C.; Frith, W.J.; Norton, I.T.

    2001-01-01

    Confocal laser scanning microscopy (CLSM) is used to follow the dynamic structural evolution of several phase-separated mixed biopolymer gel composites. Two protein/polysaccharide mixed gel systems were examined: gelatin/maltodextrin and gelatin/agarose. These materials exhibit 'emulsion-like' struc

  17. Initial Tests and Accuracy Assesment of a Compact Mobile Laser Scanning System

    Science.gov (United States)

    Julge, K.; Ellmann, A.; Vajakas, T.; Kolka, R.

    2016-06-01

    Mobile laser scanning (MLS) is a faster and cost-effective alternative to static laser scanning, even though there is a slight trade-off in accuracy. This contribution describes a compact mobile laser scanning system mounted on a vehicle. The technical parameters of the used system components, i.e. a small LIDAR sensor Velodyne VLP-16 and a dual antenna GNSS/INS system Advanced Navigation Spatial Dual, are reviewed, along with the integration of these components for spatial data acquisition. Calculation principles of 3D coordinates from the real-time data of all the involved sensors are discussed. The field tests were carried out in a controlled environment of a parking lot and at different velocities. Experiments were carried out to test the ability of the GNSS/INS system to cope with difficult conditions, e.g. sudden movements due to cornering or swerving. The accuracy of the resulting MLS point cloud is evaluated with respect to high-accuracy static terrestrial laser scanning data. Problems regarding combining LIDAR, GNSS and INS sensors are outlined, as well as the initial accuracy assessments. Initial tests revealed errors related to insufficient quality of inertial data and a need for the trajectory post-processing calculations. Although this study was carried out while the system was mounted on a car, there is potential for operating the system on an unmanned aerial vehicle, all-terrain vehicle or in a backpack mode due to its relatively compact size.

  18. Boosting the predictive accuracy of urban hedonic house price models through airborne laser scanning

    NARCIS (Netherlands)

    Helbich, M.; Jochem, A.; Mücke, W.; Höfle, B.

    2013-01-01

    This paper introduces an integrative approach to hedonic house price modeling which utilizes high density 3D airborne laser scanning (ALS) data. In general, it is shown that extracting exploratory variables using 3D analysis – thus explicitly considering high-rise buildings, shadowing effects, etc.

  19. Evaluation of Yogurt Microstructure Using Confocal Laser Scanning Microscopy and Image Analysis

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Ghita, Ovidiu; Whelan, Paul F.

    2015-01-01

    The microstructure of protein networks in yogurts defines important physical properties of the yogurt and hereby partly its quality. Imaging this protein network using confocal scanning laser microscopy (CSLM) has shown good results, and CSLM has become a standard measuring technique for fermente...

  20. CONFOCAL SCANNING LASER MICROSCOPY OF MITOCHONDRIA - A POSSIBLE TOOL IN THE DIAGNOSIS OF MITOCHONDRIAL DISORDERS

    NARCIS (Netherlands)

    RUITERS, MHJ; VANSPRONSEN, EA; SKJELDAL, OH; STROMME, P; SCHOLTE, HR; PZYREMBEL, H; SMIT, GPA; RUITENBEEK, W; AGSTERIBBE, E

    1991-01-01

    This paper describes a non-invasive method for the study of mitochondrial morphology in cultured human skin fibroblasts by confocal scanning laser microscopy after staining the mitochondria with 2-[4-(dimethyl-aminostyryl]-1-methylpyridinium iodide. This method is applied to compare mitochondria in

  1. Incidence angle influence on the quality of terrestrial laser scanning points

    NARCIS (Netherlands)

    Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P.J.G.

    2009-01-01

    A terrestrial laser scanner measures the distance to an object with a precision in the order of millimeters. The quality of each single point in a point cloud affects post-processing applications, such as deformation analysis or 3D modeling. The quality of a scan point is influenced by four major fa

  2. Comparison of a novel surface laser scanning anthropometric technique to traditional methods for facial parameter measurements.

    Science.gov (United States)

    Joe, Paula S; Ito, Yasushi; Shih, Alan M; Oestenstad, Riedar K; Lungu, Claudiu T

    2012-01-01

    This study was designed to determine if three-dimensional (3D) laser scanning techniques could be used to collect accurate anthropometric measurements, compared with traditional methods. The use of an alternative 3D method would allow for quick collection of data that could be used to change the parameters used for facepiece design, improving fit and protection for a wider variety of faces. In our study, 10 facial dimensions were collected using both the traditional calipers and tape method and a Konica-Minolta Vivid9i laser scanner. Scans were combined using RapidForm XOR software to create a single complete facial geometry of the subject as a triangulated surface with an associated texture image from which to obtain measurements. A paired t-test was performed on subject means in each measurement by method. Nine subjects were used in this study: five males (one African-American and four Caucasian females) and four females displaying a range of facial dimensions. Five measurements showed significant differences (pLaser scanning measurements showed high precision and accuracy when compared with traditional methods. Significant differences found can be very small changes in measurements and are unlikely to present a practical difference. The laser scanning technique demonstrated reliable and quick anthropometric data collection for use in future projects in redesigning respirators.

  3. Visualisation of biopolymer mixtures using confocal scanning laser microscopy (CSLM) and covalent labelling techniques

    NARCIS (Netherlands)

    Velde, van de F.; Weinbreck, F.; Edelman, M.W.; Linden, van der E.; Tromp, R.H.

    2003-01-01

    Confocal scanning laser microscopy (CSLM) has been used to study the behaviour of mixtures of proteins, gelatine, whey proteins and ß-lactoglobulin, and polysaccharides, dextran, gellan gum, carrageenan, gum Arabic, and starch. CSLM proved to be a suitable technique to visualise the microstructure o

  4. Imaging inclusion complex formation in starch granules using confocal laser scanning microscopy

    NARCIS (Netherlands)

    Manca, Marianna; Woortman, Albert J. J.; Loos, Katja; Loi, Maria A.

    2015-01-01

    The tendency of amylose to form inclusion complexes with guest molecules has been an object of wide interest due to its fundamental role in food processing. Here we investigated the features of starch granules from several botanical sources using confocal laser scanning microscopy (CLSM) and uncover

  5. Nondestructive estimates of above-ground biomass using terrestrial laser scanning

    NARCIS (Netherlands)

    Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; Kaasalainen, M.

    2015-01-01

    Allometric equations are currently used to estimate above-ground biomass (AGB) based on the indirect relationship with tree parameters. Terrestrial laser scanning (TLS) can measure the canopy structure in 3D with high detail. In this study, we develop an approach to estimate AGB from TLS data, which

  6. a Study about Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment

    Science.gov (United States)

    Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.

    2016-09-01

    Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.

  7. ANALYSIS OF TERRESTRIAL LASER SCANNING AND PHOTOGRAMMETRY DATA FOR DOCUMENTATION OF HISTORICAL ARTIFACTS

    Directory of Open Access Journals (Sweden)

    R. A. Kuçak

    2016-10-01

    Full Text Available Historical artifacts living from the past until today exposed to many destructions non-naturally or naturally. For this reason, The protection and documentation studies of Cultural Heritage to inform the next generations are accelerating day by day in the whole world. The preservation of historical artifacts using advanced 3D measurement technologies becomes an efficient tool for mapping solutions. There are many methods for documentation and restoration of historic structures. In addition to traditional methods such as simple hand measurement and tachometry, terrestrial laser scanning is rapidly becoming one of the most commonly used techniques due to its completeness, accuracy and fastness characteristics. This study evaluates terrestrial laser scanning(TLS technology and photogrammetry for documenting the historical artifacts facade data in 3D Environment. PhotoModeler software developed by Eos System was preferred for Photogrammetric method. Leica HDS 6000 laser scanner developed by Leica Geosystems and Cyclone software which is the laser data evaluation software belonging to the company is preferred for Terrestrial Laser Scanning method. Taking into account the results obtained with this software product is intended to provide a contribution to the studies for the documentation of cultural heritage.

  8. Analysis of Terrestrial Laser Scanning and Photogrammetry Data for Documentation of Historical Artifacts

    Science.gov (United States)

    Kuçak, R. A.; Kiliç, F.; Kisa, A.

    2016-10-01

    Historical artifacts living from the past until today exposed to many destructions non-naturally or naturally. For this reason, The protection and documentation studies of Cultural Heritage to inform the next generations are accelerating day by day in the whole world. The preservation of historical artifacts using advanced 3D measurement technologies becomes an efficient tool for mapping solutions. There are many methods for documentation and restoration of historic structures. In addition to traditional methods such as simple hand measurement and tachometry, terrestrial laser scanning is rapidly becoming one of the most commonly used techniques due to its completeness, accuracy and fastness characteristics. This study evaluates terrestrial laser scanning(TLS) technology and photogrammetry for documenting the historical artifacts facade data in 3D Environment. PhotoModeler software developed by Eos System was preferred for Photogrammetric method. Leica HDS 6000 laser scanner developed by Leica Geosystems and Cyclone software which is the laser data evaluation software belonging to the company is preferred for Terrestrial Laser Scanning method. Taking into account the results obtained with this software product is intended to provide a contribution to the studies for the documentation of cultural heritage.

  9. Resolution and contrast enhancement in laser scanning microscopy using dark beam imaging.

    Science.gov (United States)

    Dehez, Harold; Piché, Michel; De Koninck, Yves

    2013-07-01

    Laser scanning microscopy allows for three-dimensional imaging of cells with molecular specific labeling. However the spatial resolution of optical microscopy is fundamentally limited by the diffraction of light. In the last two decades many techniques have been introduced to enhance the resolution of laser scanning microscopes. However most of these techniques impose strong constraints on the specimen or rely on complex optical systems. These constraints limit the applicability of resolution improvement to various imaging modalities and sample types. To overcome these limitations, we introduce here a novel approach, which we called Switching LAser Mode (SLAM) microscopy, to enhance resolution and contrast in laser scanning microscopy. SLAM microscopy relies on subtracting images obtained with dark and bright modes, and exploits the smaller dimensions of the dark spot of the azimuthally polarized TE 01 mode. With this approach, resolution is improved by a factor of two in confocal microscopy. The technique is not based on complex nonlinear processes and thus requires laser power similar to that used in conventional imaging, minimizing photo-damage. The flexibility of the approach enables retrofitting in commercial confocal and two-photon microscopes and opens avenues for resolution enhancement in fluorescence-independent microscopy.

  10. Generation of UV laser light by stimulated Raman scattering in D2, D2/Ar and D2/He using a pulsed Nd:YAG laser at 355nm

    Institute of Scientific and Technical Information of China (English)

    徐贲; 岳古明; 张寅超; 胡欢陵; 周军; 胡顺星

    2003-01-01

    A pulsed Nd:YAG laser at 355nm is used to pump Raman cell filled with D2,D2/Ar and D2/He.With adequately adjusted parameters,the maximum photon conversion efficiency of the first-order Stokes light(S1,396.796nm)reaches 33.33% in D2/Ar and the stability of S1 in pure D2 is fairly high,the energy drift being less than 10% when the pump energy drifts in the range of 5%.The conversion efficiency and stability,which are functions of the composition and pressure of the Raman medium and the energy of pump laser,are investigated.The result has been used to optimize the laser transmitter system for a differential absorption lidar system to measure NO2 concentration profiles.

  11. Error analysis of motion correction method for laser scanning of moving objects

    Science.gov (United States)

    Goel, S.; Lohani, B.

    2014-05-01

    The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.

  12. A confocal scanning laser ophthalmoscope for retinal vessel oximetry

    Science.gov (United States)

    Lompado, Arthur

    Measurement of a person's blood oxygen saturation has long been recognized as a useful metric for the characterizing ailments ranging from chronic respiratory disorders to acute, potentially life threatening, traumas. The ubiquity of oxygen saturation monitors in the medical field, including portable pulse oximeters and laboratory based CO-oximeters, is a testament to the importance of this technique. The work presented here documents the design, fabrication and development of a unique type of oxygen saturation monitor, a confocal scanning retinal vessel oximeter, with the potential to expand the usefulness of the present devices. A large part of the knowledge base required to construct the instrument comes from the consideration of light scattering by red blood cells in a blood vessel. Therefore, a substantial portion of this work is devoted to the process of light scattering by whole human blood and its effects on the development of a more accurate oximeter. This light scattering effect has been both measured and modeled stochastically to determine its contribution to the measured oximeter signal. It is shown that, although well accepted in the published literature, the model only correlates marginally to the measurements due to inherent limitations imposed by the model assumptions. Nonetheless, enough material has been learned about the scattering to allow development of a mathematical model for the interaction of light with blood in a vessel, and this knowledge has been applied to the data reduction of the present oximeter. This data reduction technique has been tested in a controlled experiment employing a model eye with a blood filled mock retinal vessel. It will be shown that the presently developed technique exhibited strong correlation between the known blood oxygen saturation and that calculated by the new system.

  13. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction.

    Science.gov (United States)

    Chi, Shukai; Xie, Zexiao; Chen, Wenzhu

    2016-09-20

    In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer's rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory.

  14. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Shukai Chi

    2016-09-01

    Full Text Available In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer’s rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory.

  15. Influence of laser power on the penetration depth and geometry of scanning tracks in selective laser melting

    Science.gov (United States)

    Stopyra, Wojciech; Kurzac, Jarosław; Gruber, Konrad; Kurzynowski, Tomasz; Chlebus, Edward

    2016-12-01

    SLM technology allows production of a fully functional objects from metal and ceramic powders, with true density of more than 99,9%. The quality of manufactured items in SLM method affects more than 100 parameters, which can be divided into fixed and variable. Fixed parameters are those whose value before the process should be defined and maintained in an appropriate range during the process, e.g. chemical composition and morphology of the powder, oxygen level in working chamber, heating temperature of the substrate plate. In SLM technology, five parameters are variables that optimal set allows to produce parts without defects (pores, cracks) and with an acceptable speed. These parameters are: laser power, distance between points, time of exposure, distance between lines and layer thickness. To develop optimal parameters thin walls or single track experiments are performed, to select the best sets narrowed to three parameters: laser power, exposure time and distance between points. In this paper, the effect of laser power on the penetration depth and geometry of scanned single track was shown. In this experiment, titanium (grade 2) substrate plate was used and scanned by fibre laser of 1064 nm wavelength. For each track width, height and penetration depth of laser beam was measured.

  16. The Calibration Model and Simulation Analysis of Circular Scanning Airborne Laser Bathymetry System

    Directory of Open Access Journals (Sweden)

    SHEN Erhua

    2016-08-01

    Full Text Available To improve the positioning accuracy of circular scanning airborne laser bathymetry system, a calibration method is presented in this paper. When the laser points are collected by the bathymetry system on the level area, they should be on the same plane. However, they are not coplanar because of systematic error and random error. So we try to fit the points to a plane, which may help to adjust the errors and then correct the point location.Firstly, the circular scanning airborne laser bathymetry positioning model is derived in the simple mode. The intersection of laser line and sea surface is simulated depending on the mathematical principles of line and plane intersection. Combined with the direction vector of laser line in the water got by the refraction principle, the sea floor plane mathematical equation is used to compute the location of the laser points. Then, the parameter weighted least squares adjustment model is derived with the prior variance introduced, which lays the foundation for the following computing of calibration model. Finally, the calibration adjustment mathematic model and the detailed computing process are derived. The simulation computing and analysis for the calibration process is presented, and some meaningful conclusions for the calibration are achieved.

  17. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references

    Science.gov (United States)

    Liu, Jingbin; Liang, Xinlian; Hyyppä, Juha; Yu, Xiaowei; Lehtomäki, Matti; Pyörälä, Jiri; Zhu, Lingli; Wang, Yunsheng; Chen, Ruizhi

    2017-04-01

    Terrestrial laser scanning has been widely used to analyze the 3D structure of a forest in detail and to generate data at the level of a reference plot for forest inventories without destructive measurements. Multi-scan terrestrial laser scanning is more commonly applied to collect plot-level data so that all of the stems can be detected and analyzed. However, it is necessary to match the point clouds of multiple scans to yield a point cloud with automated processing. Mismatches between datasets will lead to errors during the processing of multi-scan data. Classic registration methods based on flat surfaces cannot be directly applied in forest environments; therefore, artificial reference objects have conventionally been used to assist with scan matching. The use of artificial references requires additional labor and expertise, as well as greatly increasing the cost. In this study, we present an automated processing method for plot-level stem mapping that matches multiple scans without artificial references. In contrast to previous studies, the registration method developed in this study exploits the natural geometric characteristics among a set of tree stems in a plot and combines the point clouds of multiple scans into a unified coordinate system. Integrating multiple scans improves the overall performance of stem mapping in terms of the correctness of tree detection, as well as the bias and the root-mean-square errors of forest attributes such as diameter at breast height and tree height. In addition, the automated processing method makes stem mapping more reliable and consistent among plots, reduces the costs associated with plot-based stem mapping, and enhances the efficiency.

  18. Keypoint-based 4-Points Congruent Sets - Automated marker-less registration of laser scans

    Science.gov (United States)

    Theiler, Pascal Willy; Wegner, Jan Dirk; Schindler, Konrad

    2014-10-01

    We propose a method to automatically register two point clouds acquired with a terrestrial laser scanner without placing any markers in the scene. What makes this task challenging are the strongly varying point densities caused by the line-of-sight measurement principle, and the huge amount of data. The first property leads to low point densities in potential overlap areas with scans taken from different viewpoints while the latter calls for highly efficient methods in terms of runtime and memory requirements. A crucial yet largely unsolved step is the initial coarse alignment of two scans without any simplifying assumptions, that is, point clouds are given in arbitrary local coordinates and no knowledge about their relative orientation is available. Once coarse alignment has been solved, scans can easily be fine-registered with standard methods like least-squares surface or Iterative Closest Point matching. In order to drastically thin out the original point clouds while retaining characteristic features, we resort to extracting 3D keypoints. Such clouds of keypoints, which can be viewed as a sparse but nevertheless discriminative representation of the original scans, are then used as input to a very efficient matching method originally developed in computer graphics, called 4-Points Congruent Sets (4PCS) algorithm. We adapt the 4PCS matching approach to better suit the characteristics of laser scans. The resulting Keypoint-based 4-Points Congruent Sets (K-4PCS) method is extensively evaluated on challenging indoor and outdoor scans. Beyond the evaluation on real terrestrial laser scans, we also perform experiments with simulated indoor scenes, paying particular attention to the sensitivity of the approach with respect to highly symmetric scenes.

  19. Analysis of adaptive laser scanning optical system with focus-tunable components

    Science.gov (United States)

    Pokorný, P.; Mikš, A.; Novák, J.; Novák, P.

    2015-05-01

    This work presents a primary analysis of an adaptive laser scanner based on two-mirror beam-steering device and focustunable components (lenses with tunable focal length). It is proposed an optical scheme of an adaptive laser scanner, which can focus the laser beam in a continuous way to a required spatial position using the lens with tunable focal length. This work focuses on a detailed analysis of the active optical or opto-mechanical components (e.g. focus-tunable lenses) mounted in the optical systems of laser scanners. The algebraic formulas are derived for ray tracing through different configurations of the scanning optical system and one can calculate angles of scanner mirrors and required focal length of the tunable-focus component provided that the position of the focused beam in 3D space is given with a required tolerance. Computer simulations of the proposed system are performed using MATLAB.

  20. SCAN PROFILES BASED METHOD FOR SEGMENTATION AND EXTRACTION OF PLANAR OBJECTS IN MOBILE LASER SCANNING POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    H. L. Nguyen

    2016-06-01

    Full Text Available The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s. The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc. that can be used as the inputs for many processing steps (e.g. registration, modelling that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.

  1. Scan Profiles Based Method for Segmentation and Extraction of Planar Objects in Mobile Laser Scanning Point Clouds

    Science.gov (United States)

    Nguyen, Hoang Long; Belton, David; Helmholz, Petra

    2016-06-01

    The demand for accurate spatial data has been increasing rapidly in recent years. Mobile laser scanning (MLS) systems have become a mainstream technology for measuring 3D spatial data. In a MLS point cloud, the point clouds densities of captured point clouds of interest features can vary: they can be sparse and heterogeneous or they can be dense. This is caused by several factors such as the speed of the carrier vehicle and the specifications of the laser scanner(s). The MLS point cloud data needs to be processed to get meaningful information e.g. segmentation can be used to find meaningful features (planes, corners etc.) that can be used as the inputs for many processing steps (e.g. registration, modelling) that are more difficult when just using the point cloud. Planar features are dominating in manmade environments and they are widely used in point clouds registration and calibration processes. There are several approaches for segmentation and extraction of planar objects available, however the proposed methods do not focus on properly segment MLS point clouds automatically considering the different point densities. This research presents the extension of the segmentation method based on planarity of the features. This proposed method was verified using both simulated and real MLS point cloud datasets. The results show that planar objects in MLS point clouds can be properly segmented and extracted by the proposed segmentation method.

  2. Rilievo laser scanning a lunga distanza su frana mediante ILRIS LR

    Directory of Open Access Journals (Sweden)

    Arianna Pesci

    2012-04-01

    Full Text Available I sistemi laser a scansione terrestre caratterizzati da una lunga portata, cioè capaci di rilevare su  distanze  fino a 3 km, sono oggi sempre più utilizzati nel monitoraggio del territorio e nel controllo del dissesto o, in generale, delle variazioni morfologiche. Laser scanning survey of landslides by means of long distance ILRIS LRTerrestrial laser scanning (TLS is a remote sensing technique for high density acquisition of the physical surface of scanned, currently used in geologic surveys, engineering practice, cultural heritage, and mobile mapping. The very long range scanners, allow the acquisition from distances of the order of about 1  km  with  material  characterized  by  medium/high  reflecting properties.  At  present,  the  efforts  in  technological  advancements are highly aimed at the extension of maximum range, at the reduction of acquisition time, and so on. The ILRIS LR laser  scanner,  provided  by  Optech,  is  used  to  survey  a  very dense populated landslide area in the Tuscany Apennines, in the frame of a scientific experiment planned by INGV to test its performances.

  3. Multiparameter Correction Intensity of Terrestrial Laser Scanning Data as AN Input for Rock Surface Modelling

    Science.gov (United States)

    Paleček, V.; Kubíček, P.

    2016-06-01

    A large increase in the creation of 3D models of objects all around us can be observed in the last few years; thanks to the help of the rapid development of new advanced technologies for spatial data collection and robust software tools. A new commercially available airborne laser scanning data in Czech Republic, provided in the form of the Digital terrain model of the fifth generation as irregularly spaced points, enable locating the majority of rock formations. However, the positional and height accuracy of this type of landforms can reach huge errors in some cases. Therefore, it is necessary to start mapping using terrestrial laser scanning with the possibility of adding a point cloud data derived from ground or aerial photogrammetry. Intensity correction and noise removal is usually based on the distance between measured objects and the laser scanner, the incidence angle of the beam or on the radiometric and topographic characteristics of measured objects. This contribution represents the major undesirable effects that affect the quality of acquisition and processing of laser scanning data. Likewise there is introduced solutions to some of these problems.

  4. Roof Modelling Potential of Unmanned Air Vehicle Point Clouds with Respect to Terrestrial Laser Scanning

    Science.gov (United States)

    Karakis, Serkan; Gunes Sefercik, Umut; Atalay, Can

    2016-07-01

    In parallel with the improvement of laser scanning technologies, dense point clouds which provide the detailed description of terrain and non-terrain objects became indispensable for remotely-sensed data users. Owing to the large demand, besides laser scanning, point clouds were started to achieve using photogrammetric images. Unmanned air vehicle (UAV) images are one of the most preferred data for creating dense point clouds by the advantage of low cost, rapid and periodically gain. In this study, we tried to assess the roof modelling potential of UAV point clouds by comparing three dimensional (3D) roof models produced from UAV and terrestrial laser scanning (TLS) point clouds. In the study, very popular low cost action camera SJ4000 and Faro Laser Scanner Focus3D X 330 were used to provide point clouds and the roof of Bulent Ecevit University Civil Aviation Academy building was utilized. For the validation of horizontal and vertical geolocation accuracies, standard deviation was used as the main indicator. The visual results demonstrated that UAV roof model is almost coherent with TLS roof model after the filtering-based refinement on noisy pixels and systematic bias correction. Moreover, the horizontal geolocation accuracy is approx. |5cm| both in X and Y directions and bias corrected vertical geolocation accuracy is approx. 17cm for zero roof slope.

  5. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  6. Correlative Analysis of Immunoreactivity in Confocal Laser-Scanning Microscopy and Scanning Electron Microscopy with Focused Ion Beam Milling

    Directory of Open Access Journals (Sweden)

    Takahiro eSonomura

    2013-02-01

    Full Text Available Three-dimensional reconstruction of ultrastructure of rat brain with minimal effort has recently been realized by scanning electron microscopy combined with focused ion beam milling (FIB-SEM. Because application of immunohistochemical staining to electron microscopy has a great advantage in that molecules of interest are specifically localized in ultrastructures, we here tried to apply immunocytochemistry to FIB-SEM and correlate immunoreactivity in confocal laser-scanning microcopy (CF-LSM with that in FIB-SEM. The dendrites of medium-sized spiny neurons in rat neostriatum were visualized with a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion, and thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2. After detecting the sites of terminals apposed to the dendrites in CF-LSM, GFP and VGluT2 immunoreactivities were further developed for electron microscopy by the immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB methods, respectively. In the contrast-inverted FIB-SEM images, silver precipitation and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were easily recognizable as in the images of transmission electron microscopy. In the sites of interest, some appositions were revealed to display synaptic specialization of asymmetric type. The present method is thus useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connection in the central neural circuit.

  7. Correlative analysis of immunoreactivity in confocal laser-scanning microscopy and scanning electron microscopy with focused ion beam milling.

    Science.gov (United States)

    Sonomura, Takahiro; Furuta, Takahiro; Nakatani, Ikuko; Yamamoto, Yo; Unzai, Tomo; Matsuda, Wakoto; Iwai, Haruki; Yamanaka, Atsushi; Uemura, Masanori; Kaneko, Takeshi

    2013-01-01

    Recently, three-dimensional reconstruction of ultrastructure of the brain has been realized with minimal effort by using scanning electron microscopy (SEM) combined with focused ion beam (FIB) milling (FIB-SEM). Application of immunohistochemical staining in electron microscopy (EM) provides a great advantage in that molecules of interest are specifically localized in ultrastructures. Thus, we applied immunocytochemistry for FIB-SEM and correlated this immunoreactivity with that in confocal laser-scanning microcopy (CF-LSM). Dendrites of medium-sized spiny neurons in the rat neostriatum were visualized using a recombinant viral vector, which labeled the infected neurons with membrane-targeted GFP in a Golgi stain-like fashion. Moreover, the thalamostriatal afferent terminals were immunolabeled with Cy5 fluorescence for vesicular glutamate transporter 2 (VGluT2). After detection of the sites of terminals apposed to the dendrites by using CF-LSM, GFP and VGluT2 immunoreactivities were further developed for EM by using immunogold/silver enhancement and immunoperoxidase/diaminobenzidine (DAB) methods, respectively. In contrast-inverted FIB-SEM images, silver precipitations and DAB deposits were observed as fine dark grains and diffuse dense profiles, respectively, indicating that these immunoreactivities were as easily recognizable as those in the transmission electron microscopy (TEM) images. Furthermore, in the sites of interest, some appositions displayed synaptic specializations of an asymmetric type. Thus, the present method was useful in the three-dimensional analysis of immunocytochemically differentiated synaptic connections in the central neural circuit.

  8. Morphology and deflection properties of bat wing sensory hairs: scanning electron microscopy, laser scanning vibrometry, and mechanics model.

    Science.gov (United States)

    Sterbing-D'Angelo, S J; Liu, H; Yu, M; Moss, C F

    2016-08-22

    Bat wings are highly adaptive airfoils that enable demanding flight maneuvers, which are performed with astonishing robustness under turbulent conditions, and stability at slow flight velocities. The bat wing is sparsely covered with microscopically small, sensory hairs that are associated with tactile receptors. In a previous study we demonstrated that bat wing hairs are involved in sensing airflow for improved flight maneuverability. Here, we report physical measurements of these hairs and their distribution on the wing surface of the big brown bat, Eptesicus fuscus, based on scanning electron microscopy analyses. The wing hairs are strongly tapered, and are found on both the dorsal and ventral wing surfaces. Laser scanning vibrometry tests of 43 hairs from twelve locations across the wing of the big brown bat revealed that their natural frequencies inversely correlate with length and range from 3.7 to 84.5 kHz. Young's modulus of the average wing hair was calculated at 4.4 GPa, which is comparable with rat whiskers or arthropod airflow-sensing hairs.

  9. Investigation of the objects depending on distance scanned with Laser Scanner

    Science.gov (United States)

    Denli, H. H.; Celik, F.; Kaya, S.; Duran, Z.

    2014-12-01

    Terrestrial laser scanning technology provides its users with many advantages. Fast data collection and high accuracy data acquisition of terrestrial laser scanners extends their use. This method is often preferred in technical architecture studies, drawings of facade relieve, production of 3D models of urban and industrial structures. Tools having different precisions for various purposes and measurement principal are used. The system has three measurement principles, time-of-flight measurement, phase measurement and triangulation-based measurements. These methods and tools have been tested in laboratory conditions, provided with accuracy analyses. Different objects of different sizes are used and the effect of changing the scanning distance, angle, and resolution of the object geometry is examined. The instrument 'Scan Station C10', working with impulse method and having the feature of scanning with 4 different resolutions, respectively low, medium, high and highest scanning options has been employed. A position accuracy of 6 mm, distance accuracy of 4 mm, horizontal and vertical rotation angle of 12" has been used. On determining these accuracies, various measurements have been performed in the range of 1m - 50 m. For performing an accuracy analysis, a calibration plate has been used. Four different geometric shapes, equilateral triangle, square, circle and a plus sign have been placed on the plate. The measurement basis or line is 300 m long. The calibration plate ranging between 0 - 100 m is linearly placed at 10 m intervals, whereas the range of 100 - 300 m is linearly placed at 50 m intervals. Without moving the plate from the testing point, the scanning distance has been kept equal and has been scanned at three different angles. This process was repeated for every designated point. This study has been extrapolated to analyze the effect of different scanning distance, angle and resolution and the change in the structure of the object.

  10. Brief communication "Application of mobile laser scanning in snow cover profiling"

    Directory of Open Access Journals (Sweden)

    S. Kaasalainen

    2010-11-01

    Full Text Available We present a snowmobile based mobile mapping system and its first application on snow cover roughness and change detection measurement. The ROAMER mobile mapping system, constructed at the Finnish Geodetic Institute, consists of the positioning and navigating systems, a terrestrial laser scanner, and the carrying platform (a snowmobile sledge in this application. We demonstrate the applicability of the instrument in snow cover roughness profiling and change detection by presenting preliminary results from a mobile laser scanning (MLS campaign. The results show the potential of MLS for fast and efficient snow profiling from large areas in a millimetre scale.

