Bivariate raising and lowering differential operators for eigenfunctions of a 2D Fourier transform
International Nuclear Information System (INIS)
We define a two-dimensional (2D) Fourier transform that self-reproduces a one-parameter family of bivariate Hermite functions; these are eigenfunctions of a Hamiltonian differential operator of second order, whose exponential is that transform. We find explicit forms of the bivariate raising and lowering partial differential operators of first degree for the eigenfunctions of this 2D Fourier transform. (paper)
Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.
Dovlo, Edem; Baddour, Natalie
2015-01-01
The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time. PMID:26150988
Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates
Edem Dovlo; Natalie Baddour
2015-01-01
The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: • The implementation of th...
Toolbox for the Computation of 2D Fourier Transforms in Polar Coordinates via Maple
Directory of Open Access Journals (Sweden)
Edem Dovlo
2015-02-01
Full Text Available The Fourier transform is one of the most useful tools in science and engineering and can be expanded to multi-dimensions and curvilinear coordinates. A toolbox of functions for the computation of two dimensional Fourier transforms in polar coordinates with symbolic computer algebra (Maple was developed. The implementation of the 2D Fourier transform in polar coordinates within the toolbox is a combination of two significantly simpler transforms. A modular approach is used along with the idea of lookup tables to help avoid the issue of indeterminate results when attempting to directly evaluate the transform. This concept helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.
Tensor representation of color images and fast 2D quaternion discrete Fourier transform
Grigoryan, Artyom M.; Agaian, Sos S.
2015-03-01
In this paper, a general, efficient, split algorithm to compute the two-dimensional quaternion discrete Fourier transform (2-D QDFT), by using the special partitioning in the frequency domain, is introduced. The partition determines an effective transformation, or color image representation in the form of 1-D quaternion signals which allow for splitting the N × M-point 2-D QDFT into a set of 1-D QDFTs. Comparative estimates revealing the efficiency of the proposed algorithms with respect to the known ones are given. In particular, a proposed method of calculating the 2r × 2r -point 2-D QDFT uses 18N2 less multiplications than the well-known column-row method and method of calculation based on the symplectic decomposition. The proposed algorithm is simple to apply and design, which makes it very practical in color image processing in the frequency domain.
Generalized Fourier transforms classes
DEFF Research Database (Denmark)
Berntsen, Svend; Møller, Steen
2002-01-01
The Fourier class of integral transforms with kernels $B(\\omega r)$ has by definition inverse transforms with kernel $B(-\\omega r)$. The space of such transforms is explicitly constructed. A slightly more general class of generalized Fourier transforms are introduced. From the general theory foll...... follows that integral transform with kernels which are products of a Bessel and a Hankel function or which is of a certain general hypergeometric type have inverse transforms of the same structure....
Energy Technology Data Exchange (ETDEWEB)
Popescu, Maria-Cristina, E-mail: cpopescu@icmpp.ro [' Petru Poni' Institute of Macromolecular Chemistry (Romania); Gomez, Rafael; Mata, Fco Javier de la; Rasines, Beatriz [Universidad de Alcala, Departamento de Quimica Inorganica (Spain); Simionescu, Bogdan C. [' Petru Poni' Institute of Macromolecular Chemistry (Romania)
2013-06-15
Fourier transform infrared spectroscopy and 2D correlation spectroscopy were used to study the microstructural changes occurring on heating of a new carbosilane dendrimer with peripheral ammonium groups. Temperature-dependent spectral variations in the 3,010-2,710, 1,530-1,170, and 1,170-625 cm{sup -1} regions were monitored during the heating process. The dependence, on temperature, of integral absorptions and position of spectral bands was established and the spectral modifications associated with molecular conformation rearrangements, allowing molecular shape changes, were found. Before 180 Degree-Sign C, the studied carbosilane dendrimer proved to be stable, while at higher temperatures it oxidizes and Si-O groups appear. 2D IR correlation spectroscopy gives new information about the effect of temperature on the structure and dynamics of the system. Synchronous and asynchronous spectra indicate that, at low temperature, conformational changes of CH{sub 3} and CH{sub 3}-N{sup +} groups take place first. With increasing temperature, the intensity variation of the CH{sub 2}, C-N, Si-C and C-C groups from the dendritic core is faster than that of the terminal units. This indicates that, with increasing temperature, the segments of the dendritic core obtain enough energy to change their conformation more easily as compared to the terminal units, due to their internal flexibility.
Fourier transformation for pedestrians
Butz, Tilman
2015-01-01
This book is an introduction to Fourier Transformation with a focus on signal analysis, based on the first edition. It is well suited for undergraduate students in physics, mathematics, electronic engineering as well as for scientists in research and development. It gives illustrations and recommendations when using existing Fourier programs and thus helps to avoid frustrations. Moreover, it is entertaining and you will learn a lot unconsciously. Fourier series as well as continuous and discrete Fourier transformation are discussed with particular emphasis on window functions. Filter effects of digital data processing are illustrated. Two new chapters are devoted to modern applications. The first deals with data streams and fractional delays and the second with the back-projection of filtered projections in tomography. There are many figures and mostly easy to solve exercises with solutions.
Fast complexified quaternion Fourier transform
Said, Salem; Bihan, Nicolas le; Sangwine, Stephen J.
2006-01-01
A discrete complexified quaternion Fourier transform is introduced. This is a generalization of the discrete quaternion Fourier transform to the case where either or both of the signal/image and the transform kernel are complex quaternion-valued. It is shown how to compute the transform using four standard complex Fourier transforms and the properties of the transform are briefly discussed.
Fourier transforms principles and applications
Hansen, Eric W
2014-01-01
Fourier Transforms: Principles and Applications explains transform methods and their applications to electrical systems from circuits, antennas, and signal processors-ably guiding readers from vector space concepts through the Discrete Fourier Transform (DFT), Fourier series, and Fourier transform to other related transform methods. Featuring chapter end summaries of key results, over two hundred examples and four hundred homework problems, and a Solutions Manual this book is perfect for graduate students in signal processing and communications as well as practicing engineers.
On the Replica Fourier Transform
Carlucci, D. M.; De Dominicis, C.
1997-01-01
The Replica Fourier Transform introduced previously is related to the standard definition of Fourier transforms over a group. Its use is illustrated by block-diagonalizing the eigenvalue equation of a four-replica Parisi matrix.
Fourier transforms in spectroscopy
Kauppinen, Jyrki
2000-01-01
This modern approach to the subject is clearly and logically structured, and gives readers an understanding of the essence of Fourier transforms and their applications. All important aspects are included with respect to their use with optical spectroscopic data. Based on popular lectures, the authors provide the mathematical fundamentals and numerical applications which are essential in practical use. The main part of the book is dedicated to applications of FT in signal processing and spectroscopy, with IR and NIR, NMR and mass spectrometry dealt with both from a theoretical and practical poi
Wavelet-fractional Fourier transforms
Institute of Scientific and Technical Information of China (English)
Yuan Lin
2008-01-01
This paper extends the definition of fractional Fourier transform (FRFT) proposed by Namias V by using other orthonormal bases for L2 (R) instead of Hermite-Ganssian functions.The new orthonormal basis is gained indirectly from multiresolution analysis and orthonormal wavelets. The so defined FRFT is called wavelets-fractional Fourier transform.
Ultrafast Fourier-transform parallel processor
Energy Technology Data Exchange (ETDEWEB)
Greenberg, W.L.
1980-04-01
A new, flexible, parallel-processing architecture is developed for a high-speed, high-precision Fourier transform processor. The processor is intended for use in 2-D signal processing including spatial filtering, matched filtering and image reconstruction from projections.
2D Regimes of Non-Fourier Convection
Papanicolaou, N. C.
2010-11-01
In this work, we investigate the 2D flow in a rectangular cavity subject to both vertical and horizontal temperature gradients. The linearized model is studied and the effect of thermal relaxation, as described by the Maxwell-Cattaneo law of heat conduction is examined. To this end, a spectral numerical model is created based on a Galerkin expansion. The basis is the Cartesian product of systems of beam functions and trigonometric functions. The natural modes of the system are derived for both the Fourier and non-Fourier models. The results are compared to earlier works for the plain Fourier law. Our computations show that for the same set of parameters, the Maxwell-Cattaneo law yields modes which are quantitatively different from the Fourier. It is found that the real parts of the eigenvalues increase with the Straughan number Sg, which quantifies the non-Fourier effects. This confirms the destabilizing effect of the MC-law on the convective flow.
Fast Numerical Nonlinear Fourier Transforms
Wahls, Sander
2014-01-01
The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...
Slice Fourier transform and convolutions
Cnudde, Lander; De Bie, Hendrik
2015-01-01
Recently the construction of various integral transforms for slice monogenic functions has gained a lot of attention. In line with these developments, the article at hand introduces the slice Fourier transform. In the first part, the kernel function of this integral transform is constructed using the Mehler formula. An explicit expression for the integral transform is obtained and allows for the study of its properties. In the second part, two kinds of corresponding convolutions are examined:...
Applying Quaternion Fourier Transforms for Enhancing Color Images
Directory of Open Access Journals (Sweden)
M.I. Khalil
2012-03-01
Full Text Available The Fourier transforms play a critical role in a broad range of image processing applications, including enhancement, analysis, restoration, and compression. Until recently, it was common to use the conventional methods to deal with colored images. These methods are based on RGB decomposition of the colored image by separating it into three separate scalar images and computing the Fourier transforms of these images separately. The computing of the Hypercomplex 2D Fourier transform of a color image as a whole unit has only recently been realized. This paper is concerned with frequency domain noise reduction of color images using quaternion Fourier transforms. The approach is based on obtaining quaternion Fourier transform of the color image and applying the Gaussian filter to it in the frequency domain. The filtered image is then obtained by calculating the inverse quaternion Fourier transforms.
A More Accurate Fourier Transform
Courtney, Elya
2015-01-01
Fourier transform methods are used to analyze functions and data sets to provide frequencies, amplitudes, and phases of underlying oscillatory components. Fast Fourier transform (FFT) methods offer speed advantages over evaluation of explicit integrals (EI) that define Fourier transforms. This paper compares frequency, amplitude, and phase accuracy of the two methods for well resolved peaks over a wide array of data sets including cosine series with and without random noise and a variety of physical data sets, including atmospheric $\\mathrm{CO_2}$ concentrations, tides, temperatures, sound waveforms, and atomic spectra. The FFT uses MIT's FFTW3 library. The EI method uses the rectangle method to compute the areas under the curve via complex math. Results support the hypothesis that EI methods are more accurate than FFT methods. Errors range from 5 to 10 times higher when determining peak frequency by FFT, 1.4 to 60 times higher for peak amplitude, and 6 to 10 times higher for phase under a peak. The ability t...
Logarithm of the Discrete Fourier Transform
Directory of Open Access Journals (Sweden)
Michael Aristidou
2007-01-01
Full Text Available The discrete Fourier transform defines a unitary matrix operator. The logarithm of this operator is computed, along with the projection maps onto its eigenspaces. A geometric interpretation of the discrete Fourier transform is also given.
Logarithm of the Discrete Fourier Transform
Michael Aristidou; Jason Hanson
2007-01-01
The discrete Fourier transform defines a unitary matrix operator. The logarithm of this operator is computed, along with the projection maps onto its eigenspaces. A geometric interpretation of the discrete Fourier transform is also given.
Fourier transform of momentum distribution in vanadium
International Nuclear Information System (INIS)
Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e+-e- many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)
Fourier-transform optical microsystems
Collins, S. D.; Smith, R. L.; Gonzalez, C.; Stewart, K. P.; Hagopian, J. G.; Sirota, J. M.
1999-01-01
The design, fabrication, and initial characterization of a miniature single-pass Fourier-transform spectrometer (FTS) that has an optical bench that measures 1 cm x 5 cm x 10 cm is presented. The FTS is predicated on the classic Michelson interferometer design with a moving mirror. Precision translation of the mirror is accomplished by microfabrication of dovetailed bearing surfaces along single-crystal planes in silicon. Although it is miniaturized, the FTS maintains a relatively high spectral resolution, 0.1 cm-1, with adequate optical throughput.
Novel Micro Fourier Transform Spectrometers
Institute of Scientific and Technical Information of China (English)
KONG Yan-mei; LIANG Jing-qiu; LIANG Zhong-zhu; WANG-Bo; ZHANG Jun
2008-01-01
The miniaturization of spectrometer opens a new application area with real-time and on-site measurements. The Fourier transform spectrometer(FTS) is much attractive considering its particular advantages among the approaches. This paper reviews the current status of micro FTS in worldwide and describes its developments; In addition, analyzed are the key problems in designing and fabricating FTS to be settled during the miniaturization. Finally, a novel model of micro FTS with no moving parts is proposed and analyzed, which may provide new concepts for the design of spectrometers.
Two-dimensional fourier transform spectrometer
DeFlores, Lauren; Tokmakoff, Andrei
2013-09-03
The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
Fourier Transforms of Finite Chirps
Directory of Open Access Journals (Sweden)
Fickus Matthew
2006-01-01
Full Text Available Chirps arise in many signal processing applications. While chirps have been extensively studied as functions over both the real line and the integers, less attention has been paid to the study of chirps over finite groups. We study the existence and properties of chirps over finite cyclic groups of integers. In particular, we introduce a new definition of a finite chirp which is slightly more general than those that have been previously used. We explicitly compute the discrete Fourier transforms of these chirps, yielding results that are number-theoretic in nature. As a consequence of these results, we determine the degree to which the elements of certain finite tight frames are well distributed.
Optical fourier transform image processor
International Nuclear Information System (INIS)
The primary objective of this project is to improve the signal to noise ratio of the X-ray shadow graphs and tomographs of human body using optical spatial filtering techniques. Helium Neon laser of 4 milli Watt has been used for the purpose. Spatial filtering of the beam has been done in the first step to eliminate the coherent noise produced by various laser modes. Conventional method of spatial filtering has been used to process simple achieved using conventional filters. Edge enhancement and improvement of signal to noise ratio of the X-ray shadow graphs has been done using lens and lens-less Fourier transform holographic filters and VanderLugt filters. VanderLugt filter has given the best edge-enhancement for the chest X-ray shadow graph. (author)
2D Fourier series representation of gravitational functionals in spherical coordinates
Ghobadi-Far, Khosro; Sharifi, Mohammad Ali; Sneeuw, Nico
2016-05-01
2D Fourier series representation of a scalar field like gravitational potential is conventionally derived by making use of the Fourier series of the Legendre functions in the spherical harmonic representation. This representation has been employed so far only in the case of a scalar field or the functionals that are related to it through a radial derivative. This paper provides a unified scheme to represent any gravitational functional in terms of spherical coordinates using a 2D Fourier series representation. The 2D Fourier series representation for each individual point is derived by transforming the spherical harmonics from the geocentric Earth-fixed frame to a rotated frame so that its equator coincides with the local meridian plane of that point. In the obtained formulation, each functional is linked to the potential in the spectral domain using a spectral transfer. We provide the spectral transfers of the first-, second- and third-order gradients of the gravitational potential in the local north-oriented reference frame and also those of some functionals of frequent use in the physical geodesy. The obtained representation is verified numerically. Moreover, spherical harmonic analysis of anisotropic functionals and contribution analysis of the third-order gradient tensor are provided as two numerical examples to show the power of the formulation. In conclusion, the 2D Fourier series representation on the sphere is generalized to functionals of the potential. In addition, the set of the spectral transfers can be considered as a pocket guide that provides the spectral characteristics of the functionals. Therefore, it extends the so-called Meissl scheme.
Matrix Fourier transform with discontinuous coefficients
Yaremko, O.; Zhuravleva, E.
2013-01-01
The explicit construction of direct and inverse Fourier's vector transform with discontinuous coefficients is presented. The technique of applying Fourier's vector transform with discontinuous coefficients for solving problems of mathematical physics.Multidimensional integral transformations with non-separated variables for problems with discontinuous coefficients are constructed in this work. The coefficient discontinuities focused on the of parallel hyperplanes. In this work explicit formul...
Two modified discrete chirp Fourier transform schemes
Institute of Scientific and Technical Information of China (English)
樊平毅; 夏香根
2001-01-01
This paper presents two modified discrete chirp Fourier transform (MDCFT) schemes.Some matched filter properties such as the optimal selection of the transform length, and its relationship to analog chirp-Fourier transform are studied. Compared to the DCFT proposed previously, theoretical and simulation results have shown that the two MDCFTs can further improve the chirp rate resolution of the detected signals.
Product Theorem for Quaternion Fourier Transform
Bahri, Mawardi
2014-01-01
In this paper we present the generalized convolution and correlation for the two-dim ensional discrete quaternion Fourier transform (DQFT). We provide several new properties of the generalizations. There results can be considered as the extension of correlation and convolution properties of real and complex Fourier transform to the DQFT domain.
On the $q$-Bessel Fourier transform
Dhaouadi, Lazhar
2013-01-01
In this work, we are interested by the $q$-Bessel Fourier transform with a new approach. Many important results of this $q$-integral transform are proved with a new constructive demonstrations and we establish in particular the associated $q$-Fourier-Neumen expansion which involves the $q$-little Jacobi polynomials.
The Table of Analytical Discrete Fourier Transforms
Briggs, William L.; Henson, Van Emden
1995-01-01
While most people rely on numerical methods (most notably the fast Fourier transform) for computing discrete Fourier transforms (DFTs), there is still an occasional need to have analytical DFTs close at hand. Such a table of analytical DFTs is provided in this paper, along with comments and observations, in the belief that it will serve as a useful resource or teaching aid for Fourier practioners.
On the positivity of Fourier transforms
Giraud, Bertrand G
2014-01-01
Characterizing in a constructive way the set of real functions whose Fourier transforms are positive appears to be yet an open problem. Some sufficient conditions are known but they are far from being exhaustive. We propose two constructive sets of necessary conditions for positivity of the Fourier transforms and test their ability of constraining the positivity domain. One uses analytic continuation and Jensen inequalities and the other deals with Toeplitz determinants and the Bochner theorem. Applications are discussed, including the extension to the two-dimensional Fourier-Bessel transform and the problem of positive reciprocity, i.e. positive functions with positive transforms.
Fourier transforms in radar and signal processing
Brandwood, David
2011-01-01
Fourier transforms are used widely, and are of particular value in the analysis of single functions and combinations of functions found in radar and signal processing. Still, many problems that could have been tackled by using Fourier transforms may have gone unsolved because they require integration that is difficult and tedious. This newly revised and expanded edition of a classic Artech House book provides you with an up-to-date, coordinated system for performing Fourier transforms on a wide variety of functions. Along numerous updates throughout the book, the Second Edition includes a crit
Plasma Spectrochemistry with a Fourier Transform Spectrometer.
Manning, Thomas Joseph John
1990-01-01
This dissertation can be interpreted as being two-dimensional. The first dimension uses the Los Alamos Fourier Transform Spectrometer to uncover various physical aspects of a Inductively Coupled Plasma. The limits of wavenumber accuracy and resolution are pushed to measure line shifts and line profiles in an Inductively Coupled Argon Plasma. This is new physical information that the plasma spectroscopy community has been seeking for several years. Other plasma spectroscopy carried out includes line profile studies, plasma diagnostics, and exact identification of diatomic molecular spectra. The second aspect of the dissertation involves studies of light sources for Fourier Transform Spectroscopy. Sources developed use an inductively coupled plasma (ICP) power supply. New sources (neon ICP, closed cell ICP, and helium ICP) were developed and new methods to enhance the performance and understand a Fourier Transform Spectrometer were studied including a novel optical filter, a spectrum analyzer to study noises, and a standard to calibrate and evaluate a Fourier Transform Spectrometer.
Fractional Fourier transform of Lorentz beams
Institute of Scientific and Technical Information of China (English)
Zhou Guo-Quan
2009-01-01
This paper introduces Lorentz beams to describe certain laser sources that produce highly divergent fields. The fractional Fourier transform (FRFT) is applied to treat the propagation of Lorentz beams. Based on the definition of convolution and the convolution theorem of the Fourier transform, an analytical expression for a Lorentz beam passing through a FRFT system has been derived. By using the derived formula, the properties of a Lorentz beam in the FRFT plane are illustrated numerically.
From Complex Fractional Fourier Transform to Complex Fractional Radon Transform
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; JIANG Nian-Quan
2004-01-01
We show that for n-dimensional complex fractional Fourier transform the corresponding complex fractional Radon transform can also be derived, however, it is different from the direct product of two n-dimensional real fractional Radon transforms. The complex fractional Radon transform of two-mode Wigner operator is calculated.
Fast Fourier Transforms of Piecewise Constant Functions
Sorets, Eugene
1995-02-01
We present an algorithm for the evaluation of the Fourier transform of piecewise constant functions of two variables. The algorithm overcomes the accuracy problems associated with computing the Fourier transform of discontinuous functions; in fact, its time complexity is O (N2 logN + NP log2 (1/ε) + V log3 (1/ε)), where ε is the accuracy, N is the size of the problem, P is the perimeter of the set of discontinuities, and V is its number of vertices. The algorithm is based on the Lagrange interpolation formula and the Green's theorem, which are used to preprocess the data before applying the fast Fourier transform. It readily generalizes to higher dimensions and to piecewise smooth functions.
High order generalized permutational fractional Fourier transforms
Institute of Scientific and Technical Information of China (English)
Ran Qi-Wen; Yuan Lin; Tan Li-Ying; Ma Jing; Wang Qi
2004-01-01
We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT),is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +∞,M = 4k (k is a natural number), and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.
High order generalized permutational fractional Fourier transforms
Ran, Qi-Wen; Yuan, Lin; Tan, Li-Ying; Ma, Jing; Wang, Qi
2004-02-01
We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT), is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +infty, M = 4k (k is a natural number) and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.
Fourier transforms and convolutions for the experimentalist
Jennison, RC
1961-01-01
Fourier Transforms and Convolutions for the Experimentalist provides the experimentalist with a guide to the principles and practical uses of the Fourier transformation. It aims to bridge the gap between the more abstract account of a purely mathematical approach and the rule of thumb calculation and intuition of the practical worker. The monograph springs from a lecture course which the author has given in recent years and for which he has drawn upon a number of sources, including a set of notes compiled by the late Dr. I. C. Browne from a series of lectures given by Mr. J . A. Ratcliffe of t
Clifford Fourier transform on vector fields.
Ebling, Julia; Scheuermann, Gerik
2005-01-01
Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space. PMID:16138556
Fractional Fourier Transform of Cantor Sets
Institute of Scientific and Technical Information of China (English)
LIAO Tian-ne; GAO Qiong
2005-01-01
@@ A new kind of multifractal is constructed by fractional Fourier transform of Cantor sets. The wavelet transform modulus maxima method is applied to calculate the singularity spectrum under an operational definition of multifractal. In particular, an analysing procedure to determine the spectrum is suggested for practice. Nonanalyticities of singularity spectra or phase transitions are discovered, which are interpreted as some indications on the range of Boltzmann temperature q, on which the scaling relation of partition function holds.
Directional Uncertainty Principle for Quaternion Fourier Transform
Hitzer, Eckhard
2013-01-01
This paper derives a new directional uncertainty principle for quaternion valued functions subject to the quaternion Fourier transformation. This can be generalized to establish directional uncertainty principles in Clifford geometric algebras with quaternion subalgebras. We demonstrate this with the example of a directional spacetime algebra function uncertainty principle related to multivector wave packets.
Fourier transforms on an amalgam type space
Liflyand, E
2012-01-01
We introduce an amalgam type space, a subspace of $L^1(\\mathbb R_+).$ Integrability results for the Fourier transform of a function with the derivative from such an amalgam space are proved. As an application we obtain estimates for the integrability of trigonometric series.
The PROSAIC Laplace and Fourier Transform
International Nuclear Information System (INIS)
Integral Transform methods play an extremely important role in many branches of science and engineering. The ease with which many problems may be solved using these techniques is well known. In Electrical Engineering especially, Laplace and Fourier Transforms have been used for a long time as a way to change the solution of differential equations into trivial algebraic manipulations or to provide alternate representations of signals and data. These techniques, while seemingly overshadowed by today's emphasis on digital analysis, still form an invaluable basis in the understanding of systems and circuits. A firm grasp of the practical aspects of these subjects provides valuable conceptual tools. This tutorial paper is a review of Laplace and Fourier Transforms from an applied perspective with an emphasis on engineering applications. The interrelationship of the time and frequency domains will be stressed, in an attempt to comfort those who, after living so much of their lives in the time domain, find thinking in the frequency domain disquieting
Debnath, Lokenath
2012-07-01
The profound study of nature is the most fertile source of mathematical discoveries. Not only does this study, by offering a definite goal to research, have the advantage of excluding vague questions and futile calculations, but it is also a sure means of moulding analysis itself, and discerning those elements in it which it is still essential to know and which science ought to conserve. These fundamental elements are those which recur in all natural phenomena. Joseph Fourier pure mathematics enables us to discover the concepts and laws connecting them, which gives us the key to the understanding of the phenomena of nature. Albert Einstein This article deals with a brief biographical sketch of Joseph Fourier, his first celebrated work on analytical theory of heat, his first great discovery of Fourier series and Fourier transforms. Included is a historical development of Fourier series and Fourier transforms with their properties, importance and applications. Special emphasis is made to his splendid research contributions to mathematical physics, pure and applied mathematics and his unprecedented public service accomplishments in the history of France. This is followed by historical comments about the significant and major impact of Fourier analysis on mathematical physics, probability and mathematical statistics, mathematical economics and many areas of pure and applied mathematics including geometry, harmonic analysis, signal analysis, wave propagation and wavelet analysis. Special attention is also given to the Fourier integral formula, Brownian motion and stochastic processes and many examples of applications including isoparametric inequality, everywhere continuous but nowhere differentiable functions, Heisenberg uncertainty principle, Dirichlets' theorem on primes in arithmetic progression, the Poisson summation formula and solutions of wave and diffusion equations. It is also shown that Fourier coefficients c n (t) in the Fourier expansion of a scalar field
Electro-optic imaging Fourier transform spectrometer
Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)
2009-01-01
An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.
Miniaturization of holographic Fourier-transform spectrometers.
Agladze, Nikolay I; Sievers, Albert J
2004-12-20
Wave propagation equations in the stationary-phase approximation have been used to identify the theoretical bounds of a miniature holographic Fourier-transform spectrometer (HFTS). It is demonstrated that the HFTS throughput can be larger than for a scanning Fourier-transform spectrometer. Given room- or a higher-temperature constraint, a small HFTS has the potential to outperform a small multichannel dispersive spectrograph with the same resolving power because of the size dependence of the signal-to-noise ratio. These predictions are used to analyze the performance of a miniature HFTS made from simple optical components covering a broad spectral range from the UV to the near IR. The importance of specific primary aberrations in limiting the HFTS performance has been both identified and verified. PMID:15646777
Fourier Transform Infrared Spectroscopic Studies in Flotation
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.
An Imaging Fourier Transform Spectrometer for NGST
Graham, J R
1999-01-01
Due to its simultaneous deep imaging and integral field spectroscopic capability, an Imaging Fourier Transform Spectrograph (IFTS) is ideally suited to the Next Generation Space Telescope (NGST) mission, and offers opportunities for tremendous scientific return in many fields of astrophysical inquiry. We describe the operation and quantify the advantages of an IFTS for space applications. The conceptual design of the Integral Field Infrared Spectrograph (IFIRS) is a wide field (5'.3 x 5'.3) four-port imaging Michelson interferometer.
CONTINUOUS QUATERNION FOURIER AND WAVELET TRANSFORMS
Bahri, Mawardi
2014-01-01
A two-dimensional quaternion Fourier transform (QFT) defined with the kernel $e^{-\\frac{\\boldsymbol{i} + \\boldsymbol{j} + \\boldsymbol{k}} {\\sqrt{3}} \\boldsymbol{\\omega} \\cdot \\boldsymbol{x} }$ is proposed. Some fundamental properties, such as convolution theorem, Plancherel theorem, and vector differential, are established. The heat equation in quaternion algebra is presented as an example of the application of the QFT to partial differential equations. The wavelet tra...
Fourier Transform Spectrometer Controller for Partitioned Architectures
DEFF Research Database (Denmark)
Tamas-Selicean, Domitian; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, Paul; Wadsworth, W.; Levy, R.
2013-01-01
The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle......, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture....
Fourier transform resampling: Theory and application
International Nuclear Information System (INIS)
One of the most challenging problems in medical imaging is the development of reconstruction algorithms for nonstandard geometries. This work focuses on the application of Fourier analysis to the problem of resampling or rebinning. Conventional resampling methods utilizing some form of interpolation almost always result in a loss of resolution in the tomographic image. Fourier Transform Resampling (FTRS) offers potential improvement because the Modulation Transfer Function (MTF) of the process behaves like an ideal low pass filter. The MTF, however, is nonstationary if the coordinate transformation is nonlinear. FTRS may be viewed as a generalization of the linear coordinate transformations of standard Fourier analysis. Simulated MTF's were obtained by projecting point sources at different transverse positions in the flat fan beam detector geometry. These MTF's were compared to the closed form expression for FIRS. Excellent agreement was obtained for frequencies at or below the estimated cutoff frequency. The resulting FTRS algorithm is applied to simulations with symmetric fan beam geometry, an elliptical orbit and uniform attenuation, with a normalized root mean square error (NRME) of 0.036. Also, a Tc-99m point source study (1 cm dia., placed in air 10 cm from the COR) for a circular fan beam acquisition was reconstructed with a hybrid resampling method. The FWHM of the hybrid resampling method was 11.28 mm and compares favorably with a direct reconstruction (FWHM: 11.03 mm)
Matrix isolation studies with Fourier transform ir
International Nuclear Information System (INIS)
The combination of Fourier transform infrared (FT-IR) spectroscopy with the matrix-isolation techniques has advantages compared with the use of more conventional grating spectroscopy. Furthermore, the recent commercial availability of Fourier transform spectrometers has made FT-IR a practical alternative. Some advantages of the FT-IR spectrometer over the grating spectrometer are the result of the computerized data system that is a necessary part of the FT-IR spectrometer; other advantages are a consequence of the difference in optical arrangements and these represent the inherent advantages of the FT-IR method. In most applications with the matrix-isolation technique, the use of FT-IR spectroscopy results in either an improved signal-to-noise ratio or a shorter time for data collection compared with grating infrared spectroscopy. Fourier transform infrared spectroscopy has been used in the laboratory to study several molecular species in low-temperature matrices. Some species have been produced by high-temperature vaporization from Knudsen cells and others by sputtering. By sputtering, Ar and Kr matrices have been prepared which contain U atoms, UO, UO2, UO3, PuO, PuO2, UN, or UN2, depending upon the composition of the gas used to sputter as well as the identity of the metallic cathode. Infrared spectra of matrices containing these compounds are presented and discussed
Diffraction theory for an achromatic Fourier transformation
International Nuclear Information System (INIS)
A three-lens achromatic Fourier transform system is analyzed in the contex of parazial Fresnel diffraction theory. From the analysis a general solution for the required wavelength dependence of the various lenses is found. A particular arrangement of the general system is then considered. Using first-order lens design principles, it is shown that each dispersive lens cand be fabricated using a holographic zone lens and glas element cascade. The parazial chromatic aberrations of the resulting system are calculated. It is found that this system design yields an achromatic transformation that is well corrected (parazially) over the entire visible spectrum
Programs for high-speed Fourier, Mellin and Fourier-Bessel transforms
Ikhabisimov, D. K.; Debabov, A. S.; Kolosov, B. I.; Usikov, D. A.
1979-01-01
Several FORTRAN program modules for performing one-dimensional and two-dimensional discrete Fourier transforms, Mellin, and Fourier-Bessel transforms are described along with programs that realize the algebra of high speed Fourier transforms on a computer. The programs can perform numerical harmonic analysis of functions, synthesize complex optical filters on a computer, and model holographic image processing methods.
Quantum Optical Squeezing Transform for Generalizing Fractional Fourier Transform'
Institute of Scientific and Technical Information of China (English)
HU Li-Yun; FAN Hong-Yi
2008-01-01
By establishing the relation between the optical scaled fractional Fourier transform (FFT) and quantum mechanical squeezing-rotating operator transform, we employ the bipartite entangled state representation of two-mode squeezing operator to extend the scaled FFT to more general cases, such as scaled complex FFT and entangled scaled FFT. The additivity and eigenmodes are presented in quantum version. The relation between the scaled FFT and squeezing-rotating Wigner operator is studied.
Optical image encryption based on multifractional Fourier transforms.
Zhu, B; Liu, S; Ran, Q
2000-08-15
We propose a new image encryption algorithm based on a generalized fractional Fourier transform, to which we refer as a multifractional Fourier transform. We encrypt the input image simply by performing the multifractional Fourier transform with two keys. Numerical simulation results are given to verify the algorithm, and an optical implementation setup is also suggested. PMID:18066153
Fourier transform infrared spectroscopy of deuterated proteins
Marcano O., A.; Markushin, Y.; Melikechi, N.; Connolly, D.
2008-08-01
We report on Fourier transform spectra of deuterated proteins: Bovine Serum Albumin, Leptin, Insulin-like Growth Factor II, monoclonal antibody to ovarian cancer antigen CA125 and Osteopontin. The spectra exhibit changes in the relative amplitude and spectral width of certain peaks. New peaks not present in the non-deuterated sample are also observed. Ways for improving the deuteration of proteins by varying the temperature and dilution time are discussed. We propose the use of deuterated proteins to increase the sensitivity of immunoassays aimed for early diagnostic of diseases most notably cancer.
Alternating multivariate trigonometric functions and corresponding Fourier transforms
International Nuclear Information System (INIS)
We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group An, which is a subgroup of the permutation (symmetric) group Sn. These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel
Alternating multivariate trigonometric functions and corresponding Fourier transforms
Energy Technology Data Exchange (ETDEWEB)
Klimyk, A U [Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14b, Kiev 03680 (Ukraine); Patera, J [Centre de Recherches Mathematiques, Universite de Montreal, C.P. 6128-Centre ville, Montreal, H3C 3J7 Quebec (Canada)], E-mail: aklimyk@bitp.kiev.ua, E-mail: patera@crm.umontreal.ca
2008-04-11
We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group A{sub n}, which is a subgroup of the permutation (symmetric) group S{sub n}. These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel.
Alternating multivariate trigonometric functions and corresponding Fourier transforms
Klimyk, A. U.; Patera, J.
2008-04-01
We define and study multivariate sine and cosine functions, symmetric with respect to the alternating group An, which is a subgroup of the permutation (symmetric) group Sn. These functions are eigenfunctions of the Laplace operator. They determine Fourier-type transforms. There exist three types of such transforms: expansions into corresponding sine-Fourier and cosine-Fourier series, integral sine-Fourier and cosine-Fourier transforms, and multivariate finite sine and cosine transforms. In all these transforms, alternating multivariate sine and cosine functions are used as a kernel.
Compact Fourier transform spectrometer without moving parts
Huang, Chu-Yu; Estroff, B.; Wang, Wei-Chih
2012-04-01
Fourier transform spectroscopy (FTS) is a potent analytical tool for chemical and biological analysis, but is limited by system size, expense, and robustness. To make FTS technology more accessible, we present a compact, inexpensive FTS system based on a novel liquid crystal (LC) interferometer. This design is unique because the optical path difference (OPD) is controlled by voltage applied to the LC cell. The OPD is further improved by reflecting the polarized incident light through the LC several times before reaching the second polarizer and measurement. This paper presents the theoretical model and numerical simulations for the liquid crystal Fourier transform spectrometer (LCFTS), and experimental results from the prototype. Based on the experimental results, the LCFTS performs in accordance with the theoretical predictions, achieving a maximum OPD of 210μm and a resolution of 1nm at a wavelength of 630nm. The instrumental response refresh rate is just under 1 second. Absorbance measurements were conducted for single and mixed solutions of deionized water and isopropyl alcohol, demonstrating agreement with a commercial system and literature values. We also present the LCFTS transmission spectra for varying concentrations of potassium permanganate to show system sensitivity.
The Fourier transform of tubular densities
Prior, C B
2012-05-18
We consider the Fourier transform of tubular volume densities, with arbitrary axial geometry and (possibly) twisted internal structure. This density can be used to represent, among others, magnetic flux or the electron density of biopolymer molecules. We consider tubes of both finite radii and unrestricted radius. When there is overlap of the tube structure the net density is calculated using the super-position principle. The Fourier transform of this density is composed of two expressions, one for which the radius of the tube is less than the curvature of the axis and one for which the radius is greater (which must have density overlap). This expression can accommodate an asymmetric density distribution and a tube structure which has non-uniform twisting. In addition we give several simpler expressions for isotropic densities, densities of finite radius, densities which decay at a rate sufficient to minimize local overlap and finally individual surfaces of the tube manifold. These simplified cases can often be expressed as arclength integrals and can be evaluated using a system of first-order ODEs. © 2012 IOP Publishing Ltd.
Research progress on discretization of fractional Fourier transform
Institute of Scientific and Technical Information of China (English)
TAO Ran; ZHANG Feng; WANG Yue
2008-01-01
As the fractional Fourier transform has attracted a considerable amount of atten-tion in the area of optics and signal processing,the discretization of the fractional Fourier transform becomes vital for the application of the fractional Fourier trans-form.Since the discretization of the fractional Fourier transform cannot be obtained by directly sampling in time domain and the fractional Fourier domain,the discre-tization of the fractional Fourier transform has been investigated recently.A sum-mary of discretizations of the fractional Fourier transform developed in the last nearly two decades is presented in this paper.The discretizations include sampling in the fractional Fourier domain,discrete-time fractional Fourier transform,frac-tional Fourier series,discrete fractional Fourier transform (including 3 main types:linear combination-type;sampling-type;and eigen decomposition-type),and other discrete fractional signal transform.It is hoped to offer a doorstep for the readers who are interested in the fractional Fourier transform.
XFT: Extending the Digital Application of the Fourier Transform
Campos, Rafael G; Chávez, Edgar
2009-01-01
In recent years there has been a growing interest in the fractional Fourier transform driven by its great number of applications. The literature in this field follows two main routes. On the one hand the applications fields where the ordinary Fourier transform can be applied are being revisited to use this intermediate time-frequency representation of signals; and on the other hand fast algorithms for numerical computation of the fractional Fourier transform are devised. In this paper we derive a Gaussian-like quadrature of the continuous fractional Fourier transform. This quadrature is given in terms of the Hermite polynomials and their zeros. By using some asymptotic formulae we are able to solve the quadrature by a diagonal congruence transformation equivalent to a chirp-FFT-chirp transformation, yielding a fast discretization of the fractional Fourier transform and its inverse in closed form. We extend the range of the fractional Fourier transform by considering arbitrary complex values inside the unitary...
CONVOLUTION THEOREMS FOR CLIFFORD FOURIER TRANSFORM AND PROPERTIES
Directory of Open Access Journals (Sweden)
Mawardi Bahri
2014-10-01
Full Text Available The non-commutativity of the Clifford multiplication gives different aspects from the classical Fourier analysis.We establish main properties of convolution theorems for the Clifford Fourier transform. Some properties of these generalized convolutionsare extensions of the corresponding convolution theorems of the classical Fourier transform.
From fractional Fourier transformation to quantum mechanical fractional squeezing transformation
Institute of Scientific and Technical Information of China (English)
吕翠红; 范洪义; 李东韡
2015-01-01
By converting the triangular functions in the integration kernel of the fractional Fourier transformation to the hy-perbolic function, i.e., tanα→tanhα, sinα→sinhα, we find quantum mechanical fractional squeezing transformation (FrST) which satisfies additivity. By virtue of the integration technique within ordered product of operators (IWOP) wederive the unitary operator responsible for the FrST, which is composite and is made of eiπa†a/2 and exp[ iα2 (a2+a†2)]. The FrST may be implemented in combinations of quadratic nonlinear crystals with different phase mismatches.
Motion analysis of optically trapped particles and cells using 2D Fourier analysis
DEFF Research Database (Denmark)
Kristensen, Martin Verner; Ahrendt, Peter; Lindballe, Thue Bjerring;
2012-01-01
trap is determined in three dimensions. The Fourier transform method is simple to implement and applicable in cases where the trapped object changes shape or where the lighting conditions change. This is illustrated by tracking a fluorescent particle and a myoblast cell, with subsequent determination...... of diffusion coefficients and the trapping forces....
Compact snapshot birefringent imaging Fourier transform spectrometer
Kudenov, Michael W.; Dereniak, Eustace L.
2010-08-01
The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors, demonstrating the sensor's ability to resolve spectral signatures in standard outdoor lighting and environmental conditions.
Optical correction using fourier transform heterodyne
Laubscher, Bryan E.; Nemzek, Robert J.; Cooke, Bradly J.; Olivas, Nicholas L.; Jorgensen, Anders M.; Smith, J. A.; Weisse-Bernstein, Nina R.
2005-08-01
In this paper we briefly present the theory of Fourier Transform Heterodyne (FTH), describe past verification experiments carried out, and discuss the experiment designed to use this new imaging technology to perform optical correction. FTH uses the scalar projection of a reference laser beam and a test laser beam onto a single element detector. The complex current in the detector yields the coefficient of the scalar projection. By projecting a complete orthonormal basis set of reference beams onto the test beam, the amplitude and phase of the test beam can be measured, allowing the reconstruction of the phasefront of the image. Experiments to determine this technique's applicability to optical correction and optical self-correction are continuing. Applications of this technique beyond optical correction include adaptive optics; interferometry; and active, high background, low signal imaging.
Uncertainty relation for the discrete Fourier transform.
Massar, Serge; Spindel, Philippe
2008-05-16
We derive an uncertainty relation for two unitary operators which obey a commutation relation of the form UV=e(i phi) VU. Its most important application is to constrain how much a quantum state can be localized simultaneously in two mutually unbiased bases related by a discrete fourier transform. It provides an uncertainty relation which smoothly interpolates between the well-known cases of the Pauli operators in two dimensions and the continuous variables position and momentum. This work also provides an uncertainty relation for modular variables, and could find applications in signal processing. In the finite dimensional case the minimum uncertainty states, discrete analogues of coherent and squeezed states, are minimum energy solutions of Harper's equation, a discrete version of the harmonic oscillator equation. PMID:18518426
Fourier transform spectrometer controller for partitioned architectures
Tamas-Selicean, D.; Keymeulen, D.; Berisford, D.; Carlson, R.; Hand, K.; Pop, P.; Wadsworth, W.; Levy, R.
The current trend in spacecraft computing is to integrate applications of different criticality levels on the same platform using no separation. This approach increases the complexity of the development, verification and integration processes, with an impact on the whole system life cycle. Researchers at ESA and NASA advocated for the use of partitioned architecture to reduce this complexity. Partitioned architectures rely on platform mechanisms to provide robust temporal and spatial separation between applications. Such architectures have been successfully implemented in several industries, such as avionics and automotive. In this paper we investigate the challenges of developing and the benefits of integrating a scientific instrument, namely a Fourier Transform Spectrometer, in such a partitioned architecture.
Fourier transform infrared spectroscopy for Mars science
Anderson, Mark S.; Andringa, Jason M.; Carlson, Robert W.; Conrad, Pamela; Hartford, Wayne; Shafer, Michael; Soto, Alejandro; Tsapin, Alexandre I.; Dybwad, Jens Peter; Wadsworth, Winthrop; Hand, Kevin
2005-03-01
Presented here is a Fourier transform infrared spectrometer (FTIR) for field studies that serves as a prototype for future Mars science applications. Infrared spectroscopy provides chemical information that is relevant to a number of Mars science questions. This includes mineralogical analysis, nitrogen compound recognition, truth testing of remote sensing measurements, and the ability to detect organic compounds. The challenges and scientific opportunities are given for the in situ FTIR analysis of Mars soil and rock samples. Various FTIR sampling techniques are assessed and compared to other analytical instrumentation. The prototype instrument presented is capable of providing field analysis in a Mars analog Antarctic environment. FTIR analysis of endolithic microbial communities in Antarctic rocks and a Mars meteor are given as analytical examples.
