WorldWideScience

Sample records for 29si mas nmr

  1. {sup 29}Si MAS NMR for the zeolite Y - gallium oxide system; {sup 29}Si mas NMR dla ukladu fojazyt-tlenek galu

    Energy Technology Data Exchange (ETDEWEB)

    Sulikowski, B.; Derewinski, M. [Inst. Katalizy i Fizykochemii Powierzchni, Polska Akademia Nauk, Cracow (Poland); Olejniczak, Z.; Segnowski, S. [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    Wide-pore zeolites modified by gallium oxide has been prepared for catalytic use. Its physico-chemical and catalytic properties have been studied. The structure changes of the catalyst have been investigated by means of MAS NMR spectroscopy. Spectra of {sup 29}Si has been described and discussed. 11 refs, 4 figs, 2 tabs.

  2. 29Si and 27AI MAS NMR Study of Alkali Feldspars

    Institute of Scientific and Technical Information of China (English)

    周玲棣; 郭九皋; 袁汉珍; 李丽云

    1994-01-01

    12 natural alkali feldspars have been studied by(29)~Si and(27)~Al MAS NMR as well as XRD,IR,EPMA and chemical analysis.Three kinds of(29)~Si NMR spectra,i.e.the spectra of microcline,perthiteand perthite with minor plagioclase,have been obtained.There are two types of(27)~Al NMR spectra.The(27)~Alspectrum of microcline is the same as that of perthite,but is different from the spectrum for perthite contain-ing plagioclase.Through this study,we found that the results of NMR and IR are inconsistent with that ofXRD,which shows that the transition of alkali feldspar from monoclinic to triclinic system might be a rathercomplicated process.

  3. Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions

    DEFF Research Database (Denmark)

    Poulsen, Søren Lundsted; Kocaba, Vanessa; Le Saoût, Gwenn;

    2009-01-01

    The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based...... on powder X-ray diffraction combined with Rietveld analysis and with Taylor-Bogue calculations. The effects from paramagnetic ions (Fe3+) on the spinning sideband intensities, originating from dipolar couplings between 29Si and the spins of the paramagnetic electrons, were considered and analyzed in spectra...

  4. CaCl2-Accelerated Hydration of Tricalcium Silicate: A STXM Study Combined with 29Si MAS NMR

    Directory of Open Access Journals (Sweden)

    Qinfei Li

    2015-01-01

    Full Text Available The effect of calcium chloride (CaCl2 on tricalcium silicate (C3S hydration was investigated by scanning transmission X-ray microscopy (STXM with Near Edge X-ray Absorption Fine Structure (NEXAFS spectra and 29Si MAS NMR. STXM is demonstrated to be a powerful tool for studying the chemical composition of a cement-based hydration system. The Ca L3,2-edge NEXAFS spectra obtained by examining C3S hydration in the presence of CaCl2 showed that this accelerator does not change the coordination of calcium in the calcium silicate hydrate (C-S-H, which is the primary hydration product. O K-edge NEXAFS is also very useful in distinguishing the chemical components in hydrated C3S. Based on the Ca L3,2-edge spectra and chemical component mapping, we concluded that CaCl2 prefers to coexist with unhydrated C3S instead of C-S-H. In Si K-edge NEXAFS analysis, CaCl2 increases the degree of silicate polymerization of C-S-H in agreement with the 29Si CP/MAS NMR results, which show that the presence of CaCl2 in hydrated C3S considerably accelerates the formation of middle groups (Q2 and branch sites (Q3 in the silicate chains of C-S-H gel at 1-day hydration.

  5. Changes in Structural and Electronic Properties of the Zeolite Framework Induced by Extra-Framework Al and La in H-USY and La(x)NaY : A 29Si and 27Al MAS NMR and 27Al MQ MAS NMR Study

    NARCIS (Netherlands)

    Koningsberger, D.C.; Bokhoven, J.A. van; Roest, A.L.; Miller, J.T.; Nachtegaal, G.H,; Kentgens, A.

    2000-01-01

    A 27Al 3Q MAS, a quantitative 27Al MAS, and a 29Si MAS NMR study has been carried out on La(x)NaY and H-USY. Assignment of the different types of Al coordinations has been done using the results of the MQ MAS experiments. The 29Si MAS and 27Al MAS NMR results obtained at high fields (14.1 T) and

  6. Hydration kinetics for the alite, belite, and calcium aluminate phase in Portland cements from 27Al and 29Si MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Jensen, Ole Mejlhede; Jakobsen, Hans Jørgen

    1997-01-01

    29Si magic-angle spinning (MAS) NMR spectroscopy is shown to be a valuable tool for obtaining the quantities of alite and belite in hydrated Portland cements. The hydration (1-180 days) of a white Portland cement with 10 wt.% silica fume added is investigated and the degrees of hydration for alite...... belite, and silica fume are determined. It is demonstrated that 27Al MAS NMR spectra of hydrated Portland cements can give quantitative information about the formation of ettringite and the conversion of this phase to monosulphate during hydration....

  7. Pressure induced structural and density changes in Ca and Mg aluminosilicate glasses (MO/Al2O3≤1) recovered from 1-3 GPa: 27Al, 17O, 29Si MAS NMR and density

    Science.gov (United States)

    Bista, S.; Stebbins, J. F.

    2016-12-01

    Numerous studies have shown that at least in Na and K aluminosilicate melts and glasses, the presence of NBO facilitates the increase in Al coordination with pressure, for example albite and jadeite compositions show little structural change at 2-3 GPa. Much less is known about higher field strength cations such as Ca and Mg, despite their importance in mafic magmas. Therefore, in this study, we have studied several compositions of Ca and Mg aluminosilicate glasses with little to no NBO in the metaluminous and peraluminous regions. Our 27Al MAS NMR on the glasses recovered from high T and P show surprisingly rapid increases in average Al coordination with pressure, with the largest increases recorded in the Mg system. In Ca aluminosilicate glasses, the average Al coordination increase in peralkaline and peraluminous glasses follow a much more rapid rise compared to the metaluminous, although the metaluminous composition also shows a significant change in Al coordination unlike the Na aluminosilicate glasses of similar composition. In Mg aluminosilicate glasses, the average Al coordination increase in both peralkaline and metaluminous compositions are similar. Our study shows that the mechanism of the coordination increase with pressure is more complex than the simple consumption of NBO, especially with the high field strength and smaller size modifier cations like Mg. We also observed shifts in 29Si and 17O MAS NMR spectra suggesting increase in high coordinated Al neighbors, but these changes are harder to uniquely interpret.

  8. Lithium Ion Mobility in Lithium Phosphidosilicates: Crystal Structure, (7) Li, (29) Si, and (31) P MAS NMR Spectroscopy, and Impedance Spectroscopy of Li8 SiP4 and Li2 SiP2.

    Science.gov (United States)

    Toffoletti, Lorenzo; Kirchhain, Holger; Landesfeind, Johannes; Klein, Wilhelm; van Wüllen, Leo; Gasteiger, Hubert A; Fässler, Thomas F

    2016-12-05

    The need to improve electrodes and Li-ion conducting materials for rechargeable all-solid-state batteries has drawn enhanced attention to the investigation of lithium-rich compounds. The study of the ternary system Li-Si-P revealed a series of new compounds, two of which, Li8 SiP4 and Li2 SiP2 , are presented. Both phases represent members of a new family of Li ion conductors that display Li ion conductivity in the range from 1.15(7)×10(-6) Scm(-1) at 0 °C to 1.2(2)×10(-4) Scm(-1) at 75 °C (Li8 SiP4 ) and from 6.1(7)×10(-8) Scm(-1) at 0 °C to 6(1)×10(-6) Scm(-1) at 75 °C (Li2 SiP2 ), as determined by impedance measurements. Temperature-dependent solid-state (7) Li NMR spectroscopy revealed low activation energies of about 36 kJ mol(-1) for Li8 SiP4 and about 47 kJ mol(-1) for Li2 SiP2 . Both compounds were structurally characterized by X-ray diffraction analysis (single crystal and powder methods) and by (7) Li, (29) Si, and (31) P MAS NMR spectroscopy. Both phases consist of tetrahedral SiP4 anions and Li counterions. Li8 SiP4 contains isolated SiP4 units surrounded by Li atoms, while Li2 SiP2 comprises a three-dimensional network based on corner-sharing SiP4 tetrahedra, with the Li ions located in cavities and channels.

  9. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels.

    Science.gov (United States)

    Duxson, Peter; Provis, John L; Lukey, Grant C; Separovic, Frances; van Deventer, Jannie S J

    2005-03-29

    A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems.

  10. sup 29 Si magic angle spinning NMR spectra of alkali metal, alkaline earth metal, and rare earth metal ion exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Kueijung; Chern, Jeryoung (Tsinghua Univ., Taiwan (China))

    1989-02-23

    The variation of the extraframework cation location in groups IA and IIA metals and rare earth metal (RE) Y zeolites as a function of the dehydration and the rehydration is monitored by {sup 29}Si MAS NMR. Unheated hydrated zeolites give similar {sup 29}Si spectra as they present the similar cation distributions. Upon dehydration a high-field shift is observed which correlates with the distortion of bond angles in silicon-oxygen tetrahedra. The line shapes of {sup 29}Si spectra depend on the nature and the location of the exchangeable cations and the occupancy of the different sites in dehydrated and rehydrated states. The correlation between the line shape of {sup 29}Si spectra and the migration of cations from the supercages to the sodalite cages after heating treatment was studied. The results of {sup 29}Si NMR agree with the known structure data.

  11. Probing local structures of siliceous zeolite frameworks by solid-state NMR and first-principles calculations of 29Si-O-29Si scalar couplings.

    Science.gov (United States)

    Cadars, Sylvian; Brouwer, Darren H; Chmelka, Bradley F

    2009-03-21

    Subtle structural details of siliceous zeolites are probed by using two-bond scalar (J) coupling constants to characterize covalently bonded 29Si-O-29Si site pairs and local framework order. Solid-state two-dimensional (2D) 29Si{29Si} NMR measurements and first-principles calculations of 2J(29Si-O-29Si) couplings shed insights on both the local structures of siliceous zeolites Sigma-2 and ZSM-12, as well as the sensitivity of J couplings for detailed characterization analyses. DFT calculations on a model linear silicate dimer show that 2J(Si-O-Si) couplings have complicated multiple angular dependencies that make semi-empirical treatments impractical, but which are amenable to cluster approaches for accurate J-coupling calculations in zeolites. DFT calculations of 2J(29Si-O-29Si) couplings of the siliceous zeolite Sigma-2, whose framework structure is known to high accuracy from single-crystal X-ray diffraction studies, yield excellent agreement between calculated and experimentally measured 2J(Si-O-Si) couplings. For the siliceous zeolite ZSM-12, calculated 2J(29Si-O-29Si) couplings based on less-certain powder X-ray diffraction analyses deviate significantly from experimental values, while a refined structure based on 29Si chemical-shift-tensor analyses shows substantially improved agreement. 29Si J-coupling interactions can be used as sensitive probes of local structures of zeolitic frameworks and offer new opportunities for refining and solving complicated structures, in combination with complementary scattering, modeling, and other nuclear spin interactions.

  12. Solution state structure determination of silicate oligomers by 29SI NMR spectroscopy and molecular modeling.

    Science.gov (United States)

    Cho, Herman; Felmy, Andrew R; Craciun, Raluca; Keenum, J Patrick; Shah, Neil; Dixon, David A

    2006-02-22

    Evidence for nine new solution state silicate oligomers has been discovered by (29)Si NMR homonuclear correlation experiments of (29)Si-enriched samples. In addition to enhancing signal sensitivity, the isotopic enrichment increases the probability of the (29)Si-(29)Si two-bond scalar couplings that are necessary for the observation of internuclear correlations in 2-D experiments. The proposed assignments are validated by comparisons of experimental and simulated cross-peaks obtained with high digital resolution. The internuclear connectivity indicated by the NMR data suggests that several of these oligomers can have multiple stereoisomers, including conformers and/or diastereomers. The stabilities of these oligomers and their possible stereoisomers have been investigated by electronic structure calculations.

  13. 29Si,27Al Magic—Angle—Spinning Nuclear Magnetic Resonance(MAS NMR) Studies of Kaolinite and Its Thermal Transformation Products

    Institute of Scientific and Technical Information of China (English)

    何宏平; 胡澄; 等

    1995-01-01

    27Al,29Si MAS NMR studies of kaolinite and its thermal transformation products show that in the kaolinite-mullite reaction series there is an extensive segregation of Al2O3 and SiO2 and the reaction of Al2O3 with SiO2 to form mullite is the main path of mullite formation.At about 850°C,the peak intensity of Al(V) reaches its maximum and with the further rise of temperature the Al(V)signal completely disappears.At about 950°C,γ-Al2O3 accounts for about 71%of the material phases containing Al atoms.In the series there is no obvious presence of Al-Si spinel.The 27Al and 29Si MAS NMR spectra show that there is an obvious difference between the temperature points for Al-O2(OH)4 octahedral sheet collapsing and Si-O4 tetrahedral sheet breaking down.

  14. 29Si NMR spin-echo decay in YbRh2Si2

    Science.gov (United States)

    Kambe, S.; Sakai, H.; Tokunaga, Y.; Hattori, T.; Lapertot, G.; Matsuda, T. D.; Knebel, G.; Flouquet, J.; Walstedt, R. E.

    2016-02-01

    29Si nuclear magnetic resonance (NMR) has been measured in a 29Si-enriched single crystal sample of YbRh2Si2. The spin-echo decay for applied field H ∥, ⊥ the c-axes has been measured at 100 K. A clear spin-echo decay oscillation is observed for both cases, possibly reflecting the Ruderman-Kittel (RK) interaction. Since the observed oscillation frequency depends on the direction of applied magnetic field, anisotropic RK coupling and pseudo-dipolar (PD) interactions may not be negligible in this compound. The origin of spin-echo decay oscillations is discussed.

  15. Chiral Magnetism in an Itinerant Helical Magnet, MnSi - An Extended 29Si NMR Study

    Science.gov (United States)

    Yasuoka, Hiroshi; Motoya, Kiyoichiro; Majumder, Mayukh; Witt, Sebastian; Krellner, Cornelius; Baenitz, Michael

    2016-07-01

    The microscopic magnetism in the helical, conical and ferromagnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29Si NMR at zero field and under external magnetic fields. The temperature dependence of the staggered moment, MQ(T), determined by the 29Si NMR frequency, ν(T), and the nuclear relaxation rate, 1/T1(T), at zero field is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension to helical magnets. The external field dependence of resonance frequency, ν(H), follows a vector sum of the contributions from the atomic hyperfine and macroscopic fields with a field induced moment characteristic to itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found, which suggests a first order like change of the electronic states at Hc.

  16. The high-temperature modification of ScRuSi - Structure, 29Si and 45Sc solid state NMR spectroscopy

    Science.gov (United States)

    Hoffmann, Rolf-Dieter; Rodewald, Ute Ch.; Haverkamp, Sandra; Benndorf, Christopher; Eckert, Hellmut; Heying, Birgit; Pöttgen, Rainer

    2017-10-01

    A polycrystalline sample of the TiNiSi type low-temperature (LT) modification of ScRuSi was synthesized by arc-melting. Longer annealing in a sealed silica tube (6 weeks at 1270 K) followed by quenching led to the high-temperature (HT) phase. HT-ScRuSi adopts the ZrNiAl structure type: P 6 bar 2 m , a = 688.27(9), c = 336.72(5) pm, wR2 = 0.0861, 260 F2 values, 14 variables. The striking structural building units are regular, tricapped trigonal prisms Si1@Ru3Sc6 and Si2@Ru6Sc3. Both polymorphs have been characterized by 29Si and 45Sc MAS-NMR spectroscopy. The local scandium environments in the two polymorphs are easily distinguished by their electric field gradient tensor values, in agreement with theoretically calculated values.

  17. Characterization of quenched high pressure phases in CaSiO sub 3 system by XRD and sup 29 Si NMR

    Energy Technology Data Exchange (ETDEWEB)

    Kanzaki, Masami (Univ. of Alberta, Edmonton (Canada)); Stebbins, J.F.; Xianyu Xue (Stanford Univ., CA (United States))

    1991-03-01

    The authors have studied quenched high pressure phases in the CaSiO{sub 3} system by x-ray diffraction (XRD) and {sup 29}Si MAS NMR. XRD study of the previously reported {var epsilon}-CaSiO{sub 3}' phase synthesized at 12 GPa and 1,500C reveals that it is actually a mixture of {beta}-Ca{sub 2}SiO{sub 4} (larnite) and a previously unknown CaSi{sub 2}O{sub 5} phase. This result is supported by the {sup 29}Si NMR spectra. Furthermore, both the XRD and the NMR data suggest that the CaSi{sub 2}O{sub 5} phase may have a titanite (CaTiSiO{sub 5}) structure in which Ti is replaced by an octahedral Si. Samples quenched from 15 GPa and 1,500C consist mostly of an amorphous phase, but a small amount of CaSiO{sub 3}-perovskite was identified by both XRDE and NMR. The {sup 29}Si NMR spectrum of the amorphous phase suggests that its local structure is similar to that of a glass quenched from melt at 1 bar.

  18. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  19. Study of 29Si MAS NMR Spectroscopy and Electro-Optic Property Based on Polyimide/SiO2%聚酰亚胺/SiO2杂化材料的硅核磁共振波谱和电光性质的研究

    Institute of Scientific and Technical Information of China (English)

    邱凤仙; 周钰明; 刘举正; 张旭苹

    2006-01-01

    以含氟的二胺5,5′-(六氟异丙基)-二-(2-氨基苯酚)(6FHP)及二酐4,4′-(六氟异丙基)-苯二酸酐(6FDA)或均苯四甲酸酐 (PMDA)为单体,以分散红1 (DR1) 为活性生色分子合成具有非线性光学特性的含氟聚酰亚胺,并采用溶胶-凝胶(Sol-Gel) 法合成相应的聚酰亚胺/SiO2杂化材料.采用固态29Si MAS NMR谱研究了含氟聚酰亚胺/SiO2杂化材料的交联结构,结果表明杂化材料中是以T3、Q3、Q4结构为主,说明在杂化材料中形成了交联网状结构.采用衰减全反射(ATR)测定了聚酰亚胺和杂化材料在832 nm处的电光系数,其值分别为32、28、34和29 pm/V,结果表明具有较高的电光系数.

  20. Sol-gel chemistry synthesis and DTA-TGA, XRPD, SIC and {sup 7}Li, {sup 31}P, {sup 29}Si MAS-NMR studies on the Li-NASICON Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5) system

    Energy Technology Data Exchange (ETDEWEB)

    Belam, W., E-mail: WahidBelam@yahoo.fr [Chemistry Department, Bizerta Science Faculty, 7021 Jarzouna, Bizerta (Tunisia)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The samples of Li-NASICON were elaborated by sol-gel chemistry. Black-Right-Pointing-Pointer The calcined temperatures of the studied samples were deduced from their thermograms. Black-Right-Pointing-Pointer The recorded X-ray powder diffractograms were indexed in the rhombohedral system. Black-Right-Pointing-Pointer The synthesized Li-NASICON materials are excellent lithium fast cation conductors. - Abstract: Five selected compounds of Li-NASICON, Li{sub 3}Zr{sub 2-y}Si{sub 2-4y}P{sub 1+4y}O{sub 12} (0 Less-Than-Or-Slanted-Equal-To y Less-Than-Or-Slanted-Equal-To 0.5), were synthesized by sol-gel chemistry in order to obtain pure polycrystalline powder and then analyzed by different physicochemical characterizations such as coupled DTA (differential thermal analysis)-TGA (thermogravimetric analysis), XRPD (X-ray powder diffraction), CIS (complex impedance spectroscopy) and MAS (magic angle spinning)-NMR (nuclear magnetic resonance). So the calcined temperature of each sample has been deduced from its corresponding DTA-TGA thermogram. However, the recorded X-ray powder diffractograms were indexed in the rhombohedral system with R3{sup Macron }c space group which corresponds to the ideal structure of NASICON. Whereas, the complex impedance spectroscopy study showed that these Li-NASICON materials are excellent lithium fast cation conductors with total electric conductivity maximal value 1.97 Multiplication-Sign 10{sup -3} S cm{sup -1} at 293 K in the case of Li{sub 3}Zr{sub 1.5}P{sub 3}O{sub 12}. Furthermore, {sup 7}Li, {sup 31}P and {sup 29}Si MAS-NMR spectroscopy study and DFT/B3LYP theoretical calculations of chemical shifts were performed to discuss the ambiguousness that exists between the resonance peak number in the experimental spectrum and the crystallographic site number relative to Li{sub 3}Zr{sub 2}Si{sub 2}PO{sub 12}.

  1. Factor analysis of 27Al MAS NMR spectra for identifying nanocrystalline phases in amorphous geopolymers.

    Science.gov (United States)

    Urbanova, Martina; Kobera, Libor; Brus, Jiri

    2013-11-01

    Nanostructured materials offer enhanced physicochemical properties because of the large interfacial area. Typically, geopolymers with specifically synthesized nanosized zeolites are a promising material for the sorption of pollutants. The structural characterization of these aluminosilicates, however, continues to be a challenge. To circumvent complications resulting from the amorphous character of the aluminosilicate matrix and from the low concentrations of nanosized crystallites, we have proposed a procedure based on factor analysis of (27)Al MAS NMR spectra. The capability of the proposed method was tested on geopolymers that exhibited various tendencies to crystallize (i) completely amorphous systems, (ii) X-ray amorphous systems with nanocrystalline phases, and (iii) highly crystalline systems. Although the recorded (27)Al MAS NMR spectra did not show visible differences between the amorphous systems (i) and the geopolymers with the nanocrystalline phase (ii), the applied factor analysis unambiguously distinguished these materials. The samples were separated into the well-defined clusters, and the systems with the evolving crystalline phase were identified even before any crystalline fraction was detected by X-ray powder diffraction. Reliability of the proposed procedure was verified by comparing it with (29)Si MAS NMR spectra. Factor analysis of (27)Al MAS NMR spectra thus has the ability to reveal spectroscopic features corresponding to the nanocrystalline phases. Because the measurement time of (27)Al MAS NMR spectra is significantly shorter than that of (29)Si MAS NMR data, the proposed procedure is particularly suitable for the analysis of large sets of specifically synthesized geopolymers in which the formation of the limited fractions of nanocrystalline phases is desired. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Solid-state {sup 27}Al and {sup 29}Si NMR investigations on Si-substituted hydrogarnets

    Energy Technology Data Exchange (ETDEWEB)

    Rivas Mercury, J.M. [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain); Pena, P. [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain)]. E-mail: ppena@icv.csic.es; Aza, A.H. de [Instituto de Ceramica y Vidrio, CSIC, Kelsen, 5, 28049 Cantoblanco-Madrid (Spain); Turrillas, X. [Instituto de Ciencias de la Construccion Eduardo Torroja, CSIC, Serrano Galvache, 4, 28033 Madrid (Spain); Sobrados, I. [Instituto de Ciencia de Materiales, CSIC, Sor Juana Ines de la Cruz, 3, 28049 Cantoblanco-Madrid (Spain); Sanz, J. [Instituto de Ciencia de Materiales, CSIC, Sor Juana Ines de la Cruz, 3, 28049 Cantoblanco-Madrid (Spain)

    2007-02-15

    Partially deuterated Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x} hydrates prepared by a reaction in the presence of D{sub 2}O of synthetic tricalcium aluminate with different amounts of amorphous silica were characterized by {sup 29}Si and {sup 27}Al magic-angle spinning nuclear magnetic resonance (NMR) spectroscopy. The {sup 29}Si NMR spectroscopy was used for quantifying the non-reacted silica and the resulting hydrated products. The incorporation of Si into Ca{sub 3}Al{sub 2}(SiO{sub 4}){sub 3-x}(OH){sub 4x} was followed by {sup 27}Al NMR spectroscopy: Si:OH ratios were determined quantitatively from octahedral Al signals ascribed to Al(OH){sub 6} and Al(OSi)(OH){sub 5} environments. The NMR data obtained were consistent with the concentrations of the Al and Si species deduced from transmission electron microscopy energy-dispersive spectrometry and Rietveld analysis of both X-ray and neutron diffraction data.

  3. Anomalous resonances in 29Si and 27Al NMR spectra of pyrope ([Mg,Fe]3Al2Si3O12) garnets: effects of paramagnetic cations.

    Science.gov (United States)

    Stebbins, Jonathan F; Kelsey, Kimberly E

    2009-08-28

    In oxide and silicate materials, particularly naturally-occurring minerals with contents of iron oxides greater than a few percent, paramagnetic impurities are well-known to broaden MAS NMR peaks, decrease relaxation times, and even cause overall loss of signal intensity. However, detection of resolved, discrete peaks that are shifted in frequency by nearby unpaired electron spins is rare in such systems. We report here high-resolution (27)Al and (29)Si spectra for synthetic and natural samples of pyrope garnet ([Mg,Fe](3)Al(2)Si(3)O(12)), the latter containing up to 3.5 wt% FeO. For both nuclides, spectra contain anomalous NMR peaks at frequencies that are 25 to 200 ppm from normal ranges, possibly through pseudocontact shifts induced by paramagnetic cations. Quantitation of peak areas suggests that signals from nuclides with such cations in their first shell may be broadened enough to be unobservable, while those with paramagnetics in their second cation shells may be substantially shifted. Overall spin-lattice relaxation rates are greatly enhanced by such impurities, and shifted resonances relax much faster than the unshifted main peaks. A high symmetry crystal structure (in this case cubic), which limits the number of different cation-cation distances in each shell, combined with a relatively low (non-cubic) symmetry for the sites hosting the magnetic cations, may be needed to readily detect such features.

  4. Metal Carbonation of Forsterite in Supercritical CO2 and H2O Using Solid State 29Si, 13C NMR Spectroscop

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Hu, Jian Z.; Hoyt, David W.; Sears, Jesse A.; Wang, Chong M.; Rosso, Kevin M.; Felmy, Andrew R.

    2010-03-11

    Ex situ solid state NMR was used for the first time to study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercriticalCO2 with and without H2O. Run conditions were 80 C and 96 atm. 29Si NMR clearly shows that in the absence of CO2, the role of H2O is to hydrolyze surface Mg-O-Si bonds to produce dissolved Mg2+, and mono- and oligomeric hydroxylated silica species. Surface hydrolysis products contain only Q0 (Si(OH)4) and Q1(Si(OH)3OSi) species. An equilibrium between Q0, Q1 and Mg2+ with a saturated concentration equivalent to less than 3.2% of the Mg2SiO4 conversion is obtained at a reaction time of up to 7 days. Using scCO2 without H2O, no reaction is observed within 7 days. Using both scCO2 and H2O, the surface reaction products for silica are mainly Q3 (SiOH(OSi)3) species accompanied by a lesser amount of Q2 (Si(OH)2(OSi)2) and Q4 (Si(OSi)4). However, no Q0 and Q1 were detected, indicating the carbonic acid formation/deprotonation and magnesite (MgCO3) precipitation reactions are faster than the forsterite hydrolysis process. Thus it can be concluded that the Mg2SiO4 hydrolysis process is the rate limiting step of the overall mineral carbonation process. 29Si NMR combined with XRD, TEM, SAED and EDX further reveal that the reaction is a surface reaction with the Mg2SiO4 crystallite in the core and with condensed Q2-Q4 species forming amorphous surface layers. 13C MAS NMR identified a possible reaction intermediate as (MgCO3)4-Mg(OH)2-5H2O. However, at long reaction times only crystallite magnesite MgCO3 products are observed.

  5. Structure and disorder in iron-bearing sodium silicate glasses and melts: High-resolution 29Si and 17O solid-state NMR study

    Science.gov (United States)

    Kim, H.; Lee, S.

    2012-12-01

    Understanding of the effect of iron content on the structure (Si coordination environment and the degree of polymerization) of iron-bearing silicate melts and glasses is essential for studying their macroscopic properties and diverse geological processes in Earth's interior. Although the recent advances in high-resolution solid-state NMR techniques provide detailed structural information of a diverse iron-free oxide glasses with varying composition (e.g., Lee, P. Natl. Acad. Sci. USA., 2011, 108, 6847; Lee and Sung, Chem. Geol., 2008, 256, 326; Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Lee et al., Phys. Rev., 103, 095501, 2009), their application to iron-bearing silicate glasses has a limited usefulness in resolving atomic configurations due to the effect of paramagnetic cation (i.e., Fe) on the NMR spectra. Here, we report the first ^{29}Si and ^{17}O NMR spectra for sodium-iron silicate glasses with varying iron content (Na_{2}O-Fe_{2}O_{3}-SiO_{2} glasses, up to 34.60 wt% Fe_{2}O_{3}), revealing previously unknown details of iron-induced changes in structure and disorder. While signal intensity decreases and peak width increases exponentially with increasing iron content [=Fe_{2}O_{3}/(Na_{2}O+Fe_{2}O_{3})], ^{29}Si MAS NMR spectra for sodium-iron silicate glasses present the slight peak shift and an asymmetrical peak broadening toward higher Q^{n} species with increasing iron content. This result implies an increase in the degree of polymerization with increasing iron content. Additionally, ^{29}Si spin-relaxation time (T_{1}) for the glasses decreases with increasing of iron content by several orders of magnitude. ^{17}O 3QMAS NMR spectra for the glasses show well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) even at relatively high iron content, providing the first direct experimental estimation of the degree of polymerization. In sodium-iron silicate glasses, the fraction of NBO decreases with increasing iron

  6. Characterization of nanoparticles in diluted clear solutions for Silicalite-1 zeolite synthesis using liquid 29Si NMR, SAXS and DLS.

    Science.gov (United States)

    Follens, L R A; Aerts, A; Haouas, M; Caremans, T P; Loppinet, B; Goderis, B; Vermant, J; Taulelle, F; Martens, J A; Kirschhock, C E A

    2008-09-28

    Clear solutions for colloidal Silicalite-1 synthesis were prepared by reacting tetraethylorthosilicate in aqueous tetrapropylammonium hydroxide solution. A dilution series with water resulting in clear solutions with a TEOS ratio TPAOH ratio H2O molar ratio of 25 : 9 : 152 up to 25 : 9 : 15,000 was analysed using liquid 29Si nuclear magnetic resonance (NMR), synchrotron small angle X-ray scattering (SAXS) and dynamic light scattering (DLS). Particle sizes were derived independently from DLS and from the combination of SAXS and NMR. NMR allowed quantitative characterization of silicon distributed over nanoparticles and dissolved oligomeric silicate polyanions. In all samples studied, the majority of silicon (78-90%) was incorporated in the nanoparticle fraction. In concentrated suspensions, silicate oligomers were mostly double-ring species (D3R, D4R, D5R, D6R). Dilution with water caused their depolymerisation. Contrarily, the internal condensation and size of nanoparticles increased with increasing dilution. SAXS revealed a decrease of effective nanoparticle surface charge upon dilution, reducing the effective particle interactions. With DLS, the reduction of nanoparticle interactions could be confirmed monitoring the collective diffusion mode. The observed evolution of nanoparticle characteristics provides insight in the acceleration of the Silicalite-1 crystallization upon dilution, in view of different crystallization models proposed in the literature.

  7. MAS-NMR study of lithium zinc silicate glasses and glass-ceramics with various ZnO content

    Science.gov (United States)

    Goswami, Madhumita; Kothiyal, Govind P.; Montagne, Lionel; Delevoye, Laurent

    2008-02-01

    Lithium zinc silicate glasses of composition (mol%): 17.5Li 2O-(72- x)SiO 2- xZnO-5.1Na 2O-1.3P 2O 5-4.1B 2O 3, 5.5⩽ x⩽17.7, were prepared by conventional melt-quenched technique and converted to glass-ceramic by controlled crystallization process. 29Si and 31P MAS-NMR was used to characterize the structure of both glass and glass-ceramic samples. Despite the complex glass composition, Q2, Q3 and Q4 sites are identified from 29Si MAS-NMR, which relative intensities are found to vary with the ZnO content, indicating a network depolymerization by ZnO. Moreover, well separated Q3 and Q4 resonances for low ZnO content indicates the occurrence of phase separation. From 31P MAS-NMR, it is seen that phosphorus is mainly present in the form of ortho-( Q0) and pyro-phosphate ( Q1) structural units and variation of ZnO content did not have much effect on these resonances, which provides an additional evidence for phase separation in the glass. On conversion to glass-ceramics, lithium disilicate (Li 2Si 2O 5), lithium zinc ortho-silicate (Li 3Zn 0.5SiO 4), tridymite (SiO 2) and cristobalite (SiO 2) were identified as major silicate crystalline phases. Using 29Si MAS-NMR, quantification of these silicate crystalline phases is carried out and correlated with the ZnO content in the glass-ceramics samples. In addition, 31P spectra unambiguously revealed the presence of crystalline Li 3PO 4 and (Na,Li) 3PO 4 in the glass-ceramics.

  8. High resolution MAS-NMR in combinatorial chemistry.

    Science.gov (United States)

    Shapiro, M J; Gounarides, J S

    High-resolution magic angle spinning (hr-MAS) NMR is a powerful tool for characterizing organic reactions on solid support. Because magic angle spinning reduces the line-broadening due to dipolar coupling and variations in bulk magnetic susceptibility, line widths approaching those obtained in solution-phase NMR can be obtained. The magic angle spinning method is amenable for use in conjunction with a variety of NMR-pulse sequences, making it possible to perform full-structure determinations and conformational analysis on compounds attached to a polymer support. Diffusion-weighted MAS-NMR methods such as SPEEDY (Spin-Echo-Enhanced Diffusion-Filtered Spectroscopy) can be used to remove unwanted signals from the solvent, residual reactants, and the polymer support from the MAS-NMR spectrum, leaving only those signals arising from the resin-bound product. This review will present the applications of high-resolution magic angle spinning NMR for use in combinatorial chemistry research.

  9. Structural biology applications of solid state MAS DNP NMR

    Science.gov (United States)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  10. MAS-NMR investigations of the crystallization behaviour of lithium aluminum silicate (LAS) glasses containing P 2O 5 and TiO 2 nucleants

    Science.gov (United States)

    Ananthanarayanan, A.; Kothiyal, G. P.; Montagne, L.; Revel, B.

    2010-06-01

    Lithium aluminum silicate (LAS) glass of composition (mol%) 20.4Li 2O-4.0Al 2O 3-68.6SiO 2-3.0K 2O-2.6B 2O 3-0.5P 2O 5-0.9TiO 2 was prepared by melt quenching. The glass was then nucleated and crystallized based on differential thermal analysis (DTA) data and was characterized by 29Si, 31P, 11B and 27Al MAS-NMR. XRD and 29Si NMR showed that lithium metasilicate (Li 2SiO 3) is the first phase to c form followed by cristobalite (SiO 2) and lithium disilicate (Li 2Si 2O 5). 29Si MAS-NMR revealed a change in the network structure already for the glasses nucleated at 550 °C. Since crystalline Li 3PO 4, as observed by 31P MAS-NMR, forms concurrently with the silicate phases, we conclude that crystalline Li 3PO 4 does not act as a nucleating agent for lithium silicate phases. Moreover, 31P NMR indicates the formation of M-PO 4 ( M=B, Al or Ti) complexes. The presence of BO 3 and BO 4 structural units in all the glass/glass-ceramic samples is revealed through 11B MAS-NMR. B remains in the residual glass and the crystallization of silicate phases causes a reduction in the number of alkali ions available for charge compensation. As a result, the number of trigonally coordinated B (BO 3) increases at the expense of tetrahedrally coordinated B (BO 4). The 27Al MAS-NMR spectra indicate the presence of tetrahedrally coordinated Al species, which are only slightly perturbed by the crystallization.

  11. High-temperature MAS-NMR at high spinning speeds.

    Science.gov (United States)

    Kirchhain, Holger; Holzinger, Julian; Mainka, Adrian; Spörhase, Andreas; Venkatachalam, Sabarinathan; Wixforth, Achim; van Wüllen, Leo

    2016-09-01

    A low cost version to enable high temperature MAS NMR experiments at temperatures of up to 700°C and spinning speeds of up to 10kHz is presented. The method relies on inductive heating using a metal coated rotor insert. The metal coating is accomplished via a two step process involving physical vapor deposition and galvanization.

  12. Size-exclusion chromatographic NMR under HR-MAS.

    Science.gov (United States)

    Lucena Alcalde, Guillermo; Anderson, Natalie; Day, Iain J

    2017-05-01

    The addition of stationary phases or sample modifiers can be used to modify the separation achievable in the diffusion domain of diffusion NMR experiments or provide information on the nature of the analyte-sample modifier interaction. Unfortunately, the addition of insoluble chromatographic stationary phases can lead to line broadening and degradation in spectral resolution, largely because of differences in magnetic susceptibility between the sample and the stationary phase. High-resolution magic angle spinning (HR-MAS) techniques can be used to remove this broadening. Here, we attempt the application of HR-MAS to size-exclusion chromatographic NMR with limited success. Observed diffusion coefficients for polymer molecular weight reference standards are shown to be larger than those obtained on static samples. Further investigation reveals that under HR-MAS it is possible to obtain reasonably accurate estimates of diffusion coefficients, using either full rotor synchronisation or sophisticated pulse sequences. The requirement for restricting the sample to the centre of the MAS rotor to ensure homogeneous magnetic and RF fields is also tested. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Proton detection of MAS solid-state NMR spectra of half-integer quadrupolar nuclei.

    Science.gov (United States)

    Venkatesh, Amrit; Hanrahan, Michael P; Rossini, Aaron J

    Fast magic angle spinning (MAS) and proton detection has found widespread application to enhance the sensitivity of solid-state NMR experiments with spin-1/2 nuclei such as (13)C, (15)N and (29)Si, however, this approach is not yet routinely applied to half-integer quadrupolar nuclei. Here we have investigated the feasibility of using fast MAS and proton detection to enhance the sensitivity of solid-state NMR experiments with half-integer quadrupolar nuclei. The previously described dipolar hetero-nuclear multiple quantum correlation (D-HMQC) and dipolar refocused insensitive nuclei enhanced by polarization transfer (D-RINEPT) pulse sequences were used for proton detection of half-integer quadrupolar nuclei. Quantitative comparisons of signal-to-noise ratios and the sensitivity of proton detected D-HMQC and D-RINEPT and direct detection spin echo and quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) solid-state NMR spectra, demonstrate that one dimensional proton detected experiments can provide sensitivity similar to or exceeding that obtainable with direct detection QCPMG experiments. 2D D-HMQC and D-RINEPT experiments provide less sensitivity than QCPMG experiments but proton detected 2D hetero-nuclear correlation solid-state NMR spectra of half-integer nuclei can still be acquired in about the same time as a 1D spin echo spectrum. Notably, the rarely used D-RINEPT pulse sequence is found to provide similar, or better sensitivity than D-HMQC in some cases. Proton detected D-RINEPT benefits from the short longitudinal relaxation times (T1) normally associated with half-integer quadrupolar nuclei, it can be combined with existing signal enhancement methods for quadrupolar nuclei, and t1-noise in the indirect dimension can easily be removed by pre-saturation of the (1)H nuclei. The rapid acquisition of proton detected 2D HETCOR solid-state NMR spectra of a range of half-integer quadrupolar nuclei such as (17)O, (27)Al, (35)Cl and (71)Ga is demonstrated. Copyright

  14. Incorporation of phosphorus guest ions in the calcium silicate phases of Portland cement from 31P MAS NMR spectroscopy.

    Science.gov (United States)

    Poulsen, Søren L; Jakobsen, Hans J; Skibsted, Jørgen

    2010-06-21

    Portland cements may contain small quantities of phosphorus (typically below 0.5 wt % P(2)O(5)), originating from either the raw materials or alternative sources of fuel used to heat the cement kilns. This work reports the first (31)P MAS NMR study of anhydrous and hydrated Portland cements that focuses on the phase and site preferences of the (PO(4))(3-) guest ions in the main clinker phases and hydration products. The observed (31)P chemical shifts (10 to -2 ppm), the (31)P chemical shift anisotropy, and the resemblance of the lineshapes in the (31)P and (29)Si MAS NMR spectra strongly suggest that (PO(4))(3-) units are incorporated in the calcium silicate phases, alite (Ca(3)SiO(5)) and belite (Ca(2)SiO(4)), by substitution for (SiO(4))(4-) tetrahedra. This assignment is further supported by a determination of the spin-lattice relaxation times for (31)P in alite and belite, which exhibit the same ratio as observed for the corresponding (29)Si relaxation times. From simulations of the intensities, observed in inversion-recovery spectra for a white Portland cement, it is deduced that 1.3% and 2.1% of the Si sites in alite and belite, respectively, are replaced by phosphorus. Charge balance may potentially be achieved to some extent by a coupled substitution mechanism where Ca(2+) is replaced by Fe(3+) ions, which may account for the interaction of the (31)P spins with paramagnetic Fe(3+) ions as observed for the ordinary Portland cements. A minor fraction of phosphorus may also be present in the separate phase Ca(3)(PO(4))(2), as indicated by the observation of a narrow resonance at delta((31)P) = 3.0 ppm for two of the studied cements. (31)P{(1)H} CP/MAS NMR spectra following the hydration of a white Portland cement show that the resonances from the hydrous phosphate species fall in the same spectral range as observed for (PO(4))(3-) incorporated in alite. This similarity and the absence of a large (31)P chemical shift ansitropy indicate that the hydrous (PO(4

  15. Residue specific hydration of primary cell wall potato pectin identified by solid-state 13C single-pulse MAS and CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Flemming H; Byg, Inge; Damager, Iben

    2011-01-01

    Hydration of rhamnogalacturonan-I (RG-I) derived from potato cell wall was analyzed by 13C single-pulse (SP) magic-angle-spinning (MAS) and 13C cross-polarization (CP) MAS nuclear magnetic resonance (NMR) and supported by 2H SP/MAS NMR experiments. The study shows that the arabinan side chains...

  16. Mesoporous Silica Nanoparticles Loaded with Surfactant: Low Temperature Magic Angle Spinning 13C and 29Si NMR Enhanced by Dynamic Nuclear Polarization

    Energy Technology Data Exchange (ETDEWEB)

    Lafon, Olivier [Universite de Lille Nord de France; Thankamony, Aany S. Lilly [Universite de Lille Nord de France; Kokayashi, Takeshi [Ames Laboratory; Carnevale, Diego [Ecole Polytechnique Federale de Lausanne; Vitzthum, Veronika [Ecole Polytechnique Federale de Lausanne; Slowing, Igor I. [Ames Laboratory; Kandel, Kapil [Ames Laboratory; Vezin, Herve [Universite de Lille Nord de France; Amoureux, Jean-Paul [Universite de Lille Nord de France; Bodenhausen, Geoffrey [Ecole Polytechnique Federale de Lausanne; Pruski, Marek [Ames Laboratory

    2012-12-21

    We show that dynamic nuclear polarization (DNP) can be used to enhance NMR signals of 13C and 29Si nuclei located in mesoporous organic/inorganic hybrid materials, at several hundreds of nanometers from stable radicals (TOTAPOL) trapped in the surrounding frozen disordered water. The approach is demonstrated using mesoporous silica nanoparticles (MSN), functionalized with 3-(N-phenylureido)propyl (PUP) groups, filled with the surfactant cetyltrimethylammonium bromide (CTAB). The DNP-enhanced proton magnetization is transported into the mesopores via 1H–1H spin diffusion and transferred to rare spins by cross-polarization, yielding signal enhancements εon/off of around 8. When the CTAB molecules are extracted, so that the radicals can enter the mesopores, the enhancements increase to εon/off ≈ 30 for both nuclei. A quantitative analysis of the signal enhancements in MSN with and without surfactant is based on a one-dimensional proton spin diffusion model. The effect of solvent deuteration is also investigated.

  17. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hironori [Los Alamos National Laboratory; Baek, Seung H [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Ronning, Filip [Los Alamos National Laboratory; Thompson, J D [Los Alamos National Laboratory

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived. It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.

  18. 1H MAS and 1H --> 31P CP/MAS NMR study of human bone mineral.

    Science.gov (United States)

    Kaflak-Hachulska, A; Samoson, A; Kolodziejski, W

    2003-11-01

    Chemical structure of human bone mineral was studied by solid-state nuclear magnetic resonance (NMR) with magic-angle spinning (MAS). Trabecular and cortical bone samples from adult subjects were compared with mineral standards: hydroxyapatite (HA), hydrated and calcined, carbonatoapatite of type B with 9 wt% of CO3(2-) (CHA-B), brushite (BRU) and mixtures of HA with BRU. Proton spectra were acquired with excellent spectral resolution provided by ultra-high speed MAS at 40 kHz. 2D 1H-31P NMR heteronuclear correlation was achieved by cross-polarization (CP) under fast MAS at 12 kHz. 31P NMR was applied with CP from protons under slow MAS at 1 kHz. Appearance of 31P rotational sidebands together with their CP kinetics were analyzed. It was suggested that the sidebands of CP spectra are particularly suitable for monitoring the state of apatite crystal surfaces. The bone samples appeared to be deficient in structural hydroxyl groups analogous to those in HA. We found no direct evidence that the HPO4(2-) brushite-like ions are present in bone mineral. The latter problem is extensively discussed in the literature. The study proves there is a similarity between CHA-B and bone mineral expressed by their similar NMR behavior.

  19. Surface Characterization of Some Novel Bonded Phase Packing Materials for HPLC Columns Using MAS-NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Jude Abia

    2015-03-01

    Full Text Available Information on the surface properties of three novel chemically bonded phase packing materials for High performance liquid chromatography (HPLC were obtained using spectra obtained by solid state cross-polarization (CP magic-angle spinning (MAS nuclear magnetic resonance (NMR spectroscopic experiments for the 29Si, and 13C nuclei. These packing materials were: Cogent bidentate C18 bonded to type-C silica, hybrid packing materials XTerra MS C18, and XBridge Prep. C18. The spectra obtained using cross-polarization magic angle spinning (CP-MAS on the Cogent bidentate C18 bonded to type-C silica show the surface to be densely populated with hydride groups (Si-H, with a relative surface coverage exceeding 80%. The hybrid packing materials XTerra and XBridge gave spectra that reveal the silicon atoms to be bonded to organic moieties embedded in the molecular structure of these materials with over 90% of the alkyl silicon atoms found within the completely condensed silicon environments. The hydrolytic stability of these materials were investigated in acidic aqueous solutions at pHs of 7.0 and 3.0, and it was found that while the samples of XTerra and XBridge were not affected by hydrolysis at this pH range, the sample of Cogent lost a significant proportion of its Si-H groups after five days of treatment in acidic aqueous solution.

  20. Temperature calibration for high-temperature MAS NMR to 913 K: 63Cu MAS NMR of CuBr and CuI, and 23Na MAS NMR of NaNbO3.

    Science.gov (United States)

    Wu, Jingshi; Kim, Namjun; Stebbins, Jonathan F

    2011-09-01

    The solid-state phase transitions of CuBr, CuI and NaNbO(3) can be readily observed using (63)Cu and (23)Na high-temperature magic-angle spinning nuclear magnetic resonance spectroscopy. Temperature has large, linear effects on the peak maximum of (63)Cu in each solid phase of CuBr and CuI, and there is large jump in shift across each phase transition. The (23)Na MAS NMR peak intensities and the line widths in NaNbO(3) also clearly show its high-temperature transition to the cubic phase. These data can be used to calibrate high-temperature MAS NMR probes up to 913 K, which is two hundred degrees higher than the commonly-used temperature calibration based on the chemical shift of (207)Pb in Pb(NO(3))(2). Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Characterization of a chiral stationary phase by HR/MAS NMR spectroscopy and investigation of enantioselective interaction with chiral ligates by transferred NOE.

    Science.gov (United States)

    Hellriegel, Christine; Skogsberg, Urban; Albert, Klaus; Lämmerhofer, Michael; Maier, Norbert M; Lindner, Wolfgang

    2004-03-31

    The surface chemistry of a chiral stationary phase (CSP) with a (tert-butyl carbamoyl) quinine selector immobilized on thiol-modified silica has been characterized by (1)H HR/MAS NMR and (29)Si CP/MAS NMR spectroscopy. The mostly well-resolved (1)H signals could be assigned to stem from the surface-bound selector and the latter suggested a bi- and trifunctional silane linkage. Suspended-state NMR spectroscopy thus proved a well-characterized surface chemistry as proposed. To study chiral recognition phenomena in the presence of the CSP, (1)H HR/MAS 2D transfer NOESY investigations in methanol-d(4) have been undertaken with various solutes including N-3,5-dinitrobenzoyl derivatives of leucine (DNB-Leu) and N-acetyl phenylalanine (Ac-Phe). Both (R)- and (S)-enantiomers of DNB-Leu and Ac-Phe interacted with the tBuCQN-CSP as indicated by negative cross-peaks in the trNOESY spectra, while the 2D NOESY of the dissolved solutes in absence of the chiral stationary phase showed positive cross-peaks. The intensities of the trNOE cross-peaks were much stronger for the (S)-enantiomers. This stereoselectivity paralleled the experimental chromatographic behavior, where the (S)-enantiomers revealed stronger binding and retention on the tBuCQN-CSP as well. Hence, we were able to correlate the retention behavior to the trNOE NMR spectroscopic data in a qualitative manner.

  2. Size-exclusion chromatographic NMR under HR-MAS

    OpenAIRE

    Lucena Alcalde, Guillermo; Anderson, Natalie; Day, Iain J.

    2016-01-01

    The addition of stationary phases or sample modifiers can be used to modify the separation achievable in the diffusion domain of diffusion NMR experiments or provide information on the nature of the analyte–sample modifier interaction. Unfortunately, the addition of insoluble chromatographic stationary phases can lead to line broadening and degradation in spectral resolution, largely because of differences in magnetic susceptibility between the sample and the stationary phase. High-resolution...

  3. High temperature {sup 17}O MAS NMR study of calcia, magnesia, scandia and yttria stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Namjun; Stebbins, Jonathan F. [Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 (United States); Hsieh, Cheng-Han [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Huang, Hong [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States); Prinz, Fritz B. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2007-11-15

    High-resolution {sup 17}O MAS NMR can provide unique constraints on local structure and oxide ion dynamics in conductive zirconia ceramics of interest for fuel cells and other technologies. We describe here NMR and bulk conductivity measurements for scandia, yttria, calcia, and magnesia stabilized zirconias, including MAS NMR spectra collected in situ at temperatures up to 700 C. All of the cubic compounds with high dopant levels showed line narrowing and coalescence in this temperature range, and the temperature-induced changes in line widths are qualitatively correlated with the bulk conductivities. A monoclinic zirconia with 2% Sc{sub 2}O{sub 3} dopant level (expected to have relatively low ionic mobility) showed no motional averaging of its two {sup 17}O NMR peaks even at 600 C, but instead is observed to begin to transform to a disordered, possibly cubic or tetragonal phase at 600 to 700 C. {sup 17}O MAS NMR spectra of calcia stabilized zirconia were analyzed in detail and the exchange frequencies as a function of temperature, conductivity, and activation energy were estimated and compared with bulk conductivities. The activation energy estimated from NMR exchange frequencies is somewhat lower than that of bulk conductivity but the conductivities estimated from NMR appear to be lower than bulk conductivity. (author)

  4. Solid-phase enolate chemistry investigated using HR-MAS NMR spectroscopy.

    Science.gov (United States)

    Fruchart, Jean-Sébastien; Lippens, Guy; Kuhn, Cyrille; Gras-Masse, Hélène; Melnyk, Oleg

    2002-01-25

    Supported P4-t-Bu enolate chemistry of phenylacetyloxymethyl polystyrene (PS) resin was investigated using high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. Direct analysis of the crude reaction suspensions through the use of a diffusion filter (DF) allowed a rapid selection of the optimal experimental conditions, but also the characterization of the enolate on the solid phase. Comparison with solution experiments and literature data allowed us to address partially the structure of the enolate. HR-MAS NMR spectra of the enolate revealed also a tight interaction of P4-t-Bu base with the polymer matrix.

  5. 27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Wan, Chuan; Vjunov, Aleksei; Wang, Meng; Zhao, Zhenchao; Hu, Mary Y.; Camaioni, Donald M.; Lercher, Johannes A.

    2017-06-01

    27Al single pulse (SP) MAS NMR spectra of HBEA zeolites with high Si/Al ratios of 71 and 75 were obtained at three magnetic field strengths of 7.05, 11.75 and 19.97 T. High field 27Al MAS NMR spectra acquired at 19.97 T show significantly improved spectral resolution, resulting in at least two well-resolved tetrahedral-Al NMR peaks. Based on the results obtained from 27Al MAS and MQMAS NMR acquired at 19.97 T, four different quadrupole peaks are used to deconvolute the 27Al SP MAS spectra acquired at vari-ous fields by using the same set of quadrupole coupling constants, asymmetric parameters and relative integrated peak intensities for the tetrahedral Al peaks. The line shapes of individual peaks change from typical quadrupole line shape at low field to essentially symmetrical line shapes at high field. We demonstrate that for fully hydrated HBEA zeolites the effect of second order quadrupole interaction can be ignored and quantitative spectral analysis can be performed by directly fitting the high field spectra using mixed Gaussian/Lorentzian line shapes. Also, the analytical steps described in our work allow direct assignment of spectral intensity to individual Al tetrahedral sites (T-sites) of zeolite HBEA. Finally, the proposed concept is suggested generally applicable to other zeo-lite framework types, thus, allowing a direct probing of Al distributions by NMR spectroscopic methods in zeolites with high confi-dence.

  6. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples

    Science.gov (United States)

    Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2013-11-01

    High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues.

  7. Slow-spinning low-sideband HR-MAS NMR spectroscopy: delicate analysis of biological samples

    Science.gov (United States)

    Renault, Marie; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2013-01-01

    High-Resolution Magic-Angle Spinning (HR-MAS) NMR spectroscopy has become an extremely versatile analytical tool to study heterogeneous systems endowed with liquid-like dynamics. Spinning frequencies of several kHz are however required to obtain NMR spectra, devoid of spinning sidebands, with a resolution approaching that of purely isotropic liquid samples. An important limitation of the method is the large centrifugal forces that can damage the structure of the sample. In this communication, we show that optimizing the sample preparation, particularly avoiding air bubbles, and the geometry of the sample chamber of the HR-MAS rotor leads to high-quality low-sideband NMR spectra even at very moderate spinning frequencies, thus allowing the use of well-established solution-state NMR procedures for the characterization of small and highly dynamic molecules in the most fragile samples, such as live cells and intact tissues. PMID:24284435

  8. 1H HR-MAS NMR and S180 cells: metabolite assignment and evaluation of pulse sequence

    OpenAIRE

    Oliveira, Aline L.; Martinelli,Bruno César B.; Lião,Luciano M.; Pereira,Flávia C.; Silveira-Lacerda,Elisangela P.; Alcantara,Glaucia B.

    2014-01-01

    High resolution magic angle spinning ¹H nuclear magnetic resonance spectroscopy (HR-MAS NMR) is a useful technique for evaluation of intact cells and tissues. However, optimal NMR parameters are crucial in obtaining reliable results. To identify the key steps for the optimization of HR-MAS NMR parameters, we assessed different pulse sequences and NMR parameters using sarcoma 180 (S180) cells. A complete assignment of the metabolites of S180 is given to assist future studies.

  9. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    Science.gov (United States)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    /Linux Operating system: UNIX/Linux Has the code been vectorised or parallelized?: Yes RAM: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 3.5M, SMP AMD opteron Classification: 2.3 External routines: OCTAVE ( http://www.gnu.org/software/octave/), GNU Scientific Library ( http://www.gnu.org/software/gsl/), OPENMP ( http://openmp.org/wp/) Nature of problem: The optimal simulation and modeling of multiple quantum magic angle spinning NMR spectra, for general systems, especially those with mild to significant disorder. The approach outlined and implemented in C and OCTAVE also produces model parameter error estimates. Solution method: A model for each distinct chemical site is first proposed, for the individual contribution of crystallite orientations to the spectrum. This model is averaged over all powder angles [1], as well as the (stochastic) parameters; isotropic chemical shift and quadrupole coupling constant. The latter is accomplished via sampling from a bi-variate Gaussian distribution, using the Box-Muller algorithm to transform Sobol (quasi) random numbers [2]. A simulated annealing optimization is performed, and finally the non-linear jackknife [3] is applied in developing model parameter error estimates. Additional comments: The distribution contains a script, mqmasOpt.m, which runs in the OCTAVE language workspace. Running time: Example: (1597 powder angles) × (200 Samples) × (81 F2 frequency pts) × (31 F1 frequency points) = 58.35 seconds, SMP AMD opteron. References:S.K. Zaremba, Annali di Matematica Pura ed Applicata 73 (1966) 293. H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, 1992. T. Fox, D. Hinkley, K. Larntz, Technometrics 22 (1980) 29.

  10. Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution 29Si and 17O solid-state NMR study

    Science.gov (United States)

    Kim, Hyo-Im; Sur, Jung Chul; Lee, Sung Keun

    2016-01-01

    Despite its geochemical importance and implications for the properties of natural magmatic melts, understanding the detailed structure of iron-bearing silicate glasses remains among the outstanding problems in geochemistry. This is mainly because solid-state NMR techniques, one of the most versatile experimental methods to probe the structure of oxide glasses, cannot be fully utilized for exploring the structural details of iron-bearing glasses as the unpaired electrons in Fe induce strong local magnetic fields that mask the original spectroscopic features (i.e., paramagnetic effect). Here, we report high-resolution 29Si and 17O solid-state NMR spectra of iron-bearing sodium silicate glasses (Na2O-Fe2O3-SiO2, Fe3+/ΣFe = 0.89 ± 0.04, thus containing both ferric and ferrous iron) with varying XFe2O3 [=Fe2O3/(Na2O + Fe2O3)], containing up to 22.9 wt% Fe2O3. This compositional series involves Fe-Na substitution at constant SiO2 contents of 66.7 mol% in the glasses. For both nuclides, the NMR spectra exhibit a decrease in the signal intensities and an increase in the peak widths with increasing iron concentration partly because of the paramagnetic effect. Despite the intrinsic difficulties that result from the pronounced paramagnetic effect, the 29Si and 17O NMR results yield structural details regarding the effect of iron content on Q speciation, spatial distribution of iron, and the extent of polymerization in the iron-bearing silicate glasses. The 29Si NMR spectra show an apparent increase in highly polymerized Q species with increasing XFe2O3 , suggesting an increase in the degree of melt polymerization. The 17O 3QMAS NMR spectra exhibit well-resolved non-bridging oxygen (NBO, Na-O-Si) and bridging oxygen (BO, Si-O-Si) peaks with varying iron concentration. By replacing Na2O with Fe2O3 (and thus with increasing iron content), the fraction of Na-O-Si decreases. Quantitative consideration of this effect confirms that the degree of polymerization is likely to

  11. Decomposition of adsorbed VX on activated carbons studied by 31P MAS NMR.

    Science.gov (United States)

    Columbus, Ishay; Waysbort, Daniel; Shmueli, Liora; Nir, Ido; Kaplan, Doron

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) {(DES)2}. Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed.

  12. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Ishay Columbus; Daniel Waysbort; Liora Shmueli; Ido Nir; Doron Kaplan [Israel Institute for Biological Research, Ness Ziona (Israel). Departments of Organic Chemistry and Physical Chemistry

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded, the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.

  13. Infrared and MAS NMR Spectroscopic Studies of Al18B4O33

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The IR spectrum and 11B and 27Al MAS NMR spectra of Al18B4O33 are presented and discussed in relation to the possible existence of boron atoms substituting for aluminum atoms. TheIR spectrum shows that the strong vibrations of the BO3 groups are present in the 1 500~1 200em-1 region, and very weak bands of BO4 units are present in the region from 1 000 to 1 100cm-1. 11B MAS NMR spectrum indicates that the strong signal for BO3 units appears in the region from δ +5 to δ +20, and the very weak signal for BO4 units is at about δ-1, while 27AlMAS NMR spectrum shows five peaks at about δ +62, +42. 1, +14,-4.7 and-6.4, originating from AlO4, AlO4, A1O5, AlO6 and AlO6, respectively. These results reveal that there areminor BO4 units in Al18B4O33, indicating that a small amount of B atoms substitute for Al atomsin the 4-fold coordination.

  14. The structure of aluminosilicate glasses: High-resolution {sup 17}O and {sup 27}Al MAS and 3QMAS NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.K.; Stebbins, J.F.

    2000-05-04

    The authors investigate short-range order and local atomic configuration in charge-balanced aluminosilicate glasses as functions of composition, using {sup 17}O and {sup 27}Al MAS and triple-quantum magic angle spinning (3QMAS) NMR spectroscopy. Enhanced resolution in {sup 17}O and {sup 27}Al 3QMAS spectra, compared to MAS NMR, allows the quantification of the spectra and the extent of disorder using a semiempirical function relating 3QMAS efficiency to a quadrupolar coupling constant (C{sub q}). The variations with the Si/Al ratio (R) in peak positions and widths in the isotropic dimension of {sup 27}Al 3QMAS NMR spectra in both Na and Ca-aluminosilicate glasses can be ascribed to variations in the populations of Al sites with varying numbers of Al vs Si neighbors with composition. In the {sup 17}O 3QMAS spectra, variations of populations of three clearly resolved oxygen sites (Al-O-Al, Si-O-Al, and Si-O-Si) with R and cation field strength are consistent with the predictions given in previous results from {sup 29}Si MAS NMR. The quadrupolar coupling product (P{sub q}) of each oxygen site does not vary significantly with R, but it increases with cation field strength. On the other hand, isotropic chemical shifts ({delta}{sub iso}{sup CS}) increase with decreasing R and increasing cation field strength. These trends suggest that the configuration and framework connectivity in aluminosilicate glasses and melts are relatively constant with R but can be perturbed by high field strength cations with increased Al-O-Al and angular disorder, manifested by the increased variation of {delta}{sub iso}{sup CS} and the formation of non-bridging oxygen (NBO). The extent of disorder in aluminosilicate glasses is reflected in calculated configurational enthalpy, which increases with increasing cation field strength, consistent with the excess enthalpy of mixing data from calorimetry. The method and results given here provide improved prospects for the quantitative application of

  15. One-Pot Synthesis, X-Ray Diffraction and MAS NMR Spectroscopic Study of Gallosilicate Nitrate Cancrinite Na8[GaSiO4]6(NO34(H2O6

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2010-01-01

    Full Text Available One-pot synthetic gallosilicate nitrate cancrinite (CAN framework topology have been synthesized under hydrothermal conditions at 100 °C. The synthesized product was characterized by, X-ray powder diffraction, IR, Raman and 29Si, 23Na MAS NMR spectroscopy, SEM and thermogravimetry. The crystal structure refinement of pure nitrate cancrinite has been carried out from X-ray data using Rietveld refinement method. Gallosilicate cancrinite Na8[GaSiO4]6(NO34(H2O6 crystalline hexagonal with space group P63 and a = 12.77981 Å (2, c = 5.20217 Å (1, (Rwp = 0.0696 Rp = 0.0527. The results by MAS NMR spectroscopy confirmed the alternating Si, Ga ordering of the gallosilicate framework for a Si/Ga ratio of 1.0. A distribution of the quadrupolar interaction of the sodium cations caused by the enclatherated water molecules and motional effects can be suggested from the 23Na MAS NMR. Thermogravimetric investigation shows the extent of nitrate entrapment, stability within the cancrinite cage and decomposition properties. SEM clearly shows the hexagonal needle shaped crystals of nitrate cancrinite.