  11. Generation of 3D Virtual Geographic Environment Based on Laser Scanning Technique

    Institute of Scientific and Technical Information of China (English)

    DU Jie; CHEN Xiaoyong; FumioYamazaki

    2003-01-01

    This paper demonstrates an experiment on the generation of 3D virtual geographic environment on the basis of experimental flight laser scanning data by a set of algorithms and methods that were developed to automatically interpret range images for extracting geo-spatial features and then to reconstruct geo-objects. The algorithms and methods for the interpretation and modeling of laser scanner data include triangulated-irregular-network (TIN)-based range image interpolation ; mathematical-morphology(MM)-based range image filtering,feature extraction and range image segmentation, feature generalization and optimization, 3D objects reconstruction and modeling; computergraphics (CG)-based visualization and animation of geographic virtual reality environment.

  12. Multi-frequency AOM for multi-beam laser scanning exposure system

    Science.gov (United States)

    Shinada, Hidetoshi

    2016-10-01

    Digital printing systems recorded on films or computer to plates (CTPs) have been required to improve their productivity and image quality. Under the circumstance, a printing technology of the multi-beam laser scanning for the drum capstan system, which is almost the same as optics configuration as the flat bed system, was developed using a newly developed multi-frequency acousto-optic modulator (AOM) as a key device instead of ultra-fast scanning devices toward a main scan direction. The multi-frequency AOM was developed with phased array-type transducers, achieving a wider bandwidth of over 160 MHz. The design consisted of a simultaneous three beams generation with interlace scan to avoid the beat effect by adjacent Doppler-shifted beams, which consequently attained the fastest recording speed of 5.0 mm/s compared with 2.0-3.0 mm/s of existing systems in those days. Furthermore, a couple of critical parameters of the multi-frequency AOM are studied, for example, a treatment of third-order intermodulation and also beat effect in connection with photosensitive media. As a result, the necessity of interlaces scanning to obtain good image quality without beat effect and also to allow a lower laser power to apply is proposed.

  13. Measurement of Lamb wave polarization using a one-dimensional scanning laser vibrometer (L).

    Science.gov (United States)

    Ayers, James; Apetre, Nicole; Ruzzene, Massimo; Sabra, Karim

    2011-02-01

    A single head scanning laser Doppler vibrometer is used for the estimation of the polarization of the first symmetric (S(0)) and antisymmetric (A(0)) Lamb wave modes. The measurements at two known incidence angles are performed in order to resolve the two components of motion. Filtering in the frequency/wavenumber domain of the response recorded along a scan line separates the contributions from each mode and allows the evaluation of the corresponding elliptical trajectories of particle motion. Comparison between measured and analytically estimated trajectories validates the measurement technique and suggests its application for the development of material characterization and diagnostics tools.

  14. All-optical histology using two photon laser scanning microscopy and ablation with ultrashort pulses

    Science.gov (United States)

    Tsai, Philbert S.

    This dissertation discusses the use of ultrashort laser pulses to image and manipulate tissue for the purpose of three-dimensional histological reconstruction of extended brain structures. Two photon laser scanning microscopy (TPLSM) and ultrashort pulsed laser ablation are used to provide in situ three-dimensional imaging through thick preparations of fixed tissue. Surface regions of fixed tissue are first imaged using TPLSM. The imaged regions are then removed by ablation with amplified, ultrashort laser pulses, thereby exposing a previously underlying tissue region for imaging. This process of imaging and ablation proceeds iteratively until the desired tissue volume has been processed. First, the principles, design, and construction of a two photon laser scanning microscope are discussed, followed by a discussion of the physical mechanisms of tissue ablation with ultrashort laser pulses. The compatibility of tissue ablation using ultrashort pulses with subsequent histological analysis, particularly with fluorescent microscopy, is evaluated. Tissue ablation with ultrashort laser pulses is found to produce ablated tissue surfaces that are smooth to within a micrometer. Intrinsic fluorescence as well as immunoreactivity are found to be resilient to the ablation process. The all-optical histological technique is demonstrated on brain tissue from rats and mice, including tissue from embryonic mouse as early at E15. The ablation process is shown to preserve both macroscopic and microscopic structures within tissue. To facilitate the all-optical histological analysis of neuronal vasculature and its relative distribution to surrounding neuronal tissue, a fluorescent gel perfusion technique is developed that provides a temperature-stabilized fluorescent label of the neuronal vasculature. The use of immunohistochemistry to label specific cell populations throughout an 800 micrometer-thick tissue section is demonstrated. Additionally, the immersion of fixed tissue in high

  15. Research and Development of High-speed Laser Scanning Galvanometer System

    Directory of Open Access Journals (Sweden)

    Chao-Ching Ho

    2013-12-01

    Full Text Available This study developed and controlled laser scanning mechanism and circuit design, in order to reduce the vibratory magnitude resulted from high-speed operation. The principle of mechanism design is that the output end mirror can swing within ± 3° when the laser scanning mechanism is in operation, the accuracy value is ± 0.2°. The static simulation and dynamic measurement were carried out for mutual validation. The vibration generated in the operation of machine causes dynamic unbalance, influencing the stability of machine. In order to overcome and improve the dynamic unbalance generated when the mechanism is in motion, different solutions were proposed, such as changing the output end mass, to add elastic material in or to change constant speed control of input end motor to variable speed control.

  16. Scanning laser ultrasound and wavenumber spectroscopy for in-process inspection of additively manufactured parts

    Science.gov (United States)

    Koskelo, EliseAnne C.; Flynn, Eric B.

    2016-04-01

    We present a new in-process laser ultrasound inspection technique for additive manufacturing. Ultrasonic energy was introduced to the part by attaching an ultrasonic transducer to the printer build-plate and driving it with a single-tone, harmonic excitation. The full-field response of the part was measured using a scanning laser Doppler vibrometer after each printer layer. For each scan, we analyzed both the local amplitudes and wavenumbers of the response in order to identify defects. For this study, we focused on the detection of delamination between layers in a fused deposition modeling process. Foreign object damage, localized heating damage, and the resulting delamination between layers were detected in using the technique as indicated by increased amplitude and wavenumber responses within the damaged area.

  17. An entropy-based filtering approach for airborne laser scanning data

    Science.gov (United States)

    Zeng, Zhe; Wan, Jiaxin; Liu, Hui

    2016-03-01

    Parameter-tuning is a challenging task when generating digital terrain models from airborne laser scanning (light detection and ranging, LiDAR) data. To address this issue, this paper presents a filtering method for near-infrared laser scanning data that exploits the principle of entropy maximization as the optimization objective. The proposed approach generates ground elevation of point cloud by constructing a triangulated irregular network, calculates the entropy of the elevation from different parts, and automatically separates ground and non-ground points by the principle of entropy maximization. Experimental results from different ground surfaces show that the proposed entropy-based filtering method can effectively extract bare-earth points from the point cloud without adjusting thresholds.

  18. Capturing Detailed Outcrop Geology Using Terrestrial Laser Scanning (Lidar) and Other Digital Technologies: Current Status and Future Directions

    Science.gov (United States)

    Jones, R. R.; McCaffrey, K. J.

    2007-12-01

    Geospatial data acquisition at global to regional scales has wide acceptance, and tools such as Google Earth have been instrumental in extending Earth visualisation far beyond specialist users of GIS and satellite imagery. At the outcrop scale, the number of industry and academic geoscientists adopting digital technologies to gather field data is steadily increasing. When integrated with traditional field skills, these technologies offer two fundamental advantages: firstly, outcrop geology can now be recorded with very high detail and precision; secondly, observations and data are precisely georeferenced, which is a prerequisite for 2D and 3D spatial analysis. Digital outcrop data are being used in a wide variety of ways, many of which can be characterised in terms of two end members. Firstly, using methods such as terrestrial laser scanning and digital photogrammetry, it is possible to create highly realistic virtual copies of the outcrop. These virtual outcrop models can be used to great effect to enhance teaching, to provide virtual field-trips (most effective in conjunction with a real visit to the outcrop), to promote group discussion and interpretation, or as part of Health & Safety briefing. Secondly, digital outcrop data is also being used to derive quantitative attribute measurements from specific geological features. Here the emphasis is not on capturing a photo-realistic copy of the outcrop, but rather on gathering the relevant types of data at the most appropriate resolution and geospatial precision for the type of analysis undertaken. In addition to laser scanning, useful technologies include dGPS, laser range-finding, and Total Station surveying. Examples of this kind of quantitative analysis include fault curvature, roughness, branch-line geometry, spatial variation in fault displacement, fracture spacing and 3D spatial clustering, fold curvature, sedimentary channel morphology, lateral and vertical facies variations, and geomorphological analysis of

  19. Design of Dual Axis Laser Scanning Diameter Measuring Gauge System with PID Co

    Institute of Scientific and Technical Information of China (English)

    LI Xin-qiu; LI Zhi-wei; LIU Da-jiang

    2009-01-01

    Dual axis laser scanning diameter measuring gauge system(DALSDMGS)with PID controller,which can be used for online non-contact diameter measuring and control on the hose,wire and rod production line,is introduced.The measure principle and implementation of this system are also presented.A PID control module with PID parameters tuning is included in the measuring and control system,which functions as a PID automatic controller of the diameter.

  20. Observation of fluorscent particles in rain water using Laser scanning microscope

    OpenAIRE

    古池, 聖生; 鈴木, 款

    1997-01-01

    Rain water contains various insoluble particles. Detection and observation of in-soluble organic particles in rain water with a fluorescence microscope has been studied. A laser scanning microscope was used for observation of fluorescent particles. Rain water was collected from July 1996 to December 1996 in Shizuoka, and 17 rain water samples were collected. Fluorescent particles in rain water were characterized as organic matter using a Fourier transform infrared (FTIR) microscope. It was fo...

  1. Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway Tunnels during Excavation

    OpenAIRE

    Gikas, Vassilis

    2012-01-01

    Driven by progress in sensor technology, computer software and data processing capabilities, terrestrial laser scanning has recently proved a revolutionary technique for high accuracy, 3D mapping and documentation of physical scenarios and man-made structures. Particularly, this is of great importance in the underground space and tunnel construction environment as surveying engineering operations have a great impact on both technical and economic aspects of a project. This paper discusses the...

  2. Applications of confocal laser scanning microscopy in research into organic semiconductor thin films

    DEFF Research Database (Denmark)

    Schiek, Manuela; Balzer, Frank

    2014-01-01

    At the center of opto-electronic devices are thin layers of organic semiconductors, which need to be sandwiched between planar electrodes. With the growing demand for opto-electronic devices now and in the future, new electrode materials are needed to meet the requirements of organic semiconductors...... laser scanning microscopy has emerged as a versatile tool for optical metrology while atomic force microscopy adds detailed structural information....

  3. Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy).

    OpenAIRE

    Fanti, R.; Gigli, G.; Lombardi, L; D. Tapete; Canuti, P.

    2013-01-01

    Traditional surveying methods are often not sufficient to achieve a complete geomechanical characterization of the rock mass, to analyze the instability mechanisms threatening the cultural heritage of hilltop historic towns. In Pitigliano (Tuscany, Central Italy), terrestrial laser scanning was employed complementarily to conventional geomechanical techniques. The overall 3D survey of the exposed surfaces was combined with scanlines of the inner walls of the subterranean cavities running unde...

  4. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Hasi, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7015 (United States); Oh, A. [The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  5. 3D LASER SCANNING TECHNIQUE FOR THE INSPECTION AND MONITORING OF RAILWAY TUNNELS

    OpenAIRE

    2015-01-01

    Railway tunnel inspection and monitoring has predominantly been a visual and manual procedure, which is time-consuming and subjective, giving rise to variance in standards and quality. Thus, alternative, novel, automated techniques need to be developed, for more efficient and reliable tunnel examination. The reported research aimed to investigate the application of a laser scanning technique for the inspection of tunnel degradation and structural integrity. The proposed method may either subs...

  6. UNDERSTANDING THE EFFECTS OF SURFACTANT ADDITION ON RHEOLOGY USING LASER SCANNING CONFOCAL MICROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    White, T

    2007-05-08

    The effectiveness of three dispersants to modify rheology was examined using rheology measurements and laser scanning confocal microscopy (LSCM) in simulated waste solutions. All of the dispersants lowered the yield stress of the slurries below the baseline samples. The rheology curves were fitted reasonably to a Bingham Plastic model. The three-dimensional LSCM images of simulants showed distinct aggregates were greatly reduced after the addition of dispersants leading to a lowering of the yield stress of the simulated waste slurry solutions.

  7. Nanoparticle flow velocimetry with image phase correlation for confocal laser scanning microscopy

    Science.gov (United States)

    Jun, Brian H.; Giarra, Matthew; Yang, Haisheng; Main, Russell; Vlachos, Pavlos P.

    2016-10-01

    We present a new particle image correlation technique for resolving nanoparticle flow velocity using confocal laser scanning microscopy (CLSM). The two primary issues that complicate nanoparticle scanning laser image correlation (SLIC)-based velocimetry are (1) the use of diffusion-dominated nanoparticles as flow tracers, which introduce a random decorrelating error into the velocity estimate, and (2) the effects of the scanning laser image acquisition, which introduces a bias error. To date, no study has quantified these errors or demonstrated a means to deal with them in SLIC velocimetry. In this work, we build upon the robust phase correlation (RPC) and existing methods of SLIC to quantify and mitigate these errors. First, we implement an ensemble RPC instead of using an ensemble standard cross-correlation, and develop a SLIC optimal filter that maximizes the correlation strength in order to reliably and accurately detect the correlation peak representing the most probable average displacement of the nanoparticles. Secondly, we developed an analytical model of the SLIC measurement bias error due to image scanning of diffusion-dominated tracer particles. We show that the bias error depends only on the ratio of the mean velocity of the tracer particles to that of the laser scanner and we use this model to correct the induced errors. We validated our technique using synthetic images and experimentally obtained SLIC images of nanoparticle flow through a micro-channel. Our technique reduced the error by up to a factor of ten compared to other SLIC algorithms for the images tested in this study. Moreover, our optimized RPC filter reduces the number of image pairs required for the convergence of the ensemble correlation by two orders of magnitude compared to the standard cross correlation. This feature has broader implications to ensemble correlation methods and should be further explored in depth in the future.

  8. Histometric data obtained by in vivo confocal laser scanning microscopy in patients with systemic sclerosis

    Directory of Open Access Journals (Sweden)

    Altmeyer Peter

    2002-08-01

    Full Text Available Abstract Background It would be a benefit if time-saving, non-invasive methods could give hints for diagnosing systemic sclerosis. To investigate the skin of patients with systemic sclerosis using confocal laser scanning microscopy in vivo and to develop histometric parameters to describe characteristic cutaneous changes of systemic sclerosis observed by this new technique, we conducted an exploratory study. Materials and Methods Fifteen patients with systemic sclerosis treated with extracorporal photopheresis were compared with 15 healthy volunteers and 10 patients with other disorders also treated with extracorporal photopheresis. All subjects were investigated using confocal laser scanning microscopy in vivo. Results Micromorphologic characteristics of skin of patients with systemic sclerosis and measuring parameters for melanisation, epidermal hypotrophy, and fibrosis for dislocation of capillaries by collagen deposits in the papillary dermis were evaluated. An interesting finding was an increased thickness of the tissue in the dermal papillae superior to the first dermal papilla vessel. It was also possible to reproduce characteristic histologic features by confocal laser scanning microscopy in vivo. Histometric parameters for fibrosis and vascular features developed in this study showed significant differences in patients with systemic sclerosis compared to controls. Conclusions Although the predominant histopathological features in systemic sclerosis are findings of the reticular dermis and the subcutis, and in histopathological investigation the epidermis seems to remain unaffected by the disease, we have demonstrate some characteristic differences in the epidermis and papillary dermis by confocal laser scanning microscopy in vivo. Some of them have not been described so far. However, to use this technique as a tool for diagnosis and/or staging of systemic sclerosis, further studies are needed investigating the sensitivity and

  9. In vivo quantification of microglia dynamics with a scanning laser ophthalmoscope in a mouse model of focal laser injury

    Science.gov (United States)

    Alt, Clemens; Lin, Charles P.

    2012-03-01

    Microglia are the resident immune cells of the central nervous system and play a crucial role in maintaining neuronal health and function. Their dynamic behavior, that is, the constant extension and retraction of microglia processes, is thought to be critical for communication between microglia and their cellular neighbors, such as neurons, astrocytes and vascular endothelial cells. Here, we investigated the morphology and dynamics of retinal microglia in vivo under normal conditions and in response to focal laser injury of blood vessel endothelial wall, using a scanning laser ophthalmoscope (SLO) designed specifically for imaging the retina of live mice. The multichannel confocal imaging system allows retinal microstructure, such as the processes of microglia and retinal vasculature, to be visualized simultaneously. In order to generate focal laser injury, a photocoagulator based on a continuous wave (cw) laser was coupled into the SLO. An acousto-optic modulator chopped pulses from the cw laser. A tip-tilt-scanner was used to direct the laser beam into a blood vessel of interest under SLO image guidance. Mild coagulation was produced using millisecond-long pulses. Microglia react dynamically to focal laser injury of blood vessel endothelial walls. Under normal conditions, microglia somas remain stationary and the processes probe a territory of their immediate environment. In response to local injury, process movement velocity approximately doubles within minutes after injury. Moreover, the previously unpolarized process movement assumes a distinct directionality towards the injury site, indicating signaling between the injured tissue and the microglia. In vivo retinal imaging is a powerful tool for understanding the dynamic behavior of retinal cells.

  10. Analysis of Femtosecond Laser Assisted Capsulotomy Cutting Edges and Manual Capsulorhexis Using Environmental Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Sebastiano Serrao

    2014-01-01

    Full Text Available Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS laser platforms in comparison with manual continuous circular capsulorhexis (CCC using environmental scanning electron microscopy (eSEM. Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n=5, and Victus, n=5. In addition, five manual CCC (n=5 were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA. Objective metrics, which included the arithmetic mean deviation of the surface (Sa and the root-mean-square deviation of the surface (Sq, were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P<0.05 than the FS laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  11. Analysis of femtosecond laser assisted capsulotomy cutting edges and manual capsulorhexis using environmental scanning electron microscopy.

    Science.gov (United States)

    Serrao, Sebastiano; Lombardo, Giuseppe; Desiderio, Giovanni; Buratto, Lucio; Schiano-Lomoriello, Domenico; Pileri, Marco; Lombardo, Marco

    2014-01-01

    Purpose. To investigate the structure and irregularity of the capsulotomy cutting edges created by two femtosecond (FS) laser platforms in comparison with manual continuous circular capsulorhexis (CCC) using environmental scanning electron microscopy (eSEM). Methods. Ten anterior capsulotomies were obtained using two different FS laser cataract platforms (LenSx, n = 5, and Victus, n = 5). In addition, five manual CCC (n = 5) were obtained using a rhexis forceps. The specimens were imaged by eSEM (FEI Quanta 400, OR, USA). Objective metrics, which included the arithmetic mean deviation of the surface (Sa) and the root-mean-square deviation of the surface (Sq), were used to evaluate the irregularity of both the FS laser capsulotomies and the manual CCC cutting edges. Results. Several microirregularities were shown across the FS laser capsulotomy cutting edges. The edges of manually torn capsules were shown, by comparison of Sa and Sq values, to be smoother (P laser capsulotomy edges. Conclusions. Work is needed to understand whether the FS laser capsulotomy edge microirregularities, not seen in manual CCC, may act as focal points for the concentration of stress that would increase the risk of capsular tear during phacoemulsification as recently reported in the literature.

  12. SCANNING ELECTRON MICROSCOPY OF THE RAT ADRENAL GLAND AFTER SURGICAL LASER EXPOSURE

    Directory of Open Access Journals (Sweden)

    K. G. Kemoklidze

    2016-01-01

    Full Text Available Aim. We studied via low vacuum scanning electron microscopy the effects of a surgical laser exposure to adrenal glands and results of regeneration processes after. Materials and methods.Purpose of this work is modeling of effects of the removal with a surgical laser a pathological focus in the adrenal glands. For this Wistar male rat (n = 19 adrenal glands were researched without the laser exposure, immediately after it and 1 month later. Results. Immediately after exposure occurs laser ablation crater with rough edges and melted surface penetrated by equidistant pores, which are footprints of blood vessels. Beneath of the surface are numerous vaporizationbubbles. Around the crater, the surface wrinkles and sags due to decreased ability to retain water. 1 month after the laser damage, the affected area tightened by a scar. Its coarse bundles of collagen fibers braid shapeless lumps of coal and caverns. Tissues with normal appearance are close to the scar, both outside and inside of the organ. The wrinkling and the sagging are absent. The undamaged organ part has retained the previous shape, without hypertrophies. The damaged part has shrunk. The nature of the regeneration processes indicates a low probability of a relapse after the destruction of a pathological focus via the surgical laser exposure.

  13. Fabrication of multifaceted, micropatterned surfaces and image-guided patterning using laser scanning lithography.

    Science.gov (United States)

    Slater, John H; West, Jennifer L

    2014-01-01

    This protocol describes the implementation of laser scanning lithography (LSL) for the fabrication of multifaceted, patterned surfaces and for image-guided patterning. This photothermal-based patterning technique allows for selective removal of desired regions of an alkanethiol self-assembled monolayer on a metal film through raster scanning a focused 532 nm laser using a commercially available laser scanning confocal microscope. Unlike traditional photolithography methods, this technique does not require the use of a physical master and instead utilizes digital "virtual masks" that can be modified "on the fly" allowing for quick pattern modifications. The process to create multifaceted, micropatterned surfaces, surfaces that display pattern arrays of multiple biomolecules with each molecule confined to its own array, is described in detail. The generation of pattern configurations from user-chosen images, image-guided LSL is also described. This protocol outlines LSL in four basic sections. The first section details substrate preparation and includes cleaning of glass coverslips, metal deposition, and alkanethiol functionalization. The second section describes two ways to define pattern configurations, the first through manual input of pattern coordinates and dimensions using Zeiss AIM software and the second via image-guided pattern generation using a custom-written MATLAB script. The third section describes the details of the patterning procedure and postpatterning functionalization with an alkanethiol, protein, and both, and the fourth section covers cell seeding and culture. We end with a general discussion concerning the pitfalls of LSL and present potential improvements that can be made to the technique.

  14. Approach dealing with transversely spatial profile of pump laser in Z-scan technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y; Wang, S Y; Zhao, P D; Wang, D Y; Liu, M; Zhang, Z D, E-mail: pdzhao@eyou.com, E-mail: pd_zhao@126.com [School of Science, Hebei University of Technology, 300130, Tianjin (China)

    2011-02-01

    The spatial pulse profile makes experimental values of Two-and three photon absorption (TPA and 3PA) coefficient deviate from its true value. We report an approach taking account of the influence of pump laser pulse profile on the nonlinear absorption coefficients (NAC) in Z-scan technique. We developed a new approach in which the factor (f factor) introduced to describe the influence coming from the spatial profile of laser on two and three photon absorption coefficient. The approximation of the approach is also estimated quantitatively. With Gaussian beams the numerically related results show that, compared with NAC based on the way dealing with the pulse in usual Z-scan, the relative differences of 2-photon and 3-photon absorption coefficients obtained based on the traditional one are less than 4.2% and 16.7%. The results suggest that the factor may become useful and simple parameters in dealing with the NAC deviation resulting from the pump laser pulse envelopes for the purpose of shortcutting the Z-scan datum process.

  15. Confocal laser scanning microscopy for detection of Schistosoma mansoni eggs in the gut of mice.

    Directory of Open Access Journals (Sweden)

    Martha Charlotte Holtfreter

    Full Text Available BACKGROUND: The gold standard for diagnosing Schistosoma mansoni infections is the detection of eggs from stool or biopsy specimens. The viability of collected eggs can be tested by the miracidium hatching procedure. Direct detection methods are often limited in patients with light or early infections, whereas serological tests and PCR methods fail to differentiate between an inactive and persistent infection and between schistosomal species. Recently, confocal laser scanning microscopy (CLSM has been introduced as a diagnostic tool in several fields of medicine. In this study we evaluated CLSM for the detection of viable eggs of S. mansoni directly within the gut of infected mice. METHODOLOGY/PRINCIPAL FINDINGS: The confocal laser scanning microscope used in this study is based on the Heidelberg Retina Tomograph II scanning laser system in combination with the Rostock Cornea Module (image modality 1 or a rigid endoscope (image modality 2. Colon sections of five infected mice were examined with image modalities 1 and 2 for schistosomal eggs. Afterwards a biopsy specimen was taken from each colon section and examined by bright-field microscopy. Visualised eggs were counted and classified in terms of viability status. CONCLUSIONS/SIGNIFICANCE: We were able to show that CLSM visualises eggs directly within the gut and permits discrimination of schistosomal species and determination of egg viability. Thus, CLSM may be a suitable non-invasive tool for the diagnosis of schistosomiasis in humans.

  16. LASER SCANNING APPLICATION FOR DETECTION OF HUMAN POSTURE DISTORTION DURING MASS EXAMINATIONS

    Directory of Open Access Journals (Sweden)

    R. L. Voinov

    2014-03-01

    Full Text Available Identification of human posture distortion in the early stages is an important task, which makes it possible to adjust the onset of the disease with just exercise and without the use of drugs. Existing methods for monitoring of human posture assessment do not meet modern requirements for speed of data acquisition and processing. Real time evaluation of human posture distortion in static and dynamic modes is possible by using a laser scanner. The paper deals with a three-dimensional laser scanning method for determining human posture. The device designed on the basis of its examination gives the possibility for real-time static and dynamic modes. Characteristic feature of the laser scanner is the presence of automated servo rotatable measuring head in two planes (vertical and horizontal with a density of up to tens of measurement points per square centimeter.

  17. Geometric validation of a mobile laser scanning system for urban applications

    Science.gov (United States)

    Guan, Haiyan; Li, Jonathan; Yu, Yongtao; Liu, Yan

    2016-03-01

    Mobile laser scanning (MLS) technologies have been actively studied and implemented over the past decade, as their application fields are rapidly expanding and extending beyond conventional topographic mapping. Trimble's MX-8, as one of the MLS systems in the current market, generates rich survey-grade laser and image data for urban surveying. The objective of this study is to evaluate whether Trimble MX-8 MLS data satisfies the accuracy requirements of urban surveying. According to the formula of geo-referencing, accuracies of navigation solution and laser scanner determines the accuracy of the collected LiDAR point clouds. Two test sites were selected to test the performance of Trimble MX-8. Those extensive tests confirm that Trimble MX-8 offers a very promising tool to survey complex urban areas.

  18. Historical review and future trends of scanning optical systems for laser-beam printers

    Science.gov (United States)

    Minoura, Kazuo

    1993-12-01

    Flying spot scanning technologies providing a constant velocity were presented in 1963 and in 1969, although the concept of `f-0' was not yet explained definitely. After the middle of the 1970s, laser diodes became worthy of notice and a compact-sized laser beam printer was developed. Along with that development, the `f-0 lens' was defined based on the optical design theory in 1979 and also popular-type `f-0 lenses' were developed through the analytical design method. On the other hand, the author and colleagues worked out the best way of enabling metal light deflectors to apply in a popular-type system in 1984; which means the optical system of `deflection error compensation' with the simple composition including a toric lens. The epoch-making optical system raised the productivity of laser beam printers and also has been providing high-definition image printing. As for recent trends, low-priced and compact- sized printers are expanding their share of the market. The author predicts that future laser scanning technologies will be focused in low-priced and process-simplified printers looking closely into high-definition image quality.

  19. Time-resolved microspectrofluorometry and fluorescence lifetime imaging of photosensitizers using picosecond pulsed diode lasers in laser scanning microscopes.

    Science.gov (United States)

    Kress, Matthias; Meier, Thomas; Steiner, Rudolf; Dolp, Frank; Erdmann, Rainer; Ortmann, Uwe; Rück, Angelika

    2003-01-01

    This work describes the time-resolved fluorescence characteristics of two different photosensitizers in single cells, in detail mTHPC and 5-ALA induced PPIX, which are currently clinically used in photodynamic therapy. The fluorescence lifetime of the drugs was determined in the cells from time-gated spectra as well as single photon counting, using a picosecond pulsed diode laser for fluorescence excitation. The diode laser, which emits pulses at 398 nm with 70 ps full width at half maximum duration, was coupled to a confocal laser scanning microscope. For time-resolved spectroscopy a setup consisting of a Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Time-gated spectra within the cells were acquired by placing the laser beam in "spot scan" mode. In addition, a time-correlated single photon counting module was used to determine the fluorescence lifetime from single spots and to record lifetime images. The fluorescence lifetime of mTHPC decreased from 7.5 to 5.5 ns during incubation from 1 to 6 h. This decrease was probably attributed to enhanced formation of aggregates during incubation. Fluorescence lifetime imaging showed that longer lifetimes were correlated with accumulation in the cytoplasm in the neighborhood of the cell nucleus, whereas shorter lifetimes were found in the outer cytoplasm. For cells that were incubated with 5-ALA, a fluorescence lifetime of 7.4 ns was found for PPIX; a shorter lifetime at 3.6 ns was probably attributed to photoproducts and aggregates of PPIX. In contrast from fluorescence intensity images alone, different fluorescence species could not be distinguished. However, in the lifetime image a structured fluorescence distribution in the cytoplasm was correlated with the longer lifetime and probably coincides with mitochondria. In conclusion, picosecond diode lasers coupled to a laser scanning microscope equipped with appropriate detection units allows time-resolved spectroscopy and lifetime imaging

  20. Non-contact measurement of facial surface vibration patterns during singing by scanning laser Doppler vibrometer.

    Science.gov (United States)

    Kitamura, Tatsuya; Ohtani, Keisuke

    2015-01-01

    This paper presents a method of measuring the vibration patterns on facial surfaces by using a scanning laser Doppler vibrometer (LDV). The surfaces of the face, neck, and body vibrate during phonation and, according to Titze (2001), these vibrations occur when aerodynamic energy is efficiently converted into acoustic energy at the glottis. A vocalist's vibration velocity patterns may therefore indicate his or her phonatory status or singing skills. LDVs enable laser-based non-contact measurement of the vibration velocity and displacement of a certain point on a vibrating object, and scanning LDVs permit multipoint measurements. The benefits of scanning LDVs originate from the facts that they do not affect the vibrations of measured objects and that they can rapidly measure the vibration patterns across planes. A case study is presented herein to demonstrate the method of measuring vibration velocity patterns with a scanning LDV. The objective of the experiment was to measure the vibration velocity differences between the modal and falsetto registers while three professional soprano singers sang sustained vowels at four pitch frequencies. The results suggest that there is a possibility that pitch frequency are correlated with vibration velocity. However, further investigations are necessary to clarify the relationships between vibration velocity patterns and phonation status and singing skills.