Geometric interpretations of the Discrete Fourier Transform (DFT)
Campbell, C. W.
1984-01-01
One, two, and three dimensional Discrete Fourier Transforms (DFT) and geometric interpretations of their periodicities are presented. These operators are examined for their relationship with the two sided, continuous Fourier transform. Discrete or continuous transforms of real functions have certain symmetry properties. The symmetries are examined for the one, two, and three dimensional cases. Extension to higher dimension is straight forward.
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925
Fourier-Laguerre transform, convolution and wavelets on the ball
McEwen, J D
2013-01-01
We review the Fourier-Laguerre transform, an alternative harmonic analysis on the three-dimensional ball to the usual Fourier-Bessel transform. The Fourier-Laguerre transform exhibits an exact quadrature rule and thus leads to a sampling theorem on the ball. We study the definition of convolution on the ball in this context, showing explicitly how translation on the radial line may be viewed as convolution with a shifted Dirac delta function. We review the exact Fourier-Laguerre wavelet transform on the ball, coined flaglets, and show that flaglets constitute a tight frame.
Multifunctional metasurface lens for imaging and Fourier transform
Wen, Dandan; Yue, Fuyong; Ardron, Marcus; Chen, Xianzhong
2016-06-01
A metasurface can manipulate light in a desirable manner by imparting local and space-variant abrupt phase change. Benefiting from such an unprecedented capability, the conventional concept of what constitutes an optical lens continues to evolve. Ultrathin optical metasurface lenses have been demonstrated based on various nanoantennas such as V-shape structures, nanorods and nanoslits. A single device that can integrate two different types of lenses and polarities is desirable for system integration and device miniaturization. We experimentally demonstrate such an ultrathin metasurface lens that can function either as a spherical lens or a cylindrical lens, depending on the helicity of the incident light. Helicity-controllable focal line and focal point in the real focal plane, as well as imaging and 1D/2D Fourier transforms, are observed on the same lens. Our work provides a unique tool for polarization imaging, image processing and particle trapping.
Fiber Optic Fourier Transform White-Light Interferometry
Institute of Scientific and Technical Information of China (English)
Yi Jiang; Cai-Jie Tang
2008-01-01
Fiber optic Fourier transform white-light inter-fereometry is presented to interrogate the absolute optical path difference of an Mach-Zehnder inter-ferometer. The phase change of the interferometer caused by scanning wavelength can be calculated by a Fourier transform-based phase demodulation technique. A linear output is achieved.
CORRELATION THEOREMS FOR TYPE II QUATERNION FOURIER TRANSFORM
Bahri, Mawardi; Ashino, Ryuichi
2013-01-01
We present the correlation within the framework of the quaternion algebra. We establish the correlation theorem for type II quaternion Fourier transform (QFT) and obtain some important properties of the relationship between the quaternion correlation and the type II QFT. Keywords: quaternion correlation; quaternion Fourier transform
Implementation of 2-D Discrete Cosine Transform Algorithm on GPU
Directory of Open Access Journals (Sweden)
SHIVANG GHETIA, NAGENDRA GAJJAR, RUCHI GAJJAR
2013-07-01
Full Text Available Discrete Cosine Transform (DCT is a technique to get frequency separation. When DCT is applied on an image, it will give frequency segregation of an image since it is composed of DC value and range of low frequency values to high frequency values. DCT is very useful in image compression. When high frequency values are eliminated from image, it will give efficient compression at the cost of little degradation of image quality. But, the bottleneck is that when 2-Dimentional DCT is carried out on CPU, it takes much time since there is very high order of computation. To overcome this problem, Graphics Processing Unit (GPU has opened the door for parallel processing. In this paper, we have implemented 2-D DCT with parallel approach on NVIDIA GPU using CUDA (Compute Unified Device Architecture. By applying here presented 2-D DCT algorithm for image processing has narrowed down the time requirement and has achieved speed up by factor 97x including data transfer timing from CPU to GPU and again back to CPU. So, parallel processing of 2-D DCT algorithm on GPU has fulfilled the purpose of fast and efficient processing of an image.
Generalized Fourier-grid R-matrix theory: a discrete Fourier-Riccati-Bessel transform approach
International Nuclear Information System (INIS)
We present the latest developments in the Fourier-grid R-matrix theory of scattering. These developments are based on the generalized Fourier-grid formalism and use a new type of extended discrete Fourier transform: the discrete Fourier-Riccati-Bessel transform. We apply this new R-matrix approach to problems of potential scattering, to demonstrate how this method reduces computational effort by incorporating centrifugal effects into the representation. As this technique is quite new, we have hopes to broaden the formalism to many types of problems. (author)
Fourier Transform Mass Spectrometry: The Transformation of Modern Environmental Analyses
Directory of Open Access Journals (Sweden)
Lucy Lim
2016-01-01
Full Text Available Unknown compounds in environmental samples are difficult to identify using standard mass spectrometric methods. Fourier transform mass spectrometry (FTMS has revolutionized how environmental analyses are performed. With its unsurpassed mass accuracy, high resolution and sensitivity, researchers now have a tool for difficult and complex environmental analyses. Two features of FTMS are responsible for changing the face of how complex analyses are accomplished. First is the ability to quickly and with high mass accuracy determine the presence of unknown chemical residues in samples. For years, the field has been limited by mass spectrometric methods that were based on knowing what compounds of interest were. Secondly, by utilizing the high resolution capabilities coupled with the low detection limits of FTMS, analysts also could dilute the sample sufficiently to minimize the ionization changes from varied matrices.
Fast Inverse Nonlinear Fourier Transforms for Fiber Bragg Grating Design and Related Problems
Wahls, Sander
2016-01-01
The problem of constructing a fiber Bragg grating profile numerically such that the reflection coefficient of the grating matches a given specification is considered. The well-known analytic solution to this problem is given by a suitable inverse nonlinear Fourier transform (also known as inverse scattering transform) of the specificed reflection coefficient. Many different algorithms have been proposed to compute this inverse nonlinear Fourier transform numerically. The most efficient ones require $\\mathcal{O}(D^{2})$ floating point operations (flops) to generate $D$ samples of the grating profile. In this paper, two new fast inverse nonlinear Fourier transform algorithms that require only $\\mathcal{O}(D\\log^{2}D)$ flops are proposed. The merits of our algorithms are demonstrated in numerical examples, in which they are compared to a conventional layer peeling method, the Toeplitz inner bordering method and integral layer peeling. One of our two algorithms also extends to the design problem for fiber-assiste...
Fourier transforms of Dini-Lipschitz functions on Vilenkin groups
Directory of Open Access Journals (Sweden)
M. S. Younis
1992-09-01
Full Text Available In [4] we proved some theorems on the Fourier Transforms of functions satisfying conditions related to the Dini-Lipschitz conditions on the n-dimensional Euclidean space Rn and the torus group Tn. In this paper we extend those theorems for functions with Fourier series on Vilenkin groups.
q-Generalization of the inverse Fourier transform
Energy Technology Data Exchange (ETDEWEB)
Jauregui, M., E-mail: jauregui@cbpf.b [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Tsallis, C. [Centro Brasileiro de Pesquisas Fisicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil); Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 (United States)
2011-05-23
A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. - Highlights: We present a method to invert the q-Fourier transform of a distribution. We illustrate when Dirac delta can be represented using q-exponentials. We describe a family of functions for which this new representation works.
q-Generalization of the inverse Fourier transform
International Nuclear Information System (INIS)
A wide class of physical distributions appears to follow the q-Gaussian form, which plays the role of attractor according to a q-generalized Central Limit Theorem, where a q-generalized Fourier transform plays an important role. We introduce here a method which determines a distribution from the knowledge of its q-Fourier transform and some supplementary information. This procedure involves a recently q-generalized representation of the Dirac delta and the class of functions on which it acts. The present method conveniently extends the inverse of the standard Fourier transform, and is therefore expected to be very useful in the study of many complex systems. - Highlights: → We present a method to invert the q-Fourier transform of a distribution. → We illustrate when Dirac delta can be represented using q-exponentials. → We describe a family of functions for which this new representation works.
Electro-Optic Imaging Fourier Transform Spectral Polarimeter Project
National Aeronautics and Space Administration — Boulder Nonlinear Systems, Inc. (BNS) proposes to develop an Electro-Optic Imaging Fourier Transform Spectral Polarimeter (E-O IFTSP). The polarimetric system is...
Convolution Theorems for Quaternion Fourier Transform: Properties and Applications
Ryuichi Ashino; Mawardi Bahri; Rémi Vaillancourt
2013-01-01
General convolution theorems for two-dimensional quaternion Fourier transforms (QFTs) are presented. It is shown that these theorems are valid not only for real-valued functions but also for quaternion-valued functions. We describe some useful properties of generalized convolutions and compare them with the convolution theorems of the classical Fourier transform. We finally apply the obtained results to study hypoellipticity and to solve the heat equation in quaternion al...
Quantum Fourier Transform and Phase Estimation in Qudit System
Institute of Scientific and Technical Information of China (English)
CAO Ye; PENG Shi-Guo; ZHENG Chao; LONG Gui-Lu
2011-01-01
The quantum Fourier transform and quantum phase estimation are the key components for many quantum algorithms, such as order-finding, factoring, and etc.In this article, the general procedure of quantum Fourier transform and phase estimation are investigated for high dimensional case.They can be seen as subroutines in a main program run in a qudit quantum computer, and the quantum circuits are given.
Signature Recognition using Multi Scale Fourier Descriptor And Wavelet Transform
Ismail, Ismail A; danaf, Talaat S El; Samak, Ahmed H
2010-01-01
This paper present a novel off-line signature recognition method based on multi scale Fourier Descriptor and wavelet transform . The main steps of constructing a signature recognition system are discussed and experiments on real data sets show that the average error rate can reach 1%. Finally we compare 8 distance measures between feature vectors with respect to the recognition performance. Key words: signature recognition; Fourier Descriptor; Wavelet transform; personal verification
The quest for conformal geometric algebra Fourier transformations
Hitzer, Eckhard
2013-10-01
Conformal geometric algebra is preferred in many applications. Clifford Fourier transforms (CFT) allow holistic signal processing of (multi) vector fields, different from marginal (channel wise) processing: Flow fields, color fields, electro-magnetic fields, ... The Clifford algebra sets (manifolds) of √-1 lead to continuous manifolds of CFTs. A frequently asked question is: What does a Clifford Fourier transform of conformal geometric algebra look like? We try to give a first answer.
SAW chirp Fourier transform for MB-OFDM UWB receiver
Institute of Scientific and Technical Information of China (English)
HE Peng-fei; L(U) Ying-hua; ZHANG Hong-xin; WANG Ye-qiu; XU Yong
2006-01-01
In the conventional multiband orthogonal frequency division multiplexing ultra wideband (MB-OFDM UWB )receiver, the fast Fourier transform (FFT) algorithm is realized by the expensive and power-consuming digital signal processor (DSP) chips. In this article, the lower power, lower cost, and lower complexity real-time analog surface acoustic wave (SAW)chirp Fourier transform devices were used to replace the DSP part. A MB-OFDM UWB receiver based on the M-C-M SAW chirp Fourier transform was presented, and the step of signal transformation from input signals was also depicted. The simulation results show that the proposed receiver provides similar bit error performance compared to the fully digital receiver when used in the channel environments proposed by the IEEE 802.15SG3a.
Estimates for Fourier transform of measures supported on singular hypersurfaces
International Nuclear Information System (INIS)
We consider hypersurfaces S is contained in R3 with zero Gaussian curvature at every ordinary point with surface measure dS and we define the surface measure dμ ψ(x)dS(x) for smooth function ψ with compact support. We obtain uniform estimates of Fourier transform of measures concentrated on such hypersurfaces. We show that due to the damping effect of the surface measure the Fourier transform decays faster than O(vertical bar ξ vertical bar-1/h), where h is the height of the phase function. In particular, Fourier transform of measures supported on the exceptional surfaces decays as O(vertical bar ξ vertical bar-1/2). (author)
International Nuclear Information System (INIS)
Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)
Energy Technology Data Exchange (ETDEWEB)
Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)
1998-12-31
Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)
Multifractional Fourier Transform Method and Its Applications to Image Encryption
Institute of Scientific and Technical Information of China (English)
RANQiwen; WANGQi; MAJing; TANLiying
2003-01-01
The multiplicity of the fractional Fourier transform(FRFT),which is intrinsic in any fractional operator,has been claimed by several authors,but never across-the-board developed.Particularly,the weight-type FRFT(WFRFT) has not been investigated.Starting with defining the multifractional Fourier transform (MFRFT),we gained the generalization permutation matrix group (GPMG)representation and multiplicity of the MFRFT,and the relationships among the MFRFT the standard WFRFT and the standard CFRFT.Finally,as a application,a novel image encryption method hased on the MFRFT is propounded.Similation results show that this method is safe,practicable and impactful.
The Formalization of Discrete Fourier Transform in HOL
Directory of Open Access Journals (Sweden)
Zhiping Shi
2015-01-01
Full Text Available Traditionally, Discrete Fourier Transform (DFT is performed with numerical or symbolic computation, which cannot guarantee 100% accurate analysis which may be necessary for safety-critical applications. Machine theorem proving is one of the formal methods that perform accurate analysis with completeness to some extent. This paper proposes the formalization of DFT in a higher-order logic theorem prover named HOL. We propose the formal definition of DFT and verify the fundamental properties of DFT. Two case studies are presented to illustrate usefulness and correctness of the formalized DFT, including formal verifications of Fast Fourier Transform (FFT and cosine frequency shift.
Lensless Fourier-Transform Ghost Imaging with Classical Incoherent Light
Zhang, M; Shen, X; Liu, Y; Liu, H; Cheng, J; Han, S; Zhang, Minghui; Wei, Qing; Shen, Xia; Liu, Yongfeng; Liu, Honglin; Cheng, Jing; Han, Shensheng
2006-01-01
The Fourier-Transform ghost imaging of both amplitude-only and pure-phase objects was experimentally observed with classical incoherent light at Fresnel distance by a new lensless scheme. The experimental results are in good agreement with the standard Fourier-transform of the corresponding objects. This scheme provides a new route towards aberration-free diffraction-limited 3D images with classically incoherent thermal light, which have no resolution and depth-of-field limitations of lens-based tomographic systems.
Fourier transform infrared spectra applications to chemical systems
Ferraro, John R
1985-01-01
The final and largest volume to complete this four-volume treatise is published in response to the intense commercial and research interest in Fourier Transform Interferometry.Presenting current information from leading experts in the field, Volume 4 introduces new information on, for example, applications of Diffuse Reflectance Spectroscopy in the Far-Infrared Region. The editors place emphasis on surface studies and address advances in Capillary Gas Chromatography - Fourier Transform Interferometry.Volume 4 especially benefits spectroscopists and physicists, as well as researchers
Recording Fractional Fourier Transform Hologram Using Holographic Zone Plate
Institute of Scientific and Technical Information of China (English)
高峰; 曾阳素; 张怡霄; 杨静; 高福华; 郭永康
2002-01-01
FRTH(fractional Fourier transform hologram) is a new kind of hologram that differs from common Fresnel holograms and Fourier transform holograms. Due to the flexibility of zone plate. A method that uses the -1 order diffraction wave of zone plate as the object wave and the 0 order diffraction wave as the reference wave to record FRTH is presented. It provides a new simple way to record FRTH. In this paper, the theory of achieving FRT and recording FRTH using holographic zone plate is presented and experimental results are given.
Extending Fourier transformations to Hamilton's quaternions and Clifford's geometric algebras
Hitzer, Eckhard
2013-10-01
We show how Fourier transformations can be extended to Hamilton's algebra of quaternions. This was initially motivated by applications in nuclear magnetic resonance and electric engineering. Followed by an ever wider range of applications in color image and signal processing. Hamilton's algebra of quaternions is only one example of the larger class of Clifford's geometric algebras, complete algebras encoding a vector space and all its subspace elements. We introduce how Fourier transformations are extended to Clifford algebras and applied in electromagnetism, and in the processing of images, color images, vector field and climate data.
Lensless Fourier-transform ghost imaging with classical incoherent light
International Nuclear Information System (INIS)
The Fourier-transform ghost imaging of both amplitude-only and pure-phase objects was experimentally observed with classical incoherent light at Fresnel distance by a lensless scheme. The experimental results are in good agreement with the standard Fourier transform of the corresponding objects. This scheme provides a route toward aberration-free diffraction-limited three-dimensional images with classically incoherent thermal light (or neutrons), which have no resolution and depth-of-field limitations of lens-based tomographic systems
Fourier transform infrared spectra applications to chemical systems
Ferraro, John R
1978-01-01
Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems presents the chemical applications of the Fourier transform interferometry (FT-IR).The book contains discussions on the applications of FT-IR in the fields of chromatography FT-IR, polymers and biological macromolecules, emission spectroscopy, matrix isolation, high-pressure interferometry, and far infrared interferometry. The final chapter is devoted to the presentation of the use of FT-IR in solving national technical problems such as air pollution, space exploration, and energy related subjects.Researc
Fourier transform photocurrent spectroscopy on non-crystalline semiconductors
Czech Academy of Sciences Publication Activity Database
Holovský, Jakub
Rijeka: InTech, 2011 - (Nikolic, G.), s. 257-282 ISBN 978-953-307-232-6 R&D Projects: GA ČR GD202/09/H041; GA MŠk(CZ) 7E09057; GA ČR GA202/09/0417 Grant ostatní: 7th FP(XE) CP-IP 214134-2 Institutional research plan: CEZ:AV0Z10100521 Keywords : Fourier transform * photocurrent * spectroscopy of semiconductors * thin film silicon * nanodiamond Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.intechopen.com/articles/show/title/fourier-transform-photocurrent-spectroscopy-on-non-crystalline-semiconductors
Discrete Fourier Transform in a Complex Vector Space
Dean, Bruce H. (Inventor)
2015-01-01
An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.
Quaternion Fourier Transform on Quaternion Fields and Generalizations
Hitzer, Eckhard
2013-01-01
We treat the quaternionic Fourier transform (QFT) applied to quaternion fields and investigate QFT properties useful for applications. Different forms of the QFT lead us to different Plancherel theorems. We relate the QFT computation for quaternion fields to the QFT of real signals. We research the general linear ($GL$) transformation behavior of the QFT with matrices, Clifford geometric algebra and with examples. We finally arrive at wide-ranging non-commutative multivector FT generalization...
Fourier transformation methods in the field of gamma spectrometry
Indian Academy of Sciences (India)
A Abdel-Hafiez
2006-09-01
The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.
Quaternion Fourier transforms for signal and image processing
Ell, Todd A; Sangwine, Stephen J
2014-01-01
Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.
Cesium ion desorption ionization with Fourier transform mass spectrometry
International Nuclear Information System (INIS)
Cesium ions (Cs+) are used for the production of the feed ions necessary to obtain Fourier transform mass spectra (FTMS). The molecule chosen for the initial study of this Cs+ desorption ionization (DI-FTMS) was vitamin B-12 because of its nonvolatile, thermally labile character. 21 references
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Tang, Hui, E-mail: corinna@seu.edu.cn [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, Nanjing 210000 (China); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China); Tong, Dan; Dong Bao, Xu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, Nanjing 210096 (China); Dillenseger, Jean-Louis [INSERM, U1099, Rennes F-35000 (France); Université de Rennes 1, LTSI, Rennes F-35000 (France); Centre de Recherche en Information Biomédicale sino-français, Laboratoire International Associé, Inserm, Université de Rennes 1, Rennes 35000 (France); Southeast University, Nanjing 210000 (China)
2015-04-15
Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time.
A new stationary gridline artifact suppression method based on the 2D discrete wavelet transform
International Nuclear Information System (INIS)
Purpose: In digital x-ray radiography, an antiscatter grid is inserted between the patient and the image receptor to reduce scattered radiation. If the antiscatter grid is used in a stationary way, gridline artifacts will appear in the final image. In most of the gridline removal image processing methods, the useful information with spatial frequencies close to that of the gridline is usually lost or degraded. In this study, a new stationary gridline suppression method is designed to preserve more of the useful information. Methods: The method is as follows. The input image is first recursively decomposed into several smaller subimages using a multiscale 2D discrete wavelet transform. The decomposition process stops when the gridline signal is found to be greater than a threshold in one or several of these subimages using a gridline detection module. An automatic Gaussian band-stop filter is then applied to the detected subimages to remove the gridline signal. Finally, the restored image is achieved using the corresponding 2D inverse discrete wavelet transform. Results: The processed images show that the proposed method can remove the gridline signal efficiently while maintaining the image details. The spectra of a 1D Fourier transform of the processed images demonstrate that, compared with some existing gridline removal methods, the proposed method has better information preservation after the removal of the gridline artifacts. Additionally, the performance speed is relatively high. Conclusions: The experimental results demonstrate the efficiency of the proposed method. Compared with some existing gridline removal methods, the proposed method can preserve more information within an acceptable execution time
Discrete fourier transform (DFT) analysis for applications using iterative transform methods
Dean, Bruce H. (Inventor)
2012-01-01
According to various embodiments, a method is provided for determining aberration data for an optical system. The method comprises collecting a data signal, and generating a pre-transformation algorithm. The data is pre-transformed by multiplying the data with the pre-transformation algorithm. A discrete Fourier transform of the pre-transformed data is performed in an iterative loop. The method further comprises back-transforming the data to generate aberration data.
Quasi- Chun- Ching Shih's Fractional Fourier Transform with Periodicity of 2,3 and M
Institute of Scientific and Technical Information of China (English)
FAN Xi-zhi
2004-01-01
Based on Chun-Ching Shih's idea, the basic transform was substituted and the quasi-ChunChing Shih's fractional Fourier transform with periodicity of 2, 3 and M was deduced. The two former transforms and the Chun-Ching Shih's fractional Fourier transform were only the particular cases of quasiChun-Ching Shih's fractional Fourier transform with periodicity of M.
Limitations on continuous variable quantum algorithms with Fourier transforms
International Nuclear Information System (INIS)
We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.
On the finite Fourier transforms of functions with infinite discontinuities
Directory of Open Access Journals (Sweden)
Branko Saric
2002-01-01
Full Text Available The introductory part of the paper is provided to give a brief review of the stability theory of a matrix pencil for discrete linear time-invariant singular control systems, based on the causal relationship between Jordan's theorem from the theory of Fourier series and Laurent's theorem from the calculus of residues. The main part is concerned with the theory of the integral transforms, which has proved to be a powerful tool in the control systems theory. On the basis of a newly defined notion of the total value of improper integrals, throughout the main part of the paper, an attempt has been made to present the global theory of the integral transforms, which are slightly more general with respect to the Laplace and Fourier transforms. The paper ends with examples by which the results of the theory are verified.
A Student's Guide to Fourier Transforms - 2nd Edition
James, J. F.
2002-09-01
Fourier transform theory is of central importance in a vast range of applications in physical science, engineering, and applied mathematics. This new edition of a successful student text provides a concise introduction to the theory and practice of Fourier transforms, using qualitative arguments wherever possible and avoiding unnecessary mathematics. After a brief description of the basic ideas and theorems, the power of the technique is then illustrated by referring to particular applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of computer-aided tomography (CAT-scanning). The final chapter discusses digital methods, with particular attention to the fast Fourier transform. Throughout, discussion of these applications is reinforced by the inclusion of worked examples. The book assumes no previous knowledge of the subject, and will be invaluable to students of physics, electrical and electronic engineering, and computer science. Expanded to include more emphasis on applications An established successful textbook for undergraduate and graduate students Includes worked examples and copious diagrams throughout
Nanoscale Fourier-transform imaging with magnetic resonance force microscopy
International Nuclear Information System (INIS)
We present a versatile method for Fourier encoding the spatial distribution of spins detected by magnetic resonance force microscopy. Shuttling a magnetic particle in synchrony with an rf pulse sequence causes spins in a constant-field slice near the particle to precess at a rate proportional to their x or y coordinate. A two-dimensional spin-density map is recovered by a linear Fourier transform of a set of integrated force signals. Performance of the rf sequence is demonstrated experimentally and numerical simulations show that the method can achieve nanoscale resolution. Our approach offers a new route to manipulating spin wave functions down to the atomic scale
Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer
Energy Technology Data Exchange (ETDEWEB)
Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.
1993-10-01
We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.
Fractional Fourier Transform for Ultrasonic Chirplet Signal Decomposition
Directory of Open Access Journals (Sweden)
Yufeng Lu
2012-01-01
Full Text Available A fractional fourier transform (FrFT based chirplet signal decomposition (FrFT-CSD algorithm is proposed to analyze ultrasonic signals for NDE applications. Particularly, this method is utilized to isolate dominant chirplet echoes for successive steps in signal decomposition and parameter estimation. FrFT rotates the signal with an optimal transform order. The search of optimal transform order is conducted by determining the highest kurtosis value of the signal in the transformed domain. A simulation study reveals the relationship among the kurtosis, the transform order of FrFT, and the chirp rate parameter in the simulated ultrasonic echoes. Benchmark and ultrasonic experimental data are used to evaluate the FrFT-CSD algorithm. Signal processing results show that FrFT-CSD not only reconstructs signal successfully, but also characterizes echoes and estimates echo parameters accurately. This study has a broad range of applications of importance in signal detection, estimation, and pattern recognition.
Matrix-Vector Based Fast Fourier Transformations on SDR Architectures
Directory of Open Access Journals (Sweden)
Y. He
2008-05-01
Full Text Available Today Discrete Fourier Transforms (DFTs are applied in various radio standards based on OFDM (Orthogonal Frequency Division Multiplex. It is important to gain a fast computational speed for the DFT, which is usually achieved by using specialized Fast Fourier Transform (FFT engines. However, in face of the Software Defined Radio (SDR development, more general (parallel processor architectures are often desirable, which are not tailored to FFT computations. Therefore, alternative approaches are required to reduce the complexity of the DFT. Starting from a matrix-vector based description of the FFT idea, we will present different factorizations of the DFT matrix, which allow a reduction of the complexity that lies between the original DFT and the minimum FFT complexity. The computational complexities of these factorizations and their suitability for implementation on different processor architectures are investigated.
Multiparty Quantum Secret Sharing Using Quantum Fourier Transform
Institute of Scientific and Technical Information of China (English)
HUANG Da-Zu; CHEN Zhi-Gang; GUO Ying
2009-01-01
A (n, n )-threshold scheme of multiparty quantum secret sharing of classical or quantum message is proposed based on the discrete quantum Fourier transform.In our proposed scheme, the secret message, which is encoded by using the forward quantum Fourier transform and decoded by using the reverse, is split and shared in such a way that it can be reconstructed among them only if all the participants work in concert.Furthermore, we also discuss how this protocol must be carefully designed for correcting errors and checking eavesdropping or a dishonest participant.Security analysis shows that our scheme is secure.Also, this scheme has an advantage that it is completely compatible with quantum computation and easier to realize in the distributed quantum secure computation.
Optimal color image restoration: Wiener filter and quaternion Fourier transform
Grigoryan, Artyom M.; Agaian, Sos S.
2015-03-01
In this paper, we consider the model of quaternion signal degradation when the signal is convoluted and an additive noise is added. The classical model of such a model leads to the solution of the optimal Wiener filter, where the optimality with respect to the mean square error. The characteristic of this filter can be found in the frequency domain by using the Fourier transform. For quaternion signals, the inverse problem is complicated by the fact that the quaternion arithmetic is not commutative. The quaternion Fourier transform does not map the convolution to the operation of multiplication. In this paper, we analyze the linear model of the signal and image degradation with an additive independent noise and the optimal filtration of the signal and images in the frequency domain and in the quaternion space.
A GENERALIZED WINDOWED FOURIER TRANSFORM IN REAL CLIFFORD ALGEBRA CL0;N
Bahri, Mawardi
2011-01-01
The Clifford Fourier transform in Cl0;n (CFT) can be regarded as a generalization of the two-dimensional quaternionic Fourier transform (QFT), which is introduced from the mathematical aspect by Brackx at first. In this research paper, we propose the Clifford windowed Fourier transform using the kernel of the CFT. Some important properties of the transform are investigated.
Apparatus and methods for continuous beam fourier transform mass spectrometry
McLuckey, Scott A.; Goeringer, Douglas E.
2002-01-01
A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.
Structural Characterization of Carbohydrates by Fourier Transform Tandem Mass Spectrometry
Zhou, Wen; Håkansson, Kristina
2011-01-01
Fourier transform tandem mass spectrometry (MS/MS) provides high mass accuracy, high sensitivity, and analytical versatility and has therefore emerged as an indispensable tool for structural elucidation of biomolecules. Glycosylation is one of the most common posttranslational modifications, occurring in ~50% of proteins. However, due to the structural diversity of carbohydrates, arising from non-template driven biosynthesis, achievement of detailed structural insight is highly challenging. T...
Quantum operation, quantum Fourier transform and semi-definite programming
Duan, Runyao; Ji, Zhengfeng; Feng, Yuan; Ying, Mingsheng
2003-01-01
We analyze a class of quantum operations based on a geometrical representation of $d-$level quantum system (or qudit for short). A sufficient and necessary condition of complete positivity, expressed in terms of the quantum Fourier transform, is found for this class of operations. A more general class of operations on qudits is also considered and its completely positive condition is reduced to the well-known semi-definite programming problem.
10th International Conference on Progress in Fourier Transform Spectroscopy
Keresztury, Gábor; Kellner, Robert
1997-01-01
19 plenary lectures and 203 poster papers presented at the 10th International Conference of Fourier Transform Spectroscopy in Budapest 1995 give an overview on the state-of-the art of this technology and its wide range of applications. The reader will get information on any aspects of FTS including the latest instrumental developments, e.g. in diode array detection, time resolution FTS, microscopy and spectral mapping, double modulation and two-dimensional FTS.
Dispersive Fourier Transformation for Versatile Microwave Photonics Applications
Chao Wang
2014-01-01
Abstract: Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments fa...
Central limit theorem for Fourier transform of stationary processes
Peligrad, Magda
2009-01-01
We consider asymptotic behavior of Fourier transforms of stationary ergodic sequences with finite second moments. We establish the central limit theorem (CLT) for almost all frequencies and also the annealed CLT. The theorems hold for all regular sequences. Our results shed new light on the foundation of spectral analysis and on the asymptotic distribution of periodogram, and it provides a nice blend of harmonic analysis, theory of stationary processes and theory of martingales.
Measured Quantum Fourier Transform of 1024 Qubits on Fiber Optics
Tomita, Akihisa; Nakamura, Kazuo
2004-01-01
Quantum Fourier transform (QFT) is a key function to realize quantum computers. A QFT followed by measurement was demonstrated on a simple circuit based on fiber-optics. The QFT was shown to be robust against imperfections in the rotation gate. Error probability was estimated to be 0.01 per qubit, which corresponded to error-free operation on 100 qubits. The error probability can be further reduced by taking the majority of the accumulated results. The reduction of error probability resulted ...
Optimizing holographic data storage using a fractional Fourier transform.
Pégard, Nicolas C; Fleischer, Jason W
2011-07-01
We demonstrate a method to optimize the reconstruction of a hologram when the storage device has a limited dynamic range and a minimum grain size. The optimal solution at the recording plane occurs when the object wave has propagated an intermediate distance between the near and far fields. This distance corresponds to an optimal order and magnification of the fractional Fourier transform of the object. PMID:21725476
Design of high-resolution Fourier transform lens
Zhang, Lei; Zhong, Xing; Jin, Guang
2007-12-01
With the development of optical information processing, high-resolution Fourier transform lens has often been used in holographic data storage system, spatial filtering and observation of particles. This paper studies the optical design method of high-resolution Fourier transform optical lenses system, which could be used in particles observation and holographic data storage system. According to Fourier transform relation between object and its frequency plane and the theory of geometrical optics, the system with working wavelength 532nm and resolution 3μm was designed based on ZEMAX. A multi-configuration method was adopted to optimize the system's lenses. In the optical system, a diaphragm was placed at the system's spectrum plane and the system demanded a low vacuum to cut down the influences of atmosphere and other particles. The result of finite element analysis indicated that the influences of vacuum pumping to optics spacing and mirror surface shape very minor, and the imaging quality not being affected. This system has many advantages, such as simple structure, good image quality and a high resolution of 3μm. So it has a wide application prospect and can be used both in holographic data storage system and particles observation.
Wigner distribution moments in fractional Fourier transform systems.
Bastiaans, Martin J; Alieva, Tatiana
2002-09-01
It is shown how all global Wigner distribution moments of arbitrary order in the output plane of a (generally anamorphic) two-dimensional fractional Fourier transform system can be expressed in terms of the moments in the input plane. Since Wigner distribution moments are identical to derivatives of the ambiguity function at the origin, a similar relation holds for these derivatives. The general input-output relationship is then broken down into a number of rotation-type input-output relationships between certain combinations of moments. It is shown how the Wigner distribution moments (or ambiguity function derivatives) can be measured as intensity moments in the output planes of a set of appropriate fractional Fourier transform systems and thus be derived from the corresponding fractional power spectra. The minimum number of (anamorphic) fractional power spectra that are needed for the determination of these moments is derived. As an important by-product we get a number of moment combinations that are invariant under (anamorphic) fractional Fourier transformation. PMID:12216870
Fourier-transform Ghost Imaging with Hard X-rays
Yu, Hong; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming
2016-01-01
Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still a challenge to achieve atomic resolution. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudo-thermal hard X-rays by measuring the second-order intensity correlation function of the light. We show that high resolution Fourier-transform diffraction pattern of a complex structure can be achieved at Fresnel region, and the amplitude and phase distributions of a sample in spatial domain can be retrieved successfully. The method of lensless X-ray Fourier-transform ghost imaging extends X-ray...
Fourier transform method for evaluation resonance interaction effects
International Nuclear Information System (INIS)
Resonance interaction effects are treated by the Fourier transform method. For the case of two interfering resonances, the slowing-down equation with temperature-dependent cross-sections is transformed to two coupled Fredholm integral equations. In the limit of zero temperature, it is shown that they reduce to coupled second order differential equations and are treated accurately by the WKB method. Temperature-dependent contributions to the resonance integrals are obtained from the solution of the integral equations using Gauss-Hermite quadrature formulae. Numerical results are presented for two interfering low-energy resonances of thorium 232. (orig.)
Fast 2-D 8×8 discrete cosine transform algorithm for image coding
Institute of Scientific and Technical Information of China (English)
JI XiuHua; ZHANG CaiMing; WANG JiaYe; BOEY S. H.
2009-01-01
A new fast two-dimension 8×8 discrete cosine transform (2D 8×8 DCT) algorithm based on the charac-teristics of the basic images of 2D DCT is presented. The new algorithm computes each DCT coefficient in turn more independently. Hence, the new algorithm is suitable for 2D DCT pruning algorithm of prun-ing away any number of high-frequency components of 2D DCT. The proposed pruning algorithm ls more efficient than the existing pruning 2D DCT algorithms in terms of the number of arithmetic opera-tions, especially the number of multiplications required in the computation.
A symplectic Poisson solver based on Fast Fourier Transformation. The first trial
International Nuclear Information System (INIS)
A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)
A Comparison of 2-D Shape Retrieval Using Fourier Descriptors and Wavelet Descriptors
Institute of Scientific and Technical Information of China (English)
LIQin; JonathanEdwards
2005-01-01
Choosing an appropriate image retrieval tool is the primary problem for a multimedia application such as digital image library and online image retrieval. Shape is often regarded as the most important image feature. Fourier descriptors (FDs) are widely used in shape recognition and retrieval. However, as global descriptors, they are often blamed for not being able to describe local shape features[1,2]. Wavelet descriptors (WDs) are proposed to overcome this drawback. Unfortunately, the extra information such as the multi-resolution scheme and local shape features cause much more complicate shape matching algorithms. The efficient or effective use of WD srequires more effort. Experiments are executed to evaluate the retrieval performance of this two descriptors. Some conclusions and suggestions are given according to the experimental results and the literature reviewed.
Twin image elimination in digital holography by combination of Fourier transformations
Choudhury, Debesh
2013-01-01
We present a new technique for removing twin image in in-line digital Fourier holography using a combination of Fourier transformations. Instead of recording only a Fourier transform hologram of the object, we propose to record a combined Fourier transform hologram by simultaneously recording the hologram of the Fourier transform and the inverse Fourier transform of the object with suitable weighting coefficients. Twin image is eliminated by appropriate inverse combined Fourier transformation and proper choice of the weighting coefficients. An optical configuration is presented for recording combined Fourier transform holograms. Simulations demonstrate the feasibility of twin image elimination. The hologram reconstruction is sensitive to phase aberrations of the object, thereby opening a way for holographic phase sensing.
A novel algorithm and architecture of combined direct 2-D transform and quantization for H.264
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper proposes a novel high-performance direct 2-D transform algorithm which suitably arranges the data processing sequences adopted in row and column transforms of H.264 CODEC systems to finish the data transposition. Simultaneity, this paper proposes a new direct 2-D transform and quantization architectures for H.264 video coding standard. The induced new transform and quantization architecture greatly increases the data processing rate and eliminates transform multiplication and transpose memory, and select different mode and quantization according to AC coefficient, DC coefficient, chrominance block and Luminance block. And this architecture just need to storage one quantization tables for Integer transform and Hadamard transform, but it can do two types of forward transforms and quantization just in one block.
Denoise in the pseudopolar grid Fourier space using exact inverse pseudopolar Fourier transform
Wei, Fan Jun
2015-01-01
In this paper I show a matrix method to calculate the exact inverse pseudopolar grid Fourier transform, and use this transform to do noise removals in the k space of pseudopolar grids. I apply the Gaussian filter to this pseudopolar grid and find the advantages of the noise removals are very excellent by using pseudopolar grid, and finally I show the Cartesian grid denoise for comparisons. The results present the signal to noise ratio and the variance are much better when doing noise removals in the pseudopolar grid than the Cartesian grid. The noise removals of pseudopolar grid or Cartesian grid are both in the k space, and all these noises are added in the real space.
Fourier transform infrared studies in solid egg white lysozyme
International Nuclear Information System (INIS)
Fourier Transform Infrared (FTIR) Spectroscopy is the most recent addition to the arsenal of bioanalytical techniques capable of providing information about the secondary structure of proteins in a variety of environments. FTIR spectra have been obtained in solid egg white lysozyme. The spectra display the usual amide I, II and III bands. Secondary structural information obtained from the spectra after applying resolution enhancement techniques to the amide I band has been found consistent with the x-ray crystallographic data of the protein and also to the spectroscopic data of the protein in aqueous solution. (author). 17 refs, 6 figs, 2 tabs
Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures
Institute of Scientific and Technical Information of China (English)
Jilie KONG; Shaoning YU
2007-01-01
Infrared spectroscopy is one of the oldest and well established experimental techniques for the analysis of secondary structure of polypeptides and proteins. It is convenient, non-destructive, requires less sample preparation, and can be used under a wide variety of conditions. This review introduces the recent developments in Fourier transform infrared (FTIR) spectroscopy technique and its applications to protein structural studies. The experimental skills, data analysis, and correlations between the FTIR spectroscopic bands and protein secondary structure components are discussed. The applications of FTIR to the secondary structure analysis, conformational changes, structural dynamics and stability studies of proteins are also discussed.
Multi-band Image Registration Method Based on Fourier Transform
Institute of Scientific and Technical Information of China (English)
庹红娅; 刘允才
2004-01-01
This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.
Dispersive Fourier transform spectroscopy with gases in the visible region
Kerl, K.; Häusler, H.
1984-05-01
The method of dispersive Fourier transform spectroscopy (DFTS) with gases in the visible wavenumber range is described in detail and compared with the method of scanning-wavelength interferometry (SWI). Measurements of the dispersion of the complex refractive index of gases can be performed successively in several minutes using the same apparatus and gas sample conditions for both methods. In the reported experiments with CH 4 a very simple mirror drive was used. Nevertheless, reasonable results are obtained for the dispersion of the real refractive index of CH 4 in the wavenumber range 16,000 ⩽ σ ⩽ 23,000 cm -1.
Atomic transition probabilities of Ce I from Fourier transform spectra
International Nuclear Information System (INIS)
Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.
Atomic transition probabilities of Ce I from Fourier transform spectra
Energy Technology Data Exchange (ETDEWEB)
Lawler, J E; Wood, M P; Den Hartog, E A [Department of Physics, University of Wisconsin, 1150 University Ave., Madison, WI 53706 (United States); Chisholm, J [Department of Physics, Boston College, 140 Commonwealth Ave., Chestnut Hill, MA 02467 (United States); Nitz, D E [Department of Physics, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057 (United States); Sobeck, J, E-mail: jelawler@wisc.ed, E-mail: chishojd@bc.ed, E-mail: nitz@stolaf.ed, E-mail: mpwood@wisc.ed, E-mail: jsobeck@uchicago.ed, E-mail: eadenhar@wisc.ed [Department of Astronomy and Astrophysics, University of Chicago, 5640 Ellis Ave., Chicago, IL 60637 (United States)
2010-04-28
Atomic transition probabilities for 2874 lines of the first spectrum of cerium (Ce I) are reported. These data are from new branching fraction measurements on Fourier transform spectra normalized with previously reported radiative lifetimes from time-resolved laser-induced-fluorescence measurements (Den Hartog et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085006). The wavelength range of the data set is from 360 to 1500 nm. Comparisons are made to previous investigations which are less extensive. Accurate Ce i transition probabilities are needed for lighting research and development on metal halide high-intensity discharge lamps.
Ash melting behavior by Fourier transform infrared spectroscopy
Institute of Scientific and Technical Information of China (English)
LI Han-xu; QIU Xiao-sheng; TANG Yong-xin
2008-01-01
A Fourier Transform Infrared Spectroscopic (FTIR) method involving a Fe2O3 flux was used to learn how China's coal ash melts. The relationship between ash fusion temperature and chemical composition, as well as the effects of Fe2O3 flux on the ash fusion temperature were studied. The relationship between ash fusion temperature and chemical composition, mineralogical phases and functional groups was analyzed with the FTIR method. The results show that the ash fusion temperature is related to the location and transmittance of certain absorption peaks, which is of great significance for the study of ash behavior.
LPA1, LPA2, Deconvolution Program Using Fourier Transform
International Nuclear Information System (INIS)
1 - Description of program or function: LPA1,LPA2 is a general deconvolution program suitable for application in applied mathematics, experimental physics, signal analytical system and some engineering application range, i.e. deconvolution spectrum, signal analysis and system property analysis, etc. 2 - Method of solution: It makes use of the Deconvolution Theorem and Fourier Transform algorithm (FFT). 3 - Restrictions on the complexity of the problem: The number of data points accepted is not greater than 1024 in this program. This can be increased by changing the data dimension in the program
Birefringent Fourier transform imaging spectrometer with a rotating retroreflector.
Bai, Caixun; Li, Jianxin; Shen, Yan; Zhou, Jianqiang
2016-08-01
A birefringent Fourier transform imaging spectrometer with a new lateral shearing interferometer is presented. The interferometer includes a Wollaston prism and a retroreflector. It splits an incident light beam into two shearing parallel parts to obtain interference fringe patterns of an imaging target, which is well established as an aid in reducing problems associated with optical alignment and manufacturing precision. Continuously rotating the retroreflector enables the spectrometer to acquire two-dimensional spectral images without spatial scanning. This technology, with a high work efficiency and low complexity, is inherently compact and robust. The effectiveness of the proposed method is demonstrated by the experimental results. PMID:27472640
(Anti)symmetric multivariate trigonometric functions and corresponding Fourier transforms
Klimyk, A.; Patera, J.
2007-09-01
Four families of special functions, depending on n variables, are studied. We call them symmetric and antisymmetric multivariate sine and cosine functions. They are given as determinants or antideterminants of matrices, whose matrix elements are sine or cosine functions of one variable each. These functions are eigenfunctions of the Laplace operator, satisfying specific conditions at the boundary of a certain domain F of the n-dimensional Euclidean space. Discrete and continuous orthogonality on F of the functions within each family allows one to introduce symmetrized and antisymmetrized multivariate Fourier-like transforms involving the symmetric and antisymmetric multivariate sine and cosine functions.