  16. Structural elucidation of b-(Y,Sc){sub 2}Si{sub 2}O{sub 7} : combined use of {sub 89}Y MAS NMR and powder diffraction.

    Energy Technology Data Exchange (ETDEWEB)

    Allix, M.; Alba, M. D.; Florian, P.; Fernandez-Carrion, A. J.; Suchomel, M. R.; Escudero, A.; Suard, E.; Becerro, A. I. (X-Ray Science Division); (CNRS); (Univ. d' Orleans); (Inst de Ciencia de Materiales de Sevilla); (Inst. Laue-Langevin)

    2011-08-01

    Although the structures of pure Sc{sub 2}Si{sub 2}O{sub 7} and {beta}-Y{sub 2}Si{sub 2}O{sub 7} have been described in the literature using the C2/m space group, {sup 29}Si magic angle spinning (MAS) NMR measurements of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system indicate a lowering of the symmetry to the C2 space group. Indeed, these compositions exhibit a unique Si crystallographic site and an Si-O-Si angle lower than 180{sup o}, incompatible with the C2/m space group. C2 is the only possible alternative. Space group Cm can be discarded with regard to its two different Si sites per unit cell. Moreover, {sup 89}Y MAS NMR data have revealed the existence of two different Y sites in the structure of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system, confirming the lowering of the symmetry to the C2 space group. The viability of the C2 model has therefore been tested and confirmed by refinement of synchrotron and neutron powder diffraction data for the different members of the system. The structural evolutions across the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system are discussed.

  17. Structural elucidation of {beta}-(Y,Sc){sub 2}Si{sub 2}O{sub 7}. Combined use of {sup 89}Y MAS NMR and powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Allix, M.; Florian, P. [CNRS UPR3079 CEMHTI, Orleans (France); Orleans Univ. (France); Alba, M.D.; Fernandez-Carrion, A.J.; Escudero, A.; Becerro, A.I. [CSIC-Universidad de Sevilla (Spain). Inst. de Ciencia de Materiales de Sevilla; Suchomel, M.R. [Argonne National Laboratory, Argonne, IL (United States). Advanced Photon Source; Suard, E. [Institut Laue-Langevin, Grenoble (France)

    2011-08-15

    Although the structures of pure Sc{sub 2}Si{sub 2}O{sub 7} and {beta}-Y{sub 2}Si{sub 2}O{sub 7} have been described in the literature using the C2/m space group, {sup 29}Si magic angle spinning (MAS) NMR measurements of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system indicate a lowering of the symmetry to the C2 space group. Indeed, these compositions exhibit a unique Si crystallographic site and an Si-O-Si angle lower than 180, incompatible with the C2/m space group. C2 is the only possible alternative. Space group Cm can be discarded with regard to its two different Si sites per unit cell. Moreover, {sup 89}Y MAS NMR data have revealed the existence of two different Y sites in the structure of the intermediate members of the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system, confirming the lowering of the symmetry to the C2 space group. The viability of the C2 model has therefore been tested and confirmed by refinement of synchrotron and neutron powder diffraction data for the different members of the system. The structural evolutions across the Sc{sub 2}Si{sub 2}O{sub 7}-{beta}-Y{sub 2}Si{sub 2}O{sub 7} system are discussed. (orig.)

  18. Increasing 13C CP-MAS NMR resolution using single crystals: application to model octaethyl porphyrins.

    Science.gov (United States)

    Dugar, Sneha; Fu, Riqiang; Dalal, Naresh S

    2012-08-02

    Octaethyl porphyrin (OEP) and its Ni and Zn derivatives are considered as model compounds in biochemical, photophysical, and fossil fuel chemistry. They have thus been investigated by high-resolution solid-state (13)C NMR using powders, but peak assignment has been difficult because of large line widths. Arguing that a significant cause of broadening might be the anisotropic bulk magnetic susceptibility, we utilized single crystals in our (13)C cross-polarization magic angle spinning (CP-MAS) measurements and observed a nearly 2-fold line narrowing. This enhanced resolution enabled us to assign chemical shifts to each carbon for all the three compounds. The new assignments are now in agreement with X-ray structural data and allowed us to probe the motional dynamics of the methyl and methylene carbons of the OEP side chains. It is apparent that the use of single crystals in (13)C CP-MAS measurements has a significantly wider impact than previously thought.

  19. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    Science.gov (United States)

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1.

  20. Low-power broadband solid-state MAS NMR of 14N

    Science.gov (United States)

    Pell, Andrew J.; Sanders, Kevin J.; Wegner, Sebastian; Pintacuda, Guido; Grey, Clare P.

    2017-05-01

    We propose two broadband pulse schemes for 14N solid-state magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) that achieves (i) complete population inversion and (ii) efficient excitation of the double-quantum spectrum using low-power single-sideband-selective pulses. We give a comprehensive theoretical description of both schemes using a common framework that is based on the jolting-frame formalism of Caravatti et al. [J. Magn. Reson. 55, 88 (1983)]. This formalism is used to determine for the first time that we can obtain complete population inversion of 14N under low-power conditions, which we do here using single-sideband-selective adiabatic pulses. It is then used to predict that double-quantum coherences can be excited using low-power single-sideband-selective pulses. We then proceed to design a new experimental scheme for double-quantum excitation. The final double-quantum excitation pulse scheme is easily incorporated into other NMR experiments, as demonstrated here for double quantum-single quantum 14N correlation spectroscopy, and 1H-14N dipolar heteronuclear multiple-quantum correlation experiments. These pulses and irradiation schemes are evaluated numerically using simulations on single crystals and full powders, as well as experimentally on ammonium oxalate ((NH4)2C2O4) at moderate MAS and glycine at ultra-fast MAS. The performance of these new NMR methods is found to be very high, with population inversion efficiencies of 100% and double-quantum excitation efficiencies of 30%-50%, which are hitherto unprecedented for the low radiofrequency field amplitudes, up to the spinning frequency, that are used here.

  1. Separation of 2H MAS NMR Spectra by Two-Dimensional Spectroscopy

    Science.gov (United States)

    Kristensen, J. H.; Bildsøe, H.; Jakobsen, H. J.; Nielsen, N. C.

    1999-08-01

    New methods for optimum separation of 2H MAS NMR spectra are presented. The approach is based on hypercomplex spectroscopy that is useful for sign discrimination and phase separation. A new theoretical formalism is developed for the description of hypercomplex experiments. This exploits the properties of Lie algebras and hypercomplex numbers to obtain a solution to the Liouville-von Neumann equation. The solution is expressed in terms of coherence transfer functions that describe the allowed coherence transfer pathways in the system. The theoretical formalism is essential in order to understand all the features of hypercomplex experiments. The method is applied to the development of two-dimensional quadrupole-resolved 2H MAS NMR spectroscopy. The important features of this technique are discussed and two different versions are presented with widely different characteristics. An improved version of two-dimensional double-quantum 2H MAS NMR spectroscopy is developed. The conditions under which the double-quantum experiment is useful are discussed and its performance is compared with that observed for the quadrupole-resolved experiments. A general method is presented for evaluating the optimum pulse sequence parameters consistent with maximum sensitivity and resolution. This approach improves the performance of the experiments and is essential for any further development of the techniques. The effects of finite pulse width and hypercomplex data processing may lead to both intensity and phase distortions in the spectra. These effects are analyzed and general correction procedures are suggested. The techniques are applied to polycrystalline malonic-acid-2H4 for which the spinning sideband manifolds from the carboxyl and methylene deuterons are separated. The spinning sideband manifolds are simulated to determine the quadrupole parameters. The values are consistent with previous results, indicating that the techniques are both accurate and reliable.

  2. Structural characteristics of marine sedimentary humic acids by CP/MAS sup(13)C NMR spectroscopy

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.; Wahidullah, S.

    stream_size 34319 stream_content_type text/plain stream_name Oceanol_Acta_21_543.pdf.txt stream_source_info Oceanol_Acta_21_543.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 OCEANOLOGICA ACTA... components of the: hydrolysate. 545 S. SARDESSAI, S. WAHlDULLAH 3.3 Nuclear magnetic resonance ~pe~t~Q~cQQy The cross-polarization technique with magic angle spin- ning (CP/MAS) was used to obtain 13C NMR spectra. Samples were thoroughly freeze...

  3. Assessing Heterogeneity of Osteolytic Lesions in Multiple Myeloma by 1H HR-MAS NMR Metabolomics

    Directory of Open Access Journals (Sweden)

    Laurette Tavel

    2016-10-01

    Full Text Available Multiple myeloma (MM is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS nuclear magnetic resonance (NMR metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions.

  4. Bulk carbohydrate grain filling of barley ß-glucan mutants studied by 1H HR MAS NMR

    DEFF Research Database (Denmark)

    Seefeldt, Helene Fast; Larsen, Flemming Hofmann; Viereck, Nanna;

    2008-01-01

    ) during grain filling. For the first time, 1H HR MAS NMR spectra of flour from immature barley seeds are analyzed. Spectral assignments are made using two-dimensional (2D) NMR methods. Both α- and β-glucan biosynthesis were characterized by inspection of the spectra as well as by calibration......Temporal and genotypic differences in bulk carbohydrate accumulation in three barley genotypes differing in the content of mixed linkage β-(1→3),(1→4)-D-glucan (β-glucan) and starch were investigated using proton high-resolution, magic angle spinning, nuclear magnetic resonance (1H HR MAS NMR...

  5. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  6. Investigating sorption on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: a 6Li MAS NMR study of adsorption and absorption on goethite

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Paik, Younkee; Julmis, Keinia;

    2005-01-01

    High-resolution 2H MAS NMR spectra can be obtained for nanocrystalline particles of goethite (alpha-FeOOH, particle size approximately 4-10 nm) at room temperature, facilitating NMR studies of sorption under environmentally relevant conditions. Li sorption was investigated as a function of pH, th...

  7. Indirect detection of infinite-speed MAS solid-state NMR spectra

    Science.gov (United States)

    Perras, Frédéric A.; Venkatesh, Amrit; Hanrahan, Michael P.; Goh, Tian Wei; Huang, Wenyu; Rossini, Aaron J.; Pruski, Marek

    2017-03-01

    Heavy spin-1/2 nuclides are known to possess very large chemical shift anisotropies that can challenge even the most advanced magic-angle-spinning (MAS) techniques. Wide manifolds of overlapping spinning sidebands and insufficient excitation bandwidths often obfuscate meaningful spectral information and force the use of static, low-resolution solid-state (SS)NMR methods for the characterization of materials. To address these issues, we have merged fast-magic-angle-turning (MAT) and dipolar heteronuclear multiple-quantum coherence (D-HMQC) experiments to obtain D-HMQC-MAT pulse sequences which enable the rapid acquisition of 2D SSNMR spectra that correlate isotropic 1H chemical shifts to the indirectly detected isotropic "infinite-MAS" spectra of heavy spin-1/2 nuclides. For these nuclides, the combination of fast MAS and 1H detection provides a high sensitivity, which rivals the DNP-enhanced ultra-wideline SSNMR. The new pulse sequences were used to determine the Pt coordination environments in a complex mixture of decomposition products of transplatin and in a metal-organic framework with Pt ions coordinated to the linker ligands.

  8. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay [Massachusetts Institute of Technology, Department of Chemistry (United States); Wagner, Gerhard [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Pintacuda, Guido; Emsley, Lyndon [Université de Lyon, Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (CNRS, ENS Lyon, UCB Lyon 1) (France); Griffin, Robert G., E-mail: rgg@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2015-04-15

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for {sup 13}C line widths and <0.5 ppm {sup 15}N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the

  9. 13C CP/MAS NMR and DFT studies of thiazides

    Science.gov (United States)

    Latosińska, J. N.

    2003-02-01

    The 13C MAS solid state NMR spectra of four sulphonamide derivatives of 1,2,4-benzothiadiazine-1,1-dioxides, commonly known as thiazides, were recorded and the chemical shifts and chemical shift anisotropy (CSA) were measured. Analysis of the experimental 13C shielding parameters was supported by DFT theoretical calculations carried out within the gauge-including atomic orbital (GIAO), semiempirical Typed Neglect of Differential Overlap (TNDO/2) approach and by the spectra estimations performed by ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR. It was found that the chemical shifts obtained with ChemNMR Pro 6.0, ACD-I/LAB, SpecInfo and gNMR were insensitive to the substitution effects, whereas the semiempirical TNDO/2 and density functional theory (DFT) B3LYP/6-311+G(2d,p) methods allowed estimation of the influence of substituents on the chemical shielding and consequently, the chemical shift. The influence of the substituents at C3 position of the ring on the chemical shifts was analysed on the basis of the experimental data and results of the DFT calculations. The values of the chemical shifts and the low values of the anisotropy parameter for the C3 atom in HCTZ, TCTZ and ATZ, strongly indicated that three thiazides HCTZ, TCTZ and ATZ occurred in the form of HCTZ type with the C3 carbon atom participating in a single bond. The following ordering of the substituents according to the increasing electron accepting properties was found: -H<-CH 2SCH 2CHCH 2<-CHCl 2. A detailed analysis of the inductive and coupling effects was made on the basis of 13C chemical shifts and chemical shielding tensor asymmetry parameters on the C3 and C6 carbon atoms.

  10. Quantitative and Structure Analysis of Cellulose in Tobacco by 13C CP / MAS NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhu Xiaolan

    2016-07-01

    Full Text Available A new method utilizing 13C cross-polarization/magic angle spinning (CP/MAS nuclear magnetic resonance (NMR spectra was developed for the simultaneous quantitative determination and structure analysis of tobacco cellulose from hot water or acid detergent extraction. A reference spectrum of tobacco noncellulose components was subtracted from the spectrum of each sample to obtain a subspectrum of the cellulose components. The NMR spectra in combination with spectral fitting were analyzed in detail and some parameters, such as the content of cellulose, crystallinity, allomorph composition and lateral dimensions for cellulose elementary fibrils and microfibrils were determined. The quantitative results showed that the average recovery was 94.0% with a relative standard deviation (RSD of 4.6–4.8%. The structure results obtained by the spectral fitting for the cellulose C1-region showed that the main allomorph composition in tobacco cellulose was Iβ. The cellulose crystallinity calculated by the spectral fitting in C4 -region was about 50%. The lateral dimensions for cellulose elementary fibrils and microfibrils were in the range of 3.0–6.0 nm and 6.0–13.0 nm, respectively. Therefore, this NMR method could provide important information on both amount and structure of cellulose in tobacco.

  11. Water suppression without signal loss in HR-MAS 1H NMR of cells and tissues

    Science.gov (United States)

    Chen, Jin-Hong; Sambol, Elliot B.; Kennealey, Peter T.; O'Connor, Rachael B.; DeCarolis, Penelope L.; Cory, David G.; Singer, Samuel

    2004-11-01

    In cell and tissue samples, water is normally three orders of magnitude more abundant than other metabolites. Thus, water suppression is required in the acquisition of NMR spectra to overcome the dynamic range problem and to recover metabolites that overlap with the broad baseline of the strong water resonance. However, the heterogeneous cellular environment often complicates water suppression and the strong coupling of water to membrane lipids interferes with the NMR detection of membrane associated lipid components. The widely used water suppression techniques including presaturation and double pulsed field gradient selective echo result in more than a 70% reduction in membrane associated lipid components in proton spectra of cells and tissues compared to proton spectra acquired in the absence of water suppression. A water suppression technique based on the combination of selective excitation pulses and pulsed field gradients is proposed to use in the acquisition of high resolution MAS NMR spectra of tissue specimens and cell samples. This pulse sequence methodology enables efficient water suppression for intact cells and tissue samples and eliminates signal loss from cellular metabolites.

  12. Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy

    Science.gov (United States)

    Corsaro, Carmelo; Mallamace, Domenico; Łojewska, Joanna; Mallamace, Francesco; Pietronero, Luciano; Missori, Mauro

    2013-10-01

    For centuries mankind has stored its knowledge on paper, a remarkable biomaterial made of natural cellulose fibers. However, spontaneous cellulose degradation phenomena weaken and discolorate paper over time. The detailed knowledge of products arising from cellulose degradation is essential in understanding deterioration pathways and in improving durability of cultural heritage. In this study, for the first time, products of cellulose degradation were individually detected in solid paper samples by means of an extremely powerful proton HR-MAS NMR set-up, in combination to a wise use of both ancient and, as reference, artificially aged paper samples. Carboxylic acids, in addition to more complex dicarboxylic and hydroxy-carboxylic acids, were found in all samples studied. Since these products can catalyze further degradation, their knowledge is fundamental to improve conservation strategies of historical documents. Furthermore, the identification of compounds used in ancient production techniques, also suggests for artifacts dating, authentication and provenance.

  13. 1H MAS NMR spectra of hy- droxyl species on diatomite surface

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High spinning speed 1H magic-angle spinning nuclear magnetic resonance (1H MAS NMR) was used to detect surface hydroxyl groups of diatomite, which include isolated hydroxyl groups and hydrogen-bonded hydroxyl groups, and water adsorbed on diatomite surface that include pore water and hydrogen-bonded water. The corresponding proton chemical shifts of above species are ca. 2.0, 6.0-7.1, 4.9 and 3.0 respectively. Accompanied by thermal treatment temperature ascending, the pore water and hydrogen-bonded water are desorbed successively. As a result, the relative intensities of the peaks assigned to protons of isolat-ed hydroxyl groups and hydrogen-bonded hydroxyl groups increase gradually and reach their maxima at 1000℃. After 1100℃ calcination, the hydroxyl groups that classified to strongly hydrogen-bonded ones and the isolated hydroxyl groups condense basically. But some weakly hydrogen-bonded hydroxyl groups may still persist in the micropores.

  14. Assessing the fate and transformation of plant residues in the terrestrial environment using HR-MAS NMR spectroscopy

    Science.gov (United States)

    Kelleher, Brian P.; Simpson, Myrna J.; Simpson, Andre J.

    2006-08-01

    Plant litter decomposition plays a fundamental role in carbon and nitrogen cycles, provides key nutrients to the soil environment and represents a potentially large positive feedback to atmospheric CO 2. However, the full details of decomposition pathways and products are unknown. Here we present the first application of HR-MAS NMR spectroscopy on 13C and 15N labeled plant materials, and apply this approach in a preliminary study to monitor the environmental degradation of the pine and wheatgrass residues over time. In HR-MAS, is it possible to acquire very high resolution NMR data of plant biomass, and apply the vast array of multidimensional experiments available in conventional solution-state NMR. High levels of isotopic enrichment combined with HR-MAS significantly enhance the detection limits, and provide a wealth of information that is unattainable by any other method. Diffusion edited HR-MAS NMR data reveal the rapid loss of carbohydrate structures, while two-dimensional (2-D) HR-MAS NMR spectra demonstrate the relatively fast loss of both hydrolysable and condensed tannin structures from all plant tissues studied. Aromatic (partially lignin) and aliphatic components (waxes, cuticles) tend to persist, along with a small fraction of carbohydrate, and become highly functionalized over time. While one-dimensional (1-D) 13C HR-MAS NMR spectra of fresh plant tissue reflect compositional differences between pine and grass, these differences become negligible after decomposition suggesting that recalcitrant carbon may be similar despite the plant source. Two-dimensional 1H- 15N HR-MAS NMR analysis of the pine residue suggests that nitrogen from specific peptides is either selectively preserved or used for the synthesis of what appears to be novel structures. The amount of relevant data generated from plant components in situ using HR-MAS NMR is highly encouraging, and demonstrates that complete assignment will yield unprecedented structural knowledge of plant cell

  15. Supra-molecular structure and chemical reactivity of cellulose I studied using CP/MAS (sup)13 C-NMR

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2013-08-01

    Full Text Available medium, provided the original work is properly cited. Supra-Molecular Structure and Chemical Reactivity of Cellulose I Studied Using CP/MAS 13C-NMR Viren Chunilall, Tamara Bush and Per Tomas Larsson Additional information is available at the end... of Cellulose I Studied Using CP/MAS 13C-NMR 71 1.1.2. Dissolving pulp The unbleached pulp that results after acid bi-sulphite pulping is used as raw material for dissolving pulp production. Lignin and hemicelluloses in the unbleached pulp are considered...

  16. Relation Between Acid and Catalytic Properties of Chlorinated Gamma-Alumina. a 31p Mas Nmr and Ftir Investigation

    Directory of Open Access Journals (Sweden)

    Guillaume D.

    1999-07-01

    Full Text Available In this paper, we have studied the effect of chlorine on the surface properties of gamma-alumina, especially on their acid properties. The use of FTIR spectroscopy and 31P MAS NMR of adsorbed trimethylphosphine allows to propose a chlorination mechanism. To correlate the surface properties of these chlorinated gamma-alumina with their catalytic properties, we have used a model reaction, the cracking of n-heptane under reforming conditions. The analysis of the correlation between acid properties determined by 31P MAS NMR and the catalytic results (in terms of activities and selectivities allows to identify which sites are involved in the cracking reaction.

  17. Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy.

    Science.gov (United States)

    Deshmukh, Ashish P; Simpson, André J; Hatcher, Patrick G

    2003-11-01

    Cutin is a polyester biopolymer component of plant leaf and fruit cuticles, most often associated with waxes and cuticular polysaccharides, and sometimes with another aliphatic biopolymer called cutan. Insolubility of these cuticular biopolymers has made it difficult to apply traditional analytical techniques for structure determination, because most techniques providing molecular level details require solubility. By using the relatively new technique of one and two-dimensional high-resolution magic angle spinning (HR-MAS) NMR spectroscopy, with added information from solid-state 13C NMR spectroscopy, detailed through-bond connectivities and assignments are made for cutin from Lycopersicon esculentum (tomato) fruit. Based on the data obtained, tomato cutin is found to be predominantly an aliphatic polyester with some olefinic and aromatic moieties, consistent with previous studies that employed various degradative approaches. Aside from esters, there are free primary and secondary alcohol groups, as well as free fatty acids. A significant finding is the presence of alpha-branched fatty acids/esters. Mid-chain hydroxyls appear to be generally unesterified, but esters of mid-chain hydroxyls have been identified. The alpha-branched fatty acids/esters and esters of mid-chain hydroxyls could point towards cross-linking.

  18. 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables.

    Science.gov (United States)

    Miglietta, M L; Lamanna, R

    2006-07-01

    Carotenoids are linear C40 tetraterpenoid hydrocarbons and represent a wide category of natural pigments. They are components of the pigment system of chloroplasts and are involved in the primary light absorption and the photon canalization of photosynthesis. Moreover, they also behave as quenchers of singlet oxygen, protecting cells and organisms against lipid peroxidation. Carotenoids have a strong lipophilic character and are usually analyzed in organic solvents. However, because of their biological activity, the characterization of these compounds in an aqueous environment or in the natural matrix is very important. One of the most important dietary carotenoids is beta-carotene, which has been extensively studied both in vivo and in model systems, but because of the low concentration and strong interaction with the biological matrix, beta-carotene has never been observed by NMR in solid aqueous samples.In the present work, a model system has been developed for the detection and identification of beta-carotene in solid aqueous samples by 1H HR-MAS NMR. The efficiency of the model has led to the identification of beta-carotene in a raw vegetable matrix.

  19. Heating and temperature gradients of lipid bilayer samples induced by RF irradiation in MAS solid-state NMR experiments.

    Science.gov (United States)

    Wang, Jing; Zhang, Zhengfeng; Zhao, Weijing; Wang, Liying; Yang, Jun

    2016-05-09

    The MAS solid-state NMR has been a powerful technique for studying membrane proteins within the native-like lipid bilayer environment. In general, RF irradiation in MAS NMR experiments can heat and potentially destroy expensive membrane protein samples. However, under practical MAS NMR experimental conditions, detailed characterization of RF heating effect of lipid bilayer samples is still lacking. Herein, using (1) H chemical shift of water for temperature calibration, we systematically study the dependence of RF heating on hydration levels and salt concentrations of three lipids in MAS NMR experiments. Under practical (1) H decoupling conditions used in biological MAS NMR experiments, three lipids show different dependence of RF heating on hydration levels as well as salt concentrations, which are closely associated with the properties of lipids. The maximum temperature elevation of about 10 °C is similar for the three lipids containing 200% hydration, which is much lower than that in static solid-state NMR experiments. The RF heating due to salt is observed to be less than that due to hydration, with a maximum temperature elevation of less than 4 °C in the hydrated samples containing 120 mmol l(-1) of salt. Upon RF irradiation, the temperature gradient across the sample is observed to be greatly increased up to 20 °C, as demonstrated by the remarkable broadening of (1) H signal of water. Based on detailed characterization of RF heating effect, we demonstrate that RF heating and temperature gradient can be significantly reduced by decreasing the hydration levels of lipid bilayer samples from 200% to 30%. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. 1H and 13C HR-MAS NMR investigations on native and enzymatically digested bovine nasal cartilage.

    Science.gov (United States)

    Schiller, J; Naji, L; Huster, D; Kaufmann, J; Arnold, K

    2001-08-01

    Rheumatic diseases are accompanied by a progressive destruction of the cartilage layer of the joints. Despite the frequency of the disease, degradation mechanisms are not yet understood and methods for early diagnosis are not available. Although some information on pathogenesis could be obtained from the analysis of degradation products of cartilage supernatants, the most direct information on degradation processes would come from the native cartilage as such. We have used 1H as well as 13C HR-MAS (high resolution magic angle spinning) NMR spectroscopy to obtain suitable line-widths of NMR resonances of native cartilage. 1D and 2D NMR spectra of native cartilage were compared with those of enzymatically-treated (collagenase and papain) samples. In the 1H NMR spectra of native cartilage, resonances of polysaccharides, lipids and a few amino acids of collagen were detectable, whereas the 13C NMR spectra primarily indicated the presence of chondroitin sulfate. Treatment with papain resulted only in small changes in the 1H NMR spectrum, whereas a clear diminution of all resonances was detectable in the 13C NMR spectra. On the other hand, treatment with collagenase caused the formation of peptides with an amino acid composition typical for collagen (glycine, proline, hydroxyproline and lysine). It is concluded that the HR-MAS NMR spectra of cartilage may be of significance for the investigation of cartilage degradation since they allow the fast evaluation of cartilage composition and only very small amounts of sample are required.

  1. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic

  2. 1MAS NMR spectra of kao linite/formamide intercalation compound

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The high spinning speed 1H magic angle spinning nuclear magnetic resonance (1H MAS NMR) technique was employed to distinguish the two groups of surface hydroxyls of kaolinite and investigate the intercalation mechanism of kaolinite/formamide compound. The proton chemical shifts of the inner hydroxyl and inner surface hydroxyl of kaolinte are in the range of δ-1.3-0.9 and δ 2.4-3.0 respectively. After formamide intercalation three proton peaks were detected. The proton peak of the inner surface hydroxyls of the intercalation compound shifts to high-field with δ 2.3-2.7, which is assigned to the formation of the hydrogen bond between the inner surface hydroxyl and formamide carbonyl group. Whereas, the proton peak of the inner hydroxyl shifts to δ-0.3 toward low-field, that is attributed to van der Waal's effect between the inner hydroxyl proton and the amino group proton of the formamide which may be keyed into the ditrigonal hole of the kaolinite. The third peak, additional proton peak, is in the range of δ5.4-5.6, that is ascribed to the hydrogen bond formation between the amino group proton of formimide and SiO4 tetrahedral oxygen of the kaolinite.

  3. Study on Nitrogen Forms in Phenolic Polymers Incorporating Protien by 15N CP—MAS NMR

    Institute of Scientific and Technical Information of China (English)

    CHENGLILI; WENQIXIAO; 等

    1996-01-01

    Phenolic polymers synthesized by reactions by reactions of p-benzoquinone with 15N-labelled protein or (15NH4)2SO4 were studied by using 15N CP-MAS NMR technique in combination with chemical approaches.Results showed that more than 80% of nitrogen in quinone-protein polymers was in the form of amide with some present as aromatic and /or aliphatic amine and less than 10% of nitrogen occurred as heterocyclic N.The nitrogen distribution in the non-hydrolyzable residue of the quinone-protein polymers was basically similar to that of soil humic acid reported in literature with the exception that a higher proportion of N as heterocyclic N and aromatic amine and a lower proportion of N as amide and aliphatic amine were found in the former than in the latter,More than 70% of total nitrogen in quinone-(NH4)2OS4 polymer was acid resistant ,of which about 53% occurred as pyrrole,nitrile and imion type N.The possible roles of the reactions of phenols or quinones with proteins in the formation of humic acid.especially the non-hydrolyzable nitrogen in humicacid,are discussed.

  4. High-resolution (19)F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate.

    Science.gov (United States)

    Griffin, John M; Yates, Jonathan R; Berry, Andrew J; Wimperis, Stephen; Ashbrook, Sharon E

    2010-11-10

    High-resolution (19)F magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. (19)F MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)·Mg(OD(1-x)F(x))(2) with x = 0.5), indicating extensive structural disorder. The four (19)F peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F(-)/OH(-) substitution. These assignments are supported by two-dimensional (19)F double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of (19)F-(19)F J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant (19)F-(19)F J couplings, and these are in good agreement with the splittings observed in a (19)F J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" (19)F-(19)F J couplings in solution. Finally, we note that we have found similar structural disorder and spin-spin interactions in both synthetic and naturally occurring clinohumite samples.

  5. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers

    Science.gov (United States)

    Ferrari, Erika; Francioso, Ornella; Nardi, Serenella; Saladini, Monica; Ferro, Nicola Dal; Morari, Francesco

    2011-07-01

    In this study, using DRIFT and HR MAS NMR, we analyzed the humic substances isolated from a soil treated, over 40 years, with different organic, mineral and organic plus mineral treatments and cultivated with maize as the main crop. As expected, the structure of humic substances was very complex but by combining both techniques (DRIFT and HR MAS NMR) additional information was obtained on aromatic and aliphatic components, the most recalcitrant parts of these macromolecules. In so doing we wanted to investigate the relationship between HS structure and long-term management practices. An elevated content of lignin, aminoacids, peptides and proteins was observed mainly for farmyard manure treatments with respect to mineral or liquid manure amendments; this supports how the different management practices have greatly influenced the humification process of cultivated soils.

  6. Thermal maturity of type II kerogen from the New Albany Shale assessed by13C CP/MAS NMR

    Science.gov (United States)

    Werner-Zwanziger, U.; Lis, G.; Mastalerz, Maria; Schimmelmann, A.

    2005-01-01

    Thermal maturity of oil and gas source rocks is typically quantified in terms of vitrinite reflectance, which is based on optical properties of terrestrial woody remains. This study evaluates 13C CP/MAS NMR parameters in kerogen (i.e., the insoluble fraction of organic matter in sediments and sedimentary rocks) as proxies for thermal maturity in marine-derived source rocks where terrestrially derived vitrinite is often absent or sparse. In a suite of samples from the New Albany Shale (Middle Devonian to the Early Mississippian, Illinois Basin) the abundance of aromatic carbon in kerogen determined by 13C CP/MAS NMR correlates linearly well with vitrinite reflectance. ?? 2004 Elsevier Inc. All rights reserved.

  7. 1H MAS NMR characterization of hydrogen over silica-supported rhodium catalyst

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen species in both SiO2 and Rh/SiO2 catalysts pretreated indifferent atmospheres (H2, O2, helium or air) at different temperatures (773 or 973 K) were investigated by means of 1H MAS NMR. In SiO2 and O2-pretreated catalysts, a series of downfield signals at ~7.0, 3.8-4.0, 2.0 and 1.5-1.0 were detected. The first two signals can be attributed to strongly adsorbed and physisorbed water and the others to terminal silanol (SiOH) and SiOH under the screening of oxygen vacancies in SiO2 lattice, respectively. Besides the above signals, both upfield signal at ~-110 and downfield signals at 3.0 and 0.0 were also detected in H2-pretreated catalyst, respectively. The upfield signal at ~-110 originated from the dissociative adsorption of H2 over rhodium and was found to consist of both the contributions of reversible and irreversible hydrogen. There also probably existed another dissociatively adsorbed hydrogen over rhodium, which was known to be b hydrogen and in a unique form of "delocalized hydrogen". It was presumed that the b hydrogen had an upfield shift of ca. -20- -50, though its 1H NMR signals, which, having been masked by the spinning sidebands of Si-OH, failed to be directly detected out. The downfield signal at 3.0 was assigned to spillover hydrogen weakly bound by the bridge oxygen of SiO2. Another downfield signal at 0.0 was assigned to hydrogen held in the oxygen vacancies of SiO2 (Si-H species), suffering from the screening of trapped electrons. Both the spillover hydrogen and the Si-H resulted from the migration of the reversible hydrogen and the b hydrogen from rhodium to SiO2 in the close vicinity. It was proved that the above migration of hydrogen was preferred to occur at higher temperature than at lower temperature.

  8. Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR.

    Science.gov (United States)

    Shi, Xiangyan; Holland, Gregory P; Yarger, Jeffery L

    2015-03-09

    The molecular dynamics of the proteins that comprise spider dragline silk were investigated with solid-state (2)H magic angle spinning (MAS) NMR line shape and spin-lattice relaxation time (T1) analysis. The experiments were performed on (2)H/(13)C/(15)N-enriched N. clavipes dragline silk fibers. The silk protein side-chain and backbone dynamics were probed for Ala-rich regions (β-sheet and 31-helical domains) in both native (dry) and supercontracted (wet) spider silk. In native (dry) silk fibers, the side chains in all Ala containing regions undergo similar fast methyl rotations (>10(9) s(-1)), while the backbone remains essentially static (silk is wet and supercontracted, the presence of water initiates fast side-chain and backbone motions for a fraction of the β-sheet region and 31-helicies. β-Sheet subregion 1 ascribed to the poly(Ala) core exhibits slower dynamics, while β-sheet subregion 2 present in the interfacial, primarily poly(Gly-Ala) region that links the β-sheets to disordered 31-helical motifs, exhibits faster motions when the silk is supercontracted. Particularly notable is the observation of microsecond backbone motions for β-sheet subregion 2 and 31-helicies. It is proposed that these microsecond backbone motions lead to hydrogen-bond disruption in β-sheet subregion 2 and helps to explain the decrease in silk stiffness when the silk is wet and supercontracted. In addition, water mobilizes and softens 31-helical motifs, contributing to the increased extensibility observed when the silk is in a supercontracted state. The present study provides critical insight into the supercontraction mechanism and corresponding changes in mechanical properties observed for spider dragline silks.

  9. Characterizing crystal disorder of trospium chloride: a comprehensive,(13) C CP/MAS NMR, DSC, FTIR, and XRPD study.

    Science.gov (United States)

    Urbanova, Martina; Sturcova, Adriana; Brus, Jiri; Benes, Hynek; Skorepova, Eliska; Kratochvil, Bohumil; Cejka, Jan; Sedenkova, Ivana; Kobera, Libor; Policianova, Olivia; Sturc, Antonin

    2013-04-01

    Analysis of C cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and X-ray powder diffraction data of trospium chloride (TCl) products crystallized from different mixtures of water-ethanol [φ(EtOH) = 0.5-1.0] at various temperatures (0°C, 20°C) and initial concentrations (saturated solution, 30%-50% excess of solvent) revealed extensive structural variability of TCl. Although (13) C CP/MAS NMR spectra indicated broad variety of structural phases arising from molecular disorder, temperature-modulated DSC identified presence of two distinct components in the products. FTIR spectra revealed alterations in the hydrogen bonding network (ionic hydrogen bond formation), whereas the X-ray diffraction reflected unchanged unit cell parameters. These results were explained by a two-component character of TCl products in which a dominant polymorphic form is accompanied by partly separated nanocrystalline domains of a secondary phase that does not provide clear Bragg reflections. These phases slightly differ in the degree of molecular disorder, in the quality of crystal lattice and hydrogen bonding network. It is also demonstrated that, for the quality control of such complex products, (13) C CP/MAS NMR spectroscopy combined with factor analysis (FA) can satisfactorily be used for categorizing the individual samples: FA of (13) C CP/MAS NMR spectra found clear relationships between the extent of molecular disorder and crystallization conditions. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1235-1248, 2013.

  10. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis

    Science.gov (United States)

    Urbanova, Martina; Brus, Jiri; Sedenkova, Ivana; Policianova, Olivia; Kobera, Libor

    In this contribution the ability of 19F MAS NMR spectroscopy to probe structural variability of poorly water-soluble drugs formulated as solid dispersions in polymer matrices is discussed. The application potentiality of the proposed approach is demonstrated on a moderately sized active pharmaceutical ingredient (API, Atorvastatin) exhibiting extensive polymorphism. In this respect, a range of model systems with the API incorporated in the matrix of polvinylpyrrolidone (PVP) was prepared. The extent of mixing of both components was determined by T1(1H) and T1ρ(1H) relaxation experiments, and it was found that the API forms nanosized domains. Subsequently it was found out that the polymer matrix induces two kinds of changes in 19F MAS NMR spectra. At first, this is a high-frequency shift reaching 2-3 ppm which is independent on molecular structure of the API and which results from the long-range polarization of the electron cloud around 19F nucleus induced by electrostatic fields of the polymer matrix. At second, this is broadening of the signals and formation of shoulders reflecting changes in molecular arrangement of the API. To avoid misleading in the interpretation of the recorded 19F MAS NMR spectra, because both the contributions act simultaneously, we applied chemometric approach based on multivariate analysis. It is demonstrated that factor analysis of the recorded spectra can separate both these spectral contributions, and the subtle structural differences in the molecular arrangement of the API in the nanosized domains can be traced. In this way 19F MAS NMR spectra of both pure APIs and APIs in solid dispersions can be directly compared. The proposed strategy thus provides a powerful tool for the analysis of new formulations of fluorinated pharmaceutical substances in polymer matrices.

  11. Transport Properties of Ibuprofen Encapsulated in Cyclodextrin Nanosponge Hydrogels: A Proton HR-MAS NMR Spectroscopy Study.

    Science.gov (United States)

    Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2016-08-15

    The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery.

  12. Solid-state (13)C CP MAS NMR spectroscopy of mushrooms gives directly the ratio between proteins and polysaccharides.

    Science.gov (United States)

    Pizzoferrato, L; Manzi, P; Bertocchi, F; Fanelli, C; Rotilio, G; Paci, M

    2000-11-01

    The solid-state (13)C CP MAS NMR technique has the potential of monitoring the chemical composition in the solid state of an intact food sample. This property has been utilized to study mushrooms of different species (Pleurotus ostreatus, Pleurotus eryngii, Pleurotus pulmunarius, and Lentinula edodes), already characterized by chemical analyses for protein and dietary fiber components. Solid-state (13)C CP MAS NMR spectroscopy reveals a large difference in the ratio between the glucidic and the proteic resonances probably depending on the mushroom species. An accurate inspection by model compounds and suitable mixtures of proteins and saccharides gives a methodology to interpret these experimental data. A good correlation (R(2) = 0.93; R(2) = 0.81) has been obtained by comparing the NMR data with the results of the chemical analyses. The results suggest the possibility to perform a taxonomic study and/or a nutritional study on the basis of the ratio between protein and polysaccharide levels determined by NMR or chemical methodologies.

  13. Application of 119Sn CPMG MAS NMR for Fast Characterization of Sn Sites in Zeolites with Natural 119Sn Isotope Abundance

    DEFF Research Database (Denmark)

    G. Kolyagin, Yury; V. Yakimo, Alexander; Tolborg, Søren

    2016-01-01

    119Sn CPMG MAS NMR is demonstrated to be a fast and efficient method for characterization of Sn-sites in Sn-containing zeolites. Tuning of the CPMG echo-train sequence decreases the experimental time by a factor of 5–40 in the case of as-synthesized and hydrated Sn-BEA samples and by 3 orders......-BEA zeolites with natural 119Sn isotope abundance using conventional MAS NMR equipment....

  14. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    Energy Technology Data Exchange (ETDEWEB)

    Cozar, O. [Academy of Romanian Scientists, Splaiul Independentei 54, 050094, Bucharest, Romania and National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch (Romania); Filip, C.; Tripon, C. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania); Cioica, N.; Coţa, C.; Nagy, E. M. [National Institute of Research-Development for Machines and Installations Designed to Agriculture and Food Industry - INMA Bucureşti - Cluj-Napoca Branch, RO-400458 Cluj-Napoca (Romania)

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  15. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    Directory of Open Access Journals (Sweden)

    Carmelo Corsaro

    2015-01-01

    Full Text Available NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication.

  16. Structural analysis of alkali cations in mixed alkali silicate glasses by 23Na and 133Cs MAS NMR

    Directory of Open Access Journals (Sweden)

    T. Minami

    2014-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium silicate glasses by using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. In the NMR spectra of cesium silicate crystals, the peak position shifted to higher magnetic field for structures with larger Cs+ coordination numbers and to lower magnetic field for smaller Cs+ coordination numbers. The MAS NMR spectra of xNa2O-yCs2O-2SiO2 (x = 0, 0.2, 0.33, 0.5, 0.66, 0.8, 1.0; x + y = 1 glass reveal that the average coordination number of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. In addition, the coordination number of Na+ in xNa2O-yCs2O-2SiO2 glass is smaller than that of Cs+. This difference between the average coordination numbers of the alkali cations is considered to be one structural reason of the mixed alkali effect.

  17. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR

    DEFF Research Database (Denmark)

    Larsen, Flemming H.; Kasprzak, Miroslaw Marek; Lærke, Helle Nygaard

    2013-01-01

    Hydration of granular, gelatinized and molecularly modified states of potato starch in terms of molecular mobility were analyzed by 13C and 31P solid-state MAS NMR. Gelatinization (GEL) tremendously reduced the immobile fraction compared to native (NA) starch granules. This effect was enhanced...... by enzyme-assisted catalytic branching with branching enzyme (BE) or combined BE and β-amylase (BB) catalyzed exo-hydrolysis. Carbons of the glycosidic α-1,6 linkages required high hydration rates before adopting uniform chemical shifts indicating solid-state disorder and poor water accessibility...

  18. Hydration properties and phosphorous speciation in native, gelatinized and enzymatically modified potato starch analyzed by solid-state MAS NMR

    DEFF Research Database (Denmark)

    Larsen, Flemming H.; Kasprzak, Miroslaw Marek; Lærke, Helle Nygaard

    2013-01-01

    Hydration of granular, gelatinized and molecularly modified states of potato starch in terms of molecular mobility were analyzed by 13C and 31P solid-state MAS NMR. Gelatinization (GEL) tremendously reduced the immobile fraction compared to native (NA) starch granules. This effect was enhanced....... Comparative analysis of wheat and waxy maize starches demonstrated that starches were similar upon gelatinization independent of botanical origin and that the torsion angles of the glycosidic linkages were averages of the crystalline A and B type structures. In starch suspension phosphorous in immobile...

  19. High-resolution and high-temperature {sup 19} F MAS NMR study of fluorozirconate glasses and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Youngman, R.E.; Sem, S. [Corning Inc., NY (United States)

    2000-07-01

    This paper reports the first results of a high-resolution and high-temperature {sup 19}F MAS NMR spectroscopic study of the atomic structure and its temperature dependence in two binary Zr F{sub 4} (Z B) glasses with 62 and 70 mol % Zr F{sub 4} and a multicomponent ZBLAN (51.7% Zr-F{sub 4}-20.7% Ba F{sub 2}-4.5% La F{sub 3}-3.4% Al F{sub 3}-19.7% Na F) glass.

  20. Microscopic structural analysis of fractured silk fibers from Bombyx mori and Samia cynthia ricini using 13C CP/MAS NMR with a 1 mm microcoil MAS NMR probehead

    KAUST Repository

    Yamauchi, Kazuo

    2010-07-01

    Conformational changes have been studied in silk fibers from the domestic silkworm Bombyx mori and a wild silkworm Samia cynthia ricini as a result of fractured by stretching. About 300 samples consisting of only the fractured regions of [1-13C]Ala or [1-13C]Gly labeled silk fibers were collected and observed by 13C CP/MAS NMR spectra. The total amount of these fractured fibers is only about 1 mg and therefore we used a home-built 1 mm microcoil MAS NMR probehead. A very small increase in the fraction of random coil was noted for the alanine regions of both silk fibroins and for the glycine region of B. mori silk fibroin. However, there is no difference in the spectra before and after fractured for the glycine region of S. c. ricini silk fibroin. Thus, the influence of fracture occurs exclusively at the Ala region for S. c. ricini. The relationship between sequence, fracture and structure is discussed. © 2010 Elsevier Inc. All rights reserved.

  1. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    Science.gov (United States)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  2. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Science.gov (United States)

    Mallard, Isabelle; Baudelet, Davy; Castiglione, Franca; Ferro, Monica; Panzeri, Walter; Ragg, Enzio

    2015-01-01

    Summary The polymerization of partially methylated β-cyclodextrin (CRYSMEB) with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3) of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS) conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: T CH (the CP time constant) and T 1ρ (the proton spin-lattice relaxation time in the rotating frame). The results and the analysis presented in the paper pointed out that T CH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T 1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of T CH and T 1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices. PMID:26877800

  3. Polydisperse methyl β-cyclodextrin–epichlorohydrin polymers: variable contact time 13C CP-MAS solid-state NMR characterization

    Directory of Open Access Journals (Sweden)

    Isabelle Mallard

    2015-12-01

    Full Text Available The polymerization of partially methylated β-cyclodextrin (CRYSMEB with epichlorohydrin was carried out in the presence of a known amount of toluene as imprinting agent. Three different preparations (D1, D2 and D3 of imprinted polymers were obtained and characterized by solid-state 13C NMR spectroscopy under cross-polarization magic angle spinning (CP-MAS conditions. The polymers were prepared by using the same synthetic conditions but with different molar ratios of imprinting agent/monomer, leading to morphologically equivalent materials but with different absorption properties. The main purpose of the work was to find a suitable spectroscopic descriptor accounting for the different imprinting process in three homogeneous polymeric networks. The polymers were characterized by studying the kinetics of the cross-polarization process. This approach is based on variable contact time CP-MAS spectra, referred to as VCP-MAS. The analysis of the VCP-MAS spectra provided two relaxation parameters: TCH (the CP time constant and T1ρ (the proton spin-lattice relaxation time in the rotating frame. The results and the analysis presented in the paper pointed out that TCH is sensitive to the imprinting process, showing variations related to the toluene/cyclodextrin molar ratio used for the preparation of the materials. Conversely, the observed values of T1ρ did not show dramatic variations with the imprinting protocol, but rather confirmed that the three polymers are morphologically similar. Thus the combined use of TCH and T1ρ can be helpful for the characterization and fine tuning of imprinted polymeric matrices.

  4. Processing of CP MAS kinetics: Towards NMR crystallography for complex solids

    Science.gov (United States)

    Dagys, Laurynas; Klimavicius, Vytautas; Balevicius, Vytautas

    2016-09-01

    Variable temperature and high data point density measurements of 1H-31P cross-polarization kinetics in the powdered ammonium dihydrogen phosphate (ADP) have been carried out in the range of -40 °C to +90 °C upon 7 and 10 kHz MAS. The advanced route of processing CP MAS kinetic data has been developed. It is based on reducing the incoherent far range order spin couplings and extracting the CP oscillatory term with the sequent mathematical treatment. The proper replica has been found, which allowed to reduce the Fourier-Bessel (Hankel) transform calculating the angularly averaged and purely distance-depending spin distribution profile to the routine Fourier transform. The shortest 31P-1H distances determined by CP MAS kinetics get between the values obtained by neutron and X-ray diffraction, whereas those for more remote protons are slightly larger. The changes in P⋯H distances are hardly noticeable, though a certain trend to increase upon the heating can be deduced. The clearly pronounced effect was the increase of the spin-diffusion rate constant upon heating. It allows to state that the communication between interacting spins is the process extremely easy to activate.

  5. Phase cycling schemes for finite-pulse-RFDR MAS solid state NMR experiments.

    Science.gov (United States)

    Zhang, Rongchun; Nishiyama, Yusuke; Sun, Pingchuan; Ramamoorthy, Ayyalusamy

    2015-03-01

    The finite-pulse radio frequency driven dipolar recoupling (fp-RFDR) pulse sequence is used in 2D homonuclear chemical shift correlation experiments under magic angle spinning (MAS). A recent study demonstrated the advantages of using a short phase cycle, XY4, and its super-cycle, XY4(1)4, for the fp-RFDR pulse sequence employed in 2D (1)H/(1)H single-quantum/single-quantum correlation experiments under ultrafast MAS conditions. In this study, we report a comprehensive analysis on the dipolar recoupling efficiencies of XY4, XY4(1)2, XY4(1)3, XY4(1)4, and XY8(1)4 phase cycles under different spinning speeds ranging from 10 to 100 kHz. The theoretical calculations reveal the presence of second-order terms (T(10)T(2,±2), T(1,±1)T(2,±1), etc.) in the recoupled homonuclear dipolar coupling Hamiltonian only when the basic XY4 phase cycle is utilized, making it advantageous for proton-proton magnetization transfer under ultrafast MAS conditions. It is also found that the recoupling efficiency of fp-RFDR is quite dependent on the duty factor (τ180/τR) as well as on the strength of homonuclear dipolar couplings. The rate of longitudinal magnetization transfer increases linearly with the duty factor of fp-RFDR for all the XY-based phase cycles investigated in this study. Examination of the performances of different phase cycles against chemical shift offset and RF field inhomogeneity effects revealed that XY4(1)4 is the most tolerant phase cycle, while the shortest phase cycle XY4 suppressed the RF field inhomogeneity effects most efficiently under slow spinning speeds. Our results suggest that the difference in the fp-RFDR recoupling efficiencies decreases with the increasing MAS speed, while ultrafast (>60 kHz) spinning speed is advantageous as it recouples a large amount of homonuclear dipolar couplings and therefore enable fast magnetization exchange. The effects of higher-order terms and cross terms between various interactions in the effective Hamiltonian of fp

  6. Acceleration of natural-abundance solid-state MAS NMR measurements on bone by paramagnetic relaxation from gadolinium-DTPA

    Science.gov (United States)

    Mroue, Kamal H.; Zhang, Rongchun; Zhu, Peizhi; McNerny, Erin; Kohn, David H.; Morris, Michael D.; Ramamoorthy, Ayyalusamy

    2014-07-01

    Reducing the data collection time without affecting the signal intensity and spectral resolution is one of the major challenges for the widespread application of multidimensional nuclear magnetic resonance (NMR) spectroscopy, especially in experiments conducted on complex heterogeneous biological systems such as bone. In most of these experiments, the NMR data collection time is ultimately governed by the proton spin-lattice relaxation times (T1). For over two decades, gadolinium(III)-DTPA (Gd-DTPA, DTPA = Diethylene triamine pentaacetic acid) has been one of the most widely used contrast-enhancement agents in magnetic resonance imaging (MRI). In this study, we demonstrate that Gd-DTPA can also be effectively used to enhance the longitudinal relaxation rates of protons in solid-state NMR experiments conducted on bone without significant line-broadening and chemical-shift-perturbation side effects. Using bovine cortical bone samples incubated in different concentrations of Gd-DTPA complex, the 1H T1 values were calculated from data collected by 1H spin-inversion recovery method detected in natural-abundance 13C cross-polarization magic angle spinning (CPMAS) NMR experiments. Our results reveal that the 1H T1 values can be successfully reduced by a factor of 3.5 using as low as 10 mM Gd-DTPA without reducing the spectral resolution and thus enabling faster data acquisition of the 13C CPMAS spectra. These results obtained from 13C-detected CPMAS experiments were further confirmed using 1H-detected ultrafast MAS experiments on Gd-DTPA doped bone samples. This approach considerably improves the signal-to-noise ratio per unit time of NMR experiments applied to bone samples by reducing the experimental time required to acquire the same number of scans.

  7. Solid-state NMR studies on surface structure of modified SiO2%固体核磁共振研究改性纳米 SiO2的表面结构

    Institute of Scientific and Technical Information of China (English)

    陈慧娟; 朱建君; 韩培娟; 张慧

    2013-01-01

    A series of KH550 modified nano-SiO2 with different compositions were prepared and studied by solid-state NMR.29 Si MAS NMR spectroscopy was applied to characterize surface structure and hydroxyl content .Hydrophilicity was measured via 1 H MAS NMR.1 H-29 Si CP/MAS NMR spectroscopy characterized the interaction at the organic-inorganic interface .The above studies show that with the increase of the degree of modification ,the surface hydroxyl content and hydrophilicity of samples were decreased . And the activity of surface proton was reduced with the increase of the degree of modification .%  以纳米 SiO2和 KH550改性纳米 SiO2为研究对象,分别利用29 Si 魔角旋转核磁共振谱(29 Si MAS NMR)、1H魔角旋转核磁共振谱(1H MAS NMR)和1H-29Si 交叉极化/魔角旋转核磁共振谱(1H-29Si CP/MAS NMR)对纳米SiO2和KH550改性纳米SiO2的表面结构、表面羟基含量、亲水性和界面相互作用等进行了研究。实验结果表明,纳米SiO2经过KH550的改性,随着改性程度的增加,样品表面的羟基含量降低、亲水性降低、亲油性增加、表面质子运动活性随改性程度增加而减弱。

  8. Investigation on Acute Biochemical Effects of Ce(NO3)3 on Liver and Kidney Tissues by MAS 1H NMR Spectroscopic-Based Metabonomic Approach

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High resolution magic angle spinning (MAS)-1 H nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(NO3)3. Male Wistar rats were liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce(NO3)3 were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce(NO3)3 on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS 1H NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.

  9. Solid-state 51V MAS NMR spectroscopy determines component concentration and crystal phase in co-crystallised mixtures of vanadium complexes

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Hazell, Alan Charles; Skibsted, Jørgen Bengaard

    2010-01-01

    resonances are sensitive to intermolecular interactions specific to each crystal phase. The solid-state V-51 MAS NMR spectroscopic data show that the different phases do not co-precipitate but the concentration of the solute (which can be either 1 or 2) can vary. Thus co-crystallised mixtures of 1 and 2 can...... be classed as a molecular mixture capable of forming continuous solid solutions....... for the vanadium atoms of the two complexes mean that V-51 solution state and MAS NMR spectroscopy can be used to determine the concentration of 1 and 2 in bulk samples. Significantly, however, V-51 MAS NMR spectroscopy also reports on the identity of the crystal phase. This is possible because the isotropic V-51...

  10. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    OpenAIRE

    M. Cusack; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G

    2015-01-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirt...

  11. Metabolic Profiling of Cells in Response to Drug Treatment using (1)H High-resolution Magic Angle Spinning (HR-MAS) NMR Spectroscopy.

    Science.gov (United States)

    Vermathen, Martina; Diserens, Gaëlle; Vermathen, Peter; Furrer, Julien

    2017-03-29

    High-resolution magic angle spinning (HR-MAS) is an NMR technique that provides access to well resolved liquid-like 1H NMR spectra of semi-solid samples. Therefore, 1H HR-MAS NMR spectroscopy has become an important tool for the direct analysis of biological samples such as tissues and cells in a mostly non-destructive way. Here, we focus on the application of HR-MAS NMR combined with multivariate statistical methods used for metabolic profiling of cells and in particular for the study of cellular metabolic responses to drug exposure. The principles of HR-MAS and the metabolomic approach are briefly described. As an example, a study on the metabolic response of different cell types towards treatment with a highly cytotoxic hexacationic ruthenium metallaprism as potential anti-cancer drug is presented. Specific metabolites and metabolic pathways are suggested to be associated with the cellular response. The study demonstrates the potential of HR-MAS metabolomics applied to cells for addressing the intracellular processes involved in the treatment with organometallic drugs.

  12. 13C MAS NMR studies of the effects of hydration on the cell walls of potatoes and Chinese water chestnuts.

    Science.gov (United States)

    Tang, H; Belton, P S; Ng, A; Ryden, P

    1999-02-01

    13C NMR with magic angle spinning (MAS) has been employed to investigate the cell walls of potatoes and Chinese water chestnuts over a range of hydration levels. Both single-pulse excitation (SPEMAS) and cross-polarization (CPMAS) experiments were carried out. Hydration led to a substantial increase in signal intensities of galactan and galacturonan in the SPEMAS spectra and a decrease in line width, implying mobilization in the backbone and side chains of pectin. In CPMAS spectra of both samples, noncellulose components showed signal loss as hydration increased. However, the signals of some galacturonan in the 3(1) helix configuration remained in the spectra even when the water content was as high as 110%. Cellulose was unaffected. It is concluded that the pectic polysaccharides experience a distribution of molecular conformations and mobility, whereas cellulose remained as typical rigid solid.

  13. Sensitivity gains, linearity, and spectral reproducibility in nonuniformly sampled multidimensional MAS NMR spectra of high dynamic range

    Science.gov (United States)

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David

    2014-01-01

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819

  14. Sensitivity Gains, Linearity, and Spectral Reproducibility in Nonuniformly Sampled Multidimensional MAS NMR Spectra of High Dynamic Range.

    Energy Technology Data Exchange (ETDEWEB)

    Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David M.; Hoch, Jeffrey C.; Rovnyak, David S.; Polenova, Tatyana E.

    2014-04-22

    Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.

  15. Structural Investigations of Portland Cement Components, Hydration, and Effects of Admixtures by Solid-State NMR Spectroscopy

    DEFF Research Database (Denmark)

    Skibsted, Jørgen Bengaard; Andersen, Morten D.; Jakobsen, Hans Jørgen

    2006-01-01

    Solid-state, magic-angle spinning (MAS) NMR spectroscopy represents a valuable tool for structural investigations on the nanoscale of the most important phases in anhydrous and hydrated Portland cements and of various admixtures. This is primarily due to the fact that the method reflects the first...... in the cement phases. The role of flouride ions is of special interest for mineralized Portland cements and it demonstrated that the location of these anions in anhydrous and hydrated Portland cements can be clarified using 19F MAS or 29Si{19F} CP/MAS NMR despite these cements contain only about 0.2 wt...

  16. Red coralline algae assessed as marine pH proxies using 11B MAS NMR

    Science.gov (United States)

    Cusack, M.; Kamenos, N. A.; Rollion-Bard, C.; Tricot, G.

    2015-02-01

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  17. Red coralline algae assessed as marine pH proxies using 11B MAS NMR.

    Science.gov (United States)

    Cusack, M; Kamenos, N A; Rollion-Bard, C; Tricot, G

    2015-02-02

    Reconstructing pH from biogenic carbonates using boron isotopic compositions relies on the assumption that only borate, and no boric acid, is present. Red coralline algae are frequently used in palaeoenvironmental reconstruction due to their widespread distribution and regular banding frequency. Prior to undertaking pH reconstructions using red coralline algae we tested the boron composition of the red coralline alga Lithothamnion glaciale using high field NMR. In bulk analysed samples, thirty percent of boron was present as boric acid. We suggest that prior to reconstructing pH using coralline algae 1) species-specific boron compositions and 2) within-skeleton special distributions of boron are determined for multiple species. This will enable site selective boron analyses to be conducted validating coralline algae as palaeo-pH proxies based on boron isotopic compositions.

  18. Resolution of the Two Aluminum Sites in Ettringite by Al-27 MAS and MQMAS NMR at Very High Magnetic Field (22.3 T)

    DEFF Research Database (Denmark)

    Skibsted, Jorgen; Pedersen, Malene T.; Holzinger, Julian

    2017-01-01

    Ettringite (Ca-6[Al(OH)(6)](2)(SO4)(3)center dot 26H(2)O) is the first hydration product formed during Portland cement hydration. Al-27 MAS NMR has been used in a wide number of studies to detect and quantify ettringite in hydrated cement blends by the observation of a single, narrow resonance...

  19. Non-destructive and direct determination of the degree of substitution of carboxymethyl cellulose by HR-MAS (13)C NMR spectroscopy.

    Science.gov (United States)

    Ferro, M; Castiglione, F; Panzeri, W; Dispenza, R; Santini, L; Karlsson, H J; de Wit, P P; Mele, A

    2017-08-01

    We report on the direct assessment of the degree of substitution (DS) of carboxymethyl cellulose (CMC) by High Resolution Magic Angle Spinning (HR-MAS) (13)C NMR spectroscopy. The method is applied to industrial CMCs with low and high viscosity and nominal DS, purified and technical samples, and from cellulose linters or wood. The preparation of a set of purified CMC working standards with accurate DS values for the method validation is also described. The DS values determined via HR-MAS (13)C NMR on the industrial samples are critically compared to the corresponding values achieved through the USP 37 〈281〉 method (ASH method) and the HPLC method, and the advantages and limitations of the HR-MAS NMR method highlighted. Finally, the HR-MAS NMR approach allowed the accurate DS assessment in CMC with low DS, characterized by a non-negligible fraction of non-functionalized cellulose. The proposed "effective DS" accounts for the DS of the solvent-exposed CMC. Copyright © 2017. Published by Elsevier Ltd.

  20. Observation of immobile regions in natural rubber at ambient temperature by solid-state C-13 CP/MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Larsen, F.H.; Rasmussen, T.; Pedersen, Walther Batsberg

    1999-01-01

    Employing C-13 CP/MAS NMR spectroscopy, the existence of immobile regions in natural rubber (cis-1,4-polyisoprene) corresponding to a few percent of the monomer units has been detected at ambient temperature. For synthetic rubbers no immobile regions have been detected at all. Applying different...

  1. Geminal (2)J((29)Si-O-(29)Si) couplings in oligosiloxanes and their relation to direct (1)J((29) Si-(13)C) couplings.

    Science.gov (United States)

    Kurfürst, Milan; Blechta, Vratislav; Schraml, Jan

    2011-08-01

    Absolute values of (79) geminal (2)J((29) Si-O-(29)Si) couplings were measured in an extensive series of (55) unstrained siloxanes dissolved in chloroform-d. Signs of (2)J((29)Si-O-(29)Si) in some (9) silicon hydrides were determined relative to (1)J((29)Si-(1)H) which are known to be negative. It is supposed that positive sign of the (2)J((29)Si-O-(29)Si) coupling found in all studied hydrides is common to all siloxanes. Theoretical calculations for simple model compounds failed to reproduce this sign and so their predictions of bond length and angle dependences cannot be taken as reliable. Useful empirical correlations were found between the (2)J((29)Si-O-(29)Si) couplings on one side and the total number m of oxygen atoms bonded to the silicon atoms, sum of (29)Si chemical shifts or product of (1)J((29)Si-(13)C) couplings on the other side. The significance of these correlations is briefly discussed.

  2. Heterogeneous Coordination Environments in Lithium-Neutralized Ionomers Identified Using 1H and 7Li MAS NMR

    Directory of Open Access Journals (Sweden)

    Kenneth B. Wagener

    2012-08-01

    Full Text Available The carboxylic acid proton and the lithium coordination environments for precise and random Li-neutralized polyethylene acrylic acid P(E-AA ionomers were explored using high speed solid-state 1H and 7Li MAS NMR. While the 7Li NMR revealed only a single Li coordination environment, the chemical shift temperature variation was dependent on the precise or random nature of the P(E-AA ionomer. The 1H MAS NMR revealed two different carboxylic acid proton environments in these materials. By utilizing 1H-7Li rotational echo double resonance (REDOR MAS NMR experiments, it was demonstrated that the proton environments correspond to different average 1H-7Li distances, with the majority of the protonated carboxylic acids having a close through space contact with the Li. Molecular dynamics simulations suggest that the shortest 1H-7Li distance corresponds to un-neutralized carboxylic acids directly involved in the coordination environment of Li clusters. These solid-state NMR results show that heterogeneous structural motifs need to be included when developing descriptions of these ionomer materials.