  1. Real-Time Detection and Tracking of Multiple People in Laser Scan Frames

    Science.gov (United States)

    Cui, J.; Song, X.; Zhao, H.; Zha, H.; Shibasaki, R.

    This chapter presents an approach to detect and track multiple people ro bustly in real time using laser scan frames. The detection and tracking of people in real time is a problem that arises in a variety of different contexts. Examples in clude intelligent surveillance for security purposes, scene analysis for service robot, and crowd behavior analysis for human behavior study. Over the last several years, an increasing number of laser-based people-tracking systems have been developed in both mobile robotics platforms and fixed platforms using one or multiple laser scanners. It has been proved that processing on laser scanner data makes the tracker much faster and more robust than a vision-only based one in complex situations. In this chapter, we present a novel robust tracker to detect and track multiple people in a crowded and open area in real time. First, raw data are obtained that measures two legs for each people at a height of 16 cm from horizontal ground with multiple registered laser scanners. A stable feature is extracted using accumulated distribu tion of successive laser frames. In this way, the noise that generates split and merged measurements is smoothed well, and the pattern of rhythmic swinging legs is uti lized to extract each leg. Second, a probabilistic tracking model is presented, and then a sequential inference process using a Bayesian rule is described. A sequential inference process is difficult to compute analytically, so two strategies are presented to simplify the computation. In the case of independent tracking, the Kalman fil ter is used with a more efficient measurement likelihood model based on a region coherency property. Finally, to deal with trajectory fragments we present a concise approach to fuse just a little visual information from synchronized video camera to laser data. Evaluation with real data shows that the proposed method is robust and effective. It achieves a significant improvement compared with existing laser

  2. Direct mapping of local redox current density on a monolith electrode by laser scanning.

    Science.gov (United States)

    Lee, Seung-Woo; Lopez, Jeffrey; Saraf, Ravi F

    2013-09-15

    An optical method of mapping local redox reaction over a monolith electrode using simple laser scanning is described. As the optical signal is linearly proportional to the maximum redox current that is measured concomitantly by voltammetry, the optical signal quantitatively maps the local redox current density distribution. The method is demonstrated on two types of reactions: (1) a reversible reaction where the redox moieties are ionic, and (2) an irreversible reaction on two different types of enzymes immobilized on the electrode where the reaction moieties are nonionic. To demonstrate the scanning capability, the local redox behavior on a "V-shaped" electrode is studied where the local length scale and, hence, the local current density, is nonuniform. The ability to measure the current density distribution by this method will pave the way for multianalyte analysis on a monolith electrode using a standard three-electrode configuration. The method is called Scanning Electrometer for Electrical Double-layer (SEED).

  3. Development of scanning laser sensor for underwater 3D imaging with the coaxial optics

    Science.gov (United States)

    Ochimizu, Hideaki; Imaki, Masaharu; Kameyama, Shumpei; Saito, Takashi; Ishibashi, Shoujirou; Yoshida, Hiroshi

    2014-06-01

    We have developed the scanning laser sensor for underwater 3-D imaging which has the wide scanning angle of 120º (Horizontal) x 30º (Vertical) with the compact size of 25 cm diameter and 60 cm long. Our system has a dome lens and a coaxial optics to realize both the wide scanning angle and the compactness. The system also has the feature in the sensitivity time control (STC) circuit, in which the receiving gain is increased according to the time of flight. The STC circuit contributes to detect a small signal by suppressing the unwanted signals backscattered by marine snows. We demonstrated the system performance in the pool, and confirmed the 3-D imaging with the distance of 20 m. Furthermore, the system was mounted on the autonomous underwater vehicle (AUV), and demonstrated the seafloor mapping at the depth of 100 m in the ocean.

  4. Continuous modulations of femtosecond laser-induced periodic surface structures and scanned line-widths on silicon by polarization changes.

    Science.gov (United States)

    Han, Weina; Jiang, Lan; Li, Xiaowei; Liu, Pengjun; Xu, Le; Lu, YongFeng

    2013-07-01

    Large-area, uniform laser-induced periodic surface structures (LIPSS) are of wide potential industry applications. The continuity and processing precision of LIPSS are mainly determined by the scanning intervals of adjacent scanning lines. Therefore, continuous modulations of LIPSS and scanned line-widths within one laser scanning pass are of great significance. This study proposes that by varying the laser (800 nm, 50 fs, 1 kHz) polarization direction, LIPSS and the scanned line-widths on a silicon (111) surface can be continuously modulated with high precision. It shows that the scanned line-width reaches the maximum when the polarization direction is perpendicular to the scanning direction. As an application example, the experiments show large-area, uniform LIPSS can be fabricated by controlling the scanning intervals based on the one-pass scanned line-widths. The simulation shows that the initially formed LIPSS structures induce directional surface plasmon polaritons (SPP) scattering along the laser polarization direction, which strengthens the subsequently anisotropic LIPSS fabrication. The simulation results are in good agreement with the experiments, which both support the conclusions of continuous modulations of the LIPSS and scanned line-widths.

  5. MICROSTRUCTURING OF SILICON SINGLE CRYSTALS BY FIBER LASER IN HIGH-SPEED SCANNING MODE

    Directory of Open Access Journals (Sweden)

    T. A. Trifonova

    2015-11-01

    Full Text Available Subject of Study. The surface structure of the silicon wafers (substrate with a thermally grown silicon dioxide on the surface (of SiO2/Si is studied after irradiation by pulse fiber laser of ILI-1-20 type. The main requirements for exposure modes of the system are: the preservation of the integrity of the film of silicon dioxide in the process of microstructuring and the absence of interference of surrounding irradiated areas of the substrate. Method. Studies were carried out on silicon wafers KEF-4,5 oriented in the crystallographic plane (111 with the source (natural silicon dioxide (SiO2 with thickness of about 4 nm, and SiO2 with 40 nm and 150 nm thickness, grown by thermal oxidation in moist oxygen. Also, wafers KHB-10 oriented in the plane (100 with 500 nm thickness of thermal oxide were investigated. Irradiation of SiO2/Si system was produced by laser complex based on ytterbium fiber pulse laser ILI-1-20. Nominal output power of the laser was 20 W, and the laser wavelength was λ = 1062 nm. Irradiation was carried out by a focused beam spot with a diameter of 25 microns and a pulse repetition rate of 99 kHz. The samples with 150 nm and 40 nm thickness of SiO2 were irradiated at a power density equal to 1,2·102 W/cm2, and the samples of SiO2 with 500 nm thickness were irradiated at a power density equal to 2,0·102 W/cm2. Scanning was performed using a two-axis Coordinate Scanning Device based on VM2500+ drives with control via a PC with the software package "SinMarkTM." Only one scan line was used at the maximum speed of the beam equal to 8750 mm/s. Morphology control of the irradiated samples was conducted by an optical microscope ZeissA1M with high-resolution CCD array. A scanning probe microscope Nanoedicator of the NT-MDT company was used for structural measurements. Main Results. It has been shown that at a single exposure of high-frequency pulsed laser radiation on SiO2/Si system, with maintaining the integrity of the SiO2 film

  6. FROM THE CONTINUOS TO THE DISCRETE MODEL: A LASER SCANNING APPLICATION TO CONSERVATION PROJECTS

    Directory of Open Access Journals (Sweden)

    A. Cardaci

    2012-09-01

    Full Text Available This paper aims to demonstrate the usage of laser scanning (in particular through a methodology based on the integrated use of the software "FARO© Scene" and "GEXCEL JRC-3D Reconstructor" as a valid alternative to traditional surveying techniques, especially when finalized to the restoration and conservation repair of historical buildings. The need to recreate the complex and often irregular shapes of the ancient architecture, by acting quickly and also being accurate, as well as the subsequent implementation of FEM (Finite Element Method for structural analysis, have made nowadays the laser scanning survey a very useful technique. The point cloud obtained by laser scanning can be a flexible tool for every need; not a finished product, but a huge database from which it is possible to extract different information at different times. The use of numerical methods in data processing allows wide opportunities of further investigations starting from the fitting equations. The numerical model lends by itself to the possibility of usage in many applications, such as modelization and structure analysis software. This paper presents the case study of the Church of the Assumption and Saint Michael the Archangel, located in Borgo di Terzo (Italy, a magnificent 18th century's building that presented several structural problems like as the overturning of the façade, the cracking of part of the vaulted ceiling. The survey, carried out by laser scanner (FARO© Photon 120 allowed the reconstruction of the exact geometry of the church, offering the basis for performing structural analysis supported by a realistic model (and not an idealized regular one, useful also in the design of repair interventions.

  7. Lateral resolution improvement of laser-scanning imaging for nano defects detection

    Science.gov (United States)

    Yokozeki, Hiroki; Kudo, Ryota; Takahashi, Satoru; Takamasu, Kiyoshi

    2014-08-01

    Demand for higher efficiency in the semiconductor manufacturing industry is continually increasing. In particular, nano defects measurement on patterned or bare Si semiconductor wafer surfaces is an important quality control factor for realizing high productivity and reliability of semiconductor device fabrication. Optical methods and electron beam methods are conventionally used for the inspection of semiconductor wafers. Because they are nondestructive and suitable for high-throughput inspection, optical methods are preferable to electron beam methods such as scanning electron microscopy, transmission electron microscopy, and so on. However, optical methods generally have an essential disadvantage about lateral spatial resolution than electron beam methods, because of the diffraction limit depending on the optical wavelength. In this research, we aim to develop a novel laser-scanning imaging method that can be applied to nano-/micro manufacturing processes such as semiconductor wafer surface inspection to allow lateral spatial super-resolution imaging with resolution beyond the diffraction limit. In our proposed method, instead of detecting the light intensity value from the beam spot on the inspection surface, the light intensity distribution, which is formed with infinity corrected optical system, coming from the beam spot on the inspection surface is detected. In addition, nano scale shifts in the beam spot are applied for laser spot scanning using a conventional laser-scanning method in which the spots are shifted at about a 100 nm pitch. By detecting multiple light intensity distributions due to the nano scale shifts, a super-resolution image reconstruction with resolution beyond the diffraction limit can be expected. In order to verify the feasibility of the proposed method, several numerical simulations were carried out.

  8. Confocal laser scanning microscopy, a new in vivo diagnostic tool for schistosomiasis.

    Directory of Open Access Journals (Sweden)

    Carlos Fritzsche

    Full Text Available BACKGROUND: The gold standard for the diagnosis of schistosomiasis is the detection of the parasite's characteristic eggs in urine, stool, or rectal and bladder biopsy specimens. Direct detection of eggs is difficult and not always possible in patients with low egg-shedding rates. Confocal laser scanning microscopy (CLSM permits non-invasive cell imaging in vivo and is an established way of obtaining high-resolution images and 3-dimensional reconstructions. Recently, CLSM was shown to be a suitable method to visualize Schistosoma mansoni eggs within the mucosa of dissected mouse gut. In this case, we evaluated the suitability of CLSM to detect eggs of Schistosoma haematobium in a patient with urinary schistosomiasis and low egg-shedding rates. METHODOLOGY/PRINCIPAL FINDINGS: The confocal laser scanning microscope used in this study was based on a scanning laser system for imaging the retina of a living eye, the Heidelberg Retina Tomograph II, in combination with a lens system (image modality. Standard light cystoscopy was performed using a rigid cystoscope under general anaesthesia. The CLSM endoscope was then passed through the working channel of the rigid cystoscope. The mucosal tissue of the bladder was scanned using CLSM. Schistoma haematobium eggs appeared as bright structures, with the characteristic egg shape and typical terminal spine. CONCLUSION/SIGNIFICANCE: We were able to detect schistosomal eggs in the urothelium of a patient with urinary schistosomiasis. Thus, CLSM may be a suitable tool for the diagnosis of schistosomiasis in humans, especially in cases where standard diagnostic tools are not suitable.

  9. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment

    NARCIS (Netherlands)

    Razak, Khamarrul Azahari; Santangelo, Michele; Westen, van Cees J.; Straatsma, Menno W.; Jong, de Steven M.

    2013-01-01

    Landslide inventory maps are fundamental for assessing landslide susceptibility, hazard, and risk. In tropical mountainous environments, mapping landslides is difficult as rapid and dense vegetation growth obscures landslides soon after their occurrence. Airborne laser scanning (ALS) data have been

  10. Development of a 2D laser ablation inductively coupled plasma mass spectrometry mapping procedure for mercury in maize (Zea mays L.) root cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Debeljak, Marta [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia); Elteren, Johannes T. van, E-mail: elteren@ki.si [Analytical Chemistry Laboratory, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, Katarina [Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000 Ljubljana (Slovenia)

    2013-07-17

    Graphical abstract: -- Highlights: •LA-ICP-MS mapping to study the distribution of Hg in plant root cross-sections. •Sorption of LA-generated Hg vapour leads to serious memory effects. •Spot analysis with a delay time of 10 s in between spots alleviates memory effects. •Ablation straight through the sample simplifies calibration. •Hg{sup 2+} does not cross the endodermal root barrier of maize plants. -- Abstract: A LA-ICP-MS method based on a 213 nm Nd:YAG laser and a quadrupole ICP-MS has been developed for mapping of mercury in root cross-sections of maize (Zea mays L.) to investigate the mechanism of mercury uptake from soil and its potential translocation to the edible parts. Conventional rastering was found to be unusable due to sorption of mercury onto the internal parts of the LA device, giving rising to memory effects resulting in serious loss of resolution and inaccurate quantification. Spot analysis on a virtual grid on the surface of the root sections using washout times of 10 s in between spots greatly alleviated problems related to these memory effects. By ablating straight through the root sections on a poly(methyl methacrylate) support the calibration process was simplified as internal standardization and matrix-matching could be circumvented. Mercury-spiked freeze-drying embedding medium, sectioned similarly to the root sections, was used for the preparation of the standards. Standards and root sections were subjected to spot analysis using the following operational parameters: beam diameter, 15 μm; laser fluence, 2.5 J cm{sup −2}; repetition rate, 20 Hz; dwell time, 1 s; acquisition time, 0.1 s. The mercury peaks for standards and roots sections could be consistently integrated for quantification and construction of the 2D mercury maps for the root sections. This approach was successfully used to investigate the mercury distribution in root sections of maize grown in soil spiked to a level of 50 mg kg{sup −1} DW HgCl{sub 2}. It was

  11. A LOW BUDGET MOBILE LASER SCANNING SOLUTION USING ON BOARD SENSORS AND FIELD BUS SYSTEMS OF TODAY'S CONSUMER AUTOMOBILES

    Directory of Open Access Journals (Sweden)

    D. M. M. Vock

    2012-09-01

    Full Text Available Mobile laser scanning systems (MLS offer a great potential for acquiring detailed point cloud data of urban and suburban surroundings with minimum effort. In this paper a new solution for MLSs is presented, requiring solely a combination of a profile laser scanning device and systems that are included in today's serialized end consumer vehicles. While today's mobile laser scan systems require different and expensive additional hardware that needs to be mounted onto the vehicle, the devices included within vehicle electronics offer good alternatives without additional costs.The actual scan consists of a continuous profile scan together with information gathered from on-board sensor modules. In a post- processing step, the sensor data is used to reconstruct the car's trajectory for the period of the scan and, based on this information, the track of the scan device for every measured laser pixel. Synchronization of pixel data and vehicle movement is realized via a timestamp signal which is transmitted to the car's field bus system and the scan device. To generate the final point cloud scenario, the trajectory is interpolated for every single scan point and used to convert its local position within the profile into the global coordinate system (Fig.1, Left.

  12. 2D elemental mapping of sections of human kidney stones using laser ablation inductively-coupled plasma-mass spectrometry: Possibilities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Vašinová Galiová, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno (Czech Republic); Čopjaková, Renata; Škoda, Radek [Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Štěpánková, Kateřina; Vaňková, Michaela [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kuta, Jan [Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno (Czech Republic); Prokeš, Lubomír [Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno (Czech Republic); Kynický, Jindřich [Department of Pedology and Geology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemědělská 3, 613 00 Brno (Czech Republic); and others

    2014-10-01

    A 213 nm Nd:YAG-based laser ablation (LA) system coupled to quadrupole-based inductively coupled plasma-mass spectrometer and an ArF* excimer-based LA-system coupled to a double-focusing sector field inductively coupled plasma-mass spectrometer were employed to study the spatial distribution of various elements in kidney stones (uroliths). Sections of the surfaces of uroliths were ablated according to line patterns to investigate the elemental profiles for the different urolith growth zones. This exploratory study was mainly focused on the distinguishing of the main constituents of urinary calculus fragments by means of LA-ICP-mass spectrometry. Changes in the ablation rate for oxalate and phosphate phases related to matrix density and hardness are discussed. Elemental association was investigated on the basis of 2D mapping. The possibility of using NIST SRM 1486 Bone Meal as an external standard for calibration was tested. It is shown that LA-ICP-MS is helpful for determination of the mineralogical composition and size of all phases within the analyzed surface area, for tracing down elemental associations and for documenting the elemental content of urinary stones. LA-ICP-MS results (elemental contents and maps) are compared to those obtained with electron microprobe analysis and solution analysis ICP-MS. - Highlights: • Elements in phosphate and oxalate urolith phases were quantified by LA-ICP-MS. • SRM NIST 1486 Bone Meal was proved suitable for quantification in uroliths. • Different ablation rates in particular phases were included at quantification. • Oxalate and apatite phases show opposite hardness order to natural minerals. • Uroliths were classified according to elemental association to phases.

  13. Optimization of 3D laser scanning speed by use of combined variable step

    Science.gov (United States)

    Garcia-Cruz, X. M.; Sergiyenko, O. Yu.; Tyrsa, Vera; Rivas-Lopez, M.; Hernandez-Balbuena, D.; Rodriguez-Quiñonez, J. C.; Basaca-Preciado, L. C.; Mercorelli, P.

    2014-03-01

    The problem of 3D TVS slow functioning caused by constant small scanning step becomes its solution in the presented research. It can be achieved by combined scanning step application for the fast search of n obstacles in unknown surroundings. Such a problem is of keynote importance in automatic robot navigation. To maintain a reasonable speed robots must detect dangerous obstacles as soon as possible, but all known scanners able to measure distances with sufficient accuracy are unable to do it in real time. So, the related technical task of the scanning with variable speed and precise digital mapping only for selected spatial sectors is under consideration. A wide range of simulations in MATLAB 7.12.0 of several variants of hypothetic scenes with variable n obstacles in each scene (including variation of shapes and sizes) and scanning with incremented angle value (0.6° up to 15°) is provided. The aim of such simulation was to detect which angular values of interval still permit getting the maximal information about obstacles without undesired time losses. Three of such local maximums were obtained in simulations and then rectified by application of neuronal network formalism (Levenberg-Marquradt Algorithm). The obtained results in its turn were applied to MET (Micro-Electro-mechanical Transmission) design for practical realization of variable combined step scanning on an experimental prototype of our previously known laser scanner.

  14. Ship Maintenance Processes with Collaborative Product Lifecycle Management and 3D Terrestrial Laser Scanning Tools: Reducing Costs and Increasing Productivity

    Science.gov (United States)

    2012-04-30

    approach that incorporates the 3D terrestrial laser scanning (3D TLS) and collaborative product lifecycle management (collab- PLM ) tool suite. Results...incorporated into final implementation of the 3D TLS and collab- PLM tools. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...terrestrial laser scanning (3D TLS) and collaborative product lifecycle management (collab- PLM ) tool suite. Results suggest that when the SHIPMAIN process

  15. An interactive mapping tool for visualizing lacunarity of laser scanned point clouds

    Science.gov (United States)

    Kania, Adam; Székely, Balázs

    2016-04-01

    Lacunarity, a measure of the spatial distribution of the empty space in a certain model or real space over large spatial scales, is found to be a useful descriptive quantity in many fields using imagery, including, among others, geology, dentistry, neurology. Its application in ecology was suggested more than 20 years ago. The main problem of its application was the lack of appropriate high resolution data. Nowadays, full-waveform laser scanning, also known as FWF LiDAR, provides the tool for mapping the vegetation in unprecedented details and accuracy. Consequently, the lacunarity concept can be revitalized, in order to study the structure of the vegetation in this sense as well. Calculation of lacunarity, even if it is done in two dimensions (2D), is still has its problems: on one hand it is a number-crunching procedure, on the other hand, it produces 4D results: at each 3D point it returns a set of data that are function of scale. These data sets are difficult to visualize, to evaluate, and to compare. In order to solve this problem, an interactive mapping tool has been conceptualized that is designed to manipulate and visualize the data, lets the user set parameters for best visualization or comparison results. The system is able to load large amounts of data, visualize them as lacunarity curves, or map view as horizontal slices or in 3D point clouds coloured according to the user's choice. Lacunarity maps are presented as a series of (usually) horizontal profiles, e.g. rasters, which cells contain color-mapped values of selected lacunarity of the point cloud. As lacunarity is usually analysed in a series of successive windows sizes, the tool can show a series of rasters with sequentially animated lacunarity maps calculated for various window sizes. A very fast switching of colour schemes is possible to facilitate rapid visual feedback to better understand underlying data patterns exposed by lacunarity functions. In the comparison mode, two sites (or two areas

  16. Intelligent multisensor concept for image-guided 3D object measurement with scanning laser radar

    Science.gov (United States)

    Weber, Juergen

    1995-08-01

    This paper presents an intelligent multisensor concept for measuring 3D objects using an image guided laser radar scanner. The field of application are all kinds of industrial inspection and surveillance tasks where it is necessary to detect, measure and recognize 3D objects in distances up to 10 m with high flexibility. Such applications might be the surveillance of security areas or container storages as well as navigation and collision avoidance of autonomous guided vehicles. The multisensor system consists of a standard CCD matrix camera and a 1D laser radar ranger which is mounted to a 2D mirror scanner. With this sensor combination it is possible to acquire gray scale intensity data as well as absolute 3D information. To improve the system performance and flexibility, the intensity data of the scene captured by the camera can be used to focus the measurement of the 3D sensor to relevant areas. The camera guidance of the laser scanner is useful because the acquisition of spatial information is relatively slow compared to the image sensor's ability to snap an image frame in 40 ms. Relevant areas in a scene are located by detecting edges of objects utilizing various image processing algorithms. The complete sensor system is controlled by three microprocessors carrying out the 3D data acquisition, the image processing tasks and the multisensor integration. The paper deals with the details of the multisensor concept. It describes the process of sensor guidance and 3D measurement and presents some practical results of our research.

  17. Intercomparison of Terrestrial Laser Scanning Instruments for Assessing Forested Ecosystems: A Brisbane Field Experiment

    Science.gov (United States)

    Armston, J.; Newnham, G.; Strahler, A. H.; Schaaf, C.; Danson, M.; Gaulton, R.; Zhang, Z.; Disney, M.; Sparrow, B.; Phinn, S. R.; Schaefer, M.; Burt, A.; Counter, S.; Erb, A.; Goodwin, N.; Hancock, S.; Howe, G.; Johansen, K.; Li, Z.; Lollback, G.; Martel, J.; Muir, J.; Paynter, I.; Saenz, E.; Scarth, P.; Tindall, D.; Walker, L.; Witte, C.; Woodgate, W.; Wu, S.

    2013-12-01

    During 28th July - 3rd August, 2013, an international group of researchers brought five terrestrial laser scanners (TLS) to long-term monitoring plots in three eucalyptus-dominated woodland sites near Brisbane, Queensland, Australia, to acquire scans at common locations for calibration and intercomparison.They included: DWEL - a dual-wavelength full-waveform laser scanner (Boston U., U. Massachusetts Lowell, U. Massachusetts Boston, USA) SALCA - a dual-wavelength full-waveform laser scanner (U. Salford, UK) CBL - a canopy biomass lidar, a small ultraportable low-cost multiple discrete return scanner (U. Massachusetts Boston, USA) Riegl VZ400 - a survey-grade commercial waveform scanner (Queensland Government and TERN, U. Queensland, Australia) FARO Focus 3D - a lightweight commercial phase-shift ranging laser scanner (U. Southern Queensland) Two plots were scanned at Karawatha Forest Park, a Terrestrial Ecosystem Research Network (TERN) Supersite, and one plot at D'Aguilar National Park. At each 50 x 100 m plot, a center scan point was surrounded by four scan points located 25 m away in a cross pattern allowing for 3-D reconstructions of scan sites in the form of point clouds. At several center points, multiple instrument configurations (i.e. different beam divergence, angular resolution, pulse rate) were acquired to test the impact of instrument specifications on separation of woody and non-woody materials and estimation of vegetation structure parameters. Three-dimensional Photopoint photographic panoramas were also acquired, providing reconstructions of stems in the form of point clouds using photogrammetric correlation methods. Calibrated reflectance targets were also scanned to compare instrument geometric and radiometric performance. Ancillary data included hemispherical photos, TRAC LAI/clumping measurements, spectra of leaves, bark, litter, and other target components. Wet and dry leaf weights determined water content. Planned intercomparison topics and

  18. Visualization of Guided Wave Propagation with Laser Doppler Vibrometer Scanning on Curved Surfaces

    Science.gov (United States)

    Hayashi, T.; Kojika, Y.; Kataoka, K.; Takikawa, M.

    2008-02-01

    In guided wave inspection for pipes, defect characterization is performed by echoes from defects. However, since detected signals become very complex due to mode conversion and multiple reflections, wave mechanics in a pipe with defects are not well studied. In this study, therefore, visualization technique for guided waves in a pipe is developed. In order to visualize guided wave propagation in a pipe, we need to scan an ultrasonic probe and measure ultrasonic waves at many points on a surface of a pipe. Position and posture of a laser doppler vibrometer are controlled by a robot arm, and ultrasonic vibration is detected at arbitrary points from arbitrary laser beam direction. Using the laser scanning technique, reflected guided waves from a shallow round defect was observed in the visualization results. From the defect, reflected waves propagated spirally in the oblique direction. From the view point of guided wave, the spiral waves were very high order modes that have not been measured in guided wave inspection. This result shows that such high order guided wave modes should be useful for defect characterization as well as low order modes.

  19. Real time confocal laser scanning microscopy: Potential applications in space medicine and cell biology

    Science.gov (United States)

    Rollan, Ana; Ward, Thelma; McHale, Anthony P.

    Photodynamic therapy (PDT), in which tissues may be rendered fatally light-sensitive represents a relatively novel treatment for cancer and other disorders such as cardiovascular disease. It offers significant application to disease control in an isolated environment such as space flight. In studying PDT in the laboratory, low energy lasers such as HeNe lasers are used to activate the photosensitized cellular target. A major problem associated with these studies is that events occurring during actual exposure of the target cells to the system cannot be examined in real time. In this study HeLa cells were photosensitized and photodynamic activation was accomplished using the scanning microbeam from a confocal laser scanning microscope. This form of activation allowed for simultaneous photoactivation and observation and facilitated the recording of events at a microscopic level during photoactivation. Effects of photodynamic activation on the target cells were monitored using the fluorophores rhodamine 123 and ethidium homodimer-1. Potential applications of these forms of analyses to space medicine and cell biology are discussed.

  20. Tritium Removal from Codeposits on Carbon Tiles by a Scanning Laser

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; C.A. Gentile; A. Carpe; G. Guttadora; S. Langish; K.M. Young; W.M. Shu; and H. Nakamura

    2001-09-28

    A novel method for tritium release has been demonstrated on codeposited layers on graphite and carbon-fiber-composite tiles from the Tokamak Fusion Test Reactor (TFTR). A scanning continuous wave Nd laser beam heated the codeposits to a temperature of 1200-2300 degrees C for 10 to 200 milliseconds in an argon atmosphere. The temperature rise of the codeposit was significantly higher than that of the manufactured tile material (e.g., 1770 degrees C cf. 1080 degrees C). A major fraction of tritium was thermally desorbed with minimal change to the surface appearance at a laser intensity of 8 kW/cm(superscript ''2''), peak temperatures above 1230 degrees C and heating duration 10-20 milliseconds. In two experiments, 46% and 84% of the total tritium was released during the laser scan. The application of this method for tritium removal from a tokamak reactor appears promising and has significant advantages over oxidative techniques.

  1. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible.

  2. Experimental underwater scanning imaging system using pulsed blue-green lasers

    Science.gov (United States)

    Wang, Lei; Xu, Zhi-yong; Zhang, Qi-heng; Wang, Hua-chuang; Yu, Xue-gang; Nie, Rui-jie

    2011-06-01

    A new, simple and compact experimental laser scanning imaging system is introduced for underwater imaging, and the characteristics of the system are analyzed in this paper. The system consists of the illuminator, optical scanning system, optical receiving system, narrow band filters, high-sensitivity gated image sensor, synchronous control and data acquisition system and power supply and cooling system. The illuminator is a lump-pumped, Q-switched, frequency doubled Nd:YAG pulsed laser operating at 532 nm with a frequency of 50 Hz. The receiver is a self-made gated intensified charge coupled device (ICCD). As a result, gated super Gen-II image intensifier and PAL format charge-coupled device (CCD) camera are assembled to meet the requirements. The coupling gated ICCD has a sensitivity of approximated 10-5lx, and the minimum gate width can reach to 40 ns. And a set of scanning structure which only uses one mirror is used in the experimental system. In addition, the performance parameters are listed. Finally, the detection capabilities of the imaging system are theoretically analyzed in typical seawater. The analysis indicates that the detection depth of the system can reach to 16 m in the clear seawater.

  3. Highly Accurate Tree Models Derived from Terrestrial Laser Scan Data: A Method Description

    Directory of Open Access Journals (Sweden)

    Jan Hackenberg

    2014-05-01

    Full Text Available This paper presents a method for fitting cylinders into a point cloud, derived from a terrestrial laser-scanned tree. Utilizing high scan quality data as the input, the resulting models describe the branching structure of the tree, capable of detecting branches with a diameter smaller than a centimeter. The cylinders are stored as a hierarchical tree-like data structure encapsulating parent-child neighbor relations and incorporating the tree’s direction of growth. This structure enables the efficient extraction of tree components, such as the stem or a single branch. The method was validated both by applying a comparison of the resulting cylinder models with ground truth data and by an analysis between the input point clouds and the models. Tree models were accomplished representing more than 99% of the input point cloud, with an average distance from the cylinder model to the point cloud within sub-millimeter accuracy. After validation, the method was applied to build two allometric models based on 24 tree point clouds as an example of the application. Computation terminated successfully within less than 30 min. For the model predicting the total above ground volume, the coefficient of determination was 0.965, showing the high potential of terrestrial laser-scanning for forest inventories.