Fast Computation of Voigt Functions via Fourier Transforms
Mendenhall, M H
2006-01-01
This work presents a method of computing Voigt functions and their derivatives, to high accuracy, on a uniform grid. It is based on an adaptation of Fourier-transform based convolution. The relative error of the result decreases as the fourth power of the computational effort. Because of its use of highly vectorizable operations for its core, it can be implemented very efficiently in scripting language environments which provide fast vector libraries. The availability of the derivatives makes it suitable as a function generator for non-linear fitting procedures.
Quantum control in two-dimensional Fourier-transform spectroscopy
International Nuclear Information System (INIS)
We present a method that harnesses coherent control capability to two-dimensional Fourier-transform optical spectroscopy. For this, three ultrashort laser pulses are individually shaped to prepare and control the quantum interference involved in two-photon interexcited-state transitions of a V-type quantum system. In experiments performed with atomic rubidium, quantum control for the enhancement and reduction of the 5P1/2→ 5P3/2 transition was successfully tested in which the engineered transitions were distinguishably extracted in the presence of dominant one-photon transitions.
Remarks on a 2-D nonlinear backward heat problem using a truncated Fourier series method
Directory of Open Access Journals (Sweden)
Dang Duc Trong
2009-06-01
Full Text Available The inverse conduction problem arises when experimental measurements are taken in the interior of a body, and it is desired to calculate temperature on the surface. We consider the problem of finding, from the final data $u(x,y,T=varphi(x,y$, the initial data $u(x,y,0$ of the temperature function $u(x,y,t$, $(x,y in Uequiv (0,piimes (0,pi$, $tin [0,T]$ satisfying the nonlinear system $$displaylines{ u_t-Delta u= f(x,y,t,u(x,y, t,quad (x,y,tin Uimes (0,T,cr u(0,y,t= u(pi,y,t= u(x,0,t = u(x,pi,t = 0,quad (x,y,t in Uimes(0,T. }$$ This problem is known to be ill-posed, as the solution exhibits unstable dependence on the given data functions. Using the Fourier series method, we regularize the problem and to get some new error estimates. A numerical experiment is given.
The Non-uniform Fast Fourier Transform in Computed Tomography
Tang, Junqi
2016-01-01
This project is aimed at designing the fast forward projection algorithm and also the backprojection algorithm for cone beam CT imaging systems with circular X-ray source trajectory. The principle of the designs is based on utilizing the potential computational efficiency which the Fourier Slice Theorem and the Non-uniform Fast Fourier Transform (NUFFT) will bring forth. In this Masters report, the detailed design of the NUFFT based forward projector including a novel 3D (derivative of) Radon space resampling method will be given. Meanwhile the complexity of the NUFFT based forward projector is analysed and compared with the non-Fourier based CT projector, and the advantage of the NUFFT based forward projection in terms of the computational efficiency is demonstrated in this report. Base on the design of the forward algorithm, the NUFFT based 3D direct reconstruction algorithm will be derived. The experiments will be taken to test the performance of the forward algorithm and the backprojection algorithm to sh...
On the Fourier transformation of renormalization invariant coupling
International Nuclear Information System (INIS)
Integral transformations of the QCD invariant (running) coupling and of some related objects are discussed. Special attention is paid to the Fourier transformation, that is to transition from the space-time to the energy-momentum representation. The conclusion is that the condition of possibility of such a transition provides us with one more argument against the real existence of unphysical singularities observed in the perturbative QCD. The second one relates to the way of 'translation' of some singular long-range asymptotic behaviours to the infrared momentum region. Such a transition has to be performed with due account of the Tauberian theorem. This comment relates to the recent ALPHA collaboration results on the asymptotic behavior of the QCD effective coupling obtained by lattice simulation
MR imaging of the knee : Three-dimensional fourier transform GRASS technique
Energy Technology Data Exchange (ETDEWEB)
Kim, Dong Joo; Lee, Young Uk; Youn, Eun Kyung; No, In Gye; Chin, Seoung Bum; Kim, Joon Sik; Choi, Jae Yeul [Kangbuk Samsung Hospital, Seoul (Korea, Republic of)
1996-04-01
To evaluate the usefulness of three-dimensional(3D) Fourier transform(FT) gradient refocused acquisition in steady state (GRASS) technique for MR imaging of the knee. Sixty-three knees in 61 patients were imaged on the 1.5T MR system. We compared 3DFT GRASS technique with 2D spin echo(SE) technique in terms of conspicuousness of the lesions of internal knee structures based on the results of arthroscopy or open surgery. As a SE technique, sagittal T1-and T2-weighted, and coronal fat-suppressed T2-weighted sequences were performed using 3D GRASS technique, and we also evaluated arbitrarily reformatted images produced from the original axial voxel images. For the depiction of the tear, 3DFT GRASS was superior to 2D SE in three cases of medial meniscus, one of lateral meniscus, and two of anterior cruciate ligament. Specificity of 3D GRASS was also higher than that of 2D SE in evaluation of lateral meniscus and anterior cruiciate ligament. There was no significant difference in MR diagnosis for tears of the posterior cruciate, medial collateral, and lateral collateral ligaments. 3D GRASS was superior in evaluating the extent and morphology of the torn menisci. The 3DFT GRASS technique was comparable or even superior to the 2D SE technique in the evaluation of the internal structure of the knee, and can be expected to supplement standard MR knee techniques, especially in complicated cases of meniscal or ligamentous tears.
MR imaging of the knee : Three-dimensional fourier transform GRASS technique
International Nuclear Information System (INIS)
To evaluate the usefulness of three-dimensional(3D) Fourier transform(FT) gradient refocused acquisition in steady state (GRASS) technique for MR imaging of the knee. Sixty-three knees in 61 patients were imaged on the 1.5T MR system. We compared 3DFT GRASS technique with 2D spin echo(SE) technique in terms of conspicuousness of the lesions of internal knee structures based on the results of arthroscopy or open surgery. As a SE technique, sagittal T1-and T2-weighted, and coronal fat-suppressed T2-weighted sequences were performed using 3D GRASS technique, and we also evaluated arbitrarily reformatted images produced from the original axial voxel images. For the depiction of the tear, 3DFT GRASS was superior to 2D SE in three cases of medial meniscus, one of lateral meniscus, and two of anterior cruciate ligament. Specificity of 3D GRASS was also higher than that of 2D SE in evaluation of lateral meniscus and anterior cruiciate ligament. There was no significant difference in MR diagnosis for tears of the posterior cruciate, medial collateral, and lateral collateral ligaments. 3D GRASS was superior in evaluating the extent and morphology of the torn menisci. The 3DFT GRASS technique was comparable or even superior to the 2D SE technique in the evaluation of the internal structure of the knee, and can be expected to supplement standard MR knee techniques, especially in complicated cases of meniscal or ligamentous tears
Radial Hilbert Transform in terms of the Fourier Transform applied to Image Encryption
International Nuclear Information System (INIS)
In the present investigation, a mathematical algorithm under Matlab platform using Radial Hilbert Transform and Random Phase Mask for encrypting digital images is implemented. The algorithm is based on the use of the conventional Fourier transform and two random phase masks, which provide security and robustness to the system implemented. Random phase masks used during encryption and decryption are the keys to improve security and make the system immune to attacks by program generation phase masks
Energy Technology Data Exchange (ETDEWEB)
Bartosch, T. [Erlanger-Nuernberg Univ., Erlanger (Germany). Lehrstul fuer Nachrichtentechnik I; Seidl, D. [Seismologisches Zentralobservatorium Graefenberg, Erlanegen (Greece). Bundesanstalt fuer Geiwissenschaften und Rohstoffe
1999-06-01
Among a variety of spectrogram methods short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were selected to analyse transients in non-stationary signals. Depending on the properties of the tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli (Italy).
Determination of total body water by Fourier transform infrared analysis
International Nuclear Information System (INIS)
A new technique for determinig body water using deuterium isotope dilution for Fourier transform infrared (FTIR) analysis is described. The advantages of the FTIR over conventional dispersion and filter infrared instruments include greater flexibility through computer controlled operations and availability of 'on-line' analytical software. The technique was further improved by the development of a simple procedure for determining D2O concentration in untreated serum samples. A validation study of six normal adults showed that the fat-free-mass determined from the deuterium-space (total body water) correlated well with the results obtained by total body nitrogen (r = 0.997), total body potassium (r = 0.99f6) and anthropometric (r = 0.995) measurements. 17 refs., 4 tabs., 4 figs
Observing Extended Sources with the \\Herschel SPIRE Fourier Transform Spectrometer
Wu, Ronin; Etxaluze, Mireya; Makiwa, Gibion; Naylor, David A; Salji, Carl; Swinyard, Bruce M; Ferlet, Marc; van der Wiel, Matthijs H D; Smith, Anthony J; Fulton, Trevor; Griffin, Matt J; Baluteau, Jean-Paul; Benielli, Dominique; Glenn, Jason; Hopwood, Rosalind; Imhof, Peter; Lim, Tanya; Lu, Nanyao; Panuzzo, Pasquale; Pearson, Chris; Sidher, Sunil; Valtchanov, Ivan
2013-01-01
The Spectral and Photometric Imaging Receiver (SPIRE) on the European Space Agency's Herschel Space Observatory utilizes a pioneering design for its imaging spectrometer in the form of a Fourier Transform Spectrometer (FTS). The standard FTS data reduction and calibration schemes are aimed at objects with either a spatial extent much larger than the beam size or a source that can be approximated as a point source within the beam. However, when sources are of intermediate spatial extent, neither of these calibrations schemes is appropriate and both the spatial response of the instrument and the source's light profile must be taken into account and the coupling between them explicitly derived. To that end, we derive the necessary corrections using an observed spectrum of a fully extended source with the beam profile and the source's light profile taken into account. We apply the derived correction to several observations of planets and compare the corrected spectra with their spectral models to study the beam c...
Micro wishbone interferometer for Fourier transform infrared spectrometry
International Nuclear Information System (INIS)
A miniature wishbone-type Si interferometer with electrically actuated rotary comb drive actuators is designed and fabricated to apply a Fourier transform infrared (FTIR) spectrometer. Corner cube mirrors are mounted on the end of the Si interferometer that is formed on a glass substrate. The total size of the interferometer is approximately 8 mm × 8 mm. The corner cube mirrors with sharp edges with a size of approximately 1 × 1 × 0.5 mm3 are fabricated using an indentation technique. The rotation angle of rotary comb drive actuators is approximately 11° with an applied voltage of 180 V. Hereby, the maximum optical path difference of approximately 2640 µm is achieved, which corresponds to the highest resolution of ∼4 cm−1 as a spectrometer
A rheumatoid arthritis study by Fourier transform infrared spectroscopy
Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro
2012-01-01
Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with p<0.05 in regions corresponding to protein, lipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.
Extreme-ultraviolet lensless Fourier-transform holography.
Lee, S H; Naulleau, P; Goldberg, K A; Cho, C H; Jeong, S; Bokor, J
2001-06-01
We demonstrate 100-nm-resolution holographic aerial image monitoring based on lensless Fourier-transform holography at extreme-UV (EUV) wavelengths, using synchrotron-based illumination. This method can be used to monitor the coherent imaging performance of EUV lithographic optical systems. The system has been implemented in the EUV phase-shifting point-diffraction interferometer recently developed at Lawrence Berkeley National Laboratory. Here we introduce the idea of the holographic aerial image-recording technique and present imaging performance characterization results for a 10x Schwarzschild objective, a prototype EUV lithographic optic. The results are compared with simulations, and good agreement is obtained. Various object patterns, including phase-shift-enhanced patterns, have been studied. Finally, the application of the holographic aerial image-recording technique to EUV multilayer mask-blank defect characterization is discussed. PMID:18357280
3-D Printed Slit Nozzles for Fourier Transform Microwave Spectroscopy
Dewberry, Chris; Mackenzie, Becca; Green, Susan; Leopold, Ken
2015-06-01
3-D printing is a new technology whose applications are only beginning to be explored. In this report, we describe the application of 3-D printing to the facile design and construction of supersonic nozzles. The efficacy of a variety of designs is assessed by examining rotational spectra OCS and Ar-OCS using a Fourier transform microwave spectrometer with tandem cavity and chirped-pulse capabilities. This work focuses primarily on the use of slit nozzles but other designs have been tested as well. New nozzles can be created for 0.50 or less each, and the ease and low cost should facilitate the optimization of nozzle performance (e.g., jet temperature or cluster size distribution) for the needs of any particular experiment.
Control Of Cryogenic Fourier Transform Spectrometer Scanning Mirrors
Tripathi, S. S.; Gowrinathan, S.
1981-12-01
The Perkin-Elmer Corporation has designed and built a cryogenically cooled Fourier transform spectrometer for spaceborne applications. In operation, the spectrometer requires mirrors moving at constant velocity in both forward and reverse directions. To maintain efficiency and accuracy, the time taken to reverse direction and the vibration induced due to this reversal must be kept within low limits. This paper deals with the control system design for maintaining a constant velocity during forward and reverse scans and for smooth direction reversals. The systems aspects of the problem are described, and time-domain techniques of modern control theory are applied for optimization of turn-around profile. The analysis leads to a suboptimal design easily implemented by using analog-type components. Test results of satisfactory performance are also included.
Spatially Resolved Fourier Transform Spectroscopy in the Extreme Ultraviolet
Jansen, G S M; Freisem, L; Eikema, K S E; Witte, S
2016-01-01
Coherent extreme ultraviolet (XUV) radiation produced by table-top high-harmonic generation (HHG) sources provides a wealth of possibilities in research areas ranging from attosecond physics to high resolution coherent imaging. However, it remains challenging to fully exploit the coherence of such sources for interferometry and Fourier transform spectroscopy (FTS). This is due to the need for a measurement system that is stable at the level of a wavelength fraction, yet allowing a controlled scanning of time delays. Here we demonstrate XUV interferometry and FTS in the 17-55 nm wavelength range using an ultrastable common-path interferometer suitable for high-intensity laser pulses that drive the HHG process. This approach enables the generation of fully coherent XUV pulse pairs with sub-attosecond timing variation, tunable time delay and a clean Gaussian spatial mode profile. We demonstrate the capabilities of our XUV interferometer by performing spatially resolved FTS on a thin film composed of titanium and...
Highly sensitive Fourier transform spectroscopy with LED sources
Serdyukov, V. I.; Sinitsa, L. N.; Vasil'chenko, S. S.
2013-08-01
It is shown that the use of high luminance LED emitters as a light source for Fourier transform spectrometers permits to enhance their threshold sensitivity in the visible range by orders of magnitude. Using a 2.5 W Edixeon EDEI-1LS3 emitter in the range of 11,350-11,700 cm-1 as a light source for the spectrometer with a 60-cm multipass cell during a 24-h measurement time, we have achieved a signal-to-noise ratio of 4.5 × 104 which corresponds to the minimal detectable absorption coefficient of 1.2 × 10-8 cm-1. Such enhanced sensitivity spectrometer has been used to measure the transition frequencies of CO2 vibrational bands 00051-00001 and 01151-01101 in the range of 11,400-11,500 cm-1.
[Influence of collimation system on static Fourier transform spectrometer].
Jiang, Cheng-Zhi; Liang, Jing-Qiu; Liang, Zhong-Zhu; Sun, Qiang; Wang, Wei-Biao
2014-01-01
Collimation system provides collimated light for the static Fourier-transform spectroscopy (SFTS). Its quality is crucial to the signal to noise ratio (SNR) of SFTS. In the present paper, the physical model of SFTS was established based on the Fresnel diffraction theory by means of numerical software. The influence of collimation system on the SFTS was discussed in detail focusing on the aberrations of collimation lens and the quality of extended source. The results of simulation show that the influences of different kinds of aberrations on SNR take on obvious regularity, and in particular, the influences of off-axis aberrations on SNR are closely related to the location of off-axis point source. Finally the extended source's maximum radius allowed was obtained by simulation, which equals to 0.65 mm. The discussion results will be used for the design of collimation system. PMID:24783575
Dispersive Fourier Transformation for Versatile Microwave Photonics Applications
Directory of Open Access Journals (Sweden)
Chao Wang
2014-12-01
Full Text Available Dispersive Fourier transformation (DFT maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and high-throughput real-time measurements, where the speed of traditional optical instruments falls short. In this paper, the principle and implementation methods of DFT are first introduced and the recent development in employing DFT technique for widespread microwave photonics applications are presented, with emphasis on real-time spectroscopy, microwave arbitrary waveform generation, and microwave spectrum sensing. Finally, possible future research directions for DFT-based microwave photonics techniques are discussed as well.
Characterization of DNA adducts with fourier transform mass spectrometry
International Nuclear Information System (INIS)
The sensitive detection and unambiguous structural characterization of modified nucleic acid constituents is vital for understanding the nature of DNA modification induced by carcinogenic agents. Fourier transform mass spectrometry (FTMS) combined with matrix-assisted laser desorption provides a powerful technique for examining picomole quantities of modified nucleosides, nucleotides, and oligonucleotides. The structures of these modified biomolecules can be probed in detail with a variety of gas phase processes, including collision-induced dissociation, ion-molecule reactions such as deuterium exchange, and selective cationization reactions. Each of these processes provides a wealth of structural information which can be used to not only identify the adduct present, but also determine its exact site of attachment to the nucleic acid constituent, thereby providing isomeric differentiation. This FTMS technique has been applied to the examination of DNA damage induced by high energy (x-rays) as well as low energy radiation (far ultraviolet)
Radix-3 Algorithm for Realization of Discrete Fourier Transform
Directory of Open Access Journals (Sweden)
M.Narayan Murty
2016-07-01
Full Text Available In this paper, a new radix-3 algorithm for realization of discrete Fourier transform (DFT of length N = 3m (m = 1, 2, 3,... is presented. The DFT of length N can be realized from three DFT sequences, each of length N/3. If the input signal has length N, direct calculation of DFT requires O (N 2 complex multiplications (4N 2 real multiplications and some additions. This radix-3 algorithm reduces the number of multiplications required for realizing DFT. For example, the number of complex multiplications required for realizing 9-point DFT using the proposed radix-3 algorithm is 60. Thus, saving in time can be achieved in the realization of proposed algorithm.
Tow-dimensional Strain Analysis by Fourier Transform Moire Interferometry
International Nuclear Information System (INIS)
Moire interferometry using a diffraction grating and a laser is a powerful technique for analyzing small deformation of a specimen. In the method, the x and y-directional fringe patterns are obtained by using the x and y-directional sets of two beams. If the both sets of two beams are simultaneously incident to the specimen, the x and y-directional fringe patterns are super imposed. In this case, it is difficult to separate each directional fringe pattern. Therefore each fringe pattern has been separately recorded by selecting each set of two beams. In order to analyze a two-dimensional strain changing with time, Moire interferometry using the two-dimensional fourier transform method is proposed and the x and y-directional fringes are separated. By this method, the thermal deformation of a glass plate is analyzed
Instrument concept of the imaging Fourier transform spectrometer GLORIA
Directory of Open Access Journals (Sweden)
F. Friedl-Vallon
2014-03-01
Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the Upper Troposphere/Lower Stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated in a gimbal. The assembly can be mounted in the belly pod of the German high altitude and long range research aircraft HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made predominantly in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.
Instrument concept of the imaging Fourier transform spectrometer GLORIA
Directory of Open Access Journals (Sweden)
F. Friedl-Vallon
2014-10-01
Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging limb emission sounder operating in the thermal infrared region. It is designed to provide measurements of the upper troposphere/lower stratosphere with high spatial and high spectral resolution. The instrument consists of an imaging Fourier transform spectrometer integrated into a gimbal. The assembly can be mounted in the belly pod of the German High Altitude and Long Range research aircraft (HALO and in instrument bays of the Russian M55 Geophysica. Measurements are made in two distinct modes: the chemistry mode emphasises chemical analysis with high spectral resolution, and the dynamics mode focuses on dynamical processes of the atmosphere with very high spatial resolution. In addition, the instrument allows tomographic analyses of air volumes. The first measurement campaigns have shown compliance with key performance and operational requirements.
International Nuclear Information System (INIS)
We propose a generalization of the encryption system based on double random phase encoding (DRPE) and a joint transform correlator (JTC), from the Fourier domain to the fractional Fourier domain (FrFD) by using the fractional Fourier operators, such as the fractional Fourier transform (FrFT), fractional traslation, fractional convolution and fractional correlation. Image encryption systems based on a JTC architecture in the FrFD usually produce low quality decrypted images. In this work, we present two approaches to improve the quality of the decrypted images, which are based on nonlinear processing applied to the encrypted function (that contains the joint fractional power spectrum, JFPS) and the nonzero-order JTC in the FrFD. When the two approaches are combined, the quality of the decrypted image is higher. In addition to the advantages introduced by the implementation of the DRPE using a JTC, we demonstrate that the proposed encryption system in the FrFD preserves the shift-invariance property of the JTC-based encryption system in the Fourier domain, with respect to the lateral displacement of both the key random mask in the decryption process and the retrieval of the primary image. The feasibility of this encryption system is verified and analyzed by computer simulations. (paper)
Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms
Jones, Bernard L; Miften, Moyed
2015-01-01
Recent studies suggest that 4DCT is unable to accurately measure respiratory-induced pancreatic tumor motion. In this work, we assessed the daily motion of pancreatic tumors treated with SBRT, and developed adaptive strategies to predict and account for this motion. The daily motion trajectory of pancreatic tumors during CBCT acquisition was calculated using a model which reconstructs the instantaneous 3D position in each 2D CBCT projection image. We developed a metric (termed "Spectral Coherence," SC) based on the Fourier frequency spectrum of motion in the SI direction, and analyzed the ability of SC to predict motion-based errors and classify patients according to motion characteristics. The amplitude of daily motion exceeded the predictions of pre-treatment 4DCT imaging by an average of 3.0 mm, 2.3 mm, and 3.5 mm in the AP, LR, and SI directions. SC was correlated with daily motion differences and tumor dose coverage. In a simulated adaptive protocol, target margins were adjusted based on SC, resulting in...
OUYANG, Junlin; Coatrieux, Gouenou; Shu, Huazhong
2015-01-01
In this work, a novel robust image hashing scheme for image authentication is proposed based on the combination of the quaternion discrete Fourier transform (QDFT) with the log-polar transform. QDFT offers a sound way to jointly deal with the three channels of color images. The key features of the present method rely on (i) the computation of a secondary image using a log-polar transform; and (ii) the extraction from this image of low frequency QDFT coefficients' magnitude. The final image ha...
Institute of Scientific and Technical Information of China (English)
Chujun Zheng; Peng Han; Hongsen Chang
2006-01-01
@@ A new one-step four-quadrant spatial phase-shifting Fourier transform digital holography is presented for recording of cosine transform coefficients, because cosine transform is a real-even symmetric Fourier transform. This approach implements four quadrant spatial phase shifting at a time using a special phase mask, which is located in the reference arm, and the phase distributions of its four-quadrants are 0, π/2, π,and 3π/2 respectively. The theoretical analysis and computer simulation results show that cosine transform coefficients of real-valued image can be calculated by capturing single four-quadrant spatial phase-shifting Fourier transform digital hologram.
Identification of formation interfaces by using wavelet and Fourier transforms
Mukherjee, Bappa; Srivardhan, V.; Roy, P. N. S.
2016-05-01
The identification of formation interfaces is of prime importance from well log data. The interfaces are not clearly discernible due to the presence of high and low frequency noise in the log response. Accurate bed boundary information is very crucial in hydrocarbon exploration and the problem has received considerable attention and many techniques have been proposed. Frequency spectrum based filtering techniques aids us in interpretation, but usually leads to inaccurate amplification of unwanted components of the log response. Wavelet transform is very effective in denoising the log response and can be carried out to filter low and high frequency components of signal. The use of Fourier and Wavelet transform in denoising the log data for obtaining formation interfaces is demonstrated in this work. The feasibility of the proposed technique is tested so that it can be used in the industry to decipher formation interfaces. The work flow is demonstrated by testing on wells belonging to the Upper Assam Basin, which are self-potential, gamma ray, and resistivity log responses.
EXPRESSION PATTERN OF LUNG CANCER RELATED GENES IN MALIGNANT TRANSFORMATION OF BEP2D
Institute of Scientific and Technical Information of China (English)
范保星; 张开泰; 李刚; 谢玲; 马淑华; 葛世丽; 项小琼; 胡迎春; 王升启; 周平坤; 吴德昌
2002-01-01
Objective: To detect the expression difference of 60 lung cancer associated genes in human bronchial epithelial malignant transformation cell model (BEP2D) induced by alpha-particles. Methods: 60 lung cancer associated genes were collected and micro-arrayed onto the microscope slides using Cartesian PixSys5500 cDNA Microarray machine. Total RNA from BEP2D cells and passage 20 (Rl5H-20), passage 35 (R15H-35) cells derived from BEP2D following 1.5 Gy alpha-particles was extracted and labeled by fluorescent dye. The labeled probe was then hybridized with the cDNA. Results: 40, 47, 20 genes were detected in BEP2D, R15H-20 and R15H-35 respectively. The expression level of tumor suppressor genes decreased greatly in the transformed R15H-35. Most oncogenes decreased slightly in R15H-20. Most growth factors expressed only in R15H-20. Conclusion: In human bronchial epithelial malignant transformed cell model generated by alpha-particles, the loss-function of tumor suppressor genes at initiation stage was dominant, some related oncogenes and growth factors promoted the malignant transformation.
The use of Fourier reverse transforms in crystallographic phase refinement
International Nuclear Information System (INIS)
Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations
The use of Fourier reverse transforms in crystallographic phase refinement
Energy Technology Data Exchange (ETDEWEB)
Ringrose, S.
1997-10-08
Often a crystallographer obtains an electron density map which shows only part of the structure. In such cases, the phasing of the trial model is poor enough that the electron density map may show peaks in some of the atomic positions, but other atomic positions are not visible. There may also be extraneous peaks present which are not due to atomic positions. A method for determination of crystal structures that have resisted solution through normal crystallographic methods has been developed. PHASER is a series of FORTRAN programs which aids in the structure solution of poorly phased electron density maps by refining the crystallographic phases. It facilitates the refinement of such poorly phased electron density maps for difficult structures which might otherwise not be solvable. The trial model, which serves as the starting point for the phase refinement, may be acquired by several routes such as direct methods or Patterson methods. Modifications are made to the reverse transform process based on several assumptions. First, the starting electron density map is modified based on the fact that physically the electron density map must be non-negative at all points. In practice a small positive cutoff is used. A reverse Fourier transform is computed based on the modified electron density map. Secondly, the authors assume that a better electron density map will result by using the observed magnitudes of the structure factors combined with the phases calculated in the reverse transform. After convergence has been reached, more atomic positions and less extraneous peaks are observed in the refined electron density map. The starting model need not be very large to achieve success with PHASER; successful phase refinement has been achieved with a starting model that consists of only 5% of the total scattering power of the full molecule. The second part of the thesis discusses three crystal structure determinations.
TMS320C25 Digital Signal Processor For 2-Dimensional Fast Fourier Transform Computation
International Nuclear Information System (INIS)
The Fourier transform is one of the most important mathematical tool in signal processing and analysis, which converts information from the time/spatial domain into the frequency domain. Even with implementation of the Fast Fourier Transform algorithms in imaging data, the discrete Fourier transform execution consume a lot of time. Digital signal processors are designed specifically to perform computation intensive digital signal processing algorithms. By taking advantage of the advanced architecture. parallel processing, and dedicated digital signal processing (DSP) instruction sets. This device can execute million of DSP operations per second. The device architecture, characteristics and feature suitable for fast Fourier transform application and speed-up are discussed
[Biological Process Oriented Online Fourier Transform Infrared Spectrometer].
Xie, Fei; Wu, Qiong-shui; Zeng, Li-bo
2015-08-01
An online Fourier Transform Infrared Spectrometer and an ATR (Attenuated Total Reflection) probe, specifically at the application of real time measurement of the reaction substrate concentration in biological processes, were designed. (1) The spectrometer combined the theories of double cube-corner reflectors and flat mirror, which created a kind of high performance interferometer system. The light path folding way was utilized to makes the interferometer compact structure. Adopting double cube-corner reflectors, greatly reduces the influence of factors in the process of moving mirror movement such as rotation, tilt, etc. The parallelogram oscillation flexible support device was utilized to support the moving mirror moves. It cancelled the friction and vibration during mirror moving, and ensures the smooth operation. The ZnSe splitter significantly improved the hardware reliability in high moisture environment. The method of 60° entrance to light splitter improves the luminous flux. (2) An ATR in situ measuring probe with simple structure, large-flux, economical and practical character was designed in this article. The transmission of incident light and the light output utilized the infrared pipe with large diameter and innerplanted-high plating membrane, which conducted for the infrared transmission media of ATR probe. It greatly reduced the energy loss of infrared light after multiple reflection on the inner wall of the light pipe. Therefore, the ATR probe obtained high flux, improved the signal strength, which make the signal detected easily. Finally, the high sensitivity of MCT (Mercury Cadmium Telluride) detector was utilized to realize infrared interference signal collection, and improved the data quality of detection. The test results showed that the system yields the advantages of perfect moisture-proof performance, luminous flux, online measurement, etc. The designed online Fourier infrared spectrometer can real-time measured common reactant substrates
[Using Fourier transform to calculate gas concentration in DOAS].
Liu, Qian-lin; Wang, Li-shi; Huang, Xin-jian; Wu, Yan-dan; Xiao, Ming-wei
2008-12-01
Being an analysis tool of high sensitivity, high resolution, multicomponents, real-time and fast monitoring, the differential optical absorption spectrometry (DOAS) is becoming a new method in atmosphere pollution monitoring. In the DOAS technique, many gases spectra have periodicity evidently, such as those from SO2, NO, NH3 and NO2. Aiming at three kinds of main air-polluted gases, i.e., SO2, NO and NO2 in atmosphere, the DOAS technique is used to monitor them, and Fourier transform is used to analyse the above-mentioned absorption spectra. Under the condition of Hanning Windows, Fourier transforma is used to process various gases spectra which have periodicity. In the process, the value of the characteristic frequency has a linearity relation to the gas concentration. So a new analysis method of DOAS is proposed, which is utilizing the relation between the value of the characteristic frequency and the gas concentration to deduce a linearity formula to calculate the gas concentration. So the value of the characteristic frequency can be used to get the gas concentration. For the gases with evident spectrum periodicity, such as SO2 and NO, this method is good. But for some gases with periodicity not evident, the error in the calculated concentration is beyond the allowable value. So in this method, the important process is frequency separation. It is also the main part in the future study. In a word, this method frees itself from the basic theory in the DOAS technique, cuts down on the process of the concentration calculation and the spectral analysis, and deserves further study. PMID:19248493
Blacic, Tanya M.; Jun, Hyunggu; Rosado, Hayley; Shin, Changsoo
2016-02-01
In seismic oceanography, processed images highlight small temperature changes, but inversion is needed to obtain absolute temperatures. Local search-based full waveform inversion has a lower computational cost than global search but requires accurate starting models. Unfortunately, most marine seismic data have little associated hydrographic data and the band-limited nature of seismic data makes extracting the long wavelength sound speed trend directly from seismic data inherently challenging. Laplace and Laplace-Fourier domain inversion (LDI) can use rudimentary starting models without prior information about the medium. Data are transformed to the Laplace domain, and a smooth sound speed model is extracted by examining the zero and low frequency components of the damped wavefield. We applied LDI to five synthetic data sets based on oceanographic features and recovered smoothed versions of our synthetic models, showing the viability of LDI for creating starting models suitable for more detailed inversions.
Otten, Leonard John, III; Butler, Eugene W.; Rafert, Bruce; Sellar, R. Glenn
1995-06-01
Kestrel Corporation and the Florida Institute of Technology have designed, and are now manufacturing, a Fourier transform visible hyperspectral imager system for use in a single engine light aircraft. The system is composed of a Sagnac-based interferometer optical subsystem, a data management system, and an aircraft attitude and current position sybsystem. The system is designed to have better than 5 nm spectral resolution at 450 nm, operates over the 440 nm to 1150 nm spectral band and has a 2D spatial resolution of 0.8 mrad. An internal calibration source is recorded with every frame of data to retain radiometric accuracy. The entire system fits into a Cessna 206 and uses a conventional downward looking view port located in the baggage compartment. During operation, data are collected at a rate of 15 Mbytes per second and stored direct to a disk array. Data storage has been sized to accommodate 56 minutes of observations. Designed for environmental mapping, this Fourier transform imager has uses in emergency response and military operations.
Institute of Scientific and Technical Information of China (English)
Wang Chuandan; Zhang Zhongpei; Li Shaoqian
2007-01-01
The method of FRactional Fourier Transform (FRFT) is introduced to Transform Domain Communication System (TDCS) for signal transforming in the paper after theoretical analysis. The method yields optimal Basis Function (BF) by FRFT with optimal transform angle. The TDCS using the proposed method has wider usable spectrum, stronger robustness and better ability of anti non-stationary jamming than using usual methods, such as Fourier Transform (FT), Auto Regressive (AR), Wavelet Transform (WT), etc. The main simulation results are as follows. First, the Bit Error Rate (BER) Pb is close to theoretical bound of no jamming no matter in single tone or in linear chirp interference. Second, the interference-to-signal ratio J/E is at least 12dB more than that of Direct Spread Spectrum System (DSSS) under the same BER if the spectrum hopping-to-signal ratio is 1:20 in chirp plus hopping interfering. Third, the Eb/No (when estimation difference is 90% between transmitter and receiver) is about 3.5dB or about 0.5dB (when estimation difference is 10% between transmitter and receiver) more than that of theoretical result when no estimation difference under Pb = 10-2.
Gas Analysis by Fourier Transform Mm-Wave Spectroscopy
Harris, Brent J.; Steber, Amanda L.; Lehmann, Kevin K.; Pate, Brooks H.
2013-06-01
Molecular rotational spectroscopy of low pressure, room temperature gases offers high chemical selectivity and sensitivity with the potential for a wide range of applications in gas analysis. A strength of the technique is the potential to identify molecules that have not been previously studied by rotational spectroscopy by comparing experimental results to predictions of the spectroscopic parameters from quantum chemistry -6 so called library-free detection. The development of Fourier transform mm-wave spectrometers using high peak power (30 mW) active multiplier chain mm-wave sources brings new measurement capabilities to the analysis of complex gas mixtures. Strategies for gas analysis based on high-throughput mm-wave spectroscopy and arbitrary waveform generator driven mm-wave sources are described. Several new measurement capabilities come from the intrinsic time-domain measurement technique. High-sensitivity double-resonance measurements can be performed to speed the analysis of a complex gas sample containing several species. This technique uses a "pi-pulse" to selectively invert the population of two selected rotational energy levels and the effect of this excitation pulse on all other transitions in the spectrometer operating range is monitored using segmented chirped-pulse Fourier transform spectroscopy. This method can lead to automated determination of the molecular rotational constants. Rapid pulse duration scan experiments can be used to estimate the magnitude and direction of the dipole moment of the molecule from an unknown spectrum. Coherent pulse echo experiments, using the traditional Hahn sequence or two-color population recovery methods, can be used to determine the collisional relaxation rate of the unknown molecule. This rate determination improves the ability to estimate the mass of the unknown molecule from the determination of the Doppler dephasing rate. By performing a suite of automated, high-throughput measurements, there is the
Directory of Open Access Journals (Sweden)
D. Seidl
1999-06-01
Full Text Available Among a variety of spectrogram methods Short-Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT were selected to analyse transients in non-stationary tremor signals. Depending on the properties of the tremor signal a more suitable representation of the signal is gained by CWT. Three selected broadband tremor signals from the volcanos Mt. Stromboli, Mt. Semeru and Mt. Pinatubo were analyzed using both methods. The CWT can also be used to extend the definition of coherency into a time-varying coherency spectrogram. An example is given using array data from the volcano Mt. Stromboli.
Calibration of the Herschel SPIRE Fourier Transform Spectrometer
Swinyard, B M; Hopwood, R; Valtchanov, I; Lu, N; Fulton, T; Benielli, D; Imhof, P; Marchili, N; Baluteau, J -P; Bendo, G J; Ferlet, M; Griffin, M J; Lim, T L; Makiwa, G; Naylor, D A; Orton, G S; Papageorgiou, A; Pearson, C P; Schulz, B; Sidher, S D; Spencer, L D; van der Wiel, M H D; Wu, R
2014-01-01
The Herschel SPIRE instrument consists of an imaging photometric camera and an imaging Fourier Transform Spectrometer (FTS), both operating over a frequency range of 450-1550 GHz. In this paper, we briefly review the FTS design, operation, and data reduction, and describe in detail the approach taken to relative calibration (removal of instrument signatures) and absolute calibration against standard astronomical sources. The calibration scheme assumes a spatially extended source and uses the Herschel telescope as primary calibrator. Conversion from extended to point-source calibration is carried out using observations of the planet Uranus. The model of the telescope emission is shown to be accurate to within 6% and repeatable to better than 0.06% and, by comparison with models of Mars and Neptune, the Uranus model is shown to be accurate to within 3%. Multiple observations of a number of point-like sources show that the repeatability of the calibration is better than 1%, if the effects of the satellite absolu...
High-resolution wide-band Fast Fourier Transform spectrometers
Klein, Bernd; Krämer, Ingo; Bell, Andreas; Meyer, Klaus; Güsten, Rolf
2012-01-01
We describe the performance of our latest generations of sensitive wide-band high-resolution digital Fast Fourier Transform Spectrometer (FFTS). Their design, optimized for a wide range of radio astronomical applications, is presented. Developed for operation with the GREAT far infrared heterodyne spectrometer on-board SOFIA, the eXtended bandwidth FFTS (XFFTS) offers a high instantaneous bandwidth of 2.5 GHz with 88.5 kHz spectral resolution and has been in routine operation during SOFIA's Basic Science since July 2011. We discuss the advanced field programmable gate array (FPGA) signal processing pipeline, with an optimized multi-tap polyphase filter bank algorithm that provides a nearly loss-less time-to-frequency data conversion with significantly reduced frequency scallop and fast sidelobe fall-off. Our digital spectrometers have been proven to be extremely reliable and robust, even under the harsh environmental conditions of an airborne observatory, with Allan-variance stability times of several 1000 se...
Fourier transform infrared spectroscopy (FTIR) of laser-irradiated cementum
Rechmann, Peter; White, Joel M.; Cecchini, Silvia C. M.; Hennig, Thomas
2003-06-01
Utilizing Fourier Transform Infrared Spectroscopy (FTIR) in specular reflectance mode chemical changes of root cement surfaces due to laser radiation were investigated. A total of 18 samples of root cement were analyzed, six served as controls. In this study laser energies were set to those known for removal of calculus or for disinfection of periodontal pockets. Major changes in organic as well as inorganic components of the cementum were observed following Nd:YAG laser irradiation (wavelength 1064 nm, pulse duration 250 μs, free running, pulse repetition rate 20 Hz, fiber diameter 320 μm, contact mode; Iskra Twinlight, Fontona, Slovenia). Er:YAG laser irradiation (wavelength 2.94 μm, pulse duration 250 μs, free running, pulse repetition rate 6 Hz, focus diameter 620 μm, air water cooling 30 ml/min; Iskra Twinlight, Fontona, Slovenia) significantly reduced the Amid bands due to changes in the organic components. After irradiation with a frequency doubled Alexandrite laser (wavelength 377 nm, pulse duration 200 ns, q-switched, pulse repetition rate 20 Hz, beam diameter 800 μm, contact mode, water cooling 30 ml/min; laboratory prototype) only minimal reductions in the peak intensity of the Amide-II band were detected.
Liquid chromatography/Fourier transform IR spectrometry interface flow cell
Johnson, Charles C.; Taylor, Larry T.
1986-01-01
A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.
Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry
International Nuclear Information System (INIS)
In this study, a systematic approach based on the application of Fourier transform infrared spectrophotometry (FTIR) was taken, in order to quantitatively analyze the corrosion products formed in the secondary cycle of pressurized water reactors (PWR). Binary mixtures of iron oxides were prepared with known compositions containing pure commercial magnetite (Fe3O4), maghemite (γ-Fe2O3), and hematite (α-Fe2O3) for calibration purposes. Calcium oxide (lime) was added to all samples as a standard reference in obtaining the calibration curves. Using regression analysis, relationships were developed for intensity versus concentration for absorption bands corresponding to each of the phases in their corresponding FTIR spectrum. Correlation coefficients, R2, of 0.82, 0.87, and 0.86 were obtained for maghemite-magnetite, hematite-magnetite, and hematite-maghemite systems, respectively. The calibration curves generated were used to quantify phases in multi-component unknown field samples that were obtained from different components (moisture separators, condensers, and high- and low- pressure heaters) of the two units (units 1 and 2) of the secondary cycle of the Comanche Peak PWR
Spectroscopic Stokes polarimetry based on Fourier transform spectrometer
Liu, Yeng-Cheng; Lo, Yu-Lung; Li, Chang-Ye; Liao, Chia-Chi
2015-02-01
Two methods are proposed for measuring the spectroscopic Stokes parameters using a Fourier transform spectrometer. In the first method, it is designed for single point measurement. The parameters are extracted using an optical setup comprising a white light source, a polarizer set to 0°, a quarter-wave plate and a scanning Michelson interferometer. In the proposed approach, the parameters are extracted from the intensity distributions of the interferograms produced with the quarter-wave plate rotated to 0°, 22.5°, 45° and -45°, respectively. For the second approach, the full-field and dynamic measurement can be designed based upon the first method with special angle design in a polarizer and a quarter-wave plate. Hence, the interferograms of two-dimensional detection also can be simultaneously extracted via a pixelated phase-retarder and polarizer array on a high-speed CCD camera and a parallel read-out circuit with a multi-channel analog to digital converter. Thus, a full-field and dynamic spectroscopic Stokes polarimetry without any rotating components could be developed. The validity of the proposed methods is demonstrated both numerically and experimentally. To the authors' knowledge, this could be the simplest optical arrangement in extracting the spectral Stokes parameters. Importantly, the latter one method avoids the need for rotating components within the optical system and therefore provides an experimentally straightforward means of extracting the dynamic spectral Stokes parameters.
X-ray Fourier-transform holographic microscope
International Nuclear Information System (INIS)
The properties of an x-ray Fourier-transform holographic instrument suitable for imaging hydrated biological samples are described. Recent advances in coherent x-ray source technology are making diffraction-limited holograms of microscopic structures, with corresponding high spatial resolution, a reality. A high priority application of snapshot x-ray holography is the study of microscopic biological structures in the hydrated living state. X-rays offer both high resolution and high contrast for important structures within living organisms, thereby rendering unnecessary the staining of specimens, essential for optical and electron microscopy. If the wavelength is properly chosen. Furthermore, the snapshot feature, arising from picosecond or subpicosecond exposure times, eliminates blurring occurring from either thermal heating or normal biological activity of the sample. Finally, with sufficiently high photon fluxes, such as those available from x-ray lasers, the x-ray snapshot can be accomplished with a single pulse, thereby yielding complete three-dimensional information on a sample having normal biological integrity at the moment of exposure. 10 refs., 6 figs
Realization of a scalable coherent quantum Fourier transform
Debnath, Shantanu; Linke, Norbert; Figgatt, Caroline; Landsman, Kevin; Wright, Ken; Monroe, Chris
2016-05-01
The exponential speed-up in some quantum algorithms is a direct result of parallel function-evaluation paths that interfere through a quantum Fourier transform (QFT). We report the implementation of a fully coherent QFT on five trapped Yb+ atomic qubits using sequences of fundamental quantum logic gates. These modular gates can be used to program arbitrary sequences nearly independent of system size and distance between qubits. We use this capability to first perform a Deutsch-Jozsa algorithm where several instances of three-qubit balanced and constant functions are implemented and then examined using single qubit QFTs. Secondly, we apply a fully coherent five-qubit QFT as a part of a quantum phase estimation protocol. Here, the QFT operates on a five-qubit superposition state with a particular phase modulation of its coefficients and directly produces the corresponding phase to five-bit precision. Finally, we examine the performance of the QFT in the period finding problem in the context of Shor's factorization algorithm. This work is supported by the ARO with funding from the IARPA MQCO program and the AFOSR MURI on Quantum Measurement and Verification.