  3. Local environments and lithium adsorption on the iron oxyhydroxides lepidocrocite (gamma-FeOOH) and goethite (alpha-FeOOH): A 2H-2 and 7Li solid-state MAS NMR study

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Grey, Clare P.; Paik, Jonkim

    2008-01-01

    2H and 7LiMAS NMR spectroscopy techniques were applied to study the local surface and bulk environments of iron oxyhydroxide lepiclocrocite (gamma-FeOOH). 2H variable-temperature (VT) MAS NMR experiments were performed, showing the presence of short-range, strong antiferromagnetic correlations, e...

  4. Probing sol-gel matrices microenvironments by PGSE HR-MAS NMR.

    Science.gov (United States)

    Ferreira, Ana S D; Barreiros, Susana; Cabrita, Eurico J

    2017-05-01

    We applied Pulsed Gradient Spin Echo diffusion with high-resolution magic angle spinning NMR to study sol-gel matrices used to encapsulate enzymes for biocatalysis (TMOS/MTMS and TMOS/BTMS) to gain insight into the local chemical microenvironment. Transport properties of solvents with different polarities (1-pentanol, acetonitrile and n-hexane) were studied through their apparent self-diffusion coefficients. The spin echo attenuation of the solvents shows two distinct diffusion domains, one with fast diffusion (Dfast ) associated with interparticle diffusion and another with slow diffusion (Dslow ) corresponding to the displacement inside the pores within the sol-gel particles. The analysis of the root mean square displacements at different diffusion times showed that the Dfast domain has a free diffusion regime in both matrices (the root mean square displacement is linearly dependent of the diffusion time), while the Dslow domain shows a different regime that depends on the matrix. We investigated the exchange regime between the two diffusion sites. In both matrices, n-hexane was in intermediate exchange between diffusion domains, while the polar solvents were in slow exchange in TMOS/BTMS and in intermediate exchange in TMOS/MTMS. Data were fitted for TMOS/BTMS with the Kärger model, and the physical parameters were obtained. The results add to the evidence that the pores are a hydrophobic environment but that the presence of some free hydrophilic groups inside the pore, as observed in the TMOS/BTMS, has a key role in slowing down the exchange of polar solvents and that this is relevant to explain previously reported enzyme activity in these materials. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Response of Degarelix treatment in human prostate cancer monitored by HR-MAS (1)H NMR spectroscopy.

    Science.gov (United States)

    Madhu, Basetti; Shaw, Greg L; Warren, Anne Y; Neal, David E; Griffiths, John R

    The androgen receptor (AR) is the master regulator of prostate cancer cell metabolism. Degarelix is a novel gonadotrophin-releasing hormone blocker, used to decrease serum androgen levels in order to treat advanced human prostate cancer. Little is known of the rapid metabolic response of the human prostate cancer tissue samples to the decreased androgen levels. To investigate the metabolic responses in benign and cancerous tissue samples from patients after treatment with Degarelix by using HRMAS (1)H NMR spectroscopy. Using non-destructive HR-MAS (1)H NMR spectroscopy we analysed the metabolic changes induced by decreased AR signalling in human prostate cancer tissue samples. Absolute concentrations of the metabolites alanine, lactate, glutamine, glutamate, citrate, choline compounds [t-choline = choline + phosphocholine (PC) + glycerophosphocholine (GPC)], creatine compounds [t-creatine = creatine (Cr) + phosphocreatine (PCr)], taurine, myo-inositol and polyamines were measured in benign prostate tissue samples (n = 10), in prostate cancer specimens from untreated patients (n = 7) and prostate cancer specimens from patients treated with Degarelix (n = 6). Lactate, alanine and t-choline concentrations were significantly elevated in high-grade prostate cancer samples when compared to benign samples in untreated patients. Decreased androgen levels resulted in significant decreases of lactate and t-choline concentrations in human prostate cancer biopsies. The reduced concentrations of lactate and t-choline metabolites due to Degarelix could in principle be monitored by in vivo (1)H MRS, which suggests that it would be possible to monitor the effects of physical or chemical castration in patients by that non-invasive method.

  6. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy.

    Science.gov (United States)

    Mote, Kaustubh R; Gopinath, T; Veglia, Gianluigi

    2013-10-01

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  7. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  8. Modifier cation effects on 29Si nuclear shielding anisotropies in silicate glasses

    Science.gov (United States)

    Baltisberger, Jay H.; Florian, Pierre; Keeler, Eric G.; Phyo, Pyae A.; Sanders, Kevin J.; Grandinetti, Philip J.

    2016-07-01

    We have examined variations in the 29Si nuclear shielding tensor parameters of SiO4 tetrahedra in a series of seven alkali and alkaline earth silicate glass compositions, Cs2O · 4.81 SiO2, Rb2O · 3.96 SiO2, Rb2O · 2.25 SiO2, K2O · 4.48 SiO2, Na2O · 4.74 SiO2, BaO · 2.64 SiO2, and SrO · 2.36 SiO2, using natural abundance 29Si two-dimensional magic-angle flipping (MAF) experiments. Our analyses of these 2D spectra reveal a linear dependence of the 29Si nuclear shielding anisotropy of Q(3) sites on the Si-non-bridging oxygen bond length, which in turn depends on the cation potential and coordination of modifier cations to the non-bridging oxygen. We also demonstrate how a combination of Cu2+ as a paramagnetic dopant combined with echo train acquisition can reduce the total experiment time of 29Si 2D NMR measurements by two orders of magnitude, enabling higher throughput 2D NMR studies of glass structure.

  9. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Science.gov (United States)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  10. Hysteresis effect of ammonium and water protons by 1H MAS NMR in (NH4)2CuBr4·2H2O

    Science.gov (United States)

    Lim, Ae Ran; Cho, Jiung

    2017-10-01

    The chemical shifts, linewidths, and spin-lattice relaxation times for ammonium and water protons in (NH4)2CuBr4·2H2O were investigated by 1H magic angle spinning nuclear magnetic resonance (MAS NMR) with a focus on the roles of NH4+ and H2O at high temperatures. The changes in the temperature dependence of the data near Td (=360 K) were related to variations of the H environments; the mechanism above Td was related to hydrogen-bond transfer involving breakage of the weak part of the hydrogen bond. The hysteresis effects for the ammonium and water protons in (NH4)2CuBr4·2H2O by MAS NMR were described with respect to heating and cooling.

  11. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    Science.gov (United States)

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets.

  12. Fine-tuned characterization at the solid/solution interface of organotin compounds grafted onto cross-linked polystyrene by using high-resolution MAS NMR spectroscopy.

    Science.gov (United States)

    Martins, José C; Mercier, Frédéric A G; Vandervelden, Alexander; Biesemans, Monique; Wieruszeski, Jean-Michel; Humpfer, Eberhard; Willem, Rudolph; Lippens, Guy

    2002-08-02

    The structural characterization of organotin compounds that are grafted onto insoluble cross-linked polymers has necessarily been limited to elemental analysis, infrared spectroscopy, and in a few instances, solid-state NMR spectroscopy. This important bottleneck in the development of such grafted systems has been addressed by using high-resolution magic angle spinning (hr-MAS) NMR spectroscopy. The great potential of this technique is demonstrated through the structural characterization of diphenylbutyl-(3,4) and dichlorobutylstannanes (5,6), grafted onto divinylbenzene cross-linked polystyrene by means of a suitable linker (1, 2). First, conditions suitable for the application of hr-MAS NMR spectroscopy were identified by characterizing the (1)H resonance line widths of the grafted organotin moiety following swelling of the functionalized beads in eight representative solvents. The presence of clearly identifiable tin coupling patterns in both the 1D (13)C and 2D (1)H-(13)C HSQC spectra, and the incorporation of (119)Sn chemical shift and connectivity information from hr-MAS 1D (119)Sn and 2D (1)H-(119)Sn HMQC spectra, provide an unprecedented level of characterization of grafted organotins directly at the solid/liquid interface. In addition, the use of hr-MAS (119)Sn NMR for reaction monitoring, impurity detection, and quantification and assessment of the extent of coordination reveals its promise as a novel tool for the investigation of polymer-grafted organotin compounds. The approach described here should be sufficiently general for extension to a variety of other nuclei of interest in polymer-supported organometallic chemistry.

  13. Probing intermolecular interactions in a diethylcarbamazine citrate salt by fast MAS (1)H solid-state NMR spectroscopy and GIPAW calculations.

    Science.gov (United States)

    Venâncio, Tiago; Oliveira, Lyege Magalhaes; Ellena, Javier; Boechat, Nubia; Brown, Steven P

    2017-03-02

    Fast magic-angle spinning (MAS) NMR is used to probe intermolecular interactions in a diethylcarbamazine salt, that is widely used as a treatment against adult worms of Wuchereria bancrofti which cause a common disease in tropical countries named filariasis. Specifically, a dihydrogen citrate salt that has improved thermal stability and solubility as compared to the free form is studied. One-dimensional (1)H, (13)C and (15)N and two-dimensional (1)H-(13)C and (14)N-(1)H heteronuclear correlation NMR experiments under moderate and fast MAS together with GIPAW (CASTEP) calculations enable the assignment of the (1)H, (13)C and (14)N/(15)N resonances. A two-dimensional (1)H-(1)H double-quantum (DQ) -single-quantum (SQ) MAS spectrum recorded with BaBa recoupling at 60kHz MAS identifies specific proton-proton proximities associated with citrate-citrate and citrate-diethylcarbamazine intermolecular interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Metabolic and histopathological alterations of Jatropha mosaic begomovirus-infected Jatropha curcas L. by HR-MAS NMR spectroscopy and magnetic resonance imaging.

    Science.gov (United States)

    Sidhu, O P; Annarao, Sanjay; Pathre, Uday; Snehi, S K; Raj, S K; Roy, Raja; Tuli, Rakesh; Khetrapal, C L

    2010-06-01

    Alterations in the anatomical structures, sap translocation and metabolic profiles in Jatropha curcas L. (Euphorbiaceae), infected with Jatropha mosaic virus (JMV) have been investigated using MRI and HR-MAS NMR spectroscopy. The contrast of MRI images distinguishes abnormalities in anatomical structures of infected and healthy stem. The HR-MAS NMR spectroscopic analysis indicated that viral infection significantly affected the plant metabolism. Higher accumulation of TCA cycle intermediates, such as citrate and malate, in JMV-infected plants suggested a higher rate of respiration. The respiration rate was more than twofold as compared to healthy ones. The viral stress also significantly increases the concentrations of alanine, arginine, glutamine, valine, GABA and choline as compared to healthy ones. Microscopic examination revealed severe hyperplasia caused by JMV with a considerable reduction in the size of stem cells. Lower concentration of glucose and sucrose in viral-infected stem tissues indicates decreased translocation of photosynthates from leaves to stem due to hyperplasia caused by JMV. The MR images distinguished stele, cortical and pith regions of JMV-infected and healthy stems. Contrast of T(1)- and T(2)-weighted images showed significant differences in the spatial distribution of water, lipids and macromolecules in virus-infected and healthy stem tissues. The results demonstrated the value of MRI and HR-MAS NMR spectroscopy in studying viral infection and metabolic shift in plants. The present methodology may help in better understanding the metabolic alterations during biotic stress in other plant species of agricultural and commercial importance.

  15. A spectrometer designed for 6.7 and 14.1 T DNP-enhanced solid-state MAS NMR using quasi-optical microwave transmission.

    Science.gov (United States)

    Pike, Kevin J; Kemp, Thomas F; Takahashi, Hiroki; Day, Robert; Howes, Andrew P; Kryukov, Eugeny V; MacDonald, James F; Collis, Alana E C; Bolton, David R; Wylde, Richard J; Orwick, Marcella; Kosuga, Kosuke; Clark, Andrew J; Idehara, Toshitaka; Watts, Anthony; Smith, Graham M; Newton, Mark E; Dupree, Ray; Smith, Mark E

    2012-02-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer operating at 6.7 T is described and demonstrated. The 187 GHz TE(13) fundamental mode of the FU CW VII gyrotron is used as the microwave source for this magnetic field strength and 284 MHz (1)H DNP-NMR. The spectrometer is designed for use with microwave frequencies up to 395 GHz (the TE(16) second-harmonic mode of the gyrotron) for DNP at 14.1T (600 MHz (1)H NMR). The pulsed microwave output from the gyrotron is converted to a quasi-optical Gaussian beam using a Vlasov antenna and transmitted to the NMR probe via an optical bench, with beam splitters for monitoring and adjusting the microwave power, a ferrite rotator to isolate the gyrotron from the reflected power and a Martin-Puplett interferometer for adjusting the polarisation. The Gaussian beam is reflected by curved mirrors inside the DNP-MAS-NMR probe to be incident at the sample along the MAS rotation axis. The beam is focussed to a ~1 mm waist at the top of the rotor and then gradually diverges to give much more efficient coupling throughout the sample than designs using direct waveguide irradiation. The probe can be used in triple channel HXY mode for 600 MHz (1)H and double channel HX mode for 284 MHz (1)H, with MAS sample temperatures ≥85 K. Initial data at 6.7 T and ~1 W pulsed microwave power are presented with (13)C enhancements of 60 for a frozen urea solution ((1)H-(13)C CP), 16 for bacteriorhodopsin in purple membrane ((1)H-(13)C CP) and 22 for (15)N in a frozen glycine solution ((1)H-(15)N CP) being obtained. In comparison with designs which irradiate perpendicular to the rotation axis the approach used here provides a highly efficient use of the incident microwave beam and an NMR-optimised coil design.

  16. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    Gamma-, sigma- and theta-Al2O3 are well known metastable “transitional” alumina structural polymorphs. Upon heating, Al2O3 transitions to the so-called and Al2O3 polymorphs and finally forms the thermally stable Al2O3. The poorly developed crystallinity and co-existence of the , , and Al2O3 prior to forming all Al2O3, making it difficult to characterize the structures as well as to quantify the various phases of the transition alumina. As a result, there are significant controversies in the literatures. In this work, a detailed NMR analysis was carried out at high magnetic field on three special aluminum oxide samples where the, , , Al2O3 phases are made dominant, respectively, by controlling the synthesis conditions. The goal is to simplify, including making unambiguous, spectral assignments in 27Al MAS NMR spectra of transition alumina that have not yet been commonly agreed previously. Specifically, quantitative 1D 27Al MAS NMR was used to quantify the ratios of the different alumina structural units, 2D MQMAS 27Al MAS was used for obtaining the highest spectral resolution to guide the analysis of the 1D spectrum, and a saturation pulse sequence was integrated into the 1D NMR to select the amorphous structures, including obtain spectra where the penta-coordinate sites are observed with enhanced relative intensity. Collectively, this study uniquely assigns Al-peaks (both octahedral and tetrahedral) to the Al2O3 and the Al2O3 phases and offers a new way of understanding, including quantifying, the different structural units and sites in transition alumina samples.

  17. Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz.

    Science.gov (United States)

    Struppe, Jochem; Quinn, Caitlin M; Lu, Manman; Wang, Mingzhang; Hou, Guangjin; Lu, Xingyu; Kraus, Jodi; Andreas, Loren B; Stanek, Jan; Lalli, Daniela; Lesage, Anne; Pintacuda, Guido; Maas, Werner; Gronenborn, Angela M; Polenova, Tatyana

    2017-07-03

    The recent breakthroughs in NMR probe technologies resulted in the development of MAS NMR probes with rotation frequencies exceeding 100 kHz. Herein, we explore dramatic increases in sensitivity and resolution observed at MAS frequencies of 110-111 kHz in a novel 0.7 mm HCND probe that enable structural analysis of fully protonated biological systems. Proton- detected 2D and 3D correlation spectroscopy under such conditions requires only 0.1-0.5 mg of sample and a fraction of time compared to conventional (13)C-detected experiments. We discuss the performance of several proton- and heteronuclear- ((13)C-,(15)N-) based correlation experiments in terms of sensitivity and resolution, using a model microcrystalline fMLF tripeptide. We demonstrate the applications of ultrafast MAS to a large, fully protonated protein assembly of the 231-residue HIV-1 CA capsid protein. Resonance assignments of protons and heteronuclei, as well as (1)H-(15)N dipolar and (1)H(N) CSA tensors are readily obtained from the high sensitivity and resolution proton-detected 3D experiments. The approach demonstrated here is expected to enable the determination of atomic-resolution structures of large protein assemblies, inaccessible by current methodologies. Copyright © 2017. Published by Elsevier Inc.

  18. Solid state structure by X-ray and 13C CP/MAS NMR of new 5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarins

    Science.gov (United States)

    Ostrowska, Kinga; Maciejewska, Dorota; Dobrzycki, Łukasz; Socha, Pawel

    2016-05-01

    5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (1) and 6-acetyl-5-[2-(N,N-dimethylamino)ethoxy]-4,7-dimethylcoumarin (2), structurally related, were synthesized using both conventional and microwave-assisted approach. An impact of acetyl groups on the molecular structure of coumarin derivatives has been examined. Crystals of 2 were investigated using single crystal and powder X-ray diffraction techniques. Compound 2 crystallizes forming two polymorphs (denoted as 2_1 and 2_2), both belonging to P21/c space group. Both polymorphs are comparably stable and can be formed simultaneously during crystallization process. The solid state structure was also analysed using the fully resolved 13C CP/MAS NMR. The double signals with the intensity ratio of about 1:1 which were observed in the 13C CP/MAS NMR spectrum of compound 1 must arise due to the presence of two conformers of 1. In contrast, NMR spectrum recorded for powder mixture of two polymorphs of compound 2 displays no signal splitting. This is related to structural similarities of molecules in both polymorphs.

  19. Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations.

    Science.gov (United States)

    Holland, Gregory P; Mou, Qiushi; Yarger, Jeffery L

    2013-07-28

    Two-dimensional (2D) (1)H-(13)C heteronuclear correlation (HETCOR) solid-state NMR spectra collected with fast magic angle spinning (MAS) are used in conjunction with density functional theory (DFT) proton chemical shift calculations to determine the hydrogen-bonding strength for ordered β-sheet and disordered 310-helical structures in spider dragline silk. The hydrogen-bond strength is determined to be identical for both structures in spider silk with a 1.83-1.84 Å NH···OC hydrogen-bond distance.

  20. H/D isotope effect of {sup 1}H MAS NMR spectra and {sup 79}Br NQR frequencies of piperidinium p-bromobenzoate and pyrrolidinium p-bromobenzoate

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Hisashi, E-mail: hhonda@yokohama-cu.ac.jp [Yokohama City University, Graduate School of Nanobioscience (Japan); Kyo, Shinshin [Yokohama City University, Faculty of Sciences (Japan); Akaho, Yousuke [Yokohama City University, Faculty of International College of Arts and Sciences (Japan); Takamizawa, Satoshi [Yokohama City University, Graduate School of Nanobioscience (Japan); Terao, Hiromitsu [Tokushima University, Faculty of Integrated Arts and Sciences (Japan)

    2010-04-15

    H/D isotope effects onto {sup 79}Br NQR frequencies of piperidinium p-bromobenzoate were studied by deuterium substitution of hydrogen atoms which form two kinds of N-H Midline-Horizontal-Ellipsis O type hydrogen bonds, and the isotope shift of ca. 100 kHz were detected for a whole observed temperature range. In addition, {sup 1}H MAS NMR spectra measurements of piperidinium and pyrrolidinium p-bromobenzoate were carried out and little isotope changes of NMR line shape were detected. In order to reveal effects of molecular arrangements into the obtained isotope shift of NQR frequencies, single-crystal X-ray measurement of piperidinium p-bromobenzoate-d2 and density-functional-theory calculation were carried out. Our estimation showed the dihedral-angle change between piperidine and benzene ring contributes to isotope shift rather than those of N-H lengths by deuterium substitution.

  1. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S., E-mail: lebrown@uoguelph.ca [University of Guelph, Departments of Physics, and Biophysics Interdepartmental Group (Canada)

    2013-02-15

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ({sup 13}C/{sup 15}N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  2. MAS NMR, DRIFT, and FT-Raman Characterization of SiO(2)-AlPO(4)-B(2)O(3) Ternary Catalytic Systems.

    Science.gov (United States)

    Aramendía; Boráu; Jiménez; Marinas; Ruiz; Urbano

    1999-09-01

    This work deals with the preparation of SiO(2)-AlPO(4)-B(2)O(3) ternary systems from impregation of a SiO(2)-AlPO(4) solid previously synthesized with B(OH)(3) (0-10% B(OH)(3), by weight). Characterization of the resulting solids has been carried out from adsorption-desorption isotherms of nitrogen, DRIFT, FT-Raman, pyridine adsorption, and (1)H, (11)B, (27)Al, and (31)P MAS NMR. The textural properties are scarcely changed by the impregnation and calcination steps. Moreover, the MAS NMR experiments indicated that the components of the solids do not interact among them. The solids were tested in the dehydration-dehydrogenation of propan-2-ol, widely used to correlate catalytic activity with the surface acid-base properties of the solids. The catalytic results indicate that the effect of boron dopping is an increase in the overall acidity of the solids. Copyright 1999 Academic Press.

  3. High field 27Al MAS NMR and TPD studies of active sites in ethanol dehydration using thermally treated transitional aluminas as catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Xu, Suochang; Kwak, Ja Hun; Hu, Mary Y.; Wan, Chuan; Zhao, Zhenchao; Szanyi, Janos; Bao, Xinhe; Han, Xiuwen; Wang, Yong; Peden, Charles H. F.

    2016-04-01

    High field quantitative 27Al MAS NMR and temperature programmed desorption (TPD) of ethanol are used to study the surface and phase transformation of gamma-Al2O3 during calcination in the temperature range of 500 to 1300 degrees C. Following ethanol adsorption, ethylene is generated during TPD with a desorption temperature > 200 degrees C. With increasing calcination temperature prior to TPD, the amount of ethylene produced decreases monotonically. Significantly, 27Al MAS NMR reveals that the amount of penta-coordinate Al3+ ions (Lewis acid sites) also decreases with increasing calcination temperature. In fact, a strong correlation between the amount of penta-coordinate Al3+ ions and the amount of strongly adsorbed ethanol molecules (i.e., the ones that convert to ethylene during TPD) is obtained. This result indicates that the penta-coordinate aluminum sites are the catalytic active sites on alumina surfaces during ethanol dehydration reaction across the entire course of gamma- to alpha-Al2O3 phase transformations.

  4. Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study.

    Science.gov (United States)

    Diserens, G; Vermathen, M; Precht, C; Broskey, N T; Boesch, C; Amati, F; Dufour, J-F; Vermathen, P

    2015-01-07

    High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle.

  5. Bonding Preferences of Non-Bridging Oxygens in Calcium Aluminosilicate Glass: Evidence from O-17 MAS and 3QMAS NMR on Calcium Aluminate Glass

    Science.gov (United States)

    Allwardt, J. R.; Lee, S.; Stebbins, J.

    2001-12-01

    Non-bridging oxygens (NBO's) play a significant role in the thermodynamic and transport properties in glasses and silicate melts. Previous oxygen-17 (O-17) triple quantum magic angle spinning (3QMAS NMR) data have shown the presence of NBO's in several calcium aluminosilicate (CAS) glasses on the CaAl2O4-SiO2 join (Stebbins and Xu 1997). The observed chemical shifts of these glasses are similar to those for the NBO in calcium silicate glasses (Stebbins et al. 1997 and Stebbins et al 1999); however, a recent O-17 MAS NMR study of crystalline CaAl2O4 showed that the NBO peak in an associated impurity phase is shifted to a higher frequency by 30 to 40 ppm from that of CAS and Ca-silicate glasses (Stebbins et al. in press). This finding suggests that Si is the preferred network cation for NBO's in aluminosilicate glasses and melts at the glass transition temperature. The preference for Si over that of Al as the network cation host for NBO's has also been suggested by Raman and other spectroscopic techniques (Mysen 1988). To investigate this apparent preference for Si-NBO, O-17 3QMAS and MAS experiments were conducted to examine the location of the NBO peak in the spectra of a calcium aluminate glass. Since the CaAl2O4 glass is difficult to make by conventional cooling methods, the binary eutectic composition (63CaO-37Al2O3) was chosen. The resulting O-17 MAS spectrum shows an intense, relatively narrow peak centered at 72 ppm, which nearly coincides with the peak location and width of the Al-O-Al peak in the crystalline Ca-aluminates (Stebbins et al. in press.) (70 ppm). There is a broader, less intense peak centered at 155 ppm that is assigned to the Al-NBO peak. This peak is in approximately the same location as that for a Ca-aluminate phase reported by Stebbins et al. (in press) (137 ppm). In addition, our 3QMAS data show that the peak maximum of the NBO in the Ca-aluminate (-85 and 150 ppm in isotropic and MAS dimensions, respectively) differs significantly from

  6. Low-power broadband homonuclear dipolar recoupling in MAS NMR by two-fold symmetry pulse schemes for magnetization transfers and double-quantum excitation

    Science.gov (United States)

    Teymoori, Gholamhasan; Pahari, Bholanath; Edén, Mattias

    2015-12-01

    We provide an experimental, numerical, and high-order average Hamiltonian evaluation of an open-ended series of homonuclear dipolar recoupling sequences, SR2 2p 1 with p = 1, 2, 3, … . While operating at a very low radio-frequency (rf) power, corresponding to a nutation frequency of 1/2 of the magic-angle spinning (MAS) rate (ωnut =ωr / 2), these recursively generated double-quantum (2Q) dipolar recoupling schemes offer a progressively improved compensation to resonance offsets and rf inhomogeneity for increasing pulse-sequence order p. The excellent recoupling robustness to these experimental obstacles, as well as to CSA, is demonstrated for 2Q filtering (2QF) experiments and for driving magnetization transfers in 2D NMR correlation spectroscopy, where the sequences may provide either double or zero quantum dipolar Hamiltonians during mixing. Experimental and numerical demonstrations, which mostly target conditions of "ultra-fast" MAS (≳50 kHz) and high magnetic fields, are provided for recoupling of 13C across a wide range of isotropic and anisotropic chemical shifts, as well as dipolar coupling constants, encompassing [2,3-13C2 ]alanine, [1,3-13C2 ]alanine, diammonium [1,4-13C2 ]fumarate, and [U-13 C]tyrosine. When compared at equal power levels, a superior performance is observed for the SR2p 1 sequences with p ⩾ 3 relative to existing and well-established 2Q recoupling techniques. At ultra-fast MAS, proton decoupling is redundant during the homonuclear dipolar recoupling of dilute spins in organic solids, which renders the family of SR2p 1 schemes the first efficient 2Q recoupling option for general applications, such as 2Q-1Q correlation NMR and high-order multiple-quantum excitation, under truly low-power rf conditions.

  7. Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy.

    Science.gov (United States)

    Wang, Wei; Seiler, Michael; Ivanova, Irina I; Sternberg, Ulrich; Weitkamp, Jens; Hunger, Michael

    2002-06-26

    Methylation of aniline by methanol on zeolite H-Y has been investigated by in situ (13)C MAS NMR spectroscopy under flow conditions. The in situ (13)C continuous-flow (CF) MAS NMR experiments were performed at reaction temperatures between 473 and 523 K, molar methanol-to-aniline ratios of 1:1 to 4:1, and modified residence times of (13)CH(3)OH between 20 and 100 (g x h)/mol. The methylation reaction was shown to start at 473 K. N,N,N-Trimethylanilinium cations causing a (13)C NMR signal at 58 ppm constitute the major product on the catalyst surface. Small amounts of protonated N-methylaniline ([PhNH(2)CH(3)](+)) and N,N-dimethylaniline ([PhNH(CH(3))(2)](+)) were also observed at ca. 39 and 48 ppm, respectively. After increase of the temperature to 523 K, the contents of N,N-dimethylanilinium cations and ring-alkylated reaction products strongly increased, accompanied by a decrease of the amount of N,N,N-trimethylanilinium cations. With application of the in situ stopped-flow (SF) MAS NMR technique, the decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y to N,N-dimethylanilinium and N-methylanilinium cations was investigated to gain a deeper insight into the reaction mechanism. The results obtained allow the proposal of a mechanism consisting of three steps: (i) the conversion of methanol to surface methoxy groups and dimethyl ether (DME); (ii) the alkylation of aniline with methanol, methoxy groups, or DME leading to an equilibrium mixture of N,N,N-trimethylanilinium, N,N-dimethylanilinium, and N-methylanilinium cations attached to the zeolite surface; (iii) the deprotonation of N,N-dimethylanilinium and N-methylanilinium cations causing the formation of N,N-dimethylaniline (NNDMA) and N-methylaniline (NMA) in the gas phase, respectively. The chemical equilibrium between the anilinium cations carrying different numbers of methyl groups is suggested to play a key role for the products distribution in the gas phase.

  8. Shocked quartz: A {sup 29}Si magic-angle-spinning nuclear magnetic resonance study

    Energy Technology Data Exchange (ETDEWEB)

    Fiske, P.S.; Nellis, W.J. [Lawrence Livermore National Lab., CA (United States). Physics and Space Technology Directorate; Xu, Z.; Stebbins, J.F. [Stanford Univ., CA (United States). Dept. of Geological and Environmental Sciences

    1998-11-01

    Quantitative {sup 29}Si NMR spectra of single-crystal {alpha}-quartz, shock compressed to 12--38 GPa and recovered, provide new information about the complex response of quartz to shock loading. Spectra from samples recovered from shock pressures of 12--20 GPa show a broadening of the {sup 29}Si NMR peak and the development of asymmetry toward lower NMR frequency (indicating an increase in the mean Si-O-Si intertetrahedral bond angle). NMR spectra of samples shock compressed above {approximately}25 GPa show increasing amounts of a separate amorphous phase of SiO{sub 2} with a mean Si-O-Si bond angle roughly 5{degree} narrower, and 10--15% denser, than fused SiO{sub 2}. Small amounts of crystalline material remain with a mean Si-O-Si bond angle up to 3{degree} larger than unshocked {alpha}-quartz. The recovery of dense glass indicates that post-shock temperatures were sufficiently low to also preserve stishovite, had any been created in the experiments. The paucity of stishovite or Si in an amorphous phase in the recovered samples suggests that the formation of stable, high-coordinated Si is kinetically hindered in shock compression experiments up to about 35--40 GPa, except in regions of high temperature, such as planar deformation features (PDFs), microfaults (pseudotachylites), or voids.

  9. Probing the location and distribution of paramagnetic centers in alkali metal-loaded zeolites through (7)Li MAS NMR.

    Science.gov (United States)

    Terskikh, Victor V; Ratcliffe, Christopher I; Ripmeester, John A; Reinhold, Catherine J; Anderson, Paul A; Edwards, Peter P

    2004-09-15

    The nature and surroundings of lithium cations in lithium-exchanged X and A zeolites following loading with the alkali metals Na, K, Rb, and Cs have been studied through (7)Li solid-state NMR spectroscopy. It is demonstrated that the lithium in these zeolites is stable with respect to reduction by the other alkali metals. Even though the lithium cations are not directly involved in chemical interactions with the excess electrons introduced in the doping process, the corresponding (7)Li NMR spectra are extremely sensitive to paramagnetic species that are located inside the zeolite cavities. This sensitivity makes (7)Li NMR a useful probe to study the formation, distribution, and transformation of such species.

  10. Identification of double four-ring units in germanosilicate ITQ-13 zeolite by solid-state NMR spectroscopy.

    Science.gov (United States)

    Liu, Xiaolong; Chu, Yueying; Wang, Qiang; Wang, Weiyu; Wang, Chao; Xu, Jun; Deng, Feng

    2017-05-17

    Well-crystallized Ge-free and Ge-ITQ-13 were successfully obtained by solid state synthesis method. The Ge/Si ratio and the water content that are the two important factors in the synthesis of germanosilicate zeolites were explored for the formation of ITQ-13. The effect of the mineralizing agents (NH4F and NH4Cl) on the ITQ-13 synthesis was investigated as well. The obtained pure silica ITQ-13 and Ge-ITQ-13 were characterized by one- and two-dimensional solid- state NMR techniques. One-dimensional (1D) (19)F MAS, (1)H→(29)Si CP/MAS and (19)F→(29)Si CP/MAS NMR spectroscopy evidenced the formation of pure Si-D4R (double four ring) and Ge-D4R units, with the latter being generated by substitution of Si atom from the former units. The detailed configurations of the Ge-D4R units in ITQ-13 was revealed by two-dimensional (2D) (29)Si{(19)F} HETCOR NMR spectroscopy. With the help of theoretical calculations on the (19)F and (29)Si NMR chemical shifts, six types of D4R units were determined. The formation of the specific D4R unit confirms the structural directing roles of Ge atom and F ions in the formation of the D4R units in zeolite framework. The identification of the SiOSi bonds in the D4R units that connects the layers of ITQ-13 framework provided rationale for the high stability of the ITQ-13 in the degermanation treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS

    Science.gov (United States)

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of 1H and 13C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) 1H-13C correlations with 1H detection and (ii) 1H-1H double-quantum ↔ single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of L-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to 13C detection, we show that 1H detection leads to a 3-fold enhancement in sensitivity for 1H-13C 2D correlation experiments. By combining 1H-13C and 1H-1H 2D correlation experiments with the analysis of 13C longitudinal relaxation times, we have been able to assign the 1H and 13C signals of each L-alanine ligand.

  12. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu [Biophysics and Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109-1055 (United States)

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D {sup 1}H/{sup 13}C/{sup 1}H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t{sub 1} and t{sub 3} periods, respectively. In addition to through-space and through-bond {sup 13}C/{sup 1}H and {sup 13}C/{sup 13}C chemical shift correlations, the 3D {sup 1}H/{sup 13}C/{sup 1}H experiment also provides a COSY-type {sup 1}H/{sup 1}H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ({sup 1}H/{sup 1}H chemical shift correlation spectrum) at different {sup 13}C chemical shift frequencies from the 3D {sup 1}H/{sup 13}C/{sup 1}H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the

  13. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  14. Perfil químico de cultivares de feijão (phaseolus vulgaris pela técnica de high resolution magic angle spinning (HR-MAS Chemical profile of beans cultivars (phaseolus vulgaris by ¹h nmr - high resolution magic angle spinning (HR-MAS

    Directory of Open Access Journals (Sweden)

    Luciano Morais Lião

    2010-01-01

    Full Text Available The application of one-dimensional proton high-resolution magic angle spinning (¹H HR-MAS NMR combined with a typical advantages of solid and liquid-state NMR techniques was used as input variables for the multivariate statistical analysis. In this paper, different cultivars of beans (Phaseolus vulgaris developed and in development by Embrapa - Arroz e Feijão were analyzed by ¹H HR-MAS, which have been demonstrated to be a valuable tool in its differentiation according chemical composition and avoid the manipulation of the samples as used in other techniques.

  15. Two-dimensional MAS NMR correlation protocols involving double-quantum filtering of quadrupolar spin-pairs.

    Science.gov (United States)

    Edén, Mattias

    2010-05-01

    Three two-dimensional (2D) NMR homonuclear correlation techniques invoking double-quantum (2Q) filtration of the central transitions of half-integer spins are evaluated numerically and experimentally. They correlate directly detected single-quantum (1Q) coherences in the t(2) domain with either of 1Q, two-spin 2Q or single-spin multiple-quantum coherence-evolutions in the indirect (t(1)) dimension. We employ experimental (23)Na and (27)Al NMR on sodium sulfite and the natural mineral sillimanite (SiAl(2)O(5)), in conjunction with simulated 2D spectra from pairs of dipolar-recoupled spins-3/2 and 5/2 at different external magnetic fields, to compare the correlation strategies from the viewpoints of 2D spectral resolution, signal sensitivity, implementational aspects and their relative merits for establishing internuclear proximities and quadrupolar tensor orientations.

  16. Solid-state NMR characterization of Mowry Formation shales

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.

    1992-04-01

    Solid-state [sup 13]C and [sup 29]Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS [sup 13]C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of [sup 29]Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The [sup 29]Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  17. Solid-state NMR characterization of Mowry Formation shales

    Energy Technology Data Exchange (ETDEWEB)

    Miknis, F.P.

    1992-04-01

    Solid-state {sup 13}C and {sup 29}Si NMR measurements were carried out on a series of petroleum source rocks from the Mowry Formation of the Powder River Basin in Wyoming. The objectives of this study wereto use CP/MAS {sup 13}C NMR measurements to monitor changes in the carbon structure of the kerogen that result from depth of burial, and to examine the feasibility of {sup 29}Si NMR for studying the thermal alteration of clay minerals during diagenesis. Carbon and silicon NMR measurements were made on a suite of samples covering a present-day depth interval of 3,000 to 11,500 ft.In general, the NMR results endorsed other geochemical analyses that were performed on the source rocks as part of another study to examine pressure compartmentalization in the Mowry Formation. The carbon aromaticity of the kerogen increased with depth of burial, and at depths greater that approximately 10,000 ft the kerogen showed little capacity to generate additional oil because of the small fraction of residual aliphatic carbon. By combining NMR and Rock-Eval measurements, an estimate of the hydrogen budget was obtained. The calculations indicated that approximately 20% of the kerogen was converted to hydrocarbons, and that sufficient hydrogen was liberated from aromatization and condensation reactions to stabilize the generated products. The {sup 29}Si NMR spectra were characterized by a relatively sharp quartz resonance and a broad resonance from the clay minerals. With increasing depth of burial, the clay resonance became broader and shifted slightly downfield. These changes qualitatively support X-ray analysis that shows progressive alteration of illite to smectite with depth of burial.

  18. Resolution and measurement of heteronuclear dipolar couplings of a noncrystalline protein immobilized in a biological supramolecular assembly by proton-detected MAS solid-state NMR spectroscopy

    Science.gov (United States)

    Park, Sang Ho; Yang, Chen; Opella, Stanley J.; Mueller, Leonard J.

    2013-12-01

    Two-dimensional 15N chemical shift/1H chemical shift and three-dimensional 1H-15N dipolar coupling/15N chemical shift/1H chemical shift MAS solid-state NMR correlation spectra of the filamentous bacteriophage Pf1 major coat protein show single-site resolution in noncrystalline, intact-phage preparations. The high sensitivity and resolution result from 1H detection at 600 MHz under 50 kHz magic angle spinning using ∼0.5 mg of perdeuterated and uniformly 15N-labeled protein in which the exchangeable amide sites are partially or completely back-exchanged (reprotonated). Notably, the heteronuclear 1H-15N dipolar coupling frequency dimension is shown to select among 15N resonances, which will be useful in structural studies of larger proteins where the resonances exhibit a high degree of overlap in multidimensional chemical shift correlation spectra.

  19. 1H high-resolution magic-angle spinning (HR-MAS) NMR analysis of ligand density on resins using a resin internal standard.

    Science.gov (United States)

    Lucas, Laura H; Cerny, Matthew A; Koen, Yakov M; Hanzlik, Robert P; Larive, Cynthia K

    2004-10-01

    We recently attempted to generate an affinity chromatography adsorbent to purify cytochrome P450 4A1 by coupling 11-(1'-imidazolyl)-3,6,9-trioxaundecanoic acid to Toyopearl AF-Amino 650 M resin. Variations in ligand density for several resin batches were quantified by high-resolution magic-angle spinning (HR-MAS) NMR spectroscopy using a novel resin internal standard. The uniquely designed ImQ internal resin standard yields its signature resonance in a transparent region of the analyte spectrum making suppression of the polymer background unnecessary. This method enabled us to target a reasonable ligand density for enzyme purification and provides an advantageous alternative to quantitation against soluble standards or protonated solvent.

  20. 13C CP MAS NMR and GIAO-CHF/DFT calculations of flavonoids: Morin, kaempferol, tricin, genistein, formononetin and 3,7-dihydroxyflavone

    Science.gov (United States)

    Zielińska, Agnieszka; Paradowska, Katarzyna; Jakowski, Jacek; Wawer, Iwona

    2008-02-01

    13C CP MAS NMR spectra of the flavonoids: morin, kaempferol, 3,7-dihydroxyflavone, tricin and isoflavones: genistein and formononetin were recorded to characterize solid-state conformations. Intramolecular hydrogen bonds forming five-, six- and seven-membered rings are present in the two morin molecules in the crystals - their 13C resonances have been assigned with the aid of the calculated shielding constants. Linear relationships between the calculated shielding constants σDFT (ppm) and chemical shifts ( δCPMAS, ppm) were obtained for all studied compounds. Higher correlation coefficients suggest that the conformation with "clockwise" orientation of both OH groups is more probable in the solid 3,7-dihydroxyflavone, whereas in the solid formononetin the OH and OCH 3 substituents are directed "anticlockwise". The barrier to the rotation of phenyl ring B decreases in the order: morin (2'-OH, 3-OH) > kaempferol (3-OH) > tricin.

  1. 119Sn MAS NMR Study of Probe Molecules Interaction with Sn-BEA: The Origin of Penta- and Hexacoordinated Tin Formation

    DEFF Research Database (Denmark)

    Yakimov, Alexander V.; G. Kolyagin, Yury; Tolborg, Søren

    2016-01-01

    119Sn CPMG MAS NMR was applied to study the adsorption of acetonitrile, methanol, isopropanol, isobutanol and water over Sn-BEA enriched with 119Sn isotope. Two signals observed at ca. -422 and -443 ppm over dehydrated samples were attributed to tetracoordinated framework tin sites with strong...... and weak Lewis acidity, respectively. The adsorption of acetonitrile and methanol resulted in observation of pentacoordinated tin species, due to the formation of 1:1 adsorption complexes over both Sn-sites. Water adsorption led first to formation of pentacoordinated tin species, which were further...... converted into hexacoordinated species at longer reaction times. The latter transformation was found to be kinetically limited and was attributed to chemical interaction of tin sites with water, such as hydrolysis of Si-O-Sn bonds. The adsorption of isopropanol and isobutanol was accompanied...

  2. Proton-detected MAS NMR experiments based on dipolar transfers for backbone assignment of highly deuterated proteins

    Science.gov (United States)

    Chevelkov, Veniamin; Habenstein, Birgit; Loquet, Antoine; Giller, Karin; Becker, Stefan; Lange, Adam

    2014-05-01

    Proton-detected solid-state NMR was applied to a highly deuterated insoluble, non-crystalline biological assembly, the Salmonella typhimurium type iii secretion system (T3SS) needle. Spectra of very high resolution and sensitivity were obtained at a low protonation level of 10-20% at exchangeable amide positions. We developed efficient experimental protocols for resonance assignment tailored for this system and the employed experimental conditions. Using exclusively dipolar-based interspin magnetization transfers, we recorded two sets of 3D spectra allowing for an almost complete backbone resonance assignment of the needle subunit PrgI. The additional information provided by the well-resolved proton dimension revealed the presence of two sets of resonances in the N-terminal helix of PrgI, while in previous studies employing 13C detection only a single set of resonances was observed.

  3. Investigating the lignocellulosic composition during delignification using confocal raman spectroscopy, cross-polarization magic angle spinning carbon 13 - nuclear magnetic resonance (CP/MAS 13C- NMR) spectroscopy and atomic force microscopy

    CSIR Research Space (South Africa)

    Chunilall, Viren

    2012-03-01

    Full Text Available spectroscopy, Cross-Polarization Magic Angle Spinning Carbon 13 - Nuclear Magnetic Resonance (CP/MAS 13C-NMR) spectroscopy and Atomic Force Microscopy (AFM) in conjunction with image analysis. The confocal Raman results showed that there were differences...

  4. Accurate determination of order parameters from 1H,15N dipolar couplings in MAS solid-state NMR experiments.

    Science.gov (United States)

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-10-01

    A reliable site-specific estimate of the individual N-H bond lengths in the protein backbone is the fundamental basis of any relaxation experiment in solution and in the solid-state NMR. The N-H bond length can in principle be influenced by hydrogen bonding, which would result in an increased N-H distance. At the same time, dynamics in the backbone induces a reduction of the experimental dipolar coupling due to motional averaging. We present a 3D dipolar recoupling experiment in which the (1)H,(15)N dipolar coupling is reintroduced in the indirect dimension using phase-inverted CP to eliminate effects from rf inhomogeneity. We find no variation of the N-H dipolar coupling as a function of hydrogen bonding. Instead, variations in the (1)H,(15)N dipolar coupling seem to be due to dynamics of the protein backbone. This is supported by the observed correlation between the H(N)-N dipolar coupling and the amide proton chemical shift. The experiment is demonstrated for a perdeuterated sample of the alpha-spectrin SH3 domain. Perdeuteration is a prerequisite to achieve high accuracy. The average error in the analysis of the H-N dipolar couplings is on the order of +/-370 Hz (+/-0.012 A) and can be as small as 150 Hz, corresponding to a variation of the bond length of +/-0.005 A.

  5. 31P MAS-NMR study of flux-grown rare-earth element orthophosphate (monazite/xenotime) solid solutions: Evidence of random cation distribution from paramagnetically shifted NMR resonances

    Energy Technology Data Exchange (ETDEWEB)

    Palke, A. C. [Stanford University; Stebbins, J. F. [Stanford University; Boatner, Lynn A [ORNL

    2013-01-01

    We present 31P magic angle spinning nuclear magnetic resonance (MAS-NMR) spectra of flux-grown solid solutions of La1-xCexPO4 ( x between 0.027 and 0.32) having the monoclinic monazite structure, and of Y1-xMxPO4 (M = Vn+, Ce3+, Nd3+, x between 0.001 and 0.014) having the tetragonal zircon structure. Paramagnetically shifted NMR resonances are observed in all samples due to the presence of paramagnetic Vn+, Ce3+, and Nd3+ in the diamagnetic LaPO4 or YPO4. As a first-order observation, the number and relative intensity of these peaks is related to the symmetry and structure of the diamagnetic host phase. The presence of paramagnetic shifts allows for increased resolution between NMR resonances for distinct atomic species which leads to the observation of low intensity peaks related to PO4 species having more than one paramagnetic neighbor two or four atomic bonds away. Through careful analysis of peak areas and comparison with predictions for simple models, it was determined that solid solutions in the systems examined here are characterized by complete disorder (random distribution) of diamagnetic La3+ or Y3+ with the paramagnetic substitutional species Ce3+ and Nd3+. The increased resolution given by the paramagnetic interactions also leads to the observation of splitting of specific resonances in the 31P NMR spectra that may be caused by local, small-scale distortions from the substitution of ions having dissimilar ionic radii.

  6. Effect of organic matter application on CP-MAS-13C-NMR spectra of humic acids from a brown soil

    Science.gov (United States)

    Dou, S.

    2009-04-01

    The humified SOM or humic substances (HS) composed of humic acid (HA), fulvic acid (FA) and humin (HM) represent the most microbially recalcitrant and stable reservoir of organic carbon in soil (Piccolo et al., 2004). OM applications can influence the amount and structural characteristics of HS(Dou et al., 2008). During the past few decades, there has been much research on HS, but their chemical structure is still not fully understood (Dong, 2006).CP-MAS-13C-NMR spectroscopy was considered as an effective method to study structures of HS without dissolving problem compared with liquid 13C-NMR (Conte et al., 1997; Dou et al., 2008). It can directly measure the carbon framework and reflect the nature of HS transformation after OM application (Spaccini et al., 2000). For that reason, this method was applied in this study. The objective of this paper was to clarify the effect of long term OM application on the changes of structural characteristics in HAs, which provided new information for improving soil fertility by OM application. The experiment was carried out on a brown soil (Paleudalf in USDA Soil Taxonomy) at Shenyang Agricultural University, Liaoning province, China (N41°48'-E123°25'). The experiment included 3 treatments: zero-treatment (CKbr), and two pig manure (PM) treatments (O1 and O2) at the rates of 0.9 t ha-1 and 1.8 t ha-1 of organic carbon, respectively. The samples of the HA fraction were extracted, separated and purified according to the method described by Dou et al. (1991). Elemental composition, Differential thermal analysis (DTA), -lgK value, FT-IR and CP-MAS- 13C-NMR of HAs were performed. Effects on the contents of orgaic carbon and its composition. The contents of TOC were from 8.77 g kg-1 to 12.25 g kg-1. The relative contents in TOC for WSS, HA, and FA were 6.87%, 14.2% and 19.8%. Comparing the CKbr, the contents of WSS, HA and FA for O1 and O2 increased, but relative contents of WSS and FA decreased. The content of the HA increased after

  7. Identification of Streptococcus pneumoniae serotype 11E, serovariant 11Av and mixed populations by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR spectroscopy and flow cytometric serotyping assay (FCSA.

    Directory of Open Access Journals (Sweden)

    Romina Camilli

    Full Text Available BACKGROUND: Recent studies have identified Streptococcus pneumoniae serotype 11E and serovariant 11Av among isolates previously typed as 11A by classical serotyping methods. Serotype 11E and serovariant 11Av differ from serotype 11A by having totally or partially inactive wcjE, a gene in cps locus coding for an O-acetyl transferase. Serotype 11E is rare among carriage isolates but common among invasive isolates suggesting that it survives better during invasion. Aim of this work was to investigate the epidemiology of serotype 11A in a pneumococcal collection using a new serotyping approach based on High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR spectroscopy to distinguish serotypes 11A and 11E. METHODS: A collection of 48 (34 invasive and 14 carriage S. pneumoniae isolates from Italy, previously identified as serotype 11A by the Quellung reaction, were investigated by wcjE sequencing, HR-MAS NMR spectroscopy and the reference flow cytometric serotyping assay (FCSA based on monoclonal antibodies. RESULTS: HR-MAS NMR spectra from serotypes 11A and 11E showed different NMR peaks indicating that HR-MAS NMR could be used to distinguish these serotypes, although HR-MAS NMR could not distinguish serotype 11Av from serotype 11E unambiguously. Thirty-eight isolates were confirmed to be serotype 11A, 8 isolates with a mutated wcjE were serotype 11E, 1 isolate belonged to serovariant 11Av, and 1 isolate was a mixed population 11A/11Av. All 11E isolates were identified among invasive isolates. CONCLUSIONS: We proved that HR-MAS NMR can be of potential use for pneumococcal serotyping. The detection of serotype 11E among invasive isolates in our collection, supports previous epidemiological studies suggesting that mutations in wcjE can represent a mechanism promoting pneumococcal survival during invasion. The discovery of a spectrum of immunochemical diversity within established serotypes should stimulate efforts to develop new

  8. Structural changes in C–S–H gel during dissolution: Small-angle neutron scattering and Si-NMR characterization

    Energy Technology Data Exchange (ETDEWEB)

    Trapote-Barreira, Ana, E-mail: anatrapotebarreira@gmail.com [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Porcar, Lionel [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Large Scale Structure Group, Institut Laue Langevin, Grenoble (France); Cama, Jordi; Soler, Josep M. [Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Catalonia (Spain); Allen, Andrew J. [National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States)

    2015-06-15

    Flow-through experiments were conducted to study the calcium–silicate–hydrate (C–S–H) gel dissolution kinetics. During C–S–H gel dissolution the initial aqueous Ca/Si ratio decreases to reach the stoichiometric value of the Ca/Si ratio of a tobermorite-like phase (Ca/Si = 0.83). As the Ca/Si ratio decreases, the solid C–S–H dissolution rate increases from (4.5 × 10{sup −} {sup 14} to 6.7 × 10{sup −} {sup 12}) mol m{sup −} {sup 2} s{sup −} {sup 1}. The changes in the microstructure of the dissolving C–S–H gel were characterized by small-angle neutron scattering (SANS) and {sup 29}Si magic-angle-spinning nuclear magnetic resonance ({sup 29}Si-MAS NMR). The SANS data were fitted using a fractal model. The SANS specific surface area tends to increase with time and the obtained fit parameters reflect the changes in the nanostructure of the dissolving solid C–S–H within the gel. The {sup 29}Si MAS NMR analyses show that with dissolution the solid C–S–H structure tends to a more ordered tobermorite structure, in agreement with the Ca/Si ratio evolution.

  9. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    Energy Technology Data Exchange (ETDEWEB)

    Ziegeweid, Marcia A. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting Quantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of 14N via the quadrupolar interaction. Because 14N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe 14N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional 13C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf(η5-C5H5)21-C5H5)2, Zr

  10. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    Energy Technology Data Exchange (ETDEWEB)

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1

  11. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo-Hidalgo, Ana G. [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico); Dugar, Sneha; Fu, Riqiang [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Hernandez-Maldonado, Arturo J., E-mail: arturoj.hernandez@upr.edu [Department of Chemical Engineering, University of Puerto Rico-Mayagueez Campus, Mayagueez, PR 00681-9000 (Puerto Rico)

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  12. Probing Silica-Biomolecule Interactions by Solid-State NMR and Molecular Dynamics Simulations.

    Science.gov (United States)

    Brückner, Stephan Ingmar; Donets, Sergii; Dianat, Arezoo; Bobeth, Manfred; Gutiérrez, Rafael; Cuniberti, Gianaurelio; Brunner, Eike

    2016-11-08

    Understanding the molecular interactions between inorganic phases such as silica and organic material is fundamental for chromatographic applications, for tailoring silica-enzyme interactions, and for elucidating the mechanisms of biomineralization. The formation, structure, and properties of the organic/inorganic interface is crucial in this context. Here, we investigate the interaction of selectively (13)C-labeled choline with (29)Si-labeled monosilicic acid/silica at the molecular level. Silica/choline nanocomposites were analyzed by solid-state NMR spectroscopy in combination with extended molecular dynamics (MD) simulations to understand the silica/organic interface. Cross-polarization magic angle spinning (CP MAS)-based NMR experiments like (1)H-(13)C CP-REDOR (rotational-echo double resonance), (1)H-(13)C HETCOR (heteronuclear correlation), and (1)H-(29)Si-(1)H double CP are employed to determine spatial parameters. The measurement of (29)Si-(13)C internuclear distances for selectively (13)C-labeled choline provides an experimental parameter that allows the direct verification of MD simulations. Atomistic modeling using classical MD methodologies is performed using the INTERFACE force field. The modeling results are in excellent agreement with the experimental data and reveal the relevant molecular conformations as well as the nature and interplay of the interactions between the choline cation and the silica surface. Electrostatic interactions and hydrogen bonding are both important and depend strongly on the hydration level as well as the charge state of the silica surface.

  13. Metabolic profiling of ob/ob mouse fatty liver using HR-MAS (1)H-NMR combined with gene expression analysis reveals alterations in betaine metabolism and the transsulfuration pathway.

    Science.gov (United States)

    Gogiashvili, Mikheil; Edlund, Karolina; Gianmoena, Kathrin; Marchan, Rosemarie; Brik, Alexander; Andersson, Jan T; Lambert, Jörg; Madjar, Katrin; Hellwig, Birte; Rahnenführer, Jörg; Hengstler, Jan G; Hergenröder, Roland; Cadenas, Cristina

    2017-02-01

    Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) (1)H-NMR. In addition, after demonstrating that HR-MAS (1)H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS (1)H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS (1)H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene

  14. Insight into the local magnetic environments and deuteron mobility in jarosite (AFe3(SO4)2(OD)6, A = K, Na, D3O) and hydronium alunite ((D3O)Al3(SO4)2(OD,OD2)6), from variable temperature 2H MAS NMR spectroscopy

    DEFF Research Database (Denmark)

    Nielsen, Ulla Gro; Heinmaa, Ivo; Samoson, Ago

    2011-01-01

    Detailed insight into the magnetic properties and mobility of the different deuteron species in jarosites (AFe3(SO4)2(OD)6, A = K, Na, D3O) is obtained from variable temperature 2H MAS NMR spectroscopy from 40 K to 300 K. Fast MAS results in high resolution spectra of these paramagnetic compounds...

  15. Investigating the Surface Structure of γ-Al 2 O 3 Supported WO X Catalysts by High Field 27 Al MAS NMR and Electronic Structure Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chuan; Hu, Mary Y.; Jaegers, Nicholas R.; Shi, Dachuan; Wang, Huamin; Gao, Feng; Qin, Zhaohai; Wang, Yong; Hu, Jian Zhi

    2016-10-13

    The metal-support interaction in γ-Al2O3 supported WOX catalysts is investigated by a combination of high field quantitative single pulse (SP) 27Al MAS NMR spectroscopy, 2D MQMAS, 1H-27Al CP/MAS, and electronic structure calculations. NMR allows the observation of at least seven different Al sites, including a pentahedral Al site, three different tetrahedral Al sites, and three octahedral Al sites. It is found that the penta-coordinated Al (AlP) site density decreases monotonically with an increased WOX loading while the octahedral Al (AlO) site density increases concurrently. This suggests that the Alp sites are the preferred surface anchoring positions for the WOX species. Importantly, the AlP site isotropic chemical shift observed for the unsupported γ-Al2O3 at about 38 ppm migrates into the octahedral region with a new isotropic chemical shift value appearing near 7 ppm when the Alp site is anchored by WOX species. Density functional theory (DFT) computational modeling of the NMR parameters on proposed cluster models is carried out to accurately interpret the dramatic chemical shift changes from which the detailed anchoring mechanisms are obtained. It is found that tungsten dimers and monomers are the preferred supported surface species on γ-Al2O3, wherein one monomeric and several dimeric structures are identified as the most likely surface anchoring structures.

  16. Structure determination of uniformly {sup 13}C, {sup 15}N labeled protein using qualitative distance restraints from MAS solid-state {sup 13}C-NMR observed paramagnetic relaxation enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Tamaki, Hajime [Hokkaido University, Graduate School of Life Science (Japan); Egawa, Ayako [Osaka University, Institute for Protein Research (Japan); Kido, Kouki [Hokkaido University, Graduate School of Life Science (Japan); Kameda, Tomoshi [National Institute of Advanced Industrial Science and Technology, Biotechnology Research Institute for Drug Discovery (Japan); Kamiya, Masakatsu; Kikukawa, Takashi; Aizawa, Tomoyasu [Hokkaido University, Faculty of Advanced Life Science (Japan); Fujiwara, Toshimichi [Osaka University, Institute for Protein Research (Japan); Demura, Makoto, E-mail: demura@sci.hokudai.ac.jp [Hokkaido University, Faculty of Advanced Life Science (Japan)

    2016-01-15

    Magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) is a powerful method for structure determination of insoluble biomolecules. However, structure determination by MAS solid-state NMR remains challenging because it is difficult to obtain a sufficient amount of distance restraints owing to spectral complexity. Collection of distance restraints from paramagnetic relaxation enhancement (PRE) is a promising approach to alleviate this barrier. However, the precision of distance restraints provided by PRE is limited in solid-state NMR because of incomplete averaged interactions and intermolecular PREs. In this report, the backbone structure of the B1 domain of streptococcal protein G (GB1) has been successfully determined by combining the CS-Rosetta protocol and qualitative PRE restraints. The derived structure has a Cα RMSD of 1.49 Å relative to the X-ray structure. It is noteworthy that our protocol can determine the correct structure from only three cysteine-EDTA-Mn{sup 2+} mutants because this number of PRE sites is insufficient when using a conventional structure calculation method based on restrained molecular dynamics and simulated annealing. This study shows that qualitative PRE restraints can be employed effectively for protein structure determination from a limited conformational sampling space using a protein fragment library.

  17. Metabolic Profiles in Temporal Cortex,Hippocampus and Entorhinal Cortex in Rats Measuredby HR-MAS 1H NMR Spectroscopy%HR-MAS NMR研究大鼠颞叶、海马和内嗅皮质的生理代谢表征

    Institute of Scientific and Technical Information of China (English)

    刘慧浪; 朱航; 夏圣安; 刘买利

    2008-01-01

    颞叶结构参与了多种中枢退行性疾病的发牛和发展.了解生理状念下大鼠的这些脑区的代谢特征可以为动物模型的病理研究提供基础数据和参考.本文采用高分辨魔角旋转核磁共振(HR-MAS NMR)波谱技术和主成分分析(PCA)方法对S.D.大鼠双侧颞叶、海马和内嗅皮质的代谢物进行了分析,结果发现这3个脑区的代谢表征存在显著差异.颞叶区的N-乙酰天门冬氨酸和牛磺酸的浓度最高,肌醇和肌酸的浓度最低;海马区的甘氨酸和胆碱的浓度最高;而在内嗅皮质区则是谷氨酰氨的浓度最高.另外,还证实了HR-MAS NMR-PCA技术是研究生理和病理状态下脑组织各亚结构代谢表征的一种有效的手段.

  18. Photo-Cross-Linked Poly(DL-lactide)-Based Networks. Structural Characterization by HR-MAS NMR Spectroscopy and Hydrolytic Degradation Behavior

    NARCIS (Netherlands)

    Melchels, Ferry P. W.; Velders, Aldrik H.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepare

  19. Photo-Cross-Linked Poly(dl-lactide)-Based Networks. Structural Characterization by HR-MAS NMR Spectroscopy and Hydrolytic Degradation Behavior

    NARCIS (Netherlands)

    Melchels, Ferry P.W.; Velders, Aldrik H.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepare

  20. Hyperpolarization of 29Si by Resonant Nuclear Spin Transfer from Optically Hyperpolarized 31P Donors

    Science.gov (United States)

    Dluhy, Phillip; Salvail, Jeff; Saeedi, Kamyar; Thewalt, Mike; Simons, Stephanie

    2014-03-01

    Recent developments in nanomedicine have allowed nanoparticles of silicon containing hyperpolarized 29Si to be imaged in vivo using magnetic resonance imaging. The extremely long relaxation times and isotropy of the Si lattice make polarized 29Si isotopes ideal for these sorts of imaging methods. However, one of the major difficulties standing in the path of widespread adoption of these techniques is the slow rate at which the 29Si is hyperpolarized and the limited maximum hyperpolarization achievable. In this talk, I will describe an effective method for hyperpolarization of the 29Si isotopes using resonant optical pumping of the donor bound exciton transitions to polarize the 31P donor nuclei, and a choice of static magnetic field that conserves energy during spin flip flops between donor nuclear and 29Si spins to facilitate diffusion of this polarization. Using this method, we are able to polarize greater than 10% of the 29Si centers in 64 hours without seeing saturation of the 29Si polarization.

  1. Solid state structural analysis of new pentamidine analogs designed as chemotherapeutics that target DNA by X-ray diffraction and 13C, 15N CP/MAS NMR methods

    Science.gov (United States)

    Żabiński, Jerzy; Maciejewska, Dorota; Wolska, Irena

    2010-12-01

    The paper presents the solid-state analysis of the crystalline form of 1,5- bis[(4-cyanophenyl)- N-methylamino]pentane ( 1) and polycrystalline powder sample of 1,5- bis[(4-amidinophenyl)- N-methylamino]pentane dihydrochloride ( 2). The methods used are X-ray diffraction technique and 13C, 15N CP/MAS NMR spectroscopy in an attempt to detect the effects of possible polymorphism. Both methods indicate that only single conformers exist in the solid-state for 1 and 2. 1,5- Bis[(4-cyanophenyl)- N-methylamino]pentane 1, crystallizes in the orthorhombic space group P2 12 12. The asymmetric unit contains one half of the ordered molecule. Only weak intermolecular interactions were found in solid-state, in which methyl groups are engaged.