  4. Laser-scanning velocimetry: A confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Linney Elwood

    2007-07-01

    Full Text Available Abstract Background The zebrafish Danio rerio is an important model system for drug discovery and to study cardiovascular development. Using a laser-scanning confocal microscope, we have developed a non-invasive method of measuring cardiac performance in zebrafish embryos and larvae that obtains cardiovascular parameters similar to those obtained using Doppler echocardiography in mammals. A laser scan line placed parallel to the path of blood in the dorsal aorta measures blood cell velocity, from which cardiac output and indices of vascular resistance and contractility are calculated. Results This technique, called laser-scanning velocimetry, was used to quantify the effects of pharmacological, developmental, and genetic modifiers of cardiac function. Laser-scanning velocimetry was applied to analyze the cardiovascular effects of morpholino knockdown of osmosensing scaffold for MEKK3 (OSM, which when mutated causes the human vascular disease cerebral cavernous malformations. OSM-deficient embryos had a constricted aortic arch and markedly increased peak cell velocity, a characteristic indicator of aortic stenosis. Conclusion These data validate laser-scanning velocimetry as a quantitative tool to measure cardiovascular performance for pharmacological and genetic analysis in zebrafish, which requires no specialized equipment other than a laser-scanning confocal microscope.

  5. A Combination of Stop-and-Go and Electro-Tricycle Laser Scanning Systems for Rural Cadastral Surveys

    Directory of Open Access Journals (Sweden)

    Liang Zhong

    2016-09-01

    Full Text Available Over the past decade, land-based laser scanning technologies have been actively studied and implemented, in response to the need for detailed three-dimensional (3D data about our rural and urban environment for topographic mapping, cadastral mapping, and other street-level features, which are difficult and time consuming to measure by other instruments. For rural areas in China, the complex terrain and poor planning limit the applicability of this advanced technology. To improve the efficiency of rural surveys, we present two SSW (Shoushi and SiWei laser scanning systems for rapid topographic mapping: stop-and-go and electro-tricycle laser scanning systems. The objective of this paper is to evaluate whether laser scanning data collected by the developed SSW systems meet the accuracy requirements for rural homestead mapping. We investigated the performance of the two laser scanning systems on Ma’anshan Village, a small, typical village in Hubei Province, China. To obtain full coverage of the village, we fused the stop-and-go and electro-tricycle laser scanning data. The performance of the developed SSW systems is described by the results of building contours extracted from the fused data against the established building vector map.

  6. Depth Profiling of SBS/PET Layered Materials Using Step-Scan Phase Modulation FTIR-PAS with G2D Correlation Analysis%Depth Profiling of SBS/PET Layered Materials Using Step-Scan Phase Modulation FTIR-PAS with G2D Correlation Analysis

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Step-scan phase modulation FTIR-photoacoustic spectroscopy (PAS) provides a way to study the depth profile of layered materials and has been described elsewhere. Thermal diffusion length was kept identical through phase modulation in the whole wavenumber region. Phase rotation method is used in depth profile of SBS/PET layered samples and the spectral information of any depth can be obtained.

  7. The Results of Raster-Scan Laser Conditioning Studies on DKDP Triplers Using Nd: YAG and Excimer Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M; Neeb, K; Staggs, M; Auerbach, J; Burnham, A

    2001-11-01

    In this paper we present the results of damage tests performed at 1064 and 355-nm at 8-10 ns on conventional and rapid growth DKDP tripler crystals. The crystals were laser conditioned prior to damage testing by raster scanning using either Nd:YAG (1064 and 355 nm, 8-10ns) or excimer lasers at 248, 308 or 351 nm with pulse durations of approximately 30-47 ns. The results show that it is possible to attain increases in 355-nm damage probability fluences of 2X for excimer conditioning at 248 and 308 nm. However these wavelengths can induce absorption sufficient to induce bulk fracture by thermal shock when impurities such as arsenic, rubidium and sulfur are present in the crystals in sufficient quantity. Tests to evaluate the efficiency of 351-nm conditioning (XeF excimer) show improvements of 2X and that thermal fracture by induced absorption is not a problem. We also discuss our recent discovery that low fluence raster scanning at UV wavelengths leads to 1064-nm damage thresholds of over 100 J/cm{sup 2} (10-ns pulses).

  8. Short-pulsed diode lasers as an excitation source for time-resolved fluorescence applications and confocal laser scanning microscopy in PDT

    Science.gov (United States)

    Kress, Matthias; Meier, Thomas H.; El-Tayeb, Tarek A. A.; Kemkemer, Ralf; Steiner, Rudolf W.; Rueck, Angelika C.

    2001-11-01

    This article describes a setup for subcellular time-resolved fluorescence spectroscopy and fluorescence lifetime measurements using a confocal laser scanning microscope in combination with a short pulsed diode laser for fluorescence excitation and specimen illumination. The diode laser emits pulses at 398 nm wavelength with 70 ps full width at half maximum (FWHM) duration. The diode laser can be run at a pulse repetition rate of 40 MHz down to single shot mode. For time resolved spectroscopy a spectrometer setup consisting of an Czerny Turner spectrometer and a MCP-gated and -intensified CCD camera was used. Subcellular fluorescence lifetime measurements were achieved using a time-correlated single photon counting (TCSPC) module instead of the spectrometer setup. The capability of the short pulsed diode laser for fluorescence imaging, fluorescence lifetime measurements and time-resolved spectroscopy in combination with laser scanning microscopy is demonstrated by fluorescence analysis of several photosensitizers on a single cell level.

  9. Optical analysis of scanning microstereolithography systems

    Science.gov (United States)

    Deshmukh, Suhas P.; Dubey, Shashikant; Gandhi, P. S.

    2006-01-01

    Microstereolithography (MSL) is rapidly developing technique for micro-fabrication. Vector-by-vector scanning MSL has a potential to create true 3D micro-devices as compared to mostly planar (2D-2 1/2 D) devices fabricated by conventional MEMS techniques. Previous literature shows two different scanning methods:(1) Galvanomirror scanning, (2) Photoreactor tank scanning. Galvanomirror scanning technique has higher fabrication speed but poor resolution because of defocusing of laser spot on the resin surface. Photo-reactor tank scanning has higher resolution but produces a wavy structures and limited speed of fabrication. This paper proposes and develops an offaxis lens scanning technique for MSL and carries out optical analysis to compare its performance with the existing techniques mentioned above. The comparison clearly demonstrates improved performance with the proposed offaxis lens scanning technique.

  10. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Science.gov (United States)

    Kim, Dongkyu; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan

    2016-06-01

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  11. Efficacy of patterned scan laser in treatment of macular edema and retinal neovascularization

    Directory of Open Access Journals (Sweden)

    Dimple Modi

    2009-08-01

    -term follow-up. PASCAL® photocoagulation can be performed quicker with less discomfort for patients.Keywords: diabetic retinopathy, laser, macular edema, PASCAL, patterned scan laser, photocoagulation, retinal neovascularization

  12. The Use of Computer Vision Algorithms for Automatic Orientation of Terrestrial Laser Scanning Data

    Science.gov (United States)

    Markiewicz, Jakub Stefan

    2016-06-01

    The paper presents analysis of the orientation of terrestrial laser scanning (TLS) data. In the proposed data processing methodology, point clouds are considered as panoramic images enriched by the depth map. Computer vision (CV) algorithms are used for orientation, which are applied for testing the correctness of the detection of tie points and time of computations, and for assessing difficulties in their implementation. The BRISK, FASRT, MSER, SIFT, SURF, ASIFT and CenSurE algorithms are used to search for key-points. The source data are point clouds acquired using a Z+F 5006h terrestrial laser scanner on the ruins of Iłża Castle, Poland. Algorithms allowing combination of the photogrammetric and CV approaches are also presented.

  13. Modeling the Crystallization of Amorphous Silicon Thin Films Using a High Repetition Rate Scanning Laser

    Directory of Open Access Journals (Sweden)

    R. Černý

    2000-01-01

    Full Text Available An optimum design of experimental setup for the preparation of polycrystalline silicon (pc-Si films from amorphous layers applicable in the solar cell production is analyzed in the paper. In the computational simulations, the influence of basic characteristic parameters of the experimental procedure on the mechanisms of pc-Si lateral growth is studied. Among these parameters, the energy density of the applied laser and the thickness of the amorphous silicon (a-Si layer are identified as the most significant. As an optimum solution, the mechanism of pc-Si growth consisting in repeated melting of a part of already crystallized pc-Si layer by the scanning laser is proposed.

  14. Variation in the measurement of cranial volume and surface area using 3D laser scanning technology.

    Science.gov (United States)

    Sholts, Sabrina B; Wärmländer, Sebastian K T S; Flores, Louise M; Miller, Kevin W P; Walker, Phillip L

    2010-07-01

    Three-dimensional (3D) laser scanner models of human crania can be used for forensic facial reconstruction, and for obtaining craniometric data useful for estimating age, sex, and population affinity of unidentified human remains. However, the use of computer-generated measurements in a casework setting requires the measurement precision to be known. Here, we assess the repeatability and precision of cranial volume and surface area measurements using 3D laser scanner models created by different operators using different protocols for collecting and processing data. We report intraobserver measurement errors of 0.2% and interobserver errors of 2% of the total area and volume values, suggesting that observer-related errors do not pose major obstacles for sharing, combining, or comparing such measurements. Nevertheless, as no standardized procedure exists for area or volume measurements from 3D models, it is imperative to report the scanning and postscanning protocols employed when such measurements are conducted in a forensic setting.

  15. Gravel transport by ice in a subarctic river from accurate laser scanning

    Science.gov (United States)

    Lotsari, Eliisa; Wang, Yunsheng; Kaartinen, Harri; Jaakkola, Anttoni; Kukko, Antero; Vaaja, Matti; Hyyppä, Hannu; Hyyppä, Juha; Alho, Petteri

    2015-10-01

    For decades the importance of ice and the effects of cold-region processes on river channel morphology have been discussed, with a general consensus as to their importance emerging only recently. River ice cover, anchor ice, frazil ice, and ice jams may not only scour the channel bed and banks but also pick up, transport, and deposit fine sediments and gravels during winter, especially during the spring ice breakup period. However, knowledge of the interactions between coarse sediment transport and ice processes remains insufficient, particularly in rockier river reaches, with a lack of accurate and sufficiently extensive data hindering their quantification. The aim of this study was to quantify and analyse the impact of river ice on gravel transport in a subarctic river during one winter via the acquisition of laser scanning data for the river channel and ice surface. Terrestrial and mobile laser scanning were performed in 2012-2013 on the Tana River in northern Finland. Both of these techniques are considered accurate and applicable for detecting elevation and volumetric changes in river bed, defining gravel clast sizes, and detecting the movement of individual clasts. More importantly, ice surface, thickness, and decay during spring were also captured via laser scanning. In the winter of 2012-2013, a period characterised by an absence of ice jams and mid-winter ice-decay periods, with spring ice breakup discharges close to average yearly conditions, ice had the most significant role, greater than that of flowing water, in erosion and transport of coarse sediment from the channel bed and gently sloping banks. Changes in river bed elevation and volume were recorded throughout the study site, and erosion predominated. In addition to broader scale erosion, the movement of single clasts up to 2 m in size occurred. However, the observed overall channel change patterns did not coincide with the areas of fastest ice decay. The obtained results could also be applied to

  16. Transmissive liquid-crystal device correcting primary coma aberration and astigmatism in laser scanning microscopy

    Science.gov (United States)

    Tanabe, Ayano; Hibi, Terumasa; Ipponjima, Sari; Matsumoto, Kenji; Yokoyama, Masafumi; Kurihara, Makoto; Hashimoto, Nobuyuki; Nemoto, Tomomi

    2016-03-01

    Laser scanning microscopy allows 3D cross-sectional imaging inside biospecimens. However, certain aberrations produced can degrade the quality of the resulting images. We previously reported a transmissive liquid-crystal device that could compensate for the predominant spherical aberrations during the observations, particularly in deep regions of the samples. The device, inserted between the objective lens and the microscope revolver, improved the image quality of fixed-mouse-brain slices that were observed using two-photon excitation laser scanning microscopy, which was originally degraded by spherical aberration. In this study, we developed a transmissive device that corrects primary coma aberration and astigmatism, motivated by the fact that these asymmetric aberrations can also often considerably deteriorate image quality, even near the sample surface. The device's performance was evaluated by observing fluorescent beads using single-photon excitation laser scanning microscopy. The fluorescence intensity in the image of the bead under a cover slip tilted in the y-direction was increased by 1.5 times after correction by the device. Furthermore, the y- and z-widths of the imaged bead were reduced to 66% and 65%, respectively. On the other hand, for the imaged bead sucked into a glass capillary in the longitudinal x-direction, correction with the device increased the fluorescence intensity by 2.2 times compared to that of the aberrated image. In addition, the x-, y-, and z-widths of the bead image were reduced to 75%, 53%, and 40%, respectively. Our device successfully corrected several asymmetric aberrations to improve the fluorescent signal and spatial resolution, and might be useful for observing various biospecimens.

  17. Three-dimensional microscope vision system based on micro laser line scanning and adaptive genetic algorithms

    Science.gov (United States)

    Apolinar, J.; Rodríguez, Muñoz

    2017-02-01

    A microscope vision system to retrieve small metallic surface via micro laser line scanning and genetic algorithms is presented. In this technique, a 36 μm laser line is projected on the metallic surface through a laser diode head, which is placed to a small distance away from the target. The micro laser line is captured by a CCD camera, which is attached to the microscope. The surface topography is computed by triangulation by means of the line position and microscope vision parameters. The calibration of the microscope vision system is carried out by an adaptive genetic algorithm based on the line position. In this algorithm, an objective function is constructed from the microscope geometry to determine the microscope vision parameters. Also, the genetic algorithm provides the search space to calculate the microscope vision parameters with high accuracy in fast form. This procedure avoids errors produced by the missing of references and physical measurements, which are employed by the traditional microscope vision systems. The contribution of the proposed system is corroborated by an evaluation via accuracy and speed of the traditional microscope vision systems, which retrieve micro-scale surface topography.

  18. Use of laser-scan technology to analyse topography and flow in a weir pool

    Directory of Open Access Journals (Sweden)

    P. E. Dresel

    2012-08-01

    Full Text Available The development of laser-scan techniques provides opportunity for detailed terrain analysis in hydrologic studies. Ground based scans were used to model the ground surface elevation in the area of a stream gauge weir over an area of 240 m2 at a resolution of 0.05 m. The terrain model was used to assess the possibility of flow bypassing the weir and to calculate stream flow during filling of the weir pool, prior to flow through the weir notch. The mapped surface shows a subtle low-lying area at the south end of the structure where flow could bypass the weir. The flow calculations quantify low-flows that do not reach the weir notch during small rain events and flow at the beginning of larger events in the ephemeral stream.

  19. In vivo observation of papillae of the human tongue using confocal laser scanning microscopy.

    Science.gov (United States)

    Just, Tino; Stave, Joachim; Pau, Hans Wilhelm; Guthoff, Rudolf

    2005-01-01

    The aim of this investigation was to visualize the epithelial structures of the tongue using confocal laser scanning microscopy (LSM). The human tongue epithelium of 28 healthy subjects, aged 21-67 years, mean age 38 years, 14 women and 14 men, was examined in vivo by LSM. Using LSM, a combination of the Heidelberg Retina Tomograph HRT II and the Rostock Cornea Module, up to 800-fold magnifications were obtained. On the tongue surface both filiform and fungiform papillae and their taste pores were easily identified. The epithelium of the tongue with its subcellular structures could be observed up to a depth of 50 microm, cellular structures up to 150 microm and subepithelial vessels up to 300 microm. Additionally the papillary crests and blood flow were visible. Confocal LSM seems suitable for noninvasive in vivo examination of the tongue. The hydraulic z scan, the manual start setting and the measurement of the depth allow a clear classification of the observed structures.

  20. Spatiotemporal Rank Filtering Improves Image Quality Compared to Frame Averaging in 2-Photon Laser Scanning Microscopy.

    Directory of Open Access Journals (Sweden)

    Henry Pinkard

    Full Text Available Live imaging of biological specimens using optical microscopy is limited by tradeoffs between spatial and temporal resolution, depth into intact samples, and phototoxicity. Two-photon laser scanning microscopy (2P-LSM, the gold standard for imaging turbid samples in vivo, has conventionally constructed images with sufficient signal-to-noise ratio (SNR generated by sequential raster scans of the focal plane and temporal integration of the collected signals. Here, we describe spatiotemporal rank filtering, a nonlinear alternative to temporal integration, which makes more efficient use of collected photons by selectively reducing noise in 2P-LSM images during acquisition. This results in much higher SNR while preserving image edges and fine details. Practically, this allows for at least a four fold decrease in collection times, a substantial improvement for time-course imaging in biological systems.

  1. Absolute and relative surface profile interferometry using multiple frequency-scanned lasers

    Science.gov (United States)

    Peca, Marek; Psota, Pavel; Vojtíšek, Petr; Lédl, Vít.

    2016-11-01

    An interferometer has been used to measure the surface profile of generic object. Frequency scanning interferometry has been employed to provide unambiguous phase readings, to suppress etalon fringes, and to supersede phase-shifting. The frequency scan has been performed in three narrow wavelength bands, each generated by a temperature tuned laser diode. It is shown, that for certain portions of measured object, it was possible to get absolute phase measurement, counting all wave periods from the point of zero path difference, yielding precision of 2.7nm RMS over 11.75mm total path difference. For the other areas where steep slopes were present in object geometry, a relative measurement is still possible, at measured surface roughness comparable to that of machining process (the same 2.7nm RMS). It is concluded, that areas containing steep slopes exhibit systematic error, attributed to a combined factors of dispersion and retrace error.

  2. Absolute and relative surface profile interferometry using multiple frequency-scanned lasers

    CERN Document Server

    Peca, Marek; Vojtíšek, Petr; Lédl, Vít

    2016-01-01

    An interferometer has been used to measure the surface profile of generic object. Frequency scanning interferometry has been employed to provide unambiguous phase readings, to suppress etalon fringes, and to supersede phase-shifting. The frequency scan has been performed in three narrow wavelength bands, each generated by a temperature tuned laser diode. It is shown, that for certain portions of measured object, it was possible to get absolute phase measurement, counting all wave periods from the point of zero path difference, yielding precision of 2.7nm RMS over 11.75mm total path difference. For the other areas where steep slopes were present in object geometry, a relative measurement is still possible, at measured surface roughness comparable to that of machining process (the same 2.7nm RMS). It is concluded, that areas containing steep slopes exhibit systematic error, attributed to a combined factors of dispersion and retrace error.

  3. Registration of Long-Strip Terrestrial Laser Scanning Point Clouds Using RANSAC and Closed Constraint Adjustment

    Directory of Open Access Journals (Sweden)

    Li Zheng

    2016-03-01

    Full Text Available The registration of long-strip, terrestrial laser scanning (TLS point clouds is a prerequisite for various engineering tasks, including tunnels, bridges, and roads. An artificial target-based registration method is proposed in this paper to automatically calculate registration parameters (i.e., rotation, translation of scanned pairs without initial estimations. The approach is based on the well-known Random Sample Consensus (RANSAC method and effectively searches the point cloud for corresponding returns from a system of artificial targets. In addition, Closed Constraint Adjustment (CCA is integrated into the registration method to significantly reduce the accumulative error. Experimental results demonstrate the robustness and feasibility of the proposed approach. It is a promising approach to register automatically long strips with limited external control points with satisfactory precision.

  4. Static terrestrial laser scanning of juvenile understory trees for field phenotyping

    Science.gov (United States)

    Wang, Huanhuan; Lin, Yi

    2014-11-01

    This study was to attempt the cutting-edge 3D remote sensing technique of static terrestrial laser scanning (TLS) for parametric 3D reconstruction of juvenile understory trees. The data for test was collected with a Leica HDS6100 TLS system in a single-scan way. The geometrical structures of juvenile understory trees are extracted by model fitting. Cones are used to model trunks and branches. Principal component analysis (PCA) is adopted to calculate their major axes. Coordinate transformation and orthogonal projection are used to estimate the parameters of the cones. Then, AutoCAD is utilized to simulate the morphological characteristics of the understory trees, and to add secondary branches and leaves in a random way. Comparison of the reference values and the estimated values gives the regression equation and shows that the proposed algorithm of extracting parameters is credible. The results have basically verified the applicability of TLS for field phenotyping of juvenile understory trees.

  5. Effects of different application durations of scanning laser method on debonding strength of laminate veneers.

    Science.gov (United States)

    Oztoprak, Mehmet Oguz; Tozlu, Murat; Iseri, Ufuk; Ulkur, Feyza; Arun, Tulin

    2012-07-01

    Porcelain laminate veneers as esthetic and minimally invasive restorations are being used as an alternative to full veneer crowns. However, the removal of porcelain veneers that have failed may be an uncomfortable and time-consuming procedure because of the high bond strength between the porcelain laminate veneers and the tooth surface. The purpose of this study was to prepare a simple and reliable method for porcelain laminate veneer debonding by using an Er:YAG laser with the scanning method and to determine the amount of lasing time required. Eighty cylindrical specimens with a thickness of 0.7 mm and a diameter of 5 mm were fabricated from Empress II ceramic material. They were cemented on the labial surface of extracted bovine mandibular incisors using Variolink II (Ivoclar Vivadent AG, Schaan, Liechtenstein) and light cured for 40 s. The specimens were randomly divided into four groups of 20. The first group was assigned as the control group and no laser application was performed. The Er:YAG laser was applied on each specimen in the other three study groups for 3, 6, and 9 s by using the scanning method. One second after the lasing, a mechanical force was applied to remove the laminate veneers by using an Instron Universal Testing machine. Results of this study exhibited statistically significant differences between the control group and the three study groups. Intergroup comparison of shear bond strengths of the three study groups showed a statistically significant difference (p = 0.0001). This study showed that all three application times of Er-YAG laser were effective for debonding ceramic laminate veneers by softening the adhesive resin.

  6. Examination of silicon solar cells by means of the Scanning Laser Acoustic Microscope (SLAM)

    Science.gov (United States)

    Vorres, C.; Yuhas, D. E.

    1981-01-01

    The Scanning Laser Acoustic Microscope produces images of internal structure in materials. The acoustic microscope is an imaging system based upon acoustic rather than electromagnetic waves. Variations in the elastic propertis are primarily responsible for structure visualized in acoustic micrographs. The instrument used in these investigations is the SONOMICROSCOPE 100 which can be operated at ultrasonic frequencies of from 30 MHz to 500 MHz. The examination of the silicon solar cells was made at 100 MHz. Data are presented in the form of photomicrographs.

  7. SLAM examination of solar cells and solar cell welds. [Scanning Laser Acoustic Microscope

    Science.gov (United States)

    Stella, P. M.; Vorres, C. L.; Yuhas, D. E.

    1981-01-01

    The scanning laser acoustic microscope (SLAM) has been evaluated for non-destructive examination of solar cells and interconnector bonds. Using this technique, it is possible to view through materials in order to reveal regions of discontinuity such as microcracks and voids. Of particular interest is the ability to evaluate, in a unique manner, the bonds produced by parallel gap welding. It is possible to not only determine the area and geometry of the bond between the tab and cell, but also to reveal any microcracks incurred during the welding. By correlating the SLAM results with conventional techniques of weld evaluation a more confident weld parameter optimization can be obtained.

  8. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  9. Scanning cross-correlator for monitoring uniform 3D ellipsoidal laser beams

    CERN Document Server

    Zelenogorskii, V V; Gacheva, E I; Gelikonov, G V; Krasilnikov, M; Mart'yanov, M A; Mironov, S Yu; Potemkin, A K; Syresin, E M; Stephan, F; Khazanov, E A

    2014-01-01

    The specific features of experimental implementation of a cross-correlator with a scan rate above 1600 cm s(-1) and a spatial delay amplitude of more than 15 mm are considered. The possibility of measuring the width of femtosecond pulses propagating in a train 300 mu s in duration with a repetition rate of 1 MHz is demonstrated. A time resolution of 300 fs for the maximum time window of 50 ps is attained.The cross-correlator is aimed at testing 3D pulses of a laser driver of an electron photo-injector.

  10. A Survey Study of the Blast Furnace at Kuangshan Village Using 3D Laser Scanning

    Science.gov (United States)

    Wang, Jin; Huang, Xing; Qian, Wei

    2017-01-01

    The blast furnace from the Northern Song Dynasty at Kuangshan Village is the tallest blast furnace that remains from ancient China. Previous studies have assumed that the furnace had a closed mouth. In this paper, a three-dimensional (3D) model of the blast furnace is constructed using 3D laser scanning technology, and accurate profile data are obtained using software. It is shown that the furnace throat is smaller than had been previously thought and that the furnace mouth is of the open type. This new furnace profile constitutes a discovery in the history of iron-smelting technology.

  11. Design & Reality of CAD/CAM in Laser Beam Scanning Manufacturing System

    Institute of Scientific and Technical Information of China (English)

    SUN Jianjun; SUN Huilai; ZHAO Fangfang; LIN Shuzhong; QI Xiangyang

    2006-01-01

    In laser beam scanning manufacturing (LSM) system the PLT file was adopted as design file. The data of design file were processed by CAD software programmed. And the control model was adopted DEA control model. The DEA model was concerned with not only the distance of the two swaying mirrors, the distance between the swaying mirror and convex lens, the mirror swaying angle and the lens focal length but also the lens central height, the lens convex radius and the medium refractive index. It improved the precision and reduced the error in LBM system. The application of CAD/CAM system in LSM improved the LSM manufacturing velocity and manufacturing quality.

  12. Automatic Geo-Referencing Mobile Laser Scanning Data to Uav Images

    Science.gov (United States)

    Gao, Y.; Huang, X.; Zhang, F.; Fu, Z.; Yang, C.

    2015-08-01

    In this paper, a framework for adjusting mobile laser scanning point cloud data to improve the accuracy is proposed by integrating high resolution UAV images and MLS. First, aerial triangulated images with a few high accuracy ground control points are taken as control information. Then, a hierarchical strategy is proposed for robust pairwise registration of feature points between point cloud and images, so as to find the deviation of the point cloud. In the next step, a shape-preserving piecewise cubic interpolating method is employed to fit the time dependent error model of the trajectory. Finally, experiments are given to prove the effectiveness of proposed framework.

  13. Using laser confocal scanning microscope to study ischemia-hypoxia injury in rat brain slice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The level of lipid peroxidation and cellular necrosis in rat living brain slices during brain ischemia-hypoxia injury have been observed using a laser confocal scanning microscope (LCSM) with double labeling of fluorescent probes D-399 (2,7-dichlorofluorescin diacetate) and propidium iodide (PI).The hypoxia and/or reoxygenation injury in rat brain slices is markedly decreased by pretreatment with L-NG-nitro-arginine (L-NNA) and N-acetylcysteine (NAC),showing that the nitric oxide (NO) and other free radicals play an important role in brain ischemia-hypoxia injury.

  14. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    Science.gov (United States)

    Kent, Renee M.; Vary, Alex

    1992-01-01

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns).

  15. IMAGING WOOD PULP FIBRE SURFACE LIGNIN BY FLUORESCENCE CONFOCAL LASER SCANNING MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Kecheng Li; Douglas W. Reeve

    2004-01-01

    A novel methodology for imaging wood pulp fibre surface lignin by fluorescence confocal laser scanning microscopy was developed. Various imaging modes and imaging conditions were explored for quantitative analysis. Acridine Orange was used for labelling lignin and the orthochromatic labelling condition was developed. Withthe thusly established methodology, the distribution of lignin across the fibre wall was clearly imaged. It was found that surface lignin concentration is about 2-4 times higher than bulk lignin concentration, and that high concentration of lignin was also found on the fibre lumen surfaces and pit borders.

  16. IMAGING WOOD PULP FIBRE SURFACE LIGNIN BY FLUORESCENCE CONFOCAL LASER SCANNING MICROSCOPY

    Institute of Scientific and Technical Information of China (English)

    KechengLi; DouglasW.Reeve

    2004-01-01

    A novel methodology for imaging wood pulp fibre surface lignin by fluorescence confocal laser scanning microscopy was developed. Various imaging modes and imaging conditions were explored for quantitative analysis. Acridine Orange was used for labelling lignin and the orthochromatic labelling condition was developed. With the thusly established methodology, the distribution of lignin across the fibre wall was clearly imaged. It was found that surface lignin concentration is about 2-4 times higher than bulk lignin concentration and that high concentration of lignin was also found on the fibre lumen surfaces and pit borders.

  17. Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy.

    Science.gov (United States)

    Klug, Barbara; Rodler, Claudia; Koller, Martin; Wimmer, Gernot; Kessler, Harald H; Grube, Martin; Santigli, Elisabeth

    2011-10-20

    Confocal laser scanning microscopy (CLSM) of natural heterogeneous biofilm is today facilitated by a comprehensive range of staining techniques, one of them being fluorescence in situ hybridization (FISH). We performed a pilot study in which oral biofilm samples collected from fixed orthodontic appliances (palatal expanders) were stained by FISH, the objective being to assess the three-dimensional organization of natural biofilm and plaque accumulation. FISH creates an opportunity to stain cells in their native biofilm environment by the use of fluorescently labeled 16S rRNA-targeting probes. Compared to alternative techniques like immunofluorescent labeling, this is an inexpensive, precise and straightforward labeling technique to investigate different bacterial groups in mixed biofilm consortia. General probes were used that bind to Eubacteria (EUB338 + EUB338II + EUB338III; hereafter EUBmix), Firmicutes (LGC354 A-C; hereafter LGCmix), and Bacteroidetes (Bac303). In addition, specific probes binding to Streptococcus mutans (MUT590) and Porphyromonas gingivalis (POGI) were used. The extreme hardness of the surface materials involved (stainless steel and acrylic resin) compelled us to find new ways of preparing the biofilm. As these surface materials could not be readily cut with a cryotome, various sampling methods were explored to obtain intact oral biofilm. The most workable of these approaches is presented in this communication. Small flakes of the biofilm-carrying acrylic resin were scraped off with a sterile scalpel, taking care not to damage the biofilm structure. Forceps were used to collect biofilm from the steel surfaces. Once collected, the samples were fixed and placed directly on polysine coated glass slides. FISH was performed directly on these slides with the probes mentioned above. Various FISH protocols were combined and modified to create a new protocol that was easy to handle. Subsequently the samples were analyzed by confocal laser scanning

  18. An experimental evaluation method for the performance of a laser line scanning system with multiple sensors

    Science.gov (United States)

    Tian, Qingguo; Yang, Yujie; Zhang, Xiangyu; Ge, Baozhen

    2014-01-01

    Laser line scanning 3D digitising systems have a wide range of applications. Their working performance is mainly determined by the system calibration procedure and is also affected by the working conditions, CCD camera imperfections, and object surface optical characteristics. Therefore, a comprehensive evaluation of working performance is necessary before and during use. This study proposes an experimental method for the performance evaluation of a laser line scanner (LLS) with 8 scanning sensors developed in our laboratory. This method first obtains the dense point clouds of standard parts composed of disks, cylinders, and squares. Next, the single-layer point clouds located in horizontal planes of different heights are fitted using the least squares method to obtain the enclosed contours S. Three parameters, namely, the standard deviation of the distance distribution between points and S, the mean distance of the distance distribution, and the shape feature sizes, are used to evaluate the performance. The proposed method evaluates both the scanner as a whole and each scanning sensor. Using this method, more comprehensive information can be acquired to evaluate the scanner performance. The experimental results show that the absolute dimension size error and relative error are less than 5 mm and 3%, respectively, and the relative shape error is less than 2%; therefore, the evaluated LLS system can meet the requirements for human anthropometry applications. Although each scanning sensor has different random and systematic error, these errors are the function of measurement depth. These conclusions are helpful for the further use of this scanner system and can be utilised to optimise this LLS system further.