Single beam Fourier transform digital holographic quantitative phase microscopy
Energy Technology Data Exchange (ETDEWEB)
Anand, A., E-mail: arun-nair-in@yahoo.com; Chhaniwal, V. K.; Mahajan, S.; Trivedi, V. [Optics Laboratory, Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390001 (India); Faridian, A.; Pedrini, G.; Osten, W. [Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart (Germany); Dubey, S. K. [Siemens Technology and Services Pvt. Ltd, Corporate Technology—Research and Technology Centre, Bangalore 560100 (India); Javidi, B. [Department of Electrical and Computer Engineering, U-4157, University of Connecticut, Storrs, Connecticut 06269-2157 (United States)
2014-03-10
Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable.
Analysis of ovarian tumor pathology by Fourier Transform Infrared Spectroscopy
Directory of Open Access Journals (Sweden)
Mehrotra Ranjana
2010-12-01
Full Text Available Abstract Background Ovarian cancer is the second most common cancer among women and the leading cause of death among gynecologic malignancies. In recent years, infrared (IR spectroscopy has gained attention as a simple and inexpensive method for the biomedical study of several diseases. In the present study infrared spectra of normal and malignant ovarian tissues were recorded in the 650 cm-1 to 4000 cm-1 region. Methods Post surgical tissue samples were taken from the normal and tumor sections of the tissue. Fourier Transform Infrared (FTIR data on twelve cases of ovarian cancer with different grades of malignancy from patients of different age groups were analyzed. Results Significant spectral differences between the normal and the ovarian cancerous tissues were observed. In particular changes in frequency and intensity in the spectral region of protein, nucleic acid and lipid vibrational modes were observed. It was evident that the sample-to-sample or patient-to-patient variations were small and the spectral differences between normal and diseased tissues were reproducible. Conclusion The measured spectroscopic features, which are the spectroscopic fingerprints of the tissues, provided the important differentiating information about the malignant and normal tissues. The findings of this study demonstrate the possible use of infrared spectroscopy in differentiating normal and malignant ovarian tissues.
Single beam Fourier transform digital holographic quantitative phase microscopy
International Nuclear Information System (INIS)
Quantitative phase contrast microscopy reveals thickness or height information of a biological or technical micro-object under investigation. The information obtained from this process provides a means to study their dynamics. Digital holographic (DH) microscopy is one of the most used, state of the art single-shot quantitative techniques for three dimensional imaging of living cells. Conventional off axis DH microscopy directly provides phase contrast images of the objects. However, this process requires two separate beams and their ratio adjustment for high contrast interference fringes. Also the use of two separate beams may make the system more vulnerable to vibrations. Single beam techniques can overcome these hurdles while remaining compact as well. Here, we describe the development of a single beam DH microscope providing whole field imaging of micro-objects. A hologram of the magnified object projected on to a diffuser co-located with a pinhole is recorded with the use of a commercially available diode laser and an arrayed sensor. A Fourier transform of the recorded hologram directly yields the complex amplitude at the image plane. The method proposed was investigated using various phase objects. It was also used to image the dynamics of human red blood cells in which sub-micrometer level thickness variation were measurable
Multi-channel sampling theorems for band-limited signals with fractional Fourier transform
Institute of Scientific and Technical Information of China (English)
2008-01-01
Multi-channel sampling for band-limited signals is fundamental in the theory of multi-channel parallel A/D environment and multiplexing wireless communication environment. As the fractional Fourier transform has been found wide applications in signal processing fields, it is necessary to consider the multi-channel sampling theorem based on the fractional Fourier transform. In this paper, the multi-channel sampling theorem for the fractional band-limited signal is firstly proposed, which is the generalization of the well-known sampling theorem for the fractional Fourier transform. Since the periodic nonuniformly sampled signal in the fractional Fourier domain has valuable applications, the reconstruction expression for the periodic nonuniformly sampled signal has been then obtained by using the derived multi-channel sampling theorem and the specific space-shifting and phase-shifting properties of the fractional Fourier transform. Moreover, by designing different fractional Fourier filters, we can obtain reconstruction methods for other sampling strategies.
Summation of the Fourier Transform of Measures and Four Denominator Estimates
International Nuclear Information System (INIS)
In this paper we consider convergence exponent for the Fourier transform of surface-carried measures. We apply the obtained bound for the Fourier transform of measures to so-called four denominator estimate related to the Schroedinger operator on a lattice. (author)
The Green's function for the three-dimensional linear Boltzmann equation via Fourier transform
Machida, Manabu
2016-04-01
The linear Boltzmann equation with constant coefficients in the three-dimensional infinite space is revisited. It is known that the Green's function can be calculated via the Fourier transform in the case of isotropic scattering. In this paper, we show that the three-dimensional Green's function can be computed with the Fourier transform even in the case of arbitrary anisotropic scattering.
The Clifford-Fourier transform $\\mathcal{F}_O$ and monogenic extensions
Lopez, Arnoldo Bezanilla; Sanchez, Omar Leon
2014-01-01
Several versions of the Fourier transform have been formulated in the framework of Clifford algebra. We present a (Clifford-Fourier) transform, constructed using the geometric properties of Clifford algebra. We show the corresponding results of operational calculus. We obtain a technique to construct monogenic extensions of a certain type of continuous functions, and versions of the Paley-Wiener theorems are formulated.
Fourier Transform Spectrometer measurements of Atmospheric Carbon Dioxide and Methane
Kivi, Rigel; Heikkinen, Pauli; Chen, Huilin; Hatakka, Juha; Laurila, Tuomas
2016-04-01
Ground based remote sensing measurements of column CO2 and CH4 using Fourier Transform Spectrometers (FTS) within the Total Carbon Column Observing Network (TCCON) are known for high precision and accuracy. These measurements are performed at various locations globally and they have been widely used in carbon cycle studies and validation of space born measurements. The relevant satellite missions include the Orbiting Carbon Observatory-2 (OCO-2) by the National Aeronautics and Space Administration (NASA); the SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) by the European Space Agency (ESA); the Greenhouse gases Observing SATellite (GOSAT) by the Japan Aerospace Exploration Agency (JAXA) and the upcoming Sentinel-5 Precursor mission, which is an ESA mission and scheduled for launch in 2016. Results of the column CO2 and CH4 measurements at Sodankylä in northern Finland (at 67.4° N, 26.6° E) are reported in this study. The measurements have been performed on regular basis since the beginning of the program in early 2009. We also present evaluation of the data quality of the ground based measurements and comparisons with the available satellite based retrievals. In case of comparisons between the GOSAT and ground based retrievals of CO2 and CH4 no significant biases were found. Sodankylä is one of the northernmost stations in the TCCON network. However, the data coverage has been relatively good thanks to the progress towards automation of the FTS measurement system. At Sodankylä the retrievals have been also compared with the balloon borne AirCore measurements at the site. AirCore sampling system is directly related to the World Meteorological Organization in situ trace gas measurement scales. The balloon platform allows sampling in both stratosphere and troposphere, which is a benefit, compared to the aircraft in situ measurements.
The University of Toronto's balloon-borne Fourier transform spectrometer
Wunch, D.; Drummond, J. R.; Midwinter, C.; Taylor, J. R.; Fu, D.; Walker, K. A.; McElroy, C. T.; Strong, K.; Bernath, P.; Fast, H.
The University of Toronto s Fourier transform spectrometer U of T FTS derived from a Bomem DA5 Michelson-type interferometer was rebuilt and flown on the Middle Atmosphere Nitrogen TRend Assessment MANTRA high-altitude balloon platform in September 2004 The U of T FTS has a resolution of 0 02 cm -1 a spectral range covering 1200-5000 cm -1 and InSb and MCT detectors that measure simultaneously The spectrometer was originally built in the 1980s and purchased by the Meteorological Service of Canada To prepare the instrument for flight the original software was replaced with new LabVIEW control software creating a robust and easily-controlled instrument adaptable to either remote control or lab-based work As a result of replacing the software most of the electronics had to be replaced creating a lighter lower-power more robust instrument A description of the refurbishment will be presented Despite balloon launch and gondola pointing system failures during the MANTRA 2004 campaign two spectra were recorded on each detector during sunset from a float height of 35 km The data indicate that the instrument performed well throughout the flight and had the payload pointing been under control would have retrieved a full set of occultation data The data that were acquired will be shown The U of T FTS has since participated in a ground-based FTS inter-comparison campaign with two other FTS instruments the University of Toronto s Toronto Atmospheric Observatory TAO FTS a complementary NDACC station Network for the Detection of
SPICA/SAFARI Fourier transform spectrometer mechanism evolutionary design
van den Dool, Teun C.; Kruizinga, Bob; Braam, Ben C.; Hamelinck, Roger F. M. M.; Loix, Nicolas; Van Loon, Dennis; Dams, Johan
2012-09-01
TNO, together with its partners, have designed a cryogenic scanning mechanism for use in the SAFARI1 Fourier Transform Spectrometer (FTS) on board of the SPICA mission. SPICA is one of the M-class missions competing to be launched in ESA's Cosmic Vision Programme2 in 2022. JAXA3 leads the development of the SPICA satellite and SRON is the prime investigator of the Safari instrument. The FTS scanning mechanism (FTSM) has to meet a 35 mm stroke requirement with an Optical Path Difference resolution of less then 15 nm and must fit in a small volume. It consists of two back-to-back roof-top mirrors mounted on a small carriage, which is moved using a magnetic bearing linear guiding system in combination with a magnetic linear motor serving as the OPD actuator. The FTSM will be used at cryogenic temperatures of 4 Kelvin inducing challenging requirements on the thermal power dissipation and heat leak. The magnetic bearing enables movements over a scanning stroke of 35.5 mm in a small volume. It supports the optics in a free-floating way with no friction, or other non-linearities, with sub-nanometer accuracy. This solution is based on the design of the breadboard ODL (Optical Delay Line) developed for the ESA Darwin mission4 and the MABE mechanism developed by Micromega Dynamics. During the last couple of years the initial design of the SAFARI instrument, as described in an earlier SPIE 2010 paper5, was adapted by the SAFARI team in an evolutionary way to meet the changing requirements of the SPICA payload module. This presentation will focus on the evolution of the FTSM to meet these changing requirements. This work is supported by the Netherlands Space Office (NSO).
Fractal surface synthesis based on two dimensional discrete Fourier transform
Zhou, Chao; Gao, Chenghui; Huang, Jianmeng
2013-11-01
The discrete Fourier transform(DFT) is used for fractional Brownian motion(FBM) surface synthesis in tribology(i.e., contact, sliding, and sealing, etc). However, the relationship between fractal parameters(fractal dimension and scale factor) and traditional parameters, the influence of fractal parameters on surface appearance, have not been deeply discussed yet. These lead to some kind of difficulty to ensure the synthesized surfaces with ideal fractal characteristic, required traditional parameters and geometric appearance. A quantitative relationship between fractal parameters and the root mean square deviation of surface ( Sq) is derived based on the energy conservation property between the space and frequency domain of DFT. Under the stability assumption, the power spectrum of a FBM surface is composed of concentric circles strictly, a series of FBM surfaces with prescribed Sq could be synthesized with given fractal dimension, scale factor, and sampling numbers, but the ten-point height( Sz), the skewness( Ssk) and the kurtosis( Sku) are still in random, where the probability distributions of Sz and Ssk are approximately normal distribution. Furthermore, by iterative searching, a surface with desired Abbott-Firestone curve could be obtained among those surfaces. An intuitive explanation for the influence of fractal dimension and scale factor on surface appearance is obtained by discussing the effects on the ratio of energy between high and low frequency components. Based on the relationship between Sq and surface energy, a filtering method of surface with controllable Sq is proposed. The proposed research ensures the synthesized surfaces possess ideal FBM properties with prescribed Sq, offers a method for selecting desired Abbott-Firestone curve of synthesized fractal surfaces, and makes it possible to control the Sq of surfaces after filtering.
Geostationary Imaging Fourier Transform Spectrometer (GIFTS): science applications
Smith, W. L.; Revercomb, H. E.; Zhou, D. K.; Bingham, G. E.; Feltz, W. F.; Huang, H. L.; Knuteson, R. O.; Larar, A. M.; Liu, X.; Reisse, R.; Tobin, D. C.
2006-12-01
A revolutionary satellite weather forecasting instrument, called the "GIFTS" which stands for the "Geostationary Imaging Fourier Transform Spectrometer", was recently completed and successfully tested in a space chamber at the Utah State University's Space Dynamics Laboratory. The GIFTS was originally proposed by the NASA Langley Research Center, the University of Wisconsin, and the Utah State University and selected for flight demonstration as NASA's New Millennium Program (NMP) Earth Observing-3 (EO-3) mission, which was unfortunately cancelled in 2004. GIFTS is like a digital 3-d movie camera that, when mounted on a geostationary satellite, would provide from space a revolutionary four-dimensional view of the Earth's atmosphere. GIFTS will measure the distribution, change, and movement of atmospheric moisture, temperature, and certain pollutant gases, such as carbon monoxide and ozone. The observation of the convergence of invisible water vapor, and the change of atmospheric temperature, provides meteorologists with the observations needed to predict where, and when, severe thunderstorms, and possibly tornados, would occur, before they are visible on radar or in satellite cloud imagery. The ability of GIFTS to observe the motion of moisture and clouds at different altitudes enables atmospheric winds to be observed over vast, and otherwise data sparse, oceanic regions of the globe. These wind observations would provide the means to greatly improve the forecast of where tropical storms and hurricanes will move and where and when they will come ashore (i.e., their landfall position and time). GIFTS, if flown into geostationary orbit, would provide about 80,000 vertical profiles per minute, each one like a low vertical resolution (1-2km) weather balloon sounding, but with a spacing of 4 km. GIFTS is a revolutionary atmospheric sensing tool. A glimpse of the science measurement capabilities of GIFTS is provided through airborne measurements with the NPOESS Airborne
A Fourier transform infrared trace gas analyser for atmospheric applications
Directory of Open Access Journals (Sweden)
D. W. T. Griffith
2012-05-01
Full Text Available Concern in recent decades about human impacts on Earth's climate has led to the need for improved and expanded measurement capabilities for greenhouse gases in the atmosphere. In this paper we describe in detail an in situ trace gas analyser based on Fourier Transform Infrared (FTIR spectroscopy that is capable of simultaneous and continuous measurements of carbon dioxide (CO_{2}, methane (CH_{4}, carbon monoxide (CO, nitrous oxide (N_{2}O and ^{13}C in CO_{2} in air with high precision and accuracy. Stable water isotopes can also be measured in undried airstreams. The analyser is automated and allows unattended operation with minimal operator intervention. Precision and accuracy meet and exceed the compatibility targets set by the World Meteorological Organisation – Global Atmosphere Watch Programme for baseline measurements in the unpolluted troposphere for all species except ^{13}C in CO_{2}.
The analyser is mobile and well suited to fixed sites, tower measurements, mobile platforms and campaign-based measurements. The isotopic specificity of the optically-based technique and analysis allows application of the analyser in isotopic tracer experiments, for example ^{13}C in CO_{2} and ^{15}N in N_{2}O. We review a number of applications illustrating use of the analyser in clean air monitoring, micrometeorological flux and tower measurements, mobile measurements on a train, and soil flux chamber measurements.
Super-high-efficiency approximate calculation of series sum and discrete Fourier transform
Yan, Xin-Zhong
2013-01-01
We present a super-high-efficiency approximate computing scheme for series sum and discrete Fourier transform. The summation of a series sum or a discrete Fourier transform is approximated by summing over part of the terms multiplied by corresponding weights. The calculation is valid for the function under the transform being piecewise smooth in the continuum variable. The scheme reduces significantly the requirement for computer memory storage and enhances the numerical computation efficienc...
A Synthetic Quadrature Phase Detector/Demodulator for Fourier Transform Transform Spectrometers
Campbell, Joel
2008-01-01
A method is developed to demodulate (velocity correct) Fourier transform spectrometer (FTS) data that is taken with an analog to digital converter that digitizes equally spaced in time. This method makes it possible to use simple low cost, high resolution audio digitizers to record high quality data without the need for an event timer or quadrature laser hardware, and makes it possible to use a metrology laser of any wavelength. The reduced parts count and simplicity implementation makes it an attractive alternative in space based applications when compared to previous methods such as the Brault algorithm.
Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)
International Nuclear Information System (INIS)
Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm-1), at a nominal resolution of 4 cm-1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm-1, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm-1) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm-1. Bands in 1409, 1412, 1414, 1578 and 1579 cm-1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were included
Rapid Bacterial Identification Using Fourier Transform Infrared Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Valentine, Nancy B.; Johnson, Timothy J.; Su, Yin-Fong; Forrester, Joel B.
2007-02-01
Recent studies at Pacific Northwest National Laboratory (PNNL) using infrared spectroscopy combined with statistical analysis have shown the ability to identify and discriminate vegetative bacteria, bacterial spores and background interferents from one another. Since the anthrax releases in 2001, rapid identification of unknown powders has become a necessity. Bacterial endospores are formed by some Bacillus species as a result of the vegetative bacteria undergoing environmental stress, e.g. a lack of nutrients. Endospores are formed as a survival mechanism and are extremely resistant to heat, cold, sunlight and some chemicals. They become airborne easily and are thus readily dispersed which was demonstrated in the Hart building. Fourier Transform Infrared (FTIR) spectroscopy is one of several rapid analytical methods used for bacterial endospore identification. The most common means of bacterial identification is culturing, but this is a time-consuming process, taking hours to days. It is difficult to rapidly identify potentially harmful bacterial agents in a highly reproducible way. Various analytical methods, including FTIR, Raman, photoacoustic FTIR and Matrix Assisted Laser Desorption/Ionization (MALDI) have been used to identify vegetative bacteria and bacterial endospores. Each has shown certain areas of promise, but each has shortcomings in terms of sensitivity, measurement time or portability. IR spectroscopy has been successfully used to distinguish between the sporulated and vegetative state. [1,2] It has also shown its utility at distinguishing between the spores of different species. [2-4] There are several Bacillus species that occur commonly in nature, so it is important to be able to distinguish between the many different species versus those that present an imminent health threat. The spectra of the different sporulated species are all quite similar, though there are some subtle yet reproducible spectroscopic differences. Thus, a more robust and
On the restriction of the Fourier transform to polynomial curves
Dendrinos, S.
2007-01-01
We prove a Fourier restriction theorem on curves parametrised by the mapping P(t) = (P1(t),..., Pn(t)), where each of the P1,..., Pn is a real-valued polynomial and t belongs to an interval on which each of the P1,..., Pn "resembles" a monomial.
Fourier transformation IR spectroscopy of rare earth hydrides and manganates
International Nuclear Information System (INIS)
The publication describes IR optical investigations of rare earth hybrids and manganates. Both of these material systems have a pronounced interaction with light in the IR spectral region and are therefore well suited for Fourier transformation IR spectroscopy. Especially the spectra of the La1-xCaxMnO3 films contain many structures that derive both from the investigated film and the substrate. Quantitative information on the properties of the material system is obtained by separating the optical properties of LCMO from the substrate by means of adaptation using a multilayer formalism. The temperature dependence of the IR spectra was investigated down to the low-temperature range. Splitting and frequency shifts of the phonon modes were quantified, and the sensitive influence of the oxygen concentration of the samples on their optical properties was demonstrated. As representatives of the class of rare earth hybrids, various aspects of the material systems NdH2, EuH2 and YHx were investigated in thin film samples grown on substrates by means of molecular beam epitaxy. Detailed RHEED and Auger electron spectroscopy investigations provided information on the growth process, crystalline structure and chemical composition of the samples. By using a buffer layer between the rare earth metals and the palladium protective layer which is necessary with Nd and Eu, the minimum thickness of the Pd layer could be reduced about by half. The structural changes resulting from hydrogen loading are investigated by means of Raman measurements of the Nd hydride. The raman-active phonons that were observed for the first time by this method are strongly dependent on the crystal structure, i.e. the various phases are identified as a function of the hydrogen concentration. With the aid of the isotope effect, the origin of the phonons observed in the IR reflection and transmission spectra can be attributed to hydrogen oscillations. Evaluation of the spectra by multilayer formalism provides
The Boundedness of Maximal Operators and Singular Integrals via Fourier Transform Estimates
Institute of Scientific and Technical Information of China (English)
Hong Hai LIU
2012-01-01
In this paper,the author studies the mapping properties for some general maximal operators and singular integrals on certain function spaces via Fourier transform estimates.Also,some concrete maximal operators and singular integrals are studied as applications.
International Nuclear Information System (INIS)
According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.
Improved method of generating bit reversed numbers for calculating fast fourier transform
Digital Repository Service at National Institute of Oceanography (India)
Suresh, T.
Fast Fourier Transform (FFT) is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes...
Implementation of Period-Finding Algorithm by Means of Simulating Quantum Fourier Transform
Directory of Open Access Journals (Sweden)
Zohreh Moghareh Abed
2010-01-01
Full Text Available In this paper, we introduce quantum fourier transform as a key ingredient for many useful algorithms. These algorithms make a solution for problems which is considered to be intractable problems on a classical computer. Quantum Fourier transform is propounded as a key for quantum phase estimation algorithm. In this paper our aim is the implementation of period-finding algorithm.Quantum computer solves this problem, exponentially faster than classical one. Quantum phase estimation algorithm is the key for the period-finding problem .Therefore, by means of simulating quantum Fourier transform, we are able to implement the period-finding algorithm. In this paper, the simulation of quantum Fourier transform is carried out by Matlab software.
Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR.
Perkins, W. D.
1987-01-01
This is Part II in a series on Fourier transform infrared spectroscopy (FT-IR). Described are various advantages of FT-IR spectroscopy including energy advantages, wavenumber accuracy, constant resolution, polarization effects, and stepping at grating changes. (RH)
Energy Technology Data Exchange (ETDEWEB)
Patino, A [Universidad Technologica de Bolivar, Cartagena de Indias (Colombia); Durand, P-E; Fogret, E; Pellat-Finet, P, E-mail: alberto.patino-vanegas@univ-ubs.fr [Laboratoire de mathematiques et applications des mathematiques, Universite de Bretagne Sud, B P 92116, 56321 Lorient cedex (France)
2011-01-01
According to a scalar theory of diffraction, light propagation can be expressed by two-dimensional fractional order Fourier transforms. Since the fractional Fourier transform of a chirp function is a Dirac distribution, focusing a light beam is optically achieved by using a diffractive screen whose transmission function is a two-dimensional chirp function. This property is applied to designing Fresnel microlenses, and the orders of the involved Fourier fractional transforms depend on diffraction distances as well as on emitter and receiver radii of curvature. If the emitter is astigmatic (with two principal radii of curvature), the diffraction phenomenon involves two one-dimensional fractional Fourier transforms whose orders are different. This degree of freedom allows us to design microlenses that can focus astigmatic Gaussian beams, as produced by a line-shaped laser diode source.
AN ILLUMINATION INVARIANT FACE RECOGNITION USING 2D DISCRETE COSINE TRANSFORM AND CLAHE
Directory of Open Access Journals (Sweden)
A.Thamizharasi
2016-06-01
Full Text Available Automatic face recognition performance is affected due to the head rotations and tilt, lighting intensity and angle, facial expressions, aging and partial occlusion of face using Hats, scarves, glasses etc.In this paper, illumination normalization of face images is done by combining 2D Discrete Cosine Transform and Contrast Limited Adaptive Histogram Equalization. The proposed method selects certain percentage of DCT coefficients and rest is set to 0. Then, inverse DCT is applied which is followed by logarithm transform and CLAHE. Thesesteps create illumination invariant face image, termed as ‘DCT CLAHE’ image. The fisher face subspace method extracts features from ‘DCT CLAHE’ imageand features are matched with cosine similarity. The proposed method is tested in AR database and performance measures like recognition rate, Verification rate at 1% FAR and Equal Error Rate are computed. The experimental results shows high recognition rate in AR database.
Song, Xinbing; Qin, Hongwei; Li, Pengyun; Zhang, Xiangdong
2015-01-01
We perform Bell's measurement and perform quantum Fourier transform with the classical vortex beam. The violation of Bell's inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and nonquantum entanglement between the polarization and orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally, which is the crucial final step in Shor's algorithm
Muthuramalingam Uthaya Siva; Mohideen Abdul Badhul Haq; Deivasigamani Selvam; Ganesan Dinesh Babu; Rathinam Bakyaraj
2013-01-01
Objective: To investigate functional groups of toxic spines in stingray by Fourier transform infrared spectroscopic analysis. Methods: The venom extract of Himantura gerrardi, Himantura imbricata and Pastinachus sephen were centrifuged at 6 000 r/min for 10 min. The supernatant was collected and preserved separately in methanol, ethanol, chloroform, acetone (1:2) and then soaked in the mentioned solvents for 48 h. Then extracts were filtered and used for Fourier transform ...
Institute of Scientific and Technical Information of China (English)
CHEN Lin-Fei; ZHAO Dao-Mu
2006-01-01
@@ We propose a new method to add different images together by optical implementation that is realized by the multi-exposure based on fractional Fourier transform hologram. Partial image fusion is proposed and realized by this method. Multiple images encryption can also be implemented by the multi-exposure of the hologram based on fractional Fourier transform. Computer simulations prove that this method is valid.
Energy Technology Data Exchange (ETDEWEB)
Zheng, Y. [Pennsylvania State Univ., University Park, PA (United States)]|[Lawrence Berkeley Lab., CA (United States); Shirley, D.A. [Pennsylvania State Univ., University Park, PA (United States)
1995-02-01
The authors show by Fourier analyses of experimental data, with no further treatment, that the positions of all the strong peaks in Fourier transforms of angle-resolved photoemission extended fine structure (ARPEFS) from adsorbed surfaces can be explicitly predicted from a trial structure with an accuracy of about {+-} 0.3 {angstrom} based on a single-scattering cluster model together with the concept of a strong backscattering cone, and without any additional analysis. This characteristic of ARPEFS Fourier transforms can be developed as a simple method for determining the structures of adsorbed surfaces to an accuracy of about {+-} 0.1 {angstrom}.
Fourier-space inversion of the star transform
Zhao, Fan; Markel, Vadim A
2014-01-01
We define the star transform as a generalization of the broken ray transform introduced by us previously. The advantages of using the star transform include the possibility to reconstruct the absorption and the scattering coefficients of the medium separately and simultaneously (from the same data) and the possibility to utilize scattered radiation which, in the case of the conventional X-ray tomography, is discarded. In this paper, we derive the star transform from physical principles, discuss its mathematical properties and analyze numerical stability of inversion. In particular, it is shown that stable inversion of the star transform can be obtained only for configurations involving odd number of rays. Several computationally-efficient inversion algorithms are derived and tested numerically.
Czech Academy of Sciences Publication Activity Database
Kwieciena, P.; Richter, I.; Čtyroký, Jiří
Bellingham : SPIE, 2011, 83060Y. ISBN 978-0-8194-8953-1. [ Photonics , Devices, and Systems V. Praha (CZ), 24.08.2011-26.08.2011] Institutional research plan: CEZ:AV0Z20670512 Keywords : Fourier modal method * Bi-directional mode expansion propagation method * Bloch mode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering
Factoring and Fourier Transformation with a Mach-Zehnder Interferometer
Summhammer, J
1997-01-01
The scheme of Clauser and Dowling (Phys. Rev. A 53, 4587 (1996)) for factoring N by means of an N-slit interference experiment is translated into an experiment with a single Mach-Zehnder interferometer. With dispersive phase shifters the ratio of the coherence length to wavelength limits the numbers that can be factored. A conservative estimate permits $N \\approx 10^7$. It is furthermore shown, that sine and cosine Fourier coefficients of a real periodic function can be obtained with such an interferometer.
Magneto-sensor circuit efficiency incremented by Fourier-transformation
Talukdar, Abdul Hafiz Ibne
2011-10-01
In this paper detection by recognized intelligent algorithm for different magnetic films with the aid of a cost-effective and simple high efficient circuit are realized. Well-known, magnetic films generate oscillating frequencies when they stay a part of an LC- oscillatory circuit. These frequencies can be further analyzed to gather information about their magnetic properties. For the first time in this work we apply the signal analysis in frequency domain to create the Fourier frequency spectra which was used to detect the sample properties and their recognition. In this paper we have summarized both the simulation and experimental results. © 2011 Elsevier Ltd. All rights reserved.
Nonlinear Fourier transformation spectroscopy of small molecules with intense attosecond pulse train
International Nuclear Information System (INIS)
We have developed an attosecond nonlinear molecular spectroscopic method called nonlinear Fourier transformation spectroscopy (NFTS) that uses an intense attosecond pulse train (APT) to induce multiphoton ionization processes. In the NFTS method, in addition to characterization of the temporal profile of attosecond pulses, the nonlinear molecular responses are encoded in the interferometric autocorrelation traces depending on the molecular species, their fragment ions and their kinetic energy distributions. The principle and applicability of the NFTS method are described in this paper along with the numerical simulations. The method is applied to diatomic molecules (N2 , D2 and O2) and polyatomic molecules (CO2, CH4 and SF6). Our results highlight the fact that nonlinear spectroscopic information of molecules in the short wavelength region can be obtained through the irradiation of intense APT by taking advantage of the broad spectral bandwidth of attosecond pulses. The development of the nonlinear spectroscopic method in attoseconds is expected to pave the way to investigate the ultrafast intramolecular electron motion such as ultrafast charge migration and electron correlation. (review article)
Nonlinear Fourier transformation spectroscopy of small molecules with intense attosecond pulse train
Okino, T.; Furukawa, Y.; Shimizu, T.; Nabekawa, Y.; Yamanouchi, K.; Midorikawa, K.
2014-06-01
We have developed an attosecond nonlinear molecular spectroscopic method called nonlinear Fourier transformation spectroscopy (NFTS) that uses an intense attosecond pulse train (APT) to induce multiphoton ionization processes. In the NFTS method, in addition to characterization of the temporal profile of attosecond pulses, the nonlinear molecular responses are encoded in the interferometric autocorrelation traces depending on the molecular species, their fragment ions and their kinetic energy distributions. The principle and applicability of the NFTS method are described in this paper along with the numerical simulations. The method is applied to diatomic molecules (N2 , D2 and O2) and polyatomic molecules (CO2, CH4 and SF6). Our results highlight the fact that nonlinear spectroscopic information of molecules in the short wavelength region can be obtained through the irradiation of intense APT by taking advantage of the broad spectral bandwidth of attosecond pulses. The development of the nonlinear spectroscopic method in attoseconds is expected to pave the way to investigate the ultrafast intramolecular electron motion such as ultrafast charge migration and electron correlation.
Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling
Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad
2015-10-01
Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.
A two-step Hilbert transform method for 2D image reconstruction
Energy Technology Data Exchange (ETDEWEB)
Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D [UCAIR, Department of Radiology, University of Utah, UT (United States)
2004-09-07
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained.
A two-step Hilbert transform method for 2D image reconstruction
International Nuclear Information System (INIS)
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained
A two-step Hilbert transform method for 2D image reconstruction.
Noo, Frédéric; Clackdoyle, Rolf; Pack, Jed D
2004-09-01
The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fanbeam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained. PMID:15470913
Yu, Lu; Sun, Su-qin; Zhou, Qun; Qin, Zhu
2006-12-01
Using multi-steps macro-fingerprint infrared (IR) spectroscopy, which combines three steps: conventional Fourier transform infrared spectroscopy (FTIR), second derivative spectroscopy, and two-dimensional infrared (2D-IR) correlation spectroscopy, the authors tracked dynamically the parching procedure of mustard seed to analyze the main transformation during the process. Compared with conventional IR spectra of samples parched for different time, the authors found that the characteristic peaks of protein decreased gradually, indicating the reduction of protein with the parching process, maybe because under a longtime parching procedure the heat denaturation occurred in protein compound. In addition, the essence of enzyme was protein, therefore, its transformation trend was closely related to that of protein, which also underwent heat denaturation. The absorption peak around 1 055 cm(-1), which was due to the vibrations of fibred saccharides, began to minish rapidly at early time, then vanished after ten minutes because of the decomposition of fibred saccharides at the beginning of the process. Moreover the results of second derivative spectroscopy and 2D IR correlation spectroscopy validated that of conventional IR spectroscopy, which also indicated the heat denaturation of enzyme and decomposition of saccharides. This multi-steps macro-fingerprint IR spectroscopy method can track dynamically the processing procedure of medicinal herbs and reveal the main transformations; it must play an important role in studying medicinal herbs in the future. PMID:17361704
Digital watermarking for still image based on discrete fractional fourier transform
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Presents a digital watermarking technique based on discrete fractional Fourier transform(DFRFT), discusses the transformation of the original image by DFRFT, and the modification of DFRFT coefficients of the original image by the information of watermark, and concludes from experimental results that the proposed tech nique is robust to lossy compression attack.
X-ray Coherent diffraction interpreted through the fractional Fourier transform
Bolloc'h, David Le; Sadoc, Jean-Francois
2011-01-01
Diffraction of coherent x-ray beams is treated through the Fractionnal Fourier transform. The transformation allow us to deal with coherent diffraction experiments from the Fresnel to the Fraunhofer regime. The analogy with the Huygens-Fresnel theory is first discussed and a generalized uncertainty principle is introduced.
Orthonormal mode sets for the two-dimensional fractional Fourier transformation.
Alieva, Tatiana; Bastiaans, Martin J
2007-05-15
A family of orthonormal mode sets arises when Hermite-Gauss modes propagate through lossless first-order optical systems. It is shown that the modes at the output of the system are eigenfunctions for the symmetric fractional Fourier transformation if and only if the system is described by an orthosymplectic ray transformation matrix. Essentially new orthonormal mode sets can be obtained by letting helical Laguerre-Gauss modes propagate through an antisymmetric fractional Fourier transformer. The properties of these modes and their representation on the orbital Poincaré sphere are studied. PMID:17440542
Fourier and Schur-Weyl transforms applied to XXX Heisenberg magnet
International Nuclear Information System (INIS)
Similarities and differences between Fourier and Schur-Weyl transforms have been discussed in the context of a one-dimensional Heisenberg magnetic ring with N nodes. We demonstrate that main difference between them correspond to another partitioning of the Hilbert space of the magnet. In particular, we point out that application of the quantum Fourier transform corresponds to splitting of the Hilbert space of the model into subspaces associated with the orbits of the cyclic group, whereas, the Schur-Weyl transform corresponds to splitting into subspaces associated with orbits of the symmetric group.
Fourier transform microscope of the direct observation for nuclear emulsion
International Nuclear Information System (INIS)
'The fourier transfom (FT) microscope of the direct observation' for tracks of charged particles in the nuclear emulsion is described. The working flow charts are given of the digital processing of the signals from the array of photodetectors disposed just behind the narrow transmitting slit in the FT plane. The general theory of this new device is presented. The net effect of the proposed processing algorithms is discussed. It is shown experimentally that with such a system we can detect the particle tracks with linear density of 40 silver grains per 100 μm with initial signal-to-noise ratio 1:3. The recommendations for the searching for the particle tracks of low ionization level in the nuclear emulsion by means of the FT microscope of the direct observation are described. 9 refs.; 15 figs.; 1 tab
Optical movie encryption based on a discrete multiple-parameter fractional Fourier transform
International Nuclear Information System (INIS)
A movie encryption scheme is proposed using a discrete multiple-parameter fractional Fourier transform and theta modulation. After being modulated by sinusoidal amplitude grating, each frame of the movie is transformed by a filtering procedure and then multiplexed into a complex signal. The complex signal is multiplied by a pixel scrambling operation and random phase mask, and then encrypted by a discrete multiple-parameter fractional Fourier transform. The movie can be retrieved by using the correct keys, such as a random phase mask, a pixel scrambling operation, the parameters in a discrete multiple-parameter fractional Fourier transform and a time sequence. Numerical simulations have been performed to demonstrate the validity and the security of the proposed method. (paper)
The Logvinenko-Sereda Theorem for the Fourier-Bessel transform
Ghobber, Saifallah
2012-01-01
The aim of this paper is to establish an analogue of Logvinenko-Sereda's theorem for the Fourier-Bessel transform (or Hankel transform) $\\ff_\\alpha$ of order $\\alpha>-1/2$. Roughly speaking, if we denote by $PW_\\alpha(b)$ the Paley-Wiener space of $L^2$-functions with Fourier-Bessel transform supported in $[0,b]$, then we show that the restriction map $f\\to f|_\\Omega$ is essentially invertible on $PW_\\alpha(b)$ if and only if $\\Omega$ is sufficiently dense. Moreover, we give an estimate of the norm of the inverse map. As a side result we prove a Bernstein type inequality for the Fourier-Bessel transform.
Does the Entorhinal Cortex use the Fourier Transform?
Directory of Open Access Journals (Sweden)
Jeff eOrchard
2013-12-01
Full Text Available Some neurons in the entorhinal cortex (EC fire bursts when the animal occupies locations organized in a hexagonal grid pattern in their spatial environment. Place cells have also been observed, firing bursts only when the animal occupies a particular region of the environment. Both of these types of cells exhibit theta-cycle modulation, firing bursts in the 4-12Hz range. Grid cells fire bursts of action potentials that precess with respect to the theta cycle, a phenomenon dubbed "theta precession". Various models have been proposed to explain these phenomena, and how they relate to navigation. Among the most promising are the oscillator interference models. The bank-of-oscillators model proposed by Welday et al. (2011 exhibits all these features. However, their simulations are based on theoretical oscillators, and not implemented entirely with spiking neurons. We extend their work in a number of ways. First, we place the oscillators in a frequency domain and reformulate the model in terms of Fourier theory. Second, this perspective suggests a division of labour for implementing spatial maps: position, versus map layout. The animal's position is encoded in the phases of the oscillators, while the spatial map shape is encoded implicitly in the weights of the connections between the oscillators and the read-out nodes. Third, it reveals that the oscillator phases all need to conform to a linear relationship across the frequency domain. Fourth, we implement a partial model of the EC using spiking leaky integrate-and-fire (LIF neurons. Fifth, we devise new coupling mechanisms, enlightened by the global phase constraint, and show they are capable of keeping spiking neural oscillators in consistent formation. Our model demonstrates place cells, grid cells, and phase precession. The Fourier model also gives direction for future investigations, such as integrating sensory feedback to combat drift, or explaining why grid cells exist at all.
Spatial Fourier transform method for evaluating SQUID gradiometers
International Nuclear Information System (INIS)
A simple method of measuring the spatial transfer function of a gradiometer, consisting of a flux transformer coupled to a SQUID, is presented and it is compared with theoretical predictions. Based, on this approach, a new method of reporting a gradiometer's performance is proposed; the rejection factor is expressed in decibels obtained directly from the transfer function plot
Adiana, M. A.; Mazura, M. P.
2011-04-01
Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.
2-D TFPF based on Contourlet transform for seismic random noise attenuation
Zhao, Xian; Li, Yue; Zhuang, Guanghai; Zhang, Chao; Han, Xue
2016-06-01
The time-frequency peak filtering (TFPF) algorithm is useful for attenuating seismic random noise. Conventional TFPF processes each channel of the seismic record independently with a fixed window length (WL), which is a one-dimensional algorithm due to filtering along the channel direction. However, the fixed WL is not appropriate for all frequency components at the same time, so using this technique cannot preserve the reflected signals effectively. Also, Conventional TFPF ignores the spatial characteristics of reflection events, resulting in poor continuity of seismic events and serious loss of the correlation among channels. Here we introduce a new spatiotemporal method, called two-dimensional (2-D) TFPF based on Contourlet transform, which considers spatial correlation and improves the performance of the TFPF. Regarding the event as the contour in an image and using Contourlet transform (CT) to the record, we can find the optimal radial filtering trace which best matches the event, and then sample the record to extract signals along the trace. In this way, frequencies of sampled signals are low and similar. After applying the TFPF along the trace instead of along each channel, the estimation bias is decreased due to the low frequency. Moreover, using the same WL is suitable as a result of similar frequencies. Experiments on synthetic models and the field data illustrate that the new method performs well in random noise attenuation and reflection event preservation.
On Analog of Fourier Transform in Interior of the Light Cone
Directory of Open Access Journals (Sweden)
Tatyana Shtepina
2014-01-01
Full Text Available We introduce an analog of Fourier transform Fhρ in interior of light cone that commutes with the action of the Lorentz group. We describe some properties of Fhρ, namely, its action on pseudoradial functions and functions being products of pseudoradial function and space hyperbolic harmonics. We prove that Fhρ-transform gives a one-to-one correspondence on each of the irreducible components of quasiregular representation. We calculate the inverse transform too.
Accelerating the Non-equispaced Fast Fourier Transform on Commodity Graphics Hardware
DEFF Research Database (Denmark)
Sørensen, Thomas Sangild; Schaeffter, Tobias; Noe, Karsten Østergaard;
2008-01-01
We present a fast parallel algorithm to compute the Non-equispaced fast Fourier transform on commodity graphics hardware (the GPU). We focus particularly on a novel implementation of the convolution step in the transform, which was previously its most time consuming part. We describe the...... state-of-the-art 64 bit CPU. To illustrate the applicability of the transform in medical imaging we look specifically at non-Cartesian magnetic resonance imaging and reconstruct a numerical phantom....
Fast Fourier transformation in vibration analysis of physically active systems
International Nuclear Information System (INIS)
Vibration of all physical systems may be expressed as the summation of an infinite number of sine and cosine terms known as Fourier series. The basic vibration analysis tool used is the frequency 'spectrum' (a graph of vibration where the amplitude of vibration is plotted against frequency). When a particular rotating component begins to fail, its vibration tends to increase. Spectra graphs are powerful diagnostic tool for detecting components' degradation. Spectra obtained with accelerometers located at the various locations on the components and their analysis in practice from rotating machines enable early detecting of incipient failure. Consequence of unexpected failure can be catastrophic and costly. This study provides basis to relate defective component by its constituent frequencies and then to the known discrete frequency of its 'signature' or 'thumbprint' to predict and verify the sustained dynamic behavior of machine designs harmful effects of forced vibration. The spectra for gearbox of a vane with teeth damaged fault are presented here which signified the importance of FFT analysis as diagnostic tool. This may be helpful to predictive maintenance of the machinery. (author)
Wigner distribution and fractional Fourier transform for two-dimensional symmetric optical beams.
Alieva, T; Bastiaans, M J
2000-12-01
A useful relationship between the fractional Fourier transform power spectra of a two-dimensional symmetric optical beam, on the one hand, and its Wigner distribution, on the other, is established. This relationship allows a significant simplification of the standard procedure for the reconstruction of the Wigner distribution from the field intensity distributions in the fractional Fourier domains. The Wigner distribution of a symmetric optical beam is analyzed, both in the coherent and in the partially coherent case. PMID:11140492
Fourier-transform Ghost Imaging for pure phase object based on Compressive Sampling algorithm
Wang, Hui; Han, Shensheng
2009-01-01
A special algorithm for the Fourier-transform Ghost Imaging (GI) scheme is discussed based on the Compressive Sampling (CS) theory. Though developed mostly in real space, CS algorithm could also be used for the Fourier spectrum reconstruction of pure phase object by setting a proper sensing matrix. This could find its application in diffraction imaging of X-ray, neutron and electron with higher efficiency and resolution. Simulation and experiment results are also presented to prove the feasib...
bahram noshad; morteza razaz; seyed ghodratollah seifossadat
2012-01-01
One of mal-operations of the transformer differential protection during the unload transformer energizing with additional line/load from the supplying side is ultra-saturation phenomenon. In this paper, first a new model according to Discrete Fourier Transform (DFT) algorithm for investigating the ultra-saturation phenomenon during the unload transformer energizing with additional line/load from the supplying side is presented and its effect on the differential protection of the transformer i...