  2. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    Science.gov (United States)

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.

  3. Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bellstedt, Peter [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany); Herbst, Christian [Ubon Ratchathani University, Department of Physics, Faculty of Science (Thailand); Haefner, Sabine; Leppert, Joerg; Goerlach, Matthias; Ramachandran, Ramadurai, E-mail: raman@fli-leibniz.de [Fritz Lipmann Institute, Biomolecular NMR spectroscopy, Leibniz Institute for Age Research (Germany)

    2012-12-15

    We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH with dual receivers, 3D NC Prime C and 3D C Prime NCA with sequential {sup 13}C acquisitions, 3D NHH and 3D NC Prime H with sequential {sup 1}H acquisitions and 3D CANH and 3D C'NH with broadband {sup 13}C-{sup 15}N mixing are demonstrated using microcrystalline samples of the {beta}1 immunoglobulin binding domain of protein G (GB1) and the chicken {alpha}-spectrin SH3 domain.

  4. Spin-transfer pathways in paramagnetic lithium transition-metal phosphates from combined broadband isotropic solid-state MAS NMR spectroscopy and DFT calculations.

    Science.gov (United States)

    Clément, Raphaële J; Pell, Andrew J; Middlemiss, Derek S; Strobridge, Fiona C; Miller, Joel K; Whittingham, M Stanley; Emsley, Lyndon; Grey, Clare P; Pintacuda, Guido

    2012-10-17

    Substituted lithium transition-metal (TM) phosphate LiFe(x)Mn(1-x)PO(4) materials with olivine-type structures are among the most promising next generation lithium ion battery cathodes. However, a complete atomic-level description of the structure of such phases is not yet available. Here, a combined experimental and theoretical approach to the detailed assignment of the (31)P NMR spectra of the LiFe(x)Mn(1-x)PO(4) (x = 0, 0.25, 0.5, 0.75, 1) pure and mixed TM phosphates is developed and applied. Key to the present work is the development of a new NMR experiment enabling the characterization of complex paramagnetic materials via the complete separation of the individual isotropic chemical shifts, along with solid-state hybrid DFT calculations providing the separate hyperfine contributions of all distinct Mn-O-P and Fe-O-P bond pathways. The NMR experiment, referred to as aMAT, makes use of short high-powered adiabatic pulses (SHAPs), which can achieve 100% inversion over a range of isotropic shifts on the order of 1 MHz and with anisotropies greater than 100 kHz. In addition to complete spectral assignments of the mixed phases, the present study provides a detailed insight into the differences in electronic structure driving the variations in hyperfine parameters across the range of materials. A simple model delimiting the effects of distortions due to Mn/Fe substitution is also proposed and applied. The combined approach has clear future applications to TM-bearing battery cathode phases in particular and for the understanding of complex paramagnetic phases in general.

  5. Anéis aromáticos condensados e relação E4/E6: estudo de ácidos húmicos de gleissolos por RMN de 13C no estado sólido utilizando a técnica CP/MAS desacoplamento defasado Condensed aromatic rings and E4/E6 ratio: humic acids in gleysoils studied by NMR CP/MAS13C, and dipolar dephasing

    Directory of Open Access Journals (Sweden)

    Sérgio da Costa Saab

    2007-04-01

    Full Text Available In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS 13C techniques, did not show significant correlation between the E4/E6 ratio and the degree of aromaticity. However, dipolar dephasing (DD measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS 13C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity of the humic substances. The results indicated that the E4/E6 ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS, underestimates aromatic rings in condensed structures.

  6. Condensed aromatic rings and E{sub 4}/E{sub 6} ratio: humic acids in gleysoils studied by NMR CP/MAS{sup 13}C, and dipolar dephasing; Aneis aromaticos condensados e relacao E{sub 4}/E{sub 6}: estudo de acidos humicos de gleissolos por RMN de {sup 13}C no estado solido utilizando a tecnica CP/MAS desacoplamento defasado

    Energy Technology Data Exchange (ETDEWEB)

    Saab, Sergio da Costa [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Fisica]. E-mail: scsaab@uepg.br; Martin-Neto, Ladislau [Empresa Brasileira de Pesquisa Agropecuaria, Sao Carlos, SP (Brazil)

    2007-03-15

    In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS {sup 13}C techniques, did not show significant correlation between the E{sub 4}/E{sub 6} ratio and the degree of aromaticity. However, dipolar dephasing (DD) measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS {sup 13}C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity) of the humic substances. The results indicated that the E{sub 4}/E{sub 6} ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS), underestimates aromatic rings in condensed structures. (author)

  7. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi1-y-zCoyAlzO2 and Al-Doped LiNixMnyCozO2 via (27)Al MAS NMR Spectroscopy.

    Science.gov (United States)

    Dogan, Fulya; Vaughey, John T; Iddir, Hakim; Key, Baris

    2016-07-06

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum-bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 (NCA) and aluminum-doped LiNixMnyCozO2 (NMC). (27)Al magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum-"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling.

  8. Surface characteristics of the iron-oxyhydroxide layer formed during brick coatings by ESEM/EDS, {sup 23}Na and {sup 1}H MAS NMR, and ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Allahdin, O. [Chaire Unesco « Sur la gestion de l' eau », Laboratoire Hydrosciences Lavoisier, Université de Bangui, Faculté des Sciences, B.P. 908 (Central African Republic); Wartel, M. [Université Lille1, Laboratoire LASIR (UMR CNRS 8516), Equipe Physico-chimie de l' Environnement, Bât. C8, 2" è" m" e étage, 59655 Villeneuve d' Ascq cedex (France); Mabingui, J. [Chaire Unesco « Sur la gestion de l' eau », Laboratoire Hydrosciences Lavoisier, Université de Bangui, Faculté des Sciences, B.P. 908 (Central African Republic); Revel, B. [Université Lille1, Service RMN, Bât. C4, 59655 Villeneuve d' Ascq cedex (France); Nuns, N. [Université Lille1, Institut Chevreul, 59655 Villeneuve d' Ascq cedex (France); Boughriet, A., E-mail: abdel.boughriet@univ-lille1.fr [Université Lille1, Laboratoire LASIR (UMR CNRS 8516), Equipe Physico-chimie de l' Environnement, Bât. C8, 2" è" m" e étage, 59655 Villeneuve d' Ascq cedex (France)

    2015-09-01

    Brick made locally by craftsmen in Bangui (Central African Republic) was modified first by HCl activation and second by iron-oxyhydroxide impregnation through the precipitation of ferric ions by NaOH at various fixed pH values (ranging from 3 to 13). The elemental analyses of synthesized compounds were performed using ICP-AES, and their surface chemistry/properties were investigated by environmental scanning electron microscopy (ESEM/EDS), {sup 1}H and {sup 23}Na MAS NMR spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The evidence of different {sup 23}Na chemical environments and the coexistence of Si and Al bound to ferrihydrite were made. The surface properties of this material which was found to be dependent upon synthesis pH, contributed to enhance metal uptake from water. - Highlights: • HCl-activated brick was coated at different Fe(III)-precipitation pH. • Surface properties were determined by ESEM, NMR and ToF-SIMS. • Al- and Si-bearing ferrihydrite and different Na environments were detected. • The pH used for modified-brick synthesis influenced metal uptake from water.

  9. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  10. MAS NMR Study of the Metastable Solid Solutions Found in the LiFePO4/FePO4 System

    Energy Technology Data Exchange (ETDEWEB)

    Cabana, Jordi; Shirakawa, Junichi; Chen, Guoying; Richardson, Thomas; Grey, Clare P.

    2009-10-09

    Li and 3IP NMR experiments were conducted on a series of single- or two-phase samples in the LiFePCvFePCM system with different overall lithium contents, and containing the two end-members and/or two metastable solid solution hases, Lio.6FeP04 or Lio.34FeP04. These experiments were carried out at different temperatures in order to search for vacancy/charge ordering and ion/electron mobility in the metastable phases. Evidence for Li+-Fe2+ interactions was bserved for both Lio.6FeP04 and Lio.34FePC>4. The strength of this interaction leads to the formation of LiFePCvlike clusters in the latter, as shown by the room temperature data. Different motional processes are proposed to exist as the temperature is increased and various scenarios are discussed. While concerted lithium-electron hopping and/or correlations explains the data below 125C, evidence for some uncorrelated motion is found at higher temperatures, together with the onset of phase mixing.

  11. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance.

    Science.gov (United States)

    Tan, Kong Ooi; Agarwal, Vipin; Meier, Beat H; Ernst, Matthias

    2016-09-01

    We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.

  12. {sup 29}Si-NMR study of the absorbent for flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, Hideshi; Kanuka, Nariyasu; Kanai, Ryu-ichi [Hokkaido Univ., Sapporo (Japan)

    1995-12-31

    The flue gas from a coal fired boiler contains a high concentration of SO{sub 2} which should be removed before emitted from a chimney for protection of environment from pollution. A wet desulfurization system is commonly adopted for flue gas desulfurization (FGD), and exhibits a high utilization efficiency of Ca component in the absorbent, but needs a large amount of water. As dry FDD systems, a duct injection and a slurry spraying are adopted. The efficiency, however, is not so high as compared to a wet FGD system. Recently, the SO{sub 2} absorbent which exhibits a high utilization efficiency of Ca component in a dry FGD process was prepared from a coal fly-ash, Ca(OH){sub 2}, and CaSO{sub 4} by hydrothermal reaction. In this project, we studied the structural changes of the absorbent during the hydrothermal reation and sulfur dioxide absorption by silicon 29-MASNMR.

  13. FT-IR and 29 Si-NMR for evaluating aluminium silicate precursors for geopolymers

    NARCIS (Netherlands)

    Valcke, S.L.A.; Pipilikaki, P.; Fischer, H.R.; Verkuijlen, M.H.W.; Eck, E.R.H.

    2014-01-01

    Geopolymers are systems of inorganic binders that can be used for sustainable, cementless concrete and are formed by alkali activation of an aluminium–silicate precursor (often secondary resources like fly ash or slag). The type of aluminium– silicate precursor and its potential variations within on

  14. Differential cross sections measurement of 28Si(p,p/γ)28Si and 29Si(p,p/γ)29Si reactions for PIGE applications

    Science.gov (United States)

    Jokar, A.; Kakuee, O.; Lamehi-Rachti, M.

    2016-03-01

    Differential cross sections for gamma-ray emission from the 28Si(p,p/γ)28Si (Eγ = 1779 keV) and the 29Si(p,p/γ)29Si (Eγ = 1273 keV) nuclear reactions were measured in the energy range of 2.0-3.2 MeV and 2.0-3.0 MeV, respectively. The thin Si targets were prepared by evaporating natural SiO onto self-supporting Ag films. The gamma-rays and backscattered protons were detected simultaneously. An HPGe detector placed at an angle of 90° with respect to beam direction was employed to collect gamma-rays while an ion implanted Si detector placed at a scattering angle of 165° was used to detect backscattered protons. The great advantage of this work is that differential cross sections were obtained with a procedure irrespective of absolute value of the collected beam charge.

  15. An evaluation of microwave-driven stannylation followed by in situ {sup 119}Sn MAS n.m.r. spectroscopy as a probe for hydroxyl functionality in medium-rank British coals and macerals

    Energy Technology Data Exchange (ETDEWEB)

    Manak, H.; Monsef-Mirzai, P.; McWhinnie, W.R.; Hamor, T.A. [Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry

    1997-07-01

    The paper describes the derivatization of hydroxyl groups in coals and coal macerals by stannylation. Stannylation of a range of phenolic compounds with Me{sub 3}SnCl, Bu{sub 3}SnCl and (Bu{sub 3}Sn){sub 2}O (TMTO) was carried out under both microwave-driven and conventional conditions. The degree of Stannylation was influenced by the steric environment of the OH group, implying that stannylation in comparison with, say trimethylsilylation of OH groups could help to map the steric environments of phenolic groups in coals. Good maceral separations of Creswell coal and acceptable separation of Cottonwood coal were achieved. The whole coals and the macerals were stannylated with TBTO under microwave-enhanced conditions and the products were examined by {sup 119}Sn MAS n.m.r. and X-ray photoelectron spectroscopy. The reaction was confined to surface regions. Differences were found in the behaviour of the macerals. The crystal and molecular structures of the trimethylstannyl derivative of 2,6-diphenylphenol were determined, to establish the validity of the claim to have stannylated model compounds. Molecular parameters were compared with related systems. 18 refs., 3 figs., 5 tabs.

  16. Characterization of polysulfone and polysulfone/vanillin microcapsules by 1H NMR spectroscopy, solid-state 13C CP/MAS-NMR spectroscopy, and N2 adsorption-desorption analyses.

    Science.gov (United States)

    Peña, Brisa; de Ménorval, Louis-Charles; Garcia-Valls, Ricard; Gumí, Tània

    2011-11-01

    Textile detergent and softener industries have incorporated perfume microencapsulation technology to improve their products. Perfume encapsulation allows perfume protection until use and provides a long-lasting fragrance release. But, certain industrial microcapsules show low encapsulation capacity and low material stability. Polysulfone capsules have been already proposed to solve these drawbacks. Among them, PSf/Vanillin capsules were considered as a desirable system. They present both good material stability and high encapsulation capacity. However, several factors such as the final location of the perfume in the polymeric matrix, the aggregation state that it has in the capsule and its interaction with the capsule components have not been studied yet. These factors can provide vast information about the capsule performance and its improvement. With the aim to characterize these parameters, the physical and chemical properties of PSf/Vanillin capsules have been investigated by nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and N(2) adsorption-desorption measurements. AFM micrograph and N(2) isotherms confirm that the presence of vanillin modify the physical structure of PSf/Vanillin microcapsules as it is trapped in the capsule porosity. NMR results show that vanillin is present in solid state in PSf/Vanillin microcapsules.

  17. Microscopic control of $^{29}$Si nuclear spins near phosphorus donors in silicon

    CERN Document Server

    Järvinen, J; Ahokas, J; Sheludyakov, S; Vainio, O; Lehtonen, L; Vasiliev, S; Fujii, Y; Mitsudo, S; Mizusaki, T; Gwak, M; Lee, SangGap; Lee, Soonchil; Vlasenko, L

    2014-01-01

    Dynamic nuclear polarization of $^{29}$Si nuclei in resolved lattice sites near the phosphorus donors in natural silicon of has been created using the Overhauser and solid effects. Polarization has been observed as a pattern of well separated holes and peaks in the electron spin resonance line of the donor. The Overhauser effect in ESR hole burning experiments was used to manipulate the polarization of $^{29}$Si spins at ultra low (100-500 mK) temperatures and in high magnetic field of 4.6 T. Extremely narrow holes of 15 mG width were created after several seconds of pumping.

  18. Study on Effects of Acidic Extraction on Yield and Structure of Tobacco Pectin by CP/MAS 13C NMR Spectroscopy%CP/MAS 13C NMR技术分析酸提取对烟草果胶产率和结构的影响

    Institute of Scientific and Technical Information of China (English)

    李东亮; 谭兰兰; 高芸; 朱晓兰; 戴亚

    2015-01-01

    In order to investigate the fine structure of tobacco pectin and the key factors in extraction, the effects of extraction conditions (including pH, temperature and extraction time) on the yield, purity and structure of pectin were studied by cross-polarization/magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR) spectroscopy. The results showed that: 1) The highest pectin yield (10.87%) achieved after extracting for 1.5 hours at pH 1.5 and 85 ℃; while polygalacturonic acid(PGA)reached its highest purity (78.4%) after extracting for 1.5 hours at pH 2.0 and 95 ℃. 2) The extraction conditions influenced the structure of pectin to a certain extent, the degrees of methylation (DM) and acetylation (DA) of pectin increased as pH value increased from 1.5 to 2.5, while decreased with the rise of temperature and the prolongation of extraction time significantly.%为研究烟草果胶的精细结构和掌握果胶提取的关键因素,采用交叉极化/魔角旋转固态核磁光谱技术(CP/MAS 13C NMR)考察了酸提取条件(pH、温度和提取时间)对烟草果胶产率、纯度(质量分数)及结构的影响。结果表明:①在pH 1.5和85℃条件下提取1.5 h时,烟草果胶得率最高,为10.87%,但在pH 2.0和95℃条件下提取1.5 h时,聚半乳糖醛酸(PGA)的纯度最高,为78.4%。②提取条件对烟草果胶的结构也有一定的影响,pH=1.5~2.5时,果胶的甲酯度(DM)和乙酰度(DA)均随pH升高而增大,随温度升高而降低,随提取时间延长而显著下降。

  19. MAS NMR study of the photoreceptor phytochrome

    NARCIS (Netherlands)

    Rohmer, Thierry

    2009-01-01

    Plants, algae and bacteria respond to light in various manners. The effect of light on the growth of plants is called photomorphogenesis and is regulated by the photoreceptor protein named phytochrome. Phytochrome is formed in the dark in its inactive red-absorbing (Pr) state and transformed upon ab

  20. Investigations of the structure and "interfacial" surface chemistry of Bioglass (RTM) materials by solid-state multinuclear NMR spectroscopy

    Science.gov (United States)

    Sarkar, Gautam

    Bioactive materials such as BioglassRTM 45S5 (45% SiO 2, 24.5% CaO, 24.5% Na2O, and 6% P2O5 by weight) are sodium-phosphosilicate glasses containing independent three-dimensional silicate and phosphate networks and Na+ and Ca2+ ions as modifying cations. Due to their bioactivity, these materials are currently used as implants and for other surgical and clinical applications. The bioactivity of BioglassesRTM is due to their unique capability to form chemical bonds to tissues through an octacalciumphosphate (OCP)- and/or hydroxyapatite-like (HA) "interfacial" matrix. The formation of OCP and/or HA is preceded by the formation of a silica-rich surface layer and the subsequent growth of an amorphous calcium phosphate (a-CP) layer. Structural characterization of a series of commercial and synthesized Bioglass materials 45S5 52S, 55S, 60S, and synthesized 17O-labelled "Bioglass materials 45S, 52S, 55S and 60S" have been obtained using solid-state single-pulse magic-angle spinning (SP/MAS) 17O, 23Na, 29Si and 31P NMR. The 17O NMR isotropic chemical shifts and estimates of the quadrupole coupling constants (Cq) [at fixed asymmetry parameter ( hQ ) values of zero] have been obtained from solid-state spin-echo 17O SP/MAS NMR spectra of 17O-labelled "Bioglasses". The simulation results of these spectra reveal the presence of both bridging-oxygens (BO, i.e. ≡ Si-17OSi ≡ ) and non-bridging oxygens (NBO, i.e. ≡ Si-17O-Na+/Ca2+ ) in the silicate networks in these materials. 17O NMR spectra of these Bioglass materials do not show any direct evidence for the presence of BO and NBO atoms in the phosphate units; however, they are expected to be present in small amounts. In vitro reactions of BioglassRTM 45S5, 60S and 77S powders have been used to study the "interfacial" surface chemistry of these materials in simulated body-fluid (SBF, Kyoto or K9 solution) and/or 17O-enriched tris-buffer solution. 29Si and 31P SP/MAS NMR have been used to identify and quantify the extent of

  1. Oxygen-17 NMR in solids by dynamic-angle spinning and double rotation

    Science.gov (United States)

    Chmelka, B. F.; Mueller, K. T.; Pines, A.; Stebbins, J.; Wu, Y.; Zwanziger, J. W.

    1989-05-01

    IT is widely lamented that despite its unqualified success with spin-1/2 nuclei such as 13C, 29Si and31P, the popular NMR technique of magic-angle spinning (MAS) has experienced a somewhat restricted applicability among quadrupolar nuclei such as 17O, 23Na and 27A1 (refs 1-3). The resolution in the central (1/2 lrarr-1/2) transition of these non-integer quadrupolar spins under MAS is thought to be limited primarily by second-order quadrupolar broadening. Such effects of second-order spatial anisotropy cannot be eliminated by rotation about a fixed axis or by multiple-pulse techniques4,5. More general mechanisms of sample reorientation (refs 6-8 and A. Samoson and A. Pines, manuscript in preparation) can, however, make high-resolution NMR of quadrupolar nuclei feasible. MAS is implemented by spinning a sample about a single axis so that second-rank spherical harmonics (which give rise to first-order broadening through anisotropy of electrical and magnetic interactions) are averaged away. But dynamic-angle-spinning (DAS) and double-rotation (DOR) NMR involve spinning around two axes, averaging away both the second- and fourth-rank spherical harmonics, which are responsible for second-order broadening. Here we present the application of these new techniques to 17O in two minerals, cristobalite (SiO2) and diopside (CaMgSi2O6). This work goes beyond previous results on 23Na (ref. 8) by showing the first experimental results using DAS and by demonstrating the application of DOR to the resolution of distinct oxygen sites in an important class of oxide materials.

  2. A Comparative Study of Different Amorphous and Paracrystalline Silica by NMR and SEM/EDS

    Institute of Scientific and Technical Information of China (English)

    JIA Yuan; WANG Baomin; ZHANG Tingting

    2015-01-01

    This work aimed to research the structure models of amorphous materials. Five amorphous and paracrystalline samples (natural or artiifcial) were investigated via29Si/27Al nuclear magnetic resonance (NMR) and field emission scanning electron microscopy/energy dispersive spectroscopy (FE-SEM/EDS). The results of NMR showed the resonances of different specimens:-93.2 ppm,-101.8 ppm,-111.8 ppm for natural pozzolana opal shale (POS). These peaks were assigned to the Q2(2OH), Q3(OH)/Q4(1Al) and Q4 respectively. The results of27Al MAS NMR indicated that Al substituted for Si site in tetrahedral existing in the POS, while the Al/Si atomic ratio in opal was low (around 0.04). For the alkali-silicate-hydrate gel, there were at least three resolved signals assigned to Q0 and Q1, respectively. For the fused silica glass powder, there were the primary signals centered about at the range from-107 to-137 ppm, which were assigned to Q4 units. In addition, the peaks at around-98 and-108 ppm were corresponding to Q3(1OH) and Q4 units existing in aerogel silica structure.

  3. Ultra-low temperature MAS-DNP

    Science.gov (United States)

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  4. Applications of high resolution NMR to geochemistry: crystalline, glass, and molten silicates

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.

    1985-11-01

    The nuclear spin interactions and the associated quantum mechanical dynamics which are present in solid state NMR are introduced. A brief overview of aluminosilicate structure is presented and crystalline structure is then reviewed, with emphasis on the contributions made by /sup 29/Si NMR spectroscopy. The local structure of glass aluminosilicates as observed by NMR, is presented with analysis of the information content of /sup 29/Si spectra. A high-temperature (to 1300/sup 0/C) NMR spectroscopic investigation of the local environment and dynamics of molecular motion in molten aluminosilicates is described. A comparison is made of silicate liquid, glass, and crystalline local structure. The atomic and molecular motions present in a melt are investigated through relaxation time (T/sub 1/ and T/sub 2/) measurements as a function of composition and temperature for /sup 23/Na and /sup 29/Si.

  5. Out-and-back {sup 13}C-{sup 13}C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS

    Energy Technology Data Exchange (ETDEWEB)

    Barbet-Massin, Emeline; Pell, Andrew J. [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Franks, W. Trent; Retel, Joren S. [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars [Biomedical Research and Study Center (Latvia); Emsley, Lyndon [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France); Oschkinat, Hartmut [Leibniz-Institut fuer Molekulare Pharmakologie (Germany); Lesage, Anne; Pintacuda, Guido, E-mail: guido.pintacuda@ens-lyon.fr [University of Lyon, CNRS/ENS Lyon/UCB Lyon 1, Centre de RMN a Tres Hauts Champs (France)

    2013-08-15

    We present here {sup 1}H-detected triple-resonance H/N/C experiments that incorporate CO-CA and CA-CB out-and-back scalar-transfer blocks optimized for robust resonance assignment in biosolids under ultra-fast magic-angle spinning (MAS). The first experiment, (H)(CO)CA(CO)NH, yields {sup 1}H-detected inter-residue correlations, in which we record the chemical shifts of the CA spins in the first indirect dimension while during the scalar-transfer delays the coherences are present only on the longer-lived CO spins. The second experiment, (H)(CA)CB(CA)NH, correlates the side-chain CB chemical shifts with the NH of the same residue. These high sensitivity experiments are demonstrated on both fully-protonated and 100 %-H{sup N} back-protonated perdeuterated microcrystalline samples of Acinetobacter phage 205 (AP205) capsids at 60 kHz MAS.

  6. A refined model of the chlorosomal antennae of the green bacterium chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy

    NARCIS (Netherlands)

    Rossum, van B.E.J.; Steengaard, D.B.; Boender, G.J.; Schaffner, K.; Holzwarth, A.R.; Groot, de H.J.M.

    2001-01-01

    Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state 1H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly 13C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete

  7. A refined model of the chlorosomal antennae of the green bacterium chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy

    NARCIS (Netherlands)

    Rossum, van B.E.J.; Steengaard, D.B.; Boender, G.J.; Schaffner, K.; Holzwarth, A.R.; Groot, de H.J.M.

    2001-01-01

    Heteronuclear 2-D and 3-D magic-angle spinning NMR dipolar correlation spectroscopy was applied to determine solid-state 1H shifts for aggregated bacteriochlorophyll c (BChl c) in uniformly 13C-enriched light harvesting chlorosomes of the green photosynthetic bacterium Chlorobium tepidum. A complete

  8. Investigations of adsorption sites on oxide surfaces using solid-state NMR and TPD-IGC

    Science.gov (United States)

    Golombeck, Rebecca A.

    diameters and thermal histories. The bulk structural features in both compositions of glass fibers were identified using high-resolution 29Si, 27Al, and 11B magic-angle spinning (MAS) NMR spectroscopic measurements. In multi-component glasses, the determination of silicon, aluminum, and boron distributions becomes difficult due to the competitive nature of the network-modifying oxides among the network-forming oxides. In pure silicates, 29Si MAS NMR can often resolve resonances arising from silicate tetrahedron having varying numbers of bridging oxygens. In aluminoborosilicate glasses, aluminum is present in four-, five-, and six- coordination with oxygen as neighbors. The speciation of the aluminum can be determined using 27Al MAS NMR. The fraction of tetrahedral boron species in the glass fibers were measured using 11B MAS NMR, which is typically used to study the short-range structure of borate containing glasses such as alkali borate, borosilicate, and aluminoborosilicate glasses. While solid-state NMR is a powerful tool for elucidating bonding environments and coordination changes in the glass structure, it cannot quantitatively probe low to moderate surface area samples due to insufficient spins. Chemical probes either physisorbed or chemisorbed to the fiber's surface can increase the surface selectivity of NMR for analysis of samples with low surface areas and provide information about the local molecular structure of the reactive surface site. Common chemical probe molecules contain NMR active nuclei such as 19F or may be enriched with 13C. A silyating agent, (3,3,3-trifluoropropyl)dimethylchlorosilane (TFS), reacts with reactive surface hydroxyls, which can be quantified by utilizing the NMR active nucleus (19F) contained in the probe molecule. The observed 19F MAS NMR peak area is integrated and compared against a standard of known fluorine spins (concentration), allowing the number of reactive hydroxyl sites to be quantified. IGC is a method used to study the

  9. The Surface of Nanoparticle Silicon as Studied by Solid-State NMR

    Directory of Open Access Journals (Sweden)

    Gary E. Maciel

    2012-12-01

    Full Text Available The surface structure and adjacent interior of commercially available silicon nanopowder (np-Si was studied using multinuclear, solid-state NMR spectroscopy. The results are consistent with an overall picture in which the bulk of the np-Si interior consists of highly ordered (“crystalline” silicon atoms, each bound tetrahedrally to four other silicon atoms. From a combination of 1H, 29Si and 2H magic-angle-spinning (MAS NMR results and quantum mechanical 29Si chemical shift calculations, silicon atoms on the surface of “as-received” np-Si were found to exist in a variety of chemical structures, with apparent populations in the order (a (Si–O–3Si–H > (b (Si–O–3SiOH > (c (HO–nSi(Sim(–OSi4−m−n ≈ (d (Si–O–2Si(HOH > (e (Si–O–2Si(–OH2 > (f (Si–O–4Si, where Si stands for a surface silicon atom and Si represents another silicon atom that is attached to Si by either a Si–Si bond or a Si–O–Si linkage. The relative populations of each of these structures can be modified by chemical treatment, including with O2 gas at elevated temperature. A deliberately oxidized sample displays an increased population of (Si–O–3Si–H, as well as (Si–O–3SiOH sites. Considerable heterogeneity of some surface structures was observed. A combination of 1H and 2H MAS experiments provide evidence for a substantial population of silanol (Si–OH moieties, some of which are not readily H-exchangeable, along with the dominant Si–H sites, on the surface of “as-received” np-Si; the silanol moieties are enhanced by deliberate oxidation. An extension of the DEPTH background suppression method is also demonstrated that permits measurement of the T2 relaxation parameter simultaneously with background suppression.

  10. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, Chiara, E-mail: chiara.ponzoni@unimore.it [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Lancellotti, Isabella; Barbieri, Luisa [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Spinella, Alberto; Saladino, Maria Luisa [University of Palermo CGA-UniNetLab, Palermo (Italy); Martino, Delia Chillura [University of Palermo, Department STEBICEF, Palermo (Italy); Caponetti, Eugenio [University of Palermo CGA-UniNetLab, Palermo (Italy); University of Palermo, Department STEBICEF, Palermo (Italy); Armetta, Francesco [University of Palermo, Department STEBICEF, Palermo (Italy); Leonelli, Cristina [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy)

    2015-04-09

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and {sup 29}Si and {sup 27}Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by {sup 29}Si and {sup 27}Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for

  11. Precision Measurement of the 29Si, 33S, and 36Cl Binding Energies

    CERN Document Server

    Dewey, M S; Deslattes, R D; Doll, C; Jentschel, M; Mutti, P

    2006-01-01

    The binding energies of 29Si, 33S, and 36Cl have been measured with a relative uncertainty $< 0.59 \\times 10^{-6}$ using a flat-crystal spectrometer. The unique features of these measurements are 1) nearly perfect crystals whose lattice spacing is known in meters, 2) a highly precise angle scale that is derived from first principles, and 3) a gamma-ray measurement facility that is coupled to a high flux reactor with near-core source capability. The binding energy is obtained by measuring all gamma-rays in a cascade scheme connecting the capture and ground states. The measurements require the extension of precision flat-crystal diffraction techniques to the 5 to 6 MeV energy region, a significant precision measurement challenge. The binding energies determined from these gamma-ray measurements are consistent with recent highly accurate atomic mass measurements within a relative uncertainty of $4.3 \\times 10^{-7}$. The gamma-ray measurement uncertainties are the dominant contributors to the uncertainty of th...

  12. Multinuclear Solid-State NMR Characterization of the Coke on Mo/Hβ-Al_2O_3 Catalyst for Olefin Metathesis%固体多核NMR研究Mo/Hβ-Al_2O_3催化剂在烯烃歧化反应中的积炭

    Institute of Scientific and Technical Information of China (English)

    黄慧娟; 刘宪春; 刘盛林; 刘秀梅; 徐龙伢; 韩秀文; 张维萍; 包信和

    2010-01-01

    采用同体多核~(13)C,~(27)Al及~(29)Si MAS NMR结合吸附气体xe后的~(129)Xe NMR,详细研究了乙烯和2-丁烯歧化生成丙烯反应过程中6%Mo/Hβ-Al_2O_3催化剂上积炭的类型和落位.结果表明,积炭以饱和烷烃为主,并随着反应的进行生成更多的支链烷烃,积炭主要分布在Hβ分子筛上,并主要落位在分子筛的交叉孔道处.

  13. Solvent signal suppression for high-resolution MAS-DNP

    Science.gov (United States)

    Lee, Daniel; Chaudhari, Sachin R.; De Paëpe, Gaël

    2017-05-01

    Dynamic nuclear polarization (DNP) has become a powerful tool to substantially increase the sensitivity of high-field magic angle spinning (MAS) solid-state NMR experiments. The addition of dissolved hyperpolarizing agents usually results in the presence of solvent signals that can overlap and obscure those of interest from the analyte. Here, two methods are proposed to suppress DNP solvent signals: a Forced Echo Dephasing experiment (FEDex) and TRAnsfer of Populations in DOuble Resonance Echo Dephasing (TRAPDORED) NMR. These methods reintroduce a heteronuclear dipolar interaction that is specific to the solvent, thereby forcing a dephasing of recoupled solvent spins and leaving acquired NMR spectra free of associated resonance overlap with the analyte. The potency of these methods is demonstrated on sample types common to MAS-DNP experiments, namely a frozen solution (of L-proline) and a powdered solid (progesterone), both containing deuterated glycerol as a DNP solvent. The proposed methods are efficient, simple to implement, compatible with other NMR experiments, and extendable past spectral editing for just DNP solvents. The sensitivity gains from MAS-DNP in conjunction with FEDex or TRAPDORED then permits rapid and uninterrupted sample analysis.

  14. Measurement of -OH groups in coals of different rank using microwave methodology, and the development of quantitative solid state n.m.r. methods for in situ analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monsef-Mirzai, P.; McWhinnie, W.R.; Perry, M.C.; Burchill, P. [Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry

    1995-05-01

    Experiments with both model compounds (substituted phenols) and with 11 coals (nine British and two American) have established that microwave heating will greatly accelerate silylation reactions of the phenolic -OH groups, e.g. for Creswell coal complete silylation of -OH groups occurs in 35 min in the microwave oven, whereas 24 h is required using a bench reflux technique. Microwave reaction times for coals vary from 35 min to 3 h for more dense coals such as Cortonwood. The above observations have allowed the development of a `one pot` silylation of coal, followed by an in situ analysis of the added Me{sub 3}Si- groups by quantitative {sup 29}Si magic angle spinning nuclear magnetic resonance (MAS n.m.r.) spectroscopy. The development of a quantitative n.m.r. method required the determination of {sup 29}Si spin lattice relaxation times, T{sub 1}, e.g. for silylated coals T{sub 1} {approximately} 8s; for silylated phenols, T{sub 1} {approximately} 25s; for the synthetic smectite clay laponite, T{sub 1} {approximately} 25 s; and for Ph{sub 3}SiH, T{sub 1} {approximately} 64 s. Inert laponite was selected as the standard. The requirement to wait for five T{sub 1 max} between pulses, together with the relatively low natural abundance of {sup 29}Si (4.71%), results in rather long accumulation times to obtain spectra of analytical quality (8-48 h). However, in comparison with other methods, even in the most unfavourable case, the total time from commencement of analysis to result may be described as `rapid`. The results for O{sub OH}/O{sub total} obtained are compared with other literature data. Comparison with ketene data, for example, shows agreement to vary from excellent (Creswell) through satisfactory (Cortonwood) to poor (Pittsburgh). Even in cases where agreement with ketene data is less good, the silylation results may be close to estimates made via other acetylation methods. Possible reasons for the variations observed are discussed. 18 refs., 2 figs., 7 tabs.

  15. TiO{sub 2} colloidal nanocrystals surface modification by V{sub 2}O{sub 5} species: Investigation by {sup 47,49}Ti MAS-NMR and H{sub 2}, CO and NO{sub 2} sensing properties

    Energy Technology Data Exchange (ETDEWEB)

    Epifani, Mauro, E-mail: mauro.epifani@le.imm.cnr.it [Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR–IMM), via Monteroni c/o Campus Universitario, I-73100 Lecce (Italy); Comini, Elisabetta [SENSOR Lab, Department of Information Engineering, Brescia University and CNR-INO, via Valotti 9, 25133 Brescia (Italy); Díaz, Raül [Electrochemical Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, 28935 Móstoles (Spain); Force, Carmen [NMR Unit, Centro de Apoyo Tecnológico, Universidad Rey Juan Carlos, c/Tulipán, s/n, 28933 Móstoles (Spain); Siciliano, Pietro [Consiglio Nazionale delle Ricerche—Istituto per la Microelettronica e Microsistemi (CNR–IMM), via Monteroni c/o Campus Universitario, I-73100 Lecce (Italy); Faglia, Guido [SENSOR Lab, Department of Information Engineering, Brescia University and CNR-INO, via Valotti 9, 25133 Brescia (Italy)

    2015-10-01

    Highlights: • Novel sensing architecture is presented, made by V{sub 2}O{sub 5} modification of TiO{sub 2} surface. • MAS NMR techniques are a powerful tool for studying the influence of the V{sub 2}O{sub 5} layer. • The V{sub 2}O{sub 5} surface deposition enhanced the adsorption properties with respect to pure TiO{sub 2}. - Abstract: TiO{sub 2} and TiO{sub 2}–V{sub 2}O{sub 5} nanocrystals were prepared by coupling sol–gel and solvothermal methods, followed by heat-treatment at 400 °C, after which the mean nanocrystal size was about 5 nm. The materials were characterized by X-ray diffraction, transmission electron microscopy and solid state nuclear magnetic resonance spectroscopy. It was shown that while the TiO{sub 2} phase was always anatase even after heat-treatment at 500 °C, the presence of the vanadium oxide species enhanced the surface re-configuration of the Ti ions. Hence the coordination environment of surface Ti atoms was drastically changed, by formation of further bonds and imposition of a given local geometry. The final hypothesis was that in pure titania surface rearrangement occurs, leading to the new NMR signal, but this modification was favored in the TiO{sub 2}–V{sub 2}O{sub 5} sample, where the Ti surface atoms were forced into the final configurations by the bonding with V atoms through oxygen. The materials heat-treated at 400 °C were used to process chemoresistive sensors, which were tested to hydrogen, CO and NO{sub 2}, as examples of gases with peculiar sensing mechanisms. The results evidenced that the surface deposition of V{sub 2}O{sub 5} onto the anatase TiO{sub 2} nanocrystals was effective in modifying the adsorption properties of the anatase nanocrystals.

  16. In situ MAS NMR Study on Propane Activation over Ga-modified H-ZSM-5 Under Mild Condition%原位固体核磁共振研究温和条件下丙烷在镓改性H-ZSM-5上的活化

    Institute of Scientific and Technical Information of China (English)

    邹雁; 石磊; 马卓娜; 朱卡克; 贺鹤勇

    2003-01-01

    @@ 将价格低廉、储量丰富的低碳烷烃(C1~C5)转化为高附加值的工业产品是多相催化研究中的一个重要领域[1~6]. 镓改性的H-ZSM-5催化剂已被广泛应用于丙烷芳构化的工业化生产中[7,8]. 然而, 由于低碳烷烃中碳碳和碳氢键的高稳定性, 低碳烷烃的转化通常需要较高的反应温度, 因此开发可在温和条件下工作的低碳烷烃功能化反应的催化剂是一个重要的研究方向. 使用原位魔角旋转核磁共振(MAS NMR)技术和13C标记的反应物在研究低碳烷烃的活化中具有独特的优越性[9,10]. Derouane等[11]首次采用MAS NMR技术研究2-13C-丙烷在温和条件下(573 K)在镓负载的H-ZSM-5的酸性和氧化还原双功能活性位上转化为1份2-13C-丙烷和2份1-13C-丙烷反应, 提出了质子化准环丙烷(PPCP)中间体的丙烷活化机理. 为温和条件下丙烷活化和功能化开拓了一条新路. 但Derouane等[11]使用的催化剂中含有离子型镓及分布在分子筛外表面和内孔道中的氧化镓等多种镓组分, 未详细讨论何种镓组分为活性物种, 而此类催化剂中活性物种的研究对于开发温和条件下进行丙烷功能化的高活性催化剂具有重要意义. 本文采用MAS NMR技术和13C标记的丙烷, 研究温和条件下(573 K)丙烷在含有不同类型镓物种的H-ZSM-5上的活化, 探索活化丙烷的镓物种.

  17. Dispersion of Silicate in Tricalcium Phosphate Elucidated by Solid-State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Rewal, A.; Wei, X.; Akinc, M.; Schmidt-Rohr, K.

    2008-03-12

    The dispersion of silicate in tricalcium phosphate, a resorbable bioceramics for bone replacement, has been investigated by various solid-state nuclear magnetic resonance (NMR) methods. In samples prepared with 5 and 10 mol% of both {sup 29}SiO{sub 2} and ZnO, three types of silicate have been detected: (i) SiO{sub 4}{sup 4-} (Q{sub 0} sites) with long longitudinal (T{sub 1,Si}) relaxation times ({approx} 10,000 s), which substitute for {approx}1% of PO{sub 4}{sup 3-}; (ii) silicate nanoinclusions containing Q{sub 2}, Q{sub 1}, and Q{sub 0} sites with T{sub 1,Si} 100 s, which account for most of the silicon; and (iii) crystalline Q{sub 4} (SiO{sub 2}) with long T{sub 1,Si}. Sensitivity was enhanced >100-fold by {sup 29}Si enrichment and refocused detection. The inclusions in both samples have a diameter of {approx}8 nm, as proved by {sup 29}Si{l_brace}{sup 31}P{r_brace} REDOR dephasing on a 30-ms time scale, which was simulated using a multispin approach specifically suited for nanoparticles. {sup 29}Si CODEX NMR with 30-s {sup 29}Si spin diffusion confirms that an inclusion contains >10 Si (consistent with the REDOR result of >100 Si per inclusion). Overlapping signals of silicate Q{sub 2}, Q{sub 1}, and Q{sub 0} sites were spectrally edited based on their J-couplings, using double-quantum filtering. The large inhomogeneous broadening of the Q{sub 2}, Q{sub 1}, and Q{sub 0} {sup 29}Si subspectra indicates that the nanoinclusions are amorphous.

  18. Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi 1–yz Co y Al z O 2 and Al-Doped LiNi x Mn y Co z O 2 via 27 Al MAS NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Fulya; Vaughey, John T.; Iddir, Hakim; Key, Baris

    2016-07-06

    Direct observations of local lattice aluminum environments have been a major challenge for aluminum -bearing Li ion battery materials, such as LiNi1-y-zCoyAlzO2 Al(NCA) and aluminum-doped LiNixMnyCozO2 (NMC). Al-27 magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy is the only structural probe currently available that can qualitatively and quantitatively characterize lattice and nonlattice (i.e., surface, coatings, segregation, secondary phase etc.) aluminum coordination and provide information that helps discern its effect in the lattice. In the present study, we use NMR to gain new insights into transition metal (TM)-O-Al coordination and evolution of lattice aluminum sites upon cycling. With the aid of first-principles DFT calculations, we show direct evidence of lattice Al sites, nonpreferential Ni/Co-O-Al ordering in NCA, and the lack of bulk lattice aluminum in aluminum -"doped" NMC. Aluminum coordination of the paramagnetic (lattice) and diamagnetic (nonlattice) nature is investigated for Al-doped NMC and NCA. For the latter, the evolution of the lattice site(s) upon cycling is also studied. A clear reordering of lattice aluminum environments due to nickel migration is observed in NCA upon extended cycling.

  19. High Tech M&As

    DEFF Research Database (Denmark)

    Toppenberg, Gustav

    2013-01-01

    of findings are not applicable to the high-tech industry; in fact this industry has many additional challenges. In this study, we aim to explore the process of M&A in the high-tech industry by drawing on extant literature and empirical field work. The paper outlines a research project in progress which...... intends to provide theoretical, empirical and practical contributions in answering the research question: what role does Operations and IT play in creating value in high-tech M&As? The research adds a needed perspective on M&A literature by unveiling unique challenges and opportunities faced by the M...

  20. Spatially Inhomogeneous Development of Antiferromagnetic Ordering on URu_2Si2 Observed by High Pressure NMR*

    Science.gov (United States)

    Kohara, Takao; Matsuda, K.; Kohori, Y.; Kuwahara, K.; Amitsuka, H.

    2002-03-01

    In order to identify the nature of unconventional antiferromagnetic (AF) ordering with a "tiny staggered moment" below T_0=17.5 K in URu_2Si_2, ^29Si NMR has been performed under pressure up to 17.5 kbar. In the pressure range 3.0 kbar to 15 kbar of P_c, we have observed new ^29Si NMR signal arising from the AF region besides the previously reported ^29Si NMR signal, which corresponds to the paramagnetic (PM) region. The AF region increases in volume at the expense of the PM region on cooling, which shows a coexistence of the AF and the PM regions below T_0. The volume fraction is enhanced by applied pressure, whereas the value of internal field (910 Oe) remains constant up to 15 kbar. This gives definite evidence for spatially inhomogeneous development of AF ordering below T_0. Our Si NMR results have shown that the weakness of Bragg peak observed by neutron diffraction originates not from an extremely reduced moment (0.03 μ _B/U) but from the smallness of AF region with an ordered moment of 0.4 μ _B/U in the sample. The temperature dependence of nuclear spin lattice relaxation rates for both signal is also now measured under pressure. * Supported by a Grand-in -Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  1. Moderate MAS enhances local (1)H spin exchange and spin diffusion.

    Science.gov (United States)

    Roos, Matthias; Micke, Peter; Saalwächter, Kay; Hempel, Günter

    2015-11-01

    Proton NMR spin-diffusion experiments are often combined with magic-angle spinning (MAS) to achieve higher spectral resolution of solid samples. Here we show that local proton spin diffusion can indeed become faster at low (MAS (Clauss et al., 1993). The enhancement of spin diffusion by slow MAS relies on the modulation of the orientation-dependent dipolar couplings during sample rotation and goes along with transient level crossings in combination with dipolar truncation. The experimental finding and its explanation is supported by density matrix simulations, and also emphasizes the sensitivity of spin diffusion to the local coupling topology. The amplification of spin diffusion by slow MAS cannot be explained by any model based on independent spin pairs; at least three spins have to be considered. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  3. Instrumentation for solid-state dynamic nuclear polarization with magic angle spinning NMR

    Science.gov (United States)

    Rosay, Melanie; Blank, Monica; Engelke, Frank

    2016-03-01

    Advances in dynamic nuclear polarization (DNP) instrumentation and methodology have been key factors in the recent growth of solid-state DNP NMR applications. We review the current state of the art of solid-state DNP NMR instrumentation primarily based on available commercial platforms. We start with a general system overview, including options for microwave sources and DNP NMR probes, and then focus on specific developments for DNP at 100 K with magic angle spinning (MAS). Gyrotron microwave sources, passive components to transmit microwaves, the DNP MAS probe, a cooling device for low-temperature MAS, and sample preparation procedures including radicals for DNP are considered.

  4. UAV Robust Strategy Control Based on MAS

    Directory of Open Access Journals (Sweden)

    Jian Han

    2014-01-01

    Full Text Available A novel multiagent system (MAS has been proposed to integrate individual UAV (unmanned aerial vehicle to form a UAV team which can accomplish complex missions with better efficiency and effect. The MAS based UAV team control is more able to conquer dynamic situations and enhance the performance of any single UAV. In this paper, the MAS proposed and established combines the reacting and thinking abilities to be an initiative and autonomous hybrid system which can solve missions involving coordinated flight and cooperative operation. The MAS uses BDI model to support its logical perception and to classify the different missions; then the missions will be allocated by utilizing auction mechanism after analyzing dynamic parameters. Prim potential algorithm, particle swarm algorithm, and reallocation mechanism are proposed to realize the rational decomposing and optimal allocation in order to reach the maximum profit. After simulation, the MAS has been proved to be able to promote the success ratio and raise the robustness, while realizing feasibility of coordinated flight and optimality of cooperative mission.

  5. Ternary silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and quaternary derivatives RERh{sub 4}Si{sub 2-x}Sn{sub x} (RE = Y, Nd, Sm, Gd-Lu) - structure, chemical bonding, and solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vosswinkel, Daniel; Benndorf, Christopher; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos (Brazil). Inst. of Physics; Matar, Samir F. [Bordeaux Univ., CNRS, ICMCB, UPR 9048, Pessac (France)

    2016-11-01

    The silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and silicide stannides RERh{sub 4}Si{sub 2-x}Sn{sub x}(RE = Y, Nd, Sm, Gd-Lu) were synthesized from the elements by arc-melting and subsequent annealing. The new compounds crystallize with the orthorhombic YRh{sub 4}Ge{sub 2} type structure, space group Pnma. They were characterized by X-ray powder patterns and several structures were refined from single crystal X-ray diffractometer data. The main structural motifs of this series of silicides are tricapped trigonal prisms formed by the transition metal and rare earth atoms. One of the two crystallographically independent silicon sites allows for formation of solid solutions with tin, exemplarily studied for ErRh{sub 4}Si{sub 2-x}Sn{sub x}. Electronic structure calculations reveal strong covalent Rh-Si bonding as the main stability factor. Multinuclear ({sup 29}Si, {sup 45}Sc, and {sup 89}Y) magic-angle spinning (MAS) NMR spectra of the structure representatives with diamagnetic rare-earth elements (Sc, Y, Lu) are found to be consistent with the crystallographic data and specifically confirm the selective substitution of Sn in the Si2 sites in the quaternary compounds YRh{sub 4}SiSn and LuRh{sub 4}SiSn.

  6. Millimeter-Wave Atmospheric Sounder (MAS)

    Science.gov (United States)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  7. Distribution of NMR relaxations in a random Heisenberg chain.

    Science.gov (United States)

    Shiroka, T; Casola, F; Glazkov, V; Zheludev, A; Prša, K; Ott, H-R; Mesot, J

    2011-04-01

    NMR measurements of the (29)Si spin-lattice relaxation time T(1) were used to probe the spin-1/2 random Heisenberg chain compound BaCu(2)(Si(1-x)Ge(x))(2)O(7). Remarkable differences between the pure (x=0) and the fully random (x=0.5) cases are observed, indicating that randomness generates a distribution of local magnetic relaxations. This distribution, which is reflected in a stretched exponential NMR relaxation, exhibits a progressive broadening with decreasing temperature, caused by a growing inequivalence of magnetic sites. Compelling independent evidence for the influence of randomness is also obtained from magnetization data and Monte Carlo calculations. These results suggest the formation of random-singlet states in this class of materials, as previously predicted by theory.

  8. 48 CFR 538.271 - MAS contract awards.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false MAS contract awards. 538... Schedules 538.271 MAS contract awards. (a) MAS awards will be for commercial items as defined in FAR 2.101. Negotiate contracts as a discount from established catalog prices. (b) Before awarding any MAS contract...

  9. Fundamental Science Tools for Geologic Carbon Sequestration and Mineral Carbonation Chemistry: In Situ Magic Angle Spinning (MAS) Nuclear Magnetic Resonance

    Science.gov (United States)

    Hoyt, D. W.; Turcu, R. V.; Sears, J. A.; Rosso, K. M.; Burton, S. D.; Kwak, J.; Felmy, A. R.; Hu, J.

    2010-12-01

    GCS is one of the most promising ways of mitigating atmospheric greenhouse gases. Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly reactions occurring in low-water supercritical CO2(scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof. However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures. Our high pressure MAS rotor has successfully maintained scCO2 conditions with minimal leakage over a period of 72 hours. Mineral carbonation reactions of a model magnesium silicate (forsterite) reacted with 96 bars scCO2 containing varying amounts of H2O (both below and above saturation of the scCO2) were investigated at 50○C. Figure 1 shows typical in situ 13C MAS NMR spectra demonstrating that the peaks corresponding to the reactants, intermediates, and the magnesium carbonation products are all observed in a single spectrum. For example, the scCO2 peak is located at 126.1 ppm. Reaction intermediates include the aqueous species HCO3-(160 ppm), partially hydrated/hydroxylated magnesium carbonates(166-168 ppm), and can easily be distinguished from final product magnesite(170 ppm). The new capability and this model mineral carbonation process will be overviewed in

  10. Ultra fast magic angle spinning solid - state NMR spectroscopy of intact bone.

    Science.gov (United States)

    Singh, Chandan; Rai, Ratan Kumar; Kayastha, Arvind M; Sinha, Neeraj

    2016-02-01

    Ultra fast magic angle spinning (MAS) has been a potent method to significantly average out homogeneous/inhomogeneous line broadening in solid-state nuclear magnetic resonance (ssNMR) spectroscopy. It has given a new direction to ssNMR spectroscopy with its different applications. We present here the first and foremost application of ultra fast MAS (~60 kHz) for ssNMR spectroscopy of intact bone. This methodology helps to comprehend and elucidate the organic content in the intact bone matrix with resolution and sensitivity enhancement. At this MAS speed, amino protons from organic part of intact bone start to appear in (1) H NMR spectra. The experimental protocol of ultra-high speed MAS for intact bone has been entailed with an additional insight achieved at 60 kHz.

  11. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR.

    Science.gov (United States)

    Mandal, Abhishek; Boatz, Jennifer C; Wheeler, Travis B; van der Wel, Patrick C A

    2017-02-22

    A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.

  12. Refractive index spectral dependence, Raman and transmission spectra of high-purity $^{28}$Si, $^{29}$Si, $^{30}$Si, and $^{nat}$Si single crystals

    CERN Document Server

    Plotnichenko, V G; Kryukova, E B; Koltashev, V V; Sokolov, V O; Dianov, E M; Gusev, A V; Gavva, V A; Kotereva, T V; Churbanov, M F

    2011-01-01

    Precise measurement of the refractive index of stable silicon isotopes $^{28}$Si, $^{29}$Si, $^{30}$Si single crystals with enrichments above 99.9 at.% and a silicon single crystal $^{nat}$Si of natural isotopic composition is performed with the Fourier-transform interference refractometry method from 1.06 to more than 80 mkm with 0.1 cm$^{-1}$ resolution and accuracy of $2 \\times 10^{-5} ... 1 \\times 10^{-4}$. The oxygen and carbon concentrations in all crystals are within $5 \\times 10^{15}$ cm$^{-3}$ and the content of metal impurities is $10^{-5} ... 10^{-6}$ at.%. The peculiar changes of the refractive index in the phonon absorption region of all silicon single crystals are shown. The coefficients of generalized Cauchy dispersion function approximating the experimental refractive index values all over the measuring range are given. The transmission and Raman spectra are also studied.

  13. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  14. A social-democracia do MAS boliviano

    Directory of Open Access Journals (Sweden)

    Guilherme Simões Reis

    2013-12-01

    Full Text Available O partido MAS, que governa a Bolívia e é liderado pelo presidente Evo Morales, geralmente é classificado como populista ou como revolucionário. Este artigo contesta ambos os diagnósticos, e sustenta que o MAS é um partido social-democrata. Tanto em sua gênese, como em seu comportamento na oposição, como em suas políticas no governo, o MAS apresenta todas as características necessárias para ser classificado como um representante da social-democracia. Para contestar os diagnósticos predominantes na literatura, o argumento desenvolve-se aplicando três distintas abordagens sobre a social-democracia. Uma comparação histórico-ideológica com os partidos tradicionalmente apontados como social-democratas mostra que o MAS assemelha-se a eles tanto em sua origem fortemente sindical como no tipo de mudança que introduziu na política do país. Uma análise institucional mostra que não procedem as acusações de que é antissistema e contrário à democracia, características associadas tanto aos "populistas", de acordo com "teóricos das duas esquerdas latino-americanas", como aos partidos adeptos da "revolução violenta". Por fim, uma análise das políticas adotadas pelo MAS no governo indica que estão alinhadas com aquelas consideradas como social-democráticas no contexto de integração dos mercados globais. Argumenta-se no texto que o MAS não é em geral classificado como social-democrata, em parte devido a uma visão equivocada sobre suas práticas, e em parte por uma tendência dos estudiosos a chamarem a atenção para o que lhe é específico, e não para o que ele tem em comum com outros partidos de esquerda, como é feito com quaisquer partidos ao catalogá-los em famílias.

  15. In situ NMR analysis of fluids contained in sedimentary rock

    Science.gov (United States)

    de Swiet TM; Tomaselli; Hurlimann; Pines

    1998-08-01

    Limitations of resolution and absorption in standard chemical spectroscopic techniques have made it difficult to study fluids in sedimentary rocks. In this paper, we show that a chemical characterization of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1H MAS-NMR spectra of water and crude oil in Berea sandstone show sufficient chemical shift resolution for a straightforward determination of the oil/water ratio. Copyright 1998 Academic Press.

  16. 一个多Agent系统规范--MAS/KIB%MAS/KIB--a Multiagent System Specification

    Institute of Scientific and Technical Information of China (English)

    胡舜耕; 钟义信

    2000-01-01

    采用K(知道),B(相信),I(意愿)等几个基本的心智状态,建立了一个多Agent系统逻辑规范-MAS/KIB,讨论了其语法、模型和语义,给出了公理和推理规则,研究了MAS/KIB的一些基本性质.

  17. Magic angle spinning NMR of paramagnetic proteins.

    Science.gov (United States)

    Knight, Michael J; Felli, Isabella C; Pierattelli, Roberta; Emsley, Lyndon; Pintacuda, Guido

    2013-09-17

    Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the investigation of the structure and chemical properties of paramagnetic metalloproteins, linking the observed paramagnetic phenomena directly to electronic and molecular structure. A major step forward in the study of proteins by solid-state NMR came with the advent of ultrafast magic angle spinning (MAS) and the ability to use (1)H detection. Combined, these techniques have allowed investigators to observe nuclei that previously were invisible in highly paramagnetic metalloproteins. In addition, these techniques have enabled quantitative site-specific measurement of a variety of long-range paramagnetic effects. Instead of limiting solid-state NMR studies of biological systems, paramagnetism provides an information-rich phenomenon that can be exploited in these studies. This Account emphasizes state-of-the-art methods and applications of solid-state NMR in paramagnetic systems in biological chemistry. In particular, we discuss the use of ultrafast MAS and (1)H-detection in perdeuterated paramagnetic metalloproteins. Current methodology allows us to determine the structure and dynamics of metalloenzymes, and, as an example, we describe solid-state NMR studies of microcrystalline superoxide dismutase, a 32 kDa dimer. Data were acquired with remarkably short times, and these experiments required only a few milligrams of sample.

  18. Performance of RINEPT is amplified by dipolar couplings under ultrafast MAS conditions.

    Science.gov (United States)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The refocused insensitive nuclei enhanced by polarization transfer (RINEPT) technique is commonly used for heteronuclear polarization transfer in solution and solid-state NMR spectroscopy. Suppression of dipolar couplings, either by fast molecular motions in solution or by a combination of MAS and multiple pulse sequences in solids, enables the polarization transfer via scalar couplings. However, the presence of unsuppressed dipolar couplings could alter the functioning of RINEPT, particularly under fast/ultrafast MAS conditions. In this study, we demonstrate, through experiments on rigid solids complemented by numerical simulations, that the polarization transfer efficiency of RINEPT is dependent on the MAS frequency. In addition, we show that heteronuclear dipolar coupling is the dominant factor in the polarization transfer, which is strengthened by the presence of (1)H-(1)H dipolar couplings. In fact, the simultaneous presence of homonuclear and heteronuclear dipolar couplings is the premise for the polarization transfer by RINEPT, whereas the scalar coupling plays an insignificant role under ultrafast MAS conditions on rigid solids. Our results additionally reveal that the polarization transfer efficiency decreases with the increasing duration of RF pulses used in the RINEPT sequence.

  19. NMR GHZ

    CERN Document Server

    Laflamme, R; Zurek, W H; Catasti, P; Mariappan, S V S

    1998-01-01

    We describe the creation of a Greenberger-Horne-Zeilinger (GHZ) state of the form |000>+|111> (three maximally entangled quantum bits) using Nuclear Magnetic Resonance (NMR). We have successfully carried out the experiment using the proton and carbon spins of trichloroethylene, and confirmed the result using state tomography. We have thus extended the space of entangled quantum states explored systematically to three quantum bits, an essential step for quantum computation.

  20. High-temperature NMR study of zeolite Na-A: Detection of a phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, R.; Tijink, G.A.H.; Veeman, W.S.; Maesen, T.L.M.; van Lent, J.F. (Univ. of Nijmegen (Netherlands))

    1989-01-26

    The zeolite Linde 4A is studied by {sup 23}Na, {sup 27}al, and {sup 29}Si NMR at temperatures up to 953 K. {sup 23}Na NMR shows that the quadrupole interaction of sodium ions sited at 6-rings decreases when the temperature increases. With the aid of two-dimensional nutation and exchange experiments it can be shown that large-amplitude motions of the sodium ions, which in principle could explain a decrease of quadrupole interactions, do not occur. The decrease of the quadrupole interaction can be interpreted in terms of a phase transition. From a comparison of the NMR spectra of {sup 23}Na and {sup 27}Al it is concluded that the zeolite framework undergoes a major structural change upon increasing the temperature, before the sodium ions are displaced at higher temperatures. The exchange of sodium ions for potassium ions shifts this transition to higher temperatures.

  1. 1020MHz single-channel proton fast magic angle spinning solid-state NMR spectroscopy.

    Science.gov (United States)

    Pandey, Manoj Kumar; Zhang, Rongchun; Hashi, Kenjiro; Ohki, Shinobu; Nishijima, Gen; Matsumoto, Shinji; Noguchi, Takashi; Deguchi, Kenzo; Goto, Atsushi; Shimizu, Tadashi; Maeda, Hideaki; Takahashi, Masato; Yanagisawa, Yoshinori; Yamazaki, Toshio; Iguchi, Seiya; Tanaka, Ryoji; Nemoto, Takahiro; Miyamoto, Tetsuo; Suematsu, Hiroto; Saito, Kazuyoshi; Miki, Takashi; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2015-12-01

    This study reports a first successful demonstration of a single channel proton 3D and 2D high-throughput ultrafast magic angle spinning (MAS) solid-state NMR techniques in an ultra-high magnetic field (1020MHz) NMR spectrometer comprised of HTS/LTS magnet. High spectral resolution is well demonstrated.

  2. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  3. Dynamic nuclear polarization NMR spectroscopy allows high-throughput characterization of microporous organic polymers.

    Science.gov (United States)

    Blanc, Frédéric; Chong, Samantha Y; McDonald, Tom O; Adams, Dave J; Pawsey, Shane; Caporini, Marc A; Cooper, Andrew I

    2013-10-16

    Dynamic nuclear polarization (DNP) solid-state NMR was used to obtain natural abundance (13)C and (15)N CP MAS NMR spectra of microporous organic polymers with excellent signal-to-noise ratio, allowing for unprecedented details in the molecular structure to be determined for these complex polymer networks. Sensitivity enhancements larger than 10 were obtained with bis-nitroxide radical at 14.1 T and low temperature (∼105 K). This DNP MAS NMR approach allows efficient, high-throughput characterization of libraries of porous polymers prepared by combinatorial chemistry methods.

  4. Synthesis and solid-state NMR characterization of cubic mesoporous silica SBA-1 functionalized with sulfonic acid groups.

    Science.gov (United States)

    Tsai, Hui-Hsu Gavin; Chiu, Po-Jui; Jheng, Guang-Liang; Ting, Chun-Chiang; Pan, Yu-Chi; Kao, Hsien-Ming

    2011-07-01

    Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.