  19. Coupling airborne laser scanning and acoustic Doppler current profiler data to model stream rating curves

    Science.gov (United States)

    Lam, N.; Lyon, S. W.; Kean, J. W.

    2015-12-01

    The rating curve enables the translation of water depth into discharge through a reference cross section. Errors in estimating stream channel geometry can therefore result in increased discharge uncertainty. This study investigates coupling national-scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. Specifically, stream channel geometries were generated from coupled ALS and ADCP scanning data collected for a well-monitored site located in northern Sweden. These data were used to define the hydraulic geometry required by a physically-based 1-D hydraulic model. The results of our study demonstrate that the effects of potential scanning data errors on the model generated rating curve were less than the uncertainties due to stream gauging measurements and empirical rating curve fitting. Further analysis of the ALS data showed that an overestimation of the streambank elevation (the main scanning data error) was primarily due to vegetation that could be adjusted for through a root-mean-square-error bias correction. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establish rating curves at gauging stations.

  20. Time-resolved investigations of the fragmentation dynamic of H{sub 2} (D{sub 2}) in and with ultra-short laser pulses; Zeitaufgeloeste Untersuchungen zur Fragmentationsdynamik von H{sub 2} (D{sub 2}) in ultra-kurzen Laserpulsen

    Energy Technology Data Exchange (ETDEWEB)

    Ergler, T.

    2006-07-19

    In course of this work pump-probe experiments aimed to study ultrafast nuclear motion in H{sub 2} (D{sub 2}) fragmentation by intense 6-25 fs laser pulses have been carried out. In order to perform time-resolved measurements, a Mach-Zehnder interferometer providing two identical synchronized laser pulses with the time-delay variable from 0 to 3000 fs with 300 as accuracy and long-term stability has been built. The laser pulses at the intensities of up to 10{sup 15} W/cm{sup 2} were focused onto a H{sub 2} (D{sub 2}) molecular beam leading to the ionization or dissociation of the molecules, and the momenta of all charged reactions fragments were measured with a reaction microscope. With 6-7 fs pulses it was possible to probe the time evolution of the bound H{sup +}{sub 2} (D{sup +}{sub 2}) nuclear wave packet created by the first (pump) laser pulse, fragmenting the molecule with the second (probe) pulse. A fast delocalization, or ''collapse'', and subsequent ''revival'' of the vibrational wave packet have been observed. In addition, the signatures of the ground state vibrational excitation in neutral D{sub 2} molecule have been found, and the dominance of a new, purely quantum mechanical wave packet preparation mechanism (the so-called ''Lochfrass'') has been proved. In the experiments with 25 fs pulses the theoretically predicted enhancement of the ionization probability for the dissociating H{sup +}{sub 2} molecular ion at large internuclear distances has been detected for the first time. (orig.)

  1. Self-scanned single-frequency operation of a fiber laser driven by a self-induced phase grating

    Science.gov (United States)

    Lobach, I. A.; Kablukov, S. I.; Podivilov, E. V.; Babin, S. A.

    2014-04-01

    The selector-free single-frequency operation of an Yb-doped fiber laser with scanning in the range of ˜20 nm is demonstrated. The frequency and intensity evolution is shown to be driven by a self-induced phase grating in the active fiber defined by gain saturation in a standing-wave. A theory has been developed that describes well the main features of the experiment and provides possibilities for optimization of laser parameters. Perspectives for utilizing the self-scanned laser in fundamental studies and practical applications are discussed.

  2. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence

    Science.gov (United States)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-01

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  3. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence.

    Science.gov (United States)

    Blomberg, Sara; Zhou, Jianfeng; Gustafson, Johan; Zetterberg, Johan; Lundgren, Edvin

    2016-11-16

    In recent years, efforts have been made in catalysis related surface science studies to explore the possibilities to perform experiments at conditions closer to those of a technical catalyst, in particular at increased pressures. Techniques such as high pressure scanning tunneling/atomic force microscopy (HPSTM/AFM), near ambient pressure x-ray photoemission spectroscopy (NAPXPS), surface x-ray diffraction (SXRD) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRAS) at semi-realistic conditions have been used to study the surface structure of model catalysts under reaction conditions, combined with simultaneous mass spectrometry (MS). These studies have provided an increased understanding of the surface dynamics and the structure of the active phase of surfaces and nano particles as a reaction occurs, providing novel information on the structure/activity relationship. However, the surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface. Therefore, the catalytic activity of the sample itself will act as a gas-source or gas-sink, and will affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, we have applied planar laser induced fluorescence (PLIF) to the gas phase in the vicinity of an active model catalysts. Our measurements demonstrate that the gas composition differs significantly close to the catalyst and at the position of the MS, which indeed should have a profound effect on the surface structure. However, PLIF applied to catalytic reactions presents several beneficial properties in addition to investigate the effect of the catalyst on the effective gas composition close to the model catalyst. The high spatial and temporal resolution of PLIF provides a unique tool to visualize the on-set of catalytic reactions and to compare different model catalysts in the same reactive environment. The technique can be

  4. Laser Scanning for 3D Object Characterization: Infrastructure for Exploration and Analysis of Vegetation Signatures

    Science.gov (United States)

    Koenig, K.; Höfle, B.

    2012-04-01

    Mapping and characterization of the three-dimensional nature of vegetation is increasingly gaining in importance. Deeper insight is required for e.g. forest management, biodiversity assessment, habitat analysis, precision agriculture, renewable energy production or the analysis of interaction between biosphere and atmosphere. However the potential of 3D vegetation characterization has not been exploited so far and new technologies are needed. Laser scanning has evolved into the state-of-the-art technology for highly accurate 3D data acquisition. By now several studies indicated a high value of 3D vegetation description by using laser data. The laser sensors provide a detailed geometric presentation (geometric information) of scanned objects as well as a full profile of laser energy that was scattered back to the sensor (radiometric information). In order to exploit the full potential of these datasets, profound knowledge on laser scanning technology for data acquisition, geoinformation technology for data analysis and object of interest (e.g. vegetation) for data interpretation have to be joined. A signature database is a collection of signatures of reference vegetation objects acquired under known conditions and sensor parameters and can be used to improve information extraction from unclassified vegetation datasets. Different vegetation elements (leaves, branches, etc.) at different heights above ground with different geometric composition contribute to the overall description (i.e. signature) of the scanned object. The developed tools allow analyzing tree objects according to single features (e.g. echo width and signal amplitude) and to any relation of features and derived statistical values (e.g. ratio of laser point attributes). For example, a single backscatter cross section value does not allow for tree species determination, whereas the average echo width per tree segment can give good estimates. Statistical values and/or distributions (e.g. Gaussian

  5. Testing of Land Cover Classification from Multispectral Airborne Laser Scanning Data

    Science.gov (United States)

    Bakuła, K.; Kupidura, P.; Jełowicki, Ł.

    2016-06-01

    Multispectral Airborne Laser Scanning provides a new opportunity for airborne data collection. It provides high-density topographic surveying and is also a useful tool for land cover mapping. Use of a minimum of three intensity images from a multiwavelength laser scanner and 3D information included in the digital surface model has the potential for land cover/use classification and a discussion about the application of this type of data in land cover/use mapping has recently begun. In the test study, three laser reflectance intensity images (orthogonalized point cloud) acquired in green, near-infrared and short-wave infrared bands, together with a digital surface model, were used in land cover/use classification where six classes were distinguished: water, sand and gravel, concrete and asphalt, low vegetation, trees and buildings. In the tested methods, different approaches for classification were applied: spectral (based only on laser reflectance intensity images), spectral with elevation data as additional input data, and spectro-textural, using morphological granulometry as a method of texture analysis of both types of data: spectral images and the digital surface model. The method of generating the intensity raster was also tested in the experiment. Reference data were created based on visual interpretation of ALS data and traditional optical aerial and satellite images. The results have shown that multispectral ALS data are unlike typical multispectral optical images, and they have a major potential for land cover/use classification. An overall accuracy of classification over 90% was achieved. The fusion of multi-wavelength laser intensity images and elevation data, with the additional use of textural information derived from granulometric analysis of images, helped to improve the accuracy of classification significantly. The method of interpolation for the intensity raster was not very helpful, and using intensity rasters with both first and last return

  6. Airborne Laser Scanning of Forest Stem Volume in a Mountainous Environment

    Directory of Open Access Journals (Sweden)

    Klemens Schadauer

    2007-08-01

    Full Text Available Abstract: Airborne laser scanning (ALS is an active remote sensing technique that uses the time-of-flight measurement principle to capture the three-dimensional structure of the earth’s surface with pulsed lasers that transmit nanosecond-long laser pulses with a high pulse repetition frequency. Over forested areas most of the laser pulses are reflected by the leaves and branches of the trees, but a certain fraction of the laser pulses reaches the forest floor through small gaps in the canopy. Thus it is possible to reconstruct both the three-dimensional structure of the forest canopy and the terrain surface. For the retrieval of quantitative forest parameters such as stem volume or biomass it is necessary to use models that combine ALS with inventory data. One approach is to use multiplicative regression models that are trained with local inventory data. This method has been widely applied over boreal forest regions, but so far little experience exists with applying this method for mapping alpine forest. In this study the transferability of this approach to a 128 km2 large mountainous region in Vorarlberg, Austria, was evaluated. For the calibration of the model, inventory data as operationally collected by Austrian foresters were used. Despite these inventory data are based on variable sample plot sizes, they could be used for mapping stem volume for the entire alpine study area. The coefficient of determination R2 was 0.85 and the root mean square error (RMSE 90.9 m3ha-1 (relative error of 21.4% which is comparable to results of ALS studies conducted over topographically less complex environments. Due to the increasing availability, ALS data could become an operational part of Austrian’s forest inventories.

  7. Viability and antibacterial efficacy of four root canal disinfection techniques evaluated using confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    Joan Mathew

    2014-01-01

    Full Text Available Background: Several disinfection techniques have been recently introduced with the main objective of improving root canal disinfection in the inaccessible areas of the root canal system. This in vitro study was done to evaluate the antimicrobial effect and viability of Enterococcus faecalis biofilms using conventional irrigation, EndoActivator (Dentsply, Tulsa Dental, USA, diode laser irradiation and photon-initiated photoacoustic streaming (PIPS. Materials and Methods: Root canals of 130 single rooted mandibular premolars, standardized to a uniform length of 20 mm were instrumented until finishing file, F1 (Universal Protaper Rotary System, Dentsply, Tulsa Dental Specialties, USA. After smear layer removal and sterilization, five teeth were randomly selected to assure sterility before bacterial inoculation. The remaining 125 samples were contaminated with E. faecalis suspension, incubated for 21 days and divided into five groups (n = 25. In Group 1; untreated group (positive control, the root canals were not subjected to any disinfection procedure. Sampling was performed within the canals and the colony-forming unit count was evaluated for 20 samples. Five samples were selected to visualize the pattern of colonization at Level 1 (4 mm from the apex and Level 2 (1 mm from the apex by confocal laser scanning microscopy. Samples in Groups 2-5 namely conventional needle irrigation, EndoActivator, diode laser and PIPS were subjected to their respective disinfection procedures. Postdisinfection sample evaluation criteria was followed for all groups as same as that for Group 1. Results: Diode laser displayed the highest antibacterial efficacy and least viable bacteria than the other three disinfection techniques. Conclusion: Diode laser group showed better antibacterial efficacy and least viable bacteria when compared to conventional needle irrigation, PIPS and EndoActivator groups in minimally instrumented, experimentally infected root canals.

  8. Application of highly sensitive fluorescent dyes (CyDye DIGE Fluor saturation dyes) to laser microdissection and two-dimensional difference gel electrophoresis (2D-DIGE) for cancer proteomics.

    Science.gov (United States)

    Kondo, Tadashi; Hirohashi, Setsuo

    2006-01-01

    Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.

  9. A new laser vibrometry-based 2D selective intensity method for source identification in reverberant fields: part II. Application to an aircraft cabin

    Science.gov (United States)

    Revel, G. M.; Martarelli, M.; Chiariotti, P.

    2010-07-01

    The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The work shown in this paper is the application of part of the results of the European project CREDO (Cabin Noise Reduction by Experimental and Numerical Design Optimization) carried out within the framework of the EU. Therefore the aim of this paper is to illustrate a real application of the method to the interior acoustic characterization of an Alenia Aeronautica ATR42 ground test facility, Alenia Aeronautica being a partner of the CREDO project.

  10. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    Science.gov (United States)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  11. Flaw Imaging Technique for Plate-Like Structures Using Scanning Laser Source Actuation

    Directory of Open Access Journals (Sweden)

    Changgil Lee

    2014-01-01

    Full Text Available Recently, the longitudinal, shear, and surface waves have been very widely used as ultrasonic wave-based exploration methods to identify internal defects of host structures. In this context, a noncontact nondestructive testing (NDT method is proposed to detect the damage of plate-like structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND:YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using 3-dimensional Fourier transformation (3D FT. The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a plate-like structure are conducted using the damage-sensitive features. Finally, the plates with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

  12. High Resolution Airborne Laser Scanning and Hyperspectral Imaging with a Small Uav Platform

    Science.gov (United States)

    Gallay, Michal; Eck, Christoph; Zgraggen, Carlo; Kaňuk, Ján; Dvorný, Eduard

    2016-06-01

    The capabilities of unmanned airborne systems (UAS) have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology) in high spectral and spatial resolution.

  13. Super-Resolution Scanning Laser Microscopy Based on Virtually Structured Detection.

    Science.gov (United States)

    Zhi, Yanan; Wang, Benquan; Yao, Xincheng

    2015-01-01

    Light microscopy plays a key role in biological studies and medical diagnosis. The spatial resolution of conventional optical microscopes is limited to approximately half the wavelength of the illumination light as a result of the diffraction limit. Several approaches-including confocal microscopy, stimulated emission depletion microscopy, stochastic optical reconstruction microscopy, photoactivated localization microscopy, and structured illumination microscopy-have been established to achieve super-resolution imaging. However, none of these methods is suitable for the super-resolution ophthalmoscopy of retinal structures because of laser safety issues and inevitable eye movements. We recently experimentally validated virtually structured detection (VSD) as an alternative strategy to extend the diffraction limit. Without the complexity of structured illumination, VSD provides an easy, low-cost, and phase artifact-free strategy to achieve super-resolution in scanning laser microscopy. In this article we summarize the basic principles of the VSD method, review our demonstrated single-point and line-scan super-resolution systems, and discuss both technical challenges and the potential of VSD-based instrumentation for super-resolution ophthalmoscopy of the retina.

  14. MICROSTRUCTURE AND MECHANICAL STRENGTH OF SURFACE ODS TREATED ZIRCALOY-4 SHEET USING LASER BEAM SCANNING

    Directory of Open Access Journals (Sweden)

    HYUN-GIL KIM

    2014-08-01

    Full Text Available The surface modification of engineering materials by laser beam scanning (LBS allows the improvement of properties in terms of reduced wear, increased corrosion resistance, and better strength. In this study, the laser beam scan method was applied to produce an oxide dispersion strengthened (ODS structure on a zirconium metal surface. A recrystallized Zircaloy-4 alloy sheet with a thickness of 2 mm, and Y2O3 particles of 10 μm were selected for ODS treatment using LBS. Through the LBS method, the Y2O3 particles were dispersed in the Zircaloy-4 sheet surface at a thickness of 0.4 mm, which was about 20% when compared to the initial sheet thickness. The mean size of the dispersive particles was 20 nm, and the yield strength of the ODS treated plate at 500°C was increased more than 65 % when compared to the initial state. This strength increase was caused by dispersive Y2O3 particles in the matrix and the martensite transformation of Zircaloy-4 matrix by the LBS.

  15. Non-linear structural dynamics characterization using a scanning laser vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-07-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal velocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second, third, and fourth natural frequencies are examined in detail. Influences of the fixture mass, gravity, mass centers of mode shapes, and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances, energy transfer from high-frequency modes to the first mode, and amplitude- and phase-modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  16. Epiphany sealer penetration into dentinal tubules: Confocal laser scanning microscopic study

    Directory of Open Access Journals (Sweden)

    S V Ravi

    2014-01-01

    Full Text Available Aims: The aim of the following study was to evaluate the percentage and average depth of epiphany sealer penetration into dentinal tubules among the coronal, middle and apical thirds of the root using the confocal laser scanning microscopy (CLSM. Materials and Methods: A total of 10 maxillary central incisors were prepared and obturated with Resilon-Epiphany system. Sealer was mixed with fluorescent rhodamine B isothiyocyanate dye for visibility under confocal microscope. Teeth were cross-sectioned into coronal, middle and apical sections-2 mm thick. Sections were observed under CLSM. Images were analyzed for percentage and average depth of sealer penetration into dentinal tubules using the lasso tool in Adobe Photoshop CS3 (Adobe systems incorporated, San jose, CA and laser scanning microscopy (LSM 5 image analyzer. Statistical Analysis Used: One-way analysis of variance with Student Neuman Keuls post hoc tests, Kruskal-Wallis test and Wilcoxon signed-rank post hoc tests. Results: The results showed that a higher percentage of sealer penetration in coronal section-89.23%, followed by middle section-84.19% and the apical section-64.9%. Average depth of sealer penetration for coronal section was 526.02 μm, middle-385.26 μm and apical-193.49 μm. Conclusions: Study concluded that there was higher epiphany sealer penetration seen in coronal followed by middle and least at apical third of the roots.

  17. Morphological study of adult male worms of Schistosoma mansoni Sambon, 1907 by confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    Machado-Silva José Roberto

    1998-01-01

    Full Text Available Aiming to detail data obtained through brightfield microscopy (BM on reproductive, excretory and digestive system, specimens of Schistosoma mansoni eight weeks old, were recovered from SW mice, stained with Langeron's carmine and analyzed under a confocal laser scanning microscope CLSM 410 (Carl Zeiss. The reproductive system presented a single and lobate testis, with intercommunications between the lobes without efferent duct. Supernumerary testicular lobe was amorphous and isolated from the normal ones. Collecting tubules (excretory ducts, followed by the excretory bladder, opening to the external media through the excretory pore, were observed at the posterior extremity of the body. In the digestive tract, a cecal swelling was noted at the junction that originates the single cecum. It was concluded that through confocal laser scanning microscopy, new interpretations of morphological structures of S. mansoni worms could be achieved, modifying adopted and current descriptions. The gonad consists of a single lobed testis, similar to that observed in some trematode species. Moreover, the same specimens can be observed either by BM or CLSM, considering that the latter causes only focal and limited damage in tissue structures.

  18. QUANTIFICATION OF BIOFILMS IN MULTI-SPECTRAL DIGITAL1 VOLUMES FROM CONFOCAL LASER-SCANNING MICROSCOPES

    Directory of Open Access Journals (Sweden)

    Karsten Rodenacker

    2011-05-01

    Full Text Available Populations of bacteria in sludge flocs and biofilm marked by fluorescence marked with fluorescent probes are digitised with a confocal laser scanning microscope. These data are used to analyse the microbial community structure, to obtain information on the localisation of specific bacterial groups and to examine gene expression. This information is urgently required for an in-depth understanding of the function and, more generally, the microbial ecology of biofilms. Methods derived from quantitative image analysis are applied to digitised data from confocal laser scanning microscopes to obtain quantitative descriptions of volumetric, topological (and topographical properties of different compartments of the components under research. In addition to free-moving flocs, also biofilms attached to a substratum in an experimental environment are analysed. Growth form as well as interaction of components are quantitatively described. Classical measurements of volume and intensity (shape, distribution and distance dependent interaction measurements using methods from mathematical morphology are performed. Mainly image (volume processing methods are outlined. Segmented volumes are globally and individually (in terms of 3Dconnected components measured and used for distance mapping transform as well as for estimation of geodesic distances from the substrate. All transformations are applied on the 3D data set. Resulting distance distributions are quantified and related to information on the identity and activity of the probe-identified bacteria.

  19. Laser Scanning In Vivo Confocal Microscopy of Clear Grafts after Penetrating Keratoplasty

    Science.gov (United States)

    Wang, Dai; Song, Peng; Wang, Shuting; Sun, Dapeng; Wang, Yuexin; Zhang, Yangyang

    2016-01-01

    Purpose. To evaluate the changes of keratocytes and dendritic cells in the central clear graft by laser scanning in vivo confocal microscopy after penetrating keratoplasty (PK). Methods. Thirty adult subjects receiving PK at Shandong Eye Institute and with clear grafts and no sign of immune rejection after surgery were recruited into this study, and 10 healthy adults were controls. The keratocytes and dendritic cells in the central graft were evaluated by laser scanning confocal microscopy, as well as epithelium cells, keratocytes, corneal endothelium cells, and corneal nerves (especially subepithelial plexus nerves). Results. Median density of subepithelial plexus nerves, keratocyte density in each layer of the stroma, and density of corneal endothelium cells were all lower in clear grafts than in controls. The dendritic cells of five (16.7%) patients were active in Bowman's membrane and stromal membrane of the graft after PK. Conclusions. Activated dendritic cells and Langerhans cells could be detected in some of the clear grafts, which indicated that the subclinical stress of immune reaction took part in the chronic injury of the clear graft after PK, even when there was no clinical rejection episode. PMID:27034940

  20. Laser Scanning In Vivo Confocal Microscopy of Clear Grafts after Penetrating Keratoplasty

    Directory of Open Access Journals (Sweden)

    Dai Wang

    2016-01-01

    Full Text Available Purpose. To evaluate the changes of keratocytes and dendritic cells in the central clear graft by laser scanning in vivo confocal microscopy after penetrating keratoplasty (PK. Methods. Thirty adult subjects receiving PK at Shandong Eye Institute and with clear grafts and no sign of immune rejection after surgery were recruited into this study, and 10 healthy adults were controls. The keratocytes and dendritic cells in the central graft were evaluated by laser scanning confocal microscopy, as well as epithelium cells, keratocytes, corneal endothelium cells, and corneal nerves (especially subepithelial plexus nerves. Results. Median density of subepithelial plexus nerves, keratocyte density in each layer of the stroma, and density of corneal endothelium cells were all lower in clear grafts than in controls. The dendritic cells of five (16.7% patients were active in Bowman’s membrane and stromal membrane of the graft after PK. Conclusions. Activated dendritic cells and Langerhans cells could be detected in some of the clear grafts, which indicated that the subclinical stress of immune reaction took part in the chronic injury of the clear graft after PK, even when there was no clinical rejection episode.

  1. The Use of Airborne and Mobile Laser Scanning for Modeling Railway Environments in 3D

    Directory of Open Access Journals (Sweden)

    Lingli Zhu

    2014-04-01

    Full Text Available This paper presents methods for 3D modeling of railway environments from airborne laser scanning (ALS and mobile laser scanning (MLS. Conventionally, aerial data such as ALS and aerial images were utilized for 3D model reconstruction. However, 3D model reconstruction only from aerial-view datasets can not meet the requirement of advanced visualization (e.g., walk-through visualization. In this paper, objects in a railway environment such as the ground, railroads, buildings, high voltage powerlines, pylons and so on were reconstructed and visualized in real-life experiments in Kokemaki, Finland. Because of the complex terrain and scenes in railway environments, 3D modeling is challenging, especially for high resolution walk-through visualizations. However, MLS has flexible platforms and provides the possibility of acquiring data in a complex environment in high detail by combining with ALS data to produce complete 3D scene modeling. A procedure from point cloud classification to 3D reconstruction and 3D visualization is introduced, and new solutions are proposed for object extraction, 3D reconstruction, model simplification and final model 3D visualization. Image processing technology is used for the classification, 3D randomized Hough transformations (RHT are used for the planar detection, and a quadtree approach is used for the ground model simplification. The results are visually analyzed by a comparison with an orthophoto at a 20 cm ground resolution.

  2. Compact Multipurpose Mobile Laser Scanning System — Initial Tests and Results

    Directory of Open Access Journals (Sweden)

    Craig Glennie

    2013-01-01

    Full Text Available We describe a prototype compact mobile laser scanning system that may be operated from a backpack or unmanned aerial vehicle. The system is small, self-contained, relatively inexpensive, and easy to deploy. A description of system components is presented, along with the initial calibration of the multi-sensor platform. The first field tests of the system, both in backpack mode and mounted on a helium balloon for real-world applications are presented. For both field tests, the acquired kinematic LiDAR data are compared with highly accurate static terrestrial laser scanning point clouds. These initial results show that the vertical accuracy of the point cloud for the prototype system is approximately 4 cm (1σ in balloon mode, and 3 cm (1σ in backpack mode while horizontal accuracy was approximately 17 cm (1σ for the balloon tests. Results from selected study areas on the Sacramento River Delta and San Andreas Fault in California demonstrate system performance, deployment agility and flexibility, and potential for operational production of high density and highly accurate point cloud data. Cost and production rate trade-offs place this system in the niche between existing airborne and tripod mounted LiDAR systems.

  3. HIGH RESOLUTION AIRBORNE LASER SCANNING AND HYPERSPECTRAL IMAGING WITH A SMALL UAV PLATFORM

    Directory of Open Access Journals (Sweden)

    M. Gallay

    2016-06-01

    Full Text Available The capabilities of unmanned airborne systems (UAS have become diverse with the recent development of lightweight remote sensing instruments. In this paper, we demonstrate our custom integration of the state-of-the-art technologies within an unmanned aerial platform capable of high-resolution and high-accuracy laser scanning, hyperspectral imaging, and photographic imaging. The technological solution comprises the latest development of a completely autonomous, unmanned helicopter by Aeroscout, the Scout B1-100 UAV helicopter. The helicopter is powered by a gasoline two-stroke engine and it allows for integrating 18 kg of a customized payload unit. The whole system is modular providing flexibility of payload options, which comprises the main advantage of the UAS. The UAS integrates two kinds of payloads which can be altered. Both payloads integrate a GPS/IMU with a dual GPS antenna configuration provided by OXTS for accurate navigation and position measurements during the data acquisition. The first payload comprises a VUX-1 laser scanner by RIEGL and a Sony A6000 E-Mount photo camera. The second payload for hyperspectral scanning integrates a push-broom imager AISA KESTREL 10 by SPECIM. The UAS was designed for research of various aspects of landscape dynamics (landslides, erosion, flooding, or phenology in high spectral and spatial resolution.

  4. Extraction of Vertical Walls from Mobile Laser Scanning Data for Solar Potential Assessment

    Directory of Open Access Journals (Sweden)

    Martin Rutzinger

    2011-03-01

    Full Text Available In recent years there has been an increasing demand among home owners for cost effective sustainable energy production such as solar energy to provide heating and electricity. A lot of research has focused on the assessment of the incoming solar radiation on roof planes acquired by, e.g., Airborne Laser Scanning (ALS. However, solar panels can also be mounted on building facades in order to increase renewable energy supply. Due to limited reflections of points from vertical walls, ALS data is not suitable to perform solar potential assessment of vertical building facades. This paper focuses on a new method for automatic solar radiation modeling of facades acquired by Mobile Laser Scanning (MLS and uses the full 3D information of the point cloud for both the extraction of vertical walls covered by the survey and solar potential analysis. Furthermore, a new method isintroduced determining the interior and exterior face, respectively, of each detected wall in order to calculate its slope and aspect angles that are of crucial importance for solar potential assessment. Shadowing effects of nearby objects are considered by computing the 3D horizon of each point of a facade segment within the 3D point cloud.

  5. Determination of phosphine and other fumigants in air samples by thermal desorption and 2D heart-cutting gas chromatography with synchronous SIM/Scan mass spectrometry and flame photometric detection.

    Science.gov (United States)

    Fahrenholtz, Svea; Hühnerfuss, Heinrich; Baur, Xaver; Budnik, Lygia Therese

    2010-12-24

    Fumigants and volatile industrial chemicals are particularly hazardous to health when a freight container is fumigated or the contaminated material is introduced into its enclosed environment. Phosphine is now increasingly used as a fumigant, after bromomethane--the former fumigant of choice--has been banned by the Montreal Protocol. We have enhanced our previously established thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method by integrating a second gas chromatographic dimension and a flame photometric detector to allow the simultaneous detection of phosphine and volatile organic compounds (VOCs), providing a novel application. A thermal desorption system is coupled to a two dimensional gas chromatograph using both mass spectrometric and flame photometric detection (TD-2D-GC-MS/FPD). Additionally, the collection of mass spectrometric SIM and Scan data has been synchronised, so only a single analysis is now sufficient for qualitative scanning of the whole sample and for sensitive quantification. Though detection limits for the herewith described method are slightly higher than in the previous method, they are in the low μL m(-3) range, which is not only below the respective occupational exposure and intervention limits but also allows the detection of residual contamination after ventilation. The method was developed for the separation and identification of 44 volatile substances. For 12 of these compounds (bromomethane, iodomethane, dichloromethane, 1,2-dichlorethane, benzene, tetrachloromethane, 1,2-dichloropropane, toluene, trichloronitromethane, ethyl benzene, phosphine, carbon disulfide) the method was validated as we chose the target compounds due to their relevance in freight container handling.

  6. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  7. Mirror deflection control for a confocal scanning laser microscope employing a time-modulated laser and a linear diode array

    Science.gov (United States)

    Aslund, Nils R.; Patwardhan, Ardan; Trepte, Oliver

    1994-04-01

    A mirror deflection device for a CSLM has been developed. It performs repetitive scanning according to a preset waveform which can be chosen arbitrarily. It can also be used to perform stationary positioning at arbitrarily chosen points. A digital memory, comprising dual banks, is used to allow switching from one actuating waveform to another. The movement of the mirror is recorded very accurately. A burst of sequential pulse from a diode laser is deflected by the mirror and recorded by means of a linear diode array. The target pattern is analyzed digitally. The objective is to implement a control strategy whereby a new actuating waveform can be derived in order to correct any deviation between the desired waveform and the recorded one. Some results obtained with the device are reported. Foreseen applications encompass spectral analysis of selected regions and kinetic studies where a trade-off between speed and number of image points is necessary.

  8. Investigation of three-dimensional vibration measurement by a single scanning laser Doppler vibrometer

    Science.gov (United States)

    Chen, Da-Ming; Zhu, W. D.