Fast Fourier and Wavelet Transforms for Wavefront Reconstruction in Adaptive Optics
Energy Technology Data Exchange (ETDEWEB)
Dowla, F U; Brase, J M; Olivier, S S
2000-07-28
Wavefront reconstruction techniques using the least-squares estimators are computationally quite expensive. We compare wavelet and Fourier transforms techniques in addressing the computation issues of wavefront reconstruction in adaptive optics. It is shown that because the Fourier approach is not simply a numerical approximation technique unlike the wavelet method, the Fourier approach might have advantages in terms of numerical accuracy. However, strictly from a numerical computations viewpoint, the wavelet approximation method might have advantage in terms of speed. To optimize the wavelet method, a statistical study might be necessary to use the best basis functions or ''approximation tree.''
q-moments remove the degeneracy associated with the inversion of the q-Fourier transform
International Nuclear Information System (INIS)
It was recently proven (Hilhorst 2010 J. Stat. Mech. P10023) that the q-generalization of the Fourier transform is not invertible in the full space of probability density functions for q > 1. It has also been recently shown that this complication disappears if we dispose of the q-Fourier transform not only of the function itself, but also of all of its shifts (Jauregui and Tsallis 2011 Phys. Lett. A 375 2085). Here we show that another route exists for completely removing the degeneracy associated with the inversion of the q-Fourier transform of a given probability density function. Indeed, it is possible to determine this density if we dispose of some extra information related to its q-moments
q-Moments remove the degeneracy associated with the inversion of the q-Fourier transform
Jauregui, M; Curado, E M F
2011-01-01
It was recently proven [Hilhorst, JSTAT, P10023 (2010)] that the q-generalization of the Fourier transform is not invertible in the full space of probability density functions for q > 1. It has also been recently shown that this complication disappears if we dispose of the q-Fourier transform not only of the function itself, but also of all of its shifts [Jauregui and Tsallis, Phys. Lett. A 375, 2085 (2011)]. Here we show that another road exists for completely removing the degeneracy associated with the inversion of the q-Fourier transform of a given probability density function. Indeed, it is possible to determine this density if we dispose of some extra information related to its q-moments.
Inversion of Fourier Transforms by Means of Scale-Frequency Series
Directory of Open Access Journals (Sweden)
Nassar H. S. Haidar
2014-01-01
Full Text Available We report on inversion of the Fourier transform when the frequency variable can be scaled in a variety of different ways that improve the resolution of certain parts of the frequency domain. The corresponding inverse Fourier transform is shown to exist in the form of two dual scale-frequency series. Upon discretization of the continuous scale factor, this Fourier transform series inverse becomes a certain nonharmonic double series, a discretized scale-frequency (DSF series. The DSF series is also demonstrated, theoretically and practically, to be rate-optimizable with respect to its two free parameters, when it satisfies, as an entropy maximizer, a pertaining recursive nonlinear programming problem incorporating the entropy-based uncertainty principle.
Prime Factor Cyclotomic Fourier Transforms with Reduced Complexity over Finite Fields
Wu, Xuebin; Chen, Ning; Wagh, Meghanad
2010-01-01
Discrete Fourier transforms~(DFTs) over finite fields have widespread applications in error correction coding. Hence, reducing the computational complexities of DFTs is of great significance, especially for long DFTs as increasingly longer error control codes are chosen for digital communication and storage systems. Since DFTs involve both multiplications and additions over finite fields and multiplications are much more complex than additions, recently proposed cyclotomic fast Fourier transforms (CFFTs) are promising due to their low multiplicative complexity. Unfortunately, they have very high additive complexity. Techniques such as common subexpression elimination (CSE) can be used to reduce the additive complexity of CFFTs, but their effectiveness for long DFTs is limited by their complexity. In this paper, we propose prime factor cyclotomic Fourier transforms (PFCFTs), which use CFFTs as sub-DFTs via the prime factor algorithm. When the length of DFTs is prime, our PFCFTs reduce to CFFTs. When the length...
Reduction and coding of synthetic aperture radar data with Fourier transforms
Tilley, David G.
1995-01-01
Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.
Abnormality Detection in ECG Signal Using Wavelets and Fourier Transform
Directory of Open Access Journals (Sweden)
Sayali Kambire
2016-06-01
Full Text Available Electrocardiogram (ECG is used to record the electrical activity in the heart. It is the most important physiological parameter that gives the correct assessment regarding the functioning of the heart. The paper proposes a method based on signal processing correlation technique to find out whether the ECG is normal or abnormal. Many of the abnormal ECGs are called Arrhythmias. Aim of this study to analyze the ECG signal using MATLAB and to find whether the signal is normal or abnormal. According to different arrhythmia it helps to analyze the electrocardiogram (ECG signal, extract the features, for the classification of heart beats. ECG feature extraction system has been developed and evaluated based on the multi-resolution wavelet transform.
The Pegg-Barnett phase operator and the discrete Fourier transform
Perez-Leija, Armando; Andrade-Morales, Luis A.; Soto-Eguibar, Francisco; Szameit, Alexander; Moya-Cessa, Héctor M.
2016-04-01
In quantum mechanics the position and momentum operators are related to each other via the Fourier transform. In the same way, here we show that the so-called Pegg-Barnett phase operator can be obtained by the application of the discrete Fourier transform to the number operators defined in a finite-dimensional Hilbert space. Furthermore, we show that the structure of the London-Susskind-Glogower phase operator, whose natural logarithm gives rise to the Pegg-Barnett phase operator, is contained in the Hamiltonian of circular waveguide arrays. Our results may find applications in the development of new finite-dimensional photonic systems with interesting phase-dependent properties.
Fast 3D shape measurement using Fourier transform profilometry without phase unwrapping
Song, Kechen; Hu, Shaopeng; Wen, Xin; Yan, Yunhui
2016-09-01
This paper presents a novel, simple, yet fast 3D shape measurement method using Fourier transform profilometry. Different from the conventional Fourier transform profilometry, this proposed method introduces the binocular stereo vision and employs two image pairs (i.e., original image pairs and fringe image pairs) to restructure 3D shape. In this proposed method, instead of phase unwrapping algorithm, a coarse disparity map is adopted as a constraint condition to realize phase matching using wrapped phase. Since the local phase matching and sub-pixel disparity refinement are proposed to obtain high measuring accuracy, high-quality phase is not required. The validity of the proposed method is verified by experiments.
Goda, Keisuke; Jalali, Bahram
2008-01-01
Dispersive Fourier transformation is a powerful technique in which the spectrum of an optical pulse is mapped into a time-domain waveform using chromatic dispersion. It replaces a diffraction grating and detector array with a dispersive fiber and single photodetector. This simplifies the system and, more importantly, enables fast real-time measurements. Here we describe a novel ultrafast barcode reader and displacement sensor that employs internally-amplified dispersive Fourier transformation. This technique amplifies and simultaneously maps the spectrally encoded barcode into a temporal waveform. It achieves a record acquisition speed of 25 MHz -- four orders of magnitude faster than the current state-of-the-art.
Goda, Keisuke; Tsia, Kevin K.; Jalali, Bahram
2008-09-01
Dispersive Fourier transformation is a powerful technique in which the spectrum of an optical pulse is mapped into a time-domain waveform using chromatic dispersion. It replaces a diffraction grating and detector array with a dispersive fiber and single photodetector. This simplifies the system and, more importantly, enables fast real-time measurements. Here we describe a novel ultrafast barcode reader and displacement sensor that employs internally amplified dispersive Fourier transformation. This technique amplifies and simultaneously maps the spectrally encoded barcode into a temporal waveform. It achieves a record acquisition speed of 25MHz—four orders of magnitude faster than the current state of the art.
Two-sided Clifford Fourier transform with two square roots of -1 in Cl(p,q)
Hitzer, Eckhard
2013-01-01
We generalize quaternion and Clifford Fourier transforms to general two-sided Clifford Fourier transforms (CFT), and study their properties (from linearity to convolution). Two general \\textit{multivector square roots} $\\in \\cl{p,q}$ \\textit{of} -1 are used to split multivector signals, and to construct the left and right CFT kernel factors. Keywords: Clifford Fourier transform, Clifford algebra, signal processing, square roots of -1 .
Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model
Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2013-08-01
3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.
Gear Fault Signal Detection based on an Adaptive Fractional Fourier Transform Filter
International Nuclear Information System (INIS)
Vibration-based fault diagnosis is widely used for gearbox monitoring. However, it often needs considerable effort to extract effective diagnostic feature signal from noisy vibration signals because of rich signal components contained in a complex gear transmission system. In this paper, an adaptive fractional Fourier transform filter is proposed to suppress noise in gear vibration signals and hence to highlight signal components originated from gear fault dynamic characteristics. The approach relies on the use of adaptive filters in the fractional Fourier transform domain with the optimised fractional transform order and the filter parameters, while the transform orders are selected when the signal have the highest energy gathering and the filter parameters are determined by evolutionary rules. The results from the simulation and experiments have verified the performance of the proposed algorithm in extracting the gear failure signal components from the noisy signals based on a multistage gearbox system.
Multi-dimensional option pricing using radial basis functions and the generalized Fourier transform
Larsson, Elisabeth; Ahlander, Krister; Hall, Andreas
2008-12-01
We show that the generalized Fourier transform can be used for reducing the computational cost and memory requirements of radial basis function methods for multi-dimensional option pricing. We derive a general algorithm, including a transformation of the Black-Scholes equation into the heat equation, that can be used in any number of dimensions. Numerical experiments in two and three dimensions show that the gain is substantial even for small problem sizes. Furthermore, the gain increases with the number of dimensions.
The quantum state vector in phase space and Gabor's windowed Fourier transform
Bracken, A. J.; Watson, P.
2010-01-01
Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed `window state vector'. Here aspects of this construction are explored, with emphasis on the connection with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple quantum states from various c...
Institute of Scientific and Technical Information of China (English)
CHEN Chao; YANG Yu-lin; LI Wei-sheng; LIU Yun-ling; YI Zhuo; GUO Yang-hong; PANG Wen-qin
2005-01-01
The transformation of titanium phosphate from 1-D chiral- chain(JTP-A) to 2-D layer(TP-J1) has been carefully investigated. Through a hydrolysis-condensation self-assembly pathway, the crystals of TP-J1 can be obtained from the JTP-A phase under hydrothermal conditions. An intermediate material with zigzag chain during the transformation was observed by XRD characterization. A hypothesis of the transformation mechanism is also described in this article. It is noteworthy that ethylenediamine plays an important role in the transformation.
Soil science research is increasingly applying Fourier transform infrared (FTIR) spectroscopy for analysis of soil organic matter (SOM). However, the compositional complexity of soils and the dominance of the mineral component can limit spectroscopic resolution of SOM and other minor components. The...
Ryczkowski, Janusz
1994-01-01
The purpose of this work was to determine what kind of original/new information could be obtained by examining EDTA (ethylenediaminetetraacetic acid and its sodium salts) adsorption on (gamma) -alumina surface studied by Fourier-transform infrared (FTIR) and FTIR photoacoustic (FTIR PAS) spectroscopy.
A new chemometric method based on absorbance ratios from Fourier transform infrared spectra was devised to analyze multicomponent biodegradable plastics. The method uses the BeerLambert law to directly compute individual component concentrations and weight losses before and after biodegradation of c...
Fourier transform infrared emission spectra of atomic rubidium: g- and h-states
Czech Academy of Sciences Publication Activity Database
Civiš, Svatopluk; Ferus, Martin; Kubelík, Petr; Chernov, Vladislav E.; Zanozina, Ekaterina M.
2012-01-01
Roč. 45, č. 17 (2012), s. 175002. ISSN 0953-4075 R&D Projects: GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : Fourier transform infrared emission spectra * atomic rubidium * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.031, year: 2012
Hermann, Peter; Hoehl, Arne; Patoka, Piotr; Huth, Florian; Rühl, Eckart; Ulm, Gerhard
2013-02-11
We demonstrate scanning near-field optical microscopy with a spatial resolution below 100 nm by using low intensity broadband synchrotron radiation in the IR regime. The use of such a broadband radiation source opens up the possibility to perform nano-Fourier-transform infrared spectroscopy over a wide spectral range. PMID:23481749
ATMOSPHERIC MEASUREMENTS OF TRACE POLLUTANTS; LONG PATH FOURIER TRANSFORM INFRARED SPECTROSCOPY
Described are the results of a four-year study to measure trace pollutant concentrations in polluted atmospheres by kilometer pathlength Fourier transform infrared (FT-IR) absorption spectroscopy. The study covers selected smog episodes during the years 1976 to 1979. During 1976 ...
Barbu, I.M.
2008-01-01
This thesis describes, the use of a Fourier Transform Ion Cyclotron (FTICR) mass spectrometer in the study of biological samples with, imaging mass spectrometry (MS). To achieve this goal experiments were performed on an in-house modified FTICR-MS instrument (for which special acquisition software w
Müller, Stefan C.; Murk, Axel; Monstein, Christian; Kämpfer, Niklaus; Meyer, HAnsueli
2006-01-01
The Institute of Applied Physics observes middle atmospheric trace gases, such as ozone and water vapour, by microwave radiometry. We report on the comparison of measurements using a novel digital Fast Fourier Transform and accousto optical spectrometers. First tests made on ground are presented as well as first experience about the use of such spectrometers under aircraft conditions.
Analysis of thermal plasma radiation by Fourier transform, wavelet analysis and phase portraits
Czech Academy of Sciences Publication Activity Database
Gruber, Jan; Šonský, Jiří; Hlína, Jan
Prague: Institute of Thermomechanics ASCR, v. v. i., 2014, s. 19-20. ISBN 978-80-87012-52-9. [Symposium on Electric Machines, Drives and Power Electronics. Prague (CZ), 09.09.2014-11.09.2014] Institutional support: RVO:61388998 Keywords : atmospheric-pressure plasmas * Fourier transform * plasma cutting Subject RIV: BL - Plasma and Gas Discharge Physics
On the Fourier - Gauss transforms of some q-exponential and q-trigonometric functions
Atakishiyev, N. M.
1996-11-01
We examine the properties of q-exponential and q-trigonometric functions, recently introduced and discussed in the literature. It is shown that they are related to Jackson's q-analogues of the exponential and trigonometric functions by classical Fourier - Gauss transformations.
Amir, W.; Planchon, T. A.; Durfee, C. G.; Squier, J. A.
2007-04-01
Spatiotemporal pulse shaping is characterized with two-dimensional Fourier transform spectral interferometry. A deformable-mirror-based bidimensional pulse shaper is used to create simple spatiotemporal structures on a femtosecond pulse, structures that are directly calculated from the measured spatiospectral phases and intensities.
Alpha-rooting method of color image enhancement by discrete quaternion Fourier transform
Grigoryan, Artyom M.; Agaian, Sos S.
2014-02-01
This paper presents a novel method for color image enhancement based on the discrete quaternion Fourier transform. We choose the quaternion Fourier transform, because it well-suited for color image processing applications, it processes all 3 color components (R,G,B) simultaneously, it capture the inherent correlation between the components, it does not generate color artifacts or blending , finally it does not need an additional color restoration process. Also we introduce a new CEME measure to evaluate the quality of the enhanced color images. Preliminary results show that the α-rooting based on the quaternion Fourier transform enhancement method out-performs other enhancement methods such as the Fourier transform based α-rooting algorithm and the Multi scale Retinex. On top, the new method not only provides true color fidelity for poor quality images but also averages the color components to gray value for balancing colors. It can be used to enhance edge information and sharp features in images, as well as for enhancing even low contrast images. The proposed algorithms are simple to apply and design, which makes them very practical in image enhancement.
DEFF Research Database (Denmark)
Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.;
2013-01-01
In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes and d...
An Algorithm for Fresnel Diffraction Computing Based on Fractional Fourier Transform
Stoilov, Georgi
2007-01-01
The fractional Fourier transform (FrFT) is used for the solution of the diffraction integral in optics. A scanning approach is proposed for finding the optimal FrFT order. In this way, the process of diffraction computing is speeded up. The basic algorithm and the intermediate results at each stage are demonstrated.
Institute of Scientific and Technical Information of China (English)
LiP; SuiJL
2002-01-01
The 5' promoter regions of some genes contain CpG-rich areas,known as CpG islands,Methylation of the cytosine in these dinuleotides has important regulatory effects on gene expression.The functional significance of promoter hypermethylation would play the same roles in carcinogenesis as gene mutations.The promoter methylations p14ARF,p16INK4a,MGMT,GSTP1,BUB3 and DAPK genes were analyzed with methylation specific PCR(MSP) in the transformed human bronchial epithelial cells(BEP2D) induced by α-particles.The results indicated that p14ARF gene was not methylated in BEP2D cells,but was methylated in the malignant transformed BERP35T-1 cells,and the level of its transcription was depressed remarkable in the latter.However p16INK4a gene,which shares two exons with p14ARF gene,was not methylated.MGMT gene was methylated in both BEP2D and BERP35T-1.DAPK gene was partially methylated in BEP2D cells and methylated completely in BERP35T1.GSTP1 was not methylated in BEP2D cells and was methylated partly in BERP35T-1.BUB3 gene was not methylated in BEP2D as well as BERP35T1 cells and was further proved by sequencing analysis.
Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin
2015-03-01
The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.
Efficient method for localized functions using domain transformation and Fourier sine series
Jovanovic, Raka; Alharbi, Fahhad H
2014-01-01
An efficient approach to handle localized states by using spectral methods (SM) in one and three dimensions is presented. The method consists of transformation of the infinite domain to the bounded domain in $(0, \\pi)$ and using the Fourier sine series as a set of basis functions for the SM. It is shown that with an appropriate choice of transformation functions, this method manages to preserve the good properties of original SMs; more precisely, superb computational efficiency when high level of accuracy is necessary. This is made possible by analytically exploiting the properties of the transformation function and the Fourier sine series. An especially important property of this approach is the possibility of calculating the Hartree energy very efficiently. This is done by exploiting the positive properties of the sine series as a basis set and conducting an extinctive part of the calculations analytically. We illustrate the efficiency of this method and implement it to solve the Poisson's and Helmholtz equ...
Fractional Fourier transform for partially coherent beam in spatial-frequency domain
Institute of Scientific and Technical Information of China (English)
Cai Yang-Jian; Lin Qiang
2004-01-01
By using Fourier transform and the tensor analysis method, the fractional Fourier transform (FRT) in the spatialfrequency domain for partially coherent beams is derived. Based on the FRT in the spatial-frequency domain, an analytical transform formula is derived for a partially coherent twisted anisotropic Gaussian-Schell model (GSM) beam passing through the FRT system. The connections between the FRT formula and the generalized diffraction integral formulae for partially coherent beams through an aligned optical system and a misaligned optical system in the spatialfrequency domain are discussed, separately. By using the derived formula, the intensity distribution of partially coherent twisted anisotropic GSM beams in the FRT plane are studied in detail. The formula derived provide a convenient tool for analysing and calculating the FRTs of the partially coherent beams in spatial-frequency domain.
Analysis of the High-Resolution Fourier Spectrum of the ν6 Band of the cis-C2h2d2 Molecule
Konov, I. A.; Chertavskikh, Yu. V.; Fomchenko, A. L.; Aslapovskaya, Yu. S.; Zhdanovich, S. A.; Sydow, C.
2016-03-01
The spectrum of the ν6 band of the cis-ethylene-d2 molecule (cis-C2H2D2) is recorded with a Bruker IFS 125 HR Fourier spectrometer in the range 580-1210 cm-1 with resolution of 0.0021 cm-1. An analysis of the experimental spectrum allows more than 1500 transitions belonging to this band to be assigned that by more than 2.5 times greater than it has been known in the literature so far. The obtained experimental data are then used to determine the model parameters of the molecule (the effective Hamiltonian in the A-reduction and I'- representation). Strong resonance interaction with the band ν4 forbidden in absorption by the symmetry of a molecule is taken into account. 10 parameters of the Hamiltonian obtained by solving inverse spectroscopic problem reproduce 427 initial experimental energies (more than 1500 transitions) with accuracy close to the experimental uncertainty.
Directory of Open Access Journals (Sweden)
Nicholas W. Landry
2015-09-01
Full Text Available Property closures are envelopes representing the complete set of theoretically feasible macroscopic property combinations for a given material system. In this paper, we present a computational procedure based on fast Fourier transforms (FFTs to delineation of elastic property closures for hexagonal close packed (HCP metals. The procedure consists of building a database of non-zero Fourier transforms for each component of the elastic stiffness tensor, calculating the Fourier transforms of orientation distribution functions (ODFs, and calculating the ODF-to-elastic property bounds in the Fourier space. In earlier studies, HCP closures were computed using the generalized spherical harmonics (GSH representation and an assumption of orthotropic sample symmetry; here, the FFT approach allowed us to successfully calculate the closures for a range of HCP metals without invoking any sample symmetry assumption. The methodology presented here facilitates for the first time computation of property closures involving normal-shear coupling stiffness coefficients. We found that the representation of these property linkages using FFTs need more terms compared to GSH representations. However, the use of FFT representations reduces the computational time involved in producing the property closures due to the use of fast FFT algorithms. Moreover, FFT algorithms are readily available as opposed to GSH codes.
International Nuclear Information System (INIS)
To assess the usefulness of three-dimensional Fourier transformation constructive interference in steady state (CISS) for the evaluation of chondromalacia. In 110 knee joints which underwent both MR imaging and arthroscopy, the findings were retrospectively reviewed. MR imaging sequences included two-dimensional dual-echo turbo spin-echo imaging along the sagittal and coronal planes, two-dimensional fast low-angle shot (FLASH) with magnetization transfer along the axial plane, and three-dimensional CISS along the sagittal plane. After the cartilage surfaces of each joint were divided into eight areas (each medial and lateral area of patellar facets, trochlear surfaces, femoral condyles, and tibial plateaux), a total of 880 areas were assessed. Using both combined two-dimensional (2-D turbo spin-echo and FLASH) and CISS imaging during different sessions, each chondromalacia case was assigned one of five grades. Arthroscopy revealed the presence of chondromalacia in 162 areas. This was first grade in 77 areas, second grade in 38, third grade in 21, and fourth grade in 26. The sensitivity, specificity, and accuracy of 2-D and CISS imaging were 48.1%, 93.7% and 85.3%, and 45.7%, 95.3% and 86.1%, respectively. Agreement between MR and arthroscopic staging occurred in 81.48% of 2-D imaging procedures and 82.16% of CISS procedures. If a difference of one grade was accepted, these proportions rose to 84.32% and 85.22%, respectively, though this increase was statistically insignificant. Though CISS imaging was less sensitive than 2-D imaging in the grading of chondromalacia, additional CISS imaging can help improve the accuracy of this grading
Energy Technology Data Exchange (ETDEWEB)
Yoon, Sam Hyun; Ha, Doo Hoe; Kwak, Jin Young [College of Medicine, Pochon CHA University, Sungnam (Korea, Republic of); Lee, Young Soo [Pundang CHA General Hospital, College of Medicine, Pochon CHA University, Seoul (Korea, Republic of)
2000-10-01
To assess the usefulness of three-dimensional Fourier transformation constructive interference in steady state (CISS) for the evaluation of chondromalacia. In 110 knee joints which underwent both MR imaging and arthroscopy, the findings were retrospectively reviewed. MR imaging sequences included two-dimensional dual-echo turbo spin-echo imaging along the sagittal and coronal planes, two-dimensional fast low-angle shot (FLASH) with magnetization transfer along the axial plane, and three-dimensional CISS along the sagittal plane. After the cartilage surfaces of each joint were divided into eight areas (each medial and lateral area of patellar facets, trochlear surfaces, femoral condyles, and tibial plateaux), a total of 880 areas were assessed. Using both combined two-dimensional (2-D turbo spin-echo and FLASH) and CISS imaging during different sessions, each chondromalacia case was assigned one of five grades. Arthroscopy revealed the presence of chondromalacia in 162 areas. This was first grade in 77 areas, second grade in 38, third grade in 21, and fourth grade in 26. The sensitivity, specificity, and accuracy of 2-D and CISS imaging were 48.1%, 93.7% and 85.3%, and 45.7%, 95.3% and 86.1%, respectively. Agreement between MR and arthroscopic staging occurred in 81.48% of 2-D imaging procedures and 82.16% of CISS procedures. If a difference of one grade was accepted, these proportions rose to 84.32% and 85.22%, respectively, though this increase was statistically insignificant. Though CISS imaging was less sensitive than 2-D imaging in the grading of chondromalacia, additional CISS imaging can help improve the accuracy of this grading.
Program for the analysis of time series. [by means of fast Fourier transform algorithm
Brown, T. J.; Brown, C. G.; Hardin, J. C.
1974-01-01
A digital computer program for the Fourier analysis of discrete time data is described. The program was designed to handle multiple channels of digitized data on general purpose computer systems. It is written, primarily, in a version of FORTRAN 2 currently in use on CDC 6000 series computers. Some small portions are written in CDC COMPASS, an assembler level code. However, functional descriptions of these portions are provided so that the program may be adapted for use on any facility possessing a FORTRAN compiler and random-access capability. Properly formatted digital data are windowed and analyzed by means of a fast Fourier transform algorithm to generate the following functions: (1) auto and/or cross power spectra, (2) autocorrelations and/or cross correlations, (3) Fourier coefficients, (4) coherence functions, (5) transfer functions, and (6) histograms.
Directory of Open Access Journals (Sweden)
Vahid Bagheri
2014-11-01
Full Text Available This paper introduce a new data SONAR classification method based on Short-Time Fractional Fourier Transform (STFrFT analysis. The passive SONAR system receives the acoustic signals radiated by vessels and attempts to categorize them as a function of the similarities between vessels of the same class.Here, a time-frequency processing and feature extraction method is developed in order to improve the performance of a feedforwardneural network, which is used to classify five classes of vessels.Processing of time-varying signals in fractional fourier domain allows us to estimate the signal with higher concentration than conventional fourier domain, making the technique robust against additive noise, maintaining same computational complexity. With the purpose of dimension reduction and classification improvement, we use Linear Discriminant Analysis (LDA technique. The feasibility of the proposed technique (STFrFTLDA has been tested experimentally using a real database. The experimental results show the superiority of the proposed method
Energy Technology Data Exchange (ETDEWEB)
Vilardy, Juan M; Giacometto, F; Torres, C O; Mattos, L, E-mail: vilardy.juan@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)
2011-01-01
The two-dimensional Fast Fourier Transform (FFT 2D) is an essential tool in the two-dimensional discrete signals analysis and processing, which allows developing a large number of applications. This article shows the description and synthesis in VHDL code of the FFT 2D with fixed point binary representation using the programming tool Simulink HDL Coder of Matlab; showing a quick and easy way to handle overflow, underflow and the creation registers, adders and multipliers of complex data in VHDL and as well as the generation of test bench for verification of the codes generated in the ModelSim tool. The main objective of development of the hardware architecture of the FFT 2D focuses on the subsequent completion of the following operations applied to images: frequency filtering, convolution and correlation. The description and synthesis of the hardware architecture uses the XC3S1200E family Spartan 3E FPGA from Xilinx Manufacturer.
Andreeva, A; Burova, M; Burov, J
2007-06-01
A metal object is computer visualized by registration of the amplitudes of the transmitted through the object short acoustic pulses. The pulses are separated by time, because of the presence of holes and internal compact components in the longitudinal section (structure along the propagation direction of acoustic wave). The acoustic field transmitted through the object is composited from a field presenting Fourier transformation of the hole shape and field, transmitted through the metal components in the longitudinal section of the object. A computer Fourier transformation of the digital data of the amplitude fields transmitted through the object components is performed instead of converging lens. The Fourier series of the object obtained as digital data after the transformation is multiplied with a term, describing the angle distribution of the field on spatial frequencies. The reconstruction of the image of the metal components is performed by reverse transformation, i.e. summing up in all spatial frequencies. 3D visualization of the transmitted through the hole acoustic field determines the hole geometry (circular, square, rectangular). It is shown that at the transmission of a short acoustic pulse through the components with different thicknesses and holes, presenting Fourier and non-Fourier transformation can be registered separately in contrast to the optics. PMID:17395232
Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms
Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick
2016-05-01
The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a few orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. The method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.
International Nuclear Information System (INIS)
The disposal of low-level radioactive liquid wastes at the Hanford Site near Richland, Washington, involves mixing the wastes with pozzolanic grout-forming solid blends. Checking the quality of each blend component and its mix ratio will ensure processibility of the blend and the long-term performance of the resulting waste grout. In earlier work at Hanford laboratories, Fourier transform infrared-transmission method (FTIR-TR) using KBr pellet was applied successfully in the analysis of blends consisting of cement, fly ash, and clays. This method involves time-consuming sample preparation resulting in slow turnaround for repetitive sampling. Because reflection methods do not require elaborate sample preparation, they have the potential to reduce turnaround analysis time. Neat samples may be examined making these methods attractive for quality control. This study investigates the capability of Fourier transform infrared-attenuated total reflectance method (FTIR-ATR) to analyze pozzolanic blends
Application of Fourier transform to MHD flow over an accelerated plate with partial-slippage
Directory of Open Access Journals (Sweden)
Salman Ahmad
2014-06-01
Full Text Available Magneto-Hydrodynamic (MHD flow over an accelerated plate is investigated with partial slip conditions. Generalized Fourier Transform is used to get the exact solution not only for uniform acceleration but also for variable acceleration. The numerical solution is obtained by using linear finite element method in space and One-Step-θ-scheme in time. The resulting discretized algebraic systems are solved by applying geometric-multigrid approach. Numerical solutions are compared with the obtained Fourier transform results. Many interesting results related with slippage and MHD effects are discussed in detail through graphical sketches and tables. Application of Dirac-Delta function is one of the main features of present work.
Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms
Energy Technology Data Exchange (ETDEWEB)
Lebensohn, Ricardo A [Los Alamos National Laboratory; Prakash, Arun [IWM FREIBURG
2009-01-01
In this work, we compare finite element and fast Fourier transform approaches for the prediction of micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular, stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases - rolling of aluminium and wire drawing of tungsten - are used to evaluate the predictions of the two mode1s. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison to the fast Fourier transform simulations.
Surpassing the Path-Limited Resolution of a Fourier Transform Spectrometer with Frequency Combs
Maslowski, Piotr; Johansson, Alexandra C; Khodabakhsh, Amir; Kowzan, Grzegorz; Rutkowski, Lucile; Mills, Andrew A; Mohr, Christian; Jiang, Jie; Fermann, Martin E; Foltynowicz, Aleksandra
2015-01-01
Fourier transform spectroscopy based on incoherent light sources is a well-established tool in research fields from molecular spectroscopy and atmospheric monitoring to material science and biophysics. It provides broadband molecular spectra and information about the molecular structure and composition of absorptive media. However, the spectral resolution is fundamentally limited by the maximum delay range ({\\Delta}$_{max}$) of the interferometer, so acquisition of high-resolution spectra implies long measurement times and large instrument size. We overcome this limit by combining the Fourier transform spectrometer with an optical frequency comb and measuring the intensities of individual comb lines by precisely matching the {\\Delta}$_{max}$ to the comb line spacing. This allows measurements of absorption lines narrower than the nominal (optical path-limited) resolution without ringing effects from the instrumental lineshape and reduces the acquisition time and interferometer length by orders of magnitude.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The mismatch between echo and replica caused by underwater moving target(UMT)'s radial velocity degrades the detection performance of the matched filter(MF) for the linear frequency modulation(LFM) signal. By using the focusing property of fractional Fourier transform(FRFT) to that signal, a detection algorithm for UMT's LFM echo based on the discrete fractional Fourier transform(DFRFT) is proposed. This algorithm is less affected by the target's radial velocity compared with the other MF detection algorithm utilizing zero radial velocity replica(ZRVR), and the mathematical relation between the output peak positions of these two algorithms exists in the case of existence of target echo. The algorithm can also estimate the target distance by using this relation. The simulation and experiment show that this algorithm's detection performance is better than or equivalent to that of the other MF algorithm utilizing ZRVR for the LFM echo of UMT with unknown radial velocity under reverberation noise background.
Wu, Xuebin
2011-01-01
Long Reed-Solomon (RS) codes are desirable for digital communication and storage systems due to their improved error performance, but the high computational complexity of their decoders is a key obstacle to their adoption in practice. As discrete Fourier transforms (DFTs) can evaluate a polynomial at multiple points, efficient DFT algorithms are promising in reducing the computational complexities of syndrome based decoders for long RS codes. In this paper, we first propose partial composite cyclotomic Fourier transforms (CCFTs) and then devise syndrome based decoders for long RS codes over large finite fields based on partial CCFTs. The new decoders based on partial CCFTs achieve a significant saving of computational complexities for long RS codes. Since partial CCFTs have modular and regular structures, the new decoders are suitable for hardware implementations. To further verify and demonstrate the advantages of partial CCFTs, we implement in hardware the syndrome computation block for a $(2720, 2550)$ sho...
Sun, Zhiwei; Zhi, Ya'nan; Liu, Liren; Sun, Jianfeng; Zhou, Yu; Hou, Peipei
2013-09-01
The synthetic aperture imaging ladar (SAIL) systems typically generate large amounts of data difficult to compress with digital method. This paper presents an optical SAIL processor based on compensation of quadratic phase of echo in azimuth direction and two dimensional Fourier transform. The optical processor mainly consists of one phase-only liquid crystal spatial modulator(LCSLM) to load the phase data of target echo and one cylindrical lens to compensate the quadratic phase and one spherical lens to fulfill the task of two dimensional Fourier transform. We show the imaging processing result of practical target echo obtained by a synthetic aperture imaging ladar demonstrator. The optical processor is compact and lightweight and could provide inherent parallel and the speed-of-light computing capability, it has a promising application future especially in onboard and satellite borne SAIL systems.
Kaneko, Tak
2008-01-01
Context: Fourier transform (or lag) correlators in radio interferometers can serve as an efficient means of synthesising spectral channels. However aliasing corrupts the edge channels so they usually have to be excluded from the data set. In systems with around 10 channels, the loss in sensitivity can be significant. In addition, the low level of residual aliasing in the remaining channels may cause systematic errors. Moreover, delay errors have been widely reported in implementations of broadband analogue correlators and simulations have shown that delay errors exasperate the effects of aliasing. Aims: We describe a software-based approach that suppresses aliasing by oversampling the cross-correlation function. This method can be applied to interferometers with individually-tracking antennas equipped with a discrete path compensator system. It is based on the well-known property of interferometers where the drift scan response is the Fourier transform of the source's band-limited spectrum. Methods: In this p...
Suppression law of quantum states in a 3D photonic fast Fourier transform chip.
Crespi, Andrea; Osellame, Roberto; Ramponi, Roberta; Bentivegna, Marco; Flamini, Fulvio; Spagnolo, Nicolò; Viggianiello, Niko; Innocenti, Luca; Mataloni, Paolo; Sciarrino, Fabio
2016-01-01
The identification of phenomena able to pinpoint quantum interference is attracting large interest. Indeed, a generalization of the Hong-Ou-Mandel effect valid for any number of photons and optical modes would represent an important leap ahead both from a fundamental perspective and for practical applications, such as certification of photonic quantum devices, whose computational speedup is expected to depend critically on multi-particle interference. Quantum distinctive features have been predicted for many particles injected into multimode interferometers implementing the Fourier transform over the optical modes. Here we develop a scalable approach for the implementation of the fast Fourier transform algorithm using three-dimensional photonic integrated interferometers, fabricated via femtosecond laser writing technique. We observe the suppression law for a large number of output states with four- and eight-mode optical circuits: the experimental results demonstrate genuine quantum interference between the injected photons, thus offering a powerful tool for diagnostic of photonic platforms. PMID:26843135
Second order oscillations of a Vlasov-Poisson plasma in the Fourier transformed space
International Nuclear Information System (INIS)
The Vlasov-Poisson system of equations in the Fourier-transformed velocity space is studied. At first some results of the linear theory are reformulated: in the new representation the Van Kampen eigenmodes and their adjoint are found to be ordinary functions with convenient piece-wise continuity properties. A transparent derivation is given of the free-streaming temporal echo in terms of the kinematics of wave packets in the Fourier-transformed velocity space. This analysis is further extended to include Coulomb interactions which allows to establish a connection between the echo theory, the second order oscillations of Best and the phenomenon of linear sidebands. The calculation of the time evolution of the global second order electric field is performed in detail in the case of a Maxwellian equilibrium distribution function. It is concluded that the phenomenon of linear sidebands may be properly explained in terms of the intrinsic features of the equilibrium distribution function. (author) 5 figs., 32 refs
Information Transmission using the Nonlinear Fourier Transform, Part I: Mathematical Tools
Yousefi, Mansoor I
2012-01-01
The nonlinear Fourier transform (NFT), a powerful tool in soliton theory and exactly solvable models, is a method for solving integrable partial differential equations governing wave propagation in certain nonlinear media. The NFT decorrelates signal degrees-of-freedom in such models, in much the same way that the Fourier transform does for linear systems. In this paper, this observation is exploited for data transmission over integrable channels such as optical fibers, where pulse propagation is governed by the nonlinear Schr\\"odinger equation. In this transmission scheme, which can be viewed as a nonlinear analogue of orthogonal frequency division multiplexing commonly used in linear channels, information is encoded in the spectral amplitudes associated with nonlinear frequencies. Unlike most other fiber-optic transmission schemes, this technique deals with both dispersion and nonlinearity directly and unconditionally without the need for dispersion or nonlinearity compensation methods. This paper explains ...
Foliage Plant Retrieval using Polar Fourier Transform, Color Moments and Vein Features
Kadir, Abdul; Susanto, Adhi; Santosa, Paulus Insap
2011-01-01
This paper proposed a method that combines Polar Fourier Transform, color moments, and vein features to retrieve leaf images based on a leaf image. The method is very useful to help people in recognizing foliage plants. Foliage plants are plants that have various colors and unique patterns in the leaf. Therefore, the colors and its patterns are information that should be counted on in the processing of plant identification. To compare the performance of retrieving system to other result, the experiments used Flavia dataset, which is very popular in recognizing plants. The result shows that the method gave better performance than PNN, SVM, and Fourier Transform. The method was also tested using foliage plants with various colors. The accuracy was 90.80% for 50 kinds of plants.
The data processing pipeline for the Herschel SPIRE Fourier Transform Spectrometer
Fulton, T; Polehampton, E T; Valtchanov, I; Hopwood, R; Lu, N; Baluteau, J -P; Mainetti, G; Pearson, C; Papageorgiou, A; Guest, S; Zhang, L; Imhof, P; Swinyard, B M; Griffin, M J; Lim, T L
2016-01-01
We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SPIRE observations and produces calibrated spectra for all resolution modes. The spectrometer pipeline shares some elements with the SPIRE photometer pipeline, including the conversion of telemetry packets into data timelines and calculation of bolometer voltages. We present the following fundamental processing steps unique to the spectrometer: temporal and spatial interpolation of the scan mechanism and detector data to create interferograms; Fourier transformation; apodization; and creation of a data cube. We also describe the corrections for various instrumental effects including first- and second-level glitch identification and removal, correction of the effects due to emission from the Herschel telescope and from within the spectrometer instrument, interferogra...
Ion collision cross section measurements in Fourier transform-based mass analyzers.
Li, Dayu; Tang, Yang; Xu, Wei
2016-06-01
With the increasing demands of molecular structure analysis, several methods have been developed to measure ion collision cross sections within Fourier transform (FT) based mass analyzers. Particularly in the recent three years since 2012, the method of obtaining biomolecule collision cross sections was achieved in Fourier transform ion cyclotron resonance (FT-ICR) cells. Furthermore, similar methods have been realized or proposed for orbitraps and quadrupole ion traps. This technique adds a new ion structure analysis capability to FT-based mass analyzers. By providing complementary ion structure information, it could be used together with tandem mass spectrometry and ion mobility spectroscopy techniques. Although many questions and challenges remain, this technique potentially would greatly enhance the ion structure analysis capability of a mass spectrometer, and provide a new tool for chemists and biochemists. PMID:26788551
Sharpening the response of an FIR filter using Fractional Fourier Transform
Directory of Open Access Journals (Sweden)
Somesh Chaturvedi
2012-03-01
Full Text Available In this paper we have implemented FIR filter with the help of Kaiser Window and Fractional Fourier Transform (FRFT. The window shape parameter is tuned for the transition band by considering linear phase FRFT Finite Impulse Response (FIR filter. Here FRFT of Kaiser Window is taken and convolved with the response function for tuning purposes of the transition band which makes effective transition band. This proposed method includes the change of parameters of Kaiser window by which other windows like Rectangle, Bartlett, Hamming Blackman and Hanning windows are generated by using FRFT. The efficiencies of this method in terms of main lobe and side ripples are better than the above mentioned windows under Fourier transform.
International Nuclear Information System (INIS)
Advances in diffraction and transmission electron microscopy (TEM) have greatly improved the prospect of three-dimensional (3D) structure reconstruction from two-dimensional (2D) images or diffraction patterns recorded in a tilt series at atomic resolution. Here, we report a new graphics processing unit (GPU) accelerated iterative transformation algorithm (ITA) based on polar fast Fourier transform for reconstructing 3D structure from 2D diffraction patterns. The algorithm also applies to image tilt series by calculating diffraction patterns from the recorded images using the projection-slice theorem. A gold icosahedral nanoparticle of 309 atoms is used as the model to test the feasibility, performance and robustness of the developed algorithm using simulations. Atomic resolution in 3D is achieved for the 309 atoms Au nanoparticle using 75 diffraction patterns covering 150° rotation. The capability demonstrated here provides an opportunity to uncover the 3D structure of small objects of nanometers in size by electron diffraction. - Highlights: • Three-dimensional atomic structural reconstruction demonstrated using simulated diffraction data in a tilt series. • Using diffraction patterns allows alignment free tomography reconstruction. • This method can be applied to general image based tomography by using the power spectra of the images as input. • Reconstruction is based on an iterative transformation algorithm (ITA) using polar fast Fourier transform. • The ITA algorithm is accelerated using graphics processing unit (GPU) for competitive high performance
Fourier Transform Infrared (FTIR) Spektroskopinin Gıda Analizlerine Uygulanması (İngilizce)
Erkahveci, Ayşe; Karaali, Artemis
1996-01-01
The rapid analysis of food products is crucial in food industry for adjustment of manufacturing processes while production is underway. Recent research has led to development of rapid quality-control methodologies for the food industry through the application of Fourier Transform Infrared (FTIR) spectroscopy and FTIR technology has offered substantial potential as a quantitative quality control tool for the food industry. FTIR analysis methods are convenient, rapid and automatable, and in con...
The Fourier Transform and FTIR System as a Technique in Semiconductor Research
International Nuclear Information System (INIS)
In this paper a simple treatment of Fourier transform in FTIR with an introductory picture of its use in Semiconductor Research is described. A brief account of research foucssing on optical characterization of silicon (Si) wafers is outlined. The smeasurement of residual oxygen (O2) concentration is an important indicator in determining the overall quality of the finished Si wafers. The O2 concentration is determined directly from an infrared absorption band occurring at 1106 cm-1 in the Si Lattice
Non-uniform sampled scalar diffraction calculation using non-uniform fast Fourier transform
Shimobaba, Tomoyoshi; Kakue, Takashi; Oikawa, Minoru; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Ito, Tomoyoshi
2013-01-01
Scalar diffraction calculations such as the angular spectrum method (ASM) and Fresnel diffraction, are widely used in the research fields of optics, X-rays, electron beams, and ultrasonics. It is possible to accelerate the calculation using fast Fourier transform (FFT); unfortunately, acceleration of the calculation of non-uniform sampled planes is limited due to the property of the FFT that imposes uniform sampling. In addition, it gives rise to wasteful sampling data if we calculate a plane...
Improved Method of Generating Bit Reserved Numbers for Calculating Fast Fourier Transform
Directory of Open Access Journals (Sweden)
T. Suresh
1996-10-01
Full Text Available Fast Fourier Transform (FFT is an important tool required for signal processing in defence applications. This paper reports an improved method for generating bit reversed numbers needed in calculating FFT using radix-2. The refined algorithm takes advantage of some features of the bit reversed numbers, using intermediate array for storage and improved procedure for calculating base values required when generating bit reversed numbers.
Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform
Brown, R. D.
1992-01-01
Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.
Exhibition of the periodicity of Quantum Fourier Transformation in Nuclear Magnetic Resonance
Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Yang, Xiaodong; Liu, Maili; Gao, Kelin
2002-01-01
The remarkable capability of quantum Fourier transformation (QFT) to extract the periodicity of a given periodic function has been exhibited by using nuclear magnetic resonance (NMR) techniques. Two separate sets of experiments were performed. In a full QFT, the periodicity were validated with state tomography and fidelity measurements. For a simplified QFT, the three-qubit pseudo-pure state was created by introducting an additional observer spin, and the spectra recorded on the observer spin...
Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong
2015-01-01
We perform Bell's measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell's inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; FAN Yue
2003-01-01
By introducing a convenient complex form of the α-th 2-dimensional fractional Fourier transform (CFFT) operation we find that it possesses new eigenmodes which are two-mode Hermite polynomials. We prove the eigenvalues of propagation in quadratic graded-index medium over a definite distance are the same as the eigenvalues of the α-th CFFT, which means that our definition of the α-th CFFT is physically meaningful.
Kumar, Manoj; Shakher, Chandra
2016-04-01
In this paper, moisture induced deformation and shrinkage behaviour of deodar wood during convective drying is experimentally investigated by using digital holographic interferometry. There induces dimensional changes in wood due to the moisture absorption and desorption. Lensless Fourier transform digital holographic interferometry (LLFTDH) is used to study the moisture induced deformation and strain distribution in deodar wood. The proposed technique having high sensitivity and enables the observation of deformation and strain distribution during the variations of moisture content in the deodar wood.
Fourier transform infrared spectroscopy as a method of investigation of semiconductor plasma etching
Galassi, Chiara
2005-01-01
Plasma etching is a complicated process in the way it involves many ion and neutral species that, depending on plasma conditions, give rise to difficulties in controlling the etch mechanism both from a sputtering and a deposition perspective. To investigate and understand the dynamics of interactions at the interface between the plasma and the solid, surface characterization techniques are necessary: here we investigate the suitability of FTIR (Fourier Transform Infrared Spectroscopy) as ...
Pia Sala; Sandra Pötz; Martina Brunner; Martin Trötzmüller; Alexander Fauland; Alexander Triebl; Jürgen Hartler; Ernst Lankmayr; Köfeler, Harald C
2015-01-01
A novel liquid chromatography-mass spectrometry (LC-MS) approach for analysis of oxidized phosphatidylcholines by an Orbitrap Fourier Transform mass spectrometer in positive electrospray ionization (ESI) coupled to hydrophilic interaction liquid chromatography (HILIC) was developed. This method depends on three selectivity criteria for separation and identification: retention time, exact mass at a resolution of 100,000 and collision induced dissociation (CID) fragment spectra in a linear ion ...
Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer
Xiaojun Tang; Yuntao Liang; Haozhe Dong; Yong Sun; Haizhu Luo
2014-01-01
Analysis of the index gases of coal for the prevention of spontaneous combustion is of great importance for the enhancement of coal mine safety. In this work, Fourier Transform Infrared Spectrometer (FTIRS) is presented to be used to analyze the index gases of coal in real time to monitor spontaneous combustion conditions. Both the instrument parameters and the analysis method are introduced at first by combining characteristics of the absorption spectra of the target analyte with the analysi...
Computing Greeks for L\\'evy Models: The Fourier Transform Approach
Federico De Olivera; Ernesto Mordecki
2014-01-01
The computation of Greeks for exponential L\\'evy models are usually approached by Malliavin Calculus and other methods, as the Likelihood Ratio and the finite difference method. In this paper we obtain exact formulas for Greeks of European options based on the Lewis formula for the option value. Therefore, it is possible to obtain accurate approximations using Fast Fourier Transform. We will present an exhaustive development of Greeks for Call options. The error is shown for all Greeks in the...
Büchl, Nicole Ramona
2009-01-01
Im Rahmen der vorliegenden Arbeit wurden drei Systeme zur Identifizierung von Hefen basierend auf der Anwendung von Fourier-transform Infrarotspektroskopie und künstlichen neuronalen Netzen etabliert. Die zur Entwicklung verwendeten Referenzstämme wurden mittels verschiedener molekularbiologischer Methoden zur Identifizierung auf Art- und Stammebene überprüft. So konnten zuverlässige Methoden zur eindeutigen Identifizierung der im Lebens-, Futtermittel- und klinischen Bereich vorkommenden Hef...
An Imaging Fourier Transform Spectrometer for the Next Generation Space Telescope
Graham, J R
1999-01-01
Due to its simultaneous deep imaging and integral field spectroscopic capability, an Imaging Fourier Transform Spectrograph (IFTS) is ideally suited to the Next Generation Space Telescope (NGST) mission, and offers opportunities for tremendous scientific return in many fields of astrophysical inquiry. We describe the operation and quantify the advantages of an IFTS for space applications. The conceptual design of the Integral Field Infrared Spectrograph (IFIRS) is a wide field (5'.3 x 5'.3) four-port imaging Michelson interferometer.
Indian Academy of Sciences (India)
Amit K Sharma; D P Chhachhia; D Mohan; A K Aggarwal
2008-01-01
This paper describes a simple method for making dual beam encoded extended fractional Fourier transform (EFRT) security holograms. The hologram possesses different stages of encoding so that security features are concealed and remain invisible to the counterfeiter. These concealed and encoded anticounterfeit security features in the security hologram can only be read through a key hologram. Key hologram also facilitates in-built repositioning of security hologram. The method of fabrication, the principle of reconstruction and the experimental results are presented.
Phase-space distributions in quasi-polar coordinates and the fractional Fourier transform.
Alieva, T; Bastiaans, M J
2000-12-01
The ambiguity function and Cohen's class of bilinear phase-space distributions are represented in a quasipolar coordinate system instead of in a Cartesian system. Relationships between these distributions and the fractional Fourier transform are derived; in particular, derivatives of the ambiguity function are related to moments of the fractional power spectra. A simplification is achieved for the description of underspread signals, for optical beam characterization, and for the generation of signal-adaptive phase-space distributions. PMID:11140493
Automotive FMCW Radar-enhanced Range Estimation via a Local Resampling Fourier Transform
Cailing Wang; Huajun Liu; Guang Han; Xiaoyuan Jing
2016-01-01
In complex traffic scenarios, more accurate measurement and discrimination for an automotive frequency-modulated continuous-wave (FMCW) radar is required for intelligent robots, driverless cars and driver-assistant systems. A more accurate range estimation method based on a local resampling Fourier transform (LRFT) for a FMCW radar is developed in this paper. Radar signal correlation in the phase space sees a higher signal-noise-ratio (SNR) to achieve more accurate ranging, and the LRFT - whi...
Fresnel diffraction in a theoretical eye: a fractional Fourier transform approach
Pons Moreno, Álvaro Máximo; Lorente Velázquez, Amalia; Illueca Contri, Carlos; Mas Candela, David; Artigas Verde, José María
1998-01-01
In this work, we have applied the fractional Fourier transform to obtain the Fresnel diffraction patterns in a theoretical eye. The FRT approach to Fresnel diffraction is easily implemented in a Gullstrand-Emsley theoretical eye, and it allows us to obtain the retinal image and then to derive the modulation transfer function of the eye, which can be used in the determination of optical performance of the eye.
Erukhimovitch, V.; M. Huleihil; Huleihel, M.
2013-01-01
Fourier transform infrared microspectroscopy (FTIR-M) can detect small molecular changes in cells and therefore was previously applied for the identification of different biological samples. In the present study, FTIR spectroscopy was used for the identification and discrimination of Vero cells infected with herpes viruses or contaminated with bacteria or fungi in cell culture. Vero cells in culture were infected herpes simplex virus type 1 (HSV-1) or contaminated with E. coli bacteria or Can...
International Nuclear Information System (INIS)
The subject of this thesis is gas phase ion/molecule reactions as studied by Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry (chapter 2 contains a short description of this method). Three chapters are mainly concerned with mechanistic aspects of gas phase ion/molecule reactions. An equally important aspect of the thesis is the stability and reactivity of α-thio carbanions, dipole stabilized carbanions and homoenolate anions, dealt with in the other four chapters. (Auth.)
Wu, Xuebin; Yan, Zhiyuan
2011-01-01
Long Reed-Solomon (RS) codes are desirable for digital communication and storage systems due to their improved error performance, but the high computational complexity of their decoders is a key obstacle to their adoption in practice. As discrete Fourier transforms (DFTs) can evaluate a polynomial at multiple points, efficient DFT algorithms are promising in reducing the computational complexities of syndrome based decoders for long RS codes. In this paper, we first propose partial composite ...
Approaches towards Implementation of Multi-bit Digital Receiver using Fast Fourier Transform
Abhijit S. Kulkarni; Vijesh P.; Hemant V. Paranjape; K. Maheswara Reddy
2013-01-01
This paper compares different digital receiver signal processing schemes as applied to current ESM/RWR systems. The schemes include fast fourier transform (FFT)-based, FIR filter-based and mixed architectures. Use of polyphase FFT and IIR filters is also discussed. The specifications and signal processing requirements of a modern digital electronic warfare (EW) receiver are discussed. The design procedures and architectures for all the schemes are brought out. The tradeoffs involved in select...
Almeida Assis, A.C.; Barbosa, M F; Valente Nabais, J.M.; Custódio, A.F.; Tropecelo, P.
2012-01-01
This paper describes the use of a diamond cell Fourier transform infrared (FTIR) spectroscopy methodology for the analysis of black toners commercialised in Portugal. A total of one hundred and thirty-eight samples from eighteen manufacturers were analysed in transmittance mode through a diamond cell. This methodology was considered to be non-destructive as it allows the forensic analysis of the questioned documents while preserving their integrity. The questioned documents’ subst...
X-ray coherent diffraction interpreted through the fractional Fourier transform
Energy Technology Data Exchange (ETDEWEB)
Le Bolloc' h, D., E-mail: lebolloch@lps.u-psud.fr [Laboratoire de Physique des Solides (CNRS-UMR 8502), Bat. 510, Universite Paris-sud, 91405 Orsay Cedex (France); Pinsolle, E.; Sadoc, J.F. [Laboratoire de Physique des Solides (CNRS-UMR 8502), Bat. 510, Universite Paris-sud, 91405 Orsay Cedex (France)
2012-06-01
We propose to use the fractional Fourier transform to deal with diffraction of coherent X-ray beams from the Fresnel to the Fraunhofer regime. We will illustrate the benefits of the approach compared to the Fresnel wave propagation theory from situations commonly encountered in diffraction experiments: the successive diffraction of two objects and coherent diffraction of a periodic modulation as a charge density wave, containing or not a phase shift.
Fresnel diffraction effects in Fourier-transform arrayed waveguide grating spectrometer
Rodrigo Martín-Romo, José Augusto; Cheben, Pavel; Alieva, Tatiana Krasheninnikova; Calvo Padilla, María Luisa; Scott, Alan; Solheim, Brian; Xu, Dan-Xia; Delâge, André
2007-01-01
We present an analysis of Fourier-transform arrayed waveguide gratings in the Fresnel diffraction regime. We report a distinct spatial modulation of the interference pattern referred to as the Moire-Talbot effect. The effect and its influence in a FT AWG device is explained by deriving an original analytical expression for the modulated field, and is also confirmed by numerical simulations using the angular spectrum method to solve the Fresnel diffraction integral. We illustrate the retrieval...
X-ray coherent diffraction interpreted through the fractional Fourier transform
International Nuclear Information System (INIS)
We propose to use the fractional Fourier transform to deal with diffraction of coherent X-ray beams from the Fresnel to the Fraunhofer regime. We will illustrate the benefits of the approach compared to the Fresnel wave propagation theory from situations commonly encountered in diffraction experiments: the successive diffraction of two objects and coherent diffraction of a periodic modulation as a charge density wave, containing or not a phase shift.
Hanna, Magdy Tawfik; Shaarawi, Amr Mohamed; Seif, Nabila Philip Attalla; Ahmed, Waleed Abd El Maguid
2011-08-01
A technique is proposed for computing the field radiated from a rectangular aperture. This technique, based on the discrete fractional Fourier transform, avoids the complexities of computing the diffraction pattern by the direct evaluation of the Fresnel integral. The advocated approach provides a fast and accurate computational tool, especially in the case of evaluating pulsed fields radiated through two-dimensional screens of complex amplitude. A detailed numerical study that demonstrates the efficacy of this approach is carried out. PMID:21811323
Fourier Transform Analysis of STM Images of Multilayer Graphene Moir\\'e Patterns
Joucken, Frédéric; Frising, Fernande; Sporken, Robert
2014-01-01
With the help of a simple model, we analyze Scanning Tunneling Microscopy images of simple and double moir\\'e patterns resulting from misoriented bi- and tri-layers graphene stacks. It is found that the model reproduces surprisingly well non-trivial features observed in the Fast Fourier Transform of the images. We point out difficulties due to those features in interpreting the patterns seen on the FFT.
Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.
1997-06-01
The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.
Fuzzy Logic Classification of Imaging Laser Desorption Fourier Transform Mass Spectrometry Data
McJunkin, Timothy R.; Scott, Jill R.
2006-01-01
A fuzzy logic based classification engine has been developed for classifying mass spectra obtained with an imaging internal source Fourier transform mass spectrometer (I^2LD-FTMS). Traditionally, an operator uses the relative abundance of ions with specific mass-to-charge (m/z) ratios to categorize spectra. An operator does this by comparing the spectrum of m/z versus abundance of an unknown sample against a library of spectra from known samples. Automated positioning and acquisition allow I^...
Directory of Open Access Journals (Sweden)
Eduardo O. Cerqueira
2000-10-01
Full Text Available Instrumental data always present some noise. The analytical data information and instrumental noise generally has different frequencies. Thus is possible to remove the noise using a digital filter based on Fourier transform and inverse Fourier transform. This procedure enhance the signal/noise ratio and consecutively increase the detection limits on instrumental analysis. The basic principle of Fourier transform filter with modifications implemented to improve its performance is presented. A numerical example, as well as a real voltammetric example are showed to demonstrate the Fourier transform filter implementation. The programs to perform the Fourier transform filter, in Matlab and Visual Basic languages, are included as appendices
A compact Fourier transform imaging spectrometer employing a variable gap Fabry-Perot interferometer
Lucey, Paul G.; Akagi, Jason; Bingham, Adam L.; Hinrichs, John L.; Knobbe, Edward T.
2014-05-01
Fourier transform spectroscopy is a widely employed method for obtaining visible and infrared spectral imagery, with applications ranging from the desktop to remote sensing. Most fielded Fourier transform spectrometers (FTS) employ the Michelson interferometer and measure the spectrum encoded in a time-varying signal imposed by the source spectrum interaction with the interferometer. A second, less widely used form of FTS is the spatial FTS, where the spectrum is encoded in a pattern sampled by a detector array. Recently we described using a Fabry-Perot interferometer, with a deliberately wedged gap geometry and engineered surface reflectivities, to produce an imaging spatial FTS. The Fabry-Perot interferometer can be much lighter and more compact than a conventional interferometer configuration, thereby making them suitable for portable and handheld applications. This approach is suitable for use over many spectral regimes of interest, including visible and infrared regions. Primary efforts to date have focused on development and demonstration of long wave infrared (LWIR) spectral imagers. The LWIR version of the miniaturized Fabry-Perot has been shown to be effective for various applications including spectral imaging-based chemical detection. The compact LWIR spectral imager employs uncooled optics and a microbolometer camera; a handheld version is envisioned for future development. Recent advancements associated with the spatial Fourier Transform imaging spectrometer system are described.
Operator-Schmidt decomposition of the quantum Fourier transform on CN1 x CN2
International Nuclear Information System (INIS)
Operator-Schmidt decompositions of the quantum Fourier transform on CN1 x CN2 are computed for all N1, N2 ≥ 2. The decomposition is shown to be completely degenerate when N1 is a factor of N2 and when N1 > N2. The first known special case, N1 = N2 = 2n, was computed by Nielsen in his study of the communication cost of computing the quantum Fourier transform of a collection of qubits equally distributed between two parties (M A Nielsen 1998 PhD Thesis University of New Mexico ch 6 Preprint quant-ph/0011036). More generally, the special case N1 = 2n1 ≤ 2n2 = N2 was computed by Nielsen et al in their study of strength measures of quantum operations (M A Nielsen et al 2002 Preprint quant-ph/0208077 (2003 Phys. Rev. A at press)). Given the Schmidt decompositions presented here, it follows that in all cases the bipartite communication cost of exact computation of the quantum Fourier transform is maximal
Fourier transform method for sensitivity analysis in coal fired power plant
International Nuclear Information System (INIS)
This work proposes a Fourier transform method to determine the sensitivities associated with a real coal power plant using a Rankine cycle. Power demand determines the plant revenue and is supposed to be the most important parameter to be accurately measured, and this hypothesis is at the center of this study. The results confirm that under full design load, variables such as steam pressure, temperature and mass flow rate are closely dependent on power demand, though overall thermal efficiency is more sensitive to boiler efficiency. Partial load simulation shows that the overall thermal efficiency remains strongly dependent on the boiler parameters, but other operational variables such as steam temperature at the turbine outlet changes its sensitivity according to the load. The results from the Fourier transform method are in good agreement with those determined by classical differential and Monte Carlo methods. However, the Fourier transform method requires only a single run, providing major savings in computational time as compared to the Monte Carlo method, a major advantage for analysis of power systems whether operating under full or partial load
Infrared small target enhancement via phase spectrum of Quaternion Fourier Transform
Qi, Shengxiang; Ma, Jie; Li, Hang; Zhang, Shuiping; Tian, Jinwen
2014-01-01
Small target enhancement is one of the crucial stages in infrared small target detection. In this paper, we propose a new method using phase spectrum of Quaternion Fourier Transform to enhance small targets while suppressing backgrounds for infrared images. This is inspired by the property that regularly Gaussian-like shape small targets could be considered as attractively salient signal in infrared images and the location information of such signal is implicitly contained in the phase spectrum from frequency domain. Formally, in the proposed method, we adopt the phase spectrum of Quaternion Fourier Transform instead of using traditional Fourier Transform to enhance the targets since the quaternion provides at most four data channels than only one for the latter, which could be helpful to broad types of background clutters by adding more information. For the construction of the quaternion, we present a second-order directional derivative filter via facet model to compute four second order directional derivative maps from four directions respectively as the four data channels. This filter is used to suppress noises and distinguish the targets and backgrounds into separably different textures so that it would boost the robustness of small target enhancement. In experiments, some typical infrared images with various scenes are tested to validate the effectiveness of the proposed method. The results demonstrate that our method actually has good performance and outperforms several state-of-the-art methods, which can be further used for infrared small target detection and tracking.
Color pattern recognition based on the joint fractional Fourier transform correlator
Institute of Scientific and Technical Information of China (English)
Weimin Jin; Yupei Zhang
2007-01-01
A new system of multi-channel single-output joint fractional Fourier transform correlator (JFRTC) for color pattern recognition is proposed based on the conventional system of multi-channel single-output joint transform correlator (JTC). The theoretical analysis and optical experiments are performed. With this method, one can obtain three correlation peaks at the output plane which show a pair of desired cross-correlation peaks and one auto-correlation peak. In comparison, the conventional system leads to more correlation peaks playing a noise role in color pattern recognition.
Drifting Sub-Pulse Analysis Using the Two-Dimensional Fourier Transform
Edwards, R,A; Stappers, B. W.
2002-01-01
The basic form of drifting sub-pulses is that of a periodicity whose phase depends (approximately linearly) on both pulse longitude and pulse number. As such, we argue that the two-dimensional Fourier transform of the longitude-time data (called the Two-Dimensional Fluctuation Spectrum; 2DFS) presents an ideal basis for studies of this phenomenon. We examine the 2DFS of a pulsar signal synthesized using the parameters of an empirical model for sub-pulse behaviour. We show that the transform c...
Efficient 2-D Grayscale Morphological Transformations With Arbitrary Flat Structuring Elements
Urbach, Erik R.; Wilkinson, Michael H.F.
2008-01-01
An efficient algorithm is presented for the computation of grayscale morphological operations with arbitrary 2-D flat structuring elements (S.E.). The required computing time is independent of the image content and of the number of gray levels used. It always outperforms the only existing comparable
Directory of Open Access Journals (Sweden)
Siesler H. W.
2006-11-01
Full Text Available The recent extension of the Fourier-Transform (FT technique to the Raman effect has launched Raman spectroscopy into a new era of polymer chemical and physical applications. Thus, the increase in signal-to-noise ratio and the improvement in time resolution have largely enhanced the potential of FT-Raman spectroscopy for analytical applications, the characterization of time-dependent phenomena and the on-line combination with other techniques. Primarily the suppression of fluorescence by shifting the excitation line to the near-infrared (NIR region has contributed to the fast acceptance as an industrial routine tool. Furthermore, the application of fiber optics has opened up the areas of process-control and remote sensing. Les applications de la spectroscopie Raman dans le domaine des polymères sont entrées dans une ère nouvelle, grâce aux récents développements de la technique à transformée de Fourier avec excitation dans le proche infrarouge. L'augmentation du rapport signal sur bruit et l'amélioration de la résolution temporelle ont fortement renforcé les potentialités de la technique en ce qui concerne les applications analytiques, la caractérisation de phénomènes qui dépendent du temps et le couplage en ligne avec d'autres techniques. La suppression du phénomène de fluorescence par déplacement de la longueur d'onde de l'excitatrice dans le proche infrarouge a contribué à l'intégration rapide de l'outil en site industriel. L'emploi de fibres optiques a permis l'accroissement des applications dans le domaine du contrôle des procédés et d'analyser à distance.
Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin
2008-07-01
Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.
Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao
2010-06-01
Ginseng is one of the most widely used herbal medicines which have many kinds of pharmaceutical values. The discrimination of grades of ginseng includes the cultivation types and the growth years herein. To evaluate the different grades of ginseng, the fibrous roots and rhizome roots of ginseng were analyzed by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy in this paper. The fibrous root and rhizome root of ginseng have different content of starch, calcium oxalate and other components. For the fibrous roots of ginseng, mountain cultivation ginseng (MCG), garden cultivation ginseng (GCG) and transplanted cultivation ginseng (TCG) have clear difference in the infrared spectra and second derivative spectra in the range of 1800-400 cm -1, and clearer difference was observed in the range of 1045-1160 and 1410-1730 cm -1 in 2D synchronous correlation spectra. Three kinds of ginseng can be clustered very well by using SIMCA analysis on the basis of PCA as well. For the rhizome roots, the content of calcium oxalate and starch change with growth years in the IR spectra, and some useful procedure can be obtained by the analysis of 2D IR synchronous spectra in the range of 1050-1415 cm -1. Also, ginsengs cultivated in different growth years were clustered perfectly by using SIMCA analysis. The results suggested that different grades of ginseng can be well recognized using the mid-infrared spectroscopy assisted by 2D IR correlation spectroscopy, which provide the macro-fingerprint characteristics of ginseng in different parts and supplied a rapid, effective approach for the evaluation of the quality of ginseng.
Directory of Open Access Journals (Sweden)
Chiu Shen
2005-01-01
Full Text Available A relatively unknown yet powerful technique, the so-called fractional Fourier transform (FrFT, is applied to SAR along-track interferometry (SAR-ATI in order to estimate moving target parameters. By mapping a target's signal onto a fractional Fourier axis, the FrFT permits a constant-velocity target to be focused in the fractional Fourier domain thereby affording orders of magnitude improvement in SCR. Moving target velocity and position parameters are derived and expressed in terms of an optimum fractional angle and a measured fractional Fourier position , allowing a target to be accurately repositioned and its velocity components computed without actually forming an SAR image. The new estimation algorithm is compared with the matched filter bank approach, showing some of the advantages of the FrFT method. The proposed technique is applied to the data acquired by the two-aperture CV580 airborne radar system configured in its along-track mode. Results show that the method is effective in estimating target velocity and position parameters.
Implementation of the 2-D Wavelet Transform into FPGA for Image
Energy Technology Data Exchange (ETDEWEB)
Leon, M; Barba, L; Vargas, L; Torres, C O, E-mail: madeleineleon@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)
2011-01-01
This paper presents a hardware system implementation of the of discrete wavelet transform algorithm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.
Digital watermarking algorithm research of color images based on quaternion Fourier transform
An, Mali; Wang, Weijiang; Zhao, Zhen
2013-10-01
A watermarking algorithm of color images based on the quaternion Fourier Transform (QFFT) and improved quantization index algorithm (QIM) is proposed in this paper. The original image is transformed by QFFT, the watermark image is processed by compression and quantization coding, and then the processed watermark image is embedded into the components of the transformed original image. It achieves embedding and blind extraction of the watermark image. The experimental results show that the watermarking algorithm based on the improved QIM algorithm with distortion compensation achieves a good tradeoff between invisibility and robustness, and better robustness for the attacks of Gaussian noises, salt and pepper noises, JPEG compression, cropping, filtering and image enhancement than the traditional QIM algorithm.
Asymmetric multiple-image encryption based on the cascaded fractional Fourier transform
Li, Yanbin; Zhang, Feng; Li, Yuanchao; Tao, Ran
2015-09-01
A multiple-image cryptosystem is proposed based on the cascaded fractional Fourier transform. During an encryption procedure, each of the original images is directly separated into two phase masks. A portion of the masks is subsequently modulated into an interim mask, which is encrypted into the ciphertext image; the others are used as the encryption keys. Using phase truncation in the fractional Fourier domain, one can use an asymmetric cryptosystem to produce a real-valued noise-like ciphertext, while a legal user can reconstruct all of the original images using a different group of phase masks. The encryption key is an indivisible part of the corresponding original image and is still useful during decryption. The proposed system has high resistance to various potential attacks, including the chosen-plaintext attack. Numerical simulations also demonstrate the security and feasibility of the proposed scheme.
Clifford Fourier-Mellin transform with two real square roots of -1 in Cl(p,q), p+q=2
Hitzer, Eckhard
2013-01-01
We describe a non-commutative generalization of the complex Fourier-Mellin transform to Clifford algebra valued signal functions over the domain $\\R^{p,q}$ taking values in Cl(p,q), p+q=2. Keywords: algebra, Fourier transforms; Logic, set theory, and algebra, Fourier analysis, Integral transforms
2D Satellite Image Registration Using Transform Based and Correlation Based Methods
Directory of Open Access Journals (Sweden)
Dr. H.B. Kekre, Dr. Tanuja K. Sarode, Ms. Ruhina B. Karani
2012-05-01
Full Text Available Image registration is the process of geometrically aligning one image to another image of the same scene taken from different viewpoints or by different sensors. It is a fundamental image processing technique and is very useful in integrating information from different sensors, finding changes in images taken at different times and inferring three-dimensional information from stereo images. Image registration can be done by using two matching method: transform based methods and correlation based methods. When image registration is done using correlation based methods like normalized cross correlation, the results are slow. They are also computationally complex and sensitive to the image intensity changes which are caused by noise and varying illumination. In this paper, an unusual form of image registration is proposed which focuses upon using various transforms for fast and accurate image registration. The data set can be a set of photographs, data from various sensors, from different times, or from different viewpoints. The applications of image registration are in the field of computer vision, medical imaging, military automatic target recognition, and in analyzing images and data from satellites. The proposed technique works on satellite images. It tries to find out area of interest by comparing the unregistered image with source image and finding the part that has highest similarity matching. The paper mainly works on the concept of seeking water or land in the stored image. The proposed technique uses different transforms like Discrete Cosine Transform, Discrete Wavelet Transform, HAAR Transform and Walsh transform to achieve accurate image registration. The paper also focuses upon using normalized cross correlation as an area based technique of image registration for the purpose of comparison. The root mean square error is used as similarity measure. Experimental results show that the proposed algorithm can successfully register the
Digital Repository Service at National Institute of Oceanography (India)
DeSouza, L.; PrabhaDevi; DivyaShridhar, M.P.; Naik, C.G.
The aim of this study is to adopt the approach of metabolic fingerprinting through the use of Fourier Transform Infrared (FTIR) technique to understand changes in the chemical structure in Padina tetrastromatica (Hauck). The marine brown alga under...
Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K
2016-08-01
In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption. PMID:27505799
The Green's function for the three-dimensional linear Boltzmann equation via Fourier transform
International Nuclear Information System (INIS)
The linear Boltzmann equation with constant coefficients in the three-dimensional infinite space is revisited. It is known that the Green's function can be calculated via the Fourier transform in the case of isotropic scattering. In this paper, we show that the three-dimensional Green's function can be computed with the Fourier transform even in the case of arbitrary anisotropic scattering. (paper)
Fedorenko, Sergei V
2011-01-01
A novel method for computation of the discrete Fourier transform over a finite field with reduced multiplicative complexity is described. If the number of multiplications is to be minimized, then the novel method for the finite field of even extension degree is the best known method of the discrete Fourier transform computation. A constructive method of constructing for a cyclic convolution over a finite field is introduced.
A hybrid algorithm for the rapid Fourier transform of extensive series of data
Directory of Open Access Journals (Sweden)
A. S Franco
1971-12-01
Full Text Available A technique is described for the rapid Fourier transform of large series of numbers. The technique takes advantage of the fact that most digital series are highly factorizable by the number 2, which permits the use of the F.F.T. algorithm. Using two magnetic tape units, or alternatively magnetic disk facilities, very large series can be transformed efficiently with only modest computer facilities. For the transformation of odd-valued series the Thomas Prime-Factor and Gentleman and Sande algorithms are treated in detail.Apresenta-se neste trabalho uma técnica de transformação rápida de Fourier aplicada a uma longa série de valores numéricos. A técnica tira partido do fato de que a grande maioria das séries digitalizadas é, em geral, suscetível de fatoração onde aparece frequentemente o fator 2, o que permite o emprego do algorítmo da transformação rápida de Fourier (F.F.T.. Com o emprego de duas fitas magnéticas ou discos, pode ser efetuada eficientemente a transformação de longas séries em computadores de modesta memória. O algorítmo de fatores primos de Thomas e o de Gentleman e Sande são, respectivamente, tratados em detalhe, na transformação de séries com numero ímpar de valores.
Boucherit, S.; Bouamama, L.; Zegadi, R.; Simöens, S.
2008-09-01
The follow-up of particles of the tracer type in the fluids constitutes a field of study rather significant and at the same time rather complex owing to the fact that the number of parameters studied and at the same time significant and concerning the random one. The use of holography as a technique of imagery for the follow-up of these particles was applied by various laboratories for a long time. With the appearance of digital holography, the application of this technique became more than of topicality owing to the fact that it became possible to record in real time a succession of holograms using a camera CCD rapid, that it will be possible to put in perspective there after in a numerical way and to try to extract information related to the movements described by these particles which will be automatically those of the studied fluids. The numerical reconstruction of digital holograms being based on the laws of light propagation such as, the Fresnel integral and the traditional Fourier transform. The fractional Fourier Transform (FrFT) is defined as being a generalization of the traditional Fourier transform. It was proposed by Namias and was reintroduced in the optical systems by Lohmann, Mendlovic and Ozaktas. Pellat-Finet studied the relationship between (FrFT) and the Fresnel diffraction, therefore this operator also allows rebuilding the holograms. In this study we use the (FrFT) to reconstruct in line holograms of small particles plunged in a fluid. Three-dimensional information on the particles can be extracted by sweeping the fractional order.
Indian Academy of Sciences (India)
Shishir B Sahay; T Meghasyam; Rahul K Roy; Gaurav Pooniwala; Sasank Chilamkurthy; Vikram Gadre
2015-06-01
This paper is targeted towards a general readership in signal processing. It intends to provide a brief tutorial exposure to the Fractional Fourier Transform, followed by a report on experiments performed by the authors on a Generalized Time Frequency Transform (GTFT) proposed by them in an earlier paper. The paper also discusses the extension of the uncertainty principle to the GTFT. This paper discusses some analytical results of the GTFT. We identify the eigenfunctions and eigenvalues of the GTFT. The time shift property of the GTFT is discussed. The paper describes methods for estimation of parameters of individual chirp signals on receipt of a noisy mixture of chirps. A priori knowledge of the nature of chirp signals in the mixture – linear or quadratic is required, as the two proposed methods fall in the category of model-dependent methods for chirp parameter estimation.
Galizzi, Gustavo E.; Cuadrado-Laborde, Christian
2015-10-01
In this work we study the joint transform correlator setup, finding two analytical expressions for the extensions of the joint power spectrum and its inverse Fourier transform. We found that an optimum efficiency is reached, when the bandwidth of the key code is equal to the sum of the bandwidths of the image plus the random phase mask (RPM). The quality of the decryption is also affected by the ratio between the bandwidths of the RPM and the input image, being better as this ratio increases. In addition, the effect on the decrypted image when the detection area is lower than the encrypted signal extension was analyzed. We illustrate these results through several numerical examples.
Yuntao Liang; Xiaojun Tang; Xuliang Zhang; Fuchao Tian; Yong Sun; Haozhe Dong
2015-01-01
Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR) spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitte...
Strehl ratio as the Fourier transform of a probability density of error differences.
Alonso, Miguel A; Forbes, G W
2016-08-15
To give useful insight into the impact of mid-spatial frequency structure on optical performance, the Strehl ratio is shown to correspond to the Fourier transform of a simple statistical characterization of the aberration in the exit pupil. This statistical description is found simply by autocorrelating a histogram of the aberration values. In practice, the histogram itself can often be approximated by a convolution of underlying histograms associated with fabrication steps and, together with the final autocorrelation, it follows from the central limit theorem that the Strehl ratio as a function of the scale of the phase error is generally approximated well by a Gaussian. PMID:27519076
Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface
Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai
2016-07-01
A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.
Pengjuan Liang; Hao Wang; Chaoyin Chen; Feng Ge; Diqiu Liu; Shiqi Li; Benyong Han; Xianfeng Xiong; Shenglan Zhao
2013-01-01
Currently, the authentication of virgin walnut oil (VWO) has become very important due to the possible adulteration of VWO with cheaper plant oils such as soybean oil (SO), puer tea seed oil (PO), and sunflower oil (SFO). Methods involving Fourier transform infrared (FT-IR) spectroscopy combined with chemometric techniques (partial least square) were developed for quantification of SO, PO, and SFO in VWO. IR spectra of oil samples were recorded at frequency regions of 4000–650 cm−1 on horizon...
Osowiecki, Gaël. D.; Madi, Mohammad; Shorubalko, Ivan; Philipoussis, Irène; Alberti, Edoardo; Scharf, Toralf; Herzig, Hans P.
2015-09-01
We show the miniaturization and parallelization of a scanning standing wave spectrometer with a long term goal of creating a compact imaging spectrometer. In our standing wave integrated Fourier transform spectrometer, light is injected with micro-lenses into several optical polymer waveguides. A piezo actuated mirror located at the waveguide end-facet can shift the interferogram to increase its sampling frequency. The spatial distribution of the standing wave intensity inside the waveguide is partially scattered out of the plane by a periodic metallic grating and recorded by a CCD camera. We present spectra acquisition for six adjacent waveguides simultaneously at a wavelength of 632.8 nm.
Tavares, Paulo J.; Vaz, Mário A. P.
2013-03-01
Gradient range and spatial resolution in Fourier Transform Profilometry depend on the size of the filter window in reciprocal space. The proposed methods to date for the elimination of the fundamental frequency and enlargement of the filter window are either too computationally complex or depend on the possibility of using two frames, thus disabling the method's ability to cope with dynamic situations and subjecting the results to possible intensity changes between the two frame acquisitions. This article describes a simple method for using a single crossed fringe pattern to accomplish that objective, greatly improving the previously reported technique, whilst retaining its main advantages.
Coherent coupling of magneto-excitons probed by two-dimensional Fourier transform spectroscopy
Paul, Jagannath; Liu, Cunming; McGill, Stephen; Hilton, David; Karaiskaj, Denis
We present the coherent two dimensional Fourier Transform (2DFT) spectra of magneto-excitons in undoped GaAs quantum wells at high magnetic field up to 10 Tesla. The 2DFT data reveal strong coherent coupling between resonances and line shapes which are strikingly different from the zero field spectra. 2DFT spectra measured using co-linear and co-circular polarizations at low temperatures will be discussed. The work at USF and UAB was supported by the National Science Foundation under Grant Number DMR-1409473. The work at NHMFL, Florida State University was supported by the National Science Foundation under Grant Numbers DMR-1157490 and DMR-1229217.
Application of micro-Fourier transform infrared spectroscopy to the examination of paint samples
Zięba-Palus, J.
1999-11-01
The examination and identification of automobile paints is an important problem in road accidents investigations. Since the real sample available is very small, only sensitive microtechniques can be applied. The methods of optical microscopy and micro-Fourier transform infrared spectroscopy (MK-FTIR) supported by scanning electron microscopy together with X-ray microanalysis (SEM-EDX) allow one to carry out the examination of each paint layer without any separation procedure. In this paper an attempt is made to discriminate between different automobile paints of the same colour by the use of these methods for criminalistic investigations.
Hettich, Robert L.; Jin, Changming; Compton, Robert N.; Buseck, Peter R.; Tsipursky, Semeon J.
1993-10-01
Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C60Fx (x=44,46) and C70Fy (y=52,54) were found to be substantially higher than the values for the parent fullerenes.
Wave scattering theory a series approach based on the Fourier transformation
Eom, Hyo J
2001-01-01
The book provides a unified technique of Fourier transform to solve the wave scattering, diffraction, penetration, and radiation problems where the technique of separation of variables is applicable. The book discusses wave scattering from waveguide discontinuities, various apertures, and coupling structures, often encountered in electromagnetic, electrostatic, magnetostatic, and acoustic problems. A system of simultaneous equations for the modal coefficients is formulated and the rapidly-convergent series solutions amenable to numerical computation are presented. The series solutions find practical applications in the design of microwave/acoustic transmission lines, waveguide filters, antennas, and electromagnetic interference/compatibilty-related problems.
Fourier-transform microwave spectroscopy of 24Mg 35Cl generated by laser ablation
Ohshima, Yasuhiro; Endo, Yasuki
1993-10-01
The rotational spectrum of 24Mg 35Cl in its X 2Σ + (ν=0 and 1 ) state has been observed in the 14 GHz region by using a Fourier- transform microwave spectrometer combined with a laser-ablation source. The radical was produced by the reaction of atomic Mg vaporized by 532 nm laser light with Cl 2 diluted in Ar. The present observation of the lowest N transition by a high-resolving power instrument has provided accurate hyperfine coupling constants associated with the 35Cl nucleus of this molecule.
Energy Technology Data Exchange (ETDEWEB)
Liu, J.G.; Schmidt-Hattenberger, C.; Borm, G. [GeoForschungsZentrum Potsdam, Aufgabenbereich 5, Potsdam (Germany)
2001-07-01
In this paper a new algorithm is presented to analyze damped oscillation signals and to determine their parameters under the influence of noise and disturbance. The algorithm is based on a windowed discrete Fourier transform. The calculation errors of the algorithm are compensated by a self-correction algorithm presented. Therefore the parameters of damped oscillation signals can more accurately be determined by this algorithm. This algorithm can be used to analyze various oscillation signals and to determine their parameters of various systems and sensors. In the following sections the algorithm is presented and simulation and practical results are discussed in detail. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Enobio, Eli Christopher I.; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo, E-mail: ohno@riec.tohoku.ac.jp [Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)
2013-12-02
We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices.
International Nuclear Information System (INIS)
We demonstrate the use of a Fourier Transform Infrared microscope system to detect and measure electroreflectance (ER) from mid-infrared quantum cascade laser (QCL) device. To characterize intersubband transition (ISBT) energies in a functioning QCL device, a microscope is used to focus the probe on the QCL cleaved mirror. The measured ER spectra exhibit resonance features associated to ISBTs under applied electric field in agreement with the numerical calculations and comparable to observed photocurrent, and emission peaks. The method demonstrates the potential as a characterization tool for QCL devices
The application of Fast Fourier transforms to the primitive equations of Boussinesq convection
International Nuclear Information System (INIS)
We have described a numerical scheme which is second-order in both space and time. The use of Fast Fourier Transform techniques for the solution of pressure equation guarantees accurate incompressibility at all time and enabled us to consider using iteration for part of this scheme. The iterations converge satisfactorily for values of the timestep of the order of one-half to one-quarter of the space step. Numerical calculations are being undertaken to clarify the range of Reynolds numbers and timestep over which the iteration converges. (orig.)
Analysis of Chaperone Complexes by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry
Geels, R.B.J.
2008-01-01
Investigation of methodologies for analyses of noncovalently bound protein assemblies using Fourier transformation ion cyclotron resonance mass spectrometry (FT-ICR-MS) and quadrupole Time-of-Flight (qToF) mass spectrometry. Specifically, the co-chaperonins GroEL and gp31 are used to perform activation measurements on in the gas-phase and in the solution-phase. Both protein complexes are noncovalently bound homoheptamers of 72kDa and 84kDa respectively. They have a slight functional differenc...
Partial Fourier--Mukai transform for integrable systems with applications to Hitchin fibration
Arinkin, Dima; Fedorov, Roman
2014-01-01
Let X be an abelian scheme over a scheme B. The Fourier--Mukai transform gives an equivalence between the derived category of X and the derived category of the dual abelian scheme. We partially extend this to certain schemes X over B (which we call degenerate abelian schemes) whose generic fiber is an abelian variety, while special fibers are singular. Our main result provides a fully faithful functor from a twist of the derived category of Pic$^\\tau$(X/B) to the derived category of X. Here P...
Far-infrared Fourier transform spectroscopy of (C-12)(0-18)
International Nuclear Information System (INIS)
This paper reports on high-accuracy Fourier transform measurements of the far-infrared spectrum of (C-12)(0--18) between 0.87 and 2.7 THz (32.9-91.2/cm). Precise rotational constants are determined, and transition frequencies up to J = 35-34 are given (with an accuracy better than 5 x 10 to the -7th), along with the previously available transition frequencies for (C-12)(0-16) and (C-13)(0-16). 11 refs
A note on LU decomposition of the Discrete Fourier Transform matrix
Kuznetsov, Alexey
2015-01-01
We describe some properties of the lower triangular Toeplitz matrix $T_q$ with coefficients $t_{i,j}=1/(q;q)_{i-j}$, where $(z;q)_k$ is the q-Pochhammer symbol. We identify explicitly the inverse of $T_q$ and show that both this matrix and its transpose appear in LU decomposition of the Vandermonde matrix $V_q$ having coefficients $v_{i,j}=q^{ij}$. When $q$ is the $n$-th root of unity, our result gives an explicit LU decomposition of the Discrete Fourier Transform matrix.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Real time digital recording and numerical reconstruction of a temporal digital hologram sequence have become feasible in recent years.They provide a new measurement method which enjoys the valuable advantages of being full-field,noncontact and high precision.In this paper,a combined method of temporal digital hologram sequence and windowed Fourier transform is proposed to measure the kinematic parameters of random vibration.A series of holograms are recorded by CCD camera and the original phase can be recon...
International Nuclear Information System (INIS)
An important field in which Fourier-transform ion cyclotron resonance has useful applications is that of gas phase ion chemistry, the subject of this thesis. First, the general picture of ion-molecule reactions in the gas phase is discussed. Next, some positive ion-molecule reactions are described, whereas the remaining chapters deal with negative ion-molecule reactions. Most of these studies have been performed using the FT-ICR method. Reactions involving H3O- and NH4- ions are described whereas the other chapters deal with larger organic complexes. (Auth.)
Simple atmospheric transmittance calculation based on a Fourier-transformed Voigt profile.