  5. Forensic examination of electrical tapes using high resolution magic angle spinning ¹H NMR spectroscopy.

    Science.gov (United States)

    Schoenberger, Torsten; Simmross, Ulrich; Poppe, Christian

    2016-01-01

    The application of high resolution magic angle spinning (HR-MAS) (1)H NMR spectroscopy is ideally suited for the differentiation of plastics. In addition to the actual material composition, the different types of polymer architectures and tacticity provide characteristic signals in the fingerprint of the (1)H NMR spectra. The method facilitates forensic comparison, as even small amounts of insoluble but swellable plastic particles are utilized. The performance of HR-MAS NMR can be verified against other methods that were recently addressed in various articles about forensic tape comparison. In this study samples of the 90 electrical tapes already referenced by the FBI laboratory were used. The discrimination power of HR-MAS is demonstrated by the fact that more tape groups can be distinguished by NMR spectroscopy than by using the combined evaluation of several commonly used analytical techniques. An additional advantage of this robust and quick method is the very simple sample preparation.

  6. Study of Conformation and Dynamics of Molecules Adsorbed in Zeolites by 1H NMR

    Science.gov (United States)

    Michel, Dieter; Bohlmann, Winfried; Roland, Jorg; Mulla-Osman, Samir

    The chapter Study of Conformation and Dynamics of Molecules Adsorbed in Zeolites by 1H NMR is concerned with the application of high-resolution (HR) solid-state NMR techniques to study the behavior of molecules adsorbed on surfaces of nanoporous solids, such as zeolitic molecular sieves. This includes a combined or alternative application of conventional high-resolution NMR methods and of high-resolution solid-state NMR techniques, including magic-angle sample spinning (MAS), cross-polarization (CP), high-power decoupling and appropriate multiple-pulse sequences for two- or higher dimensional NMR and multiple-quantum spectroscopy. The interaction of adsorbed molecules with adsorption centers in the internal surfaces of porous solids does not only lead to changes in the reorientational and translational mobility of the molecular species but influences also the molecular conformation. Examples will be given for simple olefins in interaction with inner zeolite surfaces. Conclusions about the correlation times of the internal reorientational and translational dynamics are derived in complete agreement with the conclusion obtained from diffusion coefficients by means of PFG NMR (second chapter). Since the methodical approach of HR MAS NMR in heterogeneous systems presented here is also valuable for the investigation of lyotropic crystalline phases using HR MAS NMR (in Chap. 12) And for the NMR studies of cartilage (in Chap. 13) it was also the aim of this chapter to elucidate also the methodical background of these measurements in some more detail.

  7. In situ solid-state NMR for heterogeneous catalysis: a joint experimental and theoretical approach.

    Science.gov (United States)

    Zhang, Weiping; Xu, Shutao; Han, Xiuwen; Bao, Xinhe

    2012-01-07

    In situ solid-state NMR is a well-established tool for investigations of the structures of the adsorbed reactants, intermediates and products on the surface of solid catalysts. The techniques allow identifications of both the active sites such as acidic sites and reaction processes after introduction of adsorbates and reactants inside an NMR rotor under magic angle spinning (MAS). The in situ solid-state NMR studies of the reactions can be achieved in two ways, i.e. under batch-like or continuous-flow conditions. The former technique is low cost and accessible to the commercial instrument while the latter one is close to the real catalytic reactions on the solids. This critical review describes the research progress on the in situ solid-state NMR techniques and the applications in heterogeneous catalysis under batch-like and continuous-flow conditions in recent years. Some typical probe molecules are summarized here to detect the Brønsted and Lewis acidic sites by MAS NMR. The catalytic reactions discussed in this review include methane aromatization, olefin selective oxidation and olefin metathesis on the metal oxide-containing zeolites. With combining the in situ MAS NMR spectroscopy and the density functional theoretical (DFT) calculations, the intermediates on the catalyst can be identified, and the reaction mechanism is revealed. Reaction kinetic analysis in the nanospace instead of in the bulk state can also be performed by employing laser-enhanced MAS NMR techniques in the in situ flow mode (163 references).

  8. Studies of minute quantities of natural abundance molecules using 2D heteronuclear correlation spectroscopy under 100 kHz MAS.

    Science.gov (United States)

    Nishiyama, Y; Kobayashi, T; Malon, M; Singappuli-Arachchige, D; Slowing, I I; Pruski, M

    2015-01-01

    Two-dimensional (1)H{(13)C} heteronuclear correlation solid-state NMR spectra of naturally abundant solid materials are presented, acquired using the 0.75-mm magic angle spinning (MAS) probe at spinning rates up to 100 kHz. In spite of the miniscule sample volume (290 nL), high-quality HSQC-type spectra of bulk samples as well as surface-bound molecules can be obtained within hours of experimental time. The experiments are compared with those carried out at 40 kHz MAS using a 1.6-mm probe, which offered higher overall sensitivity due to a larger rotor volume. The benefits of ultrafast MAS in such experiments include superior resolution in (1)H dimension without resorting to (1)H-(1)H homonuclear RF decoupling, easy optimization, and applicability to mass-limited samples. The HMQC spectra of surface-bound species can be also acquired under 100 kHz MAS, although the dephasing of transverse magnetization has significant effect on the efficiency transfer under MAS alone. Published by Elsevier Inc.

  9. Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process.

    Science.gov (United States)

    Bignami, Giulia P M; Dawson, Daniel M; Seymour, Valerie R; Wheatley, Paul S; Morris, Russell E; Ashbrook, Sharon E

    2017-04-12

    The great utility and importance of zeolites in fields as diverse as industrial catalysis and medicine has driven considerable interest in the ability to target new framework types with novel properties and applications. The recently introduced and unconventional assembly, disassembly, organization, reassembly (ADOR) method represents one exciting new approach to obtain solids with targeted structures by selectively disassembling preprepared hydrolytically unstable frameworks and then reassembling the resulting products to form materials with new topologies. However, the hydrolytic mechanisms underlying such a powerful synthetic method are not understood in detail, requiring further investigation of the kinetic behavior and the outcome of reactions under differing conditions. In this work, we report the optimized ADOR synthesis, and subsequent solid-state characterization, of (17)O- and doubly (17)O- and (29)Si-enriched UTL-derived zeolites, by synthesis of (29)Si-enriched starting Ge-UTL frameworks and incorporation of (17)O from (17)O-enriched water during hydrolysis. (17)O and (29)Si NMR experiments are able to demonstrate that the hydrolysis and rearrangement process occurs over a much longer time scale than seen by diffraction. The observation of unexpectedly high levels of (17)O in the bulk zeolitic layers, rather than being confined only to the interlayer spacing, reveals a much more extensive hydrolytic rearrangement than previously thought. This work sheds new light on the role played by water in the ADOR process and provides insight into the detailed mechanism of the structural changes involved.

  10. A multinuclear static NMR study of geopolymerisation

    Energy Technology Data Exchange (ETDEWEB)

    Favier, Aurélie, E-mail: aurelie.favier@epfl.ch [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); Habert, Guillaume [Institute for Construction and Infrastructure Management, ETH Zurich, CH-8093 Zurich (Switzerland); Roussel, Nicolas [Univ Paris-Est, IFSTTAR, Materials Department, 14-20 bd Newton, F-77447 Marne la Vallée Cedex 2 (France); D' Espinose de Lacaillerie, Jean-Baptiste [Ecole Supérieure de Physique et de Chimie Indusrtrielles de la Ville de Paris (ESPCI), ParisTech, PSL Research University, Soft Matter Sciences and Engineering Laboratory SIMM, CNRS UMR 7615, 10 rue Vauquelin, F-75005 Paris (France)

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  11. Solid state NMR investigation of silica aerogel supported Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiru; Dunn, Brian C.; Turpin, Gregory C.; Eyring, Edward M.; Ernst, Richard D.; Pugmire, Ronald J. [Department of Chemistry, University of Utah, Salt Lake City, UT 84112 (United States)

    2007-01-15

    The Fischer-Tropsch (F-T) catalyst is the critical component for the F-T synthesis of a variety of hydrocarbons from syngas. Fischer-Tropsch cobalt, iron and ruthenium catalysts supported on silica aerogel have been prepared using a combination of sol-gel chemistry and vapor phase deposition methods. Solid state NMR spectroscopy, a very powerful technique for analyzing the structure and dynamics of various materials, was employed in the study of these F-T catalyst systems. The silica aerogel supported F-T catalysts have been investigated using both solid state {sup 29}Si and {sup 13}C NMR methods. The silica aerogel's tetrahedral sub-unit structure and the influence of the loaded metal compounds have been observed. Three types of Si(O{sub 1/2}){sub 4} tetrahedral unit structure (Q{sub 2}, Q{sub 3} and Q{sub 4}) are clearly resolved in the silica aerogel samples. The calcining process and the loading of metal compounds produce line broadening in the {sup 29}Si spectra sufficient to prevent clear resolution of the three distinct Q{sub n} spectral lines, but the broadened spectra indicate that the three Q sub-unit structures are still present. The ferrocene and ruthenocene molecules used in the vapor phase deposition method exhibit a rapid exchange within the silica aerogel support similar to what one would expect in the gas or liquid state. (author)

  12. NMR Studies of Cartilage Dynamics, Diffusion, Degradation

    Science.gov (United States)

    Huster, Daniel; Schiller, Jurgen; Naji, Lama; Kaufmann Jorn; Arnold, Klaus

    An increasing number of people is suffering from rheumatic diseases, and, therefore, methods of early diagnosis of joint degeneration are urgently required. For their establishment, however, an improved knowledge about the molecular organisation of cartilage would be helpful. Cartilage consists of three main components: Water, collagen and chondroitin sulfate (CS) that is (together with further polysaccharides and proteins) a major constituent of the proteoglycans of cartilage. 1H and 13C MAS (magic-angle spinning) NMR (nuclear magnetic resonance) opened new perspectives for the study of the macromolecular components in cartilage. We have primarily studied the mobilities of CS and collagen in bovine nasal and pig articular cartilage (that differ significantly in their collagen/polysaccharide content) by measuring 13C NMR relaxation times as well as the corresponding 13C CP (cross polarisation) MAS NMR spectra. These data clearly indicate that the mobility of cartilage macromolecules is broadly distributed from almost completely rigid (collagen) to highly mobile (polysaccharides), which lends cartilage its mechanical strength and shock-absorbing properties.

  13. Rapid proton-detected NMR assignment for proteins with fast magic angle spinning.

    Science.gov (United States)

    Barbet-Massin, Emeline; Pell, Andrew J; Retel, Joren S; Andreas, Loren B; Jaudzems, Kristaps; Franks, W Trent; Nieuwkoop, Andrew J; Hiller, Matthias; Higman, Victoria; Guerry, Paul; Bertarello, Andrea; Knight, Michael J; Felletti, Michele; Le Marchand, Tanguy; Kotelovica, Svetlana; Akopjana, Inara; Tars, Kaspars; Stoppini, Monica; Bellotti, Vittorio; Bolognesi, Martino; Ricagno, Stefano; Chou, James J; Griffin, Robert G; Oschkinat, Hartmut; Lesage, Anne; Emsley, Lyndon; Herrmann, Torsten; Pintacuda, Guido

    2014-09-03

    Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.

  14. Analysis of organic matter at the soil-water interface by NMR spectroscopy: Implications for contaminant sorption processes

    Science.gov (United States)

    Simpson, M.; Simpson, A.

    2009-05-01

    Contaminant sorption to soil organic matter (OM) is the main fate of nonionic, hydrophobic organic contaminants in terrestrial environments and a number of studies have suggested that both soil OM structure and physical conformation (as regulated by the clay mineral phase) govern contaminant sorption processes. To investigate this further, a number of soil samples were characterized by both solid-state 13 C Cross Polarization Magic Angle Spinning (CPMAS) NMR and 1H High Resolution Magic Angle Spinning (HR- MAS) NMR. HR-MAS NMR is an innovative NMR method that allows one to examine samples that are semi- solid using liquid state NMR methods (ie: observe 1H which is more sensitive than 13C). With HR-MAS NMR, only those structures that are in contact with the solvent are NMR visible thus one can probe different components within a mixture using different solvents. The 1H HR-MAS NMR spectrum of a grassland soil swollen in water (D2O) is dominated by signals from alkyl and O-alkyl structures but signals from aromatic protons are negligible (the peak at ~8.2ppm is attributed to formic acid). When the soil is swollen in DMSO-d6, a solvent which is more penetrating and capable of breaking hydrogen bonds, aromatic signals are visible suggesting that the aromatic structures are buried within the soil matrix and do not exist at the soil-water interface. The 13C solid-state NMR data confirms that aromatic carbon is present in substantial amounts (estimated at ~40% of the total 13C signal) therefore, the lack of 1H aromatic signals in the HR-MAS NMR spectrum indicates that aromatic structures are buried and that the soil-water interface is dominated by aliphatic chains, carbohydrates, and peptides. The NMR data indicates that the mineral component of soils governs the physical conformation of OM at the soil-water interface.

  15. 48 CFR 538.272 - MAS price reductions.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false MAS price reductions. 538.272 Section 538.272 Federal Acquisition Regulations System GENERAL SERVICES ADMINISTRATION SPECIAL... Schedules 538.272 MAS price reductions. (a) Section 552.238-75, Price Reductions, requires the contractor to...

  16. 1H MAS NMR characterization of hydrogen over silica-supported rhodium catalyst

    Institute of Scientific and Technical Information of China (English)

    CHAO; Zisheng

    2001-01-01

    [1]Xu Songling, Measurement of Economic Loss of Environment Damage in China--Example and Theory, Beijing: Envi-ronment Science Press of China, 1998, 7-9.[2]Douglas, J. M., Process synthesis for waste minimization, Ind. Eng. Chem. Res., 1992, 31(1): 238.[3]Flower, J. R., Bikos, S, C., Johnson, S. W., The graphical mass balance in the early design of clean processes, Tran. of IChE, Part B, 1993, 194.[4]EI-Hakwagi, M. M., Manousiouthakis, V., Synthesis of mass exchange networks, AIChE Jl., 1989,35(8): 1233.[5]Wang, Y. P., Smith, R., Wastewater minimization, Chem. Eng. Sci., 1994, 49(7): 881.[6]Pistikopoulos, E. N., Stefanis, S. K., Livingston, A. G., A methodology for minimum environmental impact analysis, AL-CHE Symposium Series, Volume on Pollution Prevention through Process and Product Modifications, 1994, 90(303): 139.[7]Stefanis, S. K., Livingston, A. G., Pistikopoulos, E. N., Minimizing the environmental impact of process plants: A process systems methodology, Computers and Chemical Engineering, 1996, 20: S1419.[8]Rivero, R., The Exergoecologic improvement potential of industrial processes, in Proc.of TAIES'97, Beijing: World Pub-lishing Corporation, 1997, 299-304.[9]Stefanis, S. K., Buxton, A., Livingston, A. G. et al., A methodology for environmental impact minimization: Solvent des-ign and reaction path synthesis issues, Computers and Chemical Engineering, 1997, 21: S1419.[10]Rosen, M. A., Dincer, I., On exergy and environmental impact, International Journal of Energy Research, 1997, 21: 643.[11]Wang Yanfeng, Feng Xiao, Exergy analysis involving resource utilization and environmental influence, Computers and Chemical Engineering, 2000, 24: 1243.[12]Wang Jing,He Deke,Wang Yaoqu, The Handbook of Assessment Environment Data--Toxic Substance Identification Data, Beijing: Chemical Industry Press, 1988, 424-426.[13]Xiang Xinyao, Exergy Analysis Method in Engineering (in Chinese), Beijing: Petroleum Industry Press,1990, 313-314.[14]The Laws Assembly of Pollute Penalty (1982-1996), Xi'an: Environment Supervision and Control Office in Xi'an City, 1997, 199-208.[15]Sahaku, Y., Closed System of Chemical Production (in Chinese), (translated by Yu Puyi, An Jiaju, Liu Renkan), Beijing: Chemical Industry Press, 1987, 43-58

  17. Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy.

    Science.gov (United States)

    Chevelkov, Veniamin; Fink, Uwe; Reif, Bernd

    2009-09-01

    We present a comprehensive analysis of protein dynamics for a micro-crystallin protein in the solid-state. Experimental data include (15)N T (1) relaxation times measured at two different magnetic fields as well as (1)H-(15)N dipole, (15)N CSA cross correlated relaxation rates which are sensitive to the spectral density function J(0) and are thus a measure of T (2) in the solid-state. In addition, global order parameters are included from a (1)H,(15)N dipolar recoupling experiment. The data are analyzed within the framework of the extended model-free Clore-Lipari-Szabo theory. We find slow motional correlation times in the range of 5 and 150 ns. Assuming a wobbling in a cone motion, the amplitude of motion of the respective amide moiety is on the order of 10 degrees for the half-opening angle of the cone in most of the cases. The experiments are demonstrated using a perdeuterated sample of the chicken alpha-spectrin SH3 domain.

  18. Ammonia Vapor Removal by Cu3(BTC)2 and Its Characterization by MAS NMR

    Science.gov (United States)

    2009-01-01

    hysteresis . A majority of the nitrogen is adsorbed at relative pressures less than 10-3. Molecular simulations of Ar adsorption isotherm data on similar Cu...created by the unsaturated copper atoms. The hysteresis loop at relative pressures above 0.4 corre- sponds to previous argon adsorption studies by...Vishnayakov and co-workers and is indicative of mesoporous defects formed during crystallization.15 The exhausted samples exposed to ammonia under dry and 80

  19. Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues.

    Science.gov (United States)

    André, Marion; Dumez, Jean-Nicolas; Rezig, Lamya; Shintu, Laetitia; Piotto, Martial; Caldarelli, Stefano

    2014-11-04

    High-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) is an essential tool to characterize a variety of semisolid systems, including biological tissues, with virtually no sample preparation. The "non-destructive" nature of NMR is typically compromised, however, by the extreme centrifugal forces experienced under conventional HR-MAS frequencies of several kilohertz. These features limit the usefulness of current HR-MAS approaches for fragile samples. Here, we introduce a full protocol for acquiring high-quality HR-MAS NMR spectra of biological tissues at low spinning rates (down to a few hundred hertz). The protocol first consists of a carefully designed sample preparation, which yields spectra without significant spinning sidebands at low spinning frequency for several types of sample holders, including the standard disposable inserts classically used in HR-MAS NMR-based metabolomics. Suppression of broad spectral features is then achieved using a modified version of the recently introduced PROJECT experiment with added water suppression and rotor synchronization, which deposits limited power in the sample and which can be suitably rotor-synchronized at low spinning rates. The performance of the slow HR-MAS NMR procedure is demonstrated on conventional (liver tissue) and very delicate (fish eggs) samples, for which the slow-spinning conditions are shown to preserve the structural integrity and to minimize intercompartmental leaks of metabolites. Taken together, these results expand the applicability and reliability of HR-MAS NMR spectroscopy. These results have been obtained at 400 and 600 MHz and suggest that high-quality slow HR-MAS spectra can be expected at higher magnetic fields using the described protocol.

  20. 29 Si NMR and SAXS investigation of the hybrid organic–inorganic glasses obtained by consolidation of the melting gels

    Energy Technology Data Exchange (ETDEWEB)

    Jitianu, Andrei; Cadars, Sylvian; Zhang, Fan; Rodriguez, Gabriela; Picard, Quentin; Aparicio, Mario; Mosa, Jadra; Klein, Lisa C.

    2017-01-01

    This study is focused on structural characterization of hybrid glasses obtained by consolidation of melting gels. The melting gels were prepared in molar ratios of methyltriethoxysilane (MTES) and dimethyldiethoxysilane (DMDES) of 75%MTES-25%DMDES and 65%MTES-35%DMDES. Following consolidation, the hybrid glasses were characterized using Raman, 29Si and 13C Nuclear Magnetic Resonance (NMR) spectroscopies, synchrotron Small Angle X-Ray Scattering (SAXS) and scanning electron microscopy (SEM). Raman spectroscopy revealed the presence of Si–C bonds in the hybrid glasses and 8-membered ring structures in the Si–O–Si network. Qualitative NMR spectroscopy identified the main molecular species, while quantitative NMR data showed that the ratio of trimers (T) to dimers (D) varied between 4.6 and 3.8. Two-dimensional 29Si NMR data were used to identify two distinct types of T3 environments. SAXS data showed that the glasses are homogeneous across the nm to micrometer length scales. The scattering cross section was one thousand times lower than what is expected when phase separation occurs. The SEM images show a uniform surface without defects, in agreement with the SAXS results, which further supports that the hybrid glasses are nonporous.

  1. Combined zero-quantum and spin-diffusion mixing for efficient homonuclear correlation spectroscopy under fast MAS: broadband recoupling and detection of long-range correlations.

    Science.gov (United States)

    Lu, Xingyu; Guo, Changmiao; Hou, Guangjin; Polenova, Tatyana

    2015-01-01

    Fast magic angle spinning (MAS) NMR spectroscopy is emerging as an essential analytical and structural biology technique. Large resolution and sensitivity enhancements observed under fast MAS conditions enable structural and dynamics analysis of challenging systems, such as large macromolecular assemblies and isotopically dilute samples, using only a fraction of material required for conventional experiments. Homonuclear dipolar-based correlation spectroscopy constitutes a centerpiece in the MAS NMR methodological toolbox, and is used essentially in every biological and organic system for deriving resonance assignments and distance restraints information necessary for structural analysis. Under fast MAS conditions (rotation frequencies above 35-40 kHz), dipolar-based techniques that yield multi-bond correlations and non-trivial distance information are ineffective and suffer from low polarization transfer efficiency. To overcome this limitation, we have developed a family of experiments, CORD-RFDR. These experiments exploit the advantages of both zero-quantum RFDR and spin-diffusion based CORD methods, and exhibit highly efficient and broadband dipolar recoupling across the entire spectrum, for both short-range and long-range correlations. We have verified the performance of the CORD-RFDR sequences experimentally on a U-(13)C,(15)N-MLF tripeptide and by numerical simulations. We demonstrate applications of 2D CORD-RFDR correlation spectroscopy in dynein light chain LC8 and HIV-1 CA tubular assemblies. In the CORD-RFDR spectra of LC8 acquired at the MAS frequency of 40 kHz, many new intra- and inter-residue correlations are detected, which were not observed with conventional dipolar recoupling sequences. At a moderate MAS frequency of 14 kHz, the CORD-RFDR experiment exhibits excellent performance as well, as demonstrated in the HIV-1 CA tubular assemblies. Taken together, the results indicate that CORD-RFDR experiment is beneficial in a broad range of conditions

  2. Optimization of dental CBCT exposures through mAs reduction.

    Science.gov (United States)

    Pauwels, R; Seynaeve, L; Henriques, J C G; de Oliveira-Santos, C; Souza, P C; Westphalen, F H; Rubira-Bullen, I R F; Ribeiro-Rotta, R F; Rockenbach, M I B; Haiter-Neto, F; Pittayapat, P; Bosmans, H; Bogaerts, R; Jacobs, R

    2015-01-01

    To investigate the effect of tube current-exposure time (mAs) reduction on clinical and technical image quality for different CBCT scanners, and to determine preliminary minimally acceptable values for the mAs and contrast-to-noise ratio (CNR) in CBCT. A polymethyl methacrylate (PMMA) phantom and an anthropomorphic skull phantom, containing a human skeleton embedded in polyurethane, were scanned using four CBCT devices, including seven exposure protocols. For all protocols, the mAs was varied within the selectable range. Using the PMMA phantom, the CNRAIR was measured and corrected for voxel size. Eight axial slices and one coronal slice showing various anatomical landmarks were selected for each CBCT scan of the skull phantom. The slices were presented to six dentomaxillofacial radiologists, providing scores for various anatomical and diagnostic parameters. A hyperbolic relationship was seen between CNRAIR and mAs. Similarly, a gradual reduction in clinical image quality was seen at lower mAs values; however, for several protocols, image quality remained acceptable for a moderate or large mAs reduction compared with the standard exposure setting, depending on the clinical application. The relationship between mAs, CNRAIR and observer scores was different for each CBCT device. Minimally acceptable values for mAs were between 9 and 70, depending on the criterion and clinical application. Although noise increased at a lower mAs, clinical image quality often remained acceptable at exposure levels below the manufacturer's recommended setting, for certain patient groups. Currently, it is not possible to determine minimally acceptable values for image quality that are applicable to multiple CBCT models.

  3. Multinuclear solid-state high-resolution and C-13 -{Al-27} double-resonance magic-angle spinning NMR studies on aluminum alkoxides

    NARCIS (Netherlands)

    Abraham, A.; Prins, R.; Bokhoven, J.A. van; Eck, E.R.H. van; Kentgens, A.P.M.

    2006-01-01

    A combination of Al-27 magic-angle spinning (MAS)/multiple quantum (MQ)-MAS, C-13-H-1 CPMAS, and C-13-{Al-27} transfer of population in double-resonance (TRAPDOR) nuclear magnetic resonance (NMR) were used for the structural elucidation of the aluminum alkoxides aluminum ethoxide, aluminum

  4. Advanced solid-state NMR spectroscopy of natural organic matter.

    Science.gov (United States)

    Mao, Jingdong; Cao, Xiaoyan; Olk, Dan C; Chu, Wenying; Schmidt-Rohr, Klaus

    2017-05-01

    Solid-state NMR is essential for the characterization of natural organic matter (NOM) and is gaining importance in geosciences and environmental sciences. This review is intended to highlight advanced solid-state NMR techniques, especially a systematic approach to NOM characterization, and their applications to the study of NOM. We discuss some basics of how to acquire high-quality and quantitative solid-state (13)C NMR spectra, and address some common technical mistakes that lead to unreliable spectra of NOM. The identification of specific functional groups in NOM, primarily based on (13)C spectral-editing techniques, is described and the theoretical background of some recently-developed spectral-editing techniques is provided. Applications of solid-state NMR to investigating nitrogen (N) in NOM are described, focusing on limitations of the widely used (15)N CP/MAS experiment and the potential of improved advanced NMR techniques for characterizing N forms in NOM. Then techniques used for identifying proximities, heterogeneities and domains are reviewed, and some examples provided. In addition, NMR techniques for studying segmental dynamics in NOM are reviewed. We also briefly discuss applications of solid-state NMR to NOM from various sources, including soil organic matter, aquatic organic matter, organic matter in atmospheric particulate matter, carbonaceous meteoritic organic matter, and fossil fuels. Finally, examples of NMR-based structural models and an outlook are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Construction Way of MAS Based on Organization Theory

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; FEI Qi; CHEN Xue-guang

    2002-01-01

    With emphasizing that the integration of autonomy and coordination is the basis for constructing multi-agent systems (MAS), we analyze the organizational characters inherent with MAS and point out that it's a natural and essential way to construct MAS based on organization theory. We consider that the emphasis of the theory is the process of system analyzing. Then we present an analysis frame to expound the process, which includes the process of organization definition, the process of role definition, the process of organizational structure definition and the process of interaction protocol definition. Lastly, we discuss some issues associated with the processes of system design and implementation.

  6. Prediction of recrystallization behavior of troglitazone/polyvinylpyrrolidone solid dispersion by solid-state NMR.

    Science.gov (United States)

    Ito, Atsutoshi; Watanabe, Tomoyuki; Yada, Shuichi; Hamaura, Takeshi; Nakagami, Hiroaki; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji

    2010-01-04

    The purpose of this study was to elaborate the relationship between the (13)C CP/MAS NMR spectra and the recrystallization behavior during the storage of troglitazone solid dispersions. The solid dispersions were prepared by either the solvent method or by co-grinding. The recrystallization behavior under storage conditions at 40 degrees C/94% RH was evaluated by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) equation. Solid dispersions prepared by the solvent method or by prolonged grinding brought about inhibition of the nucleation and the nuclei growth at the same time. No differences in the PXRD profiles were found in the samples prepared by the co-grinding and solvent methods, however, (13)C CP/MAS NMR showed significant differences in the spectra. The correlation coefficients using partial least square regression analysis between the PXRD profiles and the apparent nuclei-growth constant or induction period to nucleation were 0.1305 or 0.6350, respectively. In contrast, those between the (13)C CP/MAS NMR spectra and the constant or the period were 0.9916 or 0.9838, respectively. The (13)C CP/MAS NMR spectra had good correlation with the recrystallization kinetic parameters evaluated by the KJMA equation. Consequently, solid-state NMR was judged to be a useful tool for the prediction of the recrystallization behavior of solid dispersions.

  7. Endothelin-1 downregulates Mas receptor expression in human cardiomyocytes.

    Science.gov (United States)

    Chen, Zhiheng; Tang, Yamei; Yang, Zuocheng; Liu, Shaojun; Liu, Yong; Li, Yan; He, Wei

    2013-09-01

    Endothelin-1 (ET-1) and the renin-angiotensin system (RAS) are involved in the pathogenesis of cardiac dysfunction. The Mas receptor is a functional binding site for angiotensin (Ang)‑(1-7), which is now considered a critical component of the RAS and exerts cardioprotective effects. To the best of our knowledge, the present study aimed to examine, for the first time, the effects of ET-1 on Mas expression in cultured human cardiomyocytes. Human cardiomyocytes were treated with ET-1 at different concentrations (1, 5, 10, 20 and 30 nM) for varied time periods (0.5, 1.5, 3, 4.5 or 6 h) with or without the transcription inhibitor actinomycin D, endothelin A (ETA) receptor blocker BQ123 and ETB receptor blocker BQ788, or different kinase inhibitors. ET-1 decreased the Mas mRNA level in a statistically significant dose- and time-dependent manner within 4.5 h, which was reflected in the dose-dependent downregulation of Mas promoter activity, Mas protein levels and Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml), BQ123 (1 µM), p38 mitogen-activated protein kinase (MAPK) siRNA and inhibitor PD169316 (25 µM), completely eliminated the inhibitory effects of ET-1 on Mas expression in human cardiomyocytes. In conclusion, the present study demonstrated that ET-1 downregulates Mas expression at the transcription level in human cardiomyocytes via the ETA receptor by a p38 MAPK‑dependent mechanism. This study provides novel insights into the function of ET-1 and the Ang‑(1-7)/Mas axis in cardiac pathophysiology.

  8. Local Structure of amorphous (PbO){sub x}[(B{sub 2}O{sub 3}){sub 1-z}(Al{sub 2}O{sub 3}){sub z}]{sub y} (SiO{sub 2}){sub y} Dielectric Materials by Multinuclear Solid State NMR

    Energy Technology Data Exchange (ETDEWEB)

    Sawvel, A; Chinn, S; Bourcier, W; Maxwell, R

    2003-09-05

    Structural speciation of glasses in the systems PbO-B{sub 2}O{sub 3}-SiO{sub 2}, PbO-B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}, and PbO-Al{sub 2}O{sub 3}-SiO{sub 2} were studied using solid-state {sup 29}Si, {sup 27}Al, {sup 11}B, and {sup 207}Pb nuclear magnetic resonance (NMR) and Raman spectroscopy. Application of these methods provided insight into the role of Al{sub 2}O{sub 3} incorporation in the lead-borosilicate glass networks. The general composition range studied was (PbO){sub x} [(B{sub 2}O{sub 3}){sub 1-z} (Al{sub 2}O{sub 3})z]{sub y}(SiO{sub 2}){sub y} where x = 0.35, 0.5, and 0.65, y = (1-x)/2 and z = 0.0, 0.5 and 1.0. Additional insight was obtained via {sup 27}Al 2D-3QMAS experiments. The {sup 207}Pb spin echo mapping spectra showed a transition from ionic (Pb{sup 2+}) to covalently bound lead species with increased PbO contents in the borosilicate glasses. The addition of aluminum to the glass network further enhanced the lead species transition resulting in a higher relative amount of covalent lead bonding in the high PbO content alumino-borosilicate glass. The number of BO{sub 4} units present in the {sup 11}B MAS NMR decreased with increasing PbO contents for both the borosilicate and the alumino-borosilicate glass systems, with the addition of aluminum further promoting the BO{sub 3} species. A deshielding of the {sup 11}B chemical shifts and the {sup 27}Al chemical shifts with increased lead contents (independent of changes in the quadrupolar coupling) was also observed for both glass systems and was attributed to increasingly homogeneous glass structure. The {sup 29}Si spectra of the borosilicate and alumino-borosilicate glasses showed a downfield shift with increased PbO concentrations representing incorporation of Pb into the silicate and aluminosilicate networks. The Raman spectra were characterized by increased intensities of Si-O-Pb peaks and decreased intensities of Q{sup 3} peaks with increased PbO contents and showed no evidence

  9. Isotope tracing ({sup 29}Si and {sup 18}O) of the alteration mechanisms of the French glass 'SON68' used for the storage of nuclear waste; Tracage isotopique ({sup 29}Si and {sup 18}O) des mecanismes de l'alteration du verre de confinement des dechets nucleaires: 'SON68'

    Energy Technology Data Exchange (ETDEWEB)

    Valle, N

    2001-07-01

    This study aims to enhance our understanding of the mechanisms of aqueous corrosion of the glasses used for the storage of nuclear waste. Glass samples 'SON68', doped with a different rare earth element (La, Ce or Nd), were altered simultaneously with water enriched in {sup 29}Si and {sup 18}O, throughout a period of 20 months. The aim of such isotope tracing was (i) to follow the 'real' exchanges between glass and solution and (ii) to understand the reactions involving Si-O bonds in the leached layer during alteration. Leachates were analyzed by ICP-MS and -AES, and elemental and isotopic variations in the altered glass layer were measured by ion-probe, using a depth profiling technique. Elemental analyses enabled the distribution of the elements in the two layers of altered glass (phyllosilicates and gel) to be established, and the results reveal a selective partitioning of elements between the two layers. Isotopic analyses of altered layers and leachates allowed phyllosilicates to be distinguished from gel, and suggest two different mechanisms of formation. Whilst phyllosilicates grow on the surface of the glass by a mechanism of precipitation, gel is formed by a succession of hydrolysis / condensation reactions taking place mainly at the gel / pristine glass interface. This gel is formed by the in situ rearrangement of hydrated species, without reaching equilibrium with the solution. Moreover, an experimental technique has been developed enabling one to trace the transport of silicon from the solution into the altered glasses, under an isotopic gradient. Diffusion profiles, obtained by ion-probe, have been modeled and have allowed the determination of the apparent silicon diffusion coefficient (DSi) in gels. Therefore, our experiments have permitted the quantification of the influence of both the alteration conditions (dynamic or static tests) and the solution composition on the value of DSi. (author)

  10. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  11. The Interaction Between Siliceous FAU Zeolites and Adsorptive Methylamine%高硅FAU沸石与甲胺吸附物的相互作用

    Institute of Scientific and Technical Information of China (English)

    龙英才; 杨虎; 孙尧俊; 平郑骅

    2001-01-01

    The interaction between the adsorbed methylamine(MA) and siliceous FAU zeolite with a perfect framework is investigated with XRD, 29Si and 13C MAS NMR and FTIR. As methylamine is loaded into the zeolite, the crystal structure of the zeolite changes. One peak splits to four peaks for the 29Si MAS NMR spectrum, and the IR vibration of framework with a high resolution become simpler. The fact indicates that there is a strong interaction between adsorbed methylamine and Si—O framework of FAU zeolite, leading to high AT value of affinity index for methylamine on the zeolite. The order structure of MA/FAU associate is discussed as well.

  12. Characterization of new materials in chromatography and fuel cell development by modern NMR techniques

    OpenAIRE

    Schauff, Siri

    2007-01-01

    Phosphonic acids for high temperature fuel cell membrane materials were investigated with respect to proton mobility and transport applying solid-state NMR spectroscopy. Water uptake and its effects on anhydride formation were studied on samples that were equilibrated with saturated salt solutions. For polyvinylphosphonic acid reversible anhydride formation was found. Variable temperature 1H MAS NMR spectroscopy of three different phosphonic acids revealed single proton sites, and 1H chemical...

  13. The microscopic NMR probe in chiral magnets. Zero field-, field-modulated- and Skyrmion- states in FeGe and MnSi

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, Michael; Yasuoka, Hiroshi; Majumder, Mayukh; Khuntia, Panchanan; Schmidt, Marcus [MPI for the Chemical Physics of Solids, Dresden (Germany); Witt, Sebastian; Krellner, Cornelius [Goethe University, Frankfurt am Main (Germany)

    2016-07-01

    Cubic FeGe is a prototype B20 chiral magnet (T{sub c} = 280 K) which allows to study chiral correlations directly ''on-site'' via the{sup 57}Fe nucleus because of its S=1/2 nuclear spin interacting only with the electron spin moment. NMR provides the static and dynamic staggered local magnetization M{sub Q} through the hyperfine field (H{sub hf}) and the spin lattice relaxation rate (SLRR = 1/T{sub 1}). Measurements were performed on randomly oriented {sup 57}Fe enriched FeGe single crystals between 2-300 K. Helical-, conical- and field-polarized-states could be clearly identified and spin dynamics of each phase was investigated. MnSi single crystals and {sup 29}Si enriched MnSi polycrystals were studied by {sup 29}Si-NMR (S=1/2) in the ordered state (T{sub c} = 29 K) and above. The T- and H- dependence of H{sub hf} and SLRR was investigated in great detail for both FeGe and MnSi.The {sup 29}Si-NMR lines in MnSi are narrow and H{sub hf}-values obtained are smaller than in FeGe. Our results are in general accordance with the extended SCR theory for itinerant helical magnets, although the theory does not include the symmetry breaking in the B20 structure and the multi-band nature. For FeGe correlations are complex due to its more localized magnetism.

  14. Experimental investigation of the reactions {sup 25}Mg({alpha},n){sup 28}Si, {sup 26}Mg({alpha},n){sup 29}Si, {sup 18}O({alpha},n){sup 21}Ne and their impact on stellar nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Falahat, Sascha

    2010-06-10

    In the present dissertation, the nuclear reactions {sup 25}Mg({alpha},n){sup 28}Si, {sup 26}Mg({alpha},n){sup 29}Si, {sup 18}O({alpha},n){sup 21}Ne are investigated in the astrophysically interesting energy region from E{sub {alpha}}=1000 keV to E{sub {alpha}}=2450 keV. The experiments were performed at the Nuclear Structure Laboratory of the University of Notre Dame (USA) with the Van-de-Graaff accelerator KN. Solid state targets with evaporated magnesium or anodized oxygen were bombarded with {alpha}-particles and the released neutrons detected. For the detection of the released neutrons, computational simulations were used to construct a neutron detector based on {sup 3}He counters. Because of the strong occurrence of background reactions, different methods of data analysis were employed. Finally, the impact of the reactions {sup 25}Mg({alpha},n){sup 28}Si, {sup 26}Mg({alpha},n){sup 29}Si, {sup 18}O({alpha},n){sup 21}Ne on stellar nucleosynthesis is investigated by means of network calculations. (orig.)

  15. Increased vascular sympathetic modulation in mice with Mas receptor deficiency.

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200-250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg(2)), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg(2)). The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1-7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1-7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. © The Author(s) 2016.

  16. New aspects on URu2Si2 and CeTIn5 (T = Rh, Ir, Co) observed by high pressure NMR and NQR

    Indian Academy of Sciences (India)

    T Kohara

    2002-05-01

    NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si NMR signals arising from the antiferromagnetic (AF) region besides the previously observed 29Si NMR signals which come from the paramagnetic (PM) region in the sample. This gives definite evidence for spatially-inhomogeneous development of AF ordering below 0 of 17.5 K. The volume fraction is enhanced by applied pressure, whereas the value of internal field (∼ 91 mT) remains constant up to 8.3 kbar. In the AF region, the ordered moment is about one order of magnitude larger than 0.03 . (2) CeTIn5: The pressure and temperature () dependences of nuclear spin-lattice relaxation rate 1/1 of 115In in CeTIn5 have shown that the superconductivity (SC) occurs close to an AF instability. From the dependences of 1/1 and Knight shift below c, CeTIn5 has been found to exhibit non- wave (probable wave) SC with even parity and line nodes in the SC energy gap.

  17. Solid-state NMR structures of integral membrane proteins.

    Science.gov (United States)

    Patching, Simon G

    2015-01-01

    Solid-state NMR is unique for its ability to obtain three-dimensional structures and to measure atomic-resolution structural and dynamic information for membrane proteins in native lipid bilayers. An increasing number and complexity of integral membrane protein structures have been determined by solid-state NMR using two main methods. Oriented sample solid-state NMR uses macroscopically aligned lipid bilayers to obtain orientational restraints that define secondary structure and global fold of embedded peptides and proteins and their orientation and topology in lipid bilayers. Magic angle spinning (MAS) solid-state NMR uses unoriented rapidly spinning samples to obtain distance and torsion angle restraints that define tertiary structure and helix packing arrangements. Details of all current protein structures are described, highlighting developments in experimental strategy and other technological advancements. Some structures originate from combining solid- and solution-state NMR information and some have used solid-state NMR to refine X-ray crystal structures. Solid-state NMR has also validated the structures of proteins determined in different membrane mimetics by solution-state NMR and X-ray crystallography and is therefore complementary to other structural biology techniques. By continuing efforts in identifying membrane protein targets and developing expression, isotope labelling and sample preparation strategies, probe technology, NMR experiments, calculation and modelling methods and combination with other techniques, it should be feasible to determine the structures of many more membrane proteins of biological and biomedical importance using solid-state NMR. This will provide three-dimensional structures and atomic-resolution structural information for characterising ligand and drug interactions, dynamics and molecular mechanisms of membrane proteins under physiological lipid bilayer conditions.

  18. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  19. KINERJA USAHA TANAMAN HIAS POTONG PT PESONA DAUN MAS ASRI

    Directory of Open Access Journals (Sweden)

    Muhamad Arief Bangun Sanjaya

    2017-01-01

    Full Text Available Pesona Daun Mas Asri is a company in cut flowers  and leaves cultivation. The  achievement is shown by the performance of the company. The overall company’s performance contributes in developing the company’s vision. Balanced score card is a management tool used to observe and maintain the stability between financial indicators (financial perspective and non financial indicators (customer, business internal process, growth and learning.  The objective of the journal is to plan the performance of the company using balanced scorecard approach, analyze and calculate the vision, mission and strategy implemented by Pesona Daun Mas in it business activity..  The result for every strategic target shows that the performance of Pesona Daun Mas is excellent with the achieved score of 78,04%.  However the target for the selling growth level and marketing activities are classified as average which means that it still needs to be developed.   Keywords:  balanced scorecard, performance evaluation, KPI performance index, ornamental plants cutAbstrakPesona Daun Mas Asri merupakan perusahaan yang bergerak dalam bidang budi daya bunga potong dan daun potong. Pencapaian dalam menjalankan sebuah perusahaan dapat dilihat dari kinerja perusahaan tersebut.Kinerja perusahaan Pesona Daun Mas Asri secara keseluruhan dapat berkontribusi untuk mengembangkan perusahaan dalam mencapai visi. Balanced scorecard adalah salah satu alat manajemen yang dapat melihat dan menjaga keseimbangan antara indikator keuangan (perspektif keuangan dan indikator non-keuangan (pelanggan, proses bisnisinternal, pertumbuhan dan pembelajaran. Tujuan dari jurnal ini adalah untuk merancang pengukuran kinerja perusahaan dengan pendekatan Balanced scorecard. Penelitian ini juga bertujuan menganalisis dan mengukur pelaksanaan visi, misi dan strategi yang dijalankan oleh Pesona Daun Mas Asri dalam kegiatan bisnisnya. Selain itu, memberikan saran dan rekomendasi, serta merumuskan implikasi

  20. O sentido argumentativo do articulador mas no discurso oral

    OpenAIRE

    Nesello, Marcela Cristiane

    2008-01-01

    Esta pesquisa tem por objetivo estudar o sentido do articulador mas no discurso oral pela Teoria da Argumentação na Língua de Oswald Ducrot e colaboradores. Temos o propósito de identificar e analisar os sentidos que o articulador mas assume no discurso oral, bem como suas diferentes funções, por isso trata-se de uma pesquisa qualitativa. Também é objetivo desta pesquisa identificar os encadeamentos precedentes e subseqüentes ao articulador. Para esses fins, apresentamos estudos sobre o artic...

  1. NMR at 900 MHz

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ An important factor in the development of solutionstate NMR has always been th e ability to produce stable and homogeneous magnetic fields. As higher and higher field strengths are reached the pressure is growing on manufacturers to produce NMR systems with greatly improved spectral resolution and signal to noise ratio. The introduction of the Varian 900 MHz INOVA system in August 2000 featuring Oxford Instruments 21.1 T magnet represents the latest pioneering development in NMR technology.

  2. Authenticity study of Phyllanthus species by NMR and FT-IR techniques coupled with chemometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maiara S.; Pereira-Filho, Edenir R.; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Dept. de Quimica; Boffo, Elisangela F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica; Figueira, Glyn M., E-mail: maiarassantos@yahoo.com.br [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Centro Pluridisciplinar de Pesquisas Quimicas, Biologicas e Agricolas

    2012-07-01

    The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as 'quebra-pedras' in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, {sup 1}H HR-MAS NMR and {sup 1}H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques. (author)

  3. Authenticity study of Phyllanthus species by NMR and FT-IR Techniques coupled with chemometric methods

    Directory of Open Access Journals (Sweden)

    Maiara S. Santos

    2012-01-01

    Full Text Available The importance of medicinal plants and their use in industrial applications is increasing worldwide, especially in Brazil. Phyllanthus species, popularly known as "quebra-pedras" in Brazil, are used in folk medicine for treating urinary infections and renal calculus. This paper reports an authenticity study, based on herbal drugs from Phyllanthus species, involving commercial and authentic samples using spectroscopic techniques: FT-IR, ¹H HR-MAS NMR and ¹H NMR in solution, combined with chemometric analysis. The spectroscopic techniques evaluated, coupled with chemometric methods, have great potential in the investigation of complex matrices. Furthermore, several metabolites were identified by the NMR techniques.

  4. A Solid State NMR Investigation of Recent Marine Siliceous Sponge Spicules

    Directory of Open Access Journals (Sweden)

    Sylvie Masse

    2016-03-01

    Full Text Available The composition of four recent siliceous marine sponge spicules was studied and compared. In particular, multinuclear (29Si, 13C, 31P solid state nuclear magnetic resonance (NMR allowed the characterization of both the mineral and organic constituents in a non-destructive manner. The silica network condensation was similar for all samples. The organic matter showed a similar pattern but varied in abundance as a function of the sponge group (Hexactinellida or Demospongiae and sampling conditions (living or dead organisms. This indicates that the striking morphological differences observed at the macroscale for the various samples do not lead to significant fingerprints in the spectroscopic signatures of the mineral and organic constituents.

  5. Synthesis, characterization and oxide conduction in Ba doped apatite-type silicates Ca{sub 2}La{sub 6}Bi{sub 2}(SiO{sub 4}){sub 6}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abbassi, Mohamed [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia); Ternane, Riadh, E-mail: rternane@yahoo.fr [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia); Sobrados, Isabel [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciónes Científicas (CSIC), Cantoblanco, 28049 Madrid (Spain); Madani, Adel [Laboratoire de Physique des Matériaux, Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia); Trabelsi-Ayadi, Malika [Laboratoire d' Application de la Chimie aux Ressources et Substances Naturelles et à l' Environnement (LACReSNE), Université de Carthage, Faculté des Sciences de Bizerte, 7021 Zarzouna, Bizerte (Tunisia); Sanz, Jesus [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciónes Científicas (CSIC), Cantoblanco, 28049 Madrid (Spain)

    2014-09-15

    The apatite-type compounds Ca{sub 2−x}Ba{sub x}La{sub 6}Bi{sub 2}(SiO{sub 4}){sub 6}O{sub 2} (0 ≤ x ≤ 2) have been prepared by high temperature solid-state reaction technique. Samples have been investigated by powder X-ray diffraction (XRD), infrared absorption spectroscopy (IR), Raman scattering spectroscopy (Raman) and {sup 29}Si MAS-NMR spectroscopy. IR, Raman and NMR techniques have been used to demonstrate the presence of isolated SiO{sub 4} groups and to investigate the cation distribution around the silicate tetrahedra. The analysis of {sup 29}Si MAS-NMR spectra indicates that Ca and Ba distribution becomes disordered at intermediate compositions. An impedance analysis has been used to analyze the electrical behavior of samples as a function of frequency at different temperatures. Evidences of temperature-dependent electrical relaxation phenomena have been observed. - Highlights: • Preparation of silicate oxyapatites displaying high oxygen mobility at 600 °C. • Cation disorder deduced from X-ray data (Vegard's law) and {sup 29}Si MAS-NMR spectroscopy. • Local structural features deduced by FTIR, Raman and {sup 29}Si MAS-NMR spectroscopies. • Influence of cation disorder on oxygen conductivity of apatites. • Presence of correlation effects on oxygen motions (Jonscher dielectric response)

  6. The evolution of the MasAgro hubs

    NARCIS (Netherlands)

    Camacho-Villa, Tania Carolina; Almekinders, Conny; Hellin, Jon; Martinez-Cruz, Tania Eulalia; Rendon-Medel, Roberto; Guevara-Hernández, Francisco; Beuchelt, Tina D.; Govaerts, Bram

    2016-01-01

    Purpose: Little is known about effective ways to operationalize agricultural innovation processes. We use the MasAgro program in Mexico (which aims to increase maize and wheat productivity, profitability and sustainability), and the experiences of middle level ‘hub managers’, to understand how innov

  7. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking...

  8. The evolution of the MasAgro hubs

    NARCIS (Netherlands)

    Camacho-Villa, Tania Carolina; Almekinders, Conny; Hellin, Jon; Martinez-Cruz, Tania Eulalia; Rendon-Medel, Roberto; Guevara-Hernández, Francisco; Beuchelt, Tina D.; Govaerts, Bram

    2016-01-01

    Purpose: Little is known about effective ways to operationalize agricultural innovation processes. We use the MasAgro program in Mexico (which aims to increase maize and wheat productivity, profitability and sustainability), and the experiences of middle level ‘hub managers’, to understand how

  9. A Vision in Jeopardy: Royal Navy Maritime Autonomous Systems (MAS)

    Science.gov (United States)

    2017-03-31

    article in The Economist, which observed that to break from the structures of Augustine’s 16th Law and unaffordable cost trends, defense needed a...52 Bibliography ...developed, not by the RN, but by the industrial and scientific research communities. Hoping to encourage the RN to invest in unmanned and MAS

  10. In Vivo Detection of the Cyclic Osmoregulated Periplasmic Glucan of Ralstonia solanacearum by High-Resolution Magic Angle Spinning NMR

    Science.gov (United States)

    Wieruszeski, J.-M.; Bohin, A.; Bohin, J.-P.; Lippens, G.

    2001-07-01

    We investigate the mobility of the osmoregulated periplasmic glucans of Ralstonia solanacearum in the bacterial periplasm through the use of high-resolution (HR) NMR spectroscopy under static and magic angle spinning (MAS) conditions. Because the nature of periplasm is far from an isotropic aqueous solution, the molecules could be freely diffusing or rather associated to a periplasmic protein, a membrane protein, a lipid, or the peptidoglycan. HR MAS NMR spectroscopy leads to more reproducible results and allows the in vivo detection and characterization of the complex molecule.

  11. Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy

    Science.gov (United States)

    Ferro, Monica; Pastori, Nadia; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco

    2017-01-01

    Two different formulations of cyclodextrin nanosponges (CDNS), obtained by polycondensation of β-cyclodextrin with ethylenediaminetetraacetic acid dianhydride (EDTAn), were treated with aqueous solutions of ibuprofen sodium salt (IbuNa) affording hydrogels that, after lyophilisation, gave two solid CDNS-drug formulations. 1H fast MAS NMR and 13C CP-MAS NMR spectra showed that IbuNa was converted in situ into its acidic and dimeric form (IbuH) after freeze-drying. 13C CP-MAS NMR spectra also indicated that the structure of the nanosponge did not undergo changes upon drug loading compared to the unloaded system. However, the 13C NMR spectra collected under variable contact time cross-polarization (VCT-CP) conditions showed that the polymeric scaffold CDNS changed significantly its dynamic regime on passing from the empty CDNS to the drug-loaded CDNS, thus showing that the drug encapsulation can be seen as the formation of a real supramolecular aggregate rather than a conglomerate of two solid components. Finally, the structural features obtained from the different solid-state NMR approaches reported matched the information from powder X-ray diffraction profiles. PMID:28228859

  12. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E M; Bud& #x27; ko, S L

    2011-04-28

    Bulk magnetization and ¹H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe₂O₃ nano- or micro-particles have been studied. In LAP+Fe₂O₃, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe₂O₃, due to the higher proton concentration in polystyrene and stronger proton–proton dipolar coupling, an additional broadening is observed, i.e. ¹H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton–magnetic particles and proton–proton dipolar couplings. An increase of the volume magnetization by ~1 emu/cm³ affects the ¹H NMR signal width in a way that is similar to an increase of the proton concentration by ~2×10²²/cm³. ¹H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  13. Bulk magnetization and 1H NMR spectra of magnetically heterogeneous model systems

    Science.gov (United States)

    Levin, E. M.; Bud'ko, S. L.

    2011-10-01

    Bulk magnetization and 1H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe2O3 nano- or micro-particles have been studied. In LAP+Fe2O3, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe2O3, due to the higher proton concentration in polystyrene and stronger proton-proton dipolar coupling, an additional broadening is observed, i.e. 1H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton-magnetic particles and proton-proton dipolar couplings. An increase of the volume magnetization by ∼1 emu/cm3 affects the 1H NMR signal width in a way that is similar to an increase of the proton concentration by ∼2×1022/cm3. 1H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems.

  14. [Hepatic manifestation of a macrophage activation syndrome (MAS)].

    Science.gov (United States)

    Nagel, Michael; Schwarting, Andreas; Straub, Beate K; Galle, Peter R; Zimmermann, Tim

    2017-05-01

    Background Elevated liver values are the most common pathological laboratory result in Germany. Frequent findings, especially in younger patients, are nutritive- or medicamentous- toxic reasons, viral or autoimmune hepatitis. A macrophage activation syndrome (MAS) may manifest like a viral infectious disease with fever, hepatosplenomegaly and pancytopenia and is associated with a high mortality. It is based on an enhanced activation of macrophages with increased cytokine release, leading to organ damage and multi-organ failure. In addition to genetic causes, MAS is commonly associated with infections and rheumatic diseases. We report the case of a 26-year-old female patient suffering from MAS as a rare cause of elevated liver enzymes. Methods Patient characteristics, laboratory values, liver histology, bone marrow and radiological imaging were documented and analyzed. Case Report After an ordinary upper airway infection with bronchitis, a rheumatic arthritis appeared and was treated with leflunomide und methotrexate. In the further course of the disease, the patient developed an acute hepatitis with fever, pancytopenia and massive hyperferritinemia. Immunohistochemistry of the liver biopsy revealed hemophagocytosis and activation of CD68-positive macrophages. In the radiological and histological diagnostics of the liver and bone marrow, an MAS was diagnosed as underlying disease of the acute hepatitis. Under therapy with prednisolone, the fever disappeared and transaminases and ferritin rapidly normalized. Conclusion Aside from the frequent causes of elevated liver values in younger patients, such as nutritive toxic, drug induced liver injury, viral or autoimmune hepatitis, especially in case of massive hyperferritinemia, a MAS should be considered as a rare cause of acute liver disease. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Solid-state NMR studies of bacteriorhodopsin and the purple membrane

    CERN Document Server

    Mason, A J

    2001-01-01

    proteins. This technique may prove particularly useful when studying large proteins that are difficult to orient where the MAS lineshapes will remain relatively unaffected in comparison with current static NMR methods. Finally the MAOSS method was extended to the study of the lipid components of the purple membrane and the feasibility of determining structural constraints from phospholipid headgroups was assessed. The potential of using sup 3 sup 1 P NMR to observe qualitative protein-lipid interactions in both the purple membrane and reconstituted membranes containing bovine rhodopsin was also demonstrated. Following the demonstration of a new MAS NMR method for resolving orientational constraints in uni-axially oriented biological membranes (Glaubitz and Watts, 1998), experiments were performed to realise the potential of the new method on large, oriented membrane proteins. Using bacteriorhodopsin in the purple membrane as a paradigm for large membrane proteins, the protein was specifically labelled with de...

  16. NMR logging apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  17. NMR logging apparatus

    Science.gov (United States)

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  18. NMR studies of metalloproteins.

    Science.gov (United States)

    Li, Hongyan; Sun, Hongzhe

    2012-01-01

    Metalloproteins represent a large share of the proteomes, with the intrinsic metal ions providing catalytic, regulatory, and structural roles critical to protein functions. Structural characterization of metalloproteins and identification of metal coordination features including numbers and types of ligands and metal-ligand geometry, and mapping the structural and dynamic changes upon metal binding are significant for understanding biological functions of metalloproteins. NMR spectroscopy has long been used as an invaluable tool for structure and dynamic studies of macromolecules. Here we focus on the application of NMR spectroscopy in characterization of metalloproteins, including structural studies and identification of metal coordination spheres by hetero-/homo-nuclear metal NMR spectroscopy. Paramagnetic NMR as well as (13)C directly detected protonless NMR spectroscopy will also be addressed for application to paramagnetic metalloproteins. Moreover, these techniques offer great potential for studies of other non-metal binding macromolecules.

  19. Bulk magnetization and {sup 1}H NMR spectra of magnetically heterogeneous model systems

    Energy Technology Data Exchange (ETDEWEB)

    Levin, E.M., E-mail: levin@iastate.edu [Division of Materials Sciences and Engineering, Ames Laboratory of US DOE (United States); Department of Physics and Astronomy, Iowa State University, Iowa, IA 50011-3020 (United States); Bud' ko, S.L. [Division of Materials Sciences and Engineering, Ames Laboratory of US DOE (United States); Department of Physics and Astronomy, Iowa State University, Iowa, IA 50011-3020 (United States)

    2011-10-15

    Bulk magnetization and {sup 1}H static and magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of two magnetically heterogeneous model systems based on laponite (LAP) layered silicate or polystyrene (PS) with low and high proton concentration, respectively, and ferrimagnetic Fe{sub 2}O{sub 3} nano- or micro-particles have been studied. In LAP+Fe{sub 2}O{sub 3}, a major contribution to the NMR signal broadening is due to the dipolar coupling between the magnetic moments of protons and magnetic particles. In PS+Fe{sub 2}O{sub 3}, due to the higher proton concentration in polystyrene and stronger proton-proton dipolar coupling, an additional broadening is observed, i.e. {sup 1}H MAS NMR spectra of magnetically heterogeneous systems are sensitive to both proton-magnetic particles and proton-proton dipolar couplings. An increase of the volume magnetization by {approx}1 emu/cm{sup 3} affects the {sup 1}H NMR signal width in a way that is similar to an increase of the proton concentration by {approx}2x10{sup 22}/cm{sup 3}. {sup 1}H MAS NMR spectra, along with bulk magnetization measurements, allow the accurate determination of the hydrogen concentration in magnetically heterogeneous systems. - Highlights: > {sup 1}H NMR and magnetization allow study of dipolar interactions in magnetically heterogeneous systems. > Both the proton-proton and proton-magnetic particle dipolar interactions affect {sup 1}H NMR spectra. > {sup 1}H NMR and magnetization can be used for the accurate determination of the hydrogen concentration.

  20. UC Merced NMR Instrumentation Acquisition

    Science.gov (United States)

    2015-06-18

    UC Merced NMR Instrumentation Acquisition For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500 MHz NMR ...UC Merced NMR Instrumentation Acquisition Report Title For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500...MHz NMR have been delivered, installed, and incorporated into research and two lab courses. While no results from these instruments have been

  1. Hexameric Capsules Studied by Magic Angle Spinning Solid-State NMR Spectroscopy: Identifying Solvent Molecules in Pyrogallol[4]arene Capsules.

    Science.gov (United States)

    Avram, Liat; Goldbourt, Amir; Cohen, Yoram

    2016-01-18

    Powders of pyrogallol[4]arene hexamers were produced by evaporation from organic solvents and were studied, for the first time, by magic angle spinning solid-state NMR (MAS ssNMR). Evaporation selectively removed non-encapsulated solvent molecules leaving stable hexameric capsules encapsulating solvent molecules. After exposure of the powder to solvent vapors, (1)H/(13)C heteronuclear correlation MAS ssNMR experiments were used to assign the signals of the external and encapsulated solvent molecules. The formed capsules were stable for months and the process of solvent encapsulation was reversible. According to the ssNMR experiments, the encapsulated solvent molecules occupy different sites and those sites differ in their mobility. The presented approach paves the way for studying guest exchange, guest affinity, and gas storage in hexamers of this type in the solid state.

  2. An explanation for the high stability of polycarboxythiophenes in photovoltaic devices—A solid-state NMR dipolar recoupling study

    DEFF Research Database (Denmark)

    Bierring, M.; Nielsen, J.S.; Siu, Ana

    2008-01-01

    observed in photovoltaic devices employing polythiophene substituted with carboxylic-acid moieties under oxygen free conditions. H-1 and C-13 solid-state NMR, IR, and ESR spectroscopy of unmodified and isotopically labeled polythiophenes were studied. Distances between the isotopically labeled carboxylic...... acid carbon atoms were measured by C-13 solid-state magic-angle-spinning (MAS) NMR using symmetry-based double-quantum (2Q) dipolar recoupling. This revealed the presence of C-13-C-13 distances of 3.85 angstrom, which correspond to the C-C distance in hydrogen-bonded carboxylic acid dimers. In spite...... of the presence of carboxylic groups in the polymer as demonstrated by C-13 CP/MAS NMR and IR spectroscopy, the absence of carboxylic protons in solid state H-1 NMR spectra indicate that they are mobile. We link the extraordinary stability of this system to the rigid nature, cross-linking through a hydrogen...

  3. Solid state NMR study calcium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Miquel, J.L.; Facchini, L.; Legrand, A.P. (Laboratoire de Physique Quantique, Paris (France). CNRS, URA421, ESPCI); Rey, C. (CNRS, Toulouse (France). ENSC. Laboratoire de Physico-chimie des Solides); Lemaitre, J. (EPF Lausanne (France). Laboratoire de Technologie des Poudres)

    1990-04-01

    High-resolution {sup 31}P and {sup 1}H NMR spectra at 40 and 121 MHz {sup 31}P and 300 MHz {sup 1}H of synthetic and biological samples of calcium phosphates have been obtained by magic angle spinning (MAS) at spinning speeds up to 6.5 kHz, and high power proton decoupling. The samples include crystalline hydroxyapatite, a deficient hydroxyapatite characterized by a Ca/P atomic ratio of 1.5, a poorly crystallized hydroxyapatite, monetite, brushite, octacalcium phosphate, {beta}-tricalcium phosphate and rabbit femoral bone. The interactions between nuclei in unlike structures and the mobility of acid protons are discussed. (author). 11 refs.; 2 figs.; 1 tab.