    2017-01-01

    A scanning laser Doppler vibrometer (SLDV) has been widely used in non-contact vibration measurement. This paper presents a novel investigation of three-dimensional (3D) vibration measurement by a single SLDV sequentially placed at three different positions, where 3D vibration is defined as three vibration components along axes of a specified measurement coordinate system (MCS), which can give more precise knowledge of structural dynamic characteristics. A geometric model of the SLDV is proposed and a vibrometer coordinate system (VCS) based on the geometric model is defined and fixed on the SLDV. The pose of a SLDV with respect to a MCS is expressed in the form of a translation vector and a direction cosine matrix from the VCS to the MCS, which can be calculated by four or more target points with known coordinates in both the MCS and the VCS. An improved method based on the least squares method and singular value decomposition is proposed to obtain the pose of the SLDV. Compared with an inverse method, the proposed method can yield an orthogonal direction cosine matrix and be applicable to a two-dimensional structure. Effects of the number of target points on the accuracy and stability of the proposed method are investigated. With three direction cosine matrices of three different positions obtained by the proposed method, measured vibration velocities along laser line-of-sight directions can be transformed to vibration components along axes of the MCS. An experiment was conducted to measure 3D vibration of a target point on a beam under sinusoidal excitation by a single SLDV sequentially placed at three different positions. Vibration components along axes of the MCS obtained by the single SLDV were in good agreement with those from a commercial Polytec 3D scanning laser vibrometer PSV-500-3D.

  9. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery.

    Science.gov (United States)

    Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela

    2014-07-01

    Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of

  10. CO-REGISTRATION OF DSMs GENERATED BY UAV AND TERRESTRIAL LASER SCANNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    R. A. Persad

    2016-06-01

    Full Text Available An approach for the co-registration of Digital Surface Models (DSMs derived from Unmanned Aerial Vehicles (UAVs and Terrestrial Laser Scanners (TLS is proposed. Specifically, a wavelet-based feature descriptor for matching surface keypoints on the 2.5D DSMs is developed. DSMs are useful in wide-scope of various applications such as 3D building modelling and reconstruction, cultural heritage, urban and environmental planning, aircraft navigation/path routing, accident and crime scene reconstruction, mining as well as, topographic map revision and change detection. For these listed applications, it is not uncommon that there will be a need for automatically aligning multi-temporal DSMs which may have been acquired from multiple sensors, with different specifications over a period of time, and may have various overlaps. Terrestrial laser scanners usually capture urban facades in an accurate manner; however this is not the case for building roof structures. On the other hand, vertical photography from UAVs can capture the roofs. Therefore, the automatic fusion of UAV and laser-scanning based DSMs is addressed here as it serves various geospatial applications.

  11. [Research on absolute calibration of sun channel of sun photometer using laser raster scanning method].

    Science.gov (United States)

    Xu, Wen-Bin; Li, Jian-Jun; Zheng, Xiao-Bing

    2013-01-01

    In the present paper, a new calibration method of absolute spectral irradiance responsivity of sun channel of sun photometer was developed. A tunable laser was used as source and a standard tranfer detector, calibrated against cryogenic absolute radiometer, was used to measure laser beam power. By raster scanning of a single collimated laser beam to generate the uniform irradiance field at the plane of effective aperture stop of sun photometer, the absolute irradiance responsivity of center wavelength of the 870 nm unpolarized sun channels of sun photometer was obtained accurately. The relative spectral irradiance responsivity of corresponding channel was obtained by using lamp-monochromator system and then used to acquire the absolute spectral irradiance responsivity in the laboratory. On the basis of the above results, the top-of-the-atmosphere responsive constant V0 was obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration result with that from GSFC, NASA in 2009, the difference is only 3.75%. In the last, the uncertainties of calibration were evaluated and reached to 2.06%. The principle feasibility of the new method was validated.

  12. Visualization technique for fatigue cracks at steel structures integrating a scanning laser source with piezoelectric sensors

    Science.gov (United States)

    Lee, Changgil; Kim, Ju-Won; Kim, Hyun Uk; Park, Seunghee

    2013-04-01

    In this research, a noncontact nondestructive testing (NDT) method is proposed to detect the fatigue crack and to identify the location of the damage. To achieve this goal, Lamb wave propagation of a plate-like structure is analyzed, which is induced by scanning laser source actuation system. A ND: YAG pulsed laser system is used to generate Lamb wave exerted at the multiple points of the plate and a piezoelectric sensor is installed to measure the structural responses. Multiple time signals measured by the piezoelectric sensor are aligned along the vertical and horizontal axes corresponding to laser impinging points so that 3 dimensional data can be constructed. Then, the 3 dimensional data is sliced along the time axis to visualize the wave propagation. The scattering of Lamb wave due to the damage can be described in the wave propagation image and hence the damage can be localized and quantified. Damage-sensitive features, which are reflected wave from the damage, are clearly extracted by wave-number filtering based on the 3 dimensional Fourier transform of the visualized data. Additional features are extracted by observing different scales of wavelet coefficients so that the time of flight (TOF) of Lamb wave modes can be clearly separated. Steel plates with fatigue cracks are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

  13. Co-Registration of DSMs Generated by Uav and Terrestrial Laser Scanning Systems

    Science.gov (United States)

    Ancil Persad, Ravi; Armenakis, Costas

    2016-06-01

    An approach for the co-registration of Digital Surface Models (DSMs) derived from Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanners (TLS) is proposed. Specifically, a wavelet-based feature descriptor for matching surface keypoints on the 2.5D DSMs is developed. DSMs are useful in wide-scope of various applications such as 3D building modelling and reconstruction, cultural heritage, urban and environmental planning, aircraft navigation/path routing, accident and crime scene reconstruction, mining as well as, topographic map revision and change detection. For these listed applications, it is not uncommon that there will be a need for automatically aligning multi-temporal DSMs which may have been acquired from multiple sensors, with different specifications over a period of time, and may have various overlaps. Terrestrial laser scanners usually capture urban facades in an accurate manner; however this is not the case for building roof structures. On the other hand, vertical photography from UAVs can capture the roofs. Therefore, the automatic fusion of UAV and laser-scanning based DSMs is addressed here as it serves various geospatial applications.

  14. Compound Cellular Imaging of Laser Scanning Confocal Microscopy by Using Gold Nanoparticles and Dyes

    Directory of Open Access Journals (Sweden)

    Jiunn-Woei Liaw

    2008-04-01

    Full Text Available Combining the scattered light of gold nanoparticles (GNPs and the fluorescence of dye molecules, a compound cellular imaging of laser scanning confocal microscopy (LSCM is obtained. The human breast cancer cell line (MDA-MB-435S, BCRC 60429 is used for experiment. These cells are incubated with a glucose medium containing GNPs for 26 hours, and then are stained by Prodium Iodide (PI for their nuclei. By using a single laser to illuminate these cells and adjusting the ranges of two bandpass filters for the detection, the scattered light from the GNPs and the fluorescence of PI can be induced simultaneously, but be detected separately without crosstalk. Furthermore, a compound cellular image can be obtained by merging the two images of the expressions of GNP and PI together. From the TEM images of these cells, it is observed that GNPs are aggregated in the vesicles of the cytoplasm due to the cell’s endocytosis. The aggregation of GNPs makes the surface plasmon resonance band of GNPs broadened, so that strong scattered light from GNPs can be generated by the illumination of different-wavelength lasers (458, 488, 514, 561, and 633 nm.

  15. AUTOMATIC EXTRACTION OF ROAD SURFACE AND CURBSTONE EDGES FROM MOBILE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    A. Miraliakbari

    2015-05-01

    Full Text Available We present a procedure for automatic extraction of the road surface from geo-referenced mobile laser scanning data. The basic assumption of the procedure is that the road surface is smooth and limited by curbstones. Two variants of jump detection are investigated for detecting curbstone edges, one based on height differences the other one based on histograms of the height data. Region growing algorithms are proposed which use the irregular laser point cloud. Two- and four-neighbourhood growing strategies utilize the two height criteria for examining the neighborhood. Both height criteria rely on an assumption about the minimum height of a low curbstone. Road boundaries with lower or no jumps will not stop the region growing process. In contrast to this objects on the road can terminate the process. Therefore further processing such as bridging gaps between detected road boundary points and the removal of wrongly detected curbstone edges is necessary. Road boundaries are finally approximated by splines. Experiments are carried out with a ca. 2 km network of smalls streets located in the neighbourhood of University of Applied Sciences in Stuttgart. For accuracy assessment of the extracted road surfaces, ground truth measurements are digitized manually from the laser scanner data. For completeness and correctness of the region growing result values between 92% and 95% are achieved.

  16. High-power pulsed diode laser for automotive scanning radar sensor

    Science.gov (United States)

    Kimura, Yuji; Matsushita, Noriyuki; Kato, Hisaya; Abe, Katsunori; Atsumi, Kinya

    2000-02-01

    High performance pulsed AlGaAs/GaAs wide stripe diode laser has been developed for the automotive distance-measuring scanning radar sensor. The laser diode is required high output power of 15 W and a long time reliability in spite of being used in a harsh environment such as wide temperature range, mechanical vibrations at the front bumper and so on. The device is designed by employing a multiple quantum well structure as an active layer for high output power with low drive current and high temperature operations. Moreover we reduce catastrophic optical damage power level and control the beam divergence angle by introducing optimized optical waveguide layers. In the chips bonding part, we developed a new thin film Au-Sn-Ni solder system. The bonding temperature can be lowered by using this system, whereby the thermal damage to the laser diode can be reduced. Furthermore, highly stable bonding is carried out by improving wetting ability in this system. We have achieved more than 22 W light output power at 20A pulse current under room temperature and more than 16 W light output power under 90 degrees Celsius. High reliability over 10,000 hours is performed for automotive use under pulsed operation at 90 degrees Celsius, 50 ns pulse width, 8 kHz frequency and 15 W light output power.

  17. Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures

    Directory of Open Access Journals (Sweden)

    Lenda Grzegorz

    2016-06-01

    Full Text Available The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile, but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones. Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.

  18. Biochar Erosion in a Temperate Forest Assessed with Terrestrial Laser Scanning

    Science.gov (United States)

    Milenković, Milutin; Bruckman, Viktor; Hollaus, Markus; Pfeifer, Norbert

    2015-04-01

    Biochar amendment in soils is seen as a potential greenhouse gas mitigation strategy. There are a number of examples of successful amendment strategies in agricultural ecosystems, where biochar is mixed with the mineral topsoil by ploughing or similar manipulation techniques. The application in forest ecosystems, however, comes with the limitation that biochar can only be applied directly on the surface. Light-weight biochar particles may be prone to erosion by environmental forces, such as precipitation and wind. We therefore assessed biochar erosion patterns by using Terrestrial Laser Scanning (TLS) in combination with a time-lapse camera on a micro topography scale in a temperate spruce-dominated forest with herbaceous ground vegetation. TLS is a photogrammetric technique that utilizes the laser light detection and ranging (LiDAR) principle to provide high resolution, 3D geometrical information of the object at millimeter scale. A biochar-amended (10 t/ha) plot with the size of ca. 3m x 3m was surveyed with 4 TLS scans taken from each of 4 plot's sides. The acquired scans were co-registered using the professional targets that were installed on the plot's corners. The resulting point cloud was then used as a base for calculating digital terrain model (DTM), to spatially map vegetation heights, vegetation density and roughness. These TLS products were derived by analyzing the geometrical properties of the acquired point cloud. A time-lapse camera was installed during summer 2013, continuously observing the entire plot at 3min intervals. A single, representative, precipitation event in August was selected for a detailed image analysis of biochar particle movement. The analysis showed that areas of notable particle movement correspond to places of flow accumulation simulated from the DTM. This suggests that the very high resolution terrain information can be usefully for planning the biochar amendment on temperate forest ecosystems.

  19. Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures

    Science.gov (United States)

    Lenda, Grzegorz; Uznański, Andrzej; Strach, Michał; Lewińska, Paulina

    2016-06-01

    The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile), but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones). Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.

  20. The effect of short ground vegetation on terrestrial laser scans at a local scale

    Science.gov (United States)

    Fan, Lei; Powrie, William; Smethurst, Joel; Atkinson, Peter M.; Einstein, Herbert

    2014-09-01

    Terrestrial laser scanning (TLS) can record a large amount of accurate topographical information with a high spatial accuracy over a relatively short period of time. These features suggest it is a useful tool for topographical survey and surface deformation detection. However, the use of TLS to survey a terrain surface is still challenging in the presence of dense ground vegetation. The bare ground surface may not be illuminated due to signal occlusion caused by vegetation. This paper investigates vegetation-induced elevation error in TLS surveys at a local scale and its spatial pattern. An open, relatively flat area vegetated with dense grass was surveyed repeatedly under several scan conditions. A total station was used to establish an accurate representation of the bare ground surface. Local-highest-point and local-lowest-point filters were applied to the point clouds acquired for deriving vegetation height and vegetation-induced elevation error, respectively. The effects of various factors (for example, vegetation height, edge effects, incidence angle, scan resolution and location) on the error caused by vegetation are discussed. The results are of use in the planning and interpretation of TLS surveys of vegetated areas.

  1. Scanning laser optical computed tomography system for large volume 3D dosimetry

    Science.gov (United States)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  2. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    Science.gov (United States)

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  3. Simultaneous Wood Defect and Species Detection with 3D Laser Scanning Scheme

    Directory of Open Access Journals (Sweden)

    Zhao Peng

    2016-01-01

    Full Text Available Wood grading and wood price are mainly connected with the wood defect and wood species. In this paper, a wood defect quantitative detection scheme and a wood species qualitative identification scheme are proposed simultaneously based on 3D laser scanning point cloud. First, an Artec 3D scanner is used to scan the wood surface to get the 3D point cloud. Each 3D point contains its X, Y, and Z coordinate and its RGB color information. After preprocessing, the Z coordinate value of current point is compared with the set threshold to judge whether it is a defect point (i.e., cavity, worm tunnel, and crack. Second, a deep preferred search algorithm is used to segment the retained defect points marked with different colors. The integration algorithm is used to calculate the surface area and volume of every defect. Finally, wood species identification is performed with the wood surface’s color information. The color moments of scanned points are used for classification, but the defect points are not used. Experiments indicate that our scheme can accurately measure the surface areas and volumes of cavity, worm tunnel, and crack on wood surface with measurement error less than 5% and it can also reach a wood species recognition accuracy of 95%.

  4. Birefringence of the central cornea in children assessed with scanning laser polarimetry.

    Science.gov (United States)

    Irsch, Kristina; Shah, Ashesh A

    2012-08-01

    Corneal birefringence is a well-known confounding factor with all polarization-sensitive technology used for retinal scanning and other intraocular assessment. It has been studied extensively in adults, but little is known regarding age-related differences. Specifically, no information is available concerning corneal birefringence in children. For applications that are geared towards children, such as retinal birefringence scanning for strabismus screening purposes, it is important to know the expected range of both corneal retardance and azimuth in pediatric populations. This study investigated central corneal birefringence in children (ages three and above), by means of scanning laser polarimetry (GDx-VCC™, Carl Zeiss Meditec, Inc.). Children's measures of corneal retardance and azimuth were compared with those obtained in adults. As with previous studies in adults, corneal birefringence was found to vary widely in children, with corneal retardance ranging from 10 to 77 nm, and azimuth (slow axis) ranging from -11° to 71° (measured nasally downward). No significant differences in central corneal birefringence were found between children and adults, nor were significant age-related differences found in general. In conclusion, establishing knowledge of the polarization properties of the central cornea in children allows better understanding, exploitation, or bypassing of these effects in new polarization-sensitive pediatric ophthalmic applications.

  5. a Semi-Automatic Procedure for Texturing of Laser Scanning Point Clouds with Google Streetview Images

    Science.gov (United States)

    Lichtenauer, J. F.; Sirmacek, B.

    2015-08-01

    We introduce a method to texture 3D urban models with photographs that even works for Google Streetview images and can be done with currently available free software. This allows realistic texturing, even when it is not possible or cost-effective to (re)visit a scanned site to take textured scans or photographs. Mapping a photograph onto a 3D model requires knowledge of the intrinsic and extrinsic camera parameters. The common way to obtain intrinsic parameters of a camera is by taking several photographs of a calibration object with a priori known structure. The extra challenge of using images from a database such as Google Streetview, rather than your own photographs, is that it does not allow for any controlled calibration. To overcome this limitation, we propose to calibrate the panoramic viewer of Google Streetview using Structure from Motion (SfM) on any structure of which Google Streetview offers views from multiple angles. After this, the extrinsic parameters for any other view can be calculated from 3 or more tie points between the image from Google Streetview and a 3D model of the scene. These point correspondences can either be obtained automatically or selected by manual annotation. We demonstrate how this procedure provides realistic 3D urban models in an easy and effective way, by using it to texture a publicly available point cloud from a terrestrial laser scan made in Bremen, Germany, with a screenshot from Google Streetview, after estimating the focal length from views from Paris, France.

  6. Laser scanning fluorescence microscopic measurement of the movement of cleaving egg surface of Rana Amurensis

    Institute of Scientific and Technical Information of China (English)

    GUGUOYAN; ChengtangXu; 等

    1995-01-01

    By laser scanning fluorescence microscopy for quantitative measurement of fluorescence intensity changes on egg surface stained with fluorescein isothiocyanate during cleavage furrow extending forward,it was found that in area of presumptive cleavage furrow the scanning curve became ∨ shape,indicating dark stripe appeared in that place.Then the fluorescence intensity increased at the place where the bottom of ∨ shape had located,and the scanning curve turned to ∧ shape,indicating single stripe was formed.While enhanced fluorescence appeared on the borders of ∧ shape,an M shape curve was found,showing double stripe occurred.During the distance between two borders of M shape incresing from 50μm to 100μm,a fluorescence peak came to sight in the middle of the M shape,which being the cleavge furrow bottom.The two lateral sides of furrow bottom with decreasing fluorescence were nascent membrane.At that time the curve became W shape.By the sides of cleavage furrow the the stress folds became conspicous after double stripe stage,showing the stretching of the egg surface being increased.With our[31,33]and others[32] reports that polylysine could induce the appearance of nascent membrane and phytohemagglutinins could decrease or prevent the appearance of nascent membrane,we believed the idea of Schroeder[25] that increasing mechanical stress could initiate nascent membrane formation and thought that the stresslay to the outsides of cleavage furrow.

  7. Two-dimensional confocal laser scanning microscopy image correlation for nanoparticle flow velocimetry

    Science.gov (United States)

    Jun, Brian; Giarra, Matthew; Golz, Brian; Main, Russell; Vlachos, Pavlos

    2016-11-01

    We present a methodology to mitigate the major sources of error associated with two-dimensional confocal laser scanning microscopy (CLSM) images of nanoparticles flowing through a microfluidic channel. The correlation-based velocity measurements from CLSM images are subject to random error due to the Brownian motion of nanometer-sized tracer particles, and a bias error due to the formation of images by raster scanning. Here, we develop a novel ensemble phase correlation with dynamic optimal filter that maximizes the correlation strength, which diminishes the random error. In addition, we introduce an analytical model of CLSM measurement bias error correction due to two-dimensional image scanning of tracer particles. We tested our technique using both synthetic and experimental images of nanoparticles flowing through a microfluidic channel. We observed that our technique reduced the error by up to a factor of ten compared to ensemble standard cross correlation (SCC) for the images tested in the present work. Subsequently, we will assess our framework further, by interrogating nanoscale flow in the cell culture environment (transport within the lacunar-canalicular system) to demonstrate our ability to accurately resolve flow measurements in a biological system.

  8. Numerical descriptors for the analysis of wear surfaces using laser scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Anamalay, R.V. [Dept. of Mechanical Engineering, Monash Univ., Clayton, VIC (Australia); Kirk, T.B. [Dept. of Mechanical Engineering, Monash Univ., Clayton, VIC (Australia); Panzera, D. [Dept. of Mechanical Engineering, Monash Univ., Clayton, VIC (Australia)

    1995-03-01

    Machinery wear is a major cost to industry and its minimisation would result in significant savings. In order to do this, it is important to understand the mechanisms of wear. Techniques have to be developed to enable the detailed measurement and analysis of wear surfaces. Conventional methods of surface measurement have involved profilometers. Profilometers, however, have severe limitations in terms of the surface features detectable and difficulties arise when 3D data sets of surfaces are required. Alternative methods that have been explored are stereo microscopy, reflected light interference microscopy (RLIM) and scanning electron microscopy. But these methods have proven to be severely limited either by the depth of field that can be obtained, difficulties associated with obtaining and interpreting images or the prohibitive costs involved. Laser scanning confocal microscopes (LSCM), however, have the capabilities to record surface features quickly and conveniently. LSCM techniques allow the determination and analysis of the true surface topography of a sample surface. LSCM has no depth of field limitations, is significantly cheaper than scanning electron microscopy, requires minimal sample preparation and provides images of sufficient quality for engineering purposes. Better measurement techniques facilitate the use of new surface parameters, in addition to the traditional parameters (all of which can be measured using LSCM techniques). In this paper, parameters developed for the measurement and analysis of surfaces using LSCM techniques are discussed. A comparison is made between surface analysis using LSCM techniques and conventional profilometer methods. (orig.)

  9. Adaptive circle-ellipse fitting method for estimating tree diameter based on single terrestrial laser scanning

    Science.gov (United States)

    Bu, Guochao; Wang, Pei

    2016-04-01

    Terrestrial laser scanning (TLS) has been used to extract accurate forest biophysical parameters for inventory purposes. The diameter at breast height (DBH) is a key parameter for individual trees because it has the potential for modeling the height, volume, biomass, and carbon sequestration potential of the tree based on empirical allometric scaling equations. In order to extract the DBH from the single-scan data of TLS automatically and accurately within a certain range, we proposed an adaptive circle-ellipse fitting method based on the point cloud transect. This proposed method can correct the error caused by the simple circle fitting method when a tree is slanted. A slanted tree was detected by the circle-ellipse fitting analysis, then the corresponding slant angle was found based on the ellipse fitting result. With this information, the DBH of the trees could be recalculated based on reslicing the point cloud data at breast height. Artificial stem data simulated by a cylindrical model of leaning trees and the scanning data acquired with the RIEGL VZ-400 were used to test the proposed adaptive fitting method. The results shown that the proposed method can detect the trees and accurately estimate the DBH for leaning trees.

  10. Gravity combined with laser-scan in Grotta Gigante: a benchmark cave for gravity studies

    Science.gov (United States)

    Pivetta, Tommaso; Braitenberg, Carla

    2014-05-01

    Laser scanning has become one of the most important topographic techniques in the last decades, due to its ability to reconstruct complex surfaces with high resolution and precision and due to its fast acquisition time. Recently a laser-scan survey has been acquired (Fingolo et al., 2011) in the "Grotta Gigante" cave near Trieste, Italy, the biggest cave worldwide according to the Guinness Awards. In this paper this survey is used to obtain a 3D discretization of the cave with prisms. Then through this new model, with the densities derived from campaign measurements, the exact gravimetric effect of the structure was computed (Nagy et al., 2000) and compared with the gravity observation at the surface. The transition from the cloud of laser-scan points to the prism model was carried out by different computer elaborations; first of all the reduction of the data density through an averaging process that allows to pass from over 10000 points/m2 to less than 10points/m2. Then the whole dataset was filtered from the outliers by the means of a simple quadratic surface that fit the data (Turner, 1999). The reduced data points should be divided into the 2 surfaces of top and bottom, that are used to define the prisms. This step was performed using the local regression method (Loess) to calculate a surface located halfway between top and bottom points. Once the top and bottom interfaces were obtained it was possible to get the final prism representation and calculate the gravity signal. The observed Bouguer field is explained very well by our model and the residuals are used to evaluate possible secondary caves. The final prism model together with the gravity database on surface and inside the cave form a perfect benchmark to test forward and inverse potential field algorithms. References Fingolo M., Facco L., Ceccato A., Breganze C., Paganini P., Cezza M., Grotta Gigante di Trieste. Tra realtà virtuale e rilievi 3D ad alta risoluzione, Veneto Geologi, 75, pp.21-25, 2011

  11. Forest Inventory with Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning

    Directory of Open Access Journals (Sweden)

    Sébastien Bauwens

    2016-06-01

    Full Text Available The application of static terrestrial laser scanning (TLS in forest inventories is becoming more effective. Nevertheless, the occlusion effect is still limiting the processing efficiency to extract forest attributes. The use of a mobile laser scanner (MLS would reduce this occlusion. In this study, we assessed and compared a hand-held mobile laser scanner (HMLS with two TLS approaches (single scan: SS, and multi scan: MS for the estimation of several forest parameters in a wide range of forest types and structures. We found that SS is competitive to extract the ground surface of forest plots, while MS gives the best result to describe the upper part of the canopy. The whole cross-section at 1.3 m height is scanned for 91% of the trees (DBH > 10 cm with the HMLS leading to the best results for DBH estimates (bias of −0.08 cm and RMSE of 1.11 cm, compared to no fully-scanned trees for SS and 42% fully-scanned trees for MS. Irregularities, such as bark roughness and non-circular cross-section may explain the negative bias encountered for all of the scanning approaches. The success of using MLS in forests will allow for 3D structure acquisition on a larger scale and in a time-efficient manner.

  12. Spontaneous formation of 10-μm-scale periodic patterns in transverse-scanning femtosecond laser processing.

    Science.gov (United States)

    Matsuo, Shigeki; Hashimoto, Shuichi

    2015-01-12

    We report spontaneous formation of 10-μm-scale periodic patterns in transverse-scanning femtosecond (fs) laser processing inside a glass substrate. The formation of the periodic patterns was critically dependent on the distance of the focus from the back surface; they formed only when fs pulses were focused slightly inside (∼ a few micrometers) from the back surface. The periods ranged from 7 to 16 μm, which is much longer than the distance between neighboring irradiation spots (0.1-1 μm in the present experiments), the diameter of the individual modified spots (about 2 μm), and the wavelength (0.8 μm). The patterns formed without any intentional modulation; just by scanning the sample at a constant speed during irradiation of fs laser pulses. The dependence on scanning speed and repetition rate of the laser were also investigated, and a possible formation scenario for this "long" periodic pattern was described.

  13. Cytogenetic Characterization of the TM4 Mouse Sertoli Cell Line. II. Chromosome Microdissection, FISH, Scanning Electron Microscopy, and Confocal Laser Scanning Microscopy.

    Science.gov (United States)

    Schmid, Michael; Guttenbach, Martina; Steinlein, Claus; Wanner, Gerhard; Houben, Andreas

    2015-01-01

    The chromosomes and interphase cell nuclei of the permanent mouse Sertoli cell line TM4 were examined by chromosome microdissection, FISH, scanning electron microscopy, and confocal laser scanning microscopy. The already known marker chromosomes m1-m5 were confirmed, and 2 new large marker chromosomes m6 and m7 were characterized. The minute heterochromatic marker chromosomes m4 and m5 were microdissected and their DNA amplified by DOP-PCR. FISH of this DNA probe on TM4 metaphase chromosomes demonstrated that the m4 and m5 marker chromosomes have derived from the centromeric regions of normal telocentric mouse chromosomes. Ectopic pairing of the m4 and m5 marker chromosomes with the centromeric region of any of the other chromosomes (centromeric associations) was apparent in ∼60% of the metaphases. Scanning electron microscopy revealed DNA-protein bridges connecting the centromeric regions of normal chromosomes and the associated m4 and m5 marker chromosomes. Interphase cell nuclei of TM4 Sertoli cells did not exhibit the characteristic morphology of Sertoli cells in the testes of adult mice as shown by fluorescence microscopy and confocal laser scanning microscopy.

  14. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    Science.gov (United States)

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  15. SINGLE TREE DETECTION FROM AIRBORNE LASER SCANNING DATA USING A MARKED POINT PROCESS BASED METHOD

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2013-05-01

    Full Text Available Tree detection and reconstruction is of great interest in large-scale city modelling. In this paper, we present a marked point process model to detect single trees from airborne laser scanning (ALS data. We consider single trees in ALS recovered canopy height model (CHM as a realization of point process of circles. Unlike traditional marked point process, we sample the model in a constraint configuration space by making use of image process techniques. A Gibbs energy is defined on the model, containing a data term which judge the fitness of the model with respect to the data, and prior term which incorporate the prior knowledge of object layouts. We search the optimal configuration through a steepest gradient descent algorithm. The presented hybrid framework was test on three forest plots and experiments show the effectiveness of the proposed method.

  16. Trypan blue as a fluorochrome for confocal laser scanning microscopy of arbuscular mycorrhizae in three mangroves.

    Science.gov (United States)

    Kumar, T; Majumdar, A; Das, P; Sarafis, V; Ghose, M

    2008-06-01

    Roots of three mangroves, Acanthus ilicifolius, Ceriops tagal and Excoecaria agallocha, collected from forests of the Sundarbans of India were stained with trypan blue to observe arbuscular mycorrhizal colonization. Spores of arbuscular mycorrhizal fungi isolated from rhizospheric soil, collected together with the root samples, also were stained for testing the suitability of the dye as a fluorochrome. Confocal laser scanning microscopy images were constructed. A. ilicifolius and E. agallocha exhibited "Arum" type colonization with highly branched arbuscules, whereas C. tagal showed "Paris" type association with clumped and collapsed arbuscules. We demonstrated that trypan blue is a suitable fluorochrome for staining arbuscular mycorrhizal fungal spores, fungal hyphae, arbuscules and vesicles, which presumably have a considerable amount of surface chitin. It appears that as the integration of chitin into the fungal cell wall changes, its accessibility to trypan blue dye also changes.

  17. Extraction of tree crowns from mobile laser scanning data using a marked point process model

    Science.gov (United States)

    Li, Jonathan; Yu, Yongtao; Guan, Haiyan; Gong, Zheng

    2016-03-01

    For the purpose of realistic visualisation in 3D city models, we present a marked point process based method for extracting tree-crowns from mobile laser scanning (MLS) data. First, we apply a modified IDW interpolation to generate a geo-referenced feature image, by which a histogram analysis is applied to separate high objects(e.g. trees and lightpoles) from low objects(e.g. road, ground, low vegetation). Next, we calculate grey differences of each pixel with its neighbors to find the local maxima as potential tree-crown seeds, and then use a grouping-and-centralizing procedure to remove the redundants from the seeds. Finally, we employ a marked point process to the generated geo-referenced image via the seeds. Two experiments have been conducted to test the efficiency and feasibility of our tree-extraction algorithm using RIEGL VMX-450 MLS data.

  18. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system.......In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown...