Kobayashi, Hirokazu
2002-11-20
A method of line-by-line transmission calculation for a homogeneous atmospheric layer that uses the Fourier-transformed Voigt profile is presented. The method is based on a pure Voigt function with no approximation and an interference term that takes into account the line-mixing effect. One can use the method to calculate transmittance, considering each line shape as it is affected by temperature and pressure, with a line database with an arbitrary wave-number range and resolution. To show that the method is feasible for practical model development, we compared the calculated transmittance with that obtained with a conventional model, and good consistency was observed. PMID:12463237
Mandel, Jan; Kondratenko, Volodymyr Y
2010-01-01
We propose a new type of the Ensemble Kalman Filter (EnKF), which uses the Fast Fourier Transform (FFT) for covariance estimation from a very small ensemble with automatic tapering, and for a fast computation of the analysis ensemble by convolution, avoiding the need to solve a sparse system with the tapered matrix. The FFT EnKF is combined with the morphing EnKF to enable the correction of position errors, in addition to amplitude errors, and demonstrated on WRF-Fire, the Weather Research Forecasting (WRF) model coupled with a fire spread model implemented by the level set method.
Mastering the discrete Fourier transform in one, two or several dimensions pitfalls and artifacts
Amidror, Isaac
2013-01-01
The discrete Fourier transform (DFT) is an extremely useful tool that finds application in many different disciplines. However, its use requires caution. The aim of this book is to explain the DFT and its various artifacts and pitfalls and to show how to avoid these (whenever possible), or at least how to recognize them in order to avoid misinterpretations. This concentrated treatment of the DFT artifacts and pitfalls in a single volume is, indeed, new, and it makes this book a valuable source of information for the widest possible range of DFT users. Special attention is given to the one and
An analog of the Fourier transform associated with a nonlinear one-dimensional Schroedinger equation
International Nuclear Information System (INIS)
We consider an eigenvalue problem which includes a nonlinear Schroedinger equation on the half-line [0, ∞) and certain boundary conditions. It is shown that the spectrum of this problem fills a half-line and that to each point of the spectrum there corresponds a unique eigenfunction. The main result of the paper is that an arbitrary infinitely differentiable function g(x) rapidly decaying as x → ∞ and satisfying suitable boundary conditions at the point x = 0 can be uniquely expanded into an integral over eigenfunctions similar to the representation of functions by the Fourier transform (the latter is obviously associated with a linear self-adjoint eigenvalue problem)
Parallel 3-dim fast Fourier transforms with load balancing of the plane waves
Gao, Xingyu; Mo, Zeyao; Fang, Jun; Wang, Han
2016-01-01
The plane wave method is most widely used for solving the Kohn-Sham equations in first-principles materials science computations. In this procedure, the three-dimensional (3-dim) trial wave functions' fast Fourier transform (FFT) is a regular operation and one of the most demanding algorithms in terms of the scalability on a parallel machine. We propose a new partitioning algorithm for the 3-dim FFT grid to accomplish the trade-off between the communication overhead and load balancing of the ...
A highly linear superconducting bolometer for quantitative THz Fourier transform spectroscopy.
Kehrt, Mathias; Monte, Christian; Beyer, Jörn; Hollandt, Jörg
2015-05-01
A superconducting transition edge sensor (TES) bolometer operating in the spectral range from 0.1 THz to 3 THz was designed. It is especially intended for Fourier transform spectroscopy and features a higher dynamic range and a highly linear response at a similar response compared to commercially available silicon composite bolometers. The design is based on a thin film metal mesh absorber, a superconducting thermistor and Si3N4 membrane technology. A prototype was set up, characterized and successfully used in first applications. PMID:25969213
Parallel 3-dim fast Fourier transforms with load balancing of the plane waves
Gao, Xingyu; Fang, Jun; Wang, Han
2016-01-01
The plane wave method is most widely used for solving the Kohn-Sham equations in first-principles materials science computations. In this procedure, the three-dimensional (3-dim) trial wave functions' fast Fourier transform (FFT) is a regular operation and one of the most demanding algorithms in terms of the scalability on a parallel machine. We propose a new partitioning algorithm for the 3-dim FFT grid to accomplish the trade-off between the communication overhead and load balancing of the plane waves. It is shown by qualitative analysis and numerical results that our approach could scale the plane wave first-principles calculations up to more nodes.
Reconstruction of piecewise homogeneous images from partial knowledge of their Fourier Transform
Féron, Olivier; Chama, Zouaoui; Mohammad-Djafari, Ali
2004-11-01
Fourier synthesis (FS) inverse problem consists in reconstructing a multi-variable function from the measured data which correspond to partial and uncertain knowledge of its Fourier Transform (FT). By partial knowledge we mean either partial support and/or the knowledge of only the module and by uncertain we mean both uncertainty of the model and noisy data. This inverse problem arises in many applications such as : optical imaging, radio astronomy, magnetic resonance imaging (MRI) and diffraction scattering (ultrasounds or microwave imaging). Most classical methods of inversion are based on interpolation of the data and fast inverse FT. But when the data do not fill uniformly the Fourier domain or when the phase of the signal is lacking as in optical interferometry, the results obtained by such methods are not satisfactory, because these inverse problems are ill-posed. The Bayesian estimation approach, via an appropriate modeling of the unknown functions gives the possibility of compensating the lack of information in the data, thus giving satisfactory results. In this paper we study the case where the observations are a part of the FT modulus of objects which are composed of a few number of homogeneous materials. To model such objects we use a Hierarchical Hidden Markov Modeling (HMM) and propose a Bayesian inversion method using appropriate Markov Chain Monte Carlo (MCMC) algorithms.
2D Satellite Image Registration Using Transform Based and Correlation Based Methods
Dr. H.B. Kekre, Dr. Tanuja K. Sarode, Ms. Ruhina B. Karani
2012-01-01
Image registration is the process of geometrically aligning one image to another image of the same scene taken from different viewpoints or by different sensors. It is a fundamental image processing technique and is very useful in integrating information from different sensors, finding changes in images taken at different times and inferring three-dimensional information from stereo images. Image registration can be done by using two matching method: transform based methods and correlation ba...
Polarity-manipulation based on nanoscale structural transformation on strained 2D MgO
International Nuclear Information System (INIS)
Strain induced nanoscale structural transformation is demonstrated in this paper to have the ability of triggering polarity flipping in a wide bandgap system of MgxZn1−xO/MgO/Al2O3. Relaxation dynamics of semiconductor components under large compressive pressures up to 13.7 GPa were studied by a combination of theoretical analysis and experimental characterizations including in situ reflection high-energy electron diffraction and high-resolution transmission electron microscopy. The gigantic force between MgZnO and ultrathin-MgO/Al2O3 delayed the structural transformation of MgZnO from six-fold cubic to four-fold wurtzite into the second monolayer, and consequently flipped the polarity of the film deposited on relaxed MgO. Additionally, dislocation-induced strain relaxation was suggested to happen around 1 nm thick cubic MgO grown on Al2O3, instead of the previous well-accepted concept that wurtzite structures can be inherited from the oxygen sub-lattice of sapphire substrates below the critical thickness. Finally, the structural transformation method employing an ultrathin-MgO interfacial layer was demonstrated to be a suitable technique for accommodating the large lattice mismatch comparing with the dislocation-relaxation mechanism achieving a UV photodetector with four orders of rejection ratio of the UV-to-visible photoresponse. (paper)
Even more inversion formulas for the 2D Radon Transform of functions of compact and convex support.
Mohamed, M-S Ould; Mennessier, C; Clackdoyle, R
2007-01-01
In 2004, Clackdoyle and Noo published a class of inversion formulas for the 2D Radon Transform which depends on the known radius of support of the unknown function. In this work, we extend this class of inversion formulas from functions of circular support to functions with any compact and convex support. We point out the potential benefits of these new inversion formulas in the context of reconstruction from truncated projections. A preliminary implementation of these new inversion formulas is also presented. PMID:18002982
The quantum state vector in phase space and Gabor's windowed Fourier transform
Bracken, A J
2010-01-01
Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed `window state vector'. Here aspects of this construction are explored, with emphasis on the connection with Gabor's `windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of window are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schr\\"odinger's time-d...
Foliage Plant Retrieval Using Polar Fourier Transform, Color Moments and Vein Features
Directory of Open Access Journals (Sweden)
Abdul Kadir
2011-09-01
Full Text Available This paper proposed a method that combines Polar Fo urier Transform, color moments, and vein features to retrieve leaf images based on a leaf image. The method is very useful to help people in recognizing foliage plants. Foliage plants are plants that have various colors and unique patterns in the leaf. Th erefore, the colors and its patterns are information that sh ould be counted on in the processing of plant identification. To compare the performance of retri eving system to other result, the experiments used Flavia dataset, which is very popular in recognizin g plants. The result shows that the method gave bet ter performance than PNN, SVM, and Fourier Transform. T he method was also tested using foliage plants with various colors. The accuracy was 90.80% for 50 kinds of plants.
Sasaoka, Sara; Saito, Koichi; Higashi, Kenjirou; Limwikrant, Waree; Moribe, Kunikazu; Suzuki, Shinichi; Yamamoto, Keiji
2015-12-01
A novel type of spectrum, the one-dimensional power spectrum (1D-PS), was designed for the discrimination of adhesive packing tapes, i.e., kraft tapes. The 1D-PS offered complementary information to that provided by the improved two-dimensional PS (2D-PS), which was calculated using our previously established image processes combined with a two-dimensional fast Fourier transform (2D-FFT) to obtain information about the spatial periodicity within kraft tapes. The 1D-PS was calculated using a three-step image process: (i) the 2D-FFT was applied to 50 randomly selected areas in a transmitted light image; (ii) the obtained 2D-PSs were accumulated without applying a logarithmic transform; (iii) the wavenumber and the maximum intensity were plotted on the x-axis and y-axis, respectively. Through an intra-roll comparison, the 1D-PSs collected from single rolls showed similar profiles. In an inter-roll comparison, the 1D-PSs from 50 commercially available brand-name products were classified into 29 groups. The 1D-PSs contained other useful information than that provided by the improved 2D-PSs: they presented more peaks and absolute intensity with a wider range. The 1D-PSs enabled us to compare the spectra quickly and easily, owing to their unchanging profiles regardless of the orientation of the scanned images. A combined use of the 1D-PSs with the improved 2D-PSs-both spectrum types being convenient, rapid, non-destructive, and applicable to dirty and/or damaged samples-could further improve the identification of kraft tapes. PMID:26461031
International Nuclear Information System (INIS)
The Integral Fourier Transform has a large range of applications in such areas as communication theory, circuit theory, physics, etc. In order to perform discrete Fourier Transform the Finite Fourier Transform is defined; it operates upon N samples of a uniformely sampled continuous function. All the properties known in the continuous case can be found in the discrete case also. The first part of the paper presents the relationship between the Finite Fourier Transform and the Integral one. The computing of a Finite Fourier Transform is a problem in itself since in order to transform a set of N data we have to perform N2 ''operations'' if the transformation relations are used directly. An algorithm known as the Fast Fourier Transform (FFT) reduces this figure from N2 to a more reasonable Nlog2N, when N is a power of two. The original Cooley and Tuckey algorithm for FFT can be further improved when higher basis are used. The price to be paid in this case is the increase in complexity of such algorithms. The recurrence relations and a comparation among such algorithms are presented. The key point in understanding the application of FFT resides in the convolution theorem which states that the convolution (an N2 type procedure) of the primitive functions is equivalent to the ordinar multiplication of their transforms. Since filtering is actually a convolution process we present several procedures to perform digital filtering by means of FFT. The best is the one using the segmentation of records and the transformation of pairs of records. In the digital processing of signals, besides digital filtering a special attention is paid to the estimation of various statistical characteristics of a signal as: autocorrelation and correlation functions, periodiograms, density power sepctrum, etc. We give several algorithms for the consistent and unbiased estimation of such functions, by means of FFT. (author)
Wu, Xuebin; Yan, Zhiyuan; Lin, Jun
2012-07-01
Long Reed-Solomon (RS) codes are desirable for digital communication and storage systems due to their improved error performance, but the high computational complexity of their decoders is a key obstacle to their adoption in practice. As discrete Fourier transforms (DFTs) can evaluate a polynomial at multiple points, efficient DFT algorithms are promising in reducing the computational complexities of syndrome based decoders for long RS codes. In this paper, we first propose partial composite cyclotomic Fourier transforms (CCFTs) and then devise syndrome based decoders for long RS codes over large finite fields based on partial CCFTs. The new decoders based on partial CCFTs achieve a significant saving of computational complexities for long RS codes. Since partial CCFTs have modular and regular structures, the new decoders are suitable for hardware implementations. To further verify and demonstrate the advantages of partial CCFTs, we implement in hardware the syndrome computation block for a $(2720, 2550)$ shortened RS code over GF$(2^{12})$. In comparison to previous results based on Horner's rule, our hardware implementation not only has a smaller gate count, but also achieves much higher throughputs.
Quantization maps, algebra representation, and non-commutative Fourier transform for Lie groups
International Nuclear Information System (INIS)
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves
Quantization maps, algebra representation, and non-commutative Fourier transform for Lie groups
Energy Technology Data Exchange (ETDEWEB)
Guedes, Carlos; Oriti, Daniele [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam (Germany); Raasakka, Matti [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Potsdam (Germany); LIPN, Institut Galilée, Université Paris-Nord, 99, av. Clement, 93430 Villetaneuse (France)
2013-08-15
The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.
The data processing pipeline for the Herschel SPIRE Fourier Transform Spectrometer
Fulton, T.; Naylor, D. A.; Polehampton, E. T.; Valtchanov, I.; Hopwood, R.; Lu, N.; Baluteau, J.-P.; Mainetti, G.; Pearson, C.; Papageorgiou, A.; Guest, S.; Zhang, L.; Imhof, P.; Swinyard, B. M.; Griffin, M. J.; Lim, T. L.
2016-05-01
We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SPIRE observations and produces calibrated spectra for all resolution modes. The spectrometer pipeline shares some elements with the SPIRE photometer pipeline, including the conversion of telemetry packets into data timelines and calculation of bolometer voltages. We present the following fundamental processing steps unique to the spectrometer: temporal and spatial interpolation of the scan mechanism and detector data to create interferograms; Fourier transformation; apodization; and creation of a data cube. We also describe the corrections for various instrumental effects including first- and second-level glitch identification and removal, correction of the effects due to emission from the Herschel telescope and from within the spectrometer instrument, interferogram baseline correction, temporal and spatial phase correction, non-linear response of the bolometers, and variation of instrument performance across the focal plane arrays. Astronomical calibration is based on combinations of observations of standard astronomical sources and regions of space known to contain minimal emission.
Fourier Transform Infrared Spectroscopic Study of Sodium Phosphate Solids and Solutions
Institute of Scientific and Technical Information of China (English)
龚文琪
2001-01-01
Solids and solutions of sodium phosphates with various chain lengths have been studied by using the techniques of diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy, respectively. A systematic study of the infrared spectra of the solid sodium phosphates has been conducted on the basis of the information available in the literatures to establish the assignments of the infrared vibrations of the different groups in the phosphate molecules. The infrared spectra of the solutions of sodium phosphates have been analyzed according to the infrared study on the relevant solids, in conjunction with the study of the phosphate species distribution in solution on the basis of the acid-base reaction equilibria. The results obtained have revealed the correlations between the infrared absorption spectra and the structure of the different P-O groups in different kinds of phosphates and are useful in the analysis of phosphate solids and solutions widely used in the various operations of mineral processing.
Ground-based high resolution Fourier transform spectrometer and its application in Beijing
Fan, Dongdong
2013-10-01
The B3M-FTS instrument, inherited from ACE-FTS and PARIS, is built by Canadian ABB and Beijing Vision Sky Aerospace Co., Ltd. The B3M is a complete stand-alone spectrometer designed to operate from the ground in moderate environment. It can acquire atmospheric spectra with the Sun as back illumination. This instrument is an adapted version of the classical Michelson interferometer using an optimized optical layout, and it is a high-resolution infrared Fourier transform spectrometer operating in the 750 to 4100cm-1 spectral range. In this paper, the instrument concept of a compact, portable, high-resolution Fourier transform spectrometer is introduced. Some test results of the instrument such as ILS and SNR are presented, and the spectral resolution of 0.028cm-1 @ 750cm-1 and SNR over 100:1 are achieved. Sample atmospheric absorption spectra and corresponding retrieval results measured by the FTS are given. The B3M-FTS, with its high performance, provides the capability to monitor the atmospheric composition changes by measuring the atmospheric absorption spectra of solar radiance. Lots of measurements have been acquired at the Olympics atmospheric observation super-station. Up to now, the VMRs of near 10 trace gases have been retrieved. The success of atmospheric composition profile retrieval using the FTS measurements makes the further application of FTS type payload possible in China.
Wang, Guangjun; Wang, Huaying; Wang, Dayong; Xie, Jianjun; Zhao, Jie
2007-12-01
A simple holographic high-resolution imaging system without pre-magnification, which is based on off-axis lensless Fourier transform configuration, has been developed. Experimental investigations are performed on USAF resolution test target. The method based on angular spectrum theory for reconstructing lensless Fourier hologram is given. The reconstructed results of the same hologram at different reconstructing distances are presented for what is to our knowledge the first time. Approximate diffraction limited lateral resolution is achieved. The results show that the angular spectrum method has several advantages over more commonly used Fresnel transform method. Lossless reconstruction can be achieved for any numerical aperture holograms as long as the wave field is calculated at a special reconstructing distance, which is determined by the light wavelength and the chip size and the pixel size of the CCD sensor. This is very important for reconstructing an extremely large numerical aperture hologram. Frequency-domain spectrum filtering can be applied conveniently to remove the disturbance of zero-order. The reconstructed image wave field is accurate so long as the sampling theorem is not violated. The experimental results also demonstrate that for a high quality hologram, special image processing is unnecessary to obtain a high quality image.
Institute of Scientific and Technical Information of China (English)
Ding Lu; Weimin Jin
2011-01-01
A novel fully phase color image encryption/decryption scheme based on joint fractional Fourier transform correlator (JFRTC) and phase retrieval algorithm (PRA) is proposed. The security of the system is enhanced by the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system and could optically realize single-channel color image encryption.The system and operation procedures are simplified. The simulation results of a color image indicate that the new method provides efficient solutions with a strong sense of security.%@@ A novel fully phase color image encryption/decryption scheme based on joint fractional Fourier transform correlator (JFRTC) and phase retrieval algorithm (PRA) is proposed. The security of the system is enhanced by the fractional order as a new added key. This method takes full advantage of the parallel processing features of the optical system and could optically realize single-channel color image encryption. The system and operation procedures are simplified. The simulation results of a color image indicate that the new method provides efficient solutions with a strong sense of security.
Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra
Directory of Open Access Journals (Sweden)
T. Ridder
2011-06-01
Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm^{−1} are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.
Institute of Scientific and Technical Information of China (English)
Muthuramalingam Uthaya Siva; Mohideen Abdul Badhul Haq; Deivasigamani Selvam; Ganesan Dinesh Babu; Rathinam Bakyaraj
2013-01-01
Objective: To investigate functional groups of toxic spines in stingray by Fourier transform infrared spectroscopic analysis.Methods:sephen were centrifuged at 6000 r/min for 10 min. The supernatant was collected and preserved separately in methanol, ethanol, chloroform, acetone (1:2) and then soaked in the mentioned solvents for 48 h. Then extracts were filtered and used for Fourier transform infrared spectroscopic analysis.Results:The venom extract of Himantura gerrardi, Himantura imbricata and Pastinachus and random coiled secondary structure. The presence of O-H stretch, C=O stretch, C-H stretch, N-H deformation, O-H deformation and C-O stretch in the sample aligned with standard bovine serum albumin. The influence of functional groups within the molecule was because of the impact of preferred spatial orientation, chemical and physical interaction on the molecule. In conclusion, compared to bovine serum albumin, Himantura imbricata consists of two C=O stretch, are involved in the hydrogen bonding that takes place between the different elements of secondary structure.Conclusions:The results identified that the presence of free amino acids and protein having β-sheet medicine not available for treatment against injuries causing stingray. Therefore, it's the baseline study, to motivate further process and produce effective antibiotics. The venom of poisonous animals has been extensively studied, since standard.
Directory of Open Access Journals (Sweden)
Muthuramalingam Uthaya Siva
2013-10-01
Full Text Available Objective: To investigate functional groups of toxic spines in stingray by Fourier transform infrared spectroscopic analysis. Methods: The venom extract of Himantura gerrardi, Himantura imbricata and Pastinachus sephen were centrifuged at 6 000 r/min for 10 min. The supernatant was collected and preserved separately in methanol, ethanol, chloroform, acetone (1:2 and then soaked in the mentioned solvents for 48 h. Then extracts were filtered and used for Fourier transform infrared spectroscopic analysis. Results: The results identified that the presence of free amino acids and protein having β-sheet and random coiled secondary structure. The presence of O-H stretch, C=O stretch, C-H stretch, N-H deformation, O-H deformation and C-O stretch in the sample aligned with standard bovine serum albumin. The influence of functional groups within the molecule was because of the impact of preferred spatial orientation, chemical and physical interaction on the molecule. In conclusion, compared to bovine serum albumin, Himantura imbricata consists of two C=O stretch, are involved in the hydrogen bonding that takes place between the different elements of secondary structure. Conclusions: The venom of poisonous animals has been extensively studied, since standard medicine not available for treatment against injuries causing stingray. Therefore, it's the baseline study, to motivate further process and produce effective antibiotics.
Binary encoding method to encrypt Fourier-transformed information of digital images
Lin, Kuang Tsan
2009-02-01
An encoding method is used to encrypt the Fourier-transformed information of a hidden (covert) digital image in an overt image, while the Fourier-transformed information must be encoded with binary codes. All of the pixels in an overt image are classified into five groups that are called identification, type, tracing, dimension, and information codes. Identification codes are used to judge if the overt image contains codes that belong to the proposed encoding method or not; type codes are used to judge the encoding type; tracing codes are used to judge the encoding trace; dimension codes are used to judge the size of the hidden information; and information codes are used to decode the hidden information. Applying the proposed encoding method is rather easy, and host images corresponding to overt images are not needed for decoding work. The experiment has demonstrated four types of encoding for the proposed encoding method to reconstruct covert images without any distortion or only with a little distortion.
Fourier Transform Infrared Emission Spectroscopy and AB Initio Study of Hbo and BO
Li, G.; Hargreaves, R. J.; Bernath, P. F.
2010-06-01
The Fourier-transform infrared emission spectra of HBO and BO were recorded using a Bruker IFS-125HR Fourier transform spectrometer. HBO molecules were synthesized using a high temperature tube furnace at 1450 °C. Our spectra of the HBO molecule in the 1200-4000 cm-1 region contain the v1 and v3 fundamental vibrational modes plus numerous hot bands. An accurate potential energy surface using the MRCI method with correlation consistent core-valence basis sets aug-cc-PCVnZ (n=3, 4, 5) is being calculated and a vibrational configuration interaction (VCI) calculation based on this surface will be performed to assist in the assignment of the HBO hot bands. BO molecules were produced by applying a DC discharge to the furnace containing HBO. Our spectrum of BO in the 1200-2100 cm-1 region contains the fundamental bands of both isotopic species, 11BO, 10BO, and one hot band of the main isotopologue 11BO. The fundamental band of 11BO contains 95 lines roughly equally distributed between the P and R branches. A combined least-squares fit with ground state microwave data was performed to determine the spectroscopic constants. Further results on this ongoing project will be presented.
Directory of Open Access Journals (Sweden)
Qiu Bo
2008-01-01
Full Text Available Binaural cue coding (BCC is an efficient technique for spatial audio rendering by using the side information such as interchannel level difference (ICLD, interchannel time difference (ICTD, and interchannel correlation (ICC. Of the side information, the ICTD plays an important role to the auditory spatial image. However, inaccurate estimation of the ICTD may lead to the audio quality degradation. In this paper, we develop a novel ICTD estimation algorithm based on the nonuniform discrete Fourier transform (NDFT and integrate it with the BCC approach to improve the decoded auditory image. Furthermore, a new subjective assessment method is proposed for the evaluation of auditory image widths of decoded signals. The test results demonstrate that the NDFT-based scheme can achieve much wider and more externalized auditory image than the existing BCC scheme based on the discrete Fourier transform (DFT. It is found that the present technique, regardless of the image width, does not deteriorate the sound quality at the decoder compared to the traditional scheme without ICTD estimation.
Monitoring wine aging with Fourier transform infrared spectroscopy (FT-IR
Directory of Open Access Journals (Sweden)
Basalekou Marianthi
2015-01-01
Full Text Available Oak wood has commonly been used in wine aging but recently other wood types such as Acacia and Chestnut, have attracted the interest of the researchers due to their possible positive contribution to wine quality. However, only the use of oak and chestnut woods is approved by the International Enological Codex of the International Organisation of Vine and Wine. In this study Fourier Transform (FT-mid-infrared spectroscopy combined with Discriminant Analysis was used to differentiate wines aged in barrels made from French oak, American oak, Acacia and Chestnut and in tanks with oak chips, over a period of 12 months. Two red (Mandilaria, Kotsifali and two white (Vilana, Dafni native Greek grape varieties where used to produce four wines. The Fourier Transform Infrared (FT-IR spectra of the samples were recorded on a Zinc Selenide (ZnSe window after incubation at 40 °C for 30 min. A complete differentiation of the samples according to both the type of wood used and the contact time was achieved based on their FT-IR spectra.
Fresnel diffraction effects in Fourier-transform arrayed waveguide grating spectrometer.
Rodrigo, J A; Cheben, P; Alieva, T; Calvo, M L; Florjanczyk, M; Janz, S; Scott, A; Solheim, B; Xu, D X; Deláge, A
2007-12-10
We present an analysis of Fourier-transform arrayed waveguide gratings in the Fresnel diffraction regime. We report a distinct spatial modulation of the interference pattern referred to as the Moiré-Talbot effect. The effect and its influence in a FT AWG device is explained by deriving an original analytical expression for the modulated field, and is also confirmed by numerical simulations using the angular spectrum method to solve the Fresnel diffraction integral. We illustrate the retrieval of spectral information in a waveguide Fourier-transform spectrometer in the presence of the Moiré-Talbot effect. The simulated device comprises two interleaved waveguide arrays each with 180 waveguides and the interference order of 40. It is designed with a Rayleigh spectral resolution of 0.1 nm and 8 nm bandwidth at wavelength lambda approximately 1.5 mum. We also demonstrate by numerical simulations that the spectrometer crosstalk is reduced from -20 dB to -40 dB by Gaussian apodization. PMID:19550933
Instrumental phase-based method for Fourier transform spectrometer measurements processing
International Nuclear Information System (INIS)
Phase correction is a critical procedure for most space-borne Fourier transform spectrometers (FTSs) whose accuracy (owing to often poor signal-to-noise ratio, SNR) can be jeopardized from many uncontrollable environmental conditions. This work considers the phase correction in an FTS working under significant temperature change during the measurement and affected by mechanical disturbances. The implemented method is based on the identification of an instrumental phase that is dependent on the interferometer temperature and on the extraction of a linear phase component through a least-squares approach. The use of an instrumental phase parameterized with the interferometer temperature eases the determination of the linear phase that can be extracted using only a narrow spectral region selected to be immune from disturbances. The procedure, in this way, is made robust against phase errors arising from instrumental effects, a key feature to reduce the disturbances through spectra averaging. The method was specifically developed for the Mars IR Mapper spectrometer, that was designed for operation onboard a rover on the Mars surface; the validation was performed using ground and in-flight measurements of the Fourier transform IR spectrometer planetary Fourier spectrometer, onboard the MarsExpress mission. The symmetrization has been exploited also for the spectra calibration, highlighting the issues deriving from the cases of relevant beamsplitter emission. The applicability of this procedure to other instruments is conditional to the presence in the spectra of at least one spectral region with a large SNR along with a negligible (or known) beamsplitter emission. For the PFS instrument, the processing of data with relevant beamsplitter emission has been performed exploiting the absorption carbon dioxide bands present in Martian spectra.
Directory of Open Access Journals (Sweden)
Ashraf Adamu Ahmad
2015-11-01
Full Text Available The electronic intelligence (ELINT system is used by the military to detect, extract information and classify incoming radar signals. This work utilizes short time Fourier transform (STFT - time frequency distribution (TFD for inter-pulse analysis of the radar signal in order to estimate basic radar signal time parameters (pulse width and pulse repetition period. Four well-known windows functions of different and unique characteristics were used for the localization of STFT to determine their various effects on the analysis. The window functions are Hamming, Hanning, Bartlett and Blackman window functions. Monte Carlo simulation is carried out to determine the performance of the signal analysis in presence of additive white Gaussian noise (AWGN. Results show that the lower the transition of main lobe width and higher the peak side lobe, the better the performance of the window function irrespective of time parameter being estimated. This is because 100 percent probability of correct estimation is achieved at signal to noise ratio of about -2dB for Bartlett, 4dB for both Hamming and Hanning, and 9dB for Blackman.
Defects in G/H coset, G/G topological field theory and discrete Fourier-Mukai transform
International Nuclear Information System (INIS)
In this paper we construct defects in coset G/H theory. Canonical quantization of the gauged WZW model G/H with N defects on a cylinder and a strip is performed and the symplectomorphisms between the corresponding phase spaces and those of double Chern-Simons theory on an annulus and a disc with Wilson lines are established. Special attention to topological coset G/G has been paid. We prove that a G/G theory on a cylinder with N defects coincides with Chern-Simons theory on a torus times the time-line R with 2N Wilson lines. We have shown also that a G/G theory on a strip with N defects coincides with Chern-Simons theory on a sphere times the time-line R with 2N+4 Wilson lines. This particular example of topological field theory enables us to penetrate into a general picture of defects in semisimple 2D topological field theory. We conjecture that defects in this case described by a 2-category of matrices of vector spaces and that the action of defects on boundary states is given by the discrete Fourier-Mukai transform.
Celeghini, Enrico
2014-01-01
Quantum Mechanics and Signal Processing in the line R, are strictly related to Fourier Transform and Weyl-Heisenberg algebra. We discuss here the addition of a new discrete variable that measures the degree of the Hermite functions and allows to obtain the projective algebra io(2). A Rigged Hilbert space is found and a new discrete basis in R obtained. The operators {O[R]} defined on R are shown to belong to the Universal Enveloping Algebra UEA[io(2)] allowing, in this way, their algebraic discussion. Introducing in the half-line a Fourier-like Transform, the procedure is extended to R^+ and can be easily generalized to R^n and to spherical reference systems.
Indian Academy of Sciences (India)
Sanjog S Nagarkar; Sujit K Ghosh
2015-04-01
A Co(II)-based two-dimensional (2D) metal-organic framework (MOF) [Co(pca)(bdc)0.5(H2O)2] (1) {pca = pyrazine carboxylic acid, and bdc = 1,4-benzene dicarboxylic acid} was synthesized solvothermally. The compound loses the coordinated lattice water molecules on heating which is accompanied by solidstate structural transformation to yield dehydrated phase [Co(pca)(bdc)0.5] (1′). The hydrated structure can be regained by exposing 1′ to water vapour (1′′). These reversible solid-state structural transformations are accompanied by a visible colour change in the material. The dehydrated compound also shows highly selective water uptake over other solvents like MeOH, EtOH, THF. This selective water uptake can be ascribed to the high affinity of polar water molecule towards the open metal site created on heating. The present report provides important insights into the reversible structural transformations observed due to variable coordination number of the central metal ion and transformability of the framework. The selective water uptake over alcohols along with visible colour change demonstrates the potential of the present compound in bio-alcohol purification.
Ricardo Nantes Liang; Wagner Diego Gonçalves; Marccus Victor Almeida Martins; Frank Nelson Crespilho
2013-01-01
The electrochemical properties of micro and nano-electrodes are widely investigated due to their low faradaic and capacitive currents, leading to a new generation of smart and implantable devices. However, the current signals obtained in low-dimensional devices are strongly influenced by noise sources. In this paper, we show the evaluation of filters based on Fast Fourier Transform (FFT) and their implementation in a graphical user interface (GUI) in MATLAB®. As a case study, we evaluated an ...
Directory of Open Access Journals (Sweden)
bahram noshad
2012-11-01
Full Text Available One of mal-operations of the transformer differential protection during the unload transformer energizing with additional line/load from the supplying side is ultra-saturation phenomenon. In this paper, first a new model according to Discrete Fourier Transform (DFT algorithm for investigating the ultra-saturation phenomenon during the unload transformer energizing with additional line/load from the supplying side is presented and its effect on the differential protection of the transformer is considered. In this model, the nonlinear characteristic of the transformer core and the effect of current transformer are taken into account. It is assumed that the additional line/load from the supplying side of the power transformer is a resistive-inductive load. Also, the effect of the residual flux, inception angle and additional line/load from the supplying side on the ultra-saturation phenomenon is investigated. Then, the mal-operation of differential protection by using DFT algorithm is described.
Real-time Fourier transformation of lightwave spectra and application in optical reflectometry.
Malacarne, Antonio; Park, Yongwoo; Li, Ming; LaRochelle, Sophie; Azaña, José
2015-12-14
We propose and experimentally demonstrate a fiber-optics scheme for real-time analog Fourier transform (FT) of a lightwave energy spectrum, such that the output signal maps the FT of the spectrum of interest along the time axis. This scheme avoids the need for analog-to-digital conversion and subsequent digital signal post-processing of the photo-detected spectrum, thus being capable of providing the desired FT processing directly in the optical domain at megahertz update rates. The proposed concept is particularly attractive for applications requiring FT analysis of optical spectra, such as in many optical Fourier-domain reflectrometry (OFDR), interferometry, spectroscopy and sensing systems. Examples are reported to illustrate the use of the method for real-time OFDR, where the target axial-line profile is directly observed in a single-shot oscilloscope trace, similarly to a time-of-flight measurement, but with a resolution and depth of range dictated by the underlying interferometry scheme. PMID:26699041
Chirp-Rate Resolution of Fractional Fourier Transform in Multi-component LFM Signal
Institute of Scientific and Technical Information of China (English)
LIU Feng; HUANG Yu; TAO Ran; WANG Yue
2009-01-01
Distinguishing close chirp-rates of different linear frequency modulation (LFM) signals under concentrated and complicated signal environment was studied.Firstly,detection and parameter estimation of multi-component LFM signal were used by discrete fast fractional Fourier transform (FrFT).Then the expression of chirp-rate resolution in fractional Fourier domain (FrFD) was deduced from discrete normalize time-frequency distribution,when multi-component LFM signal had only one center frequency.Furthermore,the detail influence of the sampling time,sampling frequeney and chirp-rate upon the resolution was analyzed by partial differential equation.Simulation results and analysis indicate that increasing the sampling time can enhance the resolution,but the influence of the sampling frequency can be omitted.What's more,in multi-component LFM signal,the chirp-rate resolution of FrFT is no less than a minimal value,and it mainly dependent on the biggest value of chirp-rates,with which it has an approximately positive exponential relationship.
Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms
Energy Technology Data Exchange (ETDEWEB)
Volkov, V.V., E-mail: volkov@bnl.gov; Han, M.G.; Zhu, Y.
2013-11-15
We propose a fringe-shifting holographic method with an appropriate image wave recovery algorithm leading to exact solution of holographic equations. With this new method the complex object image wave recovered from holograms appears to have much less traditional artifacts caused by the autocorrelation band present practically in all Fourier transformed holograms. The new analytical solutions make possible a double-resolution electron holography free from autocorrelation band artifacts and thus push the limits for phase resolution. The new image wave recovery algorithm uses a popular Fourier solution of the side band-pass filter technique, while the fringe-shifting holographic method is simple to implement in practice. - Highlights: • We propose a fringe-shifting holographic method simple enough for practical implementations. • Our new image-wave-recovery algorithm follows from exact solution of holographic equations. • With autocorrelation band removal from holograms it is possible to achieve double-resolution electron holography data free from several commonly known artifacts. • The new fringe-shifting method can reach an image wave resolution close to single fringe spacing.
International Nuclear Information System (INIS)
A commercial Fourier transform interferometer system with telescopic optics has been installed in a van and used to make long-path absorption and single-ended emission measurements of gaseous pollutant concentrations at a number of geographical locations. The system covers the IR spectra region from 650 cm-1 to 6000 cm-1 at a maximum resolution of 0.06 cm-1. For many pollutants, concentrations in the 1--10-ppb range can be detected over a 1-km path length. To date, measurements have been made in the absorption mode across fertilizer plant gypsum ponds, an oil refinery, and jet engine plumes; industrial stacks, waste gas flares, and jet engine plumes have been studied in the emission mode
Color image encryption using iterative phase retrieve process in quaternion Fourier transform domain
Sui, Liansheng; Duan, Kuaikuai
2015-02-01
A single-channel color image encryption method is proposed based on iterative phase iterative process in quaternion Fourier transform domain. First, three components of the plain color image is confused respectively by using cat map. Second, the confused components are combined into a pure quaternion image, which is encode to the phase only function by using an iterative phase retrieval process. Finally, the phase only function is encrypted into the gray scale ciphertext with stationary white noise distribution based on the chaotic diffusion, which has camouflage property to some extent. The corresponding plain color image can be recovered from the ciphertext only with correct keys in the decryption process. Simulation results verify the feasibility and effectiveness of the proposed method.
International Nuclear Information System (INIS)
Dose distributions of nominal 6 and 18 MV x-ray beams and cobalt-60 photon beams were modelled in three dimensions in heterogeneous phantoms using convolutions that employ the fast Fourier transform. Doses were computed at 65 536 calculation points (i.e. a 64x64x16 matrix) for five spectral components. Primary fluence was calculated by ray-tracing through the inhomogeneous medium. Dose was obtained by convolution with the primary fluence. The primary dose component, mediated by electrons, was calculated separately from the scatter component, mediated by scattered x-rays. The calculation time was approximately 3 minutes per spectral component on a Digital Equipment Corporation VAXstation 3500. Comparisons of FFT convolution calculations with measurements showed that an FFT convolution algorithm can predict most of the characteristics of an x-ray beam passing through a heterogeneous phantom. (author)
Wavelength-scale stationary-wave integrated Fourier-transform spectrometry
Coarer, Etienne Le; Benech, Pierre; Stefanon, Ilan; Morand, Alain; Lérondel, Gilles; Leblond, Grégory; Kern, Pierre; Fedeli, Jean Marc; Royer, Pascal
2007-01-01
Spectrometry is a general physical-analysis approach for investigating light-matter interactions. However, the complex designs of existing spectrometers render them resistant to simplification and miniaturization, both of which are vital for applications in micro- and nanotechnology and which are now undergoing intensive research. Stationary-wave integrated Fourier-transform spectrometry (SWIFTS)-an approach based on direct intensity detection of a standing wave resulting from either reflection (as in the principle of colour photography by Gabriel Lippmann) or counterpropagative interference phenomenon-is expected to be able to overcome this drawback. Here, we present a SWIFTS-based spectrometer relying on an original optical near-field detection method in which optical nanoprobes are used to sample directly the evanescent standing wave in the waveguide. Combined with integrated optics, we report a way of reducing the volume of the spectrometer to a few hundreds of cubic wavelengths. This is the first attempt...
Chen, Cheng; Liang, Jingqiu; Liang, Zhongzhu; Lü, Jinguang; Qin, Yuxin; Tian, Chao; Wang, Weibiao
2015-12-01
A method of "slope splicing" is proposed to build a tall-stepped mirror with high precision in a stepped-mirror-based static Fourier transform infrared spectrometer. The structural parameters were designed, and their errors were analyzed. We present the test results and an analysis of the combined effect of the errors on the recovered spectrum. The spectrum-constructing error of the constructed spectrum, 5.81%, meets the requirements for the system and suitable for realization of a miniaturized spectrometer. We performed experiments with the tall-stepped mirror to obtain the interferogram and spectrum of a silicon carbide light source. Further work is needed to optimize the capability of the system.
International Nuclear Information System (INIS)
Fourier transform infrared (FTIR) spectrometric methodology has been developed for the simultaneous determination of Folpet and Metalaxyl in pesticide formulations. The method involves the extraction of both active principles by sonication of the sample with CHCl3 and direct measurement of the absorbance using peak height values at 1798 cm-1 corrected with a baseline defined at 1810 cm-1 for Folpet, and peak area data established from 1677 to 1667 cm-1 corrected using a baseline from 1692 to 1628 cm-1 for Metalaxyl. Limits of detection (3 s) values of 17 and 16 μg g-1 were found for Folpet and Metalaxyl, respectively, with results comparable with those found by liquid chromatography with UV detection. The new method involves a considerable decrease in solvent consumption. The automation of the procedure by incorporating on-line dissolution and filtration of the samples allows complete mechanisation of the method and improves the safety of operation
The Fourier Transform Microwave/millimeter Spectrum of ScO (X^2Σ^+)
Halfen, D. T.; Min, J.; Ziurys, L. M.
2013-06-01
The pure rotational spectra of ScO (X^2Σ^+) have been recorded in the 4 - 90 GHz range using Fourier transform microwave/millimeter (FTM/mmW) techniques. This species was created in a supersonic jet expansion of laser-ablated scandium vapor and N_2O gas, diluted in argon. The N = 1 → 0 and 2 → 1 rotational transitions in both v = 0 and 1 have been measured near 30 and 61 GHz, respectively. The data over 60 GHz were obtained using a new E-band (60 - 90 GHz) FTmmW spectrometer system. The data have been analyzed, and rotational, fine, and hyperfine constants have been determined, which are in good agreement with those from past optical studies. ScO is a potential circumstellar molecule in giant/supergiant stars, where it is produced in oxygen-burning nucleosynthesis.
International Nuclear Information System (INIS)
Recent progress is described resulting from the past three years of DOE support for studies of combustion-related photofragmentation dynamics, energy transfer, and reaction processes using a time-resolved Fourier transform infrared (FTIR) emission technique. The FTIR is coupled to a high repetition rate excimer laser which produces radicals by photolysis to obtain novel, high resolution measurements on vibrational and rotational state dynamics. The results are important for the study of numerous radical species relevant to combustion processes. The method has been applied to the detailed study of photofragmentation dynamics in systems such as acetylene, which produces C2H; chlorofluoroethylene to study the HF product channel; vinyl chloride and dichloroethylene, which produce HCl; acetone, which produces CO and CH3; and ammonia, which produces NH2. In addition, we have recently demonstrated use of the FTIR technique for preliminary studies of energy transfer events under near single collision conditions, radical-radical reactions, and laser-initiated chain reaction processes
Examinations Of The Matrix Isolation Fourier Transform Infrared Spectra Of Organic Compounds.
Coleman, W. M.
1989-12-01
Matrix isolation Fourier transform infrared spectra (MI/FT-IR), mass spectra (MS), carbon-13 Nuclear Magnetic Resonance (13C-NMR) spectra, condensed phase infrared spectra and vapor phase infrared (IR) spectra are presented for a series of terpene compounds. Subtle differences in positional and configurational isomers commonly found with terpenes could be easily detected by the. MI/FT-IR spqctra. The results are comparable in some aspects to those obtainable from IJC-NMR and thin film IR, however, most importantly, they are acquired at the low nanogram level for MI/FTIR as compared to the milligram level for the other techniques. These results represent an advance in the technology available for the analysis of complex mixtures such as essential oils containing terpene-like molecules.
Kamnev, Alexander A.; Calce, Enrica; Tarantilis, Petros A.; Tugarova, Anna V.; De Luca, Stefania
2015-01-01
Chemically modified pectin derivatives obtained by partial esterification of its hydroxyl moieties with fatty acids (FA; oleic, linoleic and palmitic acids), as well as the initial apple peel pectin were comparatively characterised using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Characteristic changes observed in DRIFT spectra in going from pectin to its FA esters are related to the corresponding chemical modifications. Comparing the DRIFT spectra with some reported data on FTIR spectra of the same materials measured in KBr or NaCl matrices has revealed noticeable shifts of several polar functional groups both in pectin and in its FA-esterified products induced by the halide salts. The results obtained have implications for careful structural analyses of biopolymers with hydrophilic functional groups by means of different FTIR spectroscopic methodologies.