  4. Proton-Based Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy.

    Science.gov (United States)

    Zhang, Rongchun; Mroue, Kamal H; Ramamoorthy, Ayyalusamy

    2017-04-18

    Protons are vastly abundant in a wide range of exciting macromolecules and thus can be a powerful probe to investigate the structure and dynamics at atomic resolution using solid-state NMR (ssNMR) spectroscopy. Unfortunately, the high signal sensitivity, afforded by the high natural-abundance and high gyromagnetic ratio of protons, is greatly compromised by severe line broadening due to the very strong (1)H-(1)H dipolar couplings. As a result, protons are rarely used, in spite of the desperate need for enhancing the sensitivity of ssNMR to study a variety of systems that are not amenable for high resolution investigation using other techniques including X-ray crystallography, cryo-electron microscopy, and solution NMR spectroscopy. Thanks to the remarkable improvement in proton spectral resolution afforded by the significant advances in magic-angle-spinning (MAS) probe technology, (1)H ssNMR spectroscopy has recently attracted considerable attention in the structural and dynamics studies of various molecular systems. However, it still remains a challenge to obtain narrow (1)H spectral lines, especially from proteins, without resorting to deuteration. In this Account, we review recent proton-based ssNMR strategies that have been developed in our laboratory to further improve proton spectral resolution without resorting to chemical deuteration for the purposes of gaining atomistic-level insights into molecular structures of various crystalline solid systems, using small molecules and peptides as illustrative examples. The proton spectral resolution enhancement afforded by the ultrafast MAS frequencies up to 120 kHz is initially discussed, followed by a description of an ensemble of multidimensional NMR pulse sequences, all based on proton detection, that have been developed to obtain in-depth information from dipolar couplings and chemical shift anisotropy (CSA). Simple single channel multidimensional proton NMR experiments could be performed to probe the proximity

  5. Stabilization of the angiotensin-(1-7) receptor Mas through interaction with PSD95.

    Science.gov (United States)

    Bian, Weihua; Sun, Licui; Yang, Longyan; Li, Ji-Feng; Hu, Jia; Zheng, Shuai; Guo, Ruihan; Feng, Duiping; Ma, Qian; Shi, Xiaocui; Xiong, Ying; Yang, Xiaomei; Song, Ran; Xu, Jianguo; Wang, Songlin; He, Junqi

    2013-08-01

    The functions and signalling mechanisms of the Ang-(1-7) [angiotensin-(1-7)] receptor Mas have been studied extensively. However, less attention has been paid to the intracellular regulation of Mas protein. In the present study, PSD95 (postsynaptic density 95), a novel binding protein of Mas receptor, was identified, and their association was characterized further. Mas specifically interacts with PDZ1-2, but not the PDZ3, domain of PSD95 via Mas-CT (Mas C-terminus), and the last four amino acids [ETVV (Glu-Thr-Val-Val)] of Mas-CT were determined to be essential for this interaction, as shown by GST pull-down, co-immunoprecipitation and confocal co-localization experiments. Gain-of-function and loss-of-function studies indicated that PSD95 enhanced Mas protein expression by increasing the stabilization of the receptor. Mas degradation was robustly inhibited by the proteasome inhibitor MG132 in time- and dose-dependent manners, and the expression of PSD95 impaired Mas ubiquitination, indicating that the PSD95-Mas association inhibits Mas receptor degradation via the ubiquitin-proteasome proteolytic pathway. These findings reveal a novel mechanism of Mas receptor regulation by which its expression is modulated at the post-translational level by ubiquitination, and clarify the role of PSD95, which binds directly to Mas, blocking the ubiquitination and subsequent degradation of the receptor via the ubiquitin-proteasome proteolytic pathway.

  6. ERP sistēmas ieviešana

    OpenAIRE

    Proskurins, Aleksandrs

    2008-01-01

    Šajā darbā tika apskatīta informācijas sistēmu klasifikācija, uzņēmuma resursu plānošanas sistēmas (ERP) definīcija un tās vieta IS klasifikācijā. Tika apskatīti ERP sistēmu ieviešanas teorētiskie aspekti, izstrādes un pielāgošanas specifika, kā arī tika izanalizēti vairāki ERP sistēmas ieviešanas projekti Latvijas uzņēmumos.

  7. Cross ambiguity functions on the MasPar MP-2

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, D.A.; Pryor, D.V. [Superconducting Research Center, Bowie, MD (United States); Frock, C.K. [and others

    1995-12-01

    In a signal processing environment, cross ambiguity functions are often used to detect when one signal is a time and/or frequency shift of another. They consist of multiple cross-correlations, which can be computed efficiently using complex valued FFTs. This paper discusses the implementation of cross ambiguity functions on the MasPar MP-2, a SIMD processor array. Two different implementations are developed. The first computes each cross ambiguity function serially, using FFT code that parallelizes across the complete set of processors. The second uses the MasPar IORAM to realign the data so that the cross ambiguity functions can be computed in parallel. In this case, multiple FFTs are executed in parallel on subsets of the processors, which lowers the overall amount of communication required.

  8. ERP sistēmas ieviešana

    OpenAIRE

    Proskurins, Aleksandrs

    2008-01-01

    Šajā darbā tika apskatīta informācijas sistēmu klasifikācija, uzņēmuma resursu plānošanas sistēmas (ERP) definīcija un tās vieta IS klasifikācijā. Tika apskatīti ERP sistēmu ieviešanas teorētiskie aspekti, izstrādes un pielāgošanas specifika, kā arī tika izanalizēti vairāki ERP sistēmas ieviešanas projekti Latvijas uzņēmumos.

  9. Gel synthesis of an albite (NaAlSi[sub 3]O[sub 8]) glass: An NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schmelz, C.E.; Stebbins, J.F. (Stanford Univ., CA (United States))

    1993-08-01

    The authors have extended the range and complexity of glasses formed by the combination of metal-alkoxides by synthesizing a clear, homogeneous gel of albite (NaAlSi[sub 3]O[sub 8]) composition and heat-treating it to make a densified glass. Systematic changes in [sup 29]Si, [sup 27]Al, and [sup 23]Na NMR spectra of gels with heat treatment are similar to differences in published spectra of hydrated albite glasses with varying water contents. The [sup 29]Si spectra showed one peak; if Q[sup 3](OH) species are present in the samples, it is not obvious in the spectra. Analysis of the rate of spin transfer in CPMAS experiments suggests a Si-H distance [approximately]15% shorter than that seen in Q[sup 3](OH) species in silica gel. Both the [sup 27]Al and [sup 23]Na peaks show an increase in quadrupolar broadening with heat treatment of the gel. Two peaks are present in the [sup 23]Na spectra for gels heat-treated to 300 and 500[degrees]C, possibly due to sites with different sodium coordination. It is proposed that the differences in spectra can be explained by the differences in volatile content of the samples (including water as either H[sub 2]O or OH[sup [minus

  10. Preparation and Characterization of Hybrid Luminescence Mesoporous MCM-48 Doped with Eu( Ⅲ ) Complex

    Institute of Scientific and Technical Information of China (English)

    Meng Qingguo; Li Huanrong; Peng Chunyun; Zhang Hongjie; Boutinaud P; Franville A C; Mahiou R

    2004-01-01

    The preparation of hybrid mesoporous MCM-48 grafted by vinyl group via post-grafting process was reported and studied by X-ray diffraction, BET and 29Si solid MAS NMR.An organic β-diketonate Europium complex the corresponding luminescence property was characterized.

  11. Phosphatation of zeolite H-ZSM-5 : A combined microscopy and spectroscopy study

    NARCIS (Netherlands)

    Van Der Bij, Hendrik E.; Aramburo, Luis R.; Arstad, Bjørnar; Dynes, James J.; Wang, Jian; Weckhuysen, Bert M.

    2014-01-01

    A variety of phosphated zeolite H-ZSM-5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse 27Al, 29Si, 31P, 1H-31P cross polarization (CP), 27Al-31P CP, and 27Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy, sca

  12. O-17 NMR studies of some silicate crystals and glasses

    CERN Document Server

    Yildirim, E K

    2000-01-01

    structure. Therefore some of the Sn has to be in three coordinated to oxygen for charge balancing. The sup 1 sup 7 O MAS NMR spectra of a partially crystallised sample showed three distinct sites which are assigned as Sn-O-Sn, Si-O-Sn, and Si-O-Si on the basis of their chemical shift. The C sub Q values obtained from the simulations of these peaks supports this assignment. The sup 2 sup 9 Si MAS NMR of the same sample showed two crystalline and a glassy peaks which are fitted to two crystalline and two glassy sites. The possible composition of this sample was calculated and found to be SiSn sub 8 O sub 1 sub 0. Crystalline and glassy silicates were investigated by means of sup 1 sup 7 O NMR. The dependence of the measured efg on the Si-O-AI bond angle was investigated in some crystalline aluminosilicate sodalites and kalsilite. The results show that C sub Q increases with increasing bond angle while eta decreases with increasing bond angle and they both follow a similar function to that found for the Si-O-Si ...

  13. IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Kwak, Ja Hun; Felmy, Andrew R.; Hu, Jian Z.

    2011-03-27

    Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.

  14. Benford distributions in NMR

    CERN Document Server

    Bhole, Gaurav; Mahesh, T S

    2014-01-01

    Benford's Law is an empirical law which predicts the frequency of significant digits in databases corresponding to various phenomena, natural or artificial. Although counter intuitive at the first sight, it predicts a higher occurrence of digit 1, and decreasing occurrences to other larger digits. Here we report the Benford analysis of various NMR databases and draw several interesting inferences. We observe that, in general, NMR signals follow Benford distribution in time-domain as well as in frequency domain. Our survey included NMR signals of various nuclear species in a wide variety of molecules in different phases, namely liquid, liquid-crystalline, and solid. We also studied the dependence of Benford distribution on NMR parameters such as signal to noise ratio, number of scans, pulse angles, and apodization. In this process we also find that, under certain circumstances, the Benford analysis can distinguish a genuine spectrum from a visually identical simulated spectrum. Further we find that chemical-sh...

  15. Influence of the spinning rate in the HR-MAS pattern of mobile lipids in C6 glioma cells and in artificial oil bodies.

    Science.gov (United States)

    Martín-Sitjar, Juana; Delgado-Goñi, Teresa; Cabañas, Miquel E; Tzen, Jason; Arús, Carles

    2012-12-01

    To evaluate how spinning rate affects mobile lipid (ML) resonances visibility in HR-MAS spectra of C6 glioma cells and artificial oil bodies (AOB), as models of cytosolic lipid droplets. Using C6 cells and AOB of two different sizes, 780 ± 580 and 240 ± 293 nm, as models, we acquired HR-MAS pulse and acquire spectra at different spinning rates between 500 and 15,000 Hz, all at 37 °C. Sample spinning at 15,000 Hz increased by 2.3 and 4.6-fold with respect to 500 Hz spinning the area of resonances corresponding to ML at 0.88 and 1.28 ppm, respectively, for log phase C6 cells. Furthermore, postconfluent C6 cells displayed an increase of 2.5-fold at 0.88 ppm and 4.2-fold at 1.28 ppm. These changes were reversible upon low speed spinning. AOBs did show much lower ML area increases (1.4-1.5-fold) upon high-speed HR-MAS. ML can be reversibly mobilized in C6 glioma cells by high-speed HR-MAS, partially unveiling the NMR "invisible" ML pool. A small part of the ML pool also shows reduced visibility in freely tumbling AOBs.

  16. PERBAIKAN MUTU GENETIK IKAN MAS RAJADANU MELALUI SELEKSI

    Directory of Open Access Journals (Sweden)

    Deni Radona

    2016-11-01

    Full Text Available Ikan mas rajadanu mempunyai karakter cepat tumbuh dan tahan penyakit. Selective breeding merupakan salah satu upaya dalam peningkatan mutu induk dan benih. Penelitian ini bertujuan untuk melihat respons pertumbuhan dan nilai heritabilitas pada ikan mas rajadanu (F-3 yang berpotensi tumbuh lebih cepat dibandingkan dengan generasi sebelumnya (F-2. Pembentukan ikan mas rajadanu F-3 dilakukan dengan metode hierarki (satu jantan membuahi empat betina. Pengujian respons seleksi dilakukan terhadap benih hasil pemijahan induk ikan mas rajadanu F-2 yang terseleksi. Terbentuk sebanyak 25 famili dan dipelihara secara terpisah selama 160 hari pada kolam beton ukuran 1,5 m x 1 m dengan ketinggian air 60 cm. Kolam digunakan sebanyak 25 buah. Respons seleksi dihitung dengan melihat nilai rata-rata pertumbuhan F-3 dibandingkan dengan F-2. Hasil penelitian menunjukan performa ikan mas rajadanu F-3 memiliki nilai respons seleksi (14,20 g; nilai heritabilitas (0,60; pertambahan bobot (41,63 ± 10,51 g; dan pertambahan panjang (9,86 ± 1,43 cm. Rajadanu carp strain have character of fast growing and disease resistant. Selective breeding is one of an attempts can be appllied to improve the broodstock and seed quality genetically. This research was aims to see response of growth and heritability value of F-3 on carp rajadanu that potentially grow faster compared with previous generation (F-2. The F-3 carp rajadanu was designated with hierarchy method (one males fertilize four female. The F-3 was derived from F-2 and formed 25 families. Those families were maintained for 160 days on pond with size of 1.5 m x 1 m and water depth of 60 cm. The response selection was calculated by choosing the best individuals of each based on ADG (averange daily growth. The research result show that the values of response selection was 14.20 g, heritability value of 0.60, weight, and length gain were 41.63 g and 9.86 cm, respectively.

  17. The MicroMAS CubeSat Mission

    Science.gov (United States)

    Cahoy, K.; Blackwell, W. J.; Allen, G.; Bury, M.; Efromson, R.; Galbraith, C.; Hancock, T.; Leslie, V.; Osaretin, I.; Retherford, L.; Scarito, M.; Shields, M.; Toher, D.; Wight, K.; Miller, D.; Marinan, A.; Paek, S.; Peters, E.; Schmidt, F. H.; Alvisio, B.; Wise, E.; Masterson, R.; Franzim Miranda, D.; Crail, C.; Kingsbury, R.; Souffrant, A.; Orrego, L.; Eslinger, G.; Nicholas, A.; Pong, C.

    2012-12-01

    The recently published Midterm Assessment of NASA's Implementation of the Decadal Survey finds that, "The nation's Earth observing system is beginning a rapid decline in capability as long-running missions end and key new missions are delayed, lost, or canceled. The projected loss of observing capability could have significant adverse consequences for science and society." In this presentation, we explore low-cost, mission-flexible, and rapidly deployable spaceborne sensors that can meet stringent performance requirements pervading the NASA Earth Science measurement programs, including especially the recommended NRC Decadal Survey missions. New technologies have enabled a novel approach toward this science observational goal, and in this paper we describe recent technology develop efforts to address the challenges above through the use of CubeSat radiometers. The Micro-sized Microwave Atmospheric Satellite (MicroMAS) is a 3U cubesat (30x10x10 cm, ~4kg) hosting a passive microwave spectrometer operating near the 118.75-GHz oxygen absorption line. The focus of the first MicroMAS mission (hereafter, MicroMAS-1) is to observe convective thunderstorms, tropical cyclones, and hurricanes from a near-equatorial orbit at approximately 500-km altitude. A MicroMAS flight unit is currently being developed in anticipation of a 2014 launch to be provided by NASA. A parabolic reflector is mechanically rotated as the spacecraft orbits the earth, thus directing a cross-track scanned beam with FWHM beamwidth of 2.4-degrees, yielding an approximately 25-km diameter footprint from a nominal altitude of 500 km. Radiometric calibration is carried out using observations of cold space, the earth's limb, and an internal noise diode that is weakly coupled through the RF front-end electronics. A key technology feature is the development of an ultra-compact intermediate frequency processor module for channelization, detection, and A-to-D conversion. The antenna system and RF front

  18. The abundance of 28Si32S, 29Si32S, 28Si34S, and 30Si32S in the inner layers of the envelope of IRC+10216

    Science.gov (United States)

    Fonfría, J. P.; Cernicharo, J.; Richter, M. J.; Fernández-López, M.; Velilla Prieto, L.; Lacy, J. H.

    2015-10-01

    We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720-790 cm-1. These lines belong to bands v = 1-0, 2-1, 3-2, 4-3, and 5-4, and involve rotational levels with Jlow ≲ 90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star ≲35R⋆ (≃0.7 arcsec). The fits are compatible with an expansion velocity of 1 + 2.5(r/R⋆ - 1) km s-1 between 1 and 5R⋆, 11 km s-1 between 5 and 20R⋆, and 14.5 km s-1 outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9 × 10-6 between the stellar photosphere and 5R⋆, decreasing linearly down to 1.6 × 10-6 at 20R⋆ and to 1.3 × 10-6 at 50R⋆. 28Si32S seems to be rotationally under local thermodynamic equilibrium (LTE) in the region of the envelope probed with our observations and vibrationally out of LTE in most of it. There is a red-shifted emission excess in the 28Si32S lines of band v = 1-0 that cannot be found in the lines of bands v = 2-1, 3-2, 4-3, and 5-4. This excess could be explained by an enhancement of the vibrational temperature around 20R⋆ behind the star. The derived isotopic ratios 28Si/29Si, and 32S/34S are 17 and 14, compatible with previous estimates.

  19. The abundance of 28Si32S, 29Si32S, 28Si34S, and 30Si32S in the inner layers of the envelope of IRC+10216

    Science.gov (United States)

    Fonfría, J. P.; Cernicharo, J.; Richter, M. J.; Fernández-López, M.; Prieto, L. Velilla; Lacy, J. H.

    2016-01-01

    We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720 – 790 cm−1. These lines belong to bands v = 1 – 0, 2 – 1, 3 – 2, 4–3, and 5–4, and involve rotational levels with Jlow ≲ 90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star ≲ 35R⋆(≃ 0″.7). The fits are compatible with an expansion velocity of 1+2.5(r/R⋆ −1) km s−1 between 1 and 5R⋆, 11 km s−1 between 5 and 20R⋆, and 14.5 km s−1 outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9 × 10−6 between the stellar photosphere and 5R⋆, decreasing linearly down to 1.6 × 10−6 at 20R⋆ and to 1.3 × 10−6 at 50R⋆. 28Si32S seems to be rotationally under LTE in the region of the envelope probed with our observations and vibrationally out of LTE in most of it. There is a red-shifted emission excess in the 28Si32S lines of band v = 1 – 0 that cannot be found in the lines of bands v = 2 – 1, 3 – 2, 4 – 3, and 5 – 4. This excess could be explained by an enhancement of the vibrational temperature around 20R⋆ behind the star. The derived isotopic ratios 28Si/29Si, and 32S/34S are 17 and 14, compatible with previous estimates. PMID:26997679

  20. Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure

    Directory of Open Access Journals (Sweden)

    Art J. Ragauskas

    2011-11-01

    Full Text Available In order to obtain accurate information about the ultrastructure of cellulose from native biomass by 13C cross polarization magic angle spinning (CP/MAS NMR spectroscopy the cellulose component must be isolated due to overlapping resonances from both lignin and hemicellulose. Typically, cellulose isolation has been achieved via holocellulose pulping to remove lignin followed by an acid hydrolysis procedure to remove the hemicellulose components. Using 13C CP/MAS NMR and non-linear line-fitting of the cellulose C4 region, it was observed that the standard acid hydrolysis procedure caused an apparent increase in crystallinity of ~10% or less on the cellulose isolated from Populus holocellulose. We have examined the effect of the cellulose isolation method, particularly the acid treatment time for hemicellulose removal, on cellulose ultrastructural characteristics by studying these effects on cotton, microcrystalline cellulose (MCC and holocellulose pulped Populus. 13C CP/MAS NMR of MCC indicated that holocellulose pulping and acid hydrolysis has little effect on the crystalline ultrastructural components of cellulose. Although any chemical method to isolate cellulose from native biomass will invariably alter substrate characteristics, especially those related to regions accessible to solvents, we found those changes to be minimal and consistent in samples of typical crystallinity and lignin/hemicellulose content. Based on the rate of the hemicellulose removal, as determined by HPLC-carbohydrate analysis and magnitude of cellulose ultrastructural alteration, the most suitable cellulose isolation methodology utilizes a treatment of 2.5 M HCl at 100 °C for a standard residence time between 1.5 and 4 h. However, for the most accurate crystallinity results this residence time should be determined empirically for a particular sample.

  1. MAS及其相关概念%MAS and Correlation Conceptions

    Institute of Scientific and Technical Information of China (English)

    程显毅; 董红斌

    2000-01-01

    The researching of MAS originates from distributed artificial intelligence ,because new theory framework is provided for solving some problems in complex and distributed environment ,MAS is valued increasingly by computer ,automatic control and management science.

  2. Marker-assisted-selection (MAS): A fast track to increase genetic ...

    African Journals Online (AJOL)

    MAS have been widely used for simple inherited traits than for polygenic traits, although there are few success stories in improving quantitative traits through MAS. ... Key words: DNA sequence, gene introgression, genetic maps, germplasm ...

  3. 77 FR 43084 - Multiple Award Schedule (MAS) Program Continuous Open Season-Operational Change

    Science.gov (United States)

    2012-07-23

    ... ADMINISTRATION Multiple Award Schedule (MAS) Program Continuous Open Season- Operational Change AGENCY: Federal... to assess and improve the performance of the Multiple Award Schedule (MAS) contracts operated by GSA. GSA is proposing this operational change to enhance the performance of and modernize the MAS program...

  4. 47 CFR 101.1317 - Competitive bidding procedures for mutually exclusive MAS EA applications.

    Science.gov (United States)

    2010-10-01

    ... exclusive MAS EA applications. 101.1317 Section 101.1317 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... License Requirements § 101.1317 Competitive bidding procedures for mutually exclusive MAS EA applications. Mutually exclusive initial applications for licenses in the portions of the MAS bands licensed on a...

  5. 48 CFR 538.270 - Evaluation of multiple award schedule (MAS) offers.

    Science.gov (United States)

    2010-10-01

    ... award schedule (MAS) offers. 538.270 Section 538.270 Federal Acquisition Regulations System GENERAL... and Administering Federal Supply Schedules 538.270 Evaluation of multiple award schedule (MAS) offers... negotiation objectives and determining price reasonableness, compare the terms and conditions of the MAS...

  6. What drives cross-border M&As in commercial banking?

    NARCIS (Netherlands)

    Galamhussen, Mohamed; Hennart, Jean-Francois; Pinheiro, Carlos Manuel

    2016-01-01

    Using a gravity model, we analyze the determinants of the probability that commercial banks in 89 acquiring countries and 118 target countries will undertake M&As over a 30-year period (1981–2010) and of the value of these M&As. We find that the value of cross-border M&As increases with the size of

  7. High-resolution solid-state NMR spectroscopy of protons with homonuclear dipolar decoupling schemes under magic-angle spinning.

    Science.gov (United States)

    Madhu, P K

    2009-02-01

    High-resolution NMR spectroscopy of (1)H spins in the solid state is normally rendered difficult due to the strong homonuclear (1)H-(1)H dipolar couplings. Even under very high-speed magic-angle spinning (MAS) at ca. 60-70kHz, these couplings are not completely removed. An appropriate radiofrequency pulse scheme is required to average out the homonuclear dipolar interactions in combination with MAS to get high-resolution (1)H NMR spectrum in solid state. Several schemes have been introduced in the recent past with a variety of applications also envisaged. Development of some of these schemes has been made possible with a clear understanding of the underlying spin physics based on bimodal Floquet theory. The utility of these high-resolution pulse schemes in combination with MAS has been demonstrated for spinning speeds of 10-65kHz in a range of (1)H Larmor frequencies from 300 to 800MHz.

  8. The abundance of 28Si32S, 29Si32S, 28Si34S, and 30Si32S in the inner layers of the envelope of IRC+10216

    CERN Document Server

    Fonfria, J P; Richter, M J; Fernandez-Lopez, M; Prieto, L Velilla; Lacy, J H

    2015-01-01

    We present high spectral resolution mid-IR observations of SiS towards the C-rich AGB star IRC+10216 carried out with the Texas Echelon-cross-Echelle Spectrograph mounted on the NASA Infrared Telescope Facility. We have identified 204 ro-vibrational lines of 28Si32S, 26 of 29Si32S, 20 of 28Si34S, and 15 of 30Si32S in the frequency range 720-790 cm-1. These lines belong to bands v=1-0, 2-1, 3-2, 4-3, and 5-4, and involve rotational levels with Jlow<90. About 30 per cent of these lines are unblended or weakly blended and can be partially or entirely fitted with a code developed to model the mid-IR emission of a spherically symmetric circumstellar envelope composed of expanding gas and dust. The observed lines trace the envelope at distances to the star <35R* (~0.7 arcsec). The fits are compatible with an expansion velocity of 1+2.5(r/R*-1) km/s between 1 and 5R*, 11 km/s between 5 and 20R*, and 14.5 km/s outwards. The derived abundance profile of 28Si32S with respect to H2 is 4.9e-6 between the stellar ph...

  9. Mechanistic insight into formation and changes of nanoparticles in MgF2 sols evidenced by liquid and solid state NMR.

    Science.gov (United States)

    Karg, M; Scholz, G; König, R; Kemnitz, E

    2012-02-28

    The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.

  10. Nacionalismo e indigenismo en el gobierno del MAS

    OpenAIRE

    Mayorga, Fernando; Rodríguez, Benjamín

    2010-01-01

    En los últimos años se ha modificado el mapa político de América latina con resultados electorales que indican una idea genérica de “giro a la izquierda”, imponiendo paulatinamente una taxonomía que distingue gobiernos socialdemócratas y gobiernos populistas. En Bolivia el arribo al gobierno del Movimiento al Socialismo (MAS) en enero de 2006 y la reelección presidencial de Evo Morales, despliega el proceso de una profunda reforma estatal que articula las demandas sociales en torno al naciona...

  11. Reforma integral masía Casa Flac

    OpenAIRE

    Pérez Reyes, Sara

    2014-01-01

    La Masía Casa Flac se encuentra en un entorno rural rodeado de montañas en pleno Pirineo Catalán. Es una edificación compuesta por diferentes casas y pajares construidas en distintas épocas y etapas, para satisfacer las necesidades de sus habitantes a medida que iban desarrollando su actividad agricultora y ganadera. La primera edificación del conjunto data de finales los años 1800 y ha estado expuesta a modificaciones hasta este año, ha tenido pues un mantenimiento mínimo aunq...

  12. MAS-SCM for Auto Sector-The Framework

    Directory of Open Access Journals (Sweden)

    Ritu Sindhu

    2011-07-01

    Full Text Available The purpose of this study is to describe in detail the development status of the innovative Multi -Agent based supply chain management (MAS-SCMAS for auto sector. This study was undertaken in view of the significance of improvement in efficiency of automobile sector and the development of a good multi-agent system framework to achieve that. The factors affecting the efficiency or OEE of the industry and the efficiency properties were identified. It was clearly revealed that the available model do not fulfill the needs in the supply chain management of automobile industry and there is a scope for evolving new model resulting in better efficiency.

  13. Visibility of lipid resonances in HR-MAS spectra of brain biopsies subject to spinning rate variation.

    Science.gov (United States)

    Precht, C; Diserens, G; Oevermann, A; Vermathen, M; Lang, J; Boesch, C; Vermathen, P

    2015-12-01

    Lipid resonances from mobile lipids can be observed by ¹H NMR spectroscopy in multiple tissues and have also been associated with malignancy. In order to use lipid resonances as a marker for disease, a reference standard from a healthy tissue has to be established taking the influence of variable factors like the spinning rate into account. The purpose of our study was to investigate the effect of spinning rate variation on the HR-MAS pattern of lipid resonances in non-neoplastic brain biopsies from different regions and visualize polar and non-polar lipids by fluorescence microscopy using Nile Red staining. ¹H HR-MAS NMR spectroscopy demonstrated higher lipid peak intensities in normal sheep brain pure white matter biopsies compared to mixed white and gray matter biopsies and pure gray matter biopsies. High spinning rates increased the visibility particularly of the methyl resonances at 1.3 and the methylene resonance at 0.89 ppm in white matter biopsies stronger compared to thalamus and brainstem biopsies, and gray matter biopsies. The absence of lipid droplets and presence of a large number of myelin sheaths observed in white matter by Nile Red fluorescence microscopy suggest that the observed lipid resonances originate from the macromolecular pool of lipid protons of the myelin sheath's plasma membranes. When using lipid contents as a marker for disease, the variable behavior of lipid resonances in different neuroanatomical regions of the brain and at variable spinning rates should be considered. The findings may open up interesting possibilities for investigating lipids in myelin sheaths.

  14. Teaching NMR Using Online Textbooks

    Directory of Open Access Journals (Sweden)

    Joseph P. Hornak

    1999-12-01

    Full Text Available Nuclear magnetic resonance (NMR spectroscopy has almost become an essential analytical tool for the chemist. High-resolution one- and multi-dimensional NMR, timedomain NMR, and NMR microscopy are but a few of the NMR techniques at a chemist's disposal to determine chemical structure and dynamics. Consequently, even small chemistry departments are finding it necessary to provide students with NMR training and experience in at least some of these techniques. The hands-on experience is readily provided with access to state-of-the-art commercial spectrometers. Instruction in the principles of NMR is more difficult to achieve as most instructors try to teach NMR using single organic or analytical chemistry book chapters with static figures. This paper describes an online textbook on NMR spectroscopy called The Basics of NMR (http://www.cis.rit.edu/htbooks/nmr/ suitable for use in teaching the principles of NMR spectroscopy. The book utilizes hypertext and animations to present the principles of NMR spectroscopy. The book can be used as a textbook associated with a lecture or as a stand-alone teaching tool. Conference participants are encouraged to review the textbook and evaluate its suitability for us in teaching NMR spectroscopy to undergraduate chemistry majors.

  15. An Improved NMR Study of Liposomes Using 1-Palmitoyl-2-oleoyl-sn-glycero-3-phospatidylcholine as Model

    Directory of Open Access Journals (Sweden)

    AnnaLaura Segre

    2006-05-01

    Full Text Available In this paper we report a comparative characterization of Small UnilamellarVesicles (SUVs, Large Unilamellar Vesicles (LUVs and Multilamellar Vesicles (MLVsprepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phospatidylcholine (POPC, carried outusing two NMR techniques, namely High Resolution NMR in solution and HighResolution–Magic Angle Spinning (HR-MAS. The size and size distributions of thesevesicles were investigated using the dynamic light scattering technique. An improvedassignment of the 1H-NMR spectrum of MLVs is also reported.

  16. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  17. Asynchronous through-bond homonuclear isotropic mixing: application to carbon–carbon transfer in perdeuterated proteins under MAS

    Energy Technology Data Exchange (ETDEWEB)

    Kulminskaya, Natalia; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Multiple-bond carbon–carbon homonuclear mixing is a hurdle in extensively deuterated proteins and under fast MAS due to the absence of an effective proton dipolar-coupling network. Such conditions are now commonly employed in solid-state NMR spectroscopy. Here, we introduce an isotropic homonuclear {sup 13}C–{sup 13}C through-bond mixing sequence, MOCCA, for the solid state. Even though applied under MAS, this scheme performs without rotor synchronization and thus does not pose the usual hurdles in terms of power dissipation for fast spinning. We compare its performance with existing homonuclear {sup 13}C–{sup 13}C mixing schemes using a perdeuterated and partially proton-backexchanged protein. Based on the analysis of side chain carbon–carbon correlations, we show that particularly MOCCA with standard 180-degree pulses and delays leading to non-rotor-synchronized spacing performs exceptionally well. This method provides high magnetization transfer efficiency for multiple-bond transfer in the aliphatic region compared with other tested mixing sequences. In addition, we show that this sequence can also be tailor-made for recoupling within a selected spectral region using band-selective pulses.

  18. Synthesis, solid-state NMR characterization, and application for hydrogenation reactions of a novel Wilkinson's-type immobilized catalyst.

    Science.gov (United States)

    Abdulhussain, Safaa; Breitzke, Hergen; Ratajczyk, Tomasz; Grünberg, Anna; Srour, Mohamad; Arnaut, Danjela; Weidler, Heiko; Kunz, Ulrike; Kleebe, Hans Joachim; Bommerich, Ute; Bernarding, Johannes; Gutmann, Torsten; Buntkowsky, Gerd

    2014-01-20

    Silica nanoparticles (SiNPs) were chosen as a solid support material for the immobilization of a new Wilkinson's-type catalyst. In a first step, polymer molecules (poly(triphenylphosphine)ethylene (PTPPE); 4-diphenylphosphine styrene as monomer) were grafted onto the silica nanoparticles by surface-initiated photoinferter-mediated polymerization (SI-PIMP). The catalyst was then created by binding rhodium (Rh) to the polymer side chains, with RhCl3⋅x H2O as a precursor. The triphenylphosphine units and rhodium as Rh(I) provide an environment to form Wilkinson's catalyst-like structures. Employing multinuclear ((31)P, (29)Si, and (13)C) solid-state NMR spectroscopy (SSNMR), the structure of the catalyst bound to the polymer and the intermediates of the grafting reaction have been characterized. Finally, first applications of this catalyst in hydrogenation reactions employing para-enriched hydrogen gas (PHIP experiments) and an assessment of its leaching properties are presented.

  19. 31P Solid-state NMR based monitoring of permeation of cell penetrating peptides into skin

    Science.gov (United States)

    Desai, Pinaki R.; Cormier, Ashley R.; Shah, Punit P.; Patlolla, Ram R.; Paravastu, Anant K.; Singh, Mandip

    2013-01-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11 and YKA) through skin intercellular lipids using 31P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, sections (0–60, 61–120 and 121–180 µm) were collected and analyzed for 31P NMR signal. The concentration dependent shift of 0, 25, 50, 100 and 200 mg/ml of TAT on skin layers, diffusion of TAT, R8, R11 and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using 31P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in 31P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100 mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180 µm within 30 min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, 31P solid-state NMR can be used to track CPP penetration into different skin layers. PMID:23702274

  20. Solid state NMR studies of gels derived from low molecular mass gelators.

    Science.gov (United States)

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  1. Solid state NMR studies of gels derived from low molecular mass gelators

    Science.gov (United States)

    Kolehmainen, E.

    2016-01-01

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  2. (31)P solid-state NMR based monitoring of permeation of cell penetrating peptides into skin.

    Science.gov (United States)

    Desai, Pinaki R; Cormier, Ashley R; Shah, Punit P; Patlolla, Ram R; Paravastu, Anant K; Singh, Mandip

    2014-02-01

    The main objective of the current study was to investigate penetration of cell penetrating peptides (CPPs: TAT, R8, R11, and YKA) through skin intercellular lipids using (31)P magic angle spinning (MAS) solid-state NMR. In vitro skin permeation studies were performed on rat skin, and sections (0-60, 61-120, and 121-180μm) were collected and analyzed for (31)P NMR signal. The concentration-dependent shift of 0, 25, 50, 100, and 200mg/ml of TAT on skin layers, diffusion of TAT, R8, R11, and YKA in the skin and time dependent permeation of R11 was measured on various skin sections using (31)P solid-state NMR. Further, CPPs and CPP-tagged fluorescent dye encapsulate liposomes (FLip) in skin layers were tagged using confocal microscopy. The change in (31)P NMR chemical shift was found to depend monotonically on the amount of CPP applied on skin, with saturation behavior above 100mg/ml CPP concentration. R11 and TAT caused more shift in solid-state NMR peaks compared to other peptides. Furthermore, NMR spectra showed R11 penetration up to 180μm within 30min. The results of the solid-state NMR study were in agreement with confocal microscopy studies. Thus, (31)P solid-state NMR can be used to track CPP penetration into different skin layers. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. 基于对策论的MAS-BDI主体模型%Modeling MAS-BDI Agent in Game Theory

    Institute of Scientific and Technical Information of China (English)

    吴朝晖; 忻栋; 潘云鹤

    2001-01-01

    BDI Agent will choose the intention, which has minimal penalty and maximal income, to achieve its goal. While in multi-Agent system,it is hard for the Agent to find the best intention,not only because of the lack of information,but also the high complexity ot computation. The factors ,which will affect the Agents' decision-making,are the cooperation state of Agents ,the Agents' reasoning process,etc. In this paper,we introduce a new model of MAS-BDI Agent based on game theory,and propose the intention selection strategy for a single BDI Agent, (cooperated)multi-Agent and(uncooperated)multiAgent.

  4. Adsorption-desorption induced structural changes of Cu-MOF evidenced by solid state NMR and EPR spectroscopy.

    Science.gov (United States)

    Jiang, Yijiao; Huang, Jun; Kasumaj, Besnik; Jeschke, Gunnar; Hunger, Michael; Mallat, Tamas; Baiker, Alfons

    2009-02-18

    Adsorption-desorption induced structural changes of Cu(bpy)(H(2)O)(2)(BF(4)),(bpy) (bpy = 4,4'-bipyridine) [Cu-MOF] have been evidenced by combined NMR and EPR spectroscopy. Upon adsorption of probe molecules even at a few mbar, EPR spectra show that they are activated to form complexes at Cu(II) sites, which results in a change of the Cu-MOF's structure as indicated by a high-field shift of the (11)B MAS NMR. After desorption, both EPR and (11)B MAS NMR spectra evidenced that the structure of the Cu-MOF reversibly shifted to the original state. This observation indicates that MOFs can undergo structural changes during processes where adsorption-desorption steps are involved such as gas storage, separation, and catalysis.

  5. MAS C-Terminal Tail Interacting Proteins Identified by Mass Spectrometry- Based Proteomic Approach.

    Science.gov (United States)

    Tirupula, Kalyan C; Zhang, Dongmei; Osbourne, Appledene; Chatterjee, Arunachal; Desnoyer, Russ; Willard, Belinda; Karnik, Sadashiva S

    2015-01-01

    Propagation of signals from G protein-coupled receptors (GPCRs) in cells is primarily mediated by protein-protein interactions. MAS is a GPCR that was initially discovered as an oncogene and is now known to play an important role in cardiovascular physiology. Current literature suggests that MAS interacts with common heterotrimeric G-proteins, but MAS interaction with proteins which might mediate G protein-independent or atypical signaling is unknown. In this study we hypothesized that MAS C-terminal tail (Ct) is a major determinant of receptor-scaffold protein interactions mediating MAS signaling. Mass-spectrometry based proteomic analysis was used to comprehensively identify the proteins that interact with MAS Ct comprising the PDZ-binding motif (PDZ-BM). We identified both PDZ and non-PDZ proteins from human embryonic kidney cell line, mouse atrial cardiomyocyte cell line and human heart tissue to interact specifically with MAS Ct. For the first time our study provides a panel of PDZ and other proteins that potentially interact with MAS with high significance. A 'cardiac-specific finger print' of MAS interacting PDZ proteins was identified which includes DLG1, MAGI1 and SNTA. Cell based experiments with wild-type and mutant MAS lacking the PDZ-BM validated MAS interaction with PDZ proteins DLG1 and TJP2. Bioinformatics analysis suggested well-known multi-protein scaffold complexes involved in nitric oxide signaling (NOS), cell-cell signaling of neuromuscular junctions, synapses and epithelial cells. Majority of these protein hits were predicted to be part of disease categories comprising cancers and malignant tumors. We propose a 'MAS-signalosome' model to stimulate further research in understanding the molecular mechanism of MAS function. Identifying hierarchy of interactions of 'signalosome' components with MAS will be a necessary step in future to fully understand the physiological and pathological functions of this enigmatic receptor.

  6. NMR, Water and Plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  7. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  8. Autonomous driving in NMR.

    Science.gov (United States)

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Soils, Pores, and NMR

    Science.gov (United States)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 samples (Haber-Pohlmeier et al. 2010). Third, relaxometric information forms the basis of understanding magnetic resonance imaging (MRI) results. The general difficulty of imaging in soils are the inherent fast T2 relaxation times due to i) the small pore sizes, ii) presence of paramagnetic ions in the solid matrix, and iii) diffusion in internal gradients. The last point is important, since echo times can not set shorter than about 1ms for imaging purposes. The way out is either the usage of low fields for imaging in soils or special ultra-short pulse sequences, which do not create echoes. In this presentation we will give examples on conventional imaging of macropore fluxes in soil cores (Haber-Pohlmeier et al. 2010), and the combination with relaxometric imaging, as well as the advantages and drawbacks of low-field and ultra-fast pulse imaging. Also first results on the imaging of soil columns measured by SIP in Project A3 are given. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Waterflow Monitored by Tracer Transport in Natural Porous Media Using MRI." Vadose Zone J.: submitted. Haber-Pohlmeier, S., S. Stapf, et al. (2010). "Relaxation in a

  10. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  11. NMR magnet technology at MIT

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.C.; Bobrov, E.S.; Iwasa, Y.; Punchard, W.F.B.; Wrenn, J.; Zhukovsky, A. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.)

    1992-01-01

    The design and construction of high field superconducting NMR magnets has much in common with other types of adiabatic superconducting magnets. However, two issues have a particular relevance to NMR magnets. They are field drift and homogeneity. In this paper the control of these factors in the particular context of high field NMR spectrometer magnets is examined.

  12. 13C high resolution solid state NMR spectra of Chinese coals

    Institute of Scientific and Technical Information of China (English)

    陈德玉; 胡建治; 叶朝辉

    1997-01-01

    Several typical exinites in China including alginite, cultinite, suberinite and bituminite are analysed by means of 13C high solution solid state CP MAS TOSS NMR spectra to determine their chemical structures and hydrocarbon potential. Thermal simulation solid products (TSSP) of hydrogen-rich coals arc studied to discuss the generation and expulsion mechanism of coal-generating hydrocarbon. The preliminary results are quite encouraging, containing useful information about genesis of coal-generating oil and gases.

  13. TOKSISITAS LETAL MOLUSKISIDA NIKLOSAMIDA PADA BENIH IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Yosmaniar Yosmaniar

    2009-04-01

    Full Text Available Penggunaan moluskisida untuk menanggulangi hama dalam budidaya tanaman padi yang semakin meningkat berpotensi mencemari lingkungan perairan, karena mengandung residu dari bahan aktifnya. Moluskisida niklosamida (C13H8Cl2N2O4 merupakan bahan aktif pestisida yang digunakan untuk memberantas hama keong mas atau siput murbei (Pomacea sp. di sawah. Dengan demikian, bahan tersebut memiliki potensi untuk mencemari lahan tempat usaha budidaya ikan. Penelitian ini bertujuan untuk mengetahui potensi toksisitas akut niklosamida terhadap benih ikan mas (Cyprinus carpio yang ditunjukkan oleh nilai Median Lethal Concentration (LC50 24, 48, dan 96 jam. Penelitian dilakukan di Instalasi Riset Lingkungan Perikanan Budidaya dan Toksikologi, Cibalagung-Bogor. Menggunakan ikan mas dengan bobot individu 2,47 ± 0,13 g. Moluskisida yang digunakan mengandung bahan aktif niklosamida 250g/L. Wadah pengujian berupa 21 unit akuarium kaca berukuran 40 cm x 20 cm x 20 cm yang dilengkapi aerasi serta saluran pemasukan dan pengeluaran. Jumlah ikan uji setiap wadah 10 ekor dengan peubah yang diukur adalah mortalitas ikan. Selama penelitian ikan tidak diberi makan. Tahapan penelitian terdiri atas penentuan nilai ambang atas-bawah, nilai lethal time dan LC50 -24, 48, 72, dan 96 jam. Data diolah dengan analisis probit program LC50. Hasil penelitian menunjukkan bahwa nilai LC50-24, 48, 72, dan 96 jam terhadap benih ikan mas adalah 0,8012 (0,7140—0,8990; 0,5999 (0,5356—0,6719; 0,4511 (0,4067—0,5004; dan 0,3849 mg/L (0,3684—0,4061. Hal ini menunjukkan niklosamida termasuk pestisida yang memiliki toksisitas sangat tinggi (golongan A. The use of molluscicide in aquatic as well as in terresterial agro ecosystem without properly controlled may produce detrimental effects on freshwater fisheries. Molluscicide utilization for golden apple snail (Pomacea sp. control in rice field has increased. The ingredient potencially has a possibility to pollute aquaculture water. The

  14. Investigating albendazole desmotropes by solid-state NMR spectroscopy.

    Science.gov (United States)

    Chattah, Ana K; Zhang, Rongchun; Mroue, Kamal H; Pfund, Laura Y; Longhi, Marcela R; Ramamoorthy, Ayyalusamy; Garnero, Claudia

    2015-03-02

    Characterization of the molecular structure and physicochemical solid-state properties of the solid forms of pharmaceutical compounds is a key requirement for successful commercialization as potential active ingredients in drug products. These properties can ultimately have a critical effect on the solubility and bioavailability of the final drug product. Here, the desmotropy of Albendazole forms I and II was investigated at the atomic level. Ultrafast magic angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy, together with powder X-ray diffraction, thermal analysis, and Fourier transform infrared spectroscopy, were performed on polycrystalline samples of the two solids in order to fully characterize and distinguish the two forms. High-resolution one-dimensional (1)H, (13)C, and (15)N together with two-dimensional (1)H/(1)H single quantum-single quantum, (1)H/(1)H single quantum-double quantum, and (1)H/(13)C chemical shift correlation solid-state NMR experiments under MAS conditions were extensively used to decipher the intramolecular and intermolecular hydrogen bonding interactions present in both solid forms. These experiments enabled the unequivocal identification of the tautomers of each desmotrope. Our results also revealed that both solid forms may be described as dimeric structures, with different intermolecular hydrogen bonds connecting the tautomers in each dimer.

  15. Applications of pulsed nuclear magnetic resonance to chemistry: multiple-pulse NMR, cross polarization, magic-angle spinning annd instrumental design

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, P.D.

    1979-07-01

    Pulsed Nuclear Magnetic Resonance (NMR) has been applied to: (1) Measurements of the prinicpal components of the proton shielding tensors of the hydrides of zirconium chloride and zirconium bromide. Multiple-Pulse techniques have been used to remove static homonuclear dipolar coupling. The anisotropies and isotropic shifts of these tensors have been used to infer the possible locations of the hydrogen within the sandwich-like layers of these unusual compounds. (2) Studies of the oscillatory transfer of magnetic polarization between /sup 1/H and /sup 29/Si in substituted silanes. The technique of J Cross Polarization has been used to enhance sensitivity. The /sup 29/Si NMR shifts of -Si-O- model compounds have been investigated as a possible probe for future studies of the environment of bound oxygen in coal-derived liquids. (3) Measurements of the aromatic fraction of /sup 13/C in whole coals. The techniques of /sup 1/H-/sup 13/C Cross Polarization and Magic-Angle Spinning have been used to enhance sensitivity and remove shift anisotropy. Additional topics described are: (4) Calculation and properties of the broadened lineshape of the shileding Powder Pattern. (5) Calculation of the oscillatory transfer of magnetic polarization for an I-S system. (6) Numerical convolution and its uses. (7) The technique of digital filtering applied in the frequency domain. (8) The designs and properties of four NMR probe-circuits. (9) The design of a single-coil double-resonance probe for combined Magic-Angle Spinning and Cross Polarization. (10) The designs of low Q and high Q rf power amplifiers with emphasis on the rf matching circuitry.

  16. Food Waste Composting Study from Makanan Ringan Mas

    Science.gov (United States)

    Kadir, A. A.; Ismail, S. N. M.; Jamaludin, S. N.

    2016-07-01

    The poor management of municipal solid waste in Malaysia has worsened over the years especially on food waste. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Composting is one of low cost alternative method to dispose the food waste. This study is conducted to compost the food waste generation in Makanan Ringan Mas, which is a medium scale industry in Parit Kuari Darat due to the lack knowledge and exposure of food waste recycling practice. The aim of this study is to identify the physical and chemical parameters of composting food waste from Makanan Ringan Mas. The physical parameters were tested for temperature and pH value and the chemical parameter are Nitrogen, Phosphorus and Potassium. In this study, backyard composting was conducted with 6 reactors. Tapioca peel was used as fermentation liquid and soil and coconut grated were used as the fermentation bed. Backyard composting was conducted with six reactors. The overall results from the study showed that the temperature of the reactors were within the range which are from 30° to 50°C. The result of this study revealed that all the reactors which contain processed food waste tend to produce pH value within the range of 5 to 6 which can be categorized as slightly acidic. Meanwhile, the reactors which contained raw food waste tend to produce pH value within the range of 7 to 8 which can be categorized as neutral. The highest NPK obtained is from Reactor B that process only raw food waste. The average value of Nitrogen is 48540 mg/L, Phosphorus is 410 mg/L and Potassium is 1550 mg/L. From the comparison with common chemical fertilizer, it shows that NPK value from the composting are much lower than NPK of the common chemical fertilizer. However, comparison with NPK of organic fertilizer shown only slightly difference value in NPK.

  17. Two phase morphology limits lithium diffusion in TiO(2)(anatase): a (7)Li MAS NMR study.

    Science.gov (United States)

    Wagemaker, M; van de Krol, R; Kentgens, A P; van Well, A A; Mulder, F M

    2001-11-21

    7Li magic angle spinning solid-state nuclear magnetic resonance is applied to investigate the lithium local environment and lithium ion mobility in tetragonal anatase TiO(2) and orthorhombic lithium titanate Li(0.6)TiO(2). Upon lithium insertion, an increasing fraction of the material changes its crystallographic structure from anatase TiO(2) to lithium titanate Li(0.6)TiO(2). Phase separation occurs, and as a result, the Li-rich lithium titanate phase is coexisting with the Li-poor TiO(2) phase containing only small Li amounts approximately equal to 0.01. In both the anatase and the lithium titanate lattice, Li is found to be hopping over the available sites with activation energies of 0.2 and 0.09 eV, respectively. This leads to rapid microscopic diffusion rates at room temperature (D(micr) = 4.7 x 10(-12) cm(2)s(-1) in anatase and D(micr) = 1.3 x 10(-11) cm(2)s(-1) in lithium titanate). However, macroscopic intercalation data show activation energies of approximately 0.5 eV and smaller diffusion coefficients. We suggest that the diffusion through the phase boundary is determining the activation energy of the overall diffusion and the overall diffusion rate itself. The chemical shift of lithium in anatase is independent of temperature up to approximately 250 K but decreases at higher temperatures, reflecting a change in the 3d conduction electron densities. The Li mobility becomes prominent from this same temperature showing that such electronic effects possibly facilitate the mobility.

  18. Chemical shift tensor determination using magnetically oriented microcrystal array (MOMA): 13C solid-state CP NMR without MAS

    Science.gov (United States)

    Kusumi, R.; Kimura, F.; Song, G.; Kimura, T.

    2012-10-01

    Chemical shift tensors for the carboxyl and methyl carbons of L-alanine crystals were determined using a magnetically oriented microcrystal array (MOMA) prepared from a microcrystalline powder sample of L-alanine. A MOMA is a single-crystal-like composite in which microcrystals are aligned three-dimensionally in a matrix resin. The single-crystal rotation method was applied to the MOMA to determine the principal values and axes of the chemical shift tensors. The result showed good agreement with the literature data for the single crystal of L-alanine. This demonstrates that the present technique is a powerful tool for determining the chemical shift tensor of a crystal from a microcrystal powder sample.

  19. Friedel's salt formation in sulfoaluminate cements: A combined XRD and {sup 27}Al MAS NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Paul, G. [Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale A. Avogadro, Viale T. Michel 11, 15121 Alessandria (Italy); Boccaleri, E., E-mail: enrico.boccaleri@mfn.unipmn.it [Dipartimento di Scienze ed Innovazione Tecnologica, Università del Piemonte Orientale A. Avogadro, Viale T. Michel 11, 15121 Alessandria (Italy); Buzzi, L.; Canonico, F. [Buzzi Unicem S.p.A., Via L. Buzzi 6, 15033 Casale Monferrato (Italy); Gastaldi, D., E-mail: dgastaldi@buzziunicem.it [Buzzi Unicem S.p.A., Via L. Buzzi 6, 15033 Casale Monferrato (Italy)

    2015-01-15

    Four different binders based on calcium sulfoaluminate cements have been submitted to accelerated chlorination through ionic exchange on hydrated pastes, in order to investigate their ability to chemically bind chloride ions that might reduce chloride penetration. The composition of hydrated cements before and after the treatment was evaluated by means of an X-Ray Diffraction–{sup 27}Al Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy combined study, allowing to take into account even partially amorphous phases and to make quantitative assumption on the relative abundance of the different aluminium-containing phases. It was found that low SO{sub 3} Sulfoaluminate–Portland ternary systems are the most effective in binding chloride ions and the active role played by different members of the AFm family in chloride uptake was confirmed. Moreover, a peculiar behavior related to the formation of Friedel's salt in different pH conditions was also established for the different cements.

  20. Generation and characterization of alkali metal clusters in Y-FAU zeolites. An ESR and MAS NMR spectroscopic study

    Science.gov (United States)

    Hannus, István; Béres, Attila; Nagy, János B.; Halász, János; Kiricsi, Imre

    1997-06-01

    Charged and neutral metal clusters of various compositions and sizes can be prepared by controlling the alkali metal content by the decomposition of alkali azides and the composition of the host zeolite by ion-exchange. ESR signals show that electron transfer from alkali metal atoms to alkali metal cations does occur, but in a direction opposite to that predicted by the gas-phase thermochemistry. Alkali metal clusters proved to be very active basic catalytic centers.

  1. Multiple non-coding exons and alternative splicing in the mouse Mas protooncogene.

    Science.gov (United States)

    Alenina, Natalia; Böhme, Ilka; Bader, Michael; Walther, Thomas

    2015-09-01

    The Mas protooncogene encodes a G protein-coupled receptor with the common seven transmembrane domains, expressed mainly in the testis and brain. We provided evidence that Mas is a functional angiotensin-(1-7) receptor and can interact with the angiotensin II type 1 (AT1) receptor. The gene is transcriptionally regulated during development in the brain and testis, but its structure was unresolved. In this study we used 5'- and 3'-RACE, RT-PCR, and RNase-protection assays to elucidate the complete Mas gene structure and organization. We identified 12 exons in the mouse Mas gene with 11 in the 5' untranslated mRNA, which can be alternatively spliced. We also showed that Mas transcription can start from 4 tissue-specific promoters, whereby testis-specific Mas mRNA is transcribed from two upstream promoters, and the expression of Mas in the brain starts from two downstream promoters. Alternative splicing and multiple promoter usage result in at least 12 Mas transcripts in which different 5' untranslated regions are fused to a common coding sequence. Moreover, termination of Mas mRNA is regulated by two different polyadenylation signals. The gene spans approximately 27 kb, and the longest detected mRNA contains 2,451 bp. Thus, our results characterize the Mas protooncogene as the gene with the most complex gene structure of all described members of the gene family coding for G protein-coupled receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1-7) Mas receptor knockout mice.

    Science.gov (United States)

    Magalhães, Giselle S; Rodrigues-Machado, Maria Glória; Motta-Santos, Daisy; Alenina, Natalia; Bader, Michael; Santos, Robson A; Barcelos, Lucíola S; Campagnole-Santos, Maria José

    2016-12-01

    The angiotensin-(1-7) [ANG-(1-7)]/Mas receptor pathway is currently recognized as a counterbalancing mechanism of the renin-angiotensin system in different pathophysiological conditions. We have previously described that treatment with ANG-(1-7) attenuates lung inflammation and remodeling in an experimental model of asthma. In the present study, we investigated whether lack of the Mas receptor could alter the inflammatory response in a model of chronic allergic lung inflammation induced by ovalbumin (OVA). Mas receptor wild-type (MasWT) and knockout (MasKO) mice were subjected to four doses of OVA (20 μg/mice ip) with a 14-day interval. At the 21st day, nebulization with OVA (1%) was started, three times per week until the 46th day. Control groups received saline (0.9% ip) and were nebulized with saline (0.9%). MasWT-OVA developed a modest inflammatory response and minor pulmonary remodeling to OVA challenge. Strikingly, MasKO-OVA presented a significant increase in inflammatory cell infiltrate, increase in extracellular matrix deposition, increase in thickening of the alveolar parenchyma, increase in thickening of the smooth muscle layer of the pulmonary arterioles, increase in proinflammatory cytokine and chemokine levels in the lungs, characteristic of chronic asthma. Additionally, MasKO-OVA presented an increase in ERK1/2 phosphorylation compared with MasWT-OVA. Furthermore, MasKO-OVA showed a worse performance in a test of maximum physical exercise compared with MasWT-OVA. Our study shows that effects triggered by the Mas receptor are important to attenuate the inflammatory and remodeling processes in a model of allergic lung inflammation in mice. Our data indicate that impairment of the ANG-(1-7)/Mas receptor pathway may lead to worsening of the pathophysiological changes of asthma. Copyright © 2016 the American Physiological Society.

  3. Reverse Induced Fit-Driven MAS-Downstream Transduction: Looking for Metabotropic Agonists.

    Science.gov (United States)

    Pernomian, Larissa; Gomes, Mayara Santos; de Paula da Silva, Carlos Henrique Tomich; Campos, Joaquin

    2017-09-11

    The protective effects assigned to MAS receptors activation have spurred a great interest in the development of MAS agonists for clinical purposes. However, the current bases that drive the design of these ligands preclude important concepts recently addressed for MAS activation. Emerging data confirmed that physiological concentrations of peptide MAS agonists induce an atypical signaling that does not reach the metabotropic efficacy of constitutive MAS activation. The canonical activation of MAS-coupled G proteins is only achieved by supraphysiological concentrations of peptide MAS agonists or physiological concentrations of chemically modified analogues. These pleiotropic differences are because of two overlapped but non-identical ligand binding domains (LBD): one non-metabotropic site that recognizes peptide agonists and one metabotropic domain that recognizes modified analogues. Accordingly, it is feasible that supraphysiological concentrations of peptide MAS agonists undergo to chemical modifications that make them suitable for binding to the metabotropic LBD. Recent advances on Receptor Theory confirmed that G protein-coupled receptor (GPCR) oligomerization enhances pharmacological parameters coupled to metabotropic signaling from GPCR ligands, including MAS agonists. For instance, the formation of GPCR-signalosome complex (higher order heteroligomers of GPCR involved in signaling crosstalk) makes the transduction of agonists a more adaptive signal. Considering the recent identification of MAS-signalosome, we postulate the reverse induced fit hypothesis in which MAS-signalosome would trigger chemical modifications required for agonists bind to the metabotropic MAS/LBD. In view of this hypothesis, we cover rational perspectives that consider this information for the development of novel metabotropic MAS agonists provided with constitutive efficacy at physiological concentrations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. 13C and 15N CP/MAS, 1H-15N SCT CP/MAS and FTIR spectroscopy as tools for qualitative detection of the presence of zwitterionic and non-ionic forms of ansa-macrolide 3-formylrifamycin SV and its derivatives in solid state.

    Science.gov (United States)

    Przybylski, Piotr; Pyta, Krystian; Klich, Katarzyna; Schilf, Wojciech; Kamieński, Bohdan

    2014-01-01

    (13)C, (15)N CP/MAS, including (1)H-(13)C and (1)H-(15)N short contact time CP/MAS experiments, and FTIR methods were applied for detailed structural characterization of ansa-macrolides as 3-formylrifamycin SV (1) and its derivatives (2-6) in crystal and in powder forms. Although HPLC chromatograms for 2/CH3 OH and 2/CH3 CCl3 were the same for rifampicin crystals dissolved in respective solvents, the UV-vis data recorded for them were different in 300-375 nm region. Detailed solid state (13)C and (15)N CP/MAS NMR and FTIR studies revealed that rifampicin (2), in contrast to 3-formylrifamycin SV (1) and its amino derivatives (3-6), can occur in pure non-ionic or zwitterionic forms in crystal and in pure these forms or a mixture of them in a powder. Multinuclear CP/MAS and FTIR studies demonstrated also that 3-6 derivatives were present exclusively in pure zwitterionic forms, both in powder and in crystal. On the basis of the solid state NMR and FTIR studies, two conformers of 3-formylrifamycin SV were detected in powder form due to the different orientations of carbonyl group of amide moiety. The PM6 molecular modeling at the semi-empirical level of theory, allowed visualization the most energetically favorable non-ionic and zwitterionic forms of 1-6 antibiotics, strongly stabilized via intramolecular H-bonds. FTIR studies indicated that the originally adopted forms of these type antibiotics in crystal or in powder are stable in standard laboratory conditions in time. The results presented point to the fact that because of a possible presence of two forms of rifampicin (compound 2), quantification of the content of this antibiotic in relevant pharmaceuticals needs caution. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Dilute RKKY model for NMR line broadening in the hidden-order state of URu2Si2

    Science.gov (United States)

    Walstedt, R. E.; Kambe, S.; Tokunaga, Y.; Sakai, H.

    2016-01-01

    A well-known analytic model for Lorentzian broadening of metallic NMR lines by dilute localized magnetic centers embedded in a lattice has been applied to the case of the twofold-symmetry magnetism in URu2Si2 reported by R. Okazaki et al. [Science 331, 439 (2011), 10.1126/science.1197358]. The observed Lorentzian spectra are accounted for with a simple formula giving the 29Si NMR linewidth in terms of the susceptibility of the magnetic-broadening centers and a Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling parameter. The concentration of such centers is estimated as c ˜0.01 . A numerical simulation of these effects confirms Lorentzian broadening with no measurable NMR shift and a width in reasonable agreement with the analytical model. The simulation shows further that domain effects on these spectra are largely absent. A four-site extended model of the broadening centers gives an estimate of the twofold susceptibility within a factor of 2 of the torque value of the susceptibility. Hypothetical superlattice effects are shown to be easily smoothed over by convolution with background Lorentzian broadening.

  6. Probing the nanostructure, interfacial interaction, and dynamics of chitosan-based nanoparticles by multiscale solid-state NMR.

    Science.gov (United States)

    Wang, Fenfen; Zhang, Rongchun; Wu, Qiang; Chen, Tiehong; Sun, Pingchuan; Shi, An-Chang

    2014-12-10

    Chitosan-based nanoparticles (NPs) are widely used in drug and gene delivery, therapy, and medical imaging, but a molecular-level understanding of the internal morphology and nanostructure size, interface, and dynamics, which is critical for building fundamental knowledge for the precise design and efficient biological application of the NPs, remains a great challenge. Therefore, the availability of a multiscale (0.1-100 nm) and nondestructive analytical technique for examining such NPs is of great importance for nanotechnology. Herein, we present a new multiscale solid-state NMR approach to achieve this goal for the investigation of chitosan-poly(N-3-acrylamidophenylboronic acid) NPs. First, a recently developed (13)C multiple cross-polarization magic-angle spinning (MAS) method enabled fast quantitative determination of the NPs' composition and detection of conformational changes in chitosan. Then, using an improved (1)H spin-diffusion method with (13)C detection and theoretical simulations, the internal morphology and nanostructure size were quantitatively determined. The interfacial coordinated interaction between chitosan and phenylboronic acid was revealed by one-dimensional MAS and two-dimensional (2D) triple-quantum MAS (11)B NMR. Finally, dynamic-editing (13)C MAS and 2D (13)C-(1)H wide-line separation experiments provided details regarding the componential dynamics of the NPs in the solid and swollen states. On the basis of these NMR results, a model of the unique nanostructure, interfacial interaction, and componential dynamics of the NPs was proposed.

  7. Direct determination of phosphate sugars in biological material by (1)H high-resolution magic-angle-spinning NMR spectroscopy.