  19. Recognition and Reconstruction of Zebra Crossings on Roads from Mobile Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-07-01

    Full Text Available Zebra crossings provide guidance and warning to pedestrians and drivers, thereby playing an important role in traffic safety management. Most previous studies have focused on detecting zebra stripes but have not provided full information about the areas, which is critical to both driver assistance systems and guide systems for blind individuals. This paper presents a stepwise procedure for recognizing and reconstructing zebra crossings using mobile laser scanning data. First, we propose adaptive thresholding based on road surface partitioning to reduce the impact of intensity unevenness and improve the accuracy of road marking extraction. Then, dispersion degree filtering is used to reduce the noise. Finally, zebra stripes are recognized according to the rectangular feature and fixed size, which is followed by area reconstruction according to arrangement patterns. We test our method on three datasets captured by an Optech Lynx mobile mapping system. The total recognition rate of 90.91% demonstrates the effectiveness of the method.

  20. Building Facade Documentation Using Laser Scanning and Photogrammetry and Data Implementation Into Bim

    Science.gov (United States)

    Faltýnová, M.; Matoušková, E.; Šedina, J.; Pavelka, K.

    2016-06-01

    A project started last year called MORE-CONNECT, which focuses on the renovation of buildings (especially building facades) using prefabricated elements. The aim of this project is to create a competitive solution consisting of a technology and processes which enable fast, cost-effective renovation with minimal difficulties to inhabitants. Significant cost savings in renovation costs lies in the usage of prefabricated elements and the reduction of construction works on site. The precision of the prefabricated element depends on the precision of the construction, project and building documentation. This article offers an overview of the possible methods for building documentation and spatial data transfer into BIM (Building Information Modelling) software. The description of methods focuses on laser scanning and photogrammetry (including RPAS based), its advantages, disadvantages and limitations according to the documented building, level of renovation, situation on site etc. The next part involves spatial data transfer into BIM software. A proposed solution is tested in a case study.

  1. Characterization of acoustic lenses with the Foucault test by confocal laser scanning microscopy

    Science.gov (United States)

    Ahmed Mohamed, E. T.; Abdelrahman, A.; Pluta, M.; Grill, W.

    2010-03-01

    In this work, the Foucault knife-edge test, which has traditionally been known as the classic test for optical imaging devices, is used to characterize an acoustic lens for operation at 1.2 GHz. A confocal laser scanning microscope (CLSM) was used as the illumination and detection device utilizing its pinhole instead of the classical knife edge that is normally employed in the Foucault test. Information about the geometrical characteristics, such as the half opening angle of the acoustic lens, were determined as well as the quality of the calotte of the lens used for focusing. The smallest focal spot size that could be achieved with the examined lens employed as a spherical reflector was found to be about 1 μm. By comparison to the idealized resolution a degradation of about a factor of 2 can be deduced. This limits the actual quality of the acoustic focus.

  2. Research on OEF geometry control algorithm in dual-galvanometric laser scanning manufacturing

    Institute of Scientific and Technical Information of China (English)

    Huilai Sun; Shuzhong Lin; Tao Wang

    2005-01-01

    For the dual-galvanometric laser scanning manufacturing, the traditional geometry algorithm-fθ only considered the distance between the two swaying mirrors, the distance between the swaying mirror and the convex lens, the mirror swaying angle, and the lens focal length. And it could not correctly express the manufacturing track which was made geometry distorted. Based on analysis, a creative geometry control algorithm - optical entire factors (OEF) was brought forward. From the creative algorithm it can be known that OEF geometry control algorithm was concerned with not only the distance of the two swaying mirrors, distance between the swaying mirror and the convex lens, mirror swaying angle, and lens focal length, but also the lens central height, lens convex radius, and medium refractive index. The manufacturing system can manufacture satisfied geometry with the creative double ends approach (DEA) control model based on OEF in the experiments.

  3. Comparasion of Optic Nerve Head with Stereophotometric and Scanning Laser Ophthalmoscopic Imaging

    Directory of Open Access Journals (Sweden)

    Serek Tekin

    2016-01-01

    Full Text Available Aim: To compare theevaluation results of two experienced clinicians about examination of optic discs in glaucoma patients and healthy inidividuals by stereophotometry and scanning laser ophthalmoscopy. Material and Method: We studied 116 individuals (217 eyes who were divided as normal, glaucoma and suspected glaucoma in numbers of 54, 42 and 20 respectively. Stereophotometric photographs of optic disc were examined with fundus camera (Zeiss, FF 450 plus. Optic disc was also evaluated with HRT-3 in the same visit. Two experienced clinicians evaluated the cup/disc ratios and whether the optic discs were glaucomatous or not. Evaluation results were analysed and compared with HRT-3 examinations. Results:There were no significant age and gende rdifferences between the groups(p>0.05.Stereophotographic C/D ratio correlations between the clinicians were 0.79 (p

  4. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope.

    Science.gov (United States)

    Salaheldin, Taher A; Husseiny, Sherif M; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Cowley, Alan H

    2016-03-03

    Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD) pattern, high-resolution transmission electron Microscopy (HRTEM) and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM) to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity.

  5. Pharmaceutical applications of confocal laser scanning microscopy: the physical characterisation of pharmaceutical systems.

    Science.gov (United States)

    Pygall, Samuel R; Whetstone, Joanne; Timmins, Peter; Melia, Colin D

    2007-12-10

    The application of confocal laser scanning microscopy (CLSM) to the physicochemical characterisation of pharmaceutical systems is not as widespread as its application within the field of cell biology. However, methods have been developed to exploit the imaging capabilities of CLSM to study a wide range of pharmaceutical systems, including phase-separated polymers, colloidal systems, microspheres, pellets, tablets, film coatings, hydrophilic matrices, and chromatographic stationary phases. Additionally, methods to measure diffusion in gels, bioadhesives, and for monitoring microenvironmental pH change within dosage forms have been utilised. CLSM has also been used in the study of the physical interaction of dosage forms with biological barriers such as the eye, skin and intestinal epithelia, and in particular, to determine the effectiveness of a plethora of pharmaceutical systems to deliver drugs through these barriers. In the future, there is continuing scope for wider exploitation of existing techniques, and continuing advancements in instrumentation.

  6. Parallel deconvolution of large 3D images obtained by confocal laser scanning microscopy.

    Science.gov (United States)

    Pawliczek, Piotr; Romanowska-Pawliczek, Anna; Soltys, Zbigniew

    2010-03-01

    Various deconvolution algorithms are often used for restoration of digital images. Image deconvolution is especially needed for the correction of three-dimensional images obtained by confocal laser scanning microscopy. Such images suffer from distortions, particularly in the Z dimension. As a result, reliable automatic segmentation of these images may be difficult or even impossible. Effective deconvolution algorithms are memory-intensive and time-consuming. In this work, we propose a parallel version of the well-known Richardson-Lucy deconvolution algorithm developed for a system with distributed memory and implemented with the use of Message Passing Interface (MPI). It enables significantly more rapid deconvolution of two-dimensional and three-dimensional images by efficiently splitting the computation across multiple computers. The implementation of this algorithm can be used on professional clusters provided by computing centers as well as on simple networks of ordinary PC machines.

  7. Technology insight: Laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract.

    Science.gov (United States)

    Inoue, Haruhiro; Kudo, Shin-ei; Shiokawa, Akira

    2005-01-01

    Recent advances in endoscopic imaging technology have enabled the visualization of early-stage cancer and its precursors in the gastrointestinal tract. Chromoendoscopy, magnifying endoscopy, endoscopic optical coherent tomography, spectroscopy, and various combinations of these technologies, are all important for the recognition of small and unclear lesions. To observe cancer cells in vivo, two types of ultra-high magnifying endoscope--'laser-scanning confocal endoscopy series' and 'contact endoscopy series'--that have a maximum of more than 1,000x magnifying power have been developed. These endoscopes can generate high-quality images of both living cancer cells and normal cells in the gastrointestinal tract, with a quality comparable to that possible with conventional cytology. These novel imaging technologies may make in vivo histological diagnosis by virtual histology possible.

  8. A semi-automatic multiple view texture mapping for the surface model extracted by laser scanning

    Science.gov (United States)

    Zhang, Zhichao; Huang, Xianfeng; Zhang, Fan; Chang, Yongmin; Li, Deren

    2008-12-01

    Laser scanning is an effective way to acquire geometry data of the cultural heritage with complex architecture. After generating the 3D model of the object, it's difficult to do the exactly texture mapping for the real object. we take effort to create seamless texture maps for a virtual heritage of arbitrary topology. Texture detail is acquired directly from the real object in a light condition as uniform as we can make. After preprocessing, images are then registered on the 3D mesh by a semi-automatic way. Then we divide the mesh into mesh patches overlapped with each other according to the valid texture area of each image. An optimal correspondence between mesh patches and sections of the acquired images is built. Then, a smoothing approach is proposed to erase the seam between different images that map on adjacent mesh patches, based on texture blending. The obtained result with a Buddha of Dunhuang Mogao Grottoes is presented and discussed.

  9. Using Mobile Laser Scanning Data for Features Extraction of High Accuracy Driving Maps

    Science.gov (United States)

    Yang, Bisheng; Liu, Yuan; Liang, Fuxun; Dong, Zhen

    2016-06-01

    High Accuracy Driving Maps (HADMs) are the core component of Intelligent Drive Assistant Systems (IDAS), which can effectively reduce the traffic accidents due to human error and provide more comfortable driving experiences. Vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. This paper proposes a novel method to extract road features (e.g., road surfaces, road boundaries, road markings, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, vehicles and so on) for HADMs in highway environment. Quantitative evaluations show that the proposed algorithm attains an average precision and recall in terms of 90.6% and 91.2% in extracting road features. Results demonstrate the efficiencies and feasibilities of the proposed method for extraction of road features for HADMs.

  10. Evaluation of the Cytotoxic Behavior of Fungal Extracellular Synthesized Ag Nanoparticles Using Confocal Laser Scanning Microscope

    Directory of Open Access Journals (Sweden)

    Taher A. Salaheldin

    2016-03-01

    Full Text Available Silver nanoparticles have been synthesized by subjecting a reaction medium to a Fusarium oxysporum biomass at 28 °C for 96 h. The biosynthesized Ag nanoparticles were characterized on the basis of their anticipated peak at 405 nm using UV-Vis-NIR spectroscopy. Structural confirmation was evident from the characteristic X-ray diffraction (XRD pattern, high-resolution transmission electron Microscopy (HRTEM and the particle size analyzer. The Ag nanoparticles were of dimension 40 ± 5 nm and spherical in shape. The study mainly focused on using the confocal laser scanning microscope (CLSM to examine the cytotoxic activities of fungal synthesized Ag nanoparticles on a human breast carcinoma cell line MCF7 cell, which featured remarkable vacuolation, thus indicating a potent cytotoxic activity.

  11. Analysis of the melanin distribution in different ethnic groups by in vivo laser scanning microscopy

    Science.gov (United States)

    Antoniou, C.; Lademann, J.; Richter, H.; Astner, S.; Patzelt, A.; Zastrow, L.; Sterry, W.; Koch, S.

    2009-05-01

    The aim of this study was to determine whether Laser scanning confocal microscopy (LSM) is able to visualize differences in melanin content and distribution in different Skin Phototypes. The investigations were carried out on six healthy volunteers with Skin Phototypes II, IV, and VI. Representative skin samples of Skin Phototypes II, V, and VI were obtained for histological analysis from remaining tissue of skin grafts and were used for LSM-pathologic correlation. LSM evaluation showed significant differences in melanin distribution in Skin Phototypes II, IV, and VI, respectively. Based on the differences in overall reflectivity and image brightness, a visual evaluation scheme showed increasing brightness of the basal and suprabasal layers with increasing Skin Phototypes. The findings correlated well with histological analysis. The results demonstrate that LSM may serve as a promising adjunctive tool for real time assessment of melanin content and distribution in human skin, with numerous clinical applications and therapeutic and preventive implications.

  12. Terrestrial Laser Scanning of Peatland Surface Morphology for Eco-Hydrological Applications

    Science.gov (United States)

    Anderson, Karen; Bennie, Jonathan; Wetherelt, Andrew

    2010-05-01

    BACKGROUND: Ombrotrophic (rain-fed) lowland raised bogs are scarce habitats with high conservation importance in Europe. A reproducible measurement technique which is capable of capturing the spatial patterning of vegetation and surface topography is important in peatlands because structure is linked to ecological function, hydrology, biodiversity and carbon sequestration. Little attention has been given in the literature to the potential capabilities of active remote sensing systems such as LiDAR for monitoring peatland status, despite the clear opportunity posed by adopting a structurally-focused approach. APPROACH: The research described in this paper set out to establish the information content of laser scanning data for peatland condition monitoring. Our approach was to use fine scale laser scan data acquired from a terrestrial laser scanner (TLS) so as to understand the data requirements for these types of application. We adopted a transect approach to sampling at the Wedholme Flow peatland site in Cumbria, UK. This is a lowland ombrotrophic peatland exhibiting a range of eco-hydrological condition types and was thus a suitable test-bed for the methodology. Seven sites located along a hydrological gradient were measured using TLS. A Leica HDS 3000 instrument, mounted on a tracked vehicle was used to survey the peatland surface from three viewpoints at each site, meaning that shadows cast by the plant canopy were in-filled during post-processing of the point cloud. Each site was also instrumented with hydrological dipwell recorders and assessed using detailed ecological surveys. Positional data from a differential GPS survey (collected simultaneously) were used to elucidate interpretation of spatial patterns in the TLS data. RESULTS: The results demonstrate the capabilities of TLS for describing peatland microtopography and vegetation canopy characteristics at a fine spatial scale (cm resolution over 10 m spatial extent). Geostatistical analyses of the laser

  13. 9nm node wafer defect inspection using three-dimensional scanning, a 405nm diode laser, and a broadband source

    Science.gov (United States)

    Zhou, Renjie; Edwards, Chris; Bryniarski, Casey A.; Popescu, Gabriel; Goddard, Lynford L.

    2015-03-01

    We recently built a 405nm laser based optical interferometry system for 9nm node patterned wafer defect inspection. Defects with volumes smaller than 15nm by 90nm by 35nm have been detected. The success of defect detection relied on accurate mechanical scanning of the wafer and custom engineered image denoising post-processing. To further improve the detection sensitivity, we designed a higher precision XYZ scanning stage and replaced the laser source with an incoherent LED to remove the speckle noise. With these system modifications, we successfully detected both defects and surface contamination particles in bright-field imaging mode. Recently, we have upgraded this system for interferometric defect inspection.

  14. Single mode operation and extended scanning of anti-reflection coated visible laser diodes in a Littrow cavity

    Science.gov (United States)

    Lonsdale, D. J.; Andrews, D. A.; King, T. A.

    2004-05-01

    A method to increase the mode-hop-free tuning range is presented that is suitable for application with visible and short wavelength laser diodes, and relaxes the requirement on high tolerance mechanical components. Depending on the diode and cavity, the theory predicts an improvement of up to eight times the FSR of the extended cavity. In our system, an anti-reflection coated AlGaInP laser diode showed a mode-hop-free scan of 8 GHz, which is characteristic for the wavelength used in the device. Greater scanning ranges are predicted for shorter wavelength sources.

  15. Impact of multiple sub-melt laser scans on the activation and diffusion of shallow Boron junctions

    DEFF Research Database (Denmark)

    Rosseel, E.; Vandervorst, W.; Clarysse, T.

    2008-01-01

    , careful process optimization is required. While macroscopic variations can easily be addressed using the proper spatial power compensation it is more difficult to completely eliminate the micro scale non-uniformity which is intimately linked to the laser beam profile, the amount of overlaps and the scan...... pitch. In this work, we will present micro scale sheet resistance uniformity measurements for shallow 0.5 keV B junctions and zoom in on the underlying effect of multiple subsequent laser scans. A variety of characterization techniques are used to extract the relevant junction parameters and the role...... and concentration dependent diffusion component....

  16. A cost-effective laser scanning method for mapping stream channel geometry and roughness

    Science.gov (United States)

    Lam, Norris; Nathanson, Marcus; Lundgren, Niclas; Rehnström, Robin; Lyon, Steve

    2015-04-01

    In this pilot project, we combine an Arduino Uno and SICK LMS111 outdoor laser ranging camera to acquire high resolution topographic area scans for a stream channel. The microprocessor and imaging system was installed in a custom gondola and suspended from a wire cable system. To demonstrate the systems capabilities for capturing stream channel topography, a small stream (stream channel resulted in a point spacing of 4mm and a point cloud density of 5600 points/m2 for the 5m by 2m area. A grain size distribution of the streambed material was extracted from the point cloud using a moving window, local maxima search algorithm. The median, 84th and 90th percentiles (common metrics to describe channel roughness) of this distribution were found to be within the range of measured values while the largest modelled element was approximately 35% smaller than its measured counterpart. The laser scanning system captured grain sizes between 30mm and 255mm (coarse gravel/pebbles and boulders based on the Wentworth (1922) scale). This demonstrates that our system was capable of resolving both large-scale geometry (e.g. bed slope and stream channel width) and small-scale channel roughness elements (e.g. coarse gravel/pebbles and boulders) for the study area. We further show that the point cloud resolution is suitable for estimating ecohydraulic parameters such as Manning's n and hydraulic radius. Although more work is needed to fine-tune our system's design, these preliminary results are encouraging, specifically for those with a limited operational budget.

  17. Spectroscopic, scanning laser OBIC, and I-V/QE characterizations of browned EVA solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Pern, F.J. [National Renewable Energy Lab., Golden, CO (United States); Eisgruber, I.L. [Materials Research Group, Inc., Wheat Ridge, CO (United States); Micheels, R.H. [Polestar Technologies, Inc., Needham Hts, MA (United States)

    1996-05-01

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of -80 to -90 to the range of -20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emission peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%-48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.

  18. Scanning laser optical tomography resolves structural plasticity during regeneration in an insect brain.

    Directory of Open Access Journals (Sweden)

    René Eickhoff

    Full Text Available BACKGROUND: Optical Projection Tomography (OPT is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. METHODOLOGY: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. CONCLUSIONS: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.

  19. Scanning laser vibrometry and luminol photomicrography to map cavitational activity around ultrasonic scalers

    Science.gov (United States)

    Felver, Bernhard; King, David C.; Lea, Simon C.; Price, Gareth J.; Walmsley, A. Damien

    2008-06-01

    Ultrasonic dental scalers are clinically used to remove deposits from tooth surfaces. A metal probe, oscillating at ultrasonic frequencies, is used to chip away deposits from the teeth. To reduce frictional heating, water flows over the operated probe in which a bi-product, cavitation, may be generated. The aim of this study is characterise probe oscillations using scanning laser vibrometry and to relate the recorded data to the occurrence of cavitation that is mapped in the course of this research. Scanning laser vibrometry (Polytec models 300-F/S and 400-3D) was used to measure the movement of various designs of operating probes and to locate vibration nodes / anti-nodes at different generator power settings and contact loads (100g and 200g). Cavitation mapping was performed by photographing the emission from a luminol solution with a digital camera (Artemis ICX285). The scaler design influences the number and location of vibration node / anti-node points. For all ultrasonic probes, the highest displacement amplitude values were recorded at the tip. The highest amounts of cavitation around the probes were recorded at the second anti-node measured from the tip. Broad, beaver-tale shaped probes produced more cavitation than slim shaped ones. The design also influences the amount of inertial cavitation around the operated instrument. The clinical relevance is that broad, beaver-tale shaped probes are unlikely to reach subgingival areas of the tooth. Further research is required to design probes that will be clinically superior to cleaning this area of the tooth.

  20. Automatic Feature Detection, Description and Matching from Mobile Laser Scanning Data and Aerial Imagery

    Science.gov (United States)

    Hussnain, Zille; Oude Elberink, Sander; Vosselman, George

    2016-06-01

    In mobile laser scanning systems, the platform's position is measured by GNSS and IMU, which is often not reliable in urban areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel level.

  1. Equivalente esférico e valores da espessura da camada de fibras nervosas obtidas com o GDX TM Scanning Laser System® Spherical equivalent and nerve fiber layer thickness assessed with GDX TM Scanning Laser System®

    Directory of Open Access Journals (Sweden)

    Lênio Souza Alvarenga

    1999-12-01

    Full Text Available Objetivo: Estudar a influência do equivalente esférico nos valores obtidos pelo GDX TM Scanning Laser System®. Métodos: Foram avaliados 41 olhos de 41 voluntários sem doenças oculares e com campo visual sem alterações. Foi realizada a polarimetria de varredura a laser com o GDX TM Scanning Laser System® de acordo com as instruções contidas no manual do aparelho. Foram comparados os valores obtidos nesse exame em um grupo de pacientes com equivalente esférico positivo e em um outro com este valor nulo ou negativo, pelo teste de Mann-Whitney. Resultados: Não se verificou diferença estatística entre os valores obtidos nos olhos de pacientes do grupo I e os do grupo II. Não foi encontrada correlação entre o equivalente esférico e os valores obtidos com o GDX TM Scanning Laser System®. Conclusões: Na amostra estudada não houve diferença estatística entre os valores obtidos em um grupo de olhos com equivalente esférico positivo e outro com este valor negativo ou nulo, usando-se o GDX TM Scanning Laser System®.Purpose: To evaluate the effect of spherical equivalent on the acquisition of nerve fiber layer (NFL thickness with GDX TM Scanning Laser System®. Methods: Forty-one eyes of 41 volunteers were enrolled in this study. All of them presented with no ocular disease and no visual field defect. The NFL thickness was measured with GDX TM Scanning Laser System® as described in its manual. The values obtained in a group of volunteers with negative spherical equivalent (group I were compared to those from a group with a positive spherical equivalent (group II by the Mann-Whitney test. Results: There was no statistical difference between mea-surements in eyes of group I and those in group II. The NFL thickness measurements were not correlated with the sphe-rical equivalent. Conclusions: In the studied group there was no statistical difference in the GDX TM Scanning Laser System® parameters related to spherical equivalent.

  2. Geoarchaeological site documentation and analysis of 3D data derived by terrestrial laser scanning

    Science.gov (United States)

    Hoffmeister, D.; Zellmann, S.; Kindermann, K.; Pastoors, A.; Lang, U.; Bubenzer, O.; Weniger, G.-C.; Bareth, G.

    2014-05-01

    Terrestrial laser scanning was conducted to document and analyse sites of geoarchaeological interest in Jordan, Egypt and Spain. In those cases, the terrestrial laser scanner LMS-Z420i from Riegl was used in combination with an accurate RTK-GPS for georeferencing of the point clouds. Additionally, local surveying networks were integrated by established transformations and used for indirect registration purposes. All data were integrated in a workflow that involves different software and according results. The derived data were used for the documentation of the sites by accurate plans and cross-sections. Furthermore, the 3D data were analysed for geoarchaeological research problems, such as volumetric determinations, the ceiling thickness of a cave and lighting simulations based on path tracing. The method was reliable in harsh environmental conditions, but the weight of the instrument, the measuring time and the minimum measurement distance were a drawback. However, generally an accurate documentation of the sites was possible. Overall, the integration in a 3D GIS is easily possible by the accurate georeference of the derived data. In addition, local survey results are also implemented by the established transformations. Enhanced analyses based on the derived 3D data shows promising results.

  3. Absorption measurement of acoustic materials using a scanning laser Doppler vibrometer

    Science.gov (United States)

    Vanlanduit, Steve; Vanherzeele, Joris; Guillaume, Patrick; de Sitter, Gert

    2005-03-01

    In this article a method is proposed to estimate the normal incidence reflection ratio and absorption coefficient of acoustical materials using measurements in a transparent tube excited with a loudspeaker and terminated with the material under investigation. The waveforms are measured at different locations in the tube using a scanning laser Doppler vibrometer. Because the measurement probe (i.e., the laser beam) does not interfere with the wave in the tube, narrow tubes can be used. This means that-in contrast to the standardized wide tube tests using microphones-the proposed experiment could be used for high frequencies (in the paper an 8 mm tube was used, resulting in a 25 kHz upper frequency limit). It is shown based on theoretically known scenarios (i.e., an open tube and a rigid termination) that the absorption coefficient can be obtained with an error of about three percent. In addition, the absorption coefficient of two commonly used absorption materials-glass fiber wool and carpet-were determined and found to be in good agreement with material databases. .

  4. Study of Subtropical Forestry Index Retrieval Using Terrestrial Laser Scanning and Hemispherical Photography

    Directory of Open Access Journals (Sweden)

    Ting Yun

    2015-01-01

    Full Text Available In order to retrieve gap fraction, leaf inclination angle, and leaf area index (LAI of subtropical forestry canopy, here we acquired forestry detailed information by means of hemispherical photography, terrestrial laser scanning, and LAI-2200 plant canopy analyzer. Meanwhile, we presented a series of image processing and computer graphics algorithms that include image and point cloud data (PCD segmentation methods for branch and leaf classification and PCD features, such as normal vector, tangent plane extraction, and hemispherical projection method for PCD coordinate transformation. In addition, various forestry mathematical models were proposed to deduce forestry canopy indexes based on the radiation transfer model of Beer-Lambert law. Through the comparison of the experimental results on many plot samples, the terrestrial laser scanner- (TLS- based index estimation method obtains results similar to digital hemispherical photograph (HP and LAI-2200 plant canopy analyzer taken of the same stands and used for validation. It indicates that the TLS-based algorithm is able to capture the variability in LAI of forest stands with a range of densities, and there is a high chance to enhance TLS as a calibration tool for other devices.

  5. Use of scanning LIMM (Laser Intensity Modulation Method) to characterise polarisation variability in dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Mark; Cain, Markys, E-mail: mark.stewart@npl.co.u [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom)

    2009-08-01

    The Laser Intensity Modulation Method (LIMM) has traditionally been used to characterise the depth dependence of polarisation of piezoelectric materials{sup 1}. Although the technique is simple, it is difficult to extract the polarisation / depth data from the measured pyroelectric current because of the complex mathematics pertaining to the physics of the technique. However, the laser probe may still be used as a comparative or qualitative tool in mapping out the polarisation across the surface of a material. A novel scanning LIMM system has been developed to map the variation in piezoelectric activity across a range of samples. The system has been upgraded with a galvanometer mirror scanner to increase speed and reduce sensitivity to acoustic noise. The improvements are discussed and tested on a range of case studies. The technique can be used to show differences in piezoelectric activity caused by features such as inhomogeneous material composition, porosity and mechanical damage. The method has application as a quality control tool for materials and device manufacturers.

  6. Time course of the size of the dark area in macular holes by scanning laser ophthalmoscopy.

    Science.gov (United States)

    Akasaka, Y; Nishikawa, S; Tamai, M

    2000-02-01

    To investigate the time course of idiopathic macular hole development by scanning laser ophthalmoscopy (SLO), we examined 28 eyes of 25 patients with macular holes. Cases included four eyes with stage 1-B disease (foveal detachment), 3 with stage 2 (break at the fovea), 13 with stage 3 (full-thickness macular hole), and 8 with stage 4 (hole with pseudo-operculum, posterior vitreous detachment), according to Gass's classification. The diameter of the dark area around the macular holes was recorded by SLO using a helium-neon laser. We compared the percent difference of dark area recorded between initial findings and these after three months. The size of the dark area increased after three months in eyes with stages 1, 2, and 3 disease. The size of the dark area in stage 4 disease decreased after 3 months. In the stage before posterior vitreous detachment (PVD), the dark areas increased. Once PVD occurred, these areas decreased. These findings suggested that the time course of the dark area may be related to the development of PVD.

  7. Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images.

    Science.gov (United States)

    Kang, Zhizhong; Li, Jonathan; Zhang, Liqiang; Zhao, Qile; Zlatanova, Sisi

    2009-01-01

    This paper presents a new approach to the automatic registration of terrestrial laser scanning (TLS) point clouds using panoramic reflectance images. The approach follows a two-step procedure that includes both pair-wise registration and global registration. The pair-wise registration consists of image matching (pixel-to-pixel correspondence) and point cloud registration (point-to-point correspondence), as the correspondence between the image and the point cloud (pixel-to-point) is inherent to the reflectance images. False correspondences are removed by a geometric invariance check. The pixel-to-point correspondence and the computation of the rigid transformation parameters (RTPs) are integrated into an iterative process that allows for the pair-wise registration to be optimised. The global registration of all point clouds is obtained by a bundle adjustment using a circular self-closure constraint. Our approach is tested with both indoor and outdoor scenes acquired by a FARO LS 880 laser scanner with an angular resolution of 0.036° and 0.045°, respectively. The results show that the pair-wise and global registration accuracies are of millimetre and centimetre orders, respectively, and that the process is fully automatic and converges quickly.

  8. Resolution enhancement of digital laser scanning fluorescence microscopy with a dual-lens optical pickup head

    Science.gov (United States)

    Tsai, Rung-Ywan; Chen, Jung-Po; Lee, Yuan-Chin; Chiang, Hung-Chih; Huang, Tai-Ting; Huang, Chun-Chieh; Cheng, Chih-Ming; Cheng, Chung-Ta; Lo, Feng-Hsiang; Tiao, Golden

    2016-10-01

    The resolution of the cell fluorescence image captured by a digital laser scanning microscopy with a modified dual-lens BD-ROM optical pickup head is enhanced by image registration and double sample frequency. A dual objective lens of red (655 nm) and blue (405 or 488 nm) laser sources with numerical apertures of 0.6 and 0.85 is used for sample focusing and position tracking and cell fluorescence image capturing, respectively. The image registration and capturing frequency are based on the address-coded patterns of a sample slide. The address-coded patterns are designed as a string of binary code, which comprises a plurality of base-straight lands and grooves and data-straight grooves. The widths of the base-straight lands, base-straight grooves, and data-straight grooves are 0.38, 0.38, and 0.76 μm, respectively. The numbers of sample signals in the x-direction are measured at every intersection point by intersecting the base intensity of the push-pull signal of the address-coded patterns, which has a minimum spacing of 0.38 μm. After taking a double sample frequency, the resolution of the measured cell fluorescence image is enhanced from 0.38 μm to the diffraction limit of the objective lens.

  9. Further resolution enhancement of high-sensitivity laser scanning photothermal microscopy applied to mouse endogenous

    Science.gov (United States)

    Nakata, Kazuaki; Tsurui, Hiromichi; Kobayashi, Takayoshi

    2016-12-01

    Photothermal microscopy has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. In the present paper, we have made further resolution improvement of high-sensitivity laser scanning photothermal microscopy by applying non-linear detection. By this, the new method has the following advantages: (1) super resolution with 61% and 42% enhancement from the diffraction limit values of the probe and pump wavelengths, respectively, by a second-order non-linear scheme, (2) compact light source using inexpensive conventional diode lasers, (3) wide applicability to nonfluorescent materials such as gold nanoparticles (GNPs) and hematoxylin-eosin stained biological samples, (4) relative robustness to optical damage, and (5) a high-frame rate using a Galvano mirror. The maximum resolution is determined to be 160 nm in the second-order non-linear detection mode and 270 nm in the linear detection mode by the PT signal of GNPs. The pixel rate and frame rate for 300 × 300 pixel image are 50 μs and 4.5 s, respectively. The pixel and frame rate are shorter than the rates, which are 1 ms and 100 s, respectively, using the piezo-driven stage system.