Detection of Left-Sided and Right-Sided Hearing Loss via Fractional Fourier Transform
Directory of Open Access Journals (Sweden)
Shuihua Wang
2016-05-01
Full Text Available In order to detect hearing loss more efficiently and accurately, this study proposed a new method based on fractional Fourier transform (FRFT. Three-dimensional volumetric magnetic resonance images were obtained from 15 patients with left-sided hearing loss (LHL, 20 healthy controls (HC, and 14 patients with right-sided hearing loss (RHL. Twenty-five FRFT spectrums were reduced by principal component analysis with thresholds of 90%, 95%, and 98%, respectively. The classifier is the single-hidden-layer feed-forward neural network (SFN trained by the Levenberg–Marquardt algorithm. The results showed that the accuracies of all three classes are higher than 95%. In all, our method is promising and may raise interest from other researchers.
Botha, J; Lee-Thorp, J; Sponheimer, M
2004-02-01
The Cynodontia are considered to be particularly significant as their remains document the reptile-to-mammal transition during the Permian and Triassic periods. Studies examining cynodont morphology and anatomy have shown that these animals acquired increasingly mammal-like characteristics during their evolution. In this study, we use Fourier Transform Infrared spectroscopy to assess the enamel structure of several Triassic cynodonts. Extant Crocodylus niloticus and Varanus enamel spectra as well as published extant and fossil mammalian data were used as comparisons. The profiles of the cynodont spectra resemble biological apatite, in spite of their great age. The ratio of structural carbonate to phosphate in these cynodonts is significantly higher than in the extant and fossil mammals, but very similar to the extant reptiles. We suggest that the enamel apatite structure of these cynodonts was more similar to the reptilian rather than the mammalian pattern. PMID:14668967
Option pricing in a regime-switching model using the fast Fourier transform
Directory of Open Access Journals (Sweden)
G. Yin
2006-09-01
Full Text Available This paper is concerned with fast Fourier transform (FFT approach to option valuation, where the underlying asset price is governed by a regime-switching geometric Brownian motion. An FFT method for the regime-switching model is developed first. Aiming at reducing computational complexity, a near-optimal FFT scheme is proposed when the modulating Markov chain has a large state space. To test the FFT method, a novel semi-Monte Carlo simulation algorithm is developed. This method takes advantage of the observation that the option value for a given sample path of the underlying Markov chain can be calculated using the Black-Scholes formula. Finally, numerical results are reported.
Mid-infrared Fourier transform spectroscopy with a broadband frequency comb.
Adler, Florian; Masłowski, Piotr; Foltynowicz, Aleksandra; Cossel, Kevin C; Briles, Travis C; Hartl, Ingmar; Ye, Jun
2010-10-11
We present a first implementation of optical-frequency-comb-based rapid trace gas detection in the molecular fingerprint region in the mid-infrared. Near-real-time acquisition of broadband absorption spectra with 0.0056 cm(-1) maximum resolution is demonstrated using a frequency comb Fourier transform spectrometer which operates in the 2100-to-3700-cm(-1) spectral region. We achieve part-per-billion detection limits in 30 seconds of integration time for several important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. PMID:20941086
Robust digital speckle photography based on radon and Fourier-Mellin transforms
Kamau, E. N.; Falldorf, C.; von Kopylow, C.; Bergmann, R. B.
2011-11-01
We present a new and robust method for determining in-plane displacements of an object from distorted Digital Speckle Photography (DSP) images. This new approach is designed particularly to facilitate accurate measurement of deformations of steel samples during a gas quenching heat treatment process, where rigid body motion and large deformations lead to unwanted image distortions. The new method allows the computation and correction of image rotation and magnification via Radon and Fourier-Mellin Transformations prior to calculations of in-plane displacements, thereby alleviating the inaccuracy that arises from the cross correlation of distorted images in conventional DSP. The method is validated through simulation and measurements with predefined deformations. Initial studies show that the new method is well suited for this application and that it enables measurement of displacements with high accuracy in the micrometer range.
Hodges, Colin M.; Akhavan, Jacqueline
For routine identification of forensic samples many techniques are employed. These include ultraviolet spectrophotometry, combined gas chromatography—mass spectroscopy together with high performance liquid chromatography, infrared spectroscopy and X-ray powder diffraction. Conventional Raman spectroscopy is not routinely used by forensic laboratories for the identification of drugs and explosives because of high background scatter and time consuming sample alignment. One way of overcoming these problems is to use the newly developed technique of Fourier Transform Raman spectroscopy. Here negligible sample alignment is required, and there is reduced sample fluorescence. FTR spectra were recorded of pure and contaminated illicit drug samples, together with some explosive materials. Identification of an unknown explosive (Semtex) was also conducted. FTR provides a simple and satisfactory method of identifying certain drugs and explosives. The technique is non-destructive, utilizing small samples with no sample preparation being required.
International Nuclear Information System (INIS)
The electronic part of the Mesooptical Fourier-Transform Microscope (MFTM) and the software for the automatic recording of the straight line particle tracks of minimum ionization in nuclear emulsion are described. The features of the data at the output of the MFTM depending on the geometrical position of a straight line particle track and the algorithm of the read-out of this data are given. The units moving the carriages and rotating the platform of the optical interface of the MFTM are described. The programming supplements to the standard FOKAL'71 subroutines used in these experiments as well as the routine programme used for the evaluation of the mesooptical images of straight line particle tracks are presented
Energy Technology Data Exchange (ETDEWEB)
Hettich, R.L.; Jin, C.; Compton, R.N. (Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6120 (United States)); Buseck, P.R.; Tsipursky, S.J. (Department of Geology, Arizona State University, Tempe, Arizona 85287 (United States))
1993-10-10
Fourier transform mass spectrometry (FTMS) employing both laser desorption/ionization and thermal desorption/electron ionization is useful for the detection and structural characterization of fullerenes and chemically-modified fullerenes. Examination of a carbon-rich shungite rock sample from Russia by transmission electron microscopy and FTMS provided evidence of naturally-occurring fullerenes. Ion-molecule reactions can be studied with FTMS to investigate the electron affinities of modified fullerenes. By monitoring charge exchange reactions, the electron affinities of C[sub 60]F[sub x] (x=44,46) and C[sub 70]F[sub y] (y=52,54) were found to be substantially higher than the values for the parent fullerenes.
Mesooptical Fourier transform microscope - a new device for high energy physics
International Nuclear Information System (INIS)
A new device for high energy physics, Mesooptical Fourier Transform Microscope (MFTM), designed for observation of straight-line particle tracks in nuclear emulsion is described. The MFTM works without any mechanical or electronical depth scanning and can be considered as a selectively viewing eye. The computer controlled system containing MFTM as the main unit is given. This system can be used for fast search particle tracks and events produced by high energy neutrinos from accelerators. The results of the first experimental test of the computer controlled MFTM are presented. The performances of this system are described and discussed. It is shown that the angular resolution of the MFTM is 1 angular minute and the measurement time is equal to 30 ms. As all operations in the MFTM go without any depth scanning this new system works at least two orders of magnitude faster than any known system with a traditional optical microscope
Exhibition of the periodicity of Quantum Fourier Transformation in Nuclear Magnetic Resonance
Peng, X; Fang, X; Feng, M; Yang, X; Liu, M; Gao, K; Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Yang, Xiaodong; Liu, Maili; Gao, Kelin
2002-01-01
The remarkable capability of quantum Fourier transformation (QFT) to extract the periodicity of a given periodic function has been exhibited by using nuclear magnetic resonance (NMR) techniques. Two separate sets of experiments were performed. In a full QFT, the periodicity were validated with state tomography and fidelity measurements. For a simplified QFT, the three-qubit pseudo-pure state was created by introducting an additional observer spin, and the spectra recorded on the observer spin showed intuitively the power of QFT\\ to find the periodicity. Experimentally realizing the QFT provides a critical step to implement the renowned Shor's quantum factoring algorithm and many other algorithms. Moveover, it can be applied to the study of quantum chaos and other quantum information processing.
Fourier transform based iterative method for x-ray differential phase-contrast computed tomography
Cong, Wenxiang; Wang, Ge
2011-01-01
Biological soft tissues encountered in clinical and pre-clinical imaging mainly consist of light element atoms, and their composition is nearly uniform with little density variation. Thus, x-ray attenuation imaging suffers from low image contrast resolution. By contrast, x-ray phase shift of soft tissues is about a thousand times greater than x-ray absorption over the diagnostic energy range, thereby a significantly higher sensitivity can be achieved in terms of phase shift. In this paper, we propose a novel Fourier transform based iterative method to perform x-ray tomographic imaging of the refractive index directly from differential phase shift data. This approach offers distinct advantages in cases of incomplete and noisy data than analytic reconstruction, and especially suitable for phase-contrast interior tomography by incorporating prior knowledge in a region of interest (ROI). Biological experiments demonstrate the merits of the proposed approach.
Reference Ultraviolet Wavelengths of Cr III Measured by Fourier Transform Spectrometry
Smillie, D.G.; Pickering, J.C.; Smith, P.L.
2008-01-01
We report Cr III ultraviolet (UV) transition wavelengths measured using a high-resolution Fourier transform spectrometer (FTS), for the first time, available for use as wavelength standards. The doubly ionized iron group element spectra dominate the observed opacity of hot B stars in the UV, and improved, accurate, wavelengths are required for the analysis of astronomical spectra. The spectrum was excited using a chromium-neon Penning discharge lamp and measured with the Imperial College vacuum ultraviolet FTS. 140 classified 3d(exp 3)4s- 3d(exp 3)4p Cr III transition lines, in the spectral range 38,000 to 49,000 cm(exp -1) (2632 to 2041 A), the strongest having wavelength uncertainties less than one part in 10(exp 7), are presented.
Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui
2016-01-01
A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way. PMID:26233789
Recent advances in Earth remote sensing: Fourier Transform Stationary HyperSpectral Imagers
Directory of Open Access Journals (Sweden)
I. Pippi
2006-06-01
Full Text Available Future trends for the development of new remote sensing imagers have being defined since the launch of the first Fourier Transform HyperSpectral Imager (FTHSI on board of DoD technological satellite MightySat II.1. Starting from the analysis of FTHSI optical configuration we have proposed an interesting modification which produces an image of the observed surface superimposed to a stationary interference pattern. This new optical arrangement together with the possibility to accommodate the spectral resolution by changing the device optical aperture and the sensor sampling step make the new instrument interesting for Earth remote sensing purposes. In this paper we present some preliminary results obtained from a laboratory prototype developed at our Institute. Some hints are discussed about the use of such an instrument on board of airborne and satellite platforms.
Astigmatism error modification for absolute shape reconstruction using Fourier transform method
He, Yuhang; Li, Qiang; Gao, Bo; Liu, Ang; Xu, Kaiyuan; Wei, Xiaohong; Chai, Liqun
2014-12-01
A method is proposed to modify astigmatism errors in absolute shape reconstruction of optical plane using Fourier transform method. If a transmission and reflection flat are used in an absolute test, two translation measurements lead to obtain the absolute shapes by making use of the characteristic relationship between the differential and original shapes in spatial frequency domain. However, because the translation device cannot guarantee the test and reference flats rigidly parallel to each other after the translations, a tilt error exists in the obtained differential data, which caused power and astigmatism errors in the reconstructed shapes. In order to modify the astigmatism errors, a rotation measurement is added. Based on the rotation invariability of the form of Zernike polynomial in circular domain, the astigmatism terms are calculated by solving polynomial coefficient equations related to the rotation differential data, and subsequently the astigmatism terms including error are modified. Computer simulation proves the validity of the proposed method.
Speeding-up exchange-mediated saturation transfer experiments by Fourier transform
Energy Technology Data Exchange (ETDEWEB)
Carneiro, Marta G.; Reddy, Jithender G.; Griesinger, Christian; Lee, Donghan, E-mail: dole@nmr.mpibpc.mpg.de [Max-Planck Institute for Biophysical chemistry, Department of NMR-based Structural Biology (Germany)
2015-11-15
Protein motions over various time scales are crucial for protein function. NMR relaxation dispersion experiments play a key role in explaining these motions. However, the study of slow conformational changes with lowly populated states remained elusive. The recently developed exchange-mediated saturation transfer experiments allow the detection and characterization of such motions, but require extensive measurement time. Here we show that, by making use of Fourier transform, the total acquisition time required to measure an exchange-mediated saturation transfer profile can be reduced by twofold in case that one applies linear prediction. In addition, we demonstrate that the analytical solution for R{sub 1}ρ experiments can be used for fitting the exchange-mediated saturation transfer profile. Furthermore, we show that simultaneous analysis of exchange-mediated saturation transfer profiles with two different radio-frequency field strengths is required for accurate and precise characterization of the exchange process and the exchanging states.
Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocomposites
Ivashchenko, Olena; Jurga-Stopa, Justyna; Coy, Emerson; Peplinska, Barbara; Pietralik, Zuzanna; Jurga, Stefan
2016-02-01
This article presents a study on the detection of antibiotics in magnetite/Ag/antibiotic nanocomposites using Fourier transform infrared (FTIR) and Raman spectroscopy. Antibiotics with different spectra of antimicrobial activities, including rifampicin, doxycycline, cefotaxime, and ceftriaxone, were studied. Mechanical mixtures of antibiotics and magnetite/Ag nanocomposites, as well as antibiotics and magnetite nanopowder, were investigated in order to identify the origin of FTIR bands. FTIR spectroscopy was found to be an appropriate technique for this task. The spectra of the magnetite/Ag/antibiotic nanocomposites exhibited very weak (for doxycycline, cefotaxime, and ceftriaxone) or even no (for rifampicin) antibiotic bands. This FTIR "invisibility" of antibiotics is ascribed to their adsorbed state. FTIR and Raman measurements show altered Csbnd O, Cdbnd O, and Csbnd S bonds, indicating adsorption of the antibiotic molecules on the magnetite/Ag nanocomposite structure. In addition, a potential mechanism through which antibiotic molecules interact with magnetite/Ag nanoparticle surfaces is proposed.
Zhang, Yong; Cao, Chun-yu; Feng, Wen-ying; Xu, Ming; Su, Zhen-hua; Liu, Xiao-meng; Lü, Wei-jun
2011-03-01
As one of the most powerful tools to investigate the compositions of raw materials and the property of pulp and paper, infrared spectroscopy has played an important role in pulp and paper industry. However, the traditional transmission infrared spectroscopy has not met the requirements of the producing processes because of its disadvantages of time consuming and sample destruction. New technique would be needed to be found. Fourier transform attenuated total reflection infrared spectroscopy (ATR-FTIR) is an advanced spectroscopic tool for nondestructive evaluation and could rapidly, accurately estimate the production properties of each process in pulp and paper industry. The present review describes the application of ATR-FTIR in analysis of pulp and paper industry. The analysis processes will include: pulping, papermaking, environmental protecting, special processing and paper identifying. PMID:21595211
Jusman, Yessi; Mat Isa, Nor Ashidi; Ng, Siew-Cheok; Hasikin, Khairunnisa; Abu Osman, Noor Azuan
2016-07-01
Fourier transform infrared (FTIR) spectroscopy technique can detect the abnormality of a cervical cell that occurs before the morphological change could be observed under the light microscope as employed in conventional techniques. This paper presents developed features extraction for an automated screening system for cervical precancerous cell based on the FTIR spectroscopy as a second opinion to pathologists. The automated system generally consists of the developed features extraction and classification stages. Signal processing techniques are used in the features extraction stage. Then, discriminant analysis and principal component analysis are employed to select dominant features for the classification process. The datasets of the cervical precancerous cells obtained from the feature selection process are classified using a hybrid multilayered perceptron network. The proposed system achieved 92% accuracy.
Studies of beam propagation characteristics on apertured fractional Fourier transforming systems
Institute of Scientific and Technical Information of China (English)
Hongjie Liu(刘红婕); Daomu Zhao(赵道木); Haidan Mao(毛海丹); Shaomin Wang(王绍民); Feng Jing(景峰); Qihua Zhu(朱启华); Xiaofeng Wei(魏晓峰); Xiaomin Zhang(张小民)
2004-01-01
Based on the principle that a rectangular function can be expanded into a sum of complex Gaussian functions with finite numbers, propagation characteristics of a Gaussian beam or a plane wave passing through apertured fractional Fourier transforming systems are analyzed and corresponding analytical formulae are obtained. Analytical formulae in different fractional orders are numerically simulated and compared with the diffraction integral formulae, the applicable range and exactness of analytical formulae are confirmed.It is shown that the calculating speed of using the obtained approximate analytical formulae, is several hundred times faster than that of using diffraction integral directly. Meanwhile, by using analytical formulae the effect of different aperture sizes on Gaussian beam propagation characteristics is numerically simulated, it is shown that the diffraction effect can be neglected when the aperture size is 5 times larger than the beam waist size.
International Nuclear Information System (INIS)
This report describes methods for automatic processing of gamma ray spectra acquired with HPGe detectors. The processing incorporated both classical and signal processing approach. The classical method was used for smoothing, detecting significant peaks, finding peak envelope limits and a proposed method of finding peak limits, peak significance index, full width at half maximum, detecting doublets for further analysis. To facilitate application of signal processing to nuclear spectra, Madan et al. gave a new classification of signals and identified nuclear spectra as Type II signals, mathematically formalized modified Fourier transform and pioneered its application to process doublet envelopes acquired with modern spectrometers. It was extended to facilitate routine analysis of the spectra. A facility for energy and efficiency calibration was also included. The results obtained by analyzing observed gamma-ray spectra using the above approach compared favourably with those obtained with SAMPO and also those derived from table of radioisotopes. (author). 15 refs., 3 figs., 3 tabs
Li, Chao; Yang, Sheng-Chao; Guo, Qiao-Sheng; Zheng, Kai-Yan; Wang, Ping-Li; Meng, Zhen-Gui
2016-01-01
A combination of Fourier transform infrared spectroscopy with chemometrics tools provided an approach for studying Marsdenia tenacissima according to its geographical origin. A total of 128 M. tenacissima samples from four provinces in China were analyzed with FTIR spectroscopy. Six pattern recognition methods were used to construct the discrimination models: support vector machine-genetic algorithms, support vector machine-particle swarm optimization, K-nearest neighbors, radial basis function neural network, random forest and support vector machine-grid search. Experimental results showed that K-nearest neighbors was superior to other mathematical algorithms after data were preprocessed with wavelet de-noising, with a discrimination rate of 100% in both the training and prediction sets. This study demonstrated that FTIR spectroscopy coupled with K-nearest neighbors could be successfully applied to determine the geographical origins of M. tenacissima samples, thereby providing reliable authentication in a rapid, cheap and noninvasive way.
Institute of Scientific and Technical Information of China (English)
Bing DENG; Jun-bao LUAN; Shi-qi CUI
2014-01-01
Parameter estimation is analyzed using two kinds of common sampling-type DFRFT (discrete fractional Fourier transform) algorithm. A model of parameter estimation is established. The factors which influence estimation accuracy are analyzed. And the simulation is made to verify the conclusions. From the theoretic analysis and simulation verification, it can be drawn that, for the estimation of chirp-rate and initial fre-quency, Pei's method [10] is more suitable if the absolute value of chirp-rate is small relatively; Ozaktas' method [9] is more suitable if the absolute value of chirp-rate is large relatively;and the two methods are both workable if the absolute value of chirp-rate is moderate. The scope of moderate chirp-rate can be approximately determined as [40 Hz/s, 110 Hz/s].
Fourier transform infrared spectroscopy techniques for the analysis of drugs of abuse
Kalasinsky, Kathryn S.; Levine, Barry K.; Smith, Michael L.; Magluilo, Joseph J.; Schaefer, Teresa
1994-01-01
Cryogenic deposition techniques for Gas Chromatography/Fourier Transform Infrared (GC/FT-IR) can be successfully employed in urinalysis for drugs of abuse with detection limits comparable to those of the established Gas Chromatography/Mass Spectrometry (GC/MS) technique. The additional confidence of the data that infrared analysis can offer has been helpful in identifying ambiguous results, particularly, in the case of amphetamines where drugs of abuse can be confused with over-the-counter medications or naturally occurring amines. Hair analysis has been important in drug testing when adulteration of urine samples has been a question. Functional group mapping can further assist the analysis and track drug use versus time.
The calculation of site-dependent earthquake motions -3. The method of fast fourier transform
International Nuclear Information System (INIS)
The method of Fast Fourier transform (FFT) is applied to the problem of the determination of site-dependent earthquake motions, which takes account of local geological effects. A program, VELAY 1, which uses the FFT method has been written and is described in this report. The assumptions of horizontally stratified, homogeneous, isotropic, linearly viscoelastic layers and a normally incident plane seismic wave are made. Several examples are given, using VELAY 1, of modified surface acceleration-time histories obtained using a selected input acceleration-time history and a representative system of soil layers. There is a discussion concerning the soil properties that need to be measured in order to use VELAY 1 (and similar programs described in previous reports) and hence generate site-dependent ground motions suitable for aseismic design of a nuclear power plant at a given site. (author)
Zimmerman, G. A.; Gulkis, S.
1991-01-01
The sensitivity of a matched filter-detection system to a finite-duration continuous wave (CW) tone is compared with the sensitivities of a windowed discrete Fourier transform (DFT) system and an ideal bandpass filter-bank system. These comparisons are made in the context of the NASA Search for Extraterrestrial Intelligence (SETI) microwave observing project (MOP) sky survey. A review of the theory of polyphase-DFT filter banks and its relationship to the well-known windowed-DFT process is presented. The polyphase-DFT system approximates the ideal bandpass filter bank by using as few as eight filter taps per polyphase branch. An improvement in sensitivity of approx. 3 dB over a windowed-DFT system can be obtained by using the polyphase-DFT approach. Sidelobe rejection of the polyphase-DFT system is vastly superior to the windowed-DFT system, thereby improving its performance in the presence of radio frequency interference (RFI).
The use of near infrared Fourier Transform techniques in the study of surface enhanced Raman spectra
Fleischmann, M.; Sockalingum, D.; Musiani, M. M.
Near infrared Fourier Transform Raman spectroscopy has been used to study the SERS of a number of electrode-solution interfaces. These measurements are illustrated by the following examples: the adsorption of pyridine on Ag, Cu and An surfaces; the adsorption of ferri- and ferrocyanide ions on An electrodes in two different support electrolytes; the behaviour of the corrosion inhibitors benzotriazole and 2-aminopyrimidine at Cu surfaces. Measurements of the DSERS spectra of pyridine at Ag electrodes and of normal Raman spectra of pyridine at Pt electrodes are also reported. The results are also compared with data taken by conventional methods in the visible region and the advantages of this newly developed technique are assessed.
Laser Mode Behavior of the Cassini CIRS Fourier Transform Spectrometer at Saturn
Brasunas, John C.
2012-01-01
The CIRS Fourier transform spectrometer aboard the NASA/ESA/ASI Cassini orbiter has been acquiring spectra of the Saturnian system since 2004. The CIRS reference interferometer employs a laser diode to trigger the interferogram sampling. Although the control of laser diode drive current and operating temperature are stringent enough to restrict laser wavelength variation to a small fraction of CIRS finest resolution element, the CIRS instrument does need to be restarted every year or two, at which time it may start in a new laser mode. By monitoring the Mylar absorption features in uncalibrated spectra due to the beam splitter Mylar substrate, it can be shown that these jumps are to adjacent modes and that most of the eight-year operation so far is restricted to three adjacent modes. For a given mode, the wavelength stability appears consistent with the stability of the laser diode drive curren.t and operating temperature.
Zhang, Xiaoxing; Liu, Heng; Ren, Jiangbo; Li, Jian; Li, Xin
2015-02-01
Gas-insulated switchgear (GIS) internal SF6 gas produces specific decomposition components under partial discharge (PD). By detecting these characteristic decomposition components, such information as the type and level of GIS internal insulation deterioration can be obtained effectively, and the status of GIS internal insulation can be evaluated. SF6 was selected as the background gas for Fourier transform infrared spectroscopy (FTIR) detection in this study. SOF2, SO2F2, SO2, and CO were selected as the characteristic decomposition components for system analysis. The standard infrared absorption spectroscopy of the four characteristic components was measured, the optimal absorption peaks were recorded and the corresponding absorption coefficient was calculated. Quantitative detection experiments on the four characteristic components were conducted. The volume fraction variation trend of four characteristic components at different PD time were analyzed. And under five different PD quantity, the quantitative relationships among gas production rate, PD time, and PD quantity were studied.
Photoacoustic detection of blood in dental pulp by using short-time Fourier transform
Yamada, Azusa; Kakino, Satoko; Matsuura, Yuji
2016-03-01
A method based on photoacoustic analysis is proposed to diagnose dental pulp vitality. Photoacoustic analysis enables to get signal from deeper tissues than other optical analyses and therefore, signal detection from root canal of thick dental tissues such as molar teeth is expected. As a light source for excitation of photoacoustic waves, a microchip Q-switched YAG laser with a wavelength of 1064 nm was used and owing to large penetration depth of the near infrared laser, photoacoustic signals from dental root were successfully obtained. It was found that the photoacoustic signals from the teeth containing hemoglobin solution in the pulp cavity provide vibration in high frequency region. It was also shown that the intensities of the high frequency component have correlation with the hemoglobin concentration of solution. We applied short-time Fourier transform for evaluation of photoacoustic signals and this analysis clearly showed photoacoustic signals from dental root.
Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K
2016-08-01
In this paper we propose the design of communication systems based on using periodic nonlinear Fourier transform (PNFT), following the introduction of the method in the Part I. We show that the famous "eigenvalue communication" idea [A. Hasegawa and T. Nyu, J. Lightwave Technol. 11, 395 (1993)] can also be generalized for the PNFT application: In this case, the main spectrum attributed to the PNFT signal decomposition remains constant with the propagation down the optical fiber link. Therefore, the main PNFT spectrum can be encoded with data in the same way as soliton eigenvalues in the original proposal. The results are presented in terms of the bit-error rate (BER) values for different modulation techniques and different constellation sizes vs. the propagation distance, showing a good potential of the technique. PMID:27505800
Directory of Open Access Journals (Sweden)
Bhoomendra Bhongade
2014-01-01
Full Text Available A quantitative method using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS was developed and validated for the estimation of ciprofloxacin in its tablet dosage forms. The solid-state samples were prepared by dilution in dry potassium bromide and were analyzed by FTIR spectrophotometer with DRIFT sampling technique. A linear relationship for the carbonyl peak area centered around 1709 cm−1 was observed in the range of 0.3–1.5% w/w with good correlation coefficient of 0.998. The percent recovery of ciprofloxacin in three marketed tablet dosage forms was in the range of 98.76 ± 0.27. The present reported method is precise, reproducible, and eco-friendly. DRIFTS may have a potential as an alternative method for qualitative and quantitative analysis of ciprofloxacin in bulk drugs and tablet dosage forms.
Institute of Scientific and Technical Information of China (English)
TANG Bin; LI Rui-peng; JIN Yi; JIANG Mei-ping
2012-01-01
Based on the definition of fractional Fourier transform (FrFT) in the cylindrical coordinate system,the propagation properties of a controllable dark-hollow beam (CDHB) are investigated in detail.An analytical formula is derived for the FrFT of a CDHB.By using the derived formula,the properties of a CDHB in the FrFT plane are illustrated numerically.The results show that the properties of the intensity of the beam in the FrFT are closely related to not only the fractional order but also initial beam parameter,beam order and the lens focal length of the optical system for performing FrFT.The derived formula provides an effective and convenient way for analyzing and calculating the FrFT ofa CDHB.
Spherical T-Duality and the spherical Fourier-Mukai transform
Bouwknegt, Peter; Mathai, Varghese
2015-01-01
In [arxiv:1405.5844], we introduced spherical T-duality, which relates pairs of the form $(P,H)$ consisting of a principal $SU(2)$-bundle $P\\rightarrow M$ and a 7-cocycle $H$ on $P$. Intuitively, spherical T-duality exchanges $H$ with the second Chern class $c_2(P)$. Unless $\\mathrm{dim}(M)\\leq 4$, not all pairs admit spherical T-duals and the spherical T-duals are not always unique. In this paper, we define a canonical spherical Poincar\\'e vector bundle $\\mathcal P$ on $SU(2)\\times SU(2)$ and the spherical Fourier-Mukai transform, which implements a degree shifting isomorphism in K-theory on the trivial $SU(2)$-bundle with trivial 7-flux, and then (partially) generalise it to prove that all spherical T-dualities induce a natural degree-shifting isomorphism on the 7-twisted K-theories of the bundles when $\\mathrm{dim}(M)\\leq 4$.
Fast Fourier transform analysis of sounds made while swallowing various foods.
Taniwaki, Mitsuru; Kohyama, Kaoru
2012-10-01
The cervical auscultation method was applied to investigate sounds generated while swallowing various foods with unique physical properties, including liquid (water), semiliquid (yogurt), and solid (konjac jelly). To study the differences among swallowing sounds for various foods, fast Fourier transform (FFT) analysis was applied to signals that were attributed to the flow of a food bolus, which is a swallowable soft mass of chewed food. An FFT program was developed that enabled the calculation of a spectrum for a specified region of time domain swallowing sound signals. The intensity of spectra in the frequency range between 400 and 1000 Hz significantly differed: liquid > semiliquid > solid. The FFT spectrum in this range was suggested to represent the frequency characteristics of the swallowing sounds of various foods. PMID:23039442
Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode.
Goncharov, Vasily V; Hall, Gregory E
2016-08-28
We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method is capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region. PMID:27586915
Relative-coordinate determination for visual double stars by applying Fourier transforms
Directory of Open Access Journals (Sweden)
Radović Viktor
2013-01-01
Full Text Available We discuss the software developed for the purpose of determining the relative coordinates (position angle θ and separation ρ for visual double or multiple stars. It is based on application of Fourier transforms in treating CCD frames of these systems. The objective was to determine the relative coordinates automatically to an extent as large as possible. In this way the time needed for the reduction of many CCD frames becomes shorter. The capabilities and limitations of the software are examined. Besides, the possibility of improving is also considered. The software has been tested and checked on a sample consisting of CCD frames of 165 double or multiple stars obtained with the 2m telescope at NAO Rozhen in Bulgaria in October 2011. The results have been compared with the corresponding results obtained by applying different software and the agreement is found to be very good.
A device for fluorescence temperature measurement based on fast fourier transform
Institute of Scientific and Technical Information of China (English)
WANG Dong-sheng; WANG Gui-mei; PAN Wei-wei; WANG Yu-tian
2008-01-01
A sapphire fiber thermal probe with Cr3+ion-doped end was grown using the laser heated pedestal method.The fluores-ccnce themal probe offers advantages of compact structure,high performance and the ability to sustain high temperature from the room temperature to 450℃.Based on the fast fourier transform(FFT),the fluorescence lifetime is obtained from the tangent function of the phase angle of the first non-zeroth item of FFT result.Compared with other traditional fitting methods,our method has advantages such as fast speed,high accuracy and being free from the influence of the base signal.The standard deviation of FFT method is about half of that of the Prony method and close to the one of the Marquardt method.In addition.since the FFT method is immunity to the background noise of the signal,the background noise analysis can be skipped.
Label-free identification of individual bacteria using Fourier transform light scattering
Jo, YoungJu; Kim, Min-hyeok; Park, HyunJoo; Kang, Suk-Jo; Park, YongKeun
2015-01-01
Rapid identification of bacterial species is crucial in medicine and food hygiene. In order to achieve rapid and label-free identification of bacterial species at the single bacterium level, we propose and experimentally demonstrate an optical method based on Fourier transform light scattering (FTLS) measurements and statistical classification. For individual rod-shaped bacteria belonging to four bacterial species (Listeria monocytogenes, Escherichia coli, Lactobacillus casei, and Bacillus subtilis), two-dimensional angle-resolved light scattering maps are precisely measured using FTLS technique. The scattering maps are then systematically analyzed, employing statistical classification in order to extract the unique fingerprint patterns for each species, so that a new unidentified bacterium can be identified by a single light scattering measurement. The single-bacterial and label-free nature of our method suggests wide applicability for rapid point-of-care bacterial diagnosis.
A far-infrared Fourier transform spectrometer with an antenna-coupled niobium bolometer
International Nuclear Information System (INIS)
We have designed and constructed a custom far-infrared Fourier transform spectrometer using an antenna-coupled bolometer as a detector. The active element of the detector is a superconducting niobium microbridge, and the far-infrared signal is coupled to the microbridge via a planar antenna mounted on a hyperhemispherical silicon lens. The spectrometer uses a broadband blackbody source with frequency-independent optical components, and thus the system bandwidth is set by the detector antenna. We have fabricated devices with two different antenna types, the double dipole and the log spiral, and have characterized the spectral response of each. This spectrometer can utilize the fast response of the niobium bolometer to perform time-resolved far-infrared spectroscopy on nanosecond to millisecond timescales. These timescales are too fast for standard commercial bolometers and too long for a typical optical delay line
Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network.
Minami, K; Nakajima, H; Toyoshima, T
1999-02-01
We have developed a method to discriminate life-threatening ventricular arrhythmias by observing the QRS complex of the electrocardiogram (ECG) in each heartbeat. Changes in QRS complexes due to rhythm origination and conduction path were observed with the Fourier transform, and three kinds of rhythms were discriminated by a neural network. In this paper, the potential of our method for clinical uses and real-time detection was examined using human surface ECG's and intracardiac electrograms (EGM's). The method achieved high sensitivity and specificity (> or = 0.98) in discrimination of supraventricular rhythms from ventricular ones. We also present a hardware implementation of the algorithm on a commercial single-chip CPU. PMID:9932339
Davis, Benjamin L; Shields, Douglas W; Kennefick, Julia; Kennefick, Daniel; Seigar, Marc S; Lacy, Claud H S; Puerari, Ivânio
2012-01-01
A logarithmic spiral is a prominent feature appearing in a majority of observed galaxies. This feature has long been associated with the traditional Hubble classification scheme, but historical quotes of pitch angle of spiral galaxies have been almost exclusively qualitative. We have developed a methodology, utilizing two-dimensional fast Fourier transformations of images of spiral galaxies, in order to isolate and measure the pitch angles of their spiral arms. Our technique provides a quantitative way to measure this morphological feature. This will allow comparison of spiral galaxy pitch angle to other galactic parameters and test spiral arm genesis theories. In this work, we detail our image processing and analysis of spiral galaxy images and discuss the robustness of our analysis techniques.
Directory of Open Access Journals (Sweden)
Manokaran Kalaiselvi
2012-02-01
Full Text Available Ananas comosus (L. Merrill is belonging to the family Bromeliaceae which act as an anti-inflammatory, antitumor effect. The present study is aimed to appraise the antioxidant potential and Fourier transform infrared spectroscopy (FTIR analysis in Ananus comosus peel. The enzymatic and non enzymatic antioxidants profiles were analyzed in fresh peel of pineapple with the standard protocols and the FTIR was applied and Infrared spectrum in mid infrared region 4000–400 cm–1 was used for discriminating and to identify various functional groups present in the ethanolic extract of Ananus comosus. The fresh peel shows the significant amount of antioxidants and the FTIR analysis also found the presence of amino acids, alkenes, nitrates, nitrites, ethers, esters, aldehydes, alkynes, aromatic compounds, organic halogen compounds, carbohydrates, sulphur derivatives and polysaccharides. In conclusion, the results presented in the peel of Ananus comosus have strong antioxidant content which may be act as good pharmacotherapeutic agents in future.
Institute of Scientific and Technical Information of China (English)
SUWuxun; ZHANGWeibin; WANGJiancheng
2005-01-01
Applying the Mobius transform to the eight often-used waveforms and the evaluations of their inverse transform as well as the inverse transform of their Fourier series, were investigated. Then the results, the sine, cosine and general periodic function expanded on these waveforms and the formula for evaluating the expanding coefficients on these non-orthogonal function set were derived. Perhaps more important, in the evaluation process, another non-orthogonal function set were deduced, which are orthogonal to the former set that the integral of their product in a period T was orthogonal. These two function set orthogonal to each other, as the modulation function set and the demodulation function set, could play an important role in the information modulatingdemodulating.
Rafert, J. B.; Holbert, E. T.; Rusk, E. T.; Durham, S. E.; Caudill, E.; Keating, D.; Newby, H.
1992-12-01
We have constructed several visible, Spatially-Modulated Imaging Fourier Transform Spectrometers (SMIFTS) for spatially resolved spectral imaging in the visible wavelength region based on work by several authors including Yoshihara and Kitade (1967), Okamoto et al. (1984), Barnes (1985) and Smith and Schempp (1991). Our spectrometers require no moving parts, are compact and enjoy a number of advantages over the other spectral data collection technologies. The unique combination of characteristics define an important niche for astronomical, remote sensing, and reconnaissance spectral data acquisition. Our SMIFTS simultaneously acquires hundreds or thousands of spectral bands for hundreds or thousands of spectral channesl. This type of sensor has been called a "hyperspectral" sensor to emphasize the major quantitative difference between this type of sensor and multispectral imagers which collect only a few spectral bands. The SMIFTS consists of input optics (a telescope), a field limiting aperture, a beamsplitter which divides the input beam into two paths, two mirrors which redirect the split beams through the same path, a collimating lens which forms the interferogram of the input aperture on the detector plane, and a cylindrical imaging lens. Thus on the detector array one axis contains spatial information and the other axis contains the spectral information for each point of the spatial axis. The result of this arrangement is that each row of the detector array contains the interferogram of the corresponding point on the aperture or slit. This slit can be fixed upon the target, or the slit can be scanned across the target to build up a second axis of spatial information resulting in a data set with four dimensions: two spatial, one spectral, and one temporal. We present sample data for both astronomical and remote sensing applications taken with the Malabar SMIFTS. Barnes, T.H. "Photodiode Array Fourier Transform Spectrometer with Improved Dynamic Range", Appl
Performance evaluation of fast Fourier-transform continuous cyclic-voltammetry pesticide biosensor
Energy Technology Data Exchange (ETDEWEB)
Ebrahimi, Bahman [Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Shojaosadati, Seyed Abbas, E-mail: shoja_sa@modares.ac.ir [Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Daneshgar, Parandis [Institute of Biochemistry and Biophysic, University of Tehran, Tehran (Iran, Islamic Republic of); Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Mohammad [Biotechnology Group, Chemical Engineering Department, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)
2011-02-21
In this work, a method for the fast monitoring of OPs in flow-injection systems was evaluated. The fast Fourier transform continuous cyclic-voltammetry (FFTCCV) at the carbon-paste electrode in a flowing solution system was used for determination of OPs. In this method the S/N ratio is enhanced by using of fast Fourier transform of the analyte and signal integration. FFTCCV can be considered as a new sensitive, accurate and fast method for determination of drugs and some pesticides. However, in order to obtain better sensitivity for a specific target, experimental parameters should be optimized. Response surface methodology (RSM) was applied to optimize three effective parameters (enzyme activity, multiwall carbon nanotube quantity and acidic sol-gel quantity). The optimum values for the tested parameters were enzyme amount H0.169 U cm{sup -2}, multiwall carbon nanotube (MWCNT) 0.607 mL and acidic sol-gel 1.012 mL. The optimum feed pH, feed flow rate, ATChCl concentration and sweeping-rate were found to be 7.4, 0.34 mL min{sup -1}, 0.750 mM and 10 V s{sup -1}, respectively. The long-term stability of this flow-through system was 80% of its initial response after 120 days. Based on an incubation time of 12 min, it was found that the detection limit for paraoxon was equal to 1.7 x 10{sup -7} mg L{sup -1} (6.2 x 10{sup -13} M). The developed biosensor exhibited good repeatability and reproducibility. This study provides a new, modern, sensitive tool for the analysis of organophosphate pesticides.
Quantitative study of a gaseous atmosphere by Fourier transformation infrared spectroscopy (FTIR)
International Nuclear Information System (INIS)
The aim of this work is to implement an in situ quantitative analysis of gases present in a gaseous atmosphere by Fourier transformation infrared spectroscopy in order to determine the processes occurring during the uranium corrosion reactions. Indeed, during these reactions, the gaseous atmosphere initially present evolves during the reaction and leads to the formation of new gaseous species. The aim is then to in situ quantify the proportion of species present during all the reactional process. A preliminary study on pure gases has been carried out. The studied gases are: CH4, CO2, H2 and CO. The aim is to identify their spectral symbol in the infrared and to determine their behaviour (absorbance) in terms of their concentration. The study of different binary gases mixtures, as for instance CO2/H2, CH4/H2, CO/H2 or CH4/CO2 has been carried out too. This study presents the results concerning the CO2/H2 mixture and more particularly the evolution of the spectral sign of gases in terms of the partial concentrations of H2 and CO2. The study of the spectra of this mixtures show that the presence of a gaseous specie has an influence on the characteristics of the peaks (intensity and area) of the spectra relative to other gaseous species present in the mixture according to a transfer function which has then been determined. The feasibility of the implementation of an in situ quantitative gaseous analysis by Fourier transformation infrared spectroscopy is then discussed from FTIR tables (intensity and area of peaks) obtained on gaseous mixtures. (O.M.)
International Nuclear Information System (INIS)
Thermally activated 3D to 2D structural transformation of the binuclear [Ni2(en)2(H2O)6(pyr)]·4H2O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system
Transformed Fourier and Fick equations for the control of heat and mass diffusion
International Nuclear Information System (INIS)
We review recent advances in the control of diffusion processes in thermodynamics and life sciences through geometric transforms in the Fourier and Fick equations, which govern heat and mass diffusion, respectively. We propose to further encompass transport properties in the transformed equations, whereby the temperature is governed by a three-dimensional, time-dependent, anisotropic heterogeneous convection-diffusion equation, which is a parabolic partial differential equation combining the diffusion equation and the advection equation. We perform two dimensional finite element computations for cloaks, concentrators and rotators of a complex shape in the transient regime. We precise that in contrast to invisibility cloaks for waves, the temperature (or mass concentration) inside a diffusion cloak crucially depends upon time, its distance from the source, and the diffusivity of the invisibility region. However, heat (or mass) diffusion outside cloaks, concentrators and rotators is unaffected by their presence, whatever their shape or position. Finally, we propose simplified designs of layered cylindrical and spherical diffusion cloaks that might foster experimental efforts in thermal and biochemical metamaterials
Multicarrier Communications Based on the Affine Fourier Transform in Doubly-Dispersive Channels
Directory of Open Access Journals (Sweden)
Djurović Igor
2010-01-01
Full Text Available The affine Fourier transform (AFT, a general formulation of chirp transforms, has been recently proposed for use in multicarrier communications. The AFT-based multicarrier (AFT-MC system can be considered as a generalization of the orthogonal frequency division multiplexing (OFDM, frequently used in modern wireless communications. AFT-MC keeps all important properties of OFDM and, in addition, gives a new degree of freedom in suppressing interference caused by Doppler spreading in time-varying multipath channels. We present a general interference analysis of the AFT-MC system that models both time and frequency dispersion effects. Upper and lower bounds on interference power are given, followed by interference power approximation that significantly simplifies interference analysis. The optimal parameters are obtained in the closed form followed by the analysis of the effects of synchronization errors and the optimal symbol period. A detailed interference analysis and optimal parameters are given for different aeronautical and land-mobile satellite (LMS channel scenarios. It is shown that the AFT-MC system is able to match changes in these channels and efficiently reduce interference with high-spectral efficiency.
The quantum state vector in phase space and Gabor's windowed Fourier transform
Bracken, A. J.; Watson, P.
2010-10-01
Representations of quantum state vectors by complex phase space amplitudes, complementing the description of the density operator by the Wigner function, have been defined by applying the Weyl-Wigner transform to dyadic operators, linear in the state vector and anti-linear in a fixed 'window state vector'. Here aspects of this construction are explored, and a connection is established with Gabor's 'windowed Fourier transform'. The amplitudes that arise for simple quantum states from various choices of windows are presented as illustrations. Generalized Bargmann representations of the state vector appear as special cases, associated with Gaussian windows. For every choice of window, amplitudes lie in a corresponding linear subspace of square-integrable functions on phase space. A generalized Born interpretation of amplitudes is described, with both the Wigner function and a generalized Husimi function appearing as quantities linear in an amplitude and anti-linear in its complex conjugate. Schrödinger's time-dependent and time-independent equations are represented on phase space amplitudes, and their solutions described in simple cases.