    Science.gov (United States)

    Diserens, Gaëlle; Vermathen, Martina; Gjuroski, Ilche; Eggimann, Sandra; Precht, Christina; Boesch, Chris; Vermathen, Peter

    2016-08-01

    The study aim was to unambiguously assign nucleotide sugars, mainly UDP-X that are known to be important in glycosylation processes as sugar donors, and glucose-phosphates that are important intermediate metabolites for storage and transfer of energy directly in spectra of intact cells, as well as in skeletal muscle biopsies by (1)H high-resolution magic-angle-spinning (HR-MAS) NMR. The results demonstrate that sugar phosphates can be determined quickly and non-destructively in cells and biopsies by HR-MAS, which may prove valuable considering the importance of phosphate sugars in cell metabolism for nucleic acid synthesis. As proof of principle, an example of phosphate-sugar reaction and degradation kinetics after unfreezing the sample is shown for a cardiac muscle, suggesting the possibility to follow by HR-MAS NMR some metabolic pathways. Graphical abstract Glucose-phosphate sugars (Glc-1P and Glc-6P) detected in muscle by 1H HR-MAS NMR.

  8. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Amarnath Chtterjee; Ashutosh Kumar; Jeetender Chugh; Sudha Srivastava; Neel S Bhavesh; Ramakrishna V Hosur

    2005-01-01

    In the post-genomic era, as more and more genome sequences are becoming known and hectic efforts are underway to decode the information content in them, it is becoming increasingly evident that flexibility in proteins plays a crucial role in many of the biological functions. Many proteins have intrinsic disorder either wholly or in specific regions. It appears that this disorder may be important for regulatory functions of the proteins, on the one hand, and may help in directing the folding process to reach the compact native state, on the other. Nuclear magnetic resonance (NMR) has over the last two decades emerged as the sole, most powerful technique to help characterize these disordered protein systems. In this review, we first discuss the significance of disorder in proteins and then describe the recent developments in NMR methods for their characterization. A brief description of the results obtained on several disordered proteins is presented at the end.

  9. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Steckelings, Ulrike Muscha

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may...... indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells...... transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency...

  10. MAS based coordinated scheduling of storage capacities in a virtual microgrid

    DEFF Research Database (Denmark)

    Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan

    A distributed decentralized multi-agent system (MAS) for coordinated scheduling of charge and discharge intervals for storage capacities in a utility grid integrated microgrid is presented. As basis for the MAS based energy management system (EMS) serves a scheduling algorithm based on a distribu......A distributed decentralized multi-agent system (MAS) for coordinated scheduling of charge and discharge intervals for storage capacities in a utility grid integrated microgrid is presented. As basis for the MAS based energy management system (EMS) serves a scheduling algorithm based...... on a distributed optimization algorithm to minimize power flow from/to a virtual microgrid over a transformer substation. A cooperative low-level MAS scheme, which is based on the consensus algorithm is introduced. It is shown that using a cooperative MAS, load profile flattening (peak-shaving) for the utility...... be used, for example by a Distribution System Operator (DSO) to control grid load profiles of virtual microgrids....

  11. NMR studies of metalloproteins

    OpenAIRE

    Li, H; H. Sun

    2011-01-01

    Metalloproteins represent a large share of the proteomes, with the intrinsic metal ions providing catalytic, regulatory, and structural roles critical to protein functions. Structural characterization of metalloproteins and identification of metal coordination features including numbers and types of ligands and metal-ligand geometry, and mapping the structural and dynamic changes upon metal binding are significant for understanding biological functions of metalloproteins. NMR spectroscopy has...

  12. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS.

    Science.gov (United States)

    Leonhardt, Julia; Villela, Daniel C; Teichmann, Anke; Münter, Lisa-Marie; Mayer, Magnus C; Mardahl, Maibritt; Kirsch, Sebastian; Namsolleck, Pawel; Lucht, Kristin; Benz, Verena; Alenina, Natalia; Daniell, Nicholas; Horiuchi, Masatsugu; Iwai, Masaru; Multhaup, Gerhard; Schülein, Ralf; Bader, Michael; Santos, Robson A; Unger, Thomas; Steckelings, Ulrike Muscha

    2017-06-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may indicate heterodimerization of these receptors. Therefore, this study investigated the molecular and functional interplay between MAS and the AT2R. Molecular interactions were assessed by fluorescence resonance energy transfer and by cross correlation spectroscopy in human embryonic kidney-293 cells transfected with vectors encoding fluorophore-tagged MAS or AT2R. Functional interaction of AT2R and MAS was studied in astrocytes with CX3C chemokine receptor-1 messenger RNA expression as readout. Coexpression of fluorophore-tagged AT2R and MAS resulted in a fluorescence resonance energy transfer efficiency of 10.8 ± 0.8%, indicating that AT2R and MAS are capable to form heterodimers. Heterodimerization was verified by competition experiments using untagged AT2R and MAS. Specificity of dimerization of AT2R and MAS was supported by lack of dimerization with the transient receptor potential cation channel, subfamily C-member 6. Dimerization of the AT2R was abolished when it was mutated at cysteine residue 35. AT2R and MAS stimulation with the respective agonists, Compound 21 or angiotensin-(1-7), significantly induced CX3C chemokine receptor-1 messenger RNA expression. Effects of each agonist were blocked by an AT2R antagonist (PD123319) and also by a MAS antagonist (A-779). Knockout of a single of these receptors made astrocytes unresponsive for both agonists. Our results suggest that MAS and the AT2R form heterodimers and that-at least in astrocytes-both receptors functionally depend on each other. © 2017 American Heart Association, Inc.

  13. MOS-2: A Two-Dimension Space for Positioning MAS Organizational Models

    OpenAIRE

    Abbas, Hosny; Shaheen, Samir

    2015-01-01

    The increased complexity and dynamism of present and future Multi-Agent Systems (MAS) enforce the need for considering both of their static (design-time) and the dynamic (run-time) aspects. A type of balance between the two aspects can definitely give better results related to system stability and adaptivity. MAS organization is the research area that is concerned with these issues and it is currently a very active and interesting research area. Designing a MAS with an initial organization an...

  14. COMPOZER-based longitudinal cross-polarization via dipolar coupling under MAS.

    Science.gov (United States)

    Kamihara, Takayuki; Murakami, Miwa; Noda, Yasuto; Takeda, Kazuyuki; Takegoshi, K

    2014-08-01

    We propose a cross polarization (CP) sequence effective under magic-angle spinning (MAS) which is tolerant to RF field inhomogeneity and Hartmann-Hahn mismatch. Its key feature is that spin locking is not used, as CP occurs among the longitudinal (Z) magnetizations modulated by the combination of two pulses with the opposite phases. We show that, by changing the phases of the pulse pairs synchronized with MAS, the flip-flop term of the dipolar interaction is restored under MAS.

  15. Synthesis, NMR spectroscopic characterization and structure of a divinyldisilazane-(triphenylphosphine)platinum(0) complex: observation of isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt).

    Science.gov (United States)

    Wrackmeyer, Bernd; Klimkina, Elena V; Schmalz, Thomas; Milius, Wolfgang

    2013-05-01

    Tetramethyldivinyldisilazane-(triphenylphosphine)platinum(0) was prepared, characterized in solid state by X-ray crystallography and in solution by multinuclear magnetic resonance spectroscopy ((1)H, (13)C, (15)N, (29)Si, (31)P and (195)Pt NMR). Numerous signs of spin-spin coupling constants were determined by two-dimensional heteronuclear shift correlations (HETCOR) and two-dimensional (1)H/(1)H COSY experiments. Isotope-induced chemical shifts (1)Δ(12/13)C((195)Pt) were measured from (195)Pt NMR spectra of the title compound as well as of other Pt(0), Pt(II) and Pt(IV) compounds for comparison. In contrast to other heavy nuclei such as (199)Hg or (207)Pb, the "normal" shifts of the heavy isotopomers to low frequencies are found, covering a range of >500 ppb.

  16. Fast magic-angle sample spinning solid-state NMR at 60-100kHz for natural abundance samples.

    Science.gov (United States)

    Nishiyama, Yusuke

    2016-09-01

    In spite of tremendous progress made in pulse sequence designs and sophisticated hardware developments, methods to improve sensitivity and resolution in solid-state NMR (ssNMR) are still emerging. The rate at which sample is spun at magic angle determines the extent to which sensitivity and resolution of NMR spectra are improved. To this end, the prime objective of this article is to give a comprehensive theoretical and experimental framework of fast magic angle spinning (MAS) technique. The engineering design of fast MAS rotors based on spinning rate, sample volume, and sensitivity is presented in detail. Besides, the benefits of fast MAS citing the recent progress in methodology, especially for natural abundance samples are also highlighted. The effect of the MAS rate on (1)H resolution, which is a key to the success of the (1)H inverse detection methods, is described by a simple mathematical factor named as the homogeneity factor k. A comparison between various (1)H inverse detection methods is also presented. Moreover, methods to reduce the number of spinning sidebands (SSBs) for the systems with huge anisotropies in combination with (1)H inverse detection at fast MAS are discussed.

  17. Structural studies on meiosis-activating sterols and structurally related compounds : potential ligands of the FF-MAS receptor

    NARCIS (Netherlands)

    Boer, D.R.

    2001-01-01

    Meiosis Activating Sterols (MAS) are key regulatory factors in the meiotic cell cycle. Two compounds in this family, Follicular Fluid-MAS (FF-MAS or 4,4-dimethyl-5a-cholest-8,14,24-triene-3b-ol) and Testicular-MAS (T-MAS or 4,4-dimethyl-5a-cholest-8,14-diene-3b-ol), have been isolated and

  18. MAS-mediated antioxidant effects restore the functionality of angiotensin converting enzyme 2-angiotensin-(1-7)-MAS axis in diabetic rat carotid.

    Science.gov (United States)

    Pernomian, Larissa; Gomes, Mayara Santos; Restini, Carolina Baraldi Araujo; de Oliveira, Ana Maria

    2014-01-01

    We hypothesized that endothelial AT1-activated NAD(P)H oxidase-driven generation of reactive oxygen species during type I-diabetes impairs carotid ACE2-angiotensin-(1-7)-Mas axis functionality, which accounts for the impaired carotid flow in diabetic rats. We also hypothesized that angiotensin-(1-7) chronic treatment of diabetic rats restores carotid ACE2-angiotensin-(1-7)-Mas axis functionality and carotid flow. Relaxant curves for angiotensin II or angiotensin-(1-7) were obtained in carotid from streptozotocin-induced diabetic rats. Superoxide or hydrogen peroxide levels were measured by flow cytometry in carotid endothelial cells. Carotid flow was also determined. We found that endothelial AT1-activated NAD(P)H oxidase-driven generation of superoxide and hydrogen peroxide in diabetic rat carotid impairs ACE2-angiotensin-(1-7)-Mas axis functionality, which reduces carotid flow. In this mechanism, hydrogen peroxide derived from superoxide dismutation inhibits ACE2 activity in generating angiotensin-(1-7) seemingly by activating I(Cl,SWELL0, while superoxide inhibits the nitrergic Mas-mediated vasorelaxation evoked by angiotensin-(1-7). Angiotensin-(1-7) treatment of diabetic rats restored carotid ACE2-angiotensin-(1-7)-Mas axis functionality by triggering a positive feedback played by endothelial Mas receptors, that blunts endothelial AT1-activated NAD(P)H oxidase-driven generation of reactive oxygen species. Mas-mediated antioxidant effects also restored diabetic rat carotid flow, pointing to the contribution of ACE2-angiotensin-(1-7)-Mas axis in maintaining carotid flow.

  19. Solid State NMR Studies of Energy Conversion and Storage Materials

    Science.gov (United States)

    Jankuru Hennadige, Sohan Roshel De Silva

    NMR (Nuclear magnetic resonance) spectroscopy is utilized to study energy conversion and storage materials. Different types of NMR techniques including Magic Angle Spinning, Cross-polarization and relaxation measurement experiments were employed. Four different projects are discussed in this dissertation. First, three types of CFx battery materials were investigated. Electrochemical studies have demonstrated different electrochemical performances by one type, delivering superior performance over the other two. 13C and 19F MAS NMR techniques are employed to identify the atomic/molecular structural factors that might account for differences in electrochemical performance among different types. Next as the second project, layered polymer dielectrics were investigated by NMR. Previous studies have shown that thin film capacitors are improved by using alternate layers of two polymers with complementary properties: one with a high breakdown strength and one with high dielectric constant as opposed to monolithic layers. 13C to 1H cross-polarization techniques were used to investigate any inter-layer properties that may cause the increase in the dielectric strength. The third project was to study two types of thermoelectric materials. These samples were made of heavily doped phosphorous and boron in silicon by two different methods: ball-milled and annealed. These samples were investigated by NMR to determine the degree of disorder and obtain insight into the doping efficiency. The last ongoing project is on a lithium-ion battery system. The nature of passivating layers or the solid electrolyte interphase (SEI) formed on the electrodes surface is important because of the direct correlation between the SEI and the battery life time/durability. Multinuclear (7Li, 19F, 31P) techniques are employed to identify the composition of the SEI formation of both positive and negative electrodes.

  20. Multi-Robot Remote Interaction with FS-MAS

    Directory of Open Access Journals (Sweden)

    Yunliang Jiang

    2013-02-01

    Full Text Available The need to reduce bandwidth, improve productivity, autonomy and the scalability in multi‐robot teleoperation has been recognized for a long time. In this article we propose a novel finite state machine mobile agent based on the network interaction service model, namely FS‐MAS. This model consists of three finite state machines, namely the Finite State Mobile Agent (FS‐Agent, which is the basic service module. The Service Content Finite State Machine (Content‐FS, using the XML language to define workflow, to describe service content and service computation process. The Mobile Agent computation model Finite State Machine (MACM‐FS, used to describe the service implementation. Finally, we apply this service model to the multi‐robot system, the initial realization completing complex tasks in the form of multi‐robot scheduling. This demonstrates that the robot has greatly improved intelligence, and provides a wide solution space for critical issues such as task division, rational and efficient use of resource and multi‐robot collaboration.

  1. Powder-XRD and (14) N magic angle-spinning solid-state NMR spectroscopy of some metal nitrides.

    Science.gov (United States)

    Kempgens, Pierre; Britton, Jonathan

    2016-05-01

    Some metal nitrides (TiN, ZrN, InN, GaN, Ca3 N2 , Mg3 N2 , and Ge3 N4 ) have been studied by powder X-ray diffraction (XRD) and (14) N magic angle-spinning (MAS) solid-state NMR spectroscopy. For Ca3 N2 , Mg3 N2 , and Ge3 N4 , no (14) N NMR signal was observed. Low speed (νr  = 2 kHz for TiN, ZrN, and GaN; νr  = 1 kHz for InN) and 'high speed' (νr  = 15 kHz for TiN; νr  = 5 kHz for ZrN; νr  = 10 kHz for InN and GaN) MAS NMR experiments were performed. For TiN, ZrN, InN, and GaN, powder-XRD was used to identify the phases present in each sample. The number of peaks observed for each sample in their (14) N MAS solid-state NMR spectrum matches perfectly well with the number of nitrogen-containing phases identified by powder-XRD. The (14) N MAS solid-state NMR spectra are symmetric and dominated by the quadrupolar interaction. The envelopes of the spinning sidebands manifold are Lorentzian, and it is concluded that there is a distribution of the quadrupolar coupling constants Qcc 's arising from structural defects in the compounds studied.

  2. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    Science.gov (United States)

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko

    2014-03-01

    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  3. Receptor MAS protects mice against hypothermia and mortality induced by endotoxemia.

    Science.gov (United States)

    Souza, Laura L; Duchene, Johan; Todiras, Mihail; Azevedo, Luciano C P; Costa-Neto, Claudio M; Alenina, Natalia; Santos, Robson A; Bader, Michael

    2014-04-01

    The renin-angiotensin (Ang) system is involved in maintaining cardiovascular function by regulating blood pressure and electrolyte homeostasis. More recently, alternative pathways within the renin-angiotensin system have been described, such as the ACE-2/Ang-(1-7)/Mas axis, with opposite effects to the ones of the ACE/Ang-II/AT1 axis. Correspondingly, our previous work reported that Ang-(1-7) via its receptor Mas inhibits the mRNA expression of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor-α increased by lipopolysaccharide (LPS) in mouse peritoneal macrophages. These data led us to investigate the functional role of the Ang-(1-7)/Mas axis in an in vivo LPS model. In this work, we present evidence that Ang-(1-7) via Mas significantly reduced the LPS-increased production of circulating cytokines, such as IL-6, IL-12, and CXCL-1. This inhibitory effect was mediated by Mas because it was not detectable in Mas-deficient (Mas) mice. Accordingly, IL-6, CXCL-1, and CXCL-2 levels were higher after LPS treatment in the absence of Mas. Mas mice were less resistant to LPS-induced endotoxemia, their survival rate being 50% compared with 95% in wild-type mice. Telemetric analyses showed that Mas mice presented more pronounced LPS-induced hypothermia with a 3°C lower body temperature compared with wild-type mice. Altogether, our findings suggest that Ang-(1-7) and Mas inhibit LPS-induced cytokine production and hypothermia and thereby protect mice from the fatal consequences of endotoxemia.

  4. Mas receptor deficiency exacerbates lipopolysaccharide-induced cerebral and systemic inflammation in mice.

    Science.gov (United States)

    Oliveira-Lima, Onésia C; Pinto, Mauro C X; Duchene, Johan; Qadri, Fatimunnisa; Souza, Laura L; Alenina, Natalia; Bader, Michael; Santos, Robson A S; Carvalho-Tavares, Juliana

    2015-12-01

    Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    Science.gov (United States)

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P

    2013-08-01

    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  6. The aluminium effect on the structure of silico-phosphate glasses studied by NMR and FTIR

    Science.gov (United States)

    Sitarz, Maciej; Fojud, Zbigniew; Olejniczak, Zbigniew

    2009-04-01

    Silico-phosphate glasses of NaCaPO 4-SiO 2 and NaCaPO 4-AlPO 4-SiO 2 system have been the subject of the presented investigations. Glasses of these systems are the basis for the preparation of glassy-crystalline biomaterials [R.D. Rawlings, Clin. Mater. 14 (1993) 155]. Detailed knowledge of the precursor glass structure is necessary for proper design of the glassy-crystalline biomaterials preparation procedure. Since there is no long-range ordering in glasses, spectroscopic methods which make it possible to study the short range ordering should be applied. MIR studies carried out in the work have allowed to establish that the glasses of the systems studied show domain composition [L.L. Hench, R.J. Splinter, T.K. Greenlee, W.C. Allen, J. Biol. Res. Symp. 2 (1971) 117; L.L. Hench, R.J. Splinter, W.C. Allen, T.K. Greenlee, J. Biol. Res. 5 (1972) 117]. Domain structure is close to that of the corresponding crystalline phases. It has been shown that even small amount of aluminium in the glass (5 mol.% of AlPO 4) significantly influences both, its texture (microscopic and EDX studies) and its structure (spectroscopic studies). 27Al NMR investigations have made it possible to establish unequivocally that aluminium occurs exclusively in tetrahedral coordination, i.e. it is involved in the formation of glass framework. Presence of aluminium results in significant changes in the [SiO 4] 4- and [PO 4] 3- tetrahedra environment which is reflected in 23Na, 31P and 29Si NMR spectra. Changes in the shapes and positions of the bands in the NMR spectra of glasses belonging to the NaCaPO 4-AlPO 4-SiO 2 system confirm great influence of aluminium on silico-phosphate glasses structure.

  7. Geochemical kinetics via the Swift-Connick equations and solution NMR

    Science.gov (United States)

    Harley, Steven J.; Ohlin, C. André; Casey, William H.

    2011-07-01

    Signal analysis in Nuclear Magnetic Resonance spectroscopy is among the most powerful methods to quantify reaction rates in aqueous solutions. To this end, the Swift-Connick approximations to the Bloch-McConnell equations have been used extensively to estimate rate parameters for elementary reactions. The method is primarily used for 17O NMR in aqueous solutions, but the list of geochemically relevant nuclei that can be used is long, and includes 29Si, 27Al, 19F, 13C and many others of particular interest to geochemists. Here we review the derivation of both the Swift-Connick and Bloch-McConnell equations and emphasize assumptions and quirks. For example, the equations were derived for CW-NMR, but are used with modern pulse FT-NMR and can be applied to systems that have exchange rates that are shorter than the lifetime of a typical pulse. The method requires a dilute solution where the minor reacting species contributes a negligible amount of total magnetization. We evaluate the sensitivity of results to this dilute-solution requirement and also highlight the need for chemically well-defined systems if reliable data are to be obtained. The limitations in using longitudinal relaxation to estimate reaction rate parameters are discussed. Finally, we provide examples of the application of the method, including ligand exchanges from aqua ions and hydrolysis complexes, that emphasize its flexibility. Once the basic requirements of the Swift-Connick method are met, it allows geochemists to establish rates of elementary reactions. Reactions at this scale lend themselves well to methods of computational simulation and could provide key tests of accuracy.

  8. Transformer-coupled NMR probe

    Science.gov (United States)

    Utsuzawa, Shin; Mandal, Soumyajit; Song, Yi-Qiao

    2012-03-01

    In this study, we propose an NMR probe circuit that uses a transformer with a ferromagnetic core for impedance matching. The ferromagnetic core provides a strong but confined coupling that result in efficient energy transfer between the sample coil and NMR spectrometer, while not disturbing the B1 field generated by the sample coil. We built a transformer-coupled NMR probe and found that it offers comparable performance (loss NQR.

  9. Magic Angle Spinning NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.

    2016-05-31

    Nuclear Magnetic Resonance (NMR) spectroscopy is a non-destructive, quantitative, reproducible, untargeted and unbiased method that requires no or minimal sample preparation, and is one of the leading analytical tools for metabonomics research [1-3]. The easy quantification and the no need of prior knowledge about compounds present in a sample associated with NMR are advantageous over other techniques [1,4]. 1H NMR is especially attractive because protons are present in virtually all metabolites and its NMR sensitivity is high, enabling the simultaneous identification and monitoring of a wide range of low molecular weight metabolites.

  10. NMR characterization of native liquid spider dragline silk from Nephila edulis.

    Science.gov (United States)

    Hronska, M; van Beek, J D; Williamson, P T F; Vollrath, Fritz; Meier, Beat H

    2004-01-01

    Solid spider dragline silk is well-known for its mechanical properties. Nonetheless a detailed picture of the spinning process is lacking. Here we report NMR studies on the liquid silk within the wide sac of the major ampullate (m.a.) gland from the spider Nephila edulis. The resolution in the NMR spectra is shown to be significantly improved by the application of magic-angle spinning (MAS). From the narrow width of the resonance lines and the chemical shifts observed, it is concluded that the silk protein within the wide sac of the m.a. gland is dynamically disordered throughout the molecule in the sense that each amino acid of a given type senses an identical environment, on average. The NMR data obtained are consistent with an isotropic liquid phase.

  11. Role of the receptor Mas in macrophage-mediated inflammation in vivo.

    Science.gov (United States)

    Hammer, Anna; Yang, Guang; Friedrich, Juliane; Kovacs, Agnes; Lee, De-Hyung; Grave, Katharina; Jörg, Stefanie; Alenina, Natalia; Grosch, Janina; Winkler, Jürgen; Gold, Ralf; Bader, Michael; Manzel, Arndt; Rump, Lars C; Müller, Dominik N; Linker, Ralf A; Stegbauer, Johannes

    2016-12-06

    Recently, an alternative renin-angiotensin system pathway has been described, which involves binding of angiotensin-(1-7) to its receptor Mas. The Mas axis may counterbalance angiotensin-II-mediated proinflammatory effects, likely by affecting macrophage function. Here we investigate the role of Mas in murine models of autoimmune neuroinflammation and atherosclerosis, which both involve macrophage-driven pathomechanisms. Mas signaling affected macrophage polarization, migration, and macrophage-mediated T-cell activation. Mas deficiency exacerbated the course of experimental autoimmune encephalomyelitis and increased macrophage infiltration as well as proinflammatory gene expression in the spleen and spinal cord. Furthermore, Mas deficiency promoted atherosclerosis by affecting macrophage infiltration and migration and led to increased oxidative stress as well as impaired endothelial function in ApoE-deficient mice. In summary, we identified the Mas axis as an important factor in macrophage function during inflammation of the central nervous and vascular system in vivo. Modulating the Mas axis may constitute an interesting therapeutic target in multiple sclerosis and/or atherosclerosis.

  12. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    Science.gov (United States)

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p Mas receptor in the heart. Plasma renin activity (PRA) and Ang II decreased in hydronephrotic mice, but significantly increased after treatment with losartan or enalapril. Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  13. ACE2/ANG-(1-7)/Mas pathway in the brain: the axis of good

    National Research Council Canada - National Science Library

    Xu, Ping; Sriramula, Srinivas; Lazartigues, Eric

    2011-01-01

    ...). Among them, angiotensin converting enzyme-2 (ACE2) and the Mas receptor have forced a reevaluation of the original cascade and led to the emergence of a new arm of the RAS: the ACE2/ANG-(1-7)/Mas axis...

  14. Psychometric Comparison of the Motivation Assessment Scale (MAS) and the Questions about Behavioral Function (QABF)

    Science.gov (United States)

    Koritsas, S.; Iacono, T.

    2013-01-01

    Background: The Motivation Assessment Scale (MAS) and the Questions About Behavioral Function (QABF) are frequently used to assess the learned function of challenging behaviour in people with intellectual disability (ID). The aim was to explore and compare the psychometric properties of the MAS and the QABF. Method: Seventy adults with ID and…

  15. The utility of MAS5 expression summary and detection call algorithms

    Directory of Open Access Journals (Sweden)

    Wilson Claire L

    2007-07-01

    Full Text Available Abstract Background Used alone, the MAS5.0 algorithm for generating expression summaries has been criticized for high False Positive rates resulting from exaggerated variance at low intensities. Results Here we show, with replicated cell line data, that, when used alongside detection calls, MAS5 can be both selective and sensitive. A set of differentially expressed transcripts were identified that were found to be changing by MAS5, but unchanging by RMA and GCRMA. Subsequent analysis by real time PCR confirmed these changes. In addition, with the Latin square datasets often used to assess expression summary algorithms, filtered MAS5.0 was found to have performance approaching that of its peers. Conclusion When used alongside detection calls, MAS5 is a sensitive and selective algorithm for identifying differentially expressed genes.

  16. Mas receptor contributes to pregnancy-induced cardiac remodeling.

    Science.gov (United States)

    Carmos-Silva, Cintia; Almeida, Jônathas Fernandes Queiroz de; Macedo, Larissa Matuda; Melo, Marcos Barrouin B; Pedrino, Gustavo Rodrigues; Santos, Fernanda Fernanda Cristina Alcantara; Biancardi, Manoel Francisco; Santos, Robson Augusto Souza Dos Augusto Souza; Carvalho, Adryano Augustto; Mendes, Elizabeth Pereira; Colugnati, Diego Basile; Mazaro-Costa, Renata; Castro, Carlos Henrique de

    2016-09-13

    Previous studies have demonstrated a protective effect of the Ang-(1-7)/Mas receptor axis on pathological cardiac hypertrophy. Also, the involvement of Mas receptor in the exercise-induced cardiac hypertrophy has been suggested. However, the role of the Ang-(1-7)/Mas receptor on pregnancy-induced cardiac remodeling remains unknown. The objective of this study was to evaluate the participation of the Mas receptor in the development of the cardiac hypertrophy and fibrosis induced by gestation. Female Wistar rats were shared in 3 groups: control , pregnant , and pregnant treated with Mas receptor antagonist A-779 . Wild type (WT) and Mas-knockout mice (KO) were distributed in non-pregnant  and pregnant  groups. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography. The medial part of the left ventricle (LV) was collected for histological analysis. Echocardiographic analysis was used to evaluate the cardiac function. SBP was not changed by pregnancy or A-779 treatment in the Wistar rats. Pharmacological blockade or genetic deletion of Mas receptor attenuates the pregnancy-induced myocyte hypertrophy. The treatment with A-779 or genetic deletion of the Mas receptor increased the collagen III deposition in LV from pregnant animals without changing the fibroblast proliferation. KO mice presented a lower ejection fraction, fraction shortening, stroke volume and higher end systolic volume compared to WT. Interestingly, the pregnancy restored these parameters. In conclusion, these data show that while Mas receptor blockade or deletion decreases physiological hypertrophy of pregnancy, it is associated with more extracellular matrix deposition. These alterations are associated with improvement of the cardiac function through Mas-independent mechanism. ©2016 The Author(s).

  17. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    Science.gov (United States)

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Winning, H.; Viereck, N.; Wollenweber, B.

    2009-01-01

    at terminal spikelet, during grain-filling or at both stages. Principal component trajectories of the total protein content and the protein fractions of flour as well as the H-1 NMR spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic development...... during grain-filling. The results from both the H-1 NMR spectra of methanol extracts and the H-1 HR-MAS NMR of single kernels showed that a single drought event during the generative stage had as strong an influence on protein metabolism as two consecutive events of drought. By contrast, a drought event...... indicating that protein metabolism is influenced by multiple drought events, the H-1 NMR spectra of the methanol extracts of flour from mature grains revealed that the amount of fumaric acid is particularly sensitive to water deficits....

  19. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence.

    Directory of Open Access Journals (Sweden)

    Honghao Cai

    Full Text Available BACKGROUND AND PURPOSE: Nuclear magnetic resonance (NMR spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS: Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS: When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION: Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.

  20. Studies of Secondary Melanoma on C57BL/6J Mouse Liver Using 1H NMR Metabolomics

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Ju; Isern, Nancy G.; Burton, Sarah D.; Hu, Jian Z.

    2013-10-31

    NMR metabolomics, consisting of solid state high resolution (hr) magic angle spinning (MAS) 1H NMR (1H hr-MAS), liquid state high resolution 1H-NMR, and principal components analysis (PCA) has been used to study secondary metastatic B16-F10 melanoma in C57BL/6J mouse liver . The melanoma group can be differentiated from its control group by PCA analysis of the absolute concentrations or by the absolute peak intensities of metabolites from either 1H hr-MAS NMR data on intact liver tissues or liquid state 1H-NMR spectra on liver tissue extracts. In particular, we found that the absolute concentrations of alanine, glutamate, creatine, creatinine, fumarate and cholesterol are elevated in the melanoma group as compared to controls, while the absolute concentrations of succinate, glycine, glucose, and the family of linear lipids including long chain fatty acids, total choline and acylglycerol are decreased. The ratio of glycerophosphocholine to phosphocholine is increased by about 1.5 fold in the melanoma group, while the absolute concentration of total choline is actually lower in melanoma mice. These results suggest the following picture in secondary melanoma metastasis: Linear lipid levels are decreased by beta oxidation in the melanoma group, which contributes to an increase in the synthesis of cholesterol, and also provides an energy source input for TCA cycle. These findings suggest a link between lipid oxidation, the TCA cycle and the hypoxia-inducible factors (HIF) signal pathway in tumor metastases. Thus this study indicates that the metabolic profile derived from NMR analysis can provide a valuable bio-signature of malignancy and cell hypoxia in metastatic melanoma.

  1. Single-crystal X-ray diffraction and NMR crystallography of a 1:1 cocrystal of dithianon and pyrimethanil.

    Science.gov (United States)

    Pöppler, Ann Christin; Corlett, Emily K; Pearce, Harriet; Seymour, Mark P; Reid, Matthew; Montgomery, Mark G; Brown, Steven P

    2017-03-01

    A single-crystal X-ray diffraction structure of a 1:1 cocrystal of two fungicides, namely dithianon (DI) and pyrimethanil (PM), is reported [systematic name: 5,10-dioxo-5H,10H-naphtho[2,3-b][1,4]dithiine-2,3-dicarbonitrile-4,6-dimethyl-N-phenylpyrimidin-2-amine (1/1), C14H4N2O2S2·C12H13N2]. Following an NMR crystallography approach, experimental solid-state magic angle spinning (MAS) NMR spectra are presented together with GIPAW (gauge-including projector augmented wave) calculations of NMR chemical shieldings. Specifically, experimental (1)H and (13)C chemical shifts are determined from two-dimensional (1)H-(13)C MAS NMR correlation spectra recorded with short and longer contact times so as to probe one-bond C-H connectivities and longer-range C...H proximities, whereas H...H proximities are identified in a (1)H double-quantum (DQ) MAS NMR spectrum. The performing of separate GIPAW calculations for the full periodic crystal structure and for isolated molecules allows the determination of the change in chemical shift upon going from an isolated molecule to the full crystal structure. For the (1)H NMR chemical shifts, changes of 3.6 and 2.0 ppm correspond to intermolecular N-H...O and C-H...O hydrogen bonding, while changes of -2.7 and -1.5 ppm are due to ring current effects associated with C-H...π interactions. Even though there is a close intermolecular S...O distance of 3.10 Å, it is of note that the molecule-to-crystal chemical shifts for the involved sulfur or oxygen nuclei are small.

  2. Solid-state NMR studies of Al-doped and Al{sub 2}O{sub 3}-coated LiCoO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngil; Kim, Dongmin; Lee, Hyeyeoun [Dongbu Advanced Research Inst., Daejeon (Korea). Chemical Analysis Team; Woo, Ae Ja [Ewha Womans Univ., Seoul (Korea); Han, Kyoo Seung [Chungnam National Univ., Daejeon (Korea). Dept. of Fine Chemicals Engineering and Chemistry; Ryu, D. [Electronics and Telecommunications Research Inst., Daejeon (Korea); Sohn, Daewon [Hanyang Univ., Seoul (Korea). Dept. of Chemistry

    2004-11-30

    As a cathode material for commercial lithium rechargeable battery, Al-doped and Al{sub 2}O{sub 3}-coated LiCoO{sub 2} were structurally characterized and compared by using solid-state {sup 7}Li and {sup 27}Al magic angle spinning (MAS) NMR. The structural states of lithium and aluminum in those samples were successfully identified by calculation of NMR spectra. {sup 7}Li MAS NMR spectra of samples had shown similar features having more than three lithium sites, which were determined as quadrupole coupling constant with the same asymmetric parameter ({eta} = 0.1); C{sub Q} = 1.10 MHz for octahedral site, and C{sub Q} 2.97 MHz and C{sub Q} = 3.83 MHz for shoulders. {sup 27}Al MAS NMR spectra of samples, however, showed significant difference in two observed aluminum sites. In the simulation of NMR spectrum for Al{sub 2}O{sub 3}-coated LiCoO{sub 2}, the values of C{sub Q} and {eta} were obtained; 4.45 MHz and {eta} = 0.86 for tetrahedral site and 4.31 MHz and {eta} = 0.81 for octahedral.

  3. MAS receptors mediate vasoprotective and atheroprotective effects of candesartan upon the recovery of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality.

    Science.gov (United States)

    Pernomian, Larissa; do Prado, Alejandro F; Gomes, Mayara S; Pernomian, Laena; da Silva, Carlos H T P; Gerlach, Raquel F; de Oliveira, Ana M

    2015-10-05

    AT1 antagonists effectively prevent atherosclerosis since AT1 upregulation and angiotensin II-induced proinflammatory actions are critical to atherogenesis. Despite the classic mechanisms underlying the vasoprotective and atheroprotective actions of AT1 antagonists, the cross-talk between angiotensin-converting enzyme-angiotensin II-AT1 and angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axes suggests other mechanisms beyond AT1 blockage in such effects. For instance, angiotensin-converting enzyme 2 activity is inhibited by reactive oxygen species derived from AT1-mediated proinflammatory signaling. Since angiotensin-(1-7) promotes antiatherogenic effects, we hypothesized that the vasoprotective and atheroprotective effects of AT1 antagonists could result from their inhibitory effects on the AT1-mediated negative modulation of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality. Interestingly, our results showed that early atherosclerosis triggered in thoracic aorta from high cholesterol fed-Apolipoprotein E-deficient mice impairs angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality by a proinflammatory-redox AT1-mediated pathway. In such mechanism, AT1 activation leads to the aortic release of tumor necrosis factor-α, which stimulates NAD(P)H oxidase/Nox1-driven generation of superoxide and hydrogen peroxide. While hydrogen peroxide inhibits angiotensin-converting enzyme 2 activity, superoxide impairs MAS functionality. Candesartan treatment restored the functionality of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis by inhibiting the proinflammatory-redox AT1-mediated mechanism. Candesartan also promoted vasoprotective and atheroprotective effects that were mediated by MAS since A779 (MAS antagonist) co-treatment inhibited them. The role of MAS receptors as the final mediators of the vasoprotective and atheroprotective effects of candesartan was supported by the vascular actions of angiotensin

  4. NMR Studies of 3-Acylcamphor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    NMR studies of some chiral 3-acyclcamphor were conducted.A complete assignment was given to 3-(4-pyridyl)carbonylcamphor by the 2D NMR technology.Assignments were also given to other b -diketones.The results showed that those 3-acylcamphors exist in the enol forms,while 2-benzoyl menthone exists in diketon form.

  5. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  6. Atypical signaling and functional desensitization response of MAS receptor to peptide ligands.

    Science.gov (United States)

    Tirupula, Kalyan C; Desnoyer, Russell; Speth, Robert C; Karnik, Sadashiva S

    2014-01-01

    MAS is a G protein-coupled receptor (GPCR) implicated in multiple physiological processes. Several physiological peptide ligands such as angiotensin-(1-7), angiotensin fragments and neuropeptide FF (NPFF) are reported to act on MAS. Studies of conventional G protein signaling and receptor desensitization upon stimulation of MAS with the peptide ligands are limited so far. Therefore, we systematically analyzed G protein signals activated by the peptide ligands. MAS-selective non-peptide ligands that were previously shown to activate G proteins were used as controls for comparison on a common cell based assay platform. Activation of MAS by the non-peptide agonist (1) increased intracellular calcium and D-myo-inositol-1-phosphate (IP1) levels which are indicative of the activation of classical Gαq-phospholipase C signaling pathways, (2) decreased Gαi mediated cAMP levels and (3) stimulated Gα12-dependent expression of luciferase reporter. In all these assays, MAS exhibited strong constitutive activity that was inhibited by the non-peptide inverse agonist. Further, in the calcium response assay, MAS was resistant to stimulation by a second dose of the non-peptide agonist after the first activation has waned suggesting functional desensitization. In contrast, activation of MAS by the peptide ligand NPFF initiated a rapid rise in intracellular calcium with very weak IP1 accumulation which is unlike classical Gαq-phospholipase C signaling pathway. NPFF only weakly stimulated MAS-mediated activation of Gα12 and Gαi signaling pathways. Furthermore, unlike non-peptide agonist-activated MAS, NPFF-activated MAS could be readily re-stimulated the second time by the agonists. Functional assays with key ligand binding MAS mutants suggest that NPFF and non-peptide ligands bind to overlapping regions. Angiotensin-(1-7) and other angiotensin fragments weakly potentiated an NPFF-like calcium response at non-physiological concentrations (≥100 µM). Overall, our data suggest

  7. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  8. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  9. NMR and NQR parameters of the SiC-doped on the (4,4) armchair single-walled BPNT: a computational study.

    Science.gov (United States)

    Baei, Mohammad T; Sayyad-Alangi, S Zahra; Moradi, Ali Varasteh; Torabi, Parviz

    2012-03-01

    The structural properties, NMR and NQR parameters in the pristine and silicon carbide (SiC) doped boron phosphide nanotubes (BPNTs) were calculated using DFT methods (BLYP, B3LYP/6-31G) in order to evaluate the influence of SiC-doped on the (4,4) armchair BPNTs. Nuclear magnetic resonance (NMR) parameters including isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (13)C, (29)Si, (11)B, and (31)P atoms and quadrupole coupling constant (C ( Q )), and asymmetry parameter (η ( Q )) at the sites of various (11)B nuclei were calculated in pristine and SiC- doped (4,4) armchair boron phosphide nanotubes models. The calculations indicated that doping of (11)B and (31)P atoms by C and Si atoms had a more significant influence on the calculated NMR and NQR parameters than did doping of the B and P atoms by Si and C atoms. In comparison with the pristine model, the SiC- doping in Si(P)C(B) model of the (4,4) armchair BPNTs reduces the energy gaps of the nanotubes and increases their electrical conductance. The NMR results showed that the B and P atoms which are directly bonded to the C atoms in the SiC-doped BPNTs have significant changes in the NMR parameters with respect to the B and P atoms which are directly bonded to the Si atoms in the SiC-doped BPNTs. The NQR results showed that in BPNTs, the B atoms at the edges of nanotubes play dominant roles in determining the electronic behaviors of BPNTs. Also, the NMR and NQR results detect that the Fig. 1b (Si(P)C(B)) model is a more reactive material than the pristine and the Fig. 1a (Si(B)C(p)) models of the (4,4) armchair BPNTs.

  10. Crystal structure and tautomerism of Pigment Yellow 138 determined by X-ray powder diffraction and solid-state NMR

    DEFF Research Database (Denmark)

    Gumbert, Silke D.; Körbitzer, Meike; Alig, Edith;

    2016-01-01

    The crystal structure of C.I. Pigment Yellow 138 was determined from X-ray powder diffraction data using real-space methods with subsequent Rietveld refinements. The tautomeric state was investigated by solid-state 1D and 2D multinuclear NMR experiments. In the crystals, the compound exhibits...... the NH-tautomer with a hydrogen atom situated at the nitrogen of the quinoline moiety. Direct evidence of the presence of the NH-tautomer is provided by 1H–14N HMQC solid-state NMR at very fast MAS. Solid-state dispersion-corrected density functional theory calculations with BLYP-D3 confirm...

  11. NMR molecular photography

    CERN Document Server

    Khitrin, A K; Fung, B M; Khitrin, Anatoly K.; Ermakov, Vladimir L.

    2002-01-01

    A procedure is described for storing a 2D pattern consisting of 32x32 = 1024 bits in a spin state of a molecular system and then retrieving the stored information as a stack of NMR spectra. The system used is a nematic liquid crystal, the protons of which act as spin clusters with strong intramolecular interactions. The technique used is a programmable multi-frequency irradiation with low amplitude. When it is applied to the liquid crystal, a large number of coherent long-lived 1H response signals can be excited, resulting in a spectrum showing many sharp peaks with controllable frequencies and amplitudes. The spectral resolution is enhanced by using a second weak pulse with a 90 phase shift, so that the 1024 bits of information can be retrieved as a set of well-resolved pseudo-2D spectra reproducing the input pattern.

  12. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning1

    Institute of Scientific and Technical Information of China (English)

    Holger A SCHEIDT; Daniel HUSTER

    2008-01-01

    The interaction of small molecules with lipid membranes and the exact knowledge of their binding site and bilayer distribution is of great pharmacological impor-tance and represents an active field of current biophysical research. Over the last decade, a highly resolved 1H solid-state NMR method has been developed that allows measuring localization and distribution of small molecules in membranes. The classical solution 1H NMR NOESY technique is applied to lipid membrane samples under magic-angle spinning (MAS) and NOESY cross-relaxation rates are determined quantitatively. These rates are proportional to the contact probability between molecular segments and therefore an ideal tool to study intermolecular interactions in membranes. Here, we review recent 1H MAS NOESY applications that were carried out to study lateral lipid organization in mixed membranes and the interaction of membranes with water, ethanol, small aromatic compounds, peptides, fluorescence labels, and lipophilic nucleosides.

  13. Solid-state 13C NMR and molecular modeling studies of acetyl aleuritolic acid obtained from Croton cajucara Benth

    Science.gov (United States)

    da Silva San Gil, Rosane Aguiar; Albuquerque, Magaly Girão; de Alencastro, Ricardo Bicca; da Cunha Pinto, Angelo; do Espírito Santo Gomes, Fabiano; de Castro Dantas, Tereza Neuma; Maciel, Maria Aparecida Medeiros

    2008-08-01

    Solid-state 13C nuclear magnetic resonance ( 13C NMR) with magic-angle spinning (MAS) and with cross-polarization and magic-angle spinning (CP/MAS) spectra, and differential scanning calorimetry (DSC) techniques were used to obtain structural data from a sample of acetyl aleuritolic acid (AAA) extracted from the stem bark of Croton cajucara Benth. (Euphorbiaceae) and recrystallized from acetone. Since solid-state 13C NMR results suggested the presence of more than one molecule in the unitary cell for the AAA, DSC analysis and molecular modeling calculations were used to access this possibility. The absence of phase transition peaks in the DSC spectra and the dimeric models of AAA simulated using the semi-empirical PM3 method are in agreement with that proposal.

  14. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors.

    Science.gov (United States)

    Hisao, Grant S; Harland, Michael A; Brown, Robert A; Berthold, Deborah A; Wilson, Thomas E; Rienstra, Chad M

    2016-04-01

    The study of mass-limited biological samples by magic angle spinning (MAS) solid-state NMR spectroscopy critically relies upon the high-yield transfer of material from a biological preparation into the MAS rotor. This issue is particularly important for maintaining biological activity and hydration of semi-solid samples such as membrane proteins in lipid bilayers, pharmaceutical formulations, microcrystalline proteins and protein fibrils. Here we present protocols and designs for rotor-packing devices specifically suited for packing hydrated samples into Pencil-style 1.6 mm, 3.2 mm standard, and 3.2 mm limited speed MAS rotors. The devices are modular and therefore readily adaptable to other rotor and/or ultracentrifugation tube geometries.

  15. Solid-state 17O NMR of pharmaceutical compounds: salicylic acid and aspirin.

    Science.gov (United States)

    Kong, Xianqi; Shan, Melissa; Terskikh, Victor; Hung, Ivan; Gan, Zhehong; Wu, Gang

    2013-08-22

    We report solid-state NMR characterization of the (17)O quadrupole coupling (QC) and chemical shift (CS) tensors in five site-specifically (17)O-labeled samples of salicylic acid and o-acetylsalicylic acid (Aspirin). High-quality (17)O NMR spectra were obtained for these important pharmaceutical compounds under both static and magic angle spinning (MAS) conditions at two magnetic fields, 14.0 and 21.1 T. A total of 14 (17)O QC and CS tensors were experimentally determined for the seven oxygen sites in salicylic acid and Aspirin. Although both salicylic acid and Aspirin form hydrogen bonded cyclic dimers in the solid state, we found that the potential curves for the concerted double proton transfer in these two compounds are significantly different. In particular, while the double-well potential curve in Aspirin is nearly symmetrical, it is highly asymmetrical in salicylic acid. This difference results in quite different temperature dependencies in (17)O MAS spectra of the two compounds. A careful analysis of variable-temperature (17)O MAS NMR spectra of Aspirin allowed us to obtain the energy asymmetry (ΔE) of the double-well potential, ΔE = 3.0 ± 0.5 kJ/mol. We were also able to determine a lower limit of ΔE for salicylic acid, ΔE > 10 kJ/mol. These asymmetrical features in potential energy curves were confirmed by plane-wave DFT computations, which yielded ΔE = 3.7 and 17.8 kJ/mol for Aspirin and salicylic acid, respectively. To complement the solid-state (17)O NMR data, we also obtained solid-state (1)H and (13)C NMR spectra for salicylic acid and Aspirin. Using experimental NMR parameters obtained for all magnetic nuclei present in salicylic acid and Aspirin, we found that plane-wave DFT computations can produce highly accurate NMR parameters in well-defined crystalline organic compounds.

  16. Pattern of Mas expression in acute and post-acute stage of nerve injury in mice.

    Science.gov (United States)

    Assis, Alex Dias; de Assis Araújo, Fernanda; Dos Santos, Robson Augusto Souza; Andrade, Silvia Passos; Zanon, Renata Graciele

    2017-09-01

    Angiotensin-(1-7) (Ang [1-7]) and its receptor Mas are involved in a number of physiological processes, including control of arterial pressure and modulation of nervous system actions. However, the involvement of the Ang-(1-7)/Mas axis in peripheral nerve injury has not been investigated. Using a model of sciatic nerve injury in mice, we demonstrated opposing changes in Mas receptor expression at days 2 and 14 post-injury. Mas receptor expression was more intense 2days after the nerve lesion, compared with the intensity of the intact nerve. At this time point, the sciatic nerve functional index was -20. At day 14 after the lesion, the intensity of the immunostaining labeling in longitudinal sections of the nerve was reduced (∼30%) and the functional index increased +36 (gait improvement). In the axotomized group treated with A779 (a Mas receptor antagonist), the functional recovery index decreased in relation to the untreated axotomized group. The Mas receptor inhibitor also altered the intensity of labeling of S-100, GAP43, and IBA-1 (morphological features compatible with delayed axon growth). This study demonstrated that Ang-(1-7)/Mas axis activity was differentially modulated in the acute and post-acute stages of nerve injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. MasABK proteins interact with proteins of the type IV pilin system to affect social motility of Myxococcus xanthus.

    Directory of Open Access Journals (Sweden)

    Sarah Fremgen

    Full Text Available Gliding motility is critical for normal development of spore-filled fruiting bodies in the soil bacterium Myxococcus xanthus. Mutations in mgl block motility and development but one mgl allele can be suppressed by a mutation in masK, the last gene in an operon adjacent to the mgl operon. Deletion of the entire 5.5 kb masABK operon crippled gliding and fruiting body development and decreased sporulation. Expression of pilAGHI, which encodes type IV pili (TFP components essential for social (S gliding, several cryptic pil genes, and a LuxR family protein were reduced significantly in the Δmas mutant while expression of the myxalamide operon was increased significantly. Localization and two-hybrid analysis suggest that the three Mas proteins form a membrane complex. MasA-PhoA fusions confirmed that MasA is an integral cytoplasmic membrane protein with a ≈100 amino acid periplasmic domain. Results from yeast two-hybrid assays showed that MasA interacts with the lipoprotein MasB and MasK, a protein kinase and that MasB and MasK interact with one another. Additionally, yeast two-hybrid analysis revealed a physical interaction between two gene products of the mas operon, MasA and MasB, and PilA. Deletion of mas may be accompanied by compensatory mutations since complementation of the Δmas social gliding and developmental defects required addition of both pilA and masABK.

  18. MasABK proteins interact with proteins of the type IV pilin system to affect social motility of Myxococcus xanthus.

    Science.gov (United States)

    Fremgen, Sarah; Williams, Amanda; Furusawa, Gou; Dziewanowska, Katarzyna; Settles, Matthew; Hartzell, Patricia

    2013-01-01

    Gliding motility is critical for normal development of spore-filled fruiting bodies in the soil bacterium Myxococcus xanthus. Mutations in mgl block motility and development but one mgl allele can be suppressed by a mutation in masK, the last gene in an operon adjacent to the mgl operon. Deletion of the entire 5.5 kb masABK operon crippled gliding and fruiting body development and decreased sporulation. Expression of pilAGHI, which encodes type IV pili (TFP) components essential for social (S) gliding, several cryptic pil genes, and a LuxR family protein were reduced significantly in the Δmas mutant while expression of the myxalamide operon was increased significantly. Localization and two-hybrid analysis suggest that the three Mas proteins form a membrane complex. MasA-PhoA fusions confirmed that MasA is an integral cytoplasmic membrane protein with a ≈100 amino acid periplasmic domain. Results from yeast two-hybrid assays showed that MasA interacts with the lipoprotein MasB and MasK, a protein kinase and that MasB and MasK interact with one another. Additionally, yeast two-hybrid analysis revealed a physical interaction between two gene products of the mas operon, MasA and MasB, and PilA. Deletion of mas may be accompanied by compensatory mutations since complementation of the Δmas social gliding and developmental defects required addition of both pilA and masABK.

  19. A novel MAs(III)-selective ArsR transcriptional repressor.

    Science.gov (United States)

    Chen, Jian; Nadar, Venkadesh Sarkarai; Rosen, Barry P

    2017-09-01

    Microbial expression of genes for resistance to heavy metals and metalloids is usually transcriptionally regulated by the toxic ions themselves. Arsenic is a ubiquitous, naturally occurring toxic metalloid widely distributed in soil and groundwater. Microbes biotransform both arsenate (As(V)) and arsenite (As(III)) into more toxic methylated metabolites methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)). Environmental arsenic is sensed by members of the ArsR/SmtB family. The arsR gene is autoregulated and is typically part of an operon that contains other ars genes involved in arsenic detoxification. To date every identified ArsR is regulated by inorganic As(III). Here we described a novel ArsR from Shewanella putrefaciens selective for MAs(III). SpArsR orthologs control expression of two MAs(III) resistance genes, arsP that encodes the ArsP MAs(III) efflux permease, and arsH encoding the ArsH MAs(III) oxidase. SpArsR has two conserved cysteine residues, Cys101 and Cys102. Mutation of either resulted in loss of MAs(III) binding, indicating that they form an MAs(III) binding site. SpArsR can be converted into an As(III)-responsive repressor by introduction of an additional cysteine that allows for three-coordinate As(III) binding. Our results indicate that SpArsR evolved selectivity for MAs(III) over As(III) in order to control expression of genes for MAs(III) detoxification. © 2017 John Wiley & Sons Ltd.

  20. Propofol up-regulates Mas receptor expression in dorsal root ganglion neurons.

    Science.gov (United States)

    Cao, Lijun; Xun, Junmei; Jiang, Xinghua; Tan, Rong

    2013-08-01

    Mas is a functional binding site for angiotensin (Ang)-(1-7), a critical component of the renin-angiotensin system that is involved in processing nociceptive information. A recent study reported the localization of Mas in rat dorsal root ganglia (DRG) and demonstrated that Ang-(1-7) produced a dose-dependent peripheral antinociceptive effect in rats through the Mas receptor by an opioid-independent mechanism. In the present study, we for the first time examined the effect of propofol on Mas expression in cultured DRG neurons. We treated rat DRG neurons with propofol at different concentrations (0.1, 0.5, 1, 5 or 10 microM) for different length of time (0.5, 1, 2, 4 or 6 h) with or without transcription inhibitor actinomycin D or different kinase inhibitors. Propofol increased the Mas receptormRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the Mas receptor protein level as well as Ang-(1-7) binding on the cell membrane. Actinomycin D (1 mg/ml) and p38 mitogen-activated protein kinase inhibitor PD169316 (25 microM) completely abolished the effect of propofol on Mas receptor expression in DRG neurons. In conclusion, we demonstrate that propofol markedly up-regulates Mas receptor expression at the transcription level in DRG neurons by a p38 MAPK-dependent mechanism. This study provides new insights into the mechanisms of action of propofol in peripheral antinociception, and suggests a new regulatory mechanism on the Ang-(1-7)/Mas axis in the peripheral nervous system.

  1. Chronic nerve injury-induced Mas receptor expression in dorsal root ganglion neurons alleviates neuropathic pain.

    Science.gov (United States)

    Zhao, Yuanting; Qin, Yue; Liu, Tuanjiang; Hao, Dingjun

    2015-12-01

    Neuropathic pain, which is characterized by hyperalgesia, allodynia and spontaneous pain, is one of the most painful symptoms that can be experienced in the clinic. It often occurs as a result of injury to the peripheral nerves, dorsal root ganglion (DRG), spinal cord or brain. The renin-angiotensin system (RAS) plays an important role in nociception. As an essential component of the RAS, the angiotensin (Ang)-(1-7)/Mas axis may be involved in antinociception. The aim of the present study was to explore the expression pattern of Mas in DRG neurons following chronic nerve injury and examine the effects of Mas inhibition and activation on neuropathic pain in a chronic constriction injury (CCI) rat model. The results showed, that compared with the sham group, CCI caused a time-dependent induction of Mas expression at both the mRNA and the protein levels in DRG neurons. Consistent with the results, isolated DRG neurons showed a time-dependent increase in Ang-(1-7) binding on the cell membrane following the CCI surgery, but not the sham surgery. Compared with the sham control groups, CCI significantly decreased the paw withdrawal latency and threshold, and this was markedly improved and aggravated by intrathecal injection of the selective Mas agonist Ang-(1-7) and the selective Mas inhibitor D-Pro7-Ang-(1-7), respectively. In conclusion, this study has provided the first evidence, to the best of our knowledge, that the Mas expression in DRG neurons is time-dependently induced by chronic nerve injury and that the intrathecal activation and inhibition of Mas can improve and aggravate CCI-induced neuropathic pain, respectively. This study has provided novel insights into the pathophysiological process of neuropathic pain and suggests that the Ang-(1-7)/Mas axis could be an effective therapeutic target for neuropathic pain, warranting further study.

  2. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR

    Science.gov (United States)

    van Schadewijk, R.; de Groot, H. J. M.; Alia, A.

    2016-01-01

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency. PMID:27662620

  3. Metabolic Profiling of Intact Arabidopsis thaliana Leaves during Circadian Cycle Using 1H High Resolution Magic Angle Spinning NMR.

    Science.gov (United States)

    Augustijn, D; Roy, U; van Schadewijk, R; de Groot, H J M; Alia, A

    Arabidopsis thaliana is the most widely used model organism for research in plant biology. While significant advances in understanding plant growth and development have been made by focusing on the molecular genetics of Arabidopsis, extracting and understanding the functional framework of metabolism is challenging, both from a technical perspective due to losses and modification during extraction of metabolites from the leaves, and from the biological perspective, due to random variation obscuring how well the function is performed. The purpose of this work is to establish the in vivo metabolic profile directly from the Arabidopsis thaliana leaves without metabolite extraction, to reduce the complexity of the results by multivariate analysis, and to unravel the mitigation of cellular complexity by predominant functional periodicity. To achieve this, we use the circadian cycle that strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery. High resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) was applied to obtain the metabolic profile directly from intact Arabidopsis leaves. Combining one- and two-dimensional 1H HR-MAS NMR allowed the identification of several metabolites including sugars and amino acids in intact leaves. Multivariate analysis on HR-MAS NMR spectra of leaves throughout the circadian cycle revealed modules of primary metabolites with significant and consistent variations of their molecular components at different time points of the circadian cycle. Since robust photosynthetic performance in plants relies on the functional periodicity of the circadian rhythm, our results show that HR-MAS NMR promises to be an important non-invasive method that can be used for metabolomics of the Arabidopsis thaliana mutants with altered physiology and photosynthetic efficiency.

  4. Le signe /mas/ : entre la quantification et l’adversation

    OpenAIRE

    Sicot-Dominguez, María-Soledad

    2017-01-01

    Se trata de demostrar, desde una perspectiva semasiológica, la unicidad del signo lingüístico /mas/, pese a la distinción establecida por la gramática entre un más adverbio, pronombre o adjetivo cuantitativo y un mas conjunción adversativa. La observación de diversos enunciados tomados del Corpus de la RAE permite postular la existencia de un significado común a todos los empleos discursivos del signo /mas/; un signo único, a cuyo significante corresponde invariablemente un significado y que,...

  5. A New Algebraic Modelling Approach to Distributed Problem-Solving in MAS

    Institute of Scientific and Technical Information of China (English)

    帅典勋; 邓志东

    2002-01-01

    This paper is devoted to a new algebraic modelling approach to distributed problem-solving in multi-agent systems (MAS), which is featured by a unified framework for describing and treating social behaviors, social dynamics and social intelligence. A conceptual architecture of algebraic modelling is presented. The algebraic modelling of typical social behaviors, social situation and social dynamics is discussed in the context of distributed problemsolving in MAS. The comparison and simulation on distributed task allocations and resource assignments in MAS show more advantages of the algebraic approach than other conventional methods.

  6. nmr spectroscopic study and dft calculations of giao nmr shieldings ...

    African Journals Online (AJOL)

    Preferred Customer

    various fields of science and industry such as microelectronic and aerospace ... GIAO/DFT (Gauge Including Atomic Orbitals/Density Functional Theory) approach is .... successfully by using NMR and quantum chemical calculations.

  7. (13)C, (15)N CPMAS NMR and GIAO DFT calculations of stereoisomeric oxindole alkaloids from Cat's Claw (Uncaria tomentosa).

    Science.gov (United States)

    Paradowska, Katarzyna; Wolniak, Michał; Pisklak, Maciej; Gliński, Jan A; Davey, Matthew H; Wawer, Iwona

    2008-11-01

    Oxindole alkaloids, isolated from the bark of Uncaria tomentosa [Willd. ex Schult.] Rubiaceae, are considered to be responsible for the biological activity of this herb. Five pentacyclic and two tetracyclic alkaloids were studied by solid-state NMR and theoretical GIAO DFT methods. The (13)C and (15)N CPMAS NMR spectra were recorded for mitraphylline, isomitraphylline, pteropodine (uncarine C), isopteropodine (uncarine E), speciophylline (uncarine D), rhynchophylline and isorhynchophylline. Theoretical GIAO DFT calculations of shielding constants provide arguments for identification of asymmetric centers and proper assignment of NMR spectra. These alkaloids are 7R/7S and 20R/20S stereoisomeric pairs. Based on the (13)C CP MAS chemical shifts the 7S alkaloids (delta C3 70-71ppm) can be easily and conveniently distinguished from 7R (deltaC3 74.5-74.9ppm), also 20R (deltaC20 41.3-41.7ppm) from the 20S (deltaC20 36.3-38.3ppm). The epiallo-type isomer (3R, 20S) of speciophylline is characterized by a larger (15)N MAS chemical shift of N4 (64.6ppm) than the allo-type (3S, 20S) of isopteropodine (deltaN4 53.3ppm). (15)N MAS chemical shifts of N1-H in pentacyclic alkaloids are within 131.9-140.4ppm.

  8. NMR spectrometers as "magnetic tongues"

    DEFF Research Database (Denmark)

    Malmendal, Anders; Amoresano, Claudia; Trotta, Roberta

    2011-01-01

    opened up the possibility to calibrate the sensory perception. In this frame, we have tested the potentiality of nuclear magnetic resonance spectroscopy as a predictive tool to measure sensory descriptors. In particular, we have used an NMR metabolomic approach that allowed us to differentiate...... the analyzed samples based on their chemical composition. We were able to correlate the NMR metabolomic fingerprints recorded for canned tomato samples to the sensory descriptors bitterness, sweetness, sourness, saltiness, tomato and metal taste, redness, and density, suggesting that NMR might be a very useful...

  9. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  10. Cassini's Maneuver Automation Software (MAS) Process: How to Successfully Command 200 Navigation Maneuvers

    Science.gov (United States)

    Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.

    2008-01-01

    To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.

  11. BOREAS Level-2 MAS Surface Reflectance and Temperature Images in BSQ Format

    Science.gov (United States)

    Hall, Forrest G. (Editor); Newcomer, Jeffrey (Editor); Lobitz, Brad; Spanner, Michael; Strub, Richard; Lobitz, Brad

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study (BOREAS) Staff Science Aircraft Data Acquisition Program focused on providing the research teams with the remotely sensed aircraft data products they needed to compare and spatially extend point results. The MODIS Airborne Simulator (MAS) images, along with other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes biophysical parameter maps such as surface reflectance and temperature. Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-2 MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C130 navigation data in a MAS scan model. The data are provided in binary image format files.

  12. 77 FR 58996 - Multiple Award Schedule (MAS) Program Continuous Open Season-Operational Change; Extension of...

    Science.gov (United States)

    2012-09-25

    ... From the Federal Register Online via the Government Publishing Office GENERAL SERVICES ADMINISTRATION Multiple Award Schedule (MAS) Program Continuous Open Season-- Operational Change; Extension of Comment Period AGENCY: Federal Acquisition Service (FAS), General Services Administration (GSA). ACTION...