  10. Changes in cortical microvasculature during misery perfusion measured by two-photon laser scanning microscopy.

    Science.gov (United States)

    Tajima, Yosuke; Takuwa, Hiroyuki; Kokuryo, Daisuke; Kawaguchi, Hiroshi; Seki, Chie; Masamoto, Kazuto; Ikoma, Yoko; Taniguchi, Junko; Aoki, Ichio; Tomita, Yutaka; Suzuki, Norihiro; Kanno, Iwao; Saeki, Naokatsu; Ito, Hiroshi

    2014-08-01

    This study aimed to examine the cortical microvessel diameter response to hypercapnia in misery perfusion using two-photon laser scanning microscopy (TPLSM). We evaluated whether the vascular response to hypercapnia could represent the cerebrovascular reserve. Cerebral blood flow (CBF) during normocapnia and hypercapnia was measured by laser-Doppler flowmetry through cranial windows in awake C57/BL6 mice before and at 1, 7, 14, and 28 days after unilateral common carotid artery occlusion (UCCAO). Diameters of the cortical microvessels during normocapnia and hypercapnia were also measured by TPLSM. Cerebral blood flow and the vascular response to hypercapnia were decreased after UCCAO. Before UCCAO, vasodilation during hypercapnia was found primarily in arterioles (22.9%±3.5%). At 14 days after UCCAO, arterioles, capillaries, and venules were autoregulatorily dilated by 79.5%±19.7%, 57.2%±32.3%, and 32.0%±10.8%, respectively. At the same time, the diameter response to hypercapnia in arterioles was significantly decreased to 1.9%±1.5%. A significant negative correlation was observed between autoregulatory vasodilation and the diameter response to hypercapnia in arterioles. Our findings indicate that arterioles play main roles in both autoregulatory vasodilation and hypercapnic vasodilation, and that the vascular response to hypercapnia can be used to estimate the cerebrovascular reserve.

  11. Assessment of relative accuracy of AHN-2 laser scanning data using planar features.

    Science.gov (United States)

    van der Sande, Corné; Soudarissanane, Sylvie; Khoshelham, Kourosh

    2010-01-01

    AHN-2 is the second part of the Actueel Hoogtebestand Nederland project, which concerns the acquisition of high-resolution altimetry data over the entire Netherlands using airborne laser scanning. The accuracy assessment of laser altimetry data usually relies on comparing corresponding tie elements, often points or lines, in the overlapping strips. This paper proposes a new approach to strip adjustment and accuracy assessment of AHN-2 data by using planar features. In the proposed approach a transformation is estimated between two overlapping strips by minimizing the distances between points in one strip and their corresponding planes in the other. The planes and the corresponding points are extracted in an automated segmentation process. The point-to-plane distances are used as observables in an estimation model, whereby the parameters of a transformation between the two strips and their associated quality measures are estimated. We demonstrate the performance of the method for the accuracy assessment of the AHN-2 dataset over Zeeland province of The Netherlands. The results show vertical offsets of up to 4 cm between the overlapping strips, and horizontal offsets ranging from 2 cm to 34 cm.

  12. Calculating point of origin of blood spatter using laser scanning technology.

    Science.gov (United States)

    Hakim, Nashad; Liscio, Eugene

    2015-03-01

    The point of origin of an impact pattern is important in establishing the chain of events in a bloodletting incident. In this study, the accuracy and reproducibility of the point of origin estimation using the FARO Scene software with the FARO Focus(3D) laser scanner was determined. Five impact patterns were created for each of three combinations of distances from the floor (z) and the front wall (x). Fifteen spatters were created using a custom impact rig, scanned using the laser scanner, photographed using a DSLR camera, and processed using the Scene software. Overall results gave a SD = 3.49 cm (p < 0.0001) in the x-direction, SD = 1.14 cm (p = 0.9291) in the y-direction, and SD = 9.08 cm (p < 0.0115) in the z-direction. The technique performs within literature ranges of accepted accuracy and reproducibility and is comparable to results reported for other virtual stringing software.

  13. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Xinlian Liang

    2014-01-01

    Full Text Available A professional-quality, personal laser scanning (PLS system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE of the estimates of tree diameter at breast height (DBH was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking.

  14. Possibilities of a personal laser scanning system for forest mapping and ecosystem services.

    Science.gov (United States)

    Liang, Xinlian; Kukko, Antero; Kaartinen, Harri; Hyyppä, Juha; Yu, Xiaowei; Jaakkola, Anttoni; Wang, Yunsheng

    2014-01-10

    A professional-quality, personal laser scanning (PLS) system for collecting tree attributes was demonstrated in this paper. The applied system, which is wearable by human operators, consists of a multi-constellation navigation system and an ultra-high-speed phase-shift laser scanner mounted on a rigid baseplate and consisting of a single sensor block. A multipass-corridor-mapping method was developed to process PLS data and a 2,000 m2 forest plot was utilized in the test. The tree stem detection accuracy was 82.6%; the root mean square error (RMSE) of the estimates of tree diameter at breast height (DBH) was 5.06 cm; the RMSE of the estimates of tree location was 0.38 m. The relative RMSE of the DBH estimates was 14.63%. The results showed, for the first time, the potential of the PLS system in mapping large forest plots. Further research on mapping accuracy in various forest conditions, data correction methods and multi-sensoral positioning techniques is needed. The utilization of this system in different applications, such as harvester operations, should also be explored. In addition to collecting tree-level and plot-level data for forest inventory, other possible applications of PLS for forest ecosystem services include mapping of canopy gaps, measuring leaf area index of large areas, documenting and visualizing forest routes feasible for recreation, hiking and berry and mushroom picking.

  15. Comparison of pain scores between patients undergoing panretinal photocoagulation using navigated or pattern scan laser systems

    Directory of Open Access Journals (Sweden)

    Umit Ubeyt Inan

    2016-02-01

    Full Text Available ABSTRACT Purpose: To compare the pain responses of patients with proliferative diabetic retinopathy (PDR undergoing panretinal photocoagulation (PRP using either pattern scan laser (PASCAL or navigated laser photocoagulation (NAVILAS. Methods: Patients diagnosed with PDR were randomly assigned to undergo either PASCAL or NAVILAS photocoagulation treatment. PRP was performed using the multi-shot mode with a spot size of 200-400 µm and a pulse duration of 30 ms to obtain a white-grayish spot on the retina. Parameters were identical in both procedures. After 30 min of PRP application, patients were asked to verbally describe their pain perception as either "none," "mild," "moderate," "severe," or "very severe" using a verbal rating scale (VRS and visual analog scale (VAS by indicating a score from "0" to "10," representing the severity of pain from "no pain" to "severe pain." Results: A total of 60 eyes of 60 patients (20 females and 40 males diagnosed with PDR were treated. The mean age of patients was 62.22 ± 9.19 years, and the mean diabetes duration was 195.47 ± 94.54 months. The mean number of laser spots delivered during PRP was 389.47 ± 71.52 in the NAVILAS group and 392.70 ± 54.33 in the PASCAL group (p=0.57. The difference in pain responses between patients in the NAVILAS and PASCAL groups was significant with regard to the mean VRS (1.10 ± 0.67 and 1.47 ± 0.69, respectively; p=0.042 and mean VAS (2.13 ± 1.17 and 2.97 ± 1.35, respectively; p=0.034 scores. Conclusions: Pain responses in patients undergoing PRP with a 30-ms pulse duration were significantly milder in the NAVILAS group than in the PASCAL group.

  16. Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation

    Science.gov (United States)

    Chiariotti, P.; Martarelli, M.; Castellini, P.

    2017-03-01

    Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.

  17. Detecting Changes in Forest Structure over Time with Bi-Temporal Terrestrial Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Timo Melkas

    2012-10-01

    Full Text Available Changes to stems caused by natural forces and timber harvesting constitute an essential input for many forestry-related applications and ecological studies, especially forestry inventories based on the use of permanent sample plots. Conventional field measurement is widely acknowledged as being time-consuming and labor-intensive. More automated and efficient alternatives or supportive methods are needed. Terrestrial laser scanning (TLS has been demonstrated to be a promising method in forestry field inventories. Nevertheless, the applicability of TLS in recording changes in the structure of forest plots has not been studied in detail. This paper presents a fully automated method for detecting changes in forest structure over time using bi-temporal TLS data. The developed method was tested on five densely populated forest plots including 137 trees and 50 harvested trees in point clouds. The present study demonstrated that 90 percent of tree stem changes could be automatically located from single-scan TLS data. These changes accounted for 92 percent of the changed basal area. The results indicate that the processing of TLS data collected at different times to detect tree stem changes can be fully automated.

  18. A wavelet based algorithm for DTM extraction from airborne laser scanning data

    Science.gov (United States)

    Xu, Liang; Yang, Yan; Tian, Qingjiu

    2007-06-01

    The automatic extraction of Digital Terrain Model (DTM) from point clouds acquired by airborne laser scanning (ALS) equipment remains a problem in ALS data filtering nowadays. Many filter algorithms have been developed to remove object points and outliers, and to extract DTM automatically. However, it is difficult to filter in areas where few points have identical morphological or geological features that can present the bare earth. Especially in sloped terrain covered by dense vegetation, points representing bare earth are often identified as noisy data below ground. To extract terrain surface in these areas, a new algorithm is proposed. First, the point clouds are cut into profiles based on a scan line segmentation algorithm. In each profile, a 1D filtering procedure is determined from the wavelet theory, which is superior in detecting high frequency discontinuities. After combining profiles from different directions, an interpolated grid data representing DTM is generated. In order to evaluate the performance of this new approach, we applied it to the data set used in the ISPRS filter test in 2003. 2 samples containing mostly vegetation on slopes have been processed by the proposed algorithm. It can be seen that it filtered most of the objects like vegetation and buildings in sloped area, and smoothed the hilly mountain to be more close to its real terrain surface.

  19. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  20. Geometry and intensity based culvert detection in mobile laser scanning point clouds

    Science.gov (United States)

    Lin, Yi; Hyyppa, Juha

    2010-11-01

    Mobile laser scanning (MLS), which recently has been developing so quickly as a promising technology for mapping and remote sensing (RS), offers a good means to measure the fundamental geographic data, e.g. culverts, for urban planning and road engineering. This study as the first try presents a new automatic method to detect culverts in MLS point clouds, in which actually only partial characterization of this category of objects can be presented due to the restricted scanning zenith of MLS. The schematic is based on the raster-form of the data, and the digital terrain models (DTMs) with multi-leveled resolutions are first yielded by local minimum filtering. Then, the common layout of the expanded areas containing culverts is generalized as the theoretical basis, and the schematic components are derived to deploy the concrete judgment. The geometry and intensity information about culverts are both utilized to determine the real locations from coarse- to fine-scales. Numerical analysis based on the real-measured MLS data at the Espoonlahti test site has basically validated the proposed approach. Concretely, the statistical errors of the retrieved lengths and widths of the pedestrian culverts are less than 9% and 16% compared to the real ones individually, notwithstanding the inner heights innately in-accessible.

  1. Can Low-Resolution Airborne Laser Scanning Data Be Used to Model Stream Rating Curves?

    Directory of Open Access Journals (Sweden)

    Steve W. Lyon

    2015-03-01

    Full Text Available This pilot study explores the potential of using low-resolution (0.2 points/m2 airborne laser scanning (ALS-derived elevation data to model stream rating curves. Rating curves, which allow the functional translation of stream water depth into discharge, making them integral to water resource monitoring efforts, were modeled using a physics-based approach that captures basic geometric measurements to establish flow resistance due to implicit channel roughness. We tested synthetically thinned high-resolution (more than 2 points/m2 ALS data as a proxy for low-resolution data at a point density equivalent to that obtained within most national-scale ALS strategies. Our results show that the errors incurred due to the effect of low-resolution versus high-resolution ALS data were less than those due to flow measurement and empirical rating curve fitting uncertainties. As such, although there likely are scale and technical limitations to consider, it is theoretically possible to generate rating curves in a river network from ALS data of the resolution anticipated within national-scale ALS schemes (at least for rivers with relatively simple geometries. This is promising, since generating rating curves from ALS scans would greatly enhance our ability to monitor streamflow by simplifying the overall effort required.

  2. Use of terrestrial laser scanning to evaluate the spatial distribution of soil disturbance by skidding operations

    Directory of Open Access Journals (Sweden)

    Koren M

    2015-06-01

    Full Text Available We investigated the disturbance to the surface of a skid trail caused by removing cut timber from inside the forest to the roadside by dragging using terrestrial laser scanning technology. We scanned the study site prior to taking any action, after skidding and after implementing post-harvesting reinstatement to the surface of the skid trail. From the point cloud obtained, we derived an irregular point field. We generated a triangulated irregular network which we then interpolated into a raster digital terrain model with a resolution of 1cm. By comparing the digital terrain models, we analysed the influence of skidding the timber and the influence of post-harvesting reinstatement upon the surface of the skid trail. The surface of the skid trail was most significantly affected in the area where the harvested logs were extracted and stacked for hauling. In the centre section of the trail, where the logs were dragged by a tractor, quite deep tracks were created and the intensity of soil disturbance was comparable to the handling section. The lowest intensity of soil disturbance was found in the area where the skid trail met the roadside. The post-harvesting reinstatement of the working area resulted in levelling the surface of the skid trail and the deepest tracks were filled in. The post-harvesting reinstatement caused a 12% increase of the volume of ruts, a 49% decrease of the volume of mounds of soil and a 6% increase of total soil volume change.

  3. Morphological Changes Along a Dike Landside Slope Sampled by 4d High Resolution Terrestrial Laser Scanning

    Science.gov (United States)

    Herrero-Huertaa, Mónica; Lindenbergh, Roderik; Ponsioen, Luc; van Damme, Myron

    2016-06-01

    Emergence of light detection and ranging (LiDAR) technology provides new tools for geomorphologic studies improving spatial and temporal resolution of data sampling hydrogeological instability phenomena. Specifically, terrestrial laser scanning (TLS) collects high resolution 3D point clouds allowing more accurate monitoring of erosion rates and processes, and thus, quantify the geomorphologic change on vertical landforms like dike landside slopes. Even so, TLS captures observations rapidly and automatically but unselectively. In this research, we demonstrate the potential of TLS for morphological change detection, profile creation and time series analysis in an emergency simulation for characterizing and monitoring slope movements in a dike. The experiment was performed near Schellebelle (Belgium) in November 2015, using a Leica Scan Station C10. Wave overtopping and overflow over a dike were simulated whereby the loading conditions were incrementally increased and 14 successful scans were performed. The aim of the present study is to analyse short-term morphological dynamic processes and the spatial distribution of erosion and deposition areas along a dike landside slope. As a result, we are able to quantify the eroded material coming from the impact on the terrain induced by wave overtopping which caused the dike failure in a few minutes in normal storm scenarios (Q = 25 l/s/m) as 1.24 m3. As this shows that the amount of erosion is measurable using close range techniques; the amount and rate of erosion could be monitored to predict dike collapse in emergency situation. The results confirm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis over a large extension of a dike (tens of meters).

  4. Three-dimensional quantification of facial symmetry in adolescents using laser surface scanning

    Science.gov (United States)

    Toma, Arshed M.; Zhurov, Alexei I.; Richmond, Stephen

    2014-01-01

    Laser scanning is a non-invasive method for three-dimensional assessment of facial morphology and symmetry. The aim of this study was to quantify facial symmetry in healthy adolescents and explore if there is any gender difference. Facial scans of 270 subjects, 123 males and 147 females (aged 15.3 ± 0.1 years, range 14.6–15.6), were randomly selected from the Avon Longitudinal Study of Parents and Children. Facial scans were processed and analysed using in-house developed subroutines for commercial software. The surface matching between the original face and its mirror image was measured for the whole face, upper, middle, and lower facial thirds. In addition, 3 angular and 14 linear parameters were measured. The percentage of symmetry of the whole face was significantly lower in males (53.49 ± 10.73 per cent) than in females (58.50 ± 10.27 per cent; P 0.05). Average values of linear parameters were less than 1 mm and did not differ significantly between genders (P > 0.05). One angular parameter showed slight lip line asymmetry in both genders. Faces of male 15-year-old adolescents were less symmetric than those of females, but the difference in the amount of symmetry, albeit statistically significant, may not be clinically relevant. Upper, middle, and lower thirds of the face did not differ in the amount of three-dimensional symmetry. Angular and linear parameters of facial symmetry did not show any gender difference. PMID:21795753

  5. Digital Terrain Models from Mobile Laser Scanning Data in Moravian Karst

    Science.gov (United States)

    Tyagur, N.; Hollaus, M.

    2016-06-01

    During the last ten years, mobile laser scanning (MLS) systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car) allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. The aim of this work is to create a digital terrain model (DTM) from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G) with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.

  6. DIGITAL TERRAIN MODELS FROM MOBILE LASER SCANNING DATA IN MORAVIAN KARST

    Directory of Open Access Journals (Sweden)

    N. Tyagur

    2016-06-01

    Full Text Available During the last ten years, mobile laser scanning (MLS systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. The aim of this work is to create a digital terrain model (DTM from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.

  7. Processing of airborne laser scanning data to generate accurate DTM for floodplain wetland

    Science.gov (United States)

    Szporak-Wasilewska, Sylwia; Mirosław-Świątek, Dorota; Grygoruk, Mateusz; Michałowski, Robert; Kardel, Ignacy

    2015-10-01

    Structure of the floodplain, especially its topography and vegetation, influences the overland flow and dynamics of floods which are key factors shaping ecosystems in surface water-fed wetlands. Therefore elaboration of the digital terrain model (DTM) of a high spatial accuracy is crucial in hydrodynamic flow modelling in river valleys. In this study the research was conducted in the unique Central European complex of fens and marshes - the Lower Biebrza river valley. The area is represented mainly by peat ecosystems which according to EU Water Framework Directive (WFD) are called "water-dependent ecosystems". Development of accurate DTM in these areas which are overgrown by dense wetland vegetation consisting of alder forest, willow shrubs, reed, sedges and grass is very difficult, therefore to represent terrain in high accuracy the airborne laser scanning data (ALS) with scanning density of 4 points/m2 was used and the correction of the "vegetation effect" on DTM was executed. This correction was performed utilizing remotely sensed images, topographical survey using the Real Time Kinematic positioning and vegetation height measurements. In order to classify different types of vegetation within research area the object based image analysis (OBIA) was used. OBIA allowed partitioning remotely sensed imagery into meaningful image-objects, and assessing their characteristics through spatial and spectral scale. The final maps of vegetation patches that include attributes of vegetation height and vegetation spectral properties, utilized both the laser scanning data and the vegetation indices developed on the basis of airborne and satellite imagery. This data was used in process of segmentation, attribution and classification. Several different vegetation indices were tested to distinguish different types of vegetation in wetland area. The OBIA classification allowed correction of the "vegetation effect" on DTM. The final digital terrain model was compared and examined

  8. Cellular scanning strategy for selective laser melting: Evolution of optimal grid-based scanning path & parametric approach to thermal homogeneity

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    Selective laser melting, as a rapid manufacturing technology, is uniquely poised to enforce a paradigm shift in the manufacturing industry by eliminating the gap between job- and batch-production techniques. Products from this process, however, tend to show an increased amount of defects...

  9. Feasibility of Terrestrial laser scanning for collecting stem volume information from single trees

    Science.gov (United States)

    Saarinen, Ninni; Kankare, Ville; Vastaranta, Mikko; Luoma, Ville; Pyörälä, Jiri; Tanhuanpää, Topi; Liang, Xinlian; Kaartinen, Harri; Kukko, Antero; Jaakkola, Anttoni; Yu, Xiaowei; Holopainen, Markus; Hyyppä, Juha

    2017-01-01

    Interest in measuring forest biomass and carbon stock has increased as a result of the United Nations Framework Convention on Climate Change, and sustainable planning of forest resources is therefore essential. Biomass and carbon stock estimates are based on the large area estimates of growing stock volume provided by national forest inventories (NFIs). The estimates for growing stock volume based on the NFIs depend on stem volume estimates of individual trees. Data collection for formulating stem volume and biomass models is challenging, because the amount of data required is considerable, and the fact that the detailed destructive measurements required to provide these data are laborious. Due to natural diversity, sample size for developing allometric models should be rather large. Terrestrial laser scanning (TLS) has proved to be an efficient tool for collecting information on tree stems. Therefore, we investigated how TLS data for deriving stem volume information from single trees should be collected. The broader context of the study was to determine the feasibility of replacing destructive and laborious field measurements, which have been needed for development of empirical stem volume models, with TLS. The aim of the study was to investigate the effect of the TLS data captured at various distance (i.e. corresponding 25%, 50%, 75% and 100% of tree height) on the accuracy of the stem volume derived. In addition, we examined how multiple TLS point cloud data acquired at various distances improved the results. Analysis was carried out with two ways when multiple point clouds were used: individual tree attributes were derived from separate point clouds and the volume was estimated based on these separate values (multiple-scan A), and point clouds were georeferenced as a combined point cloud from which the stem volume was estimated (multiple-scan B). This permitted us to deal with the practical aspects of TLS data collection and data processing for development of

  10. Structure Defects Interrelation of Heat-resistant Nickel Alloy Obtained by Selective Laser Melting Method and Strategy and Scanning Parameters

    Directory of Open Access Journals (Sweden)

    O. A. Bytsenko

    2016-01-01

    Full Text Available The objective was to conduct a study of the surface morphology and a chemical composition analysis of the powder of different fractional composition of a heat-resistant Ni-Co-Cr-AlTi-W-Mo-Nb alloy, and to define the patterns of change in the quantitative parameters of the structure of samples obtained by selective laser melting (SLM method with different parameters of power, laser speed, and a type of hatching (staggered, island diagonal, and solid diagonal.To study the surface morphology of the microstructure was used optical, laser-confocal and scanning electron microscopy. The elemental and local phase composition was performed by X-ray and miсro-X-ray spectrum analysis.The initial powder morphology study has found that the powder granules have a generally spherical shape, and the number of structural defects increases with increasing granule size. The microstructure of all granules has a dendritic structure. The superficial defects have a form of satellites, shapeless shield, round gas pores, and pores located in the inter-dendritic regions because of the shrinkage process.The study of the microstructure of the samples has been defined that dimensions of the structural components, pores, and micro-cracks depend on the parameters of the SLM process. With raising laser power within 160 - 190 W there is an increase in a fraction of pores and their average diameter. With further increase in laser power the volume fraction of pores is slightly reduced while their average size is, essentially, unchanged.It has been found that at the constant laser power and variable scanning speed the volume fraction of pores depends on the type of hatching. For staggered and solid diagonal hatching, at the constant laser power of 180 W with increasing scanning speed the volume fraction, at first, falls and then again grows, and for island diagonal hatching remains unchanged.When changing the laser power values within a range from 160 to 170 W for samples with

  11. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EGGS

    Science.gov (United States)

    Multiphoton laser scanning microscopy (MPLSM) is a promising tool to study the tissue distribution of environmental chemical contaminants during fish early life stages. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon that a...

  12. USE OF MULTIPHOTON LASER SCANNING MICROSCOPY TO IMAGE BENZO[A]PYRENE AND METABOLITES IN FISH EARLY LIFE STAGES

    Science.gov (United States)

    Multiphoton laser scanning micrsocopy holds promise as a tool to study the tissue distribution of environmental chemical contaminants during fish early life stage development. One such chemical for which this is possible is benzo[a]pyrene (BaP), a polyaromatic hydrocarbon that a...

  13. Retinal nerve fiber layer thickness in subgroups of multiple sclerosis, measured by optical coherence tomography and scanning laser polarimetry

    NARCIS (Netherlands)

    T.A.M. Siepman (Theodora); M. Wefers Bettink-Remeijer (Marijke); R.Q. Hintzen (Rogier)

    2010-01-01

    textabstractOptical coherence tomography (OCT) and scanning laser polarimetry (GDx ECC) are non-invasive methods used to assess retinal nerve fiber layer (RNFL) thickness, which may be a reliable tool used to monitor axonal loss in multiple sclerosis (MS). The objectives of this study are (1) to com

  14. The illuminating role of laser scanning digital elevation models in precision agriculture experimental designs - an agro-ecology perspective

    Science.gov (United States)

    Laser scanning data streams, when linked with multi-spectral, hyperspectral, apparent soil electro-conductivity (ECa), or other kinds of geo-referenced data streams, aid in the creation of maps that allow useful applications in agricultural systems. These combinations of georeferenced information p...

  15. Accuracy in estimation of timber assortments and stem distribution - A comparison of airborne and terrestrial laser scanning techniques

    Science.gov (United States)

    Kankare, Ville; Vauhkonen, Jari; Tanhuanpää, Topi; Holopainen, Markus; Vastaranta, Mikko; Joensuu, Marianna; Krooks, Anssi; Hyyppä, Juha; Hyyppä, Hannu; Alho, Petteri; Viitala, Risto

    2014-11-01

    Detailed information about timber assortments and diameter distributions is required in forest management. Forest owners can make better decisions concerning the timing of timber sales and forest companies can utilize more detailed information to optimize their wood supply chain from forest to factory. The objective here was to compare the accuracies of high-density laser scanning techniques for the estimation of tree-level diameter distribution and timber assortments. We also introduce a method that utilizes a combination of airborne and terrestrial laser scanning in timber assortment estimation. The study was conducted in Evo, Finland. Harvester measurements were used as a reference for 144 trees within a single clear-cut stand. The results showed that accurate tree-level timber assortments and diameter distributions can be obtained, using terrestrial laser scanning (TLS) or a combination of TLS and airborne laser scanning (ALS). Saw log volumes were estimated with higher accuracy than pulpwood volumes. The saw log volumes were estimated with relative root-mean-squared errors of 17.5% and 16.8% with TLS and a combination of TLS and ALS, respectively. The respective accuracies for pulpwood were 60.1% and 59.3%. The differences in the bucking method used also caused some large errors. In addition, tree quality factors highly affected the bucking accuracy, especially with pulpwood volume.

  16. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP

    NARCIS (Netherlands)

    Müller, L.N.; de Brouwer, J.F.C.; Almeida, J.S.; Stal, L.J.; Xavier, J.B.

    2006-01-01

    Background Confocal laser scanning microscopy (CLSM) is the method of choice to study interfacial biofilms and acquires time-resolved three-dimensional data of the biofilm structure. CLSM can be used in a multi-channel modus where the different channels map individual biofilm components. This commun

  17. Fabrication and investigation of 1D and 2D structures in LiNbO 3 thin films by pulsed laser ablation

    Science.gov (United States)

    Meriche, F.; Boudrioua, A.; Kremer, R.; Dogheche, E.; Neiss-Clauss, E.; Mouras, R.; Fischer, A.; Beghoul, M.-R.; Fogarassy, E.; Boutaoui, N.

    2010-09-01

    Lithium niobate thin films were deposited on sapphire substrate by radio-frequency magnetron sputtering technique. One and two dimensional structures have been made using a KrF excimer laser at 248 nm and 6 ns pulse width, under various conditions of ablation, in order to assess the applicability of laser direct-writing of photonic waveguides. The optical and waveguiding properties of LiNbO 3 thin films were studied by prism-coupling technique, while micro-Raman spectroscopy was used for structural and composition characterization, as well as laser processing mechanism investigation. The surface morphology of the processed structures was obtained by a Nomarski optical microscope, an atomic force microscope and a White Light Interferometer Microscope.

  18. Application of terrestrial laser scanning for coastal geomorphologic research questions in western Greece

    Science.gov (United States)

    Hoffmeister, Dirk; Curdt, Constanze; Tilly, Nora; Ntageretzis, Konstantin; Aasen, Helge; Vött, Andreas; Bareth, Georg

    2013-04-01

    Coasts are areas of permanent change, influenced by gradual changes and sudden impacts. In particular, western Greece is a tectonically active region, due to the nearby plate boundary of the Hellenic Arc. The region has suffered from numerous earthquakes and tsunamis during prehistoric and historic times and is thus characterized by a high seismic and tsunami hazard risk. Additionally, strong winter storms may reach considerable dimensions. In this study, terrestrial laser scanning was applied for (i) annual change detection at seven coastal areas of western Greece for three years (2009-2011) and (ii) accurate parameter detection of large boulders, dislocated by high-energy wave impacts. The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro) for all surveys. Each scan position and a further target were recorded for georeferencing and merging of the point clouds. (i) For the annual detection of changes, reference points for the base station of the DGPS system were marked. High-resolution digital elevation models (HRDEM) were generated from each dataset of the different years and are compared to each other, resulting in mass balances. (ii) 3D-models of dislocated boulders were reconstructed and parameters (e.g. volume in combination with density measurements, distance and height above present sea-level) were derived for the solution of wave transport equations, which estimate the minimum wave height or velocity that is necessary for boulder movement. (i) Our results show that annual changes are detectable by multi-temporal terrestrial laser scanning. In general, volumetric changes and affected areas are quantifiable and maps of changes can be established. On exposed beach areas, bigger changes were detectable, where seagrass and sand is eroded and gravel accumulated. In opposite, only minor changes for elevated areas are derived. Dislocated boulders on several sites showed no movement. At coastal areas with a high

  19. Asymmetric 2D spatial beam filtering by photonic crystals

    Science.gov (United States)

    Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.

    2016-04-01

    Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.

  20. Segmentation of Planar Surfaces from Laser Scanning Data Using the Magnitude of Normal Position Vector for Adaptive Neighborhoods

    Directory of Open Access Journals (Sweden)

    Changjae Kim

    2016-01-01

    Full Text Available Diverse approaches to laser point segmentation have been proposed since the emergence of the laser scanning system. Most of these segmentation techniques, however, suffer from limitations such as sensitivity to the choice of seed points, lack of consideration of the spatial relationships among points, and inefficient performance. In an effort to overcome these drawbacks, this paper proposes a segmentation methodology that: (1 reduces the dimensions of the attribute space; (2 considers the attribute similarity and the proximity of the laser point simultaneously; and (3 works well with both airborne and terrestrial laser scanning data. A neighborhood definition based on the shape of the surface increases the homogeneity of the laser point attributes. The magnitude of the normal position vector is used as an attribute for reducing the dimension of the accumulator array. The experimental results demonstrate, through both qualitative and quantitative evaluations, the outcomes’ high level of reliability. The proposed segmentation algorithm provided 96.89% overall correctness, 95.84% completeness, a 0.25 m overall mean value of centroid difference, and less than 1° of angle difference. The performance of the proposed approach was also verified with a large dataset and compared with other approaches. Additionally, the evaluation of the sensitivity of the thresholds was carried out. In summary, this paper proposes a robust and efficient segmentation methodology for abstraction of an enormous number of laser points into plane information.