  13. Angiotensin-(1-7) Is an Endogenous Ligand for the G Protein-Coupled Receptor Mas

    National Research Council Canada - National Science Library

    Robson A. S. Santos; Ana C. Simoes e Silva; Christine Maric; Denise M. R. Silva; Raquel Pillar Machado; Insa de Buhr; Silvia Heringer-Walther; Sergio Veloso B. Pinheiro; Myriam Teresa Lopes; Michael Bader; Elizabeth P. Mendes; Virgina Soares Lemos; Maria Jose Campagnole-Santos; Heinz-Peter Schultheiss; Robert Speth; Thomas Walther

    2003-01-01

    ...) antagonist indicated the existence of a distinct Ang-(1-7) receptor. We demonstrate that genetic deletion of the G protein-coupled receptor encoded by the Mas protooncogene abolishes the binding of Ang-(1-7) to mouse kidneys...

  14. BOREAS Level-1B MAS Imagery At-sensor Radiance, Relative X and Y Coordinates

    Science.gov (United States)

    Strub, Richard; Strub, Richard; Newcomer, Jeffrey A.; Ungar, Stephen

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the MODIS Airborne Simulator (MAS) images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fraction of Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI). Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-1b MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C-130 INS data in a MAS scan model. The data are provided in binary image format files.

  15. Intercomparison of MAS, AVIRIS, and HIS data from FIRE cirrus 2

    Science.gov (United States)

    Gumley, Liam E.; King, Michael D.; Tsay, Si-Chee; Gao, Bo-Cai; Arnold, G. Thomas

    1993-01-01

    The NASA ER-2 flight on 5 Dec. 1991 is unique among the FIRE Cirrus 2 missions in that data were acquired simultaneously by the MODIS Airborne Simulator (MAS), the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the High Resolution Interferometer Sounder (HIS). These data represent a unique source of information about the spatial and spectral properties of cirrus clouds. The MAS is a new instrument which will aid in defining algorithms and building an understanding of the ability of the Moderate Resolution Imaging Spectroradiometer (MODIS) to remotely sense atmospheric conditions for assessing global change. In order to establish confidence in the absolute calibration accuracy of the MAS radiances, an inter-comparison of MAS radiances with AVIRIS and HIS has been undertaken.

  16. TrustMAS: Trusted Communication Platform for Multi-Agent Systems

    CERN Document Server

    Szczypiorski, Krzysztof; Mazurczyk, Wojciech; Cabaj, Krzysztof; Radziszewski, Pawel

    2008-01-01

    The paper presents TrustMAS - Trusted Communication Platform for Multi-Agent Systems, which provides trust and anonymity for mobile agents. The platform includes anonymous technique based on random-walk algorithm for providing general purpose anonymous communication for agents. All agents, which take part in the proposed platform, benefit from trust and anonymity that is provided for their interactions. Moreover, in TrustMAS there are StegAgents (SA) that are able to perform various steganographic communication. To achieve that goal, SAs may use methods in different layers of TCP/IP model or specialized middleware enabling steganography that allows hidden communication through all layers of mentioned model. In TrustMAS steganographic channels are used to exchange routing tables between StegAgents. Thus all StegAgents in TrustMAS with their ability to exchange information by using hidden channels form distributed steganographic router (Stegrouter).

  17. Cassini's Maneuver Automation Software (MAS) Process: How to Successfully Command 200 Navigation Maneuvers

    Science.gov (United States)

    Yang, Genevie Velarde; Mohr, David; Kirby, Charles E.

    2008-01-01

    To keep Cassini on its complex trajectory, more than 200 orbit trim maneuvers (OTMs) have been planned from July 2004 to July 2010. With only a few days between many of these OTMs, the operations process of planning and executing the necessary commands had to be automated. The resulting Maneuver Automation Software (MAS) process minimizes the workforce required for, and maximizes the efficiency of, the maneuver design and uplink activities. The MAS process is a well-organized and logically constructed interface between Cassini's Navigation (NAV), Spacecraft Operations (SCO), and Ground Software teams. Upon delivery of an orbit determination (OD) from NAV, the MAS process can generate a maneuver design and all related uplink and verification products within 30 minutes. To date, all 112 OTMs executed by the Cassini spacecraft have been successful. MAS was even used to successfully design and execute a maneuver while the spacecraft was in safe mode.

  18. Expression and cellular localization of the Mas receptor in the adult and developing mouse retina.

    Science.gov (United States)

    Prasad, Tuhina; Verma, Amrisha; Li, Qiuhong

    2014-01-01

    Recent studies have provided evidence that a local renin-angiotensin system (RAS) exists in the retina and plays an important role in retinal neurovascular function. We have recently shown that increased expression of ACE2 and angiotensin (1-7) [Ang (1-7)], two components of the protective axis of the RAS, in the retina via adeno-associated virus (AAV)-mediated gene delivery, conferred protection against diabetes-induced retinopathy. We hypothesized that the protective molecular and cellular mechanisms of Ang (1-7) are mediated by its receptor, Mas, and the expression level and cellular localization dictate the response to Ang (1-7) and activation of subsequent protective signaling pathways. We tested this hypothesis by examining the expression and cellular localization of the Mas receptor in adult and developing mouse retinas. The cellular localization of the Mas receptor protein was determined with immunofluorescence of the eyes of adult and postnatal day 1 (P1), P5, P7, P15, and P21 mice using the Mas receptor-specific antibody, and mRNA was detected with in situ hybridization of paraffin-embedded sections. Western blotting and real-time reverse-transcription (RT)-PCR analysis were performed to determine the relative levels of the Mas protein and mRNA in adult and developing retinas, as well as in cultured retinal Müller glial and RPE cells. In the adult eye, the Mas receptor protein was abundantly present in retinal ganglion cells (RGCs) and photoreceptor cells; a lower level of expression was observed in endothelial cells, Müller glial cells, and other neurons in the inner nuclear layer of the retina. In the developing retina, Mas receptor mRNA and protein expression was detected in the inner retina at P1, and the expression levels increased with age to reach the adult level and pattern by P15. In the adult mouse retina, Mas receptor mRNA was expressed at a much higher level when compared to angiotensin II (Ang II) type I (AT1R) and type II (AT2R) receptor m

  19. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier

    Science.gov (United States)

    Kemp, Thomas F.; Dannatt, Hugh R. W.; Barrow, Nathan S.; Watts, Anthony; Brown, Steven P.; Newton, Mark E.; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to 1H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90 K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90 K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement.

  20. Comprehensive multiphase NMR spectroscopy: Basic experimental approaches to differentiate phases in heterogeneous samples

    Science.gov (United States)

    Courtier-Murias, Denis; Farooq, Hashim; Masoom, Hussain; Botana, Adolfo; Soong, Ronald; Longstaffe, James G.; Simpson, Myrna J.; Maas, Werner E.; Fey, Michael; Andrew, Brian; Struppe, Jochem; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J.; Hume, Alan; Simpson, André J.

    2012-04-01

    Heterogeneous samples, such as soils, sediments, plants, tissues, foods and organisms, often contain liquid-, gel- and solid-like phases and it is the synergism between these phases that determine their environmental and biological properties. Studying each phase separately can perturb the sample, removing important structural information such as chemical interactions at the gel-solid interface, kinetics across boundaries and conformation in the natural state. In order to overcome these limitations a Comprehensive Multiphase-Nuclear Magnetic Resonance (CMP-NMR) probe has been developed, and is introduced here, that permits all bonds in all phases to be studied and differentiated in whole unaltered natural samples. The CMP-NMR probe is built with high power circuitry, Magic Angle Spinning (MAS), is fitted with a lock channel, pulse field gradients, and is fully susceptibility matched. Consequently, this novel NMR probe has to cover all HR-MAS aspects without compromising power handling to permit the full range of solution-, gel- and solid-state experiments available today. Using this technology, both structures and interactions can be studied independently in each phase as well as transfer/interactions between phases within a heterogeneous sample. This paper outlines some basic experimental approaches using a model heterogeneous multiphase sample containing liquid-, gel- and solid-like components in water, yielding separate 1H and 13C spectra for the different phases. In addition, 19F performance is also addressed. To illustrate the capability of 19F NMR soil samples, containing two different contaminants, are used, demonstrating a preliminary, but real-world application of this technology. This novel NMR approach possesses a great potential for the in situ study of natural samples in their native state.

  1. Microfabricated inserts for magic angle coil spinning (MACS wireless NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Vlad Badilita

    Full Text Available This article describes the development and testing of the first automatically microfabricated probes to be used in conjunction with the magic angle coil spinning (MACS NMR technique. NMR spectroscopy is a versatile technique for a large range of applications, but its intrinsically low sensitivity poses significant difficulties in analyzing mass- and volume-limited samples. The combination of microfabrication technology and MACS addresses several well-known NMR issues in a concerted manner for the first time: (i reproducible wafer-scale fabrication of the first-in-kind on-chip LC microresonator for inductive coupling of the NMR signal and reliable exploitation of MACS capabilities; (ii improving the sensitivity and the spectral resolution by simultaneous spinning the detection microcoil together with the sample at the "magic angle" of 54.74° with respect to the direction of the magnetic field (magic angle spinning - MAS, accompanied by the wireless signal transmission between the microcoil and the primary circuit of the NMR spectrometer; (iii given the high spinning rates (tens of kHz involved in the MAS methodology, the microfabricated inserts exhibit a clear kinematic advantage over their previously demonstrated counterparts due to the inherent capability to produce small radius cylindrical geometries, thus tremendously reducing the mechanical stress and tearing forces on the sample. In order to demonstrate the versatility of the microfabrication technology, we have designed MACS probes for various Larmor frequencies (194, 500 and 700 MHz testing several samples such as water, Drosophila pupae, adamantane solid and LiCl at different magic angle spinning speeds.

  2. Perturbation of nuclear spin polarizations in solid state NMR of nitroxide-doped samples by magic-angle spinning without microwaves.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2014-05-14

    We report solid state (13)C and (1)H nuclear magnetic resonance (NMR) experiments with magic-angle spinning (MAS) on frozen solutions containing nitroxide-based paramagnetic dopants that indicate significant perturbations of nuclear spin polarizations without microwave irradiation. At temperatures near 25 K, (1)H and cross-polarized (13)C NMR signals from (15)N,(13)C-labeled L-alanine in trinitroxide-doped glycerol/water are reduced by factors as large as six compared to signals from samples without nitroxide doping. Without MAS or at temperatures near 100 K, differences between signals with and without nitroxide doping are much smaller. We attribute most of the reduction of NMR signals under MAS near 25 K to nuclear spin depolarization through the cross-effect dynamic nuclear polarization mechanism, in which three-spin flips drive nuclear polarizations toward equilibrium with spin polarization differences between electron pairs. When T1e is sufficiently long relative to the MAS rotation period, the distribution of electron spin polarization across the nitroxide electron paramagnetic resonance lineshape can be very different from the corresponding distribution in a static sample at thermal equilibrium, leading to the observed effects. We describe three-spin and 3000-spin calculations that qualitatively reproduce the experimental observations.

  3. U.S. Geological Survey mineral databases; MRDS and MAS/MILS

    Science.gov (United States)

    McFaul, E.J.; Mason, G.T.; Ferguson, W.B.; Lipin, B.R.

    2000-01-01

    These two CD-ROM's contain the latest version of the Mineral Resources Data System (MRDS) database and the Minerals Availability System/Minerals Industry Location System (MAS/MILS) database for coverage of North America and the world outside North America. The records in the MRDS database each contain almost 200 data fields describing metallic and nonmetallic mineral resources, deposits, and commodities. The records in the MAS/MILS database each contain almost 100 data fields describing mines and mineral processing plans.

  4. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  5. Integrative NMR for biomolecular research.

    Science.gov (United States)

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ).

  6. Compact orthogonal NMR field sensor

    Science.gov (United States)

    Gerald, II, Rex E.; Rathke, Jerome W [Homer Glen, IL

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  7. Sine-squared shifted pulses for recoupling interactions in solid-state NMR.

    Science.gov (United States)

    Jain, Mukul G; Rajalakshmi, G; Equbal, Asif; Mote, Kaustubh R; Agarwal, Vipin; Madhu, P K

    2017-06-28

    Rotational-Echo DOuble-Resonance (REDOR) is a versatile experiment for measuring internuclear distance between two heteronuclear spins in solid-state NMR. At slow to intermediate magic-angle spinning (MAS) frequencies, the measurement of distances between strongly coupled spins is challenging due to rapid dephasing of magnetisation. This problem can be remedied by employing the pulse-shifted version of REDOR known as Shifted-REDOR (S-REDOR) that scales down the recoupled dipolar coupling. In this study, we propose a new variant of the REDOR sequence where the positions of the π pulses are determined by a sine-squared function. This new variant has scaling properties similar to S-REDOR. We use theory, numerical simulations, and experiments to compare the dipolar recoupling efficiencies and the experimental robustness of the three REDOR schemes. The proposed variant has advantages in terms of radiofrequency field requirements at fast MAS frequencies.

  8. Investigation of zinc alkali pyrophosphate glasses. Part II: Local and medium range orders analysed by 1D/2D NMR

    Energy Technology Data Exchange (ETDEWEB)

    Rajbhandari, P. [UCCS UMR-CNRS 8181, Université de Lille1, Villeneuve d' Ascq (France); Chen, Y. [LASIR UMR-CNRS 8516, Université de Lille1, Villeneuve d' Ascq (France); Doumert, B. [IMMCL CNRS-FR2638, Université de Lille1, Villeneuve d' Ascq (France); Montagne, L. [UCCS UMR-CNRS 8181, Université de Lille1, Villeneuve d' Ascq (France); Tricot, G., E-mail: gregory.tricot@univ-lille1.fr [UCCS UMR-CNRS 8181, Université de Lille1, Villeneuve d' Ascq (France); LASIR UMR-CNRS 8516, Université de Lille1, Villeneuve d' Ascq (France)

    2015-04-01

    The structure of the (66-x)ZnO-xNa{sub 2}O-33.4P{sub 2}O{sub 5} composition line, selected for the development of low-Tg and stable glasses, has been investigated by 1D/2D NMR spectroscopy. If standard 1D {sup 31}P MAS-NMR experiments give access to the Q{sup n} speciation and show the presence of Q{sup 0}, Q{sup 1} and Q{sup 2} sites within the glass structure, application of the homonuclear through-space correlation technique ({sup 31}P DQ-SQ) allows for a more accurate description of the phosphate units. Clear distinction between the Q{sup 1} sites involved in dimmers or in longer chains has been derived from 2D NMR correlation maps and leads to the re-assignment of Q{sup 1} into Q{sup 1,1} and Q{sup 1,2} species. {sup 23}Na and {sup 23}Na({sup 31}P) REDOR MAS-NMR experiments have been used to analyse the Na{sup +} ions distribution and its interaction with the phosphate network. {sup 67}Zn static NMR experiments, performed at very high field, were carried out and suggest a constant Zn{sup 2+} coordination state all along the composition line. The results have been used to discuss the impact of the Zn{sup 2+}/Na{sup +} ratio on the extent of disorder within the glass network expressed in terms of Q{sup n} dismutation equilibrium constant and phosphate chain length distribution. - Highlights: • Structure of zinc alkali pyrophosphate glasses have been analysed by 1D/2D NMR. • 2D {sup 31}P experiments allow to separate Q{sup 1,1} and Q{sup 1,2} species. • {sup 67}Zn static NMR shows a constant signal all along the composition line.

  9. Alteration of cardiac ACE2/Mas expression and cardiac remodelling in rats with aortic constriction.

    Science.gov (United States)

    Zhang, Yanling; Li, Bing; Wang, Bingxiangi; Zhang, Jingjun; Wu, Junyan; Morgan, Trefor

    2014-12-31

    The recent discovery of the new components of the renin-angiotensin system (RAS) suggests the importance of the maintenance of cardiovascular structure and functions. To assess the role of the angiotensin-converting enzyme 2 (ACE2)-Mas receptor axis in the regulation of cardiac structure and function, the present work investigated the expression of ACE2 and Mas receptor in the heart in the cardiac remodeling that occurs in aortic constricted rats. Partial abdominal aortic ligation was carried out in Sprague-Dawley rats. Angiotensin AT1 receptor blockade and ACE inhibition were achieved by losartan and enalapril treatment, respectively. Results showed that aortic constriction increased left ventricular hypertrophy, fibrosis, mean arterial pressure (MAP), plasma renin activity (PRA) and cardiac ACE levels, but decreased the expression of cardiac ACE2 and Mas receptor. Losartan treatment significantly decreased MAP, left ventricle hypertrophy (LVH), fibrosis, and increased cardiac ACE2 and Mas expression. Enalapril also improved the cardiac parameters with a rise in cardiac ACE2, but did not change the Mas level. In conclusion, aortic constriction results in cardiac hypertrophy, fibrosis and a rise of cardiac ACE expression. Both AT1 receptor blocker and ACE inhibitor play a cardioprotective role in aortic constriction. However, AT1 receptor blocker particularly promotes cardiac ACE2 and Mas receptor levels. ACE inhibitor is associated with the inhibition of ACE and normalization of cardiac ACE2 activity.

  10. Glucagon-producing cells are increased in Mas-deficient mice.

    Science.gov (United States)

    Felix Braga, Janaína; Ravizzoni Dartora, Daniela; Alenina, Natalia; Bader, Michael; Santos, Robson Augusto Souza

    2017-01-01

    It has been shown that angiotensin(1-7) (Ang(1-7)) produces several effects related to glucose homeostasis. In this study, we aimed to investigate the effects of genetic deletion of Ang(1-7), the GPCR Mas, on the glucagon-producing cells. C57BL6/N Mas(-/-) mice presented a significant and marked increase in pancreatic α-cells (number of cells: 146 ± 21 vs 67 ± 8 in WT; P Mas(-/-) mice (0.25 ± 0.01 vs 0.31 ± 56.45 pg/mL in WT; P = 0.02). In order to eliminate the possibility of a background-related phenotype, we determined the number of glucagon-producing cells in FVB/N Mas(-/-) mice. In keeping with the observations in C57BL6/N Mas(-/-) mice, the number and percentage of pancreatic α-cells were also significantly increased in these mice (number of α-cells: 260 ± 22 vs 156 ± 12 in WT, P Mas has a previously unexpected role on the pancreatic glucagon production. © 2017 The authors.

  11. The expression of Mas-receptor of the renin-angiotensin system in the human eye.

    Science.gov (United States)

    Vaajanen, A; Kalesnykas, G; Vapaatalo, H; Uusitalo, H

    2015-07-01

    The local renin-angiotensin system has been held to be expressed in many organs, including the eye. It has an important role in the regulation of local fluid homeostasis, cell proliferation, fibrosis, and vascular tone. Mas-receptor (Mas-R) is a potential receptor acting mainly opposite to the well-known angiotensin II receptor type 1. The aim of this study was to determine if Mas-R is expressed in the human eye. Seven enucleated human eyes were used in immunohistochemical detection of Mas-R and its endogenous ligand angiotensin (1-7) [Ang(1-7)]. Both light microscopy and immunofluorescent detection methods were used. A human kidney preparation sample was used as control. The Mas-R was found to have nuclear localization, and localized in the retinal nuclear layers and in the structures of the anterior segment of the eye. A cytoplasmic immunostaining pattern of Ang(1-7) was found in the inner and outer nuclear and plexiform layers of the retina and in the ciliary body. To the best of our knowledge, this is the first report showing Mas-R expression in the human eye. Its localization suggests that it may have a role in physiological and pathological processes in the anterior part of the eye and in the retina.

  12. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection.

    Science.gov (United States)

    da Costa Gonçalves, Andrey C; Fraga-Silva, Rodrigo A; Leite, Romulo; Santos, Robson A S

    2013-03-01

    The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.

  13. Efficient design of multituned transmission line NMR probes: the electrical engineering approach.

    Science.gov (United States)

    Frydel, J A; Krzystyniak, M; Pienkowski, D; Pietrzak, M; de Sousa Amadeu, N; Ratajczyk, T; Idzik, K; Gutmann, T; Tietze, D; Voigt, S; Fenn, A; Limbach, H H; Buntkowsky, G

    2011-01-01

    Transmission line-based multi-channel solid state NMR probes have many advantages regarding the cost of construction, number of RF-channels, and achievable RF-power levels. Nevertheless, these probes are only rarely employed in solid state-NMR-labs, mainly owing to the difficult experimental determination of the necessary RF-parameters. Here, the efficient design of multi-channel solid state MAS-NMR probes employing transmission line theory and modern techniques of electrical engineering is presented. As technical realization a five-channel ((1)H, (31)P, (13)C, (2)H and (15)N) probe for operation at 7 Tesla is described. This very cost efficient design goal is a multi port single coil transmission line probe based on the design developed by Schaefer and McKay. The electrical performance of the probe is determined by measuring of Scattering matrix parameters (S-parameters) in particular input/output ports. These parameters are compared to the calculated parameters of the design employing the S-matrix formalism. It is shown that the S-matrix formalism provides an excellent tool for examination of transmission line probes and thus the tool for a rational design of these probes. On the other hand, the resulting design provides excellent electrical performance. From a point of view of Nuclear Magnetic Resonance (NMR), calibration spectra of particular ports (channels) are of great importance. The estimation of the π/2 pulses length for all five NMR channels is presented.

  14. Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates.

    Science.gov (United States)

    Linser, Rasmus

    2017-08-24

    Solid-state NMR is able to generate structural data on sample preparations that are explicitly non-crystalline. In particular, for amyloid fibril samples, which can comprise significant degrees of sample disorder, solid-state NMR has been used very successfully. But also solid-state NMR studies of other supramolecular assemblies that have resisted assessment by more standard methods are being performed with increasing ease and biological impact, many of which are briefly reviewed here. New technical trends with respect to structure calculation, protein dynamics and smaller sample amounts have reshaped the field of solid-state NMR recently. In particular, proton-detected approaches based on fast Magic-Angle Spinning (MAS) were demonstrated for crystalline systems initially. Currently, such approaches are being expanded to the above-mentioned non-crystalline targets, the characterization of which can now be pursued with sample amounts on the order of a milligram. In this Trends article, I am giving a brief overview about achievements of the last years as well as the directions that the field has been heading into and delineate some satisfactory perspectives for solid-state NMR's future striving. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M. Daniel [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  16. Optical pumping and xenon NMR

    Energy Technology Data Exchange (ETDEWEB)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  17. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  18. Solid-state nuclear magnetic resonance and infrared spectroscopy of alkali feldspars

    Institute of Scientific and Technical Information of China (English)

    周玲棣; 郭九皋; 杨年华; 李丽云

    1997-01-01

    29Si, 27Al MAS NMR and IR spectra of monophase K-feldspars (sanidine, orthoclase and micro-cline) and Na-feldspars (monalbite, anorthoclase and low albite) in different structural states have been studied. The NMR and IR spectra of K-feldspars and Na-feldspars vary regularly along with their degrees of Si/Al ordering evolution. Si in orthoclase occupies T2m, T2o and T1m, and the high-temperature Na-feldspar (monalbite and anorthoclase) coincides in 29Si, 27Al NMR and IR spectra. Moreover, all the high-temperature Na-feldspars and sanidine have the same 27Al NMR and IR spectra.

  19. Distribution and mobility of phosphates and sodium ions in cheese by solid-state 31P and double-quantum filtered 23Na NMR spectroscopy.

    Science.gov (United States)

    Gobet, Mallory; Rondeau-Mouro, Corinne; Buchin, Solange; Le Quéré, Jean-Luc; Guichard, Elisabeth; Foucat, Loïc; Moreau, Céline

    2010-04-01

    The feasibility of solid-state magic angle spinning (MAS) (31)P nuclear magnetic resonance (NMR) spectroscopy and (23)Na NMR spectroscopy to investigate both phosphates and Na(+) ions distribution in semi-hard cheeses in a non-destructive way was studied. Two semi-hard cheeses of known composition were made with two different salt contents. (31)P Single-pulse excitation and cross-polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively 'mobile' fraction of colloidal phosphates was evidenced. The detection by (23)Na single-quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of 'bound' sodium ions was evidenced by (23)Na double-quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na(+) ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls.

  20. ¹³C solid-state NMR analysis of the most common pharmaceutical excipients used in solid drug formulations, Part I: Chemical shifts assignment.

    Science.gov (United States)

    Pisklak, Dariusz Maciej; Zielińska-Pisklak, Monika Agnieszka; Szeleszczuk, Łukasz; Wawer, Iwona

    2016-04-15

    Solid-state NMR is an excellent and useful method for analyzing solid-state forms of drugs. In the (13)C CP/MAS NMR spectra of the solid dosage forms many of the signals originate from the excipients and should be distinguished from those of active pharmaceutical ingredient (API). In this work the most common pharmaceutical excipients used in the solid drug formulations: anhydrous α-lactose, α-lactose monohydrate, mannitol, sucrose, sorbitol, sodium starch glycolate type A and B, starch of different origin, microcrystalline cellulose, hypromellose, ethylcellulose, methylcellulose, hydroxyethylcellulose, sodium alginate, magnesium stearate, sodium laurilsulfate and Kollidon(®) were analyzed. Their (13)C CP/MAS NMR spectra were recorded and the signals were assigned, employing the results (R(2): 0.948-0.998) of GIPAW calculations and theoretical chemical shifts. The (13)C ssNMR spectra for some of the studied excipients have not been published before while for the other signals in the spectra they were not properly assigned or the assignments were not correct. The results summarize and complement the data on the (13)C ssNMR analysis of the most common pharmaceutical excipients and are essential for further NMR studies of API-excipient interactions in the pharmaceutical formulations.

  1. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot

    Science.gov (United States)

    Pecher, Oliver; Halat, David M.; Lee, Jeongjae; Liu, Zigeng; Griffith, Kent J.; Braun, Marco; Grey, Clare P.

    2017-02-01

    We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated "on-the-fly" re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g.7Li and 31P at 117 and 122 MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic 7Li and 31P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) paramagnetic 17O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+δ; (3) broadband 93Nb static NMR of the Li-ion battery material BNb2O5; and (4) broadband static 127I NMR of a potential Li-air battery product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25 MHz) NMR lineshapes that the eATM robot is uniquely

  2. Podocalyxin promotes glioblastoma multiforme cell invasion and proliferation by inhibiting angiotensin-(1-7)/Mas signaling.

    Science.gov (United States)

    Liu, Bo; Liu, Yu; Jiang, Yugang

    2015-05-01

    Podocalyxin (PODX) reportedly enhances invasion in many human cancers including glioblastoma multiforme (GBM). Recent studies have shown that the local renin-angiotensin system (RAS) in tumor environment contributes significantly to tumor progression. As a counter-regulatory axis in RAS, angiotensin (Ang)-(1-7)/Mas signaling has been shown to inhibit the growth and invasiveness of several human cancers including GBM. In the present study, we examined the crosstalk between PODX and Ang-(1-7)/Mas signaling in GBM cells, and assessed its impact on GBM cell invasion and proliferation. A strong negative correlation between the expression of PODX and Mas in GBM tumor tissues from 10 consecutive patients (r=-0.768, pMas at the mRNA and protein levels, which led to decreased density of Ang-(1-7)-binding Mas on the cell membrane. This effect was completely abolished by selective phosphatidylinositol 3-kinase (PI3K) inhibitor BKM120. By contrast, the stable knockdown of PODX in LN-229 and U-118 MG cells increased the expression of Mas and the density of Ang-(1-7)-binding Mas on the cell membrane. Overexpression and knockdown of PODX respectively reversed and enhanced the inhibitory effects of Ang-(1-7) on the expression/activity of matrix metalloproteinase-9 and cell invasion and proliferation in GBM cells. Although the overexpression of Mas showed no significant effect on the promoting effect of PODX on GBM cell invasion and proliferation in the absence of Ang-(1-7), it completely eliminated the effect of PODX in the presence of Ang-(1-7). In conclusion, to the best of our knowledge, the present study provided the first evidence that PODX inhibits Ang-(1-7)/Mas signaling by downregulating the expression of Mas through a PI3K-dependent mechanism in GBM cells. This effect led to enhanced GBM cell invasion and proliferation. The results of this study add new insight into the biological functions of PODX and the molecular mechanisms underlying GBM progression.

  3. Ultrafast Magic-Angle Spinning: Benefits for the Acquisition of Ultrawide-Line NMR Spectra of Heavy Spin-1/2 Nuclei.

    Science.gov (United States)

    Pöppler, Ann-Christin; Demers, Jean-Philippe; Malon, Michal; Singh, Amit Pratap; Roesky, Herbert W; Nishiyama, Yusuke; Lange, Adam

    2016-03-16

    The benefits of the ultrafast magic-angle spinning (MAS) approach for the acquisition of ultrawide-line NMR spectra-spectral simplification, increased mass sensitivity allowing the fast study of small amounts of material, efficient excitation, and application to multiple heavy nuclei-are demonstrated for tin(II) oxide (SnO) and the tin complex [(LB)Sn(II) Cl](+) [Sn(II) Cl3 ](-) [LB=2,6-diacetylpyridinebis(2,6-diisopropylanil)] containing two distinct tin environments. The ultrafast MAS experiments provide optimal conditions for the extraction of the chemical-shift anisotropy tensor parameters, anisotropy, and asymmetry for heavy spin-1/2 nuclei.

  4. Grafting of swelling clay materials with 3-aminopropyltriethoxysilane.

    Science.gov (United States)

    He, Hongping; Duchet, Jannick; Galy, Jocelyne; Gerard, Jean-François

    2005-08-01

    The grafting reaction between a trifunctional silylating agent and two kinds of 2:1 type layered silicates was studied using FTIR, XRD, TGA, and 29Si CP/MAS NMR. XRD patterns clearly indicate the introduction of 3-aminopropyltriethoxysilane (gamma-APS) into the clay interlayer. In the natural montmorillonite, gamma-APS adopts a parallel-bilayer arrangement, while it adopts a parallel-monolayer arrangement in the synthetic fluorohectorite. These different silane arrangements have a prominent effect on the mechanism of the condensation reaction within the clay gallery. In natural montmorillonite, the parallel-bilayer arrangement of gamma-APS results in bidentate (T2) and tridendate (T3) molecular environments, while the parallel-monolayer arrangement leads to monodentate (T1), as indicated by 29Si CP/MAS NMR spectra. This study demonstrates that the silylation reaction and the interlayer microstructure of the grafting products strongly depend on the original clay materials.

  5. Conversion of rice husk ash to zeolite beta.

    Science.gov (United States)

    Prasetyoko, Didik; Ramli, Zainab; Endud, Salasiah; Hamdan, Halimaton; Sulikowski, Bogdan

    2006-01-01

    White rice husk ash (RHA), an agriculture waste containing crystalline tridymite and alpha-cristobalite, was used as a silica source for zeolite Beta synthesis. The crystallization of zeolite Beta from RHA at 150 degrees C in the presence of tetraethylammonium hydroxide was monitored by XRD, FTIR and (29)Si MAS NMR techniques. It was found that zeolite Beta started to form after 12h and the complete crystallization of zeolite Beta phase was achieved after 2d. XRD, (29)Si MAS NMR and solid yield studies indicate that the transformation mechanism of silica present in RHA to zeolite Beta involves dissolution of the ash, formation of an amorphous aluminosilicate after 6h of crystallization, followed by dissolution in the mother liquor and final transformation to pure zeolite Beta crystals.

  6. NMR study of hydroxy and amide protons in hyaluronan polymers.

    Science.gov (United States)

    Nestor, Gustav; Sandström, Corine

    2017-02-10

    Hyaluronan (HA) is an important and well characterized glycosaminoglycan with high viscosity and water-retaining capacity. Nonetheless, it is not fully understood whether conformational properties of the easily characterized HA oligomers can be transferred to HA polymers. To investigate possible differences in hydration, hydrogen bonding and flexibility between HA polymers and oligomers, hydroxy and amide protons of HA polymers were studied by solution-state and high-resolution magic angle spinning (HR-MAS) NMR spectroscopy. Measurements of chemical shifts, temperature coefficients and NOEs in HA polymers revealed that the NMR data are very similar compared to the interior of a HA octasaccharide, supporting transient hydrogen bond interactions across the β(1→3) and β(1→4) glycosidic linkages. However, differences in NOEs suggested a cis-like orientation between NH and H2 in the HA polymer. The lack of concentration dependence of the hydroxy proton chemical shifts suggests that there are no direct inter-chain interactions involving hydroxy protons at the concentrations investigated.

  7. Mas receptor is involved in the estrogen-receptor induced nitric oxide-dependent vasorelaxation.

    Science.gov (United States)

    Sobrino, Agua; Vallejo, Susana; Novella, Susana; Lázaro-Franco, Macarena; Mompeón, Ana; Bueno-Betí, Carlos; Walther, Thomas; Sánchez-Ferrer, Carlos; Peiró, Concepción; Hermenegildo, Carlos

    2017-04-01

    The Mas receptor is involved in the angiotensin (Ang)-(1-7) vasodilatory actions by increasing nitric oxide production (NO). We have previously demonstrated an increased production of Ang-(1-7) in human umbilical vein endothelial cells (HUVEC) exposed to estradiol (E2), suggesting a potential cross-talk between E2 and the Ang-(1-7)/Mas receptor axis. Here, we explored whether the vasoactive response and NO-related signalling exerted by E2 are influenced by Mas. HUVEC were exposed to 10nM E2 for 24h in the presence or absence of the selective Mas receptor antagonist A779, and the estrogen receptor (ER) antagonist ICI182780 (ICI). E2 increased Akt and endothelial nitric oxide synthase (eNOS) mRNA and protein expression, measured by RT-PCR and Western blot, respectively. Furthermore, E2 increased Akt activity (determined by the levels of phospho-Ser(473)) and eNOS activity (by the enhanced phosphorylation of Ser(1177), the activated form), resulting in increased NO production, which was measured by the fluorescence probe DAF-2-FM. These signalling events were dependent on ER and Mas receptor activation, since they were abolished in the presence of ICI or A779. In ex-vivo functional experiments performed with a small-vessel myograph in isolated mesenteric vessels from wild-type mice pre-contracted with noradrenaline, the relaxant response to physiological concentrations of E2 was blocked by ICI and A779, to the same extent to that obtained in the vessels isolated from Mas-deficient. In conclusion, E2 induces NO production and vasodilation through mechanisms that require Mas receptor activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mas receptor overexpression increased Ang-(1-7) relaxation response in renovascular hypertensive rat carotid.

    Science.gov (United States)

    Olivon, V C; Aires, R D; Santiago, L B; Ramalho, L Z N; Cortes, S F; Lemos, V S

    2015-09-01

    Renin-angiotensin system (RAS) is an important factor in the pathophysiology of hypertension. Mas receptor, Angiotensin-(1-7) [Ang-(1-7)]-activated receptor, is an important RAS component and exerts protective effects in the vasculature. Ang-(1-7) vascular effects and Mas receptor expression in carotid from renovascular hypertensive (2K-1C) rats is not clear. In the present study we investigated Mas receptor vasodilator response activated by Ang-(1-7) in the carotid rings from sham and 2K-1C rats. Changes in isometric tension were recorded on organ chamber. Mas receptors expression was investigated in carotid by Western blot. Nitric oxide production was evaluated by 2,3-diaminonaphthalene (DAN) and eNOS expression and activity by immunofluoresce and western blot, respectively. Ang-(1-7) induced concentration-dependent vasodilator effect in carotid rings from sham and 2K-1C, which the hypertension increased vasodilatation response. In the 2K-1C carotid rings, A-779 (Mas receptor antagonist) reduced but not abolish the vasodilator effect of Ang-(1-7). Corroborating, Mas receptor protein expression was significantly increased in the 2K-1C rats. L-NAME and ibuprofen decreased Ang-(1-7) vasodilator response and L-NAME plus ibuprofen practically abolish the remaining vasodilatation response. Nitric oxide production is increased due increased of eNOS expression and pSer(1177) activity. Our results demonstrated that renovascular hypertension increased Mas receptors expression and nitric oxide production in the rats carotid which, consequently increased Ang-(1-7)-vasorelaxant response. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Chemical reactivity of graphene oxide towards amines elucidated by solid-state NMR

    Science.gov (United States)

    Vacchi, Isabella A.; Spinato, Cinzia; Raya, Jésus; Bianco, Alberto; Ménard-Moyon, Cécilia

    2016-07-01

    Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by amidation. We also prove that there is a negligible amount of carboxylic acid groups in two GO samples obtained by a different synthesis process, hence eliminating the possibility of amidation reactions with amine derivatives. This work brings additional insights into the chemical reactivity of GO, which is fundamental to control its functionalization, and highlights the major role of MAS NMR spectroscopy for a comprehensive characterization of derivatized GO.Graphene oxide (GO) is an attractive nanomaterial for many applications. Controlling the functionalization of GO is essential for the design of graphene-based conjugates with novel properties. But, the chemical composition of GO has not been fully elucidated yet. Due to the high reactivity of the oxygenated moieties, mainly epoxy, hydroxyl and carboxyl groups, several derivatization reactions may occur concomitantly. The reactivity of GO with amine derivatives has been exploited in the literature to design graphene-based conjugates, mainly through amidation. However, in this study we undoubtedly demonstrate using magic angle spinning (MAS) solid-state NMR that the reaction between GO and amine functions occurs via ring opening of the epoxides, and not by

  10. UV-Raman and NMR spectroscopic studies on the crystallization of zeolite A and a new synthetic route.

    Science.gov (United States)

    Ren, Limin; Li, Caijin; Fan, Fengtao; Guo, Qiang; Liang, Desheng; Feng, Zhaochi; Li, Can; Li, Shougui; Xiao, Feng-Shou

    2011-05-23

    UV-Raman and NMR spectroscopy, combined with other techniques, have been used to characterize crystallization of zeolite A. In situ UV-Raman spectroscopy shows that the starting gel for crystallization of zeolite A contains a lot of four-ring (4R) building units and the appearance of six-ring (6R) building blocks is the signal for crystal formation. (29)Si NMR spectroscopy results suggest that the starting gel is double four-ring (D4R) rich and during crystallization of zeolite A both α and β cages appear. (27)Al NMR spectroscopy results indicate the absence of Al (2Si) species in the starting gel, suggesting the absence of single 4R building units in the starting gel. Furthermore, composition analysis of both solid and liquid samples shows that the solid rather than liquid phase predominates for the crystallization of zeolite A. Therefore, it is proposed that the crystallization of zeolite A mainly occurs in the solid phase by self-assembly or rearrangement starting from the zeolite building units mainly consisting of D4R. The essential role of D4R is directly confirmed by successful conversion from a solution of D4R to zeolite A in the presence of NaCl, and the importance of solid phase is reasonably demonstrated by the successful synthesis of zeolite A from a dry aluminosilicate gel. By considering that the solid phase has a major contribution to crystallization, a novel route was designed to synthesizing zeolite A from the raw materials water glass (Na(2)SiO(3) in aqueous solution) and NaAlO(2), without additional water and NaOH; this route not only simplifies synthetic procedures, but reduces water consumption. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  12. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning.

    Science.gov (United States)

    Sharma, Kshama; Madhu, P K; Agarwal, Vipin

    2016-09-01

    The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.

  13. NMR Dynamic Studies in Living Systems

    Institute of Scientific and Technical Information of China (English)

    闫永彬; 范明杰; 罗雪春; 张日清

    2002-01-01

    Nuclear magnetic resonance (NMR) can noninvasively monitor the intracellular concentrations and kinetic properties of numerous inorganic and organic compounds. These characteristics have made NMR a useful tool for dynamic studies of living systems. Applications of NMR to living systems have successfully extended to many areas, including studies of metabolic regulation, ion transport, and intracellular reaction rates in vivo. The major purpose of this review is to summarize the results that can be obtained by modern NMR techniques in living systems. With the advances of new techniques, NMR measurements of various nuclides have been performed for specific physiological purposes. Although some technical problems still remain and there are still discrepancies between NMR and traditional biochemical results, the abundant and unique information obtained from NMR spectra suggests that NMR will be more extensively applied in future studies of living systems. The fast development of these new techniques is providing many new NMR applications in living systems, as well as in structural biology.

  14. The flexibility of SIMPSON and SIMMOL for numerical simulations in solid-and liquid-state NMR spectroscopy

    CERN Document Server

    Vosegaard, T; Nielsen, N C

    2002-01-01

    Addressing the need for numerical simulations in the design and interpretation of advanced solid- and liquid-state NMR experiments, we present a number of novel features for numerical simulations based on the SIMPSON and SIMMOL open source software packages. Major attention is devoted to the flexibility of these Tcl-interfaced programs for numerical simulation of NMR experiments being complicated by demands for efficient powder averaging, large spin systems, and multiple-pulse rf irradiation. These features are exemplified by fast simulation of second-order quadrupolar powder patterns using crystallite interpolation, analysis of rotary resonance triple-quantum excitation for quadrupolar nuclei, iterative fitting of MQ-MAS spectra by combination of SIMIPSON and MINUIT, simulation of multiple-dimensional PISEMA-type correlation experiments for macroscopically oriented membrane proteins, simulation of Hartman-Hahn polarization transfers in liquid-state NMR, and visualization of the spin evolution under complex c...

  15. The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance.

    Science.gov (United States)

    Cao, Xi; Yang, Fang-Yuan; Xin, Zhong; Xie, Rong-Rong; Yang, Jin-Kui

    2014-08-05

    Blocking the renin-angiotensin system (RAS) can reduce the risk of diabetes. Meanwhile, the angiotensin (Ang)-converting enzyme-2 (ACE2)/Ang-(1-7)/Mas axis has recently been proposed to function as a negative regulator of the RAS. In previous studies, we first demonstrated that ACE2 knockout (ACE2(-/)(y)) mice exhibit impaired glucose tolerance or diabetes. However the precise roles of ACE2 on glucose metabolism are unknown. Here we show that the ACE2/Ang-(1-7)/Mas axis can ameliorate insulin resistance in the liver. Activation of the ACE2/Ang-(1-7)/Mas axis increases glucose uptake and decreases glycogen synthesis in the liver accompanied by increased expression of glucose transporters, insulin receptor substrates and decreased expression of enzymes for glycogen synthesis. ACE2 knockout mice displayed elevated levels of oxidative stress and exposure to Ang-(1-7) reduced the stress in hepatic cells. As a consequence of anti-oxidative stress, activation of the ACE2/Ang-(1-7)/Mas axis led to improved hepatic insulin resistance through the Akt/PI3K/IRS-1/JNK insulin signaling pathway. This is the first time documented that the ACE2/Ang-(1-7)/Mas axis can ameliorate insulin resistance in the liver. As insulin resistance in the liver is considered to be the primary cause of the development of type 2 diabetes, this axis may serve as a new diabetes target. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. The development of the ProMAS: a Probabilistic Medication Adherence Scale

    Directory of Open Access Journals (Sweden)

    Kleppe M

    2015-03-01

    Full Text Available Mieke Kleppe,1,2 Joyca Lacroix,2 Jaap Ham,1 Cees Midden1 1Human Technology Interaction, Eindhoven University of Technology, Eindhoven, the Netherlands; 2Behavior, Cognition and Perception, Philips Research, Eindhoven, the Netherlands Abstract: Current self-report medication adherence measures often provide heavily skewed results with limited variance, suggesting that most participants are highly adherent. This contrasts with findings from objective adherence measures. We argue that one of the main limitations of these self-report measures is the limited range covered by the behaviors assessed. That is, the items do not match the adherence behaviors that people perform, resulting in a ceiling effect. In this paper, we present a new self-reported medication adherence scale based on the Rasch model approach (the ProMAS, which covers a wide range of adherence behaviors. The ProMAS was tested with 370 elderly receiving medication for chronic conditions. The results indicated that the ProMAS provided adherence scores with sufficient fit to the Rasch model. Furthermore, the ProMAS covered a wider range of adherence behaviors compared to the widely used Medication Adherence Report Scale (MARS instrument, resulting in more variance and less skewness in adherence scores. We conclude that the ProMAS is more capable of discriminating between people with different adherence rates than the MARS. Keywords: questionnaire design, probabilistic models, methodology

  17. Altered heart rate and blood pressure variability in mice lacking the Mas protooncogene

    Directory of Open Access Journals (Sweden)

    T. Walther

    2000-01-01

    Full Text Available Heart rate variability is a relevant predictor of cardiovascular risk in humans. A significant genetic influence on heart rate variability is suggested, although the genes involved are ill-defined. The Mas-protooncogene encodes a G-protein-coupled receptor with seven transmembrane domains highly expressed in testis and brain. Since this receptor is supposed to interact with the signaling of angiotensin II, which is an important regulator of cardiovascular homeostasis, heart rate and blood pressure were analyzed in Mas-deficient mice. Using a femoral catheter the blood pressure of mice was measured for a period of 30 min and 250 data values per second were recorded. The mean values and range of heart rate and blood pressure were then calculated. Neither heart rate nor blood pressure were significantly different between knockout mice and controls. However, high resolution recording of these parameters and analysis of the data by non-linear dynamics revealed significant alterations in cardiovascular variability in Mas-deficient animals. In particular, females showed a strong reduction of heart rate variability. Furthermore, the data showed an increased sympathetic tone in knockout animals of both genders. The marked alterations detected in Mas-deficient mice of both genders suggest that the Mas-protooncogene is an important determinant of heart rate and blood pressure variability.

  18. NMR studies of actinide dioxides

    Energy Technology Data Exchange (ETDEWEB)

    Tokunaga, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: tokunaga.yo@jaea.go.jp; Sakai, H.; Fujimoto, T.; Kambe, S.; Walstedt, R.E.; Ikushima, K.; Yasuoka, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Aoki, D.; Homma, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Haga, Y.; Matsuda, T.D.; Ikeda, S.; Yamamoto, E.; Nakamura, A. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Shiokawa, Y. [Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nakajima, K.; Arai, Y. [Department of Nuclear Energy System, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Onuki, Y. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2007-10-11

    {sup 17}O NMR measurements have been performed on a series of the actinide dioxides, UO{sub 2}, NpO{sub 2} and PuO{sub 2}. Although the {sup 17}O NMR spectra in these materials are similar at higher temperatures, the low-temperature spectra present are significantly different. In UO{sub 2} we have observed a wide spectrum, forming a rectangular shape below T{sub N}=30 K. In NpO{sub 2}, on the other hand, the spectra broaden rather gradually and exhibit a two-peak structure below T{sub 0}=26 K. In PuO{sub 2}, neither spectrum broadening nor splitting has been observed. We show that these NMR spectra clearly indicate the different nature of the low-temperature magnetic ground states in these actinide compounds.

  19. NMR chemical shift pattern changed by ammonium sulfate precipitation in cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    Song, Chen; Lang, Christina; Kopycki, Jakub; Hughes, Jon; Matysik, Jörg

    2015-01-01

    Phytochromes are dimeric biliprotein photoreceptors exhibiting characteristic red/far-red photocycles. Full-length cyanobacterial phytochrome Cph1 from Synechocystis 6803 is soluble initially but tends to aggregate in a concentration-dependent manner, hampering attempts to solve the structure using NMR and crystallization methods. Otherwise, the Cph1 sensory module (Cph1Δ2), photochemically indistinguishable from the native protein and used extensively in structural and other studies, can be purified to homogeneity in >10 mg amounts at mM concentrations quite easily. Bulk precipitation of full-length Cph1 by ammonium sulfate (AmS) was expected to allow us to produce samples for solid-state magic-angle spinning (MAS) NMR from dilute solutions before significant aggregation began. It was not clear, however, what effects the process of partial dehydration might have on the molecular structure. Here we test this by running solid-state MAS NMR experiments on AmS-precipitated Cph1Δ2 in its red-absorbing Pr state carrying uniformly (13)C/(15)N-labeled phycocyanobilin (PCB) chromophore. 2D (13)C-(13)C correlation experiments allowed a complete assignment of (13)C responses of the chromophore. Upon precipitation, (13)C chemical shifts for most of PCB carbons move upfield, in which we found major changes for C4 and C6 atoms associated with the A-ring positioning. Further, the broad spectral lines seen in the AmS (13)C spectrum reflect primarily the extensive inhomogeneous broadening presumably due to an increase in the distribution of conformational states in the protein, in which less free water is available to partake in the hydration shells. Our data suggest that the effect of dehydration process indeed leads to changes of electronic structure of the bilin chromophore and a decrease in its mobility within the binding pocket, but not restricted to the protein surface. The extent of the changes induced differs from the freezing process of the solution samples routinely

  20. GLUCOSE AND LACTATE METABOLISM IN THE AWAKE AND STIMULATED RAT: A 13C-NMR STUDY.

    Directory of Open Access Journals (Sweden)

    Denys eSampol

    2013-05-01

    Full Text Available Glucose is the major energetic substrate for the brain but evidence has accumulated during the last 20 years that lactate produced by astrocytes could be an additional substrate for neurons. However, little information exists about this lactate shuttle in vivo in activated and awake animals. We designed an experiment in which the cortical barrel field (S1BF was unilaterally activated during infusion of both glucose and lactate (alternatively labeled with 13C in rats. At the end of stimulation (1h, both S1BF areas were removed and analyzed by HR-MAS NMR spectroscopy to compare glucose and lactate metabolism in the activated area versus the non-activated one. In combination with microwave irradiation, HR-MAS spectroscopy is a powerful technical approach to study brain lactate metabolism in vivo.Using in vivo 14C-2-deoxyglucose and autoradiography, we confirmed that whisker stimulation was effective since we observed a 40% increase in glucose uptake in the activated S1BF area compared to the ipsilateral one.We first determined that lactate observed on spectra of biopsies did not arise from post-mortem metabolism. 1H-NMR data indicated that during brain activation, there was an average 2.4-fold increase in lactate content in the activated area. When [1-13C]glucose+lactate were infused, 13C-NMR data showed an increase in 13C-labeled lactate during brain activation, as well as an increase in lactate C3-specific enrichment. This result demonstrates that the increase in lactate observed on 1H-NMR spectra originates from newly synthesized lactate from the labeled precursor ([1-13C]glucose. It also shows that this additional lactate does not arise from an increase in blood lactate uptake since it would otherwise be unlabeled. These results are in favor of intracerebral lactate production during brain activation in vivo, which could be a supplementary fuel for neurons.

  1. Structural investigation of aluminium doped ZnO nanoparticles by solid-state NMR spectroscopy.

    Science.gov (United States)

    Avadhut, Yamini S; Weber, Johannes; Hammarberg, Elin; Feldmann, Claus; Schmedt auf der Günne, Jörn

    2012-09-07

    The electrical conductivity of aluminium doped zinc oxide (AZO, ZnO:Al) materials depends on doping induced defects and grain structure. This study aims at relating macroscopic electrical conductivity of AZO nanoparticles with their atomic structure, which is non-trivial because the derived materials are heavily disordered and heterogeneous in nature. For this purpose we synthesized AZO nanoparticles with different doping levels and narrow size distribution by a microwave assisted polyol method followed by drying and a reductive treatment with forming gas. From these particles electrically conductive, optically transparent films were obtained by spin-coating. Characterization involved energy-dispersive X-ray analysis, wet chemical analysis, X-ray diffraction, electron microscopy and dynamic light scattering, which provided a basis for a detailed structural solid-state NMR study. A multinuclear ((27)Al, (13)C, (1)H) spectroscopic investigation required a number of 1D MAS NMR and 2D MAS NMR techniques (T(1)-measurements, (27)Al-MQMAS, (27)Al-(1)H 2D-PRESTO-III heteronuclear correlation spectroscopy), which were corroborated by quantum chemical calculations with an embedded cluster method (EEIM) at the DFT level. From the combined data we conclude that only a small part of the provided Al is incorporated into the ZnO structure by substitution of Zn. The related (27)Al NMR signal undergoes a Knight shift when the material is subjected to a reductive treatment with forming gas. At higher (formal) doping levels Al forms insulating (Al, H and C containing) side-phases, which cover the surface of the ZnO:Al particles and increase the sheet resistivity of spin-coated material. Moreover, calculated (27)Al quadrupole coupling constants serve as a spectroscopic fingerprint by which previously suggested point-defects can be identified and in their great majority be ruled out.

  2. SIMPSON: a general simulation program for solid-state NMR spectroscopy.

    Science.gov (United States)

    Bak, M; Rasmussen, J T; Nielsen, N C

    2000-12-01

    A computer program for fast and accurate numerical simulation of solid-state NMR experiments is described. The program is designed to emulate a NMR spectrometer by letting the user specify high-level NMR concepts such as spin systems, nuclear spin interactions, RF irradiation, free precession, phase cycling, coherence-order filtering, and implicit/explicit acquisition. These elements are implemented using the Tcl scripting language to ensure a minimum of programming overhead and direct interpretation without the need for compilation, while maintaining the flexibility of a full-featured programming language. Basically, there are no intrinsic limitations to the number of spins, types of interactions, sample conditions (static or spinning, powders, uniaxially oriented molecules, single crystals, or solutions), and the complexity or number of spectral dimensions for the pulse sequence. The applicability ranges from simple 1D experiments to advanced multiple-pulse and multiple-dimensional experiments, series of simulations, parameter scans, complex data manipulation/visualization, and iterative fitting of simulated to experimental spectra. A major effort has been devoted to optimizing the computation speed using state-of-the-art algorithms for the time-consuming parts of the calculations implemented in the core of the program using the C programming language. Modification and maintenance of the program are facilitated by releasing the program as open source software (General Public License) currently at http://nmr.imsb.au.dk. The general features of the program are demonstrated by numerical simulations of various aspects for REDOR, rotational resonance, DRAMA, DRAWS, HORROR, C7, TEDOR, POST-C7, CW decoupling, TPPM, F-SLG, SLF, SEMA-CP, PISEMA, RFDR, QCPMG-MAS, and MQ-MAS experiments.

  3. NMR and dynamics of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Lian, L.Y.; Barsukov, I.L. [Leicester Univ. (United Kingdom)

    1994-12-31

    Several basic experimental analytical NMR techniques that are frequently used for the qualitative and quantitative analysis of dynamic and exchange processes, focusing on proteins systems, are described: chemical exchange (slow exchange, fast exchange, intermediate exchange), heteronuclear relaxation measurements (relaxation parameters, strategy of relaxation data analysis, experimental results and examples, motional model interpretation of relaxation data, homonuclear relaxation); slow large-scale exchange and hydrogen-deuterium exchange are also studied: mechanisms of hydrogen exchange in a native protein, methods for measuring amide exchange rates by NMR, interpretation of amide exchange rates. 9 fig., 3 tab., 56 ref.

  4. Spectral Estimation of NMR Relaxation

    Science.gov (United States)

    Naugler, David G.; Cushley, Robert J.

    2000-08-01

    In this paper, spectral estimation of NMR relaxation is constructed as an extension of Fourier Transform (FT) theory as it is practiced in NMR or MRI, where multidimensional FT theory is used. nD NMR strives to separate overlapping resonances, so the treatment given here deals primarily with monoexponential decay. In the domain of real error, it is shown how optimal estimation based on prior knowledge can be derived. Assuming small Gaussian error, the estimation variance and bias are derived. Minimum bias and minimum variance are shown to be contradictory experimental design objectives. The analytical continuation of spectral estimation is constructed in an optimal manner. An important property of spectral estimation is that it is phase invariant. Hence, hypercomplex data storage is unnecessary. It is shown that, under reasonable assumptions, spectral estimation is unbiased in the context of complex error and its variance is reduced because the modulus of the whole signal is used. Because of phase invariance, the labor of phasing and any error due to imperfect phase can be avoided. A comparison of spectral estimation with nonlinear least squares (NLS) estimation is made analytically and with numerical examples. Compared to conventional sampling for NLS estimation, spectral estimation would typically provide estimation values of comparable precision in one-quarter to one-tenth of the spectrometer time when S/N is high. When S/N is low, the time saved can be used for signal averaging at the sampled points to give better precision. NLS typically provides one estimate at a time, whereas spectral estimation is inherently parallel. The frequency dimensions of conventional nD FT NMR may be denoted D1, D2, etc. As an extension of nD FT NMR, one can view spectral estimation of NMR relaxation as an extension into the zeroth dimension. In nD NMR, the information content of a spectrum can be extracted as a set of n-tuples (ω1, … ωn), corresponding to the peak maxima

  5. Cornus mas (Linnaeus Novel Devised Medicinal Preparations: Bactericidal Effect against Staphylococcus aureus and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Anthony M. Kyriakopoulos

    2015-06-01

    Full Text Available The medicinal properties of Cornus mas L. (=Cornus mascula L., Cornaceae, are well described in Hippocratian documents, and recent research provides experimental evidence for some of these properties. However, the chemical components of Cornus mas L. that may be of pharmaceutical importance are relatively unstable. In this respect a novel methodology for plant nutrient element extraction that provides favorable conditions for simultaneous stabilization of such fragile and unstable structures has been devised. Using this methodology, medicinal preparations derived from Cornus mas L. fresh fruits, proved to possess significant antimicrobial activity selective against S. aureus and P. aeruginosa. This effect became apparent with the addition of sodium bromide in the extraction procedure and varied with the ion availability during extraction. The identification of novel agents with potent antimicrobial activity against these species is of medical importance to overcome the problem of universal antibiotic resistance.

  6. Neuroprotective Mechanisms of the ACE2-Angiotensin-(1-7)-Mas Axis in Stroke

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Haltigan, Emily; Regenhardt, Robert W

    2015-01-01

    The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings...... that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II...... complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting....

  7. MAS-Based Cooperative Control for Biotechnological Process-A Case Study

    Science.gov (United States)

    Choinski, Dariusz; Metzger, Mieczyslaw; Nocon, Witold

    The MAS-based control seems to be better suited for manufacturing control because of its discrete event character. Nevertheless, for continuous industrial processes the MAS-based control can be also very attractive. In this paper, a synthesis of the MAS-based control system for the continuous process is presented. A biological reactor is controlled using respirometric approach. In this approach, both standard control loops and additional experiments are performed to obtain measurements not available on-line. Therefore, the system consists of different control agents being able to cooperate or to inhibit each other in order to achieve the appropriate goals. A case study experiments are realized using an experimental wastewater treatment pilot plant.

  8. Evidence for a systematic offset of $-$0.25~mas in the Gaia DR1 parallaxes

    CERN Document Server

    Stassun, Keivan G

    2016-01-01

    We test the parallaxes reported in the Gaia first data release using the sample of eclipsing binaries with accurate, empirical distances from Stassun & Torres (2016). We find a clear average offset of $-$0.25$\\pm$0.05 mas in the sense of the Gaia parallaxes being too small (i.e., the distances too long). The documented Gaia systematic uncertainty is 0.3 mas, which the eclipsing binary sample corroborates. The offset does not depend strongly on obvious parameters such as color, brightness, or spatial position. However, with a statistical significance of 99.7%, nearer stars possibly exhibit larger offsets according to $\\Delta\\pi \\approx -0.16 -0.02 \\times \\pi$ mas.

  9. Technology Enhanced Learning for People with Intellectual Disabilities and Cerebral Paralysis: The MAS Platform

    Science.gov (United States)

    Colomo-Palacios, Ricardo; Paniagua-Martín, Fernando; García-Crespo, Ángel; Ruiz-Mezcua, Belén

    Education for students with disabilities now takes place in a wide range of settings, thus, including a wider range of assistive tools. As a result of this, one of the most interesting application domains of technology enhanced learning is related to the adoption of learning technologies and designs for people with disabilities. Following this unstoppable trend, this paper presents MAS, a software platform aimed to help people with severe intellectual disabilities and cerebral paralysis in their learning processes. MAS, as a technology enhanced learning platform, provides several tools that supports learning and monitoring for people with special needs, including adaptative games, data processing and monitoring tools. Installed in a special needs education institution in Madrid, Spain, MAS provides special educators with a tool that improved students education processes.

  10. Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material?

    Science.gov (United States)

    Knicker, Heike; Lange, Sascha; van Rossum, Barth; Oschkinat, Hartmut

    2016-04-01

    Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system "soil organic matter", lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectra of humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J

  11. Characterization of new materials in chromatography and fuel cell development by modern NMR techniques; Charakterisierung neuer Materialien in der Chromatographie und Brennstoffzellen-Forschung mit Hilfe moderner NMR-Techniken

    Energy Technology Data Exchange (ETDEWEB)

    Schauff, S.

    2007-12-28

    New materials, suitable for the application in reversed phase liquid chromatography and fuel cell membranes, were characterized regarding their structure and dynamic properties using solid-state and suspended-state NMR spectroscopy. Both methods were found to be suitable to study the dynamic behaviour, the first to observe intrinsic mobilities of phosphonic acids, the second to monitor interaction processes taking place in a chromatography-like system. Several phosphonic acids, which are promising materials for high temperature fuel cell membranes, were investigated with respect to proton mobility and transport applying various solid-state NMR methods. In addition, water uptake and its effects on anhydride formation were studied on samples that were equilibrated with saturated salt solutions. For PVPA substantial, reversible anhydride formation was found, while MePA did not show condensation. These results show that the relation between hydrogen bond strength and proton mobility is complex. In particular, this work demonstrates that the application of simple 1D 1H and 2H NMR experiments provides easy access to information about proton/deuteron mobility on short time scales, needed for an identification of materials with high intrinsic proton conductivities. Stationary phases for reversed phase liquid chomatography were characterized by solid-state NMR spectroscopy, and their influence on different analytes was studied using suspendedstate HR-MAS NMR spectroscopy. Suspended-state HR-MAS NMR spectroscopy showed to be suitable to model the separation process of analytes on chromatographic sorbents. For this, the stationary phase was suspended in a solution of analyte dissolved in mobile phase. MePhSucc showed a peak doubling of the CH2 group in presence of monomeric C18 phase, leading to the coexistence of a narrow and a broadened peak. Thus, the dynamic interactions of MePhSucc towards the stationary phase, and under the influence of the mobile phase, could be

  12. Dibujo y pensamiento en la obra de Rafael Masó

    OpenAIRE

    Marañón González, Rafael Carlos

    2002-01-01

    Rafael Masó, arquitecto noucentista, es además, el artista adecuado para el análisis de una obra totalmente gráfica.Dibujos, escritos, gráficos y bocetos, son los elementos idóneos para que las ideas sobre la expresión gráfica, queden reflejados en esta Tesis Doctoral.Para conocer su obra gráfica, es necesario llegar a lo más profundo de sus pensamientos transmitidos por historiadores y la Familia Masó. Tanto su obra arquitectónica, como sus dibujos, son conocidos por expertos y estudiosos ...

  13. “Logias masónicas en la Nueva España”

    Directory of Open Access Journals (Sweden)

    Carlos Francisco Martínez Moreno

    2011-01-01

    Full Text Available Este artículo busca mostrar que en la Nueva España hubo logias masónicas autorizadas por la Gran Logia del Estado de Louisiana para ser establecidas en Veracruz, Campeche y Mérida Yucatán entre 1816 y 1820. La evidencia documental se presenta por primera vez con su transcripción y traducción, con un estudio hermenéutico del contexto político y masónico de la época, y de algunas reflexiones acerca de la composición de los miembros de las tres logias.

  14. Application of a Multi-Agent System (MAS) to Rational Credit Rating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A Multi-Agent System (MAS) is a promising approach to build complex system. This paper introduces the research of the Inner-Enterprise Credit Rating MAS (IECRMAS). To raise the ratingaccuracy, we not only consider the rating-target's information, but also focus on the evaluators' feature information and propose the rational rating-group formation algorithm based on an anti-bias measurement of the group. We also propose the rational rating individual, which consists of the evaluator and the assistant rating agent. A rational group formation protocol is designed to coordinate autonomous agents to perform the rating